xref: /openbmc/linux/mm/mmap.c (revision f7d84fa7)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52 
53 #include "internal.h"
54 
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags)	(0)
57 #endif
58 
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69 
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72 
73 static void unmap_region(struct mm_struct *mm,
74 		struct vm_area_struct *vma, struct vm_area_struct *prev,
75 		unsigned long start, unsigned long end);
76 
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type	prot
82  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
83  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
84  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
85  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
86  *
87  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
88  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
89  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
90  *
91  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92  * MAP_PRIVATE:
93  *								r: (no) no
94  *								w: (no) no
95  *								x: (yes) yes
96  */
97 pgprot_t protection_map[16] = {
98 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101 
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
103 {
104 	return __pgprot(pgprot_val(protection_map[vm_flags &
105 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
107 }
108 EXPORT_SYMBOL(vm_get_page_prot);
109 
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111 {
112 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113 }
114 
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
117 {
118 	unsigned long vm_flags = vma->vm_flags;
119 	pgprot_t vm_page_prot;
120 
121 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
122 	if (vma_wants_writenotify(vma, vm_page_prot)) {
123 		vm_flags &= ~VM_SHARED;
124 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
125 	}
126 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
128 }
129 
130 /*
131  * Requires inode->i_mapping->i_mmap_rwsem
132  */
133 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
134 		struct file *file, struct address_space *mapping)
135 {
136 	if (vma->vm_flags & VM_DENYWRITE)
137 		atomic_inc(&file_inode(file)->i_writecount);
138 	if (vma->vm_flags & VM_SHARED)
139 		mapping_unmap_writable(mapping);
140 
141 	flush_dcache_mmap_lock(mapping);
142 	vma_interval_tree_remove(vma, &mapping->i_mmap);
143 	flush_dcache_mmap_unlock(mapping);
144 }
145 
146 /*
147  * Unlink a file-based vm structure from its interval tree, to hide
148  * vma from rmap and vmtruncate before freeing its page tables.
149  */
150 void unlink_file_vma(struct vm_area_struct *vma)
151 {
152 	struct file *file = vma->vm_file;
153 
154 	if (file) {
155 		struct address_space *mapping = file->f_mapping;
156 		i_mmap_lock_write(mapping);
157 		__remove_shared_vm_struct(vma, file, mapping);
158 		i_mmap_unlock_write(mapping);
159 	}
160 }
161 
162 /*
163  * Close a vm structure and free it, returning the next.
164  */
165 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
166 {
167 	struct vm_area_struct *next = vma->vm_next;
168 
169 	might_sleep();
170 	if (vma->vm_ops && vma->vm_ops->close)
171 		vma->vm_ops->close(vma);
172 	if (vma->vm_file)
173 		fput(vma->vm_file);
174 	mpol_put(vma_policy(vma));
175 	kmem_cache_free(vm_area_cachep, vma);
176 	return next;
177 }
178 
179 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf);
180 
181 SYSCALL_DEFINE1(brk, unsigned long, brk)
182 {
183 	unsigned long retval;
184 	unsigned long newbrk, oldbrk;
185 	struct mm_struct *mm = current->mm;
186 	struct vm_area_struct *next;
187 	unsigned long min_brk;
188 	bool populate;
189 	LIST_HEAD(uf);
190 
191 	if (down_write_killable(&mm->mmap_sem))
192 		return -EINTR;
193 
194 #ifdef CONFIG_COMPAT_BRK
195 	/*
196 	 * CONFIG_COMPAT_BRK can still be overridden by setting
197 	 * randomize_va_space to 2, which will still cause mm->start_brk
198 	 * to be arbitrarily shifted
199 	 */
200 	if (current->brk_randomized)
201 		min_brk = mm->start_brk;
202 	else
203 		min_brk = mm->end_data;
204 #else
205 	min_brk = mm->start_brk;
206 #endif
207 	if (brk < min_brk)
208 		goto out;
209 
210 	/*
211 	 * Check against rlimit here. If this check is done later after the test
212 	 * of oldbrk with newbrk then it can escape the test and let the data
213 	 * segment grow beyond its set limit the in case where the limit is
214 	 * not page aligned -Ram Gupta
215 	 */
216 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
217 			      mm->end_data, mm->start_data))
218 		goto out;
219 
220 	newbrk = PAGE_ALIGN(brk);
221 	oldbrk = PAGE_ALIGN(mm->brk);
222 	if (oldbrk == newbrk)
223 		goto set_brk;
224 
225 	/* Always allow shrinking brk. */
226 	if (brk <= mm->brk) {
227 		if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
228 			goto set_brk;
229 		goto out;
230 	}
231 
232 	/* Check against existing mmap mappings. */
233 	next = find_vma(mm, oldbrk);
234 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
235 		goto out;
236 
237 	/* Ok, looks good - let it rip. */
238 	if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
239 		goto out;
240 
241 set_brk:
242 	mm->brk = brk;
243 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
244 	up_write(&mm->mmap_sem);
245 	userfaultfd_unmap_complete(mm, &uf);
246 	if (populate)
247 		mm_populate(oldbrk, newbrk - oldbrk);
248 	return brk;
249 
250 out:
251 	retval = mm->brk;
252 	up_write(&mm->mmap_sem);
253 	return retval;
254 }
255 
256 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
257 {
258 	unsigned long max, prev_end, subtree_gap;
259 
260 	/*
261 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
262 	 * allow two stack_guard_gaps between them here, and when choosing
263 	 * an unmapped area; whereas when expanding we only require one.
264 	 * That's a little inconsistent, but keeps the code here simpler.
