xref: /openbmc/linux/mm/mmap.c (revision f9834f18)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #include "internal.h"
57 
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags)	(0)
60 #endif
61 
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72 
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75 
76 static void unmap_region(struct mm_struct *mm,
77 		struct vm_area_struct *vma, struct vm_area_struct *prev,
78 		unsigned long start, unsigned long end);
79 
80 /* description of effects of mapping type and prot in current implementation.
81  * this is due to the limited x86 page protection hardware.  The expected
82  * behavior is in parens:
83  *
84  * map_type	prot
85  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
86  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
87  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
88  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
89  *
90  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
91  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
92  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
93  */
94 pgprot_t protection_map[16] __ro_after_init = {
95 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
97 };
98 
99 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
100 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
101 {
102 	return prot;
103 }
104 #endif
105 
106 pgprot_t vm_get_page_prot(unsigned long vm_flags)
107 {
108 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
109 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
110 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
111 
112 	return arch_filter_pgprot(ret);
113 }
114 EXPORT_SYMBOL(vm_get_page_prot);
115 
116 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
117 {
118 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
119 }
120 
121 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
122 void vma_set_page_prot(struct vm_area_struct *vma)
123 {
124 	unsigned long vm_flags = vma->vm_flags;
125 	pgprot_t vm_page_prot;
126 
127 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
128 	if (vma_wants_writenotify(vma, vm_page_prot)) {
129 		vm_flags &= ~VM_SHARED;
130 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
131 	}
132 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
133 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
134 }
135 
136 /*
137  * Requires inode->i_mapping->i_mmap_rwsem
138  */
139 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
140 		struct file *file, struct address_space *mapping)
141 {
142 	if (vma->vm_flags & VM_DENYWRITE)
143 		atomic_inc(&file_inode(file)->i_writecount);
144 	if (vma->vm_flags & VM_SHARED)
145 		mapping_unmap_writable(mapping);
146 
147 	flush_dcache_mmap_lock(mapping);
148 	vma_interval_tree_remove(vma, &mapping->i_mmap);
149 	flush_dcache_mmap_unlock(mapping);
150 }
151 
152 /*
153  * Unlink a file-based vm structure from its interval tree, to hide
154  * vma from rmap and vmtruncate before freeing its page tables.
155  */
156 void unlink_file_vma(struct vm_area_struct *vma)
157 {
158 	struct file *file = vma->vm_file;
159 
160 	if (file) {
161 		struct address_space *mapping = file->f_mapping;
162 		i_mmap_lock_write(mapping);
163 		__remove_shared_vm_struct(vma, file, mapping);
164 		i_mmap_unlock_write(mapping);
165 	}
166 }
167 
168 /*
169  * Close a vm structure and free it, returning the next.
170  */
171 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
172 {
173 	struct vm_area_struct *next = vma->vm_next;
174 
175 	might_sleep();
176 	if (vma->vm_ops && vma->vm_ops->close)
177 		vma->vm_ops->close(vma);
178 	if (vma->vm_file)
179 		fput(vma->vm_file);
180 	mpol_put(vma_policy(vma));
181 	vm_area_free(vma);
182 	return next;
183 }
184 
185 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
186 		struct list_head *uf);
187 SYSCALL_DEFINE1(brk, unsigned long, brk)
188 {
189 	unsigned long retval;
190 	unsigned long newbrk, oldbrk, origbrk;
191 	struct mm_struct *mm = current->mm;
192 	struct vm_area_struct *next;
193 	unsigned long min_brk;
194 	bool populate;
195 	bool downgraded = false;
196 	LIST_HEAD(uf);
197 
198 	if (down_write_killable(&mm->mmap_sem))
199 		return -EINTR;
200 
201 	origbrk = mm->brk;
202 
203 #ifdef CONFIG_COMPAT_BRK
204 	/*
205 	 * CONFIG_COMPAT_BRK can still be overridden by setting
206 	 * randomize_va_space to 2, which will still cause mm->start_brk
207 	 * to be arbitrarily shifted
208 	 */
209 	if (current->brk_randomized)
210 		min_brk = mm->start_brk;
211 	else
212 		min_brk = mm->end_data;
213 #else
214 	min_brk = mm->start_brk;
215 #endif
216 	if (brk < min_brk)
217 		goto out;
218 
219 	/*
220 	 * Check against rlimit here. If this check is done later after the test
221 	 * of oldbrk with newbrk then it can escape the test and let the data
222 	 * segment grow beyond its set limit the in case where the limit is
223 	 * not page aligned -Ram Gupta
224 	 */
225 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
226 			      mm->end_data, mm->start_data))
227 		goto out;
228 
229 	newbrk = PAGE_ALIGN(brk);
230 	oldbrk = PAGE_ALIGN(mm->brk);
231 	if (oldbrk == newbrk) {
232 		mm->brk = brk;
233 		goto success;
234 	}
235 
236 	/*
237 	 * Always allow shrinking brk.
238 	 * __do_munmap() may downgrade mmap_sem to read.
239 	 */
240 	if (brk <= mm->brk) {
241 		int ret;
242 
243 		/*
244 		 * mm->brk must to be protected by write mmap_sem so update it
245 		 * before downgrading mmap_sem. When __do_munmap() fails,
246 		 * mm->brk will be restored from origbrk.
247 		 */
248 		mm->brk = brk;
249 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
250 		if (ret < 0) {
251 			mm->brk = origbrk;
252 			goto out;
253 		} else if (ret == 1) {
254 			downgraded = true;
255 		}
256 		goto success;
257 	}
258 
259 	/* Check against existing mmap mappings. */
260 	next = find_vma(mm, oldbrk);
261 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
262 		goto out;
263 
264 	/* Ok, looks good - let it rip. */
265 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
266 		goto out;
267 	mm->brk = brk;
268 
269 success:
270 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
271 	if (downgraded)
272 		up_read(&mm->mmap_sem);
273 	else
274 		up_write(&mm->mmap_sem);
275 	userfaultfd_unmap_complete(mm, &uf);
276 	if (populate)
277 		mm_populate(oldbrk, newbrk - oldbrk);
278 	return brk;
279 
280 out:
281 	retval = origbrk;
282 	up_write(&mm->mmap_sem);
283 	return retval;
284 }
285 
286 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
287 {
288 	unsigned long gap, prev_end;
289 
290 	/*
291 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
292 	 * allow two stack_guard_gaps between them here, and when choosing
293 	 * an unmapped area; whereas when expanding we only require one.
294 	 * That's a little inconsistent, but keeps the code here simpler.
295 	 */
296 	gap = vm_start_gap(vma);
297 	if (vma->vm_prev) {
298 		prev_end = vm_end_gap(vma->vm_prev);
299 		if (gap > prev_end)
300 			gap -= prev_end;
301 		else
302 			gap = 0;
303 	}
304 	return gap;
305 }
306 
307 #ifdef CONFIG_DEBUG_VM_RB
308 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
309 {
310 	unsigned long max = vma_compute_gap(vma), subtree_gap;
311 	if (vma->vm_rb.rb_left) {
312 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
313 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
314 		if (subtree_gap > max)
315 			max = subtree_gap;
316 	}
317 	if (vma->vm_rb.rb_right) {
318 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
319 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
320 		if (subtree_gap > max)
321 			max = subtree_gap;
322 	}
323 	return max;
324 }
325 
326 static int browse_rb(struct mm_struct *mm)
327 {
328 	struct rb_root *root = &mm->mm_rb;
329 	int i = 0, j, bug = 0;
330 	struct rb_node *nd, *pn = NULL;
331 	unsigned long prev = 0, pend = 0;
332 
333 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
334 		struct vm_area_struct *vma;
335 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
336 		if (vma->vm_start < prev) {
337 			pr_emerg("vm_start %lx < prev %lx\n",
338 				  vma->vm_start, prev);
339 			bug = 1;
340 		}
341 		if (vma->vm_start < pend) {
342 			pr_emerg("vm_start %lx < pend %lx\n",
343 				  vma->vm_start, pend);
344 			bug = 1;
345 		}
346 		if (vma->vm_start > vma->vm_end) {
347 			pr_emerg("vm_start %lx > vm_end %lx\n",
348 				  vma->vm_start, vma->vm_end);
349 			bug = 1;
350 		}
351 		spin_lock(&mm->page_table_lock);
352 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
353 			pr_emerg("free gap %lx, correct %lx\n",
354 			       vma->rb_subtree_gap,
355 			       vma_compute_subtree_gap(vma));
356 			bug = 1;
357 		}
358 		spin_unlock(&mm->page_table_lock);
359 		i++;
360 		pn = nd;
361 		prev = vma->vm_start;
362 		pend = vma->vm_end;
363 	}
364 	j = 0;
365 	for (nd = pn; nd; nd = rb_prev(nd))
366 		j++;
367 	if (i != j) {
368 		pr_emerg("backwards %d, forwards %d\n", j, i);
369 		bug = 1;
370 	}
371 	return bug ? -1 : i;
372 }
373 
374 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
375 {
376 	struct rb_node *nd;
377 
378 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
379 		struct vm_area_struct *vma;
380 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
381 		VM_BUG_ON_VMA(vma != ignore &&
382 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
383 			vma);
384 	}
385 }
386 
387 static void validate_mm(struct mm_struct *mm)
388 {
389 	int bug = 0;
390 	int i = 0;
391 	unsigned long highest_address = 0;
392 	struct vm_area_struct *vma = mm->mmap;
393 
394 	while (vma) {
395 		struct anon_vma *anon_vma = vma->anon_vma;
396 		struct anon_vma_chain *avc;
397 
398 		if (anon_vma) {
399 			anon_vma_lock_read(anon_vma);
400 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
401 				anon_vma_interval_tree_verify(avc);
402 			anon_vma_unlock_read(anon_vma);
403 		}
404 
405 		highest_address = vm_end_gap(vma);
406 		vma = vma->vm_next;
407 		i++;
408 	}
409 	if (i != mm->map_count) {
410 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
411 		bug = 1;
412 	}
413 	if (highest_address != mm->highest_vm_end) {
414 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
415 			  mm->highest_vm_end, highest_address);
416 		bug = 1;
417 	}
418 	i = browse_rb(mm);
419 	if (i != mm->map_count) {
420 		if (i != -1)
421 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
422 		bug = 1;
423 	}
424 	VM_BUG_ON_MM(bug, mm);
425 }
426 #else
427 #define validate_mm_rb(root, ignore) do { } while (0)
428 #define validate_mm(mm) do { } while (0)
429 #endif
430 
431 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
432 			 struct vm_area_struct, vm_rb,
433 			 unsigned long, rb_subtree_gap, vma_compute_gap)
434 
435 /*
436  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
437  * vma->vm_prev->vm_end values changed, without modifying the vma's position
438  * in the rbtree.
439  */
440 static void vma_gap_update(struct vm_area_struct *vma)
441 {
442 	/*
443 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
444 	 * a callback function that does exactly what we want.
445 	 */
446 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
447 }
448 
449 static inline void vma_rb_insert(struct vm_area_struct *vma,
450 				 struct rb_root *root)
451 {
452 	/* All rb_subtree_gap values must be consistent prior to insertion */
453 	validate_mm_rb(root, NULL);
454 
455 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
456 }
457 
458 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
459 {
460 	/*
461 	 * Note rb_erase_augmented is a fairly large inline function,
462 	 * so make sure we instantiate it only once with our desired
463 	 * augmented rbtree callbacks.
464 	 */
465 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
466 }
467 
468 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
469 						struct rb_root *root,
470 						struct vm_area_struct *ignore)
471 {
472 	/*
473 	 * All rb_subtree_gap values must be consistent prior to erase,
474 	 * with the possible exception of the "next" vma being erased if
475 	 * next->vm_start was reduced.
476 	 */
477 	validate_mm_rb(root, ignore);
478 
479 	__vma_rb_erase(vma, root);
480 }
481 
482 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
483 					 struct rb_root *root)
484 {
485 	/*
486 	 * All rb_subtree_gap values must be consistent prior to erase,
487 	 * with the possible exception of the vma being erased.
488 	 */
489 	validate_mm_rb(root, vma);
490 
491 	__vma_rb_erase(vma, root);
492 }
493 
494 /*
495  * vma has some anon_vma assigned, and is already inserted on that
496  * anon_vma's interval trees.
497  *
498  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
499  * vma must be removed from the anon_vma's interval trees using
500  * anon_vma_interval_tree_pre_update_vma().
501  *
502  * After the update, the vma will be reinserted using
503  * anon_vma_interval_tree_post_update_vma().
504  *
505  * The entire update must be protected by exclusive mmap_sem and by
506  * the root anon_vma's mutex.
507  */
508 static inline void
509 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
510 {
511 	struct anon_vma_chain *avc;
512 
513 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
514 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
515 }
516 
517 static inline void
518 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
519 {
520 	struct anon_vma_chain *avc;
521 
522 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
523 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
524 }
525 
526 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
527 		unsigned long end, struct vm_area_struct **pprev,
528 		struct rb_node ***rb_link, struct rb_node **rb_parent)
529 {
530 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
531 
532 	__rb_link = &mm->mm_rb.rb_node;
533 	rb_prev = __rb_parent = NULL;
534 
535 	while (*__rb_link) {
536 		struct vm_area_struct *vma_tmp;
537 
538 		__rb_parent = *__rb_link;
539 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
540 
541 		if (vma_tmp->vm_end > addr) {
542 			/* Fail if an existing vma overlaps the area */
543 			if (vma_tmp->vm_start < end)
544 				return -ENOMEM;
545 			__rb_link = &__rb_parent->rb_left;
546 		} else {
547 			rb_prev = __rb_parent;
548 			__rb_link = &__rb_parent->rb_right;
549 		}
550 	}
551 
552 	*pprev = NULL;
553 	if (rb_prev)
554 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
555 	*rb_link = __rb_link;
556 	*rb_parent = __rb_parent;
557 	return 0;
558 }
559 
560 static unsigned long count_vma_pages_range(struct mm_struct *mm,
561 		unsigned long addr, unsigned long end)
562 {
563 	unsigned long nr_pages = 0;
564 	struct vm_area_struct *vma;
565 
566 	/* Find first overlaping mapping */
567 	vma = find_vma_intersection(mm, addr, end);
568 	if (!vma)
569 		return 0;
570 
571 	nr_pages = (min(end, vma->vm_end) -
572 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
573 
574 	/* Iterate over the rest of the overlaps */
575 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
576 		unsigned long overlap_len;
577 
578 		if (vma->vm_start > end)
579 			break;
580 
581 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
582 		nr_pages += overlap_len >> PAGE_SHIFT;
583 	}
584 
585 	return nr_pages;
586 }
587 
588 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
589 		struct rb_node **rb_link, struct rb_node *rb_parent)
590 {
591 	/* Update tracking information for the gap following the new vma. */
592 	if (vma->vm_next)
593 		vma_gap_update(vma->vm_next);
594 	else
595 		mm->highest_vm_end = vm_end_gap(vma);
596 
597 	/*
598 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
599 	 * correct insertion point for that vma. As a result, we could not
600 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
601 	 * So, we first insert the vma with a zero rb_subtree_gap value
602 	 * (to be consistent with what we did on the way down), and then
603 	 * immediately update the gap to the correct value. Finally we
604 	 * rebalance the rbtree after all augmented values have been set.