265 	 */
266 	max = vm_start_gap(vma);
267 	if (vma->vm_prev) {
268 		prev_end = vm_end_gap(vma->vm_prev);
269 		if (max > prev_end)
270 			max -= prev_end;
271 		else
272 			max = 0;
273 	}
274 	if (vma->vm_rb.rb_left) {
275 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
276 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
277 		if (subtree_gap > max)
278 			max = subtree_gap;
279 	}
280 	if (vma->vm_rb.rb_right) {
281 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
282 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
283 		if (subtree_gap > max)
284 			max = subtree_gap;
285 	}
286 	return max;
287 }
288 
289 #ifdef CONFIG_DEBUG_VM_RB
290 static int browse_rb(struct mm_struct *mm)
291 {
292 	struct rb_root *root = &mm->mm_rb;
293 	int i = 0, j, bug = 0;
294 	struct rb_node *nd, *pn = NULL;
295 	unsigned long prev = 0, pend = 0;
296 
297 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
298 		struct vm_area_struct *vma;
299 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
300 		if (vma->vm_start < prev) {
301 			pr_emerg("vm_start %lx < prev %lx\n",
302 				  vma->vm_start, prev);
303 			bug = 1;
304 		}
305 		if (vma->vm_start < pend) {
306 			pr_emerg("vm_start %lx < pend %lx\n",
307 				  vma->vm_start, pend);
308 			bug = 1;
309 		}
310 		if (vma->vm_start > vma->vm_end) {
311 			pr_emerg("vm_start %lx > vm_end %lx\n",
312 				  vma->vm_start, vma->vm_end);
313 			bug = 1;
314 		}
315 		spin_lock(&mm->page_table_lock);
316 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
317 			pr_emerg("free gap %lx, correct %lx\n",
318 			       vma->rb_subtree_gap,
319 			       vma_compute_subtree_gap(vma));
320 			bug = 1;
321 		}
322 		spin_unlock(&mm->page_table_lock);
323 		i++;
324 		pn = nd;
325 		prev = vma->vm_start;
326 		pend = vma->vm_end;
327 	}
328 	j = 0;
329 	for (nd = pn; nd; nd = rb_prev(nd))
330 		j++;
331 	if (i != j) {
332 		pr_emerg("backwards %d, forwards %d\n", j, i);
333 		bug = 1;
334 	}
335 	return bug ? -1 : i;
336 }
337 
338 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
339 {
340 	struct rb_node *nd;
341 
342 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
343 		struct vm_area_struct *vma;
344 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
345 		VM_BUG_ON_VMA(vma != ignore &&
346 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
347 			vma);
348 	}
349 }
350 
351 static void validate_mm(struct mm_struct *mm)
352 {
353 	int bug = 0;
354 	int i = 0;
355 	unsigned long highest_address = 0;
356 	struct vm_area_struct *vma = mm->mmap;
357 
358 	while (vma) {
359 		struct anon_vma *anon_vma = vma->anon_vma;
360 		struct anon_vma_chain *avc;
361 
362 		if (anon_vma) {
363 			anon_vma_lock_read(anon_vma);
364 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
365 				anon_vma_interval_tree_verify(avc);
366 			anon_vma_unlock_read(anon_vma);
367 		}
368 
369 		highest_address = vm_end_gap(vma);
370 		vma = vma->vm_next;
371 		i++;
372 	}
373 	if (i != mm->map_count) {
374 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
375 		bug = 1;
376 	}
377 	if (highest_address != mm->highest_vm_end) {
378 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
379 			  mm->highest_vm_end, highest_address);
380 		bug = 1;
381 	}
382 	i = browse_rb(mm);
383 	if (i != mm->map_count) {
384 		if (i != -1)
385 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
386 		bug = 1;
387 	}
388 	VM_BUG_ON_MM(bug, mm);
389 }
390 #else
391 #define validate_mm_rb(root, ignore) do { } while (0)
392 #define validate_mm(mm) do { } while (0)
393 #endif
394 
395 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
396 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
397 
398 /*
399  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
400  * vma->vm_prev->vm_end values changed, without modifying the vma's position
401  * in the rbtree.
402  */
403 static void vma_gap_update(struct vm_area_struct *vma)
404 {
405 	/*
406 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
407 	 * function that does exacltly what we want.
408 	 */
409 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
410 }
411 
412 static inline void vma_rb_insert(struct vm_area_struct *vma,
413 				 struct rb_root *root)
414 {
415 	/* All rb_subtree_gap values must be consistent prior to insertion */
416 	validate_mm_rb(root, NULL);
417 
418 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
419 }
420 
421 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
422 {
423 	/*
424 	 * Note rb_erase_augmented is a fairly large inline function,
425 	 * so make sure we instantiate it only once with our desired
426 	 * augmented rbtree callbacks.
427 	 */
428 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
429 }
430 
431 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
432 						struct rb_root *root,
433 						struct vm_area_struct *ignore)
434 {
435 	/*
436 	 * All rb_subtree_gap values must be consistent prior to erase,
437 	 * with the possible exception of the "next" vma being erased if
438 	 * next->vm_start was reduced.
439 	 */
440 	validate_mm_rb(root, ignore);
441 
442 	__vma_rb_erase(vma, root);
443 }
444 
445 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
446 					 struct rb_root *root)
447 {
448 	/*
449 	 * All rb_subtree_gap values must be consistent prior to erase,
450 	 * with the possible exception of the vma being erased.
451 	 */
452 	validate_mm_rb(root, vma);
453 
454 	__vma_rb_erase(vma, root);
455 }
456 
457 /*
458  * vma has some anon_vma assigned, and is already inserted on that
459  * anon_vma's interval trees.
460  *
461  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
462  * vma must be removed from the anon_vma's interval trees using
463  * anon_vma_interval_tree_pre_update_vma().
464  *
465  * After the update, the vma will be reinserted using
466  * anon_vma_interval_tree_post_update_vma().
467  *
468  * The entire update must be protected by exclusive mmap_sem and by
469  * the root anon_vma's mutex.
470  */
471 static inline void
472 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
473 {
474 	struct anon_vma_chain *avc;
475 
476 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
477 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
478 }
479 
480 static inline void
481 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
482 {
483 	struct anon_vma_chain *avc;
484 
485 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
486 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
487 }
488 
489 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
490 		unsigned long end, struct vm_area_struct **pprev,
491 		struct rb_node ***rb_link, struct rb_node **rb_parent)
492 {
493 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
494 
495 	__rb_link = &mm->mm_rb.rb_node;
496 	rb_prev = __rb_parent = NULL;
497 
498 	while (*__rb_link) {
499 		struct vm_area_struct *vma_tmp;
500 
501 		__rb_parent = *__rb_link;
502 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
503 
504 		if (vma_tmp->vm_end > addr) {
505 			/* Fail if an existing vma overlaps the area */
506 			if (vma_tmp->vm_start < end)
507 				return -ENOMEM;
508 			__rb_link = &__rb_parent->rb_left;
509 		} else {
510 			rb_prev = __rb_parent;
511 			__rb_link = &__rb_parent->rb_right;
512 		}
513 	}
514 
515 	*pprev = NULL;
516 	if (rb_prev)
517 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
518 	*rb_link = __rb_link;
519 	*rb_parent = __rb_parent;
520 	return 0;
521 }
522 
523 static unsigned long count_vma_pages_range(struct mm_struct *mm,
524 		unsigned long addr, unsigned long end)
525 {
526 	unsigned long nr_pages = 0;
527 	struct vm_area_struct *vma;
528 
529 	/* Find first overlaping mapping */
530 	vma = find_vma_intersection(mm, addr, end);
531 	if (!vma)
532 		return 0;
533 
534 	nr_pages = (min(end, vma->vm_end) -
535 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
536 
537 	/* Iterate over the rest of the overlaps */
538 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
539 		unsigned long overlap_len;
540 
541 		if (vma->vm_start > end)
542 			break;
543 
544 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
545 		nr_pages += overlap_len >> PAGE_SHIFT;
546 	}
547 
548 	return nr_pages;
549 }
550 
551 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
552 		struct rb_node **rb_link, struct rb_node *rb_parent)
553 {
554 	/* Update tracking information for the gap following the new vma. */
555 	if (vma->vm_next)
556 		vma_gap_update(vma->vm_next);
557 	else
558 		mm->highest_vm_end = vm_end_gap(vma);
559 
560 	/*
561 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
562 	 * correct insertion point for that vma. As a result, we could not
563 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
564 	 * So, we first insert the vma with a zero rb_subtree_gap value
565 	 * (to be consistent with what we did on the way down), and then
566 	 * immediately update the gap to the correct value. Finally we
567 	 * rebalance the rbtree after all augmented values have been set.
568 	 */
569 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
570 	vma->rb_subtree_gap = 0;
571 	vma_gap_update(vma);
572 	vma_rb_insert(vma, &mm->mm_rb);
573 }
574 
575 static void __vma_link_file(struct vm_area_struct *vma)
576 {
577 	struct file *file;
578 
579 	file = vma->vm_file;
580 	if (file) {
581 		struct address_space *mapping = file->f_mapping;
582 
583 		if (vma->vm_flags & VM_DENYWRITE)
584 			atomic_dec(&file_inode(file)->i_writecount);
585 		if (vma->vm_flags & VM_SHARED)
586 			atomic_inc(&mapping->i_mmap_writable);
587 
588 		flush_dcache_mmap_lock(mapping);
589 		vma_interval_tree_insert(vma, &mapping->i_mmap);
590 		flush_dcache_mmap_unlock(mapping);
591 	}
592 }
593 
594 static void
595 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
596 	struct vm_area_struct *prev, struct rb_node **rb_link,
597 	struct rb_node *rb_parent)
598 {
599 	__vma_link_list(mm, vma, prev, rb_parent);
600 	__vma_link_rb(mm, vma, rb_link, rb_parent);
601 }
602 
603 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
604 			struct vm_area_struct *prev, struct rb_node **rb_link,
605 			struct rb_node *rb_parent)
606 {
607 	struct address_space *mapping = NULL;
608 
609 	if (vma->vm_file) {
610 		mapping = vma->vm_file->f_mapping;
611 		i_mmap_lock_write(mapping);
612 	}
613 
614 	__vma_link(mm, vma, prev, rb_link, rb_parent);
615 	__vma_link_file(vma);
616 
617 	if (mapping)
618 		i_mmap_unlock_write(mapping);
619 
620 	mm->map_count++;
621 	validate_mm(mm);
622 }
623 
624 /*
625  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
626  * mm's list and rbtree.  It has already been inserted into the interval tree.
627  */
628 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
629 {
630 	struct vm_area_struct *prev;
631 	struct rb_node **rb_link, *rb_parent;
632 
633 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
634 			   &prev, &rb_link, &rb_parent))
635 		BUG();
636 	__vma_link(mm, vma, prev, rb_link, rb_parent);
637 	mm->map_count++;
638 }
639 
640 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
641 						struct vm_area_struct *vma,
642 						struct vm_area_struct *prev,
643 						bool has_prev,
644 						struct vm_area_struct *ignore)
645 {
646 	struct vm_area_struct *next;
647 
648 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
649 	next = vma->vm_next;
650 	if (has_prev)
651 		prev->vm_next = next;
652 	else {
653 		prev = vma->vm_prev;
654 		if (prev)
655 			prev->vm_next = next;
656 		else
657 			mm->mmap = next;
658 	}
659 	if (next)
660 		next->vm_prev = prev;
661 
662 	/* Kill the cache */
663 	vmacache_invalidate(mm);
664 }
665 
666 static inline void __vma_unlink_prev(struct mm_struct *mm,
667 				     struct vm_area_struct *vma,
668 				     struct vm_area_struct *prev)
669 {
670 	__vma_unlink_common(mm, vma, prev, true, vma);
671 }
672 
673 /*
674  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
675  * is already present in an i_mmap tree without adjusting the tree.
676  * The following helper function should be used when such adjustments
677  * are necessary.  The "insert" vma (if any) is to be inserted
678  * before we drop the necessary locks.
679  */
680 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
681 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
682 	struct vm_area_struct *expand)
683 {
684 	struct mm_struct *mm = vma->vm_mm;
685 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
686 	struct address_space *mapping = NULL;
687 	struct rb_root *root = NULL;
688 	struct anon_vma *anon_vma = NULL;
689 	struct file *file = vma->vm_file;
690 	bool start_changed = false, end_changed = false;
691 	long adjust_next = 0;
692 	int remove_next = 0;
693 
694 	if (next && !insert) {
695 		struct vm_area_struct *exporter = NULL, *importer = NULL;
696 
697 		if (end >= next->vm_end) {
698 			/*
699 			 * vma expands, overlapping all the next, and
700 			 * perhaps the one after too (mprotect case 6).
701 			 * The only other cases that gets here are
702 			 * case 1, case 7 and case 8.
703 			 */
704 			if (next == expand) {
705 				/*
706 				 * The only case where we don't expand "vma"
707 				 * and we expand "next" instead is case 8.
708 				 */
709 				VM_WARN_ON(end != next->vm_end);
710 				/*
711 				 * remove_next == 3 means we're
712 				 * removing "vma" and that to do so we
713 				 * swapped "vma" and "next".
714 				 */
715 				remove_next = 3;
716 				VM_WARN_ON(file != next->vm_file);
717 				swap(vma, next);
718 			} else {
719 				VM_WARN_ON(expand != vma);
720 				/*
721 				 * case 1, 6, 7, remove_next == 2 is case 6,
722 				 * remove_next == 1 is case 1 or 7.
723 				 */
724 				remove_next = 1 + (end > next->vm_end);
725 				VM_WARN_ON(remove_next == 2 &&
726 					   end != next->vm_next->vm_end);
727 				VM_WARN_ON(remove_next == 1 &&
728 					   end != next->vm_end);
729 				/* trim end to next, for case 6 first pass */
730 				end = next->vm_end;
731 			}
732 
733 			exporter = next;
734 			importer = vma;
735 
736 			/*
737 			 * If next doesn't have anon_vma, import from vma after
738 			 * next, if the vma overlaps with it.