605 	 */
606 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
607 	vma->rb_subtree_gap = 0;
608 	vma_gap_update(vma);
609 	vma_rb_insert(vma, &mm->mm_rb);
610 }
611 
612 static void __vma_link_file(struct vm_area_struct *vma)
613 {
614 	struct file *file;
615 
616 	file = vma->vm_file;
617 	if (file) {
618 		struct address_space *mapping = file->f_mapping;
619 
620 		if (vma->vm_flags & VM_DENYWRITE)
621 			atomic_dec(&file_inode(file)->i_writecount);
622 		if (vma->vm_flags & VM_SHARED)
623 			atomic_inc(&mapping->i_mmap_writable);
624 
625 		flush_dcache_mmap_lock(mapping);
626 		vma_interval_tree_insert(vma, &mapping->i_mmap);
627 		flush_dcache_mmap_unlock(mapping);
628 	}
629 }
630 
631 static void
632 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
633 	struct vm_area_struct *prev, struct rb_node **rb_link,
634 	struct rb_node *rb_parent)
635 {
636 	__vma_link_list(mm, vma, prev);
637 	__vma_link_rb(mm, vma, rb_link, rb_parent);
638 }
639 
640 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
641 			struct vm_area_struct *prev, struct rb_node **rb_link,
642 			struct rb_node *rb_parent)
643 {
644 	struct address_space *mapping = NULL;
645 
646 	if (vma->vm_file) {
647 		mapping = vma->vm_file->f_mapping;
648 		i_mmap_lock_write(mapping);
649 	}
650 
651 	__vma_link(mm, vma, prev, rb_link, rb_parent);
652 	__vma_link_file(vma);
653 
654 	if (mapping)
655 		i_mmap_unlock_write(mapping);
656 
657 	mm->map_count++;
658 	validate_mm(mm);
659 }
660 
661 /*
662  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
663  * mm's list and rbtree.  It has already been inserted into the interval tree.
664  */
665 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
666 {
667 	struct vm_area_struct *prev;
668 	struct rb_node **rb_link, *rb_parent;
669 
670 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
671 			   &prev, &rb_link, &rb_parent))
672 		BUG();
673 	__vma_link(mm, vma, prev, rb_link, rb_parent);
674 	mm->map_count++;
675 }
676 
677 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
678 						struct vm_area_struct *vma,
679 						struct vm_area_struct *ignore)
680 {
681 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
682 	__vma_unlink_list(mm, vma);
683 	/* Kill the cache */
684 	vmacache_invalidate(mm);
685 }
686 
687 /*
688  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
689  * is already present in an i_mmap tree without adjusting the tree.
690  * The following helper function should be used when such adjustments
691  * are necessary.  The "insert" vma (if any) is to be inserted
692  * before we drop the necessary locks.
693  */
694 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
695 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
696 	struct vm_area_struct *expand)
697 {
698 	struct mm_struct *mm = vma->vm_mm;
699 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
700 	struct address_space *mapping = NULL;
701 	struct rb_root_cached *root = NULL;
702 	struct anon_vma *anon_vma = NULL;
703 	struct file *file = vma->vm_file;
704 	bool start_changed = false, end_changed = false;
705 	long adjust_next = 0;
706 	int remove_next = 0;
707 
708 	if (next && !insert) {
709 		struct vm_area_struct *exporter = NULL, *importer = NULL;
710 
711 		if (end >= next->vm_end) {
712 			/*
713 			 * vma expands, overlapping all the next, and
714 			 * perhaps the one after too (mprotect case 6).
715 			 * The only other cases that gets here are
716 			 * case 1, case 7 and case 8.
717 			 */
718 			if (next == expand) {
719 				/*
720 				 * The only case where we don't expand "vma"
721 				 * and we expand "next" instead is case 8.
722 				 */
723 				VM_WARN_ON(end != next->vm_end);
724 				/*
725 				 * remove_next == 3 means we're
726 				 * removing "vma" and that to do so we
727 				 * swapped "vma" and "next".
728 				 */
729 				remove_next = 3;
730 				VM_WARN_ON(file != next->vm_file);
731 				swap(vma, next);
732 			} else {
733 				VM_WARN_ON(expand != vma);
734 				/*
735 				 * case 1, 6, 7, remove_next == 2 is case 6,
736 				 * remove_next == 1 is case 1 or 7.
737 				 */
738 				remove_next = 1 + (end > next->vm_end);
739 				VM_WARN_ON(remove_next == 2 &&
740 					   end != next->vm_next->vm_end);
741 				/* trim end to next, for case 6 first pass */
742 				end = next->vm_end;
743 			}
744 
745 			exporter = next;
746 			importer = vma;
747 
748 			/*
749 			 * If next doesn't have anon_vma, import from vma after
750 			 * next, if the vma overlaps with it.
751 			 */
752 			if (remove_next == 2 && !next->anon_vma)
753 				exporter = next->vm_next;
754 
755 		} else if (end > next->vm_start) {
756 			/*
757 			 * vma expands, overlapping part of the next:
758 			 * mprotect case 5 shifting the boundary up.
759 			 */
760 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
761 			exporter = next;
762 			importer = vma;
763 			VM_WARN_ON(expand != importer);
764 		} else if (end < vma->vm_end) {
765 			/*
766 			 * vma shrinks, and !insert tells it's not
767 			 * split_vma inserting another: so it must be
768 			 * mprotect case 4 shifting the boundary down.
769 			 */
770 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
771 			exporter = vma;
772 			importer = next;
773 			VM_WARN_ON(expand != importer);
774 		}
775 
776 		/*
777 		 * Easily overlooked: when mprotect shifts the boundary,
778 		 * make sure the expanding vma has anon_vma set if the
779 		 * shrinking vma had, to cover any anon pages imported.
780 		 */
781 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
782 			int error;
783 
784 			importer->anon_vma = exporter->anon_vma;
785 			error = anon_vma_clone(importer, exporter);
786 			if (error)
787 				return error;
788 		}
789 	}
790 again:
791 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
792 
793 	if (file) {
794 		mapping = file->f_mapping;
795 		root = &mapping->i_mmap;
796 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
797 
798 		if (adjust_next)
799 			uprobe_munmap(next, next->vm_start, next->vm_end);
800 
801 		i_mmap_lock_write(mapping);
802 		if (insert) {
803 			/*
804 			 * Put into interval tree now, so instantiated pages
805 			 * are visible to arm/parisc __flush_dcache_page
806 			 * throughout; but we cannot insert into address
807 			 * space until vma start or end is updated.
808 			 */
809 			__vma_link_file(insert);
810 		}
811 	}
812 
813 	anon_vma = vma->anon_vma;
814 	if (!anon_vma && adjust_next)
815 		anon_vma = next->anon_vma;
816 	if (anon_vma) {
817 		VM_WARN_ON(adjust_next && next->anon_vma &&
818 			   anon_vma != next->anon_vma);
819 		anon_vma_lock_write(anon_vma);
820 		anon_vma_interval_tree_pre_update_vma(vma);
821 		if (adjust_next)
822 			anon_vma_interval_tree_pre_update_vma(next);
823 	}
824 
825 	if (root) {
826 		flush_dcache_mmap_lock(mapping);
827 		vma_interval_tree_remove(vma, root);
828 		if (adjust_next)
829 			vma_interval_tree_remove(next, root);
830 	}
831 
832 	if (start != vma->vm_start) {
833 		vma->vm_start = start;
834 		start_changed = true;
835 	}
836 	if (end != vma->vm_end) {
837 		vma->vm_end = end;
838 		end_changed = true;
839 	}
840 	vma->vm_pgoff = pgoff;
841 	if (adjust_next) {
842 		next->vm_start += adjust_next << PAGE_SHIFT;
843 		next->vm_pgoff += adjust_next;
844 	}
845 
846 	if (root) {
847 		if (adjust_next)
848 			vma_interval_tree_insert(next, root);
849 		vma_interval_tree_insert(vma, root);
850 		flush_dcache_mmap_unlock(mapping);
851 	}
852 
853 	if (remove_next) {
854 		/*
855 		 * vma_merge has merged next into vma, and needs
856 		 * us to remove next before dropping the locks.
857 		 */
858 		if (remove_next != 3)
859 			__vma_unlink_common(mm, next, next);
860 		else
861 			/*
862 			 * vma is not before next if they've been
863 			 * swapped.
864 			 *
865 			 * pre-swap() next->vm_start was reduced so
866 			 * tell validate_mm_rb to ignore pre-swap()
867 			 * "next" (which is stored in post-swap()
868 			 * "vma").
869 			 */
870 			__vma_unlink_common(mm, next, vma);
871 		if (file)
872 			__remove_shared_vm_struct(next, file, mapping);
873 	} else if (insert) {
874 		/*
875 		 * split_vma has split insert from vma, and needs
876 		 * us to insert it before dropping the locks
877 		 * (it may either follow vma or precede it).
878 		 */
879 		__insert_vm_struct(mm, insert);
880 	} else {
881 		if (start_changed)
882 			vma_gap_update(vma);
883 		if (end_changed) {
884 			if (!next)
885 				mm->highest_vm_end = vm_end_gap(vma);
886 			else if (!adjust_next)
887 				vma_gap_update(next);
888 		}
889 	}
890 
891 	if (anon_vma) {
892 		anon_vma_interval_tree_post_update_vma(vma);
893 		if (adjust_next)
894 			anon_vma_interval_tree_post_update_vma(next);
895 		anon_vma_unlock_write(anon_vma);
896 	}
897 	if (mapping)
898 		i_mmap_unlock_write(mapping);
899 
900 	if (root) {
901 		uprobe_mmap(vma);
902 
903 		if (adjust_next)
904 			uprobe_mmap(next);
905 	}
906 
907 	if (remove_next) {
908 		if (file) {
909 			uprobe_munmap(next, next->vm_start, next->vm_end);
910 			fput(file);
911 		}
912 		if (next->anon_vma)
913 			anon_vma_merge(vma, next);
914 		mm->map_count--;
915 		mpol_put(vma_policy(next));
916 		vm_area_free(next);
917 		/*
918 		 * In mprotect's case 6 (see comments on vma_merge),
919 		 * we must remove another next too. It would clutter
920 		 * up the code too much to do both in one go.
921 		 */
922 		if (remove_next != 3) {
923 			/*
924 			 * If "next" was removed and vma->vm_end was
925 			 * expanded (up) over it, in turn
926 			 * "next->vm_prev->vm_end" changed and the
927 			 * "vma->vm_next" gap must be updated.
928 			 */
929 			next = vma->vm_next;
930 		} else {
931 			/*
932 			 * For the scope of the comment "next" and
933 			 * "vma" considered pre-swap(): if "vma" was
934 			 * removed, next->vm_start was expanded (down)
935 			 * over it and the "next" gap must be updated.
936 			 * Because of the swap() the post-swap() "vma"
937 			 * actually points to pre-swap() "next"
938 			 * (post-swap() "next" as opposed is now a
939 			 * dangling pointer).
940 			 */
941 			next = vma;
942 		}
943 		if (remove_next == 2) {
944 			remove_next = 1;
945 			end = next->vm_end;
946 			goto again;
947 		}
948 		else if (next)
949 			vma_gap_update(next);
950 		else {
951 			/*
952 			 * If remove_next == 2 we obviously can't
953 			 * reach this path.
954 			 *
955 			 * If remove_next == 3 we can't reach this
956 			 * path because pre-swap() next is always not
957 			 * NULL. pre-swap() "next" is not being
958 			 * removed and its next->vm_end is not altered
959 			 * (and furthermore "end" already matches
960 			 * next->vm_end in remove_next == 3).
961 			 *
962 			 * We reach this only in the remove_next == 1
963 			 * case if the "next" vma that was removed was
964 			 * the highest vma of the mm. However in such
965 			 * case next->vm_end == "end" and the extended
966 			 * "vma" has vma->vm_end == next->vm_end so
967 			 * mm->highest_vm_end doesn't need any update
968 			 * in remove_next == 1 case.
969 			 */
970 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
971 		}
972 	}
973 	if (insert && file)
974 		uprobe_mmap(insert);
975 
976 	validate_mm(mm);
977 
978 	return 0;
979 }
980 
981 /*
982  * If the vma has a ->close operation then the driver probably needs to release
983  * per-vma resources, so we don't attempt to merge those.
984  */
985 static inline int is_mergeable_vma(struct vm_area_struct *vma,
986 				struct file *file, unsigned long vm_flags,
987 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
988 {
989 	/*
990 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
991 	 * match the flags but dirty bit -- the caller should mark
992 	 * merged VMA as dirty. If dirty bit won't be excluded from
993 	 * comparison, we increase pressure on the memory system forcing
994 	 * the kernel to generate new VMAs when old one could be
995 	 * extended instead.
996 	 */
997 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
998 		return 0;
999 	if (vma->vm_file != file)
1000 		return 0;
1001 	if (vma->vm_ops && vma->vm_ops->close)
1002 		return 0;
1003 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1004 		return 0;
1005 	return 1;
1006 }
1007 
1008 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1009 					struct anon_vma *anon_vma2,
1010 					struct vm_area_struct *vma)
1011 {
1012 	/*
1013 	 * The list_is_singular() test is to avoid merging VMA cloned from
1014 	 * parents. This can improve scalability caused by anon_vma lock.
1015 	 */
1016 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1017 		list_is_singular(&vma->anon_vma_chain)))
1018 		return 1;
1019 	return anon_vma1 == anon_vma2;
1020 }
1021 
1022 /*
1023  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1024  * in front of (at a lower virtual address and file offset than) the vma.