739 			 */
740 			if (remove_next == 2 && !next->anon_vma)
741 				exporter = next->vm_next;
742 
743 		} else if (end > next->vm_start) {
744 			/*
745 			 * vma expands, overlapping part of the next:
746 			 * mprotect case 5 shifting the boundary up.
747 			 */
748 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
749 			exporter = next;
750 			importer = vma;
751 			VM_WARN_ON(expand != importer);
752 		} else if (end < vma->vm_end) {
753 			/*
754 			 * vma shrinks, and !insert tells it's not
755 			 * split_vma inserting another: so it must be
756 			 * mprotect case 4 shifting the boundary down.
757 			 */
758 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
759 			exporter = vma;
760 			importer = next;
761 			VM_WARN_ON(expand != importer);
762 		}
763 
764 		/*
765 		 * Easily overlooked: when mprotect shifts the boundary,
766 		 * make sure the expanding vma has anon_vma set if the
767 		 * shrinking vma had, to cover any anon pages imported.
768 		 */
769 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
770 			int error;
771 
772 			importer->anon_vma = exporter->anon_vma;
773 			error = anon_vma_clone(importer, exporter);
774 			if (error)
775 				return error;
776 		}
777 	}
778 again:
779 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
780 
781 	if (file) {
782 		mapping = file->f_mapping;
783 		root = &mapping->i_mmap;
784 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
785 
786 		if (adjust_next)
787 			uprobe_munmap(next, next->vm_start, next->vm_end);
788 
789 		i_mmap_lock_write(mapping);
790 		if (insert) {
791 			/*
792 			 * Put into interval tree now, so instantiated pages
793 			 * are visible to arm/parisc __flush_dcache_page
794 			 * throughout; but we cannot insert into address
795 			 * space until vma start or end is updated.
796 			 */
797 			__vma_link_file(insert);
798 		}
799 	}
800 
801 	anon_vma = vma->anon_vma;
802 	if (!anon_vma && adjust_next)
803 		anon_vma = next->anon_vma;
804 	if (anon_vma) {
805 		VM_WARN_ON(adjust_next && next->anon_vma &&
806 			   anon_vma != next->anon_vma);
807 		anon_vma_lock_write(anon_vma);
808 		anon_vma_interval_tree_pre_update_vma(vma);
809 		if (adjust_next)
810 			anon_vma_interval_tree_pre_update_vma(next);
811 	}
812 
813 	if (root) {
814 		flush_dcache_mmap_lock(mapping);
815 		vma_interval_tree_remove(vma, root);
816 		if (adjust_next)
817 			vma_interval_tree_remove(next, root);
818 	}
819 
820 	if (start != vma->vm_start) {
821 		vma->vm_start = start;
822 		start_changed = true;
823 	}
824 	if (end != vma->vm_end) {
825 		vma->vm_end = end;
826 		end_changed = true;
827 	}
828 	vma->vm_pgoff = pgoff;
829 	if (adjust_next) {
830 		next->vm_start += adjust_next << PAGE_SHIFT;
831 		next->vm_pgoff += adjust_next;
832 	}
833 
834 	if (root) {
835 		if (adjust_next)
836 			vma_interval_tree_insert(next, root);
837 		vma_interval_tree_insert(vma, root);
838 		flush_dcache_mmap_unlock(mapping);
839 	}
840 
841 	if (remove_next) {
842 		/*
843 		 * vma_merge has merged next into vma, and needs
844 		 * us to remove next before dropping the locks.
845 		 */
846 		if (remove_next != 3)
847 			__vma_unlink_prev(mm, next, vma);
848 		else
849 			/*
850 			 * vma is not before next if they've been
851 			 * swapped.
852 			 *
853 			 * pre-swap() next->vm_start was reduced so
854 			 * tell validate_mm_rb to ignore pre-swap()
855 			 * "next" (which is stored in post-swap()
856 			 * "vma").
857 			 */
858 			__vma_unlink_common(mm, next, NULL, false, vma);
859 		if (file)
860 			__remove_shared_vm_struct(next, file, mapping);
861 	} else if (insert) {
862 		/*
863 		 * split_vma has split insert from vma, and needs
864 		 * us to insert it before dropping the locks
865 		 * (it may either follow vma or precede it).
866 		 */
867 		__insert_vm_struct(mm, insert);
868 	} else {
869 		if (start_changed)
870 			vma_gap_update(vma);
871 		if (end_changed) {
872 			if (!next)
873 				mm->highest_vm_end = vm_end_gap(vma);
874 			else if (!adjust_next)
875 				vma_gap_update(next);
876 		}
877 	}
878 
879 	if (anon_vma) {
880 		anon_vma_interval_tree_post_update_vma(vma);
881 		if (adjust_next)
882 			anon_vma_interval_tree_post_update_vma(next);
883 		anon_vma_unlock_write(anon_vma);
884 	}
885 	if (mapping)
886 		i_mmap_unlock_write(mapping);
887 
888 	if (root) {
889 		uprobe_mmap(vma);
890 
891 		if (adjust_next)
892 			uprobe_mmap(next);
893 	}
894 
895 	if (remove_next) {
896 		if (file) {
897 			uprobe_munmap(next, next->vm_start, next->vm_end);
898 			fput(file);
899 		}
900 		if (next->anon_vma)
901 			anon_vma_merge(vma, next);
902 		mm->map_count--;
903 		mpol_put(vma_policy(next));
904 		kmem_cache_free(vm_area_cachep, next);
905 		/*
906 		 * In mprotect's case 6 (see comments on vma_merge),
907 		 * we must remove another next too. It would clutter
908 		 * up the code too much to do both in one go.
909 		 */
910 		if (remove_next != 3) {
911 			/*
912 			 * If "next" was removed and vma->vm_end was
913 			 * expanded (up) over it, in turn
914 			 * "next->vm_prev->vm_end" changed and the
915 			 * "vma->vm_next" gap must be updated.
916 			 */
917 			next = vma->vm_next;
918 		} else {
919 			/*
920 			 * For the scope of the comment "next" and
921 			 * "vma" considered pre-swap(): if "vma" was
922 			 * removed, next->vm_start was expanded (down)
923 			 * over it and the "next" gap must be updated.
924 			 * Because of the swap() the post-swap() "vma"
925 			 * actually points to pre-swap() "next"
926 			 * (post-swap() "next" as opposed is now a
927 			 * dangling pointer).