1025  *
1026  * We cannot merge two vmas if they have differently assigned (non-NULL)
1027  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1028  *
1029  * We don't check here for the merged mmap wrapping around the end of pagecache
1030  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1031  * wrap, nor mmaps which cover the final page at index -1UL.
1032  */
1033 static int
1034 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1035 		     struct anon_vma *anon_vma, struct file *file,
1036 		     pgoff_t vm_pgoff,
1037 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1038 {
1039 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1040 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1041 		if (vma->vm_pgoff == vm_pgoff)
1042 			return 1;
1043 	}
1044 	return 0;
1045 }
1046 
1047 /*
1048  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1049  * beyond (at a higher virtual address and file offset than) the vma.
1050  *
1051  * We cannot merge two vmas if they have differently assigned (non-NULL)
1052  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1053  */
1054 static int
1055 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1056 		    struct anon_vma *anon_vma, struct file *file,
1057 		    pgoff_t vm_pgoff,
1058 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1059 {
1060 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1061 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1062 		pgoff_t vm_pglen;
1063 		vm_pglen = vma_pages(vma);
1064 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1065 			return 1;
1066 	}
1067 	return 0;
1068 }
1069 
1070 /*
1071  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1072  * whether that can be merged with its predecessor or its successor.
1073  * Or both (it neatly fills a hole).
1074  *
1075  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1076  * certain not to be mapped by the time vma_merge is called; but when
1077  * called for mprotect, it is certain to be already mapped (either at
1078  * an offset within prev, or at the start of next), and the flags of
1079  * this area are about to be changed to vm_flags - and the no-change
1080  * case has already been eliminated.
1081  *
1082  * The following mprotect cases have to be considered, where AAAA is
1083  * the area passed down from mprotect_fixup, never extending beyond one
1084  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1085  *
1086  *     AAAA             AAAA                   AAAA
1087  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1088  *    cannot merge    might become       might become
1089  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1090  *    mmap, brk or    case 4 below       case 5 below
1091  *    mremap move:
1092  *                        AAAA               AAAA
1093  *                    PPPP    NNNN       PPPPNNNNXXXX
1094  *                    might become       might become
1095  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1096  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1097  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1098  *
1099  * It is important for case 8 that the vma NNNN overlapping the
1100  * region AAAA is never going to extended over XXXX. Instead XXXX must
1101  * be extended in region AAAA and NNNN must be removed. This way in
1102  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1103  * rmap_locks, the properties of the merged vma will be already
1104  * correct for the whole merged range. Some of those properties like
1105  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1106  * be correct for the whole merged range immediately after the
1107  * rmap_locks are released. Otherwise if XXXX would be removed and
1108  * NNNN would be extended over the XXXX range, remove_migration_ptes
1109  * or other rmap walkers (if working on addresses beyond the "end"
1110  * parameter) may establish ptes with the wrong permissions of NNNN
1111  * instead of the right permissions of XXXX.
1112  */
1113 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1114 			struct vm_area_struct *prev, unsigned long addr,
1115 			unsigned long end, unsigned long vm_flags,
1116 			struct anon_vma *anon_vma, struct file *file,
1117 			pgoff_t pgoff, struct mempolicy *policy,
1118 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1119 {
1120 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1121 	struct vm_area_struct *area, *next;
1122 	int err;
1123 
1124 	/*
1125 	 * We later require that vma->vm_flags == vm_flags,
1126 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1127 	 */
1128 	if (vm_flags & VM_SPECIAL)
1129 		return NULL;
1130 
1131 	if (prev)
1132 		next = prev->vm_next;
1133 	else
1134 		next = mm->mmap;
1135 	area = next;
1136 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1137 		next = next->vm_next;
1138 
1139 	/* verify some invariant that must be enforced by the caller */
1140 	VM_WARN_ON(prev && addr <= prev->vm_start);
1141 	VM_WARN_ON(area && end > area->vm_end);
1142 	VM_WARN_ON(addr >= end);
1143 
1144 	/*
1145 	 * Can it merge with the predecessor?
1146 	 */
1147 	if (prev && prev->vm_end == addr &&
1148 			mpol_equal(vma_policy(prev), policy) &&
1149 			can_vma_merge_after(prev, vm_flags,
1150 					    anon_vma, file, pgoff,
1151 					    vm_userfaultfd_ctx)) {
1152 		/*
1153 		 * OK, it can.  Can we now merge in the successor as well?
1154 		 */
1155 		if (next && end == next->vm_start &&
1156 				mpol_equal(policy, vma_policy(next)) &&
1157 				can_vma_merge_before(next, vm_flags,
1158 						     anon_vma, file,
1159 						     pgoff+pglen,
1160 						     vm_userfaultfd_ctx) &&
1161 				is_mergeable_anon_vma(prev->anon_vma,
1162 						      next->anon_vma, NULL)) {
1163 							/* cases 1, 6 */
1164 			err = __vma_adjust(prev, prev->vm_start,
1165 					 next->vm_end, prev->vm_pgoff, NULL,
1166 					 prev);
1167 		} else					/* cases 2, 5, 7 */
1168 			err = __vma_adjust(prev, prev->vm_start,
1169 					 end, prev->vm_pgoff, NULL, prev);
1170 		if (err)
1171 			return NULL;
1172 		khugepaged_enter_vma_merge(prev, vm_flags);
1173 		return prev;
1174 	}
1175 
1176 	/*
1177 	 * Can this new request be merged in front of next?
1178 	 */
1179 	if (next && end == next->vm_start &&
1180 			mpol_equal(policy, vma_policy(next)) &&
1181 			can_vma_merge_before(next, vm_flags,
1182 					     anon_vma, file, pgoff+pglen,
1183 					     vm_userfaultfd_ctx)) {
1184 		if (prev && addr < prev->vm_end)	/* case 4 */
1185 			err = __vma_adjust(prev, prev->vm_start,
1186 					 addr, prev->vm_pgoff, NULL, next);
1187 		else {					/* cases 3, 8 */
1188 			err = __vma_adjust(area, addr, next->vm_end,
1189 					 next->vm_pgoff - pglen, NULL, next);
1190 			/*
1191 			 * In case 3 area is already equal to next and
1192 			 * this is a noop, but in case 8 "area" has
1193 			 * been removed and next was expanded over it.
1194 			 */
1195 			area = next;
1196 		}
1197 		if (err)
1198 			return NULL;
1199 		khugepaged_enter_vma_merge(area, vm_flags);
1200 		return area;
1201 	}
1202 
1203 	return NULL;
1204 }
1205 
1206 /*
1207  * Rough compatbility check to quickly see if it's even worth looking
1208  * at sharing an anon_vma.
1209  *
1210  * They need to have the same vm_file, and the flags can only differ
1211  * in things that mprotect may change.
1212  *
1213  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1214  * we can merge the two vma's. For example, we refuse to merge a vma if
1215  * there is a vm_ops->close() function, because that indicates that the
1216  * driver is doing some kind of reference counting. But that doesn't
1217  * really matter for the anon_vma sharing case.
1218  */
1219 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1220 {
1221 	return a->vm_end == b->vm_start &&
1222 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1223 		a->vm_file == b->vm_file &&
1224 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1225 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1226 }
1227 
1228 /*
1229  * Do some basic sanity checking to see if we can re-use the anon_vma
1230  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1231  * the same as 'old', the other will be the new one that is trying
1232  * to share the anon_vma.
1233  *
1234  * NOTE! This runs with mm_sem held for reading, so it is possible that
1235  * the anon_vma of 'old' is concurrently in the process of being set up
1236  * by another page fault trying to merge _that_. But that's ok: if it
1237  * is being set up, that automatically means that it will be a singleton
1238  * acceptable for merging, so we can do all of this optimistically. But
1239  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1240  *
1241  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1242  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1243  * is to return an anon_vma that is "complex" due to having gone through
1244  * a fork).
1245  *
1246  * We also make sure that the two vma's are compatible (adjacent,
1247  * and with the same memory policies). That's all stable, even with just
1248  * a read lock on the mm_sem.
1249  */
1250 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1251 {
1252 	if (anon_vma_compatible(a, b)) {
1253 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1254 
1255 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1256 			return anon_vma;
1257 	}
1258 	return NULL;
1259 }
1260 
1261 /*
1262  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1263  * neighbouring vmas for a suitable anon_vma, before it goes off
1264  * to allocate a new anon_vma.  It checks because a repetitive
1265  * sequence of mprotects and faults may otherwise lead to distinct
1266  * anon_vmas being allocated, preventing vma merge in subsequent
1267  * mprotect.
1268  */
1269 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1270 {
1271 	struct anon_vma *anon_vma = NULL;
1272 
1273 	/* Try next first. */
1274 	if (vma->vm_next) {
1275 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1276 		if (anon_vma)
1277 			return anon_vma;
1278 	}
1279 
1280 	/* Try prev next. */
1281 	if (vma->vm_prev)
1282 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1283 
1284 	/*
1285 	 * We might reach here with anon_vma == NULL if we can't find
1286 	 * any reusable anon_vma.
1287 	 * There's no absolute need to look only at touching neighbours:
1288 	 * we could search further afield for "compatible" anon_vmas.
1289 	 * But it would probably just be a waste of time searching,
1290 	 * or lead to too many vmas hanging off the same anon_vma.
1291 	 * We're trying to allow mprotect remerging later on,
1292 	 * not trying to minimize memory used for anon_vmas.
1293 	 */
1294 	return anon_vma;
1295 }
1296 
1297 /*
1298  * If a hint addr is less than mmap_min_addr change hint to be as
1299  * low as possible but still greater than mmap_min_addr
1300  */
1301 static inline unsigned long round_hint_to_min(unsigned long hint)
1302 {
1303 	hint &= PAGE_MASK;
1304 	if (((void *)hint != NULL) &&
1305 	    (hint < mmap_min_addr))
1306 		return PAGE_ALIGN(mmap_min_addr);
1307 	return hint;
1308 }
1309 
1310 static inline int mlock_future_check(struct mm_struct *mm,
1311 				     unsigned long flags,
1312 				     unsigned long len)
1313 {
1314 	unsigned long locked, lock_limit;
1315 
1316 	/*  mlock MCL_FUTURE? */
1317 	if (flags & VM_LOCKED) {
1318 		locked = len >> PAGE_SHIFT;
1319 		locked += mm->locked_vm;
1320 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1321 		lock_limit >>= PAGE_SHIFT;
1322 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1323 			return -EAGAIN;
1324 	}
1325 	return 0;
1326 }
1327 
1328 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1329 {
1330 	if (S_ISREG(inode->i_mode))
1331 		return MAX_LFS_FILESIZE;
1332 
1333 	if (S_ISBLK(inode->i_mode))
1334 		return MAX_LFS_FILESIZE;
1335 
1336 	if (S_ISSOCK(inode->i_mode))
1337 		return MAX_LFS_FILESIZE;
1338 
1339 	/* Special "we do even unsigned file positions" case */
1340 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1341 		return 0;
1342 
1343 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1344 	return ULONG_MAX;
1345 }
1346 
1347 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1348 				unsigned long pgoff, unsigned long len)
1349 {
1350 	u64 maxsize = file_mmap_size_max(file, inode);
1351 
1352 	if (maxsize && len > maxsize)
1353 		return false;
1354 	maxsize -= len;
1355 	if (pgoff > maxsize >> PAGE_SHIFT)
1356 		return false;
1357 	return true;
1358 }
1359 
1360 /*
1361  * The caller must hold down_write(&current->mm->mmap_sem).
1362  */
1363 unsigned long do_mmap(struct file *file, unsigned long addr,
1364 			unsigned long len, unsigned long prot,
1365 			unsigned long flags, vm_flags_t vm_flags,
1366 			unsigned long pgoff, unsigned long *populate,
1367 			struct list_head *uf)
1368 {
1369 	struct mm_struct *mm = current->mm;
1370 	int pkey = 0;
1371 
1372 	*populate = 0;
1373 
1374 	if (!len)
1375 		return -EINVAL;
1376 
1377 	/*
1378 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1379 	 *
1380 	 * (the exception is when the underlying filesystem is noexec
1381 	 *  mounted, in which case we dont add PROT_EXEC.)
1382 	 */
1383 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1384 		if (!(file && path_noexec(&file->f_path)))
1385 			prot |= PROT_EXEC;
1386 
1387 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1388 	if (flags & MAP_FIXED_NOREPLACE)
1389 		flags |= MAP_FIXED;
1390 
1391 	if (!(flags & MAP_FIXED))
1392 		addr = round_hint_to_min(addr);
1393 
1394 	/* Careful about overflows.. */
1395 	len = PAGE_ALIGN(len);
1396 	if (!len)
1397 		return -ENOMEM;
1398 
1399 	/* offset overflow? */
1400 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1401 		return -EOVERFLOW;
1402 
1403 	/* Too many mappings? */
1404 	if (mm->map_count > sysctl_max_map_count)
1405 		return -ENOMEM;
1406 
1407 	/* Obtain the address to map to. we verify (or select) it and ensure
1408 	 * that it represents a valid section of the address space.
1409 	 */
1410 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1411 	if (IS_ERR_VALUE(addr))
1412 		return addr;
1413 
1414 	if (flags & MAP_FIXED_NOREPLACE) {
1415 		struct vm_area_struct *vma = find_vma(mm, addr);
1416 
1417 		if (vma && vma->vm_start < addr + len)
1418 			return -EEXIST;
1419 	}
1420 
1421 	if (prot == PROT_EXEC) {
1422 		pkey = execute_only_pkey(mm);
1423 		if (pkey < 0)
1424 			pkey = 0;
1425 	}
1426 
1427 	/* Do simple checking here so the lower-level routines won't have
1428 	 * to. we assume access permissions have been handled by the open
1429 	 * of the memory object, so we don't do any here.
1430 	 */
1431 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1432 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1433 
1434 	if (flags & MAP_LOCKED)
1435 		if (!can_do_mlock())
1436 			return -EPERM;
1437 
1438 	if (mlock_future_check(mm, vm_flags, len))
1439 		return -EAGAIN;
1440 
1441 	if (file) {
1442 		struct inode *inode = file_inode(file);
1443 		unsigned long flags_mask;
1444 
1445 		if (!file_mmap_ok(file, inode, pgoff, len))
1446 			return -EOVERFLOW;
1447 
1448 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1449 
1450 		switch (flags & MAP_TYPE) {
1451 		case MAP_SHARED:
1452 			/*
1453 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1454 			 * flags. E.g. MAP_SYNC is dangerous to use with
1455 			 * MAP_SHARED as you don't know which consistency model
1456 			 * you will get. We silently ignore unsupported flags
1457 			 * with MAP_SHARED to preserve backward compatibility.