928 			 */
929 			next = vma;
930 		}
931 		if (remove_next == 2) {
932 			remove_next = 1;
933 			end = next->vm_end;
934 			goto again;
935 		}
936 		else if (next)
937 			vma_gap_update(next);
938 		else {
939 			/*
940 			 * If remove_next == 2 we obviously can't
941 			 * reach this path.
942 			 *
943 			 * If remove_next == 3 we can't reach this
944 			 * path because pre-swap() next is always not
945 			 * NULL. pre-swap() "next" is not being
946 			 * removed and its next->vm_end is not altered
947 			 * (and furthermore "end" already matches
948 			 * next->vm_end in remove_next == 3).
949 			 *
950 			 * We reach this only in the remove_next == 1
951 			 * case if the "next" vma that was removed was
952 			 * the highest vma of the mm. However in such
953 			 * case next->vm_end == "end" and the extended
954 			 * "vma" has vma->vm_end == next->vm_end so
955 			 * mm->highest_vm_end doesn't need any update
956 			 * in remove_next == 1 case.
957 			 */
958 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
959 		}
960 	}
961 	if (insert && file)
962 		uprobe_mmap(insert);
963 
964 	validate_mm(mm);
965 
966 	return 0;
967 }
968 
969 /*
970  * If the vma has a ->close operation then the driver probably needs to release
971  * per-vma resources, so we don't attempt to merge those.
972  */
973 static inline int is_mergeable_vma(struct vm_area_struct *vma,
974 				struct file *file, unsigned long vm_flags,
975 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
976 {
977 	/*
978 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
979 	 * match the flags but dirty bit -- the caller should mark
980 	 * merged VMA as dirty. If dirty bit won't be excluded from
981 	 * comparison, we increase pressue on the memory system forcing
982 	 * the kernel to generate new VMAs when old one could be
983 	 * extended instead.
984 	 */
985 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
986 		return 0;
987 	if (vma->vm_file != file)
988 		return 0;
989 	if (vma->vm_ops && vma->vm_ops->close)
990 		return 0;
991 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
992 		return 0;
993 	return 1;
994 }
995 
996 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
997 					struct anon_vma *anon_vma2,
998 					struct vm_area_struct *vma)
999 {
1000 	/*
1001 	 * The list_is_singular() test is to avoid merging VMA cloned from
1002 	 * parents. This can improve scalability caused by anon_vma lock.
1003 	 */
1004 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1005 		list_is_singular(&vma->anon_vma_chain)))
1006 		return 1;
1007 	return anon_vma1 == anon_vma2;
1008 }
1009 
1010 /*
1011  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1012  * in front of (at a lower virtual address and file offset than) the vma.
1013  *
1014  * We cannot merge two vmas if they have differently assigned (non-NULL)
1015  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1016  *
1017  * We don't check here for the merged mmap wrapping around the end of pagecache
1018  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1019  * wrap, nor mmaps which cover the final page at index -1UL.
1020  */
1021 static int
1022 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1023 		     struct anon_vma *anon_vma, struct file *file,
1024 		     pgoff_t vm_pgoff,
1025 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1026 {
1027 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1028 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1029 		if (vma->vm_pgoff == vm_pgoff)
1030 			return 1;
1031 	}
1032 	return 0;
1033 }
1034 
1035 /*
1036  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1037  * beyond (at a higher virtual address and file offset than) the vma.
1038  *
1039  * We cannot merge two vmas if they have differently assigned (non-NULL)
1040  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1041  */
1042 static int
1043 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1044 		    struct anon_vma *anon_vma, struct file *file,
1045 		    pgoff_t vm_pgoff,
1046 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1047 {
1048 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1049 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1050 		pgoff_t vm_pglen;
1051 		vm_pglen = vma_pages(vma);
1052 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1053 			return 1;
1054 	}
1055 	return 0;
1056 }
1057 
1058 /*
1059  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1060  * whether that can be merged with its predecessor or its successor.
1061  * Or both (it neatly fills a hole).
1062  *
1063  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1064  * certain not to be mapped by the time vma_merge is called; but when
1065  * called for mprotect, it is certain to be already mapped (either at
1066  * an offset within prev, or at the start of next), and the flags of
1067  * this area are about to be changed to vm_flags - and the no-change
1068  * case has already been eliminated.
1069  *
1070  * The following mprotect cases have to be considered, where AAAA is
1071  * the area passed down from mprotect_fixup, never extending beyond one
1072  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1073  *
1074  *     AAAA             AAAA                AAAA          AAAA
1075  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1076  *    cannot merge    might become    might become    might become
1077  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1078  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1079  *    mremap move:                                    PPPPXXXXXXXX 8
1080  *        AAAA
1081  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1082  *    might become    case 1 below    case 2 below    case 3 below
1083  *
1084  * It is important for case 8 that the the vma NNNN overlapping the
1085  * region AAAA is never going to extended over XXXX. Instead XXXX must
1086  * be extended in region AAAA and NNNN must be removed. This way in
1087  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1088  * rmap_locks, the properties of the merged vma will be already
1089  * correct for the whole merged range. Some of those properties like
1090  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1091  * be correct for the whole merged range immediately after the
1092  * rmap_locks are released. Otherwise if XXXX would be removed and
1093  * NNNN would be extended over the XXXX range, remove_migration_ptes
1094  * or other rmap walkers (if working on addresses beyond the "end"
1095  * parameter) may establish ptes with the wrong permissions of NNNN
1096  * instead of the right permissions of XXXX.
1097  */
1098 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1099 			struct vm_area_struct *prev, unsigned long addr,
1100 			unsigned long end, unsigned long vm_flags,
1101 			struct anon_vma *anon_vma, struct file *file,
1102 			pgoff_t pgoff, struct mempolicy *policy,
1103 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1104 {
1105 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1106 	struct vm_area_struct *area, *next;
1107 	int err;
1108 
1109 	/*
1110 	 * We later require that vma->vm_flags == vm_flags,
1111 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1112 	 */
1113 	if (vm_flags & VM_SPECIAL)
1114 		return NULL;
1115 
1116 	if (prev)
1117 		next = prev->vm_next;
1118 	else
1119 		next = mm->mmap;
1120 	area = next;
1121 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1122 		next = next->vm_next;
1123 
1124 	/* verify some invariant that must be enforced by the caller */
1125 	VM_WARN_ON(prev && addr <= prev->vm_start);
1126 	VM_WARN_ON(area && end > area->vm_end);
1127 	VM_WARN_ON(addr >= end);
1128 
1129 	/*
1130 	 * Can it merge with the predecessor?