1458 			 */
1459 			flags &= LEGACY_MAP_MASK;
1460 			/* fall through */
1461 		case MAP_SHARED_VALIDATE:
1462 			if (flags & ~flags_mask)
1463 				return -EOPNOTSUPP;
1464 			if (prot & PROT_WRITE) {
1465 				if (!(file->f_mode & FMODE_WRITE))
1466 					return -EACCES;
1467 				if (IS_SWAPFILE(file->f_mapping->host))
1468 					return -ETXTBSY;
1469 			}
1470 
1471 			/*
1472 			 * Make sure we don't allow writing to an append-only
1473 			 * file..
1474 			 */
1475 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1476 				return -EACCES;
1477 
1478 			/*
1479 			 * Make sure there are no mandatory locks on the file.
1480 			 */
1481 			if (locks_verify_locked(file))
1482 				return -EAGAIN;
1483 
1484 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1485 			if (!(file->f_mode & FMODE_WRITE))
1486 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1487 
1488 			/* fall through */
1489 		case MAP_PRIVATE:
1490 			if (!(file->f_mode & FMODE_READ))
1491 				return -EACCES;
1492 			if (path_noexec(&file->f_path)) {
1493 				if (vm_flags & VM_EXEC)
1494 					return -EPERM;
1495 				vm_flags &= ~VM_MAYEXEC;
1496 			}
1497 
1498 			if (!file->f_op->mmap)
1499 				return -ENODEV;
1500 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1501 				return -EINVAL;
1502 			break;
1503 
1504 		default:
1505 			return -EINVAL;
1506 		}
1507 	} else {
1508 		switch (flags & MAP_TYPE) {
1509 		case MAP_SHARED:
1510 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1511 				return -EINVAL;
1512 			/*
1513 			 * Ignore pgoff.
1514 			 */
1515 			pgoff = 0;
1516 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1517 			break;
1518 		case MAP_PRIVATE:
1519 			/*
1520 			 * Set pgoff according to addr for anon_vma.
1521 			 */
1522 			pgoff = addr >> PAGE_SHIFT;
1523 			break;
1524 		default:
1525 			return -EINVAL;
1526 		}
1527 	}
1528 
1529 	/*
1530 	 * Set 'VM_NORESERVE' if we should not account for the
1531 	 * memory use of this mapping.
1532 	 */
1533 	if (flags & MAP_NORESERVE) {
1534 		/* We honor MAP_NORESERVE if allowed to overcommit */
1535 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1536 			vm_flags |= VM_NORESERVE;
1537 
1538 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1539 		if (file && is_file_hugepages(file))
1540 			vm_flags |= VM_NORESERVE;
1541 	}
1542 
1543 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1544 	if (!IS_ERR_VALUE(addr) &&
1545 	    ((vm_flags & VM_LOCKED) ||
1546 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1547 		*populate = len;
1548 	return addr;
1549 }
1550 
1551 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1552 			      unsigned long prot, unsigned long flags,
1553 			      unsigned long fd, unsigned long pgoff)
1554 {
1555 	struct file *file = NULL;
1556 	unsigned long retval;
1557 
1558 	if (!(flags & MAP_ANONYMOUS)) {
1559 		audit_mmap_fd(fd, flags);
1560 		file = fget(fd);
1561 		if (!file)
1562 			return -EBADF;
1563 		if (is_file_hugepages(file))
1564 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1565 		retval = -EINVAL;
1566 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1567 			goto out_fput;
1568 	} else if (flags & MAP_HUGETLB) {
1569 		struct user_struct *user = NULL;
1570 		struct hstate *hs;
1571 
1572 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1573 		if (!hs)
1574 			return -EINVAL;
1575 
1576 		len = ALIGN(len, huge_page_size(hs));
1577 		/*
1578 		 * VM_NORESERVE is used because the reservations will be
1579 		 * taken when vm_ops->mmap() is called
1580 		 * A dummy user value is used because we are not locking
1581 		 * memory so no accounting is necessary
1582 		 */
1583 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1584 				VM_NORESERVE,
1585 				&user, HUGETLB_ANONHUGE_INODE,
1586 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1587 		if (IS_ERR(file))
1588 			return PTR_ERR(file);
1589 	}
1590 
1591 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1592 
1593 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1594 out_fput:
1595 	if (file)
1596 		fput(file);
1597 	return retval;
1598 }
1599 
1600 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1601 		unsigned long, prot, unsigned long, flags,
1602 		unsigned long, fd, unsigned long, pgoff)
1603 {
1604 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1605 }
1606 
1607 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1608 struct mmap_arg_struct {
1609 	unsigned long addr;
1610 	unsigned long len;
1611 	unsigned long prot;
1612 	unsigned long flags;
1613 	unsigned long fd;
1614 	unsigned long offset;
1615 };
1616 
1617 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1618 {
1619 	struct mmap_arg_struct a;
1620 
1621 	if (copy_from_user(&a, arg, sizeof(a)))
1622 		return -EFAULT;
1623 	if (offset_in_page(a.offset))
1624 		return -EINVAL;
1625 
1626 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1627 			       a.offset >> PAGE_SHIFT);
1628 }
1629 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1630 
1631 /*
1632  * Some shared mappings will want the pages marked read-only
1633  * to track write events. If so, we'll downgrade vm_page_prot
1634  * to the private version (using protection_map[] without the
1635  * VM_SHARED bit).
1636  */
1637 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1638 {
1639 	vm_flags_t vm_flags = vma->vm_flags;
1640 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1641 
1642 	/* If it was private or non-writable, the write bit is already clear */
1643 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1644 		return 0;
1645 
1646 	/* The backer wishes to know when pages are first written to? */
1647 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1648 		return 1;
1649 
1650 	/* The open routine did something to the protections that pgprot_modify
1651 	 * won't preserve? */
1652 	if (pgprot_val(vm_page_prot) !=
1653 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1654 		return 0;
1655 
1656 	/* Do we need to track softdirty? */
1657 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1658 		return 1;
1659 
1660 	/* Specialty mapping? */
1661 	if (vm_flags & VM_PFNMAP)
1662 		return 0;
1663 
1664 	/* Can the mapping track the dirty pages? */
1665 	return vma->vm_file && vma->vm_file->f_mapping &&
1666 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1667 }
1668 
1669 /*
1670  * We account for memory if it's a private writeable mapping,
1671  * not hugepages and VM_NORESERVE wasn't set.
1672  */
1673 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1674 {
1675 	/*
1676 	 * hugetlb has its own accounting separate from the core VM
1677 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1678 	 */
1679 	if (file && is_file_hugepages(file))
1680 		return 0;
1681 
1682 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1683 }
1684 
1685 unsigned long mmap_region(struct file *file, unsigned long addr,
1686 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1687 		struct list_head *uf)
1688 {
1689 	struct mm_struct *mm = current->mm;
1690 	struct vm_area_struct *vma, *prev;
1691 	int error;
1692 	struct rb_node **rb_link, *rb_parent;
1693 	unsigned long charged = 0;
1694 
1695 	/* Check against address space limit. */
1696 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1697 		unsigned long nr_pages;
1698 
1699 		/*
1700 		 * MAP_FIXED may remove pages of mappings that intersects with
1701 		 * requested mapping. Account for the pages it would unmap.
1702 		 */
1703 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1704 
1705 		if (!may_expand_vm(mm, vm_flags,
1706 					(len >> PAGE_SHIFT) - nr_pages))
1707 			return -ENOMEM;
1708 	}
1709 
1710 	/* Clear old maps */
1711 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1712 			      &rb_parent)) {
1713 		if (do_munmap(mm, addr, len, uf))
1714 			return -ENOMEM;
1715 	}
1716 
1717 	/*
1718 	 * Private writable mapping: check memory availability
1719 	 */
1720 	if (accountable_mapping(file, vm_flags)) {
1721 		charged = len >> PAGE_SHIFT;
1722 		if (security_vm_enough_memory_mm(mm, charged))
1723 			return -ENOMEM;
1724 		vm_flags |= VM_ACCOUNT;
1725 	}
1726 
1727 	/*
1728 	 * Can we just expand an old mapping?
1729 	 */
1730 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1731 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1732 	if (vma)
1733 		goto out;
1734 
1735 	/*
1736 	 * Determine the object being mapped and call the appropriate
1737 	 * specific mapper. the address has already been validated, but
1738 	 * not unmapped, but the maps are removed from the list.
1739 	 */
1740 	vma = vm_area_alloc(mm);
1741 	if (!vma) {
1742 		error = -ENOMEM;
1743 		goto unacct_error;
1744 	}
1745 
1746 	vma->vm_start = addr;
1747 	vma->vm_end = addr + len;
1748 	vma->vm_flags = vm_flags;
1749 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1750 	vma->vm_pgoff = pgoff;
1751 
1752 	if (file) {
1753 		if (vm_flags & VM_DENYWRITE) {
1754 			error = deny_write_access(file);
1755 			if (error)
1756 				goto free_vma;
1757 		}
1758 		if (vm_flags & VM_SHARED) {
1759 			error = mapping_map_writable(file->f_mapping);
1760 			if (error)
1761 				goto allow_write_and_free_vma;
1762 		}
1763 
1764 		/* ->mmap() can change vma->vm_file, but must guarantee that
1765 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1766 		 * and map writably if VM_SHARED is set. This usually means the
1767 		 * new file must not have been exposed to user-space, yet.
1768 		 */
1769 		vma->vm_file = get_file(file);
1770 		error = call_mmap(file, vma);
1771 		if (error)
1772 			goto unmap_and_free_vma;
1773 
1774 		/* Can addr have changed??
1775 		 *
1776 		 * Answer: Yes, several device drivers can do it in their
1777 		 *         f_op->mmap method. -DaveM
1778 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1779 		 *      be updated for vma_link()
1780 		 */
1781 		WARN_ON_ONCE(addr != vma->vm_start);
1782 
1783 		addr = vma->vm_start;
1784 		vm_flags = vma->vm_flags;
1785 	} else if (vm_flags & VM_SHARED) {
1786 		error = shmem_zero_setup(vma);
1787 		if (error)
1788 			goto free_vma;
1789 	} else {
1790 		vma_set_anonymous(vma);
1791 	}
1792 
1793 	vma_link(mm, vma, prev, rb_link, rb_parent);
1794 	/* Once vma denies write, undo our temporary denial count */
1795 	if (file) {
1796 		if (vm_flags & VM_SHARED)
1797 			mapping_unmap_writable(file->f_mapping);
1798 		if (vm_flags & VM_DENYWRITE)
1799 			allow_write_access(file);
1800 	}
1801 	file = vma->vm_file;
1802 out:
1803 	perf_event_mmap(vma);
1804 
1805 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1806 	if (vm_flags & VM_LOCKED) {
1807 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1808 					is_vm_hugetlb_page(vma) ||
1809 					vma == get_gate_vma(current->mm))
1810 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1811 		else
1812 			mm->locked_vm += (len >> PAGE_SHIFT);
1813 	}
1814 
1815 	if (file)
1816 		uprobe_mmap(vma);
1817 
1818 	/*
1819 	 * New (or expanded) vma always get soft dirty status.
1820 	 * Otherwise user-space soft-dirty page tracker won't
1821 	 * be able to distinguish situation when vma area unmapped,
1822 	 * then new mapped in-place (which must be aimed as
1823 	 * a completely new data area).
1824 	 */
1825 	vma->vm_flags |= VM_SOFTDIRTY;
1826 
1827 	vma_set_page_prot(vma);
1828 
1829 	return addr;
1830 
1831 unmap_and_free_vma:
1832 	vma->vm_file = NULL;
1833 	fput(file);
1834 
1835 	/* Undo any partial mapping done by a device driver. */
1836 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1837 	charged = 0;
1838 	if (vm_flags & VM_SHARED)
1839 		mapping_unmap_writable(file->f_mapping);
1840 allow_write_and_free_vma:
1841 	if (vm_flags & VM_DENYWRITE)
1842 		allow_write_access(file);
1843 free_vma:
1844 	vm_area_free(vma);
1845 unacct_error:
1846 	if (charged)
1847 		vm_unacct_memory(charged);
1848 	return error;
1849 }
1850 
1851 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1852 {
1853 	/*
1854 	 * We implement the search by looking for an rbtree node that
1855 	 * immediately follows a suitable gap. That is,
1856 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1857 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1858 	 * - gap_end - gap_start >= length
1859 	 */
1860 
1861 	struct mm_struct *mm = current->mm;
1862 	struct vm_area_struct *vma;
1863 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1864 
1865 	/* Adjust search length to account for worst case alignment overhead */
1866 	length = info->length + info->align_mask;
1867 	if (length < info->length)
1868 		return -ENOMEM;
1869 
1870 	/* Adjust search limits by the desired length */
1871 	if (info->high_limit < length)
1872 		return -ENOMEM;
1873 	high_limit = info->high_limit - length;
1874 
1875 	if (info->low_limit > high_limit)
1876 		return -ENOMEM;
1877 	low_limit = info->low_limit + length;
1878 
1879 	/* Check if rbtree root looks promising */
1880 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1881 		goto check_highest;
1882 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1883 	if (vma->rb_subtree_gap < length)
1884 		goto check_highest;
1885 
1886 	while (true) {
1887 		/* Visit left subtree if it looks promising */
1888 		gap_end = vm_start_gap(vma);
1889 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1890 			struct vm_area_struct *left =
1891 				rb_entry(vma->vm_rb.rb_left,
1892 					 struct vm_area_struct, vm_rb);
1893 			if (left->rb_subtree_gap >= length) {
1894 				vma = left;
1895 				continue;
1896 			}
1897 		}
1898 
1899 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1900 check_current:
1901 		/* Check if current node has a suitable gap */
1902 		if (gap_start > high_limit)
1903 			return -ENOMEM;
1904 		if (gap_end >= low_limit &&
1905 		    gap_end > gap_start && gap_end - gap_start >= length)
1906 			goto found;
1907 
1908 		/* Visit right subtree if it looks promising */
1909 		if (vma->vm_rb.rb_right) {
1910 			struct vm_area_struct *right =
1911 				rb_entry(vma->vm_rb.rb_right,
1912 					 struct vm_area_struct, vm_rb);
1913 			if (right->rb_subtree_gap >= length) {
1914 				vma = right;
1915 				continue;
1916 			}
1917 		}
1918 
1919 		/* Go back up the rbtree to find next candidate node */
1920 		while (true) {
1921 			struct rb_node *prev = &vma->vm_rb;
1922 			if (!rb_parent(prev))
1923 				goto check_highest;
1924 			vma = rb_entry(rb_parent(prev),
1925 				       struct vm_area_struct, vm_rb);
1926 			if (prev == vma->vm_rb.rb_left) {
1927 				gap_start = vm_end_gap(vma->vm_prev);
1928 				gap_end = vm_start_gap(vma);
1929 				goto check_current;
1930 			}
1931 		}
1932 	}
1933 
1934 check_highest:
1935 	/* Check highest gap, which does not precede any rbtree node */
1936 	gap_start = mm->highest_vm_end;
1937 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1938 	if (gap_start > high_limit)
1939 		return -ENOMEM;
1940 
1941 found:
1942 	/* We found a suitable gap. Clip it with the original low_limit. */
1943 	if (gap_start < info->low_limit)
1944 		gap_start = info->low_limit;
1945 
1946 	/* Adjust gap address to the desired alignment */
1947 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1948 
1949 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1950 	VM_BUG_ON(gap_start + info->length > gap_end);
1951 	return gap_start;
1952 }
1953 
1954 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1955 {
1956 	struct mm_struct *mm = current->mm;
1957 	struct vm_area_struct *vma;
1958 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1959 
1960 	/* Adjust search length to account for worst case alignment overhead */
1961 	length = info->length + info->align_mask;
1962 	if (length < info->length)
1963 		return -ENOMEM;
1964 
1965 	/*
1966 	 * Adjust search limits by the desired length.