1131 	 */
1132 	if (prev && prev->vm_end == addr &&
1133 			mpol_equal(vma_policy(prev), policy) &&
1134 			can_vma_merge_after(prev, vm_flags,
1135 					    anon_vma, file, pgoff,
1136 					    vm_userfaultfd_ctx)) {
1137 		/*
1138 		 * OK, it can.  Can we now merge in the successor as well?
1139 		 */
1140 		if (next && end == next->vm_start &&
1141 				mpol_equal(policy, vma_policy(next)) &&
1142 				can_vma_merge_before(next, vm_flags,
1143 						     anon_vma, file,
1144 						     pgoff+pglen,
1145 						     vm_userfaultfd_ctx) &&
1146 				is_mergeable_anon_vma(prev->anon_vma,
1147 						      next->anon_vma, NULL)) {
1148 							/* cases 1, 6 */
1149 			err = __vma_adjust(prev, prev->vm_start,
1150 					 next->vm_end, prev->vm_pgoff, NULL,
1151 					 prev);
1152 		} else					/* cases 2, 5, 7 */
1153 			err = __vma_adjust(prev, prev->vm_start,
1154 					 end, prev->vm_pgoff, NULL, prev);
1155 		if (err)
1156 			return NULL;
1157 		khugepaged_enter_vma_merge(prev, vm_flags);
1158 		return prev;
1159 	}
1160 
1161 	/*
1162 	 * Can this new request be merged in front of next?
1163 	 */
1164 	if (next && end == next->vm_start &&
1165 			mpol_equal(policy, vma_policy(next)) &&
1166 			can_vma_merge_before(next, vm_flags,
1167 					     anon_vma, file, pgoff+pglen,
1168 					     vm_userfaultfd_ctx)) {
1169 		if (prev && addr < prev->vm_end)	/* case 4 */
1170 			err = __vma_adjust(prev, prev->vm_start,
1171 					 addr, prev->vm_pgoff, NULL, next);
1172 		else {					/* cases 3, 8 */
1173 			err = __vma_adjust(area, addr, next->vm_end,
1174 					 next->vm_pgoff - pglen, NULL, next);
1175 			/*
1176 			 * In case 3 area is already equal to next and
1177 			 * this is a noop, but in case 8 "area" has
1178 			 * been removed and next was expanded over it.
1179 			 */
1180 			area = next;
1181 		}
1182 		if (err)
1183 			return NULL;
1184 		khugepaged_enter_vma_merge(area, vm_flags);
1185 		return area;
1186 	}
1187 
1188 	return NULL;
1189 }
1190 
1191 /*
1192  * Rough compatbility check to quickly see if it's even worth looking
1193  * at sharing an anon_vma.
1194  *
1195  * They need to have the same vm_file, and the flags can only differ
1196  * in things that mprotect may change.
1197  *
1198  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1199  * we can merge the two vma's. For example, we refuse to merge a vma if
1200  * there is a vm_ops->close() function, because that indicates that the
1201  * driver is doing some kind of reference counting. But that doesn't
1202  * really matter for the anon_vma sharing case.
1203  */
1204 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1205 {
1206 	return a->vm_end == b->vm_start &&
1207 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1208 		a->vm_file == b->vm_file &&
1209 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1210 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1211 }
1212 
1213 /*
1214  * Do some basic sanity checking to see if we can re-use the anon_vma
1215  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1216  * the same as 'old', the other will be the new one that is trying
1217  * to share the anon_vma.
1218  *
1219  * NOTE! This runs with mm_sem held for reading, so it is possible that
1220  * the anon_vma of 'old' is concurrently in the process of being set up
1221  * by another page fault trying to merge _that_. But that's ok: if it
1222  * is being set up, that automatically means that it will be a singleton
1223  * acceptable for merging, so we can do all of this optimistically. But
1224  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1225  *
1226  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1227  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1228  * is to return an anon_vma that is "complex" due to having gone through
1229  * a fork).
1230  *
1231  * We also make sure that the two vma's are compatible (adjacent,
1232  * and with the same memory policies). That's all stable, even with just
1233  * a read lock on the mm_sem.
1234  */
1235 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1236 {
1237 	if (anon_vma_compatible(a, b)) {
1238 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1239 
1240 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1241 			return anon_vma;
1242 	}
1243 	return NULL;
1244 }
1245 
1246 /*
1247  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1248  * neighbouring vmas for a suitable anon_vma, before it goes off
1249  * to allocate a new anon_vma.  It checks because a repetitive
1250  * sequence of mprotects and faults may otherwise lead to distinct
1251  * anon_vmas being allocated, preventing vma merge in subsequent
1252  * mprotect.
1253  */
1254 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1255 {
1256 	struct anon_vma *anon_vma;
1257 	struct vm_area_struct *near;
1258 
1259 	near = vma->vm_next;
1260 	if (!near)
1261 		goto try_prev;
1262 
1263 	anon_vma = reusable_anon_vma(near, vma, near);
1264 	if (anon_vma)
1265 		return anon_vma;
1266 try_prev:
1267 	near = vma->vm_prev;
1268 	if (!near)
1269 		goto none;
1270 
1271 	anon_vma = reusable_anon_vma(near, near, vma);
1272 	if (anon_vma)
1273 		return anon_vma;
1274 none:
1275 	/*
1276 	 * There's no absolute need to look only at touching neighbours:
1277 	 * we could search further afield for "compatible" anon_vmas.
1278 	 * But it would probably just be a waste of time searching,
1279 	 * or lead to too many vmas hanging off the same anon_vma.
1280 	 * We're trying to allow mprotect remerging later on,
1281 	 * not trying to minimize memory used for anon_vmas.
1282 	 */
1283 	return NULL;
1284 }
1285 
1286 /*
1287  * If a hint addr is less than mmap_min_addr change hint to be as
1288  * low as possible but still greater than mmap_min_addr
1289  */
1290 static inline unsigned long round_hint_to_min(unsigned long hint)
1291 {
1292 	hint &= PAGE_MASK;
1293 	if (((void *)hint != NULL) &&
1294 	    (hint < mmap_min_addr))
1295 		return PAGE_ALIGN(mmap_min_addr);
1296 	return hint;
1297 }
1298 
1299 static inline int mlock_future_check(struct mm_struct *mm,
1300 				     unsigned long flags,
1301 				     unsigned long len)
1302 {
1303 	unsigned long locked, lock_limit;
1304 
1305 	/*  mlock MCL_FUTURE? */
1306 	if (flags & VM_LOCKED) {
1307 		locked = len >> PAGE_SHIFT;
1308 		locked += mm->locked_vm;
1309 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1310 		lock_limit >>= PAGE_SHIFT;
1311 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1312 			return -EAGAIN;
1313 	}
1314 	return 0;
1315 }
1316 
1317 /*
1318  * The caller must hold down_write(&current->mm->mmap_sem).