1967 	 * See implementation comment at top of unmapped_area().
1968 	 */
1969 	gap_end = info->high_limit;
1970 	if (gap_end < length)
1971 		return -ENOMEM;
1972 	high_limit = gap_end - length;
1973 
1974 	if (info->low_limit > high_limit)
1975 		return -ENOMEM;
1976 	low_limit = info->low_limit + length;
1977 
1978 	/* Check highest gap, which does not precede any rbtree node */
1979 	gap_start = mm->highest_vm_end;
1980 	if (gap_start <= high_limit)
1981 		goto found_highest;
1982 
1983 	/* Check if rbtree root looks promising */
1984 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1985 		return -ENOMEM;
1986 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1987 	if (vma->rb_subtree_gap < length)
1988 		return -ENOMEM;
1989 
1990 	while (true) {
1991 		/* Visit right subtree if it looks promising */
1992 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1993 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1994 			struct vm_area_struct *right =
1995 				rb_entry(vma->vm_rb.rb_right,
1996 					 struct vm_area_struct, vm_rb);
1997 			if (right->rb_subtree_gap >= length) {
1998 				vma = right;
1999 				continue;
2000 			}
2001 		}
2002 
2003 check_current:
2004 		/* Check if current node has a suitable gap */
2005 		gap_end = vm_start_gap(vma);
2006 		if (gap_end < low_limit)
2007 			return -ENOMEM;
2008 		if (gap_start <= high_limit &&
2009 		    gap_end > gap_start && gap_end - gap_start >= length)
2010 			goto found;
2011 
2012 		/* Visit left subtree if it looks promising */
2013 		if (vma->vm_rb.rb_left) {
2014 			struct vm_area_struct *left =
2015 				rb_entry(vma->vm_rb.rb_left,
2016 					 struct vm_area_struct, vm_rb);
2017 			if (left->rb_subtree_gap >= length) {
2018 				vma = left;
2019 				continue;
2020 			}
2021 		}
2022 
2023 		/* Go back up the rbtree to find next candidate node */
2024 		while (true) {
2025 			struct rb_node *prev = &vma->vm_rb;
2026 			if (!rb_parent(prev))
2027 				return -ENOMEM;
2028 			vma = rb_entry(rb_parent(prev),
2029 				       struct vm_area_struct, vm_rb);
2030 			if (prev == vma->vm_rb.rb_right) {
2031 				gap_start = vma->vm_prev ?
2032 					vm_end_gap(vma->vm_prev) : 0;
2033 				goto check_current;
2034 			}
2035 		}
2036 	}
2037 
2038 found:
2039 	/* We found a suitable gap. Clip it with the original high_limit. */
2040 	if (gap_end > info->high_limit)
2041 		gap_end = info->high_limit;
2042 
2043 found_highest:
2044 	/* Compute highest gap address at the desired alignment */
2045 	gap_end -= info->length;
2046 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2047 
2048 	VM_BUG_ON(gap_end < info->low_limit);
2049 	VM_BUG_ON(gap_end < gap_start);
2050 	return gap_end;
2051 }
2052 
2053 
2054 #ifndef arch_get_mmap_end
2055 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2056 #endif
2057 
2058 #ifndef arch_get_mmap_base
2059 #define arch_get_mmap_base(addr, base) (base)
2060 #endif
2061 
2062 /* Get an address range which is currently unmapped.
2063  * For shmat() with addr=0.
2064  *
2065  * Ugly calling convention alert:
2066  * Return value with the low bits set means error value,
2067  * ie
2068  *	if (ret & ~PAGE_MASK)
2069  *		error = ret;
2070  *
2071  * This function "knows" that -ENOMEM has the bits set.
2072  */
2073 #ifndef HAVE_ARCH_UNMAPPED_AREA
2074 unsigned long
2075 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2076 		unsigned long len, unsigned long pgoff, unsigned long flags)
2077 {
2078 	struct mm_struct *mm = current->mm;
2079 	struct vm_area_struct *vma, *prev;
2080 	struct vm_unmapped_area_info info;
2081 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2082 
2083 	if (len > mmap_end - mmap_min_addr)
2084 		return -ENOMEM;
2085 
2086 	if (flags & MAP_FIXED)
2087 		return addr;
2088 
2089 	if (addr) {
2090 		addr = PAGE_ALIGN(addr);
2091 		vma = find_vma_prev(mm, addr, &prev);
2092 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2093 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2094 		    (!prev || addr >= vm_end_gap(prev)))
2095 			return addr;
2096 	}
2097 
2098 	info.flags = 0;
2099 	info.length = len;
2100 	info.low_limit = mm->mmap_base;
2101 	info.high_limit = mmap_end;
2102 	info.align_mask = 0;
2103 	return vm_unmapped_area(&info);
2104 }
2105 #endif
2106 
2107 /*
2108  * This mmap-allocator allocates new areas top-down from below the
2109  * stack's low limit (the base):
2110  */
2111 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2112 unsigned long
2113 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2114 			  unsigned long len, unsigned long pgoff,
2115 			  unsigned long flags)
2116 {
2117 	struct vm_area_struct *vma, *prev;
2118 	struct mm_struct *mm = current->mm;
2119 	struct vm_unmapped_area_info info;
2120 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2121 
2122 	/* requested length too big for entire address space */
2123 	if (len > mmap_end - mmap_min_addr)
2124 		return -ENOMEM;
2125 
2126 	if (flags & MAP_FIXED)
2127 		return addr;
2128 
2129 	/* requesting a specific address */
2130 	if (addr) {
2131 		addr = PAGE_ALIGN(addr);
2132 		vma = find_vma_prev(mm, addr, &prev);
2133 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2134 				(!vma || addr + len <= vm_start_gap(vma)) &&
2135 				(!prev || addr >= vm_end_gap(prev)))
2136 			return addr;
2137 	}
2138 
2139 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2140 	info.length = len;
2141 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2142 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2143 	info.align_mask = 0;
2144 	addr = vm_unmapped_area(&info);
2145 
2146 	/*
2147 	 * A failed mmap() very likely causes application failure,
2148 	 * so fall back to the bottom-up function here. This scenario
2149 	 * can happen with large stack limits and large mmap()
2150 	 * allocations.
2151 	 */
2152 	if (offset_in_page(addr)) {
2153 		VM_BUG_ON(addr != -ENOMEM);
2154 		info.flags = 0;
2155 		info.low_limit = TASK_UNMAPPED_BASE;
2156 		info.high_limit = mmap_end;
2157 		addr = vm_unmapped_area(&info);
2158 	}
2159 
2160 	return addr;
2161 }
2162 #endif
2163 
2164 unsigned long
2165 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2166 		unsigned long pgoff, unsigned long flags)
2167 {
2168 	unsigned long (*get_area)(struct file *, unsigned long,
2169 				  unsigned long, unsigned long, unsigned long);
2170 
2171 	unsigned long error = arch_mmap_check(addr, len, flags);
2172 	if (error)
2173 		return error;
2174 
2175 	/* Careful about overflows.. */
2176 	if (len > TASK_SIZE)
2177 		return -ENOMEM;
2178 
2179 	get_area = current->mm->get_unmapped_area;
2180 	if (file) {
2181 		if (file->f_op->get_unmapped_area)
2182 			get_area = file->f_op->get_unmapped_area;
2183 	} else if (flags & MAP_SHARED) {
2184 		/*
2185 		 * mmap_region() will call shmem_zero_setup() to create a file,
2186 		 * so use shmem's get_unmapped_area in case it can be huge.
2187 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2188 		 */
2189 		pgoff = 0;
2190 		get_area = shmem_get_unmapped_area;
2191 	}
2192 
2193 	addr = get_area(file, addr, len, pgoff, flags);
2194 	if (IS_ERR_VALUE(addr))
2195 		return addr;
2196 
2197 	if (addr > TASK_SIZE - len)
2198 		return -ENOMEM;
2199 	if (offset_in_page(addr))
2200 		return -EINVAL;
2201 
2202 	error = security_mmap_addr(addr);
2203 	return error ? error : addr;
2204 }
2205 
2206 EXPORT_SYMBOL(get_unmapped_area);
2207 
2208 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2209 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2210 {
2211 	struct rb_node *rb_node;
2212 	struct vm_area_struct *vma;
2213 
2214 	/* Check the cache first. */
2215 	vma = vmacache_find(mm, addr);
2216 	if (likely(vma))
2217 		return vma;
2218 
2219 	rb_node = mm->mm_rb.rb_node;
2220 
2221 	while (rb_node) {
2222 		struct vm_area_struct *tmp;
2223 
2224 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2225 
2226 		if (tmp->vm_end > addr) {
2227 			vma = tmp;
2228 			if (tmp->vm_start <= addr)
2229 				break;
2230 			rb_node = rb_node->rb_left;
2231 		} else
2232 			rb_node = rb_node->rb_right;
2233 	}
2234 
2235 	if (vma)
2236 		vmacache_update(addr, vma);
2237 	return vma;
2238 }
2239 
2240 EXPORT_SYMBOL(find_vma);
2241 
2242 /*
2243  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2244  */
2245 struct vm_area_struct *
2246 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2247 			struct vm_area_struct **pprev)
2248 {
2249 	struct vm_area_struct *vma;
2250 
2251 	vma = find_vma(mm, addr);
2252 	if (vma) {
2253 		*pprev = vma->vm_prev;
2254 	} else {
2255 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2256 
2257 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2258 	}
2259 	return vma;
2260 }
2261 
2262 /*
2263  * Verify that the stack growth is acceptable and
2264  * update accounting. This is shared with both the
2265  * grow-up and grow-down cases.
2266  */
2267 static int acct_stack_growth(struct vm_area_struct *vma,
2268 			     unsigned long size, unsigned long grow)
2269 {
2270 	struct mm_struct *mm = vma->vm_mm;
2271 	unsigned long new_start;
2272 
2273 	/* address space limit tests */
2274 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2275 		return -ENOMEM;
2276 
2277 	/* Stack limit test */
2278 	if (size > rlimit(RLIMIT_STACK))
2279 		return -ENOMEM;
2280 
2281 	/* mlock limit tests */
2282 	if (vma->vm_flags & VM_LOCKED) {
2283 		unsigned long locked;
2284 		unsigned long limit;
2285 		locked = mm->locked_vm + grow;
2286 		limit = rlimit(RLIMIT_MEMLOCK);
2287 		limit >>= PAGE_SHIFT;
2288 		if (locked > limit && !capable(CAP_IPC_LOCK))
2289 			return -ENOMEM;
2290 	}
2291 
2292 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2293 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2294 			vma->vm_end - size;
2295 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2296 		return -EFAULT;
2297 
2298 	/*
2299 	 * Overcommit..  This must be the final test, as it will
2300 	 * update security statistics.
2301 	 */
2302 	if (security_vm_enough_memory_mm(mm, grow))
2303 		return -ENOMEM;
2304 
2305 	return 0;
2306 }
2307 
2308 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2309 /*
2310  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2311  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2312  */
2313 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2314 {
2315 	struct mm_struct *mm = vma->vm_mm;
2316 	struct vm_area_struct *next;
2317 	unsigned long gap_addr;
2318 	int error = 0;
2319 
2320 	if (!(vma->vm_flags & VM_GROWSUP))
2321 		return -EFAULT;
2322 
2323 	/* Guard against exceeding limits of the address space. */
2324 	address &= PAGE_MASK;
2325 	if (address >= (TASK_SIZE & PAGE_MASK))
2326 		return -ENOMEM;
2327 	address += PAGE_SIZE;
2328 
2329 	/* Enforce stack_guard_gap */
2330 	gap_addr = address + stack_guard_gap;
2331 
2332 	/* Guard against overflow */
2333 	if (gap_addr < address || gap_addr > TASK_SIZE)
2334 		gap_addr = TASK_SIZE;
2335 
2336 	next = vma->vm_next;
2337 	if (next && next->vm_start < gap_addr &&
2338 			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2339 		if (!(next->vm_flags & VM_GROWSUP))
2340 			return -ENOMEM;
2341 		/* Check that both stack segments have the same anon_vma? */
2342 	}
2343 
2344 	/* We must make sure the anon_vma is allocated. */
2345 	if (unlikely(anon_vma_prepare(vma)))
2346 		return -ENOMEM;
2347 
2348 	/*
2349 	 * vma->vm_start/vm_end cannot change under us because the caller
2350 	 * is required to hold the mmap_sem in read mode.  We need the
2351 	 * anon_vma lock to serialize against concurrent expand_stacks.
2352 	 */
2353 	anon_vma_lock_write(vma->anon_vma);
2354 
2355 	/* Somebody else might have raced and expanded it already */
2356 	if (address > vma->vm_end) {
2357 		unsigned long size, grow;
2358 
2359 		size = address - vma->vm_start;
2360 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2361 
2362 		error = -ENOMEM;
2363 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2364 			error = acct_stack_growth(vma, size, grow);
2365 			if (!error) {
2366 				/*
2367 				 * vma_gap_update() doesn't support concurrent
2368 				 * updates, but we only hold a shared mmap_sem
2369 				 * lock here, so we need to protect against
2370 				 * concurrent vma expansions.
2371 				 * anon_vma_lock_write() doesn't help here, as
2372 				 * we don't guarantee that all growable vmas
2373 				 * in a mm share the same root anon vma.
2374 				 * So, we reuse mm->page_table_lock to guard
2375 				 * against concurrent vma expansions.
2376 				 */
2377 				spin_lock(&mm->page_table_lock);
2378 				if (vma->vm_flags & VM_LOCKED)
2379 					mm->locked_vm += grow;
2380 				vm_stat_account(mm, vma->vm_flags, grow);
2381 				anon_vma_interval_tree_pre_update_vma(vma);
2382 				vma->vm_end = address;
2383 				anon_vma_interval_tree_post_update_vma(vma);
2384 				if (vma->vm_next)
2385 					vma_gap_update(vma->vm_next);
2386 				else
2387 					mm->highest_vm_end = vm_end_gap(vma);
2388 				spin_unlock(&mm->page_table_lock);
2389 
2390 				perf_event_mmap(vma);
2391 			}
2392 		}
2393 	}
2394 	anon_vma_unlock_write(vma->anon_vma);
2395 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2396 	validate_mm(mm);
2397 	return error;
2398 }
2399 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2400 
2401 /*
2402  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2403  */
2404 int expand_downwards(struct vm_area_struct *vma,
2405 				   unsigned long address)
2406 {
2407 	struct mm_struct *mm = vma->vm_mm;
2408 	struct vm_area_struct *prev;
2409 	int error = 0;
2410 
2411 	address &= PAGE_MASK;
2412 	if (address < mmap_min_addr)
2413 		return -EPERM;
2414 
2415 	/* Enforce stack_guard_gap */
2416 	prev = vma->vm_prev;
2417 	/* Check that both stack segments have the same anon_vma? */
2418 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2419 			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2420 		if (address - prev->vm_end < stack_guard_gap)
2421 			return -ENOMEM;
2422 	}
2423 
2424 	/* We must make sure the anon_vma is allocated. */
2425 	if (unlikely(anon_vma_prepare(vma)))
2426 		return -ENOMEM;
2427 
2428 	/*
2429 	 * vma->vm_start/vm_end cannot change under us because the caller
2430 	 * is required to hold the mmap_sem in read mode.  We need the
2431 	 * anon_vma lock to serialize against concurrent expand_stacks.
2432 	 */
2433 	anon_vma_lock_write(vma->anon_vma);
2434 
2435 	/* Somebody else might have raced and expanded it already */
2436 	if (address < vma->vm_start) {
2437 		unsigned long size, grow;
2438 
2439 		size = vma->vm_end - address;
2440 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2441 
2442 		error = -ENOMEM;
2443 		if (grow <= vma->vm_pgoff) {
2444 			error = acct_stack_growth(vma, size, grow);
2445 			if (!error) {
2446 				/*
2447 				 * vma_gap_update() doesn't support concurrent
2448 				 * updates, but we only hold a shared mmap_sem
2449 				 * lock here, so we need to protect against
2450 				 * concurrent vma expansions.
2451 				 * anon_vma_lock_write() doesn't help here, as
2452 				 * we don't guarantee that all growable vmas
2453 				 * in a mm share the same root anon vma.
2454 				 * So, we reuse mm->page_table_lock to guard
2455 				 * against concurrent vma expansions.
2456 				 */
2457 				spin_lock(&mm->page_table_lock);
2458 				if (vma->vm_flags & VM_LOCKED)
2459 					mm->locked_vm += grow;
2460 				vm_stat_account(mm, vma->vm_flags, grow);
2461 				anon_vma_interval_tree_pre_update_vma(vma);
2462 				vma->vm_start = address;
2463 				vma->vm_pgoff -= grow;
2464 				anon_vma_interval_tree_post_update_vma(vma);
2465 				vma_gap_update(vma);
2466 				spin_unlock(&mm->page_table_lock);
2467 
2468 				perf_event_mmap(vma);
2469 			}
2470 		}
2471 	}
2472 	anon_vma_unlock_write(vma->anon_vma);
2473 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2474 	validate_mm(mm);
2475 	return error;
2476 }
2477 
2478 /* enforced gap between the expanding stack and other mappings. */
2479 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2480 
2481 static int __init cmdline_parse_stack_guard_gap(char *p)
2482 {
2483 	unsigned long val;
2484 	char *endptr;
2485 
2486 	val = simple_strtoul(p, &endptr, 10);
2487 	if (!*endptr)
2488 		stack_guard_gap = val << PAGE_SHIFT;
2489 
2490 	return 0;
2491 }
2492 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2493 
2494 #ifdef CONFIG_STACK_GROWSUP
2495 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2496 {
2497 	return expand_upwards(vma, address);
2498 }
2499 
2500 struct vm_area_struct *
2501 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2502 {
2503 	struct vm_area_struct *vma, *prev;
2504 
2505 	addr &= PAGE_MASK;
2506 	vma = find_vma_prev(mm, addr, &prev);
2507 	if (vma && (vma->vm_start <= addr))
2508 		return vma;
2509 	/* don't alter vm_end if the coredump is running */
2510 	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2511 		return NULL;
2512 	if (prev->vm_flags & VM_LOCKED)
2513 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2514 	return prev;
2515 }
2516 #else
2517 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2518 {
2519 	return expand_downwards(vma, address);
2520 }
2521 
2522 struct vm_area_struct *
2523 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2524 {
2525 	struct vm_area_struct *vma;
2526 	unsigned long start;
2527 
2528 	addr &= PAGE_MASK;
2529 	vma = find_vma(mm, addr);
2530 	if (!vma)
2531 		return NULL;
2532 	if (vma->vm_start <= addr)
2533 		return vma;
2534 	if (!(vma->vm_flags & VM_GROWSDOWN))
2535 		return NULL;
2536 	/* don't alter vm_start if the coredump is running */
2537 	if (!mmget_still_valid(mm))
2538 		return NULL;
2539 	start = vma->vm_start;
2540 	if (expand_stack(vma, addr))
2541 		return NULL;
2542 	if (vma->vm_flags & VM_LOCKED)
2543 		populate_vma_page_range(vma, addr, start, NULL);
2544 	return vma;
2545 }
2546 #endif
2547 
2548 EXPORT_SYMBOL_GPL(find_extend_vma);
2549 
2550 /*
2551  * Ok - we have the memory areas we should free on the vma list,
2552  * so release them, and do the vma updates.
2553  *
2554  * Called with the mm semaphore held.
2555  */
2556 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2557 {
2558 	unsigned long nr_accounted = 0;
2559 
2560 	/* Update high watermark before we lower total_vm */
2561 	update_hiwater_vm(mm);
2562 	do {
2563 		long nrpages = vma_pages(vma);
2564 
2565 		if (vma->vm_flags & VM_ACCOUNT)
2566 			nr_accounted += nrpages;
2567 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2568 		vma = remove_vma(vma);
2569 	} while (vma);
2570 	vm_unacct_memory(nr_accounted);
2571 	validate_mm(mm);
2572 }
2573 
2574 /*
2575  * Get rid of page table information in the indicated region.
2576  *
2577  * Called with the mm semaphore held.
2578  */
2579 static void unmap_region(struct mm_struct *mm,
2580 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2581 		unsigned long start, unsigned long end)
2582 {
2583 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2584 	struct mmu_gather tlb;
2585 
2586 	lru_add_drain();
2587 	tlb_gather_mmu(&tlb, mm, start, end);
2588 	update_hiwater_rss(mm);
2589 	unmap_vmas(&tlb, vma, start, end);
2590 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2591 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2592 	tlb_finish_mmu(&tlb, start, end);
2593 }
2594 
2595 /*
2596  * Create a list of vma's touched by the unmap, removing them from the mm's
2597  * vma list as we go..
2598  */
2599 static void
2600 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2601 	struct vm_area_struct *prev, unsigned long end)
2602 {
2603 	struct vm_area_struct **insertion_point;
2604 	struct vm_area_struct *tail_vma = NULL;
2605 
2606 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2607 	vma->vm_prev = NULL;
2608 	do {
2609 		vma_rb_erase(vma, &mm->mm_rb);
2610 		mm->map_count--;
2611 		tail_vma = vma;
2612 		vma = vma->vm_next;
2613 	} while (vma && vma->vm_start < end);
2614 	*insertion_point = vma;
2615 	if (vma) {
2616 		vma->vm_prev = prev;
2617 		vma_gap_update(vma);
2618 	} else
2619 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2620 	tail_vma->vm_next = NULL;
2621 
2622 	/* Kill the cache */
2623 	vmacache_invalidate(mm);
2624 }
2625 
2626 /*
2627  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2628  * has already been checked or doesn't make sense to fail.
2629  */
2630 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2631 		unsigned long addr, int new_below)
2632 {
2633 	struct vm_area_struct *new;
2634 	int err;
2635 
2636 	if (vma->vm_ops && vma->vm_ops->split) {
2637 		err = vma->vm_ops->split(vma, addr);
2638 		if (err)
2639 			return err;
2640 	}
2641 
2642 	new = vm_area_dup(vma);
2643 	if (!new)
2644 		return -ENOMEM;
2645 
2646 	if (new_below)
2647 		new->vm_end = addr;
2648 	else {
2649 		new->vm_start = addr;
2650 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2651 	}
2652 
2653 	err = vma_dup_policy(vma, new);
2654 	if (err)
2655 		goto out_free_vma;
2656 
2657 	err = anon_vma_clone(new, vma);
2658 	if (err)
2659 		goto out_free_mpol;
2660 
2661 	if (new->vm_file)
2662 		get_file(new->vm_file);
2663 
2664 	if (new->vm_ops && new->vm_ops->open)
2665 		new->vm_ops->open(new);
2666 
2667 	if (new_below)
2668 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2669 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2670 	else
2671 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2672 
2673 	/* Success. */
2674 	if (!err)
2675 		return 0;
2676 
2677 	/* Clean everything up if vma_adjust failed. */
2678 	if (new->vm_ops && new->vm_ops->close)
2679 		new->vm_ops->close(new);
2680 	if (new->vm_file)
2681 		fput(new->vm_file);
2682 	unlink_anon_vmas(new);
2683  out_free_mpol:
2684 	mpol_put(vma_policy(new));
2685  out_free_vma:
2686 	vm_area_free(new);
2687 	return err;
2688 }
2689 
2690 /*
2691  * Split a vma into two pieces at address 'addr', a new vma is allocated
2692  * either for the first part or the tail.
2693  */
2694 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2695 	      unsigned long addr, int new_below)
2696 {
2697 	if (mm->map_count >= sysctl_max_map_count)
2698 		return -ENOMEM;
2699 
2700 	return __split_vma(mm, vma, addr, new_below);
2701 }
2702 
2703 /* Munmap is split into 2 main parts -- this part which finds
2704  * what needs doing, and the areas themselves, which do the
2705  * work.  This now handles partial unmappings.
2706  * Jeremy Fitzhardinge <jeremy@goop.org>
2707  */
2708 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2709 		struct list_head *uf, bool downgrade)
2710 {
2711 	unsigned long end;
2712 	struct vm_area_struct *vma, *prev, *last;
2713 
2714 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2715 		return -EINVAL;
2716 
2717 	len = PAGE_ALIGN(len);
2718 	end = start + len;
2719 	if (len == 0)
2720 		return -EINVAL;
2721 
2722 	/*
2723 	 * arch_unmap() might do unmaps itself.  It must be called
2724 	 * and finish any rbtree manipulation before this code
2725 	 * runs and also starts to manipulate the rbtree.
2726 	 */
2727 	arch_unmap(mm, start, end);
2728 
2729 	/* Find the first overlapping VMA */
2730 	vma = find_vma(mm, start);
2731 	if (!vma)
2732 		return 0;
2733 	prev = vma->vm_prev;
2734 	/* we have  start < vma->vm_end  */
2735 
2736 	/* if it doesn't overlap, we have nothing.. */
2737 	if (vma->vm_start >= end)
2738 		return 0;
2739 
2740 	/*
2741 	 * If we need to split any vma, do it now to save pain later.
2742 	 *
2743 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2744 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2745 	 * places tmp vma above, and higher split_vma places tmp vma below.
2746 	 */
2747 	if (start > vma->vm_start) {
2748 		int error;
2749 
2750 		/*
2751 		 * Make sure that map_count on return from munmap() will
2752 		 * not exceed its limit; but let map_count go just above
2753 		 * its limit temporarily, to help free resources as expected.
2754 		 */
2755 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2756 			return -ENOMEM;
2757 
2758 		error = __split_vma(mm, vma, start, 0);
2759 		if (error)
2760 			return error;
2761 		prev = vma;
2762 	}
2763 
2764 	/* Does it split the last one? */
2765 	last = find_vma(mm, end);
2766 	if (last && end > last->vm_start) {
2767 		int error = __split_vma(mm, last, end, 1);
2768 		if (error)
2769 			return error;
2770 	}
2771 	vma = prev ? prev->vm_next : mm->mmap;
2772 
2773 	if (unlikely(uf)) {
2774 		/*
2775 		 * If userfaultfd_unmap_prep returns an error the vmas
2776 		 * will remain splitted, but userland will get a
2777 		 * highly unexpected error anyway. This is no
2778 		 * different than the case where the first of the two
2779 		 * __split_vma fails, but we don't undo the first
2780 		 * split, despite we could. This is unlikely enough
2781 		 * failure that it's not worth optimizing it for.
2782 		 */
2783 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2784 		if (error)
2785 			return error;
2786 	}
2787 
2788 	/*
2789 	 * unlock any mlock()ed ranges before detaching vmas
2790 	 */
2791 	if (mm->locked_vm) {
2792 		struct vm_area_struct *tmp = vma;
2793 		while (tmp && tmp->vm_start < end) {
2794 			if (tmp->vm_flags & VM_LOCKED) {
2795 				mm->locked_vm -= vma_pages(tmp);
2796 				munlock_vma_pages_all(tmp);
2797 			}
2798 
2799 			tmp = tmp->vm_next;
2800 		}
2801 	}
2802 
2803 	/* Detach vmas from rbtree */
2804 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2805 
2806 	if (downgrade)
2807 		downgrade_write(&mm->mmap_sem);
2808 
2809 	unmap_region(mm, vma, prev, start, end);
2810 
2811 	/* Fix up all other VM information */
2812 	remove_vma_list(mm, vma);
2813 
2814 	return downgrade ? 1 : 0;
2815 }
2816 
2817 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2818 	      struct list_head *uf)
2819 {
2820 	return __do_munmap(mm, start, len, uf, false);
2821 }
2822 
2823 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2824 {
2825 	int ret;
2826 	struct mm_struct *mm = current->mm;
2827 	LIST_HEAD(uf);
2828 
2829 	if (down_write_killable(&mm->mmap_sem))
2830 		return -EINTR;
2831 
2832 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2833 	/*
2834 	 * Returning 1 indicates mmap_sem is downgraded.