1319  */
1320 unsigned long do_mmap(struct file *file, unsigned long addr,
1321 			unsigned long len, unsigned long prot,
1322 			unsigned long flags, vm_flags_t vm_flags,
1323 			unsigned long pgoff, unsigned long *populate,
1324 			struct list_head *uf)
1325 {
1326 	struct mm_struct *mm = current->mm;
1327 	int pkey = 0;
1328 
1329 	*populate = 0;
1330 
1331 	if (!len)
1332 		return -EINVAL;
1333 
1334 	/*
1335 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1336 	 *
1337 	 * (the exception is when the underlying filesystem is noexec
1338 	 *  mounted, in which case we dont add PROT_EXEC.)
1339 	 */
1340 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1341 		if (!(file && path_noexec(&file->f_path)))
1342 			prot |= PROT_EXEC;
1343 
1344 	if (!(flags & MAP_FIXED))
1345 		addr = round_hint_to_min(addr);
1346 
1347 	/* Careful about overflows.. */
1348 	len = PAGE_ALIGN(len);
1349 	if (!len)
1350 		return -ENOMEM;
1351 
1352 	/* offset overflow? */
1353 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1354 		return -EOVERFLOW;
1355 
1356 	/* Too many mappings? */
1357 	if (mm->map_count > sysctl_max_map_count)
1358 		return -ENOMEM;
1359 
1360 	/* Obtain the address to map to. we verify (or select) it and ensure
1361 	 * that it represents a valid section of the address space.
1362 	 */
1363 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1364 	if (offset_in_page(addr))
1365 		return addr;
1366 
1367 	if (prot == PROT_EXEC) {
1368 		pkey = execute_only_pkey(mm);
1369 		if (pkey < 0)
1370 			pkey = 0;
1371 	}
1372 
1373 	/* Do simple checking here so the lower-level routines won't have
1374 	 * to. we assume access permissions have been handled by the open
1375 	 * of the memory object, so we don't do any here.
1376 	 */
1377 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1378 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1379 
1380 	if (flags & MAP_LOCKED)
1381 		if (!can_do_mlock())
1382 			return -EPERM;
1383 
1384 	if (mlock_future_check(mm, vm_flags, len))
1385 		return -EAGAIN;
1386 
1387 	if (file) {
1388 		struct inode *inode = file_inode(file);
1389 
1390 		switch (flags & MAP_TYPE) {
1391 		case MAP_SHARED:
1392 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1393 				return -EACCES;
1394 
1395 			/*
1396 			 * Make sure we don't allow writing to an append-only
1397 			 * file..
1398 			 */
1399 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1400 				return -EACCES;
1401 
1402 			/*
1403 			 * Make sure there are no mandatory locks on the file.
1404 			 */
1405 			if (locks_verify_locked(file))
1406 				return -EAGAIN;
1407 
1408 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1409 			if (!(file->f_mode & FMODE_WRITE))
1410 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1411 
1412 			/* fall through */
1413 		case MAP_PRIVATE:
1414 			if (!(file->f_mode & FMODE_READ))
1415 				return -EACCES;
1416 			if (path_noexec(&file->f_path)) {
1417 				if (vm_flags & VM_EXEC)
1418 					return -EPERM;
1419 				vm_flags &= ~VM_MAYEXEC;
1420 			}
1421 
1422 			if (!file->f_op->mmap)
1423 				return -ENODEV;
1424 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1425 				return -EINVAL;
1426 			break;
1427 
1428 		default:
1429 			return -EINVAL;
1430 		}
1431 	} else {
1432 		switch (flags & MAP_TYPE) {
1433 		case MAP_SHARED:
1434 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1435 				return -EINVAL;
1436 			/*
1437 			 * Ignore pgoff.
1438 			 */
1439 			pgoff = 0;
1440 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1441 			break;
1442 		case MAP_PRIVATE:
1443 			/*
1444 			 * Set pgoff according to addr for anon_vma.
1445 			 */
1446 			pgoff = addr >> PAGE_SHIFT;
1447 			break;
1448 		default:
1449 			return -EINVAL;
1450 		}
1451 	}
1452 
1453 	/*
1454 	 * Set 'VM_NORESERVE' if we should not account for the
1455 	 * memory use of this mapping.
1456 	 */
1457 	if (flags & MAP_NORESERVE) {
1458 		/* We honor MAP_NORESERVE if allowed to overcommit */
1459 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1460 			vm_flags |= VM_NORESERVE;
1461 
1462 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1463 		if (file && is_file_hugepages(file))
1464 			vm_flags |= VM_NORESERVE;
1465 	}
1466 
1467 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1468 	if (!IS_ERR_VALUE(addr) &&
1469 	    ((vm_flags & VM_LOCKED) ||
1470 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1471 		*populate = len;
1472 	return addr;
1473 }
1474 
1475 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1476 		unsigned long, prot, unsigned long, flags,
1477 		unsigned long, fd, unsigned long, pgoff)
1478 {
1479 	struct file *file = NULL;
1480 	unsigned long retval;
1481 
1482 	if (!(flags & MAP_ANONYMOUS)) {
1483 		audit_mmap_fd(fd, flags);
1484 		file = fget(fd);
1485 		if (!file)
1486 			return -EBADF;
1487 		if (is_file_hugepages(file))
1488 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1489 		retval = -EINVAL;
1490 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1491 			goto out_fput;
1492 	} else if (flags & MAP_HUGETLB) {
1493 		struct user_struct *user = NULL;
1494 		struct hstate *hs;
1495 
1496 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1497 		if (!hs)
1498 			return -EINVAL;
1499 
1500 		len = ALIGN(len, huge_page_size(hs));
1501 		/*
1502 		 * VM_NORESERVE is used because the reservations will be
1503 		 * taken when vm_ops->mmap() is called
1504 		 * A dummy user value is used because we are not locking
1505 		 * memory so no accounting is necessary
1506 		 */
1507 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1508 				VM_NORESERVE,
1509 				&user, HUGETLB_ANONHUGE_INODE,
1510 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1511 		if (IS_ERR(file))
1512 			return PTR_ERR(file);
1513 	}
1514 
1515 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1516 
1517 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1518 out_fput:
1519 	if (file)
1520 		fput(file);
1521 	return retval;
1522 }
1523 
1524 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1525 struct mmap_arg_struct {
1526 	unsigned long addr;
1527 	unsigned long len;
1528 	unsigned long prot;
1529 	unsigned long flags;
1530 	unsigned long fd;
1531 	unsigned long offset;
1532 };
1533 
1534 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1535 {
1536 	struct mmap_arg_struct a;
1537 
1538 	if (copy_from_user(&a, arg, sizeof(a)))
1539 		return -EFAULT;
1540 	if (offset_in_page(a.offset))
1541 		return -EINVAL;
1542 
1543 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1544 			      a.offset >> PAGE_SHIFT);
1545 }
1546 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1547 
1548 /*
1549  * Some shared mappigns will want the pages marked read-only
1550  * to track write events. If so, we'll downgrade vm_page_prot
1551  * to the private version (using protection_map[] without the
1552  * VM_SHARED bit).