2835 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2836 	 * it to 0 before return.
2837 	 */
2838 	if (ret == 1) {
2839 		up_read(&mm->mmap_sem);
2840 		ret = 0;
2841 	} else
2842 		up_write(&mm->mmap_sem);
2843 
2844 	userfaultfd_unmap_complete(mm, &uf);
2845 	return ret;
2846 }
2847 
2848 int vm_munmap(unsigned long start, size_t len)
2849 {
2850 	return __vm_munmap(start, len, false);
2851 }
2852 EXPORT_SYMBOL(vm_munmap);
2853 
2854 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2855 {
2856 	addr = untagged_addr(addr);
2857 	profile_munmap(addr);
2858 	return __vm_munmap(addr, len, true);
2859 }
2860 
2861 
2862 /*
2863  * Emulation of deprecated remap_file_pages() syscall.
2864  */
2865 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2866 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2867 {
2868 
2869 	struct mm_struct *mm = current->mm;
2870 	struct vm_area_struct *vma;
2871 	unsigned long populate = 0;
2872 	unsigned long ret = -EINVAL;
2873 	struct file *file;
2874 
2875 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2876 		     current->comm, current->pid);
2877 
2878 	if (prot)
2879 		return ret;
2880 	start = start & PAGE_MASK;
2881 	size = size & PAGE_MASK;
2882 
2883 	if (start + size <= start)
2884 		return ret;
2885 
2886 	/* Does pgoff wrap? */
2887 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2888 		return ret;
2889 
2890 	if (down_write_killable(&mm->mmap_sem))
2891 		return -EINTR;
2892 
2893 	vma = find_vma(mm, start);
2894 
2895 	if (!vma || !(vma->vm_flags & VM_SHARED))
2896 		goto out;
2897 
2898 	if (start < vma->vm_start)
2899 		goto out;
2900 
2901 	if (start + size > vma->vm_end) {
2902 		struct vm_area_struct *next;
2903 
2904 		for (next = vma->vm_next; next; next = next->vm_next) {
2905 			/* hole between vmas ? */
2906 			if (next->vm_start != next->vm_prev->vm_end)
2907 				goto out;
2908 
2909 			if (next->vm_file != vma->vm_file)
2910 				goto out;
2911 
2912 			if (next->vm_flags != vma->vm_flags)
2913 				goto out;
2914 
2915 			if (start + size <= next->vm_end)
2916 				break;
2917 		}
2918 
2919 		if (!next)
2920 			goto out;
2921 	}
2922 
2923 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2924 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2925 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2926 
2927 	flags &= MAP_NONBLOCK;
2928 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2929 	if (vma->vm_flags & VM_LOCKED) {
2930 		struct vm_area_struct *tmp;
2931 		flags |= MAP_LOCKED;
2932 
2933 		/* drop PG_Mlocked flag for over-mapped range */
2934 		for (tmp = vma; tmp->vm_start >= start + size;
2935 				tmp = tmp->vm_next) {
2936 			/*
2937 			 * Split pmd and munlock page on the border
2938 			 * of the range.
2939 			 */
2940 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2941 
2942 			munlock_vma_pages_range(tmp,
2943 					max(tmp->vm_start, start),
2944 					min(tmp->vm_end, start + size));
2945 		}
2946 	}
2947 
2948 	file = get_file(vma->vm_file);
2949 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2950 			prot, flags, pgoff, &populate, NULL);
2951 	fput(file);
2952 out:
2953 	up_write(&mm->mmap_sem);
2954 	if (populate)
2955 		mm_populate(ret, populate);
2956 	if (!IS_ERR_VALUE(ret))
2957 		ret = 0;
2958 	return ret;
2959 }
2960 
2961 /*
2962  *  this is really a simplified "do_mmap".  it only handles
2963  *  anonymous maps.  eventually we may be able to do some
2964  *  brk-specific accounting here.
2965  */
2966 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2967 {
2968 	struct mm_struct *mm = current->mm;
2969 	struct vm_area_struct *vma, *prev;
2970 	struct rb_node **rb_link, *rb_parent;
2971 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2972 	int error;
2973 	unsigned long mapped_addr;
2974 
2975 	/* Until we need other flags, refuse anything except VM_EXEC. */
2976 	if ((flags & (~VM_EXEC)) != 0)
2977 		return -EINVAL;
2978 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2979 
2980 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2981 	if (IS_ERR_VALUE(mapped_addr))
2982 		return mapped_addr;
2983 
2984 	error = mlock_future_check(mm, mm->def_flags, len);
2985 	if (error)
2986 		return error;
2987 
2988 	/*
2989 	 * Clear old maps.  this also does some error checking for us
2990 	 */
2991 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2992 			      &rb_parent)) {
2993 		if (do_munmap(mm, addr, len, uf))
2994 			return -ENOMEM;
2995 	}
2996 
2997 	/* Check against address space limits *after* clearing old maps... */
2998 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2999 		return -ENOMEM;
3000 
3001 	if (mm->map_count > sysctl_max_map_count)
3002 		return -ENOMEM;
3003 
3004 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3005 		return -ENOMEM;
3006 
3007 	/* Can we just expand an old private anonymous mapping? */
3008 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3009 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3010 	if (vma)
3011 		goto out;
3012 
3013 	/*
3014 	 * create a vma struct for an anonymous mapping
3015 	 */
3016 	vma = vm_area_alloc(mm);
3017 	if (!vma) {
3018 		vm_unacct_memory(len >> PAGE_SHIFT);
3019 		return -ENOMEM;
3020 	}
3021 
3022 	vma_set_anonymous(vma);
3023 	vma->vm_start = addr;
3024 	vma->vm_end = addr + len;
3025 	vma->vm_pgoff = pgoff;
3026 	vma->vm_flags = flags;
3027 	vma->vm_page_prot = vm_get_page_prot(flags);
3028 	vma_link(mm, vma, prev, rb_link, rb_parent);
3029 out:
3030 	perf_event_mmap(vma);
3031 	mm->total_vm += len >> PAGE_SHIFT;
3032 	mm->data_vm += len >> PAGE_SHIFT;
3033 	if (flags & VM_LOCKED)
3034 		mm->locked_vm += (len >> PAGE_SHIFT);
3035 	vma->vm_flags |= VM_SOFTDIRTY;
3036 	return 0;
3037 }
3038 
3039 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3040 {
3041 	struct mm_struct *mm = current->mm;
3042 	unsigned long len;
3043 	int ret;
3044 	bool populate;
3045 	LIST_HEAD(uf);
3046 
3047 	len = PAGE_ALIGN(request);
3048 	if (len < request)
3049 		return -ENOMEM;
3050 	if (!len)
3051 		return 0;
3052 
3053 	if (down_write_killable(&mm->mmap_sem))
3054 		return -EINTR;
3055 
3056 	ret = do_brk_flags(addr, len, flags, &uf);
3057 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3058 	up_write(&mm->mmap_sem);
3059 	userfaultfd_unmap_complete(mm, &uf);
3060 	if (populate && !ret)
3061 		mm_populate(addr, len);
3062 	return ret;
3063 }
3064 EXPORT_SYMBOL(vm_brk_flags);
3065 
3066 int vm_brk(unsigned long addr, unsigned long len)
3067 {
3068 	return vm_brk_flags(addr, len, 0);
3069 }
3070 EXPORT_SYMBOL(vm_brk);
3071 
3072 /* Release all mmaps. */
3073 void exit_mmap(struct mm_struct *mm)
3074 {
3075 	struct mmu_gather tlb;
3076 	struct vm_area_struct *vma;
3077 	unsigned long nr_accounted = 0;
3078 
3079 	/* mm's last user has gone, and its about to be pulled down */
3080 	mmu_notifier_release(mm);
3081 
3082 	if (unlikely(mm_is_oom_victim(mm))) {
3083 		/*
3084 		 * Manually reap the mm to free as much memory as possible.
3085 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3086 		 * this mm from further consideration.  Taking mm->mmap_sem for
3087 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3088 		 * reaper will not run on this mm again after mmap_sem is
3089 		 * dropped.
3090 		 *
3091 		 * Nothing can be holding mm->mmap_sem here and the above call
3092 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3093 		 * __oom_reap_task_mm() will not block.
3094 		 *
3095 		 * This needs to be done before calling munlock_vma_pages_all(),
3096 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3097 		 * reliably test it.
3098 		 */
3099 		(void)__oom_reap_task_mm(mm);
3100 
3101 		set_bit(MMF_OOM_SKIP, &mm->flags);
3102 		down_write(&mm->mmap_sem);
3103 		up_write(&mm->mmap_sem);
3104 	}
3105 
3106 	if (mm->locked_vm) {
3107 		vma = mm->mmap;
3108 		while (vma) {
3109 			if (vma->vm_flags & VM_LOCKED)
3110 				munlock_vma_pages_all(vma);
3111 			vma = vma->vm_next;
3112 		}
3113 	}
3114 
3115 	arch_exit_mmap(mm);
3116 
3117 	vma = mm->mmap;
3118 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3119 		return;
3120 
3121 	lru_add_drain();
3122 	flush_cache_mm(mm);
3123 	tlb_gather_mmu(&tlb, mm, 0, -1);
3124 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3125 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3126 	unmap_vmas(&tlb, vma, 0, -1);
3127 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3128 	tlb_finish_mmu(&tlb, 0, -1);
3129 
3130 	/*
3131 	 * Walk the list again, actually closing and freeing it,
3132 	 * with preemption enabled, without holding any MM locks.
3133 	 */
3134 	while (vma) {
3135 		if (vma->vm_flags & VM_ACCOUNT)
3136 			nr_accounted += vma_pages(vma);
3137 		vma = remove_vma(vma);
3138 	}
3139 	vm_unacct_memory(nr_accounted);
3140 }
3141 
3142 /* Insert vm structure into process list sorted by address
3143  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3144  * then i_mmap_rwsem is taken here.
3145  */
3146 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3147 {
3148 	struct vm_area_struct *prev;
3149 	struct rb_node **rb_link, *rb_parent;
3150 
3151 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3152 			   &prev, &rb_link, &rb_parent))
3153 		return -ENOMEM;
3154 	if ((vma->vm_flags & VM_ACCOUNT) &&
3155 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3156 		return -ENOMEM;
3157 
3158 	/*
3159 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3160 	 * until its first write fault, when page's anon_vma and index
3161 	 * are set.  But now set the vm_pgoff it will almost certainly
3162 	 * end up with (unless mremap moves it elsewhere before that
3163 	 * first wfault), so /proc/pid/maps tells a consistent story.
3164 	 *
3165 	 * By setting it to reflect the virtual start address of the
3166 	 * vma, merges and splits can happen in a seamless way, just
3167 	 * using the existing file pgoff checks and manipulations.
3168 	 * Similarly in do_mmap_pgoff and in do_brk.
3169 	 */
3170 	if (vma_is_anonymous(vma)) {
3171 		BUG_ON(vma->anon_vma);
3172 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3173 	}
3174 
3175 	vma_link(mm, vma, prev, rb_link, rb_parent);
3176 	return 0;
3177 }
3178 
3179 /*
3180  * Copy the vma structure to a new location in the same mm,
3181  * prior to moving page table entries, to effect an mremap move.
3182  */
3183 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3184 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3185 	bool *need_rmap_locks)
3186 {
3187 	struct vm_area_struct *vma = *vmap;
3188 	unsigned long vma_start = vma->vm_start;
3189 	struct mm_struct *mm = vma->vm_mm;
3190 	struct vm_area_struct *new_vma, *prev;
3191 	struct rb_node **rb_link, *rb_parent;
3192 	bool faulted_in_anon_vma = true;
3193 
3194 	/*
3195 	 * If anonymous vma has not yet been faulted, update new pgoff
3196 	 * to match new location, to increase its chance of merging.
3197 	 */
3198 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3199 		pgoff = addr >> PAGE_SHIFT;
3200 		faulted_in_anon_vma = false;
3201 	}
3202 
3203 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3204 		return NULL;	/* should never get here */
3205 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3206 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3207 			    vma->vm_userfaultfd_ctx);
3208 	if (new_vma) {
3209 		/*
3210 		 * Source vma may have been merged into new_vma
3211 		 */
3212 		if (unlikely(vma_start >= new_vma->vm_start &&
3213 			     vma_start < new_vma->vm_end)) {
3214 			/*
3215 			 * The only way we can get a vma_merge with
3216 			 * self during an mremap is if the vma hasn't
3217 			 * been faulted in yet and we were allowed to
3218 			 * reset the dst vma->vm_pgoff to the
3219 			 * destination address of the mremap to allow
3220 			 * the merge to happen. mremap must change the
3221 			 * vm_pgoff linearity between src and dst vmas
3222 			 * (in turn preventing a vma_merge) to be
3223 			 * safe. It is only safe to keep the vm_pgoff
3224 			 * linear if there are no pages mapped yet.
3225 			 */
3226 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3227 			*vmap = vma = new_vma;
3228 		}
3229 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3230 	} else {
3231 		new_vma = vm_area_dup(vma);
3232 		if (!new_vma)
3233 			goto out;
3234 		new_vma->vm_start = addr;
3235 		new_vma->vm_end = addr + len;
3236 		new_vma->vm_pgoff = pgoff;
3237 		if (vma_dup_policy(vma, new_vma))
3238 			goto out_free_vma;
3239 		if (anon_vma_clone(new_vma, vma))
3240 			goto out_free_mempol;
3241 		if (new_vma->vm_file)
3242 			get_file(new_vma->vm_file);
3243 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3244 			new_vma->vm_ops->open(new_vma);
3245 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3246 		*need_rmap_locks = false;
3247 	}
3248 	return new_vma;
3249 
3250 out_free_mempol:
3251 	mpol_put(vma_policy(new_vma));
3252 out_free_vma:
3253 	vm_area_free(new_vma);
3254 out:
3255 	return NULL;
3256 }
3257 
3258 /*
3259  * Return true if the calling process may expand its vm space by the passed
3260  * number of pages
3261  */
3262 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3263 {
3264 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3265 		return false;
3266 
3267 	if (is_data_mapping(flags) &&
3268 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3269 		/* Workaround for Valgrind */
3270 		if (rlimit(RLIMIT_DATA) == 0 &&
3271 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3272 			return true;
3273 
3274 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3275 			     current->comm, current->pid,
3276 			     (mm->data_vm + npages) << PAGE_SHIFT,
3277 			     rlimit(RLIMIT_DATA),
3278 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3279 
3280 		if (!ignore_rlimit_data)
3281 			return false;
3282 	}
3283 
3284 	return true;
3285 }
3286 
3287 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3288 {
3289 	mm->total_vm += npages;
3290 
3291 	if (is_exec_mapping(flags))
3292 		mm->exec_vm += npages;
3293 	else if (is_stack_mapping(flags))
3294 		mm->stack_vm += npages;
3295 	else if (is_data_mapping(flags))
3296 		mm->data_vm += npages;
3297 }
3298 
3299 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3300 
3301 /*
3302  * Having a close hook prevents vma merging regardless of flags.
3303  */
3304 static void special_mapping_close(struct vm_area_struct *vma)
3305 {
3306 }
3307 
3308 static const char *special_mapping_name(struct vm_area_struct *vma)
3309 {
3310 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3311 }
3312 
3313 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3314 {
3315 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3316 
3317 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3318 		return -EFAULT;
3319 
3320 	if (sm->mremap)
3321 		return sm->mremap(sm, new_vma);
3322 
3323 	return 0;
3324 }
3325 
3326 static const struct vm_operations_struct special_mapping_vmops = {
3327 	.close = special_mapping_close,
3328 	.fault = special_mapping_fault,
3329 	.mremap = special_mapping_mremap,
3330 	.name = special_mapping_name,
3331 	/* vDSO code relies that VVAR can't be accessed remotely */
3332 	.access = NULL,
3333 };
3334 
3335 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3336 	.close = special_mapping_close,
3337 	.fault = special_mapping_fault,
3338 };
3339 
3340 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3341 {
3342 	struct vm_area_struct *vma = vmf->vma;
3343 	pgoff_t pgoff;
3344 	struct page **pages;
3345 
3346 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3347 		pages = vma->vm_private_data;
3348 	} else {
3349 		struct vm_special_mapping *sm = vma->vm_private_data;
3350 
3351 		if (sm->fault)
3352 			return sm->fault(sm, vmf->vma, vmf);
3353 
3354 		pages = sm->pages;
3355 	}
3356 
3357 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3358 		pgoff--;
3359 
3360 	if (*pages) {
3361 		struct page *page = *pages;
3362 		get_page(page);
3363 		vmf->page = page;
3364 		return 0;
3365 	}
3366 
3367 	return VM_FAULT_SIGBUS;
3368 }
3369 
3370 static struct vm_area_struct *__install_special_mapping(
3371 	struct mm_struct *mm,
3372 	unsigned long addr, unsigned long len,
3373 	unsigned long vm_flags, void *priv,
3374 	const struct vm_operations_struct *ops)
3375 {
3376 	int ret;
3377 	struct vm_area_struct *vma;
3378 
3379 	vma = vm_area_alloc(mm);
3380 	if (unlikely(vma == NULL))
3381 		return ERR_PTR(-ENOMEM);
3382 
3383 	vma->vm_start = addr;
3384 	vma->vm_end = addr + len;
3385 
3386 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3387 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3388 
3389 	vma->vm_ops = ops;
3390 	vma->vm_private_data = priv;
3391 
3392 	ret = insert_vm_struct(mm, vma);
3393 	if (ret)
3394 		goto out;
3395 
3396 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3397 
3398 	perf_event_mmap(vma);
3399 
3400 	return vma;
3401 
3402 out:
3403 	vm_area_free(vma);
3404 	return ERR_PTR(ret);
3405 }
3406 
3407 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3408 	const struct vm_special_mapping *sm)
3409 {
3410 	return vma->vm_private_data == sm &&
3411 		(vma->vm_ops == &special_mapping_vmops ||
3412 		 vma->vm_ops == &legacy_special_mapping_vmops);
3413 }
3414 
3415 /*
3416  * Called with mm->mmap_sem held for writing.
3417  * Insert a new vma covering the given region, with the given flags.
3418  * Its pages are supplied by the given array of struct page *.
3419  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3420  * The region past the last page supplied will always produce SIGBUS.
3421  * The array pointer and the pages it points to are assumed to stay alive
3422  * for as long as this mapping might exist.
3423  */
3424 struct vm_area_struct *_install_special_mapping(
3425 	struct mm_struct *mm,
3426 	unsigned long addr, unsigned long len,
3427 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3428 {
3429 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3430 					&special_mapping_vmops);
3431 }
3432 
3433 int install_special_mapping(struct mm_struct *mm,
3434 			    unsigned long addr, unsigned long len,
3435 			    unsigned long vm_flags, struct page **pages)
3436 {
3437 	struct vm_area_struct *vma = __install_special_mapping(
3438 		mm, addr, len, vm_flags, (void *)pages,
3439 		&legacy_special_mapping_vmops);
3440 
3441 	return PTR_ERR_OR_ZERO(vma);
3442 }
3443 
3444 static DEFINE_MUTEX(mm_all_locks_mutex);
3445 
3446 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3447 {
3448 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3449 		/*
3450 		 * The LSB of head.next can't change from under us
3451 		 * because we hold the mm_all_locks_mutex.
3452 		 */
3453 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3454 		/*
3455 		 * We can safely modify head.next after taking the
3456 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3457 		 * the same anon_vma we won't take it again.
3458 		 *
3459 		 * No need of atomic instructions here, head.next
3460 		 * can't change from under us thanks to the
3461 		 * anon_vma->root->rwsem.
3462 		 */
3463 		if (__test_and_set_bit(0, (unsigned long *)
3464 				       &anon_vma->root->rb_root.rb_root.rb_node))
3465 			BUG();
3466 	}
3467 }
3468 
3469 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3470 {
3471 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3472 		/*
3473 		 * AS_MM_ALL_LOCKS can't change from under us because
3474 		 * we hold the mm_all_locks_mutex.
3475 		 *
3476 		 * Operations on ->flags have to be atomic because
3477 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3478 		 * mm_all_locks_mutex, there may be other cpus
3479 		 * changing other bitflags in parallel to us.
3480 		 */
3481 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3482 			BUG();
3483 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3484 	}
3485 }
3486 
3487 /*
3488  * This operation locks against the VM for all pte/vma/mm related
3489  * operations that could ever happen on a certain mm. This includes
3490  * vmtruncate, try_to_unmap, and all page faults.
3491  *
3492  * The caller must take the mmap_sem in write mode before calling
3493  * mm_take_all_locks(). The caller isn't allowed to release the
3494  * mmap_sem until mm_drop_all_locks() returns.
3495  *
3496  * mmap_sem in write mode is required in order to block all operations
3497  * that could modify pagetables and free pages without need of
3498  * altering the vma layout. It's also needed in write mode to avoid new
3499  * anon_vmas to be associated with existing vmas.
3500  *
3501  * A single task can't take more than one mm_take_all_locks() in a row
3502  * or it would deadlock.
3503  *
3504  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3505  * mapping->flags avoid to take the same lock twice, if more than one
3506  * vma in this mm is backed by the same anon_vma or address_space.
3507  *
3508  * We take locks in following order, accordingly to comment at beginning
3509  * of mm/rmap.c:
3510  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3511  *     hugetlb mapping);
3512  *   - all i_mmap_rwsem locks;
3513  *   - all anon_vma->rwseml
3514  *
3515  * We can take all locks within these types randomly because the VM code
3516  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3517  * mm_all_locks_mutex.
3518  *
3519  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3520  * that may have to take thousand of locks.
3521  *
3522  * mm_take_all_locks() can fail if it's interrupted by signals.
3523  */
3524 int mm_take_all_locks(struct mm_struct *mm)
3525 {
3526 	struct vm_area_struct *vma;
3527 	struct anon_vma_chain *avc;
3528 
3529 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3530 
3531 	mutex_lock(&mm_all_locks_mutex);
3532 
3533 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3534 		if (signal_pending(current))
3535 			goto out_unlock;
3536 		if (vma->vm_file && vma->vm_file->f_mapping &&
3537 				is_vm_hugetlb_page(vma))
3538 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3539 	}
3540 
3541 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3542 		if (signal_pending(current))
3543 			goto out_unlock;
3544 		if (vma->vm_file && vma->vm_file->f_mapping &&
3545 				!is_vm_hugetlb_page(vma))
3546 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3547 	}
3548 
3549 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3550 		if (signal_pending(current))
3551 			goto out_unlock;
3552 		if (vma->anon_vma)
3553 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3554 				vm_lock_anon_vma(mm, avc->anon_vma);
3555 	}
3556 
3557 	return 0;
3558 
3559 out_unlock:
3560 	mm_drop_all_locks(mm);
3561 	return -EINTR;
3562 }
3563 
3564 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3565 {
3566 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3567 		/*
3568 		 * The LSB of head.next can't change to 0 from under
3569 		 * us because we hold the mm_all_locks_mutex.
3570 		 *
3571 		 * We must however clear the bitflag before unlocking
3572 		 * the vma so the users using the anon_vma->rb_root will
3573 		 * never see our bitflag.
3574 		 *
3575 		 * No need of atomic instructions here, head.next
3576 		 * can't change from under us until we release the
3577 		 * anon_vma->root->rwsem.
3578 		 */
3579 		if (!__test_and_clear_bit(0, (unsigned long *)
3580 					  &anon_vma->root->rb_root.rb_root.rb_node))
3581 			BUG();
3582 		anon_vma_unlock_write(anon_vma);
3583 	}
3584 }
3585 
3586 static void vm_unlock_mapping(struct address_space *mapping)
3587 {
3588 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3589 		/*
3590 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3591 		 * because we hold the mm_all_locks_mutex.
3592 		 */
3593 		i_mmap_unlock_write(mapping);
3594 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3595 					&mapping->flags))
3596 			BUG();
3597 	}
3598 }
3599 
3600 /*
3601  * The mmap_sem cannot be released by the caller until
3602  * mm_drop_all_locks() returns.
3603  */
3604 void mm_drop_all_locks(struct mm_struct *mm)
3605 {
3606 	struct vm_area_struct *vma;
3607 	struct anon_vma_chain *avc;
3608 
3609 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3610 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3611 
3612 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3613 		if (vma->anon_vma)
3614 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3615 				vm_unlock_anon_vma(avc->anon_vma);
3616 		if (vma->vm_file && vma->vm_file->f_mapping)
3617 			vm_unlock_mapping(vma->vm_file->f_mapping);
3618 	}
3619 
3620 	mutex_unlock(&mm_all_locks_mutex);
3621 }
3622 
3623 /*
3624  * initialise the percpu counter for VM
3625  */
3626 void __init mmap_init(void)
3627 {
3628 	int ret;
3629 
3630 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3631 	VM_BUG_ON(ret);
3632 }
3633 
3634 /*
3635  * Initialise sysctl_user_reserve_kbytes.
3636  *
3637  * This is intended to prevent a user from starting a single memory hogging
3638  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3639  * mode.
3640  *
3641  * The default value is min(3% of free memory, 128MB)
3642  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3643  */
3644 static int init_user_reserve(void)
3645 {
3646 	unsigned long free_kbytes;
3647 
3648 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3649 
3650 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3651 	return 0;
3652 }
3653 subsys_initcall(init_user_reserve);
3654 
3655 /*
3656  * Initialise sysctl_admin_reserve_kbytes.
3657  *
3658  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3659  * to log in and kill a memory hogging process.
3660  *
3661  * Systems with more than 256MB will reserve 8MB, enough to recover
3662  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3663  * only reserve 3% of free pages by default.
3664  */
3665 static int init_admin_reserve(void)
3666 {
3667 	unsigned long free_kbytes;
3668 
3669 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3670 
3671 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3672 	return 0;
3673 }
3674 subsys_initcall(init_admin_reserve);
3675 
3676 /*
3677  * Reinititalise user and admin reserves if memory is added or removed.
3678  *
3679  * The default user reserve max is 128MB, and the default max for the
3680  * admin reserve is 8MB. These are usually, but not always, enough to
3681  * enable recovery from a memory hogging process using login/sshd, a shell,
3682  * and tools like top. It may make sense to increase or even disable the
3683  * reserve depending on the existence of swap or variations in the recovery
3684  * tools. So, the admin may have changed them.
3685  *
3686  * If memory is added and the reserves have been eliminated or increased above
3687  * the default max, then we'll trust the admin.
3688  *
3689  * If memory is removed and there isn't enough free memory, then we
3690  * need to reset the reserves.
3691  *
3692  * Otherwise keep the reserve set by the admin.
3693  */
3694 static int reserve_mem_notifier(struct notifier_block *nb,
3695 			     unsigned long action, void *data)
3696 {
3697 	unsigned long tmp, free_kbytes;
3698 
3699 	switch (action) {
3700 	case MEM_ONLINE:
3701 		/* Default max is 128MB. Leave alone if modified by operator. */
3702 		tmp = sysctl_user_reserve_kbytes;
3703 		if (0 < tmp && tmp < (1UL << 17))
3704 			init_user_reserve();
3705 
3706 		/* Default max is 8MB.  Leave alone if modified by operator. */
3707 		tmp = sysctl_admin_reserve_kbytes;
3708 		if (0 < tmp && tmp < (1UL << 13))
3709 			init_admin_reserve();
3710 
3711 		break;
3712 	case MEM_OFFLINE:
3713 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3714 
3715 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3716 			init_user_reserve();
3717 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3718 				sysctl_user_reserve_kbytes);
3719 		}
3720 
3721 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3722 			init_admin_reserve();
3723 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3724 				sysctl_admin_reserve_kbytes);
3725 		}
3726 		break;
3727 	default:
3728 		break;
3729 	}
3730 	return NOTIFY_OK;
3731 }
3732 
3733 static struct notifier_block reserve_mem_nb = {
3734 	.notifier_call = reserve_mem_notifier,
3735 };
3736 
3737 static int __meminit init_reserve_notifier(void)
3738 {
3739 	if (register_hotmemory_notifier(&reserve_mem_nb))
3740 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3741 
3742 	return 0;
3743 }
3744 subsys_initcall(init_reserve_notifier);
3745