1553  */
1554 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1555 {
1556 	vm_flags_t vm_flags = vma->vm_flags;
1557 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1558 
1559 	/* If it was private or non-writable, the write bit is already clear */
1560 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1561 		return 0;
1562 
1563 	/* The backer wishes to know when pages are first written to? */
1564 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1565 		return 1;
1566 
1567 	/* The open routine did something to the protections that pgprot_modify
1568 	 * won't preserve? */
1569 	if (pgprot_val(vm_page_prot) !=
1570 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1571 		return 0;
1572 
1573 	/* Do we need to track softdirty? */
1574 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1575 		return 1;
1576 
1577 	/* Specialty mapping? */
1578 	if (vm_flags & VM_PFNMAP)
1579 		return 0;
1580 
1581 	/* Can the mapping track the dirty pages? */
1582 	return vma->vm_file && vma->vm_file->f_mapping &&
1583 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1584 }
1585 
1586 /*
1587  * We account for memory if it's a private writeable mapping,
1588  * not hugepages and VM_NORESERVE wasn't set.
1589  */
1590 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1591 {
1592 	/*
1593 	 * hugetlb has its own accounting separate from the core VM
1594 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1595 	 */
1596 	if (file && is_file_hugepages(file))
1597 		return 0;
1598 
1599 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1600 }
1601 
1602 unsigned long mmap_region(struct file *file, unsigned long addr,
1603 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1604 		struct list_head *uf)
1605 {
1606 	struct mm_struct *mm = current->mm;
1607 	struct vm_area_struct *vma, *prev;
1608 	int error;
1609 	struct rb_node **rb_link, *rb_parent;
1610 	unsigned long charged = 0;
1611 
1612 	/* Check against address space limit. */
1613 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1614 		unsigned long nr_pages;
1615 
1616 		/*
1617 		 * MAP_FIXED may remove pages of mappings that intersects with
1618 		 * requested mapping. Account for the pages it would unmap.
1619 		 */
1620 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1621 
1622 		if (!may_expand_vm(mm, vm_flags,
1623 					(len >> PAGE_SHIFT) - nr_pages))
1624 			return -ENOMEM;
1625 	}
1626 
1627 	/* Clear old maps */
1628 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1629 			      &rb_parent)) {
1630 		if (do_munmap(mm, addr, len, uf))
1631 			return -ENOMEM;
1632 	}
1633 
1634 	/*
1635 	 * Private writable mapping: check memory availability
1636 	 */
1637 	if (accountable_mapping(file, vm_flags)) {
1638 		charged = len >> PAGE_SHIFT;
1639 		if (security_vm_enough_memory_mm(mm, charged))
1640 			return -ENOMEM;
1641 		vm_flags |= VM_ACCOUNT;
1642 	}
1643 
1644 	/*
1645 	 * Can we just expand an old mapping?
1646 	 */
1647 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1648 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1649 	if (vma)
1650 		goto out;
1651 
1652 	/*
1653 	 * Determine the object being mapped and call the appropriate
1654 	 * specific mapper. the address has already been validated, but
1655 	 * not unmapped, but the maps are removed from the list.
1656 	 */
1657 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1658 	if (!vma) {
1659 		error = -ENOMEM;
1660 		goto unacct_error;
1661 	}
1662 
1663 	vma->vm_mm = mm;
1664 	vma->vm_start = addr;
1665 	vma->vm_end = addr + len;
1666 	vma->vm_flags = vm_flags;
1667 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1668 	vma->vm_pgoff = pgoff;
1669 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1670 
1671 	if (file) {
1672 		if (vm_flags & VM_DENYWRITE) {
1673 			error = deny_write_access(file);
1674 			if (error)
1675 				goto free_vma;
1676 		}
1677 		if (vm_flags & VM_SHARED) {
1678 			error = mapping_map_writable(file->f_mapping);
1679 			if (error)
1680 				goto allow_write_and_free_vma;
1681 		}
1682 
1683 		/* ->mmap() can change vma->vm_file, but must guarantee that
1684 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1685 		 * and map writably if VM_SHARED is set. This usually means the
1686 		 * new file must not have been exposed to user-space, yet.
1687 		 */
1688 		vma->vm_file = get_file(file);
1689 		error = call_mmap(file, vma);
1690 		if (error)
1691 			goto unmap_and_free_vma;
1692 
1693 		/* Can addr have changed??
1694 		 *
1695 		 * Answer: Yes, several device drivers can do it in their
1696 		 *         f_op->mmap method. -DaveM
1697 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1698 		 *      be updated for vma_link()
1699 		 */
1700 		WARN_ON_ONCE(addr != vma->vm_start);
1701 
1702 		addr = vma->vm_start;
1703 		vm_flags = vma->vm_flags;
1704 	} else if (vm_flags & VM_SHARED) {
1705 		error = shmem_zero_setup(vma);
1706 		if (error)
1707 			goto free_vma;
1708 	}
1709 
1710 	vma_link(mm, vma, prev, rb_link, rb_parent);
1711 	/* Once vma denies write, undo our temporary denial count */
1712 	if (file) {
1713 		if (vm_flags & VM_SHARED)
1714 			mapping_unmap_writable(file->f_mapping);
1715 		if (vm_flags & VM_DENYWRITE)
1716 			allow_write_access(file);
1717 	}
1718 	file = vma->vm_file;
1719 out:
1720 	perf_event_mmap(vma);
1721 
1722 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1723 	if (vm_flags & VM_LOCKED) {
1724 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1725 					vma == get_gate_vma(current->mm)))
1726 			mm->locked_vm += (len >> PAGE_SHIFT);
1727 		else
1728 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1729 	}
1730 
1731 	if (file)
1732 		uprobe_mmap(vma);
1733 
1734 	/*
1735 	 * New (or expanded) vma always get soft dirty status.
1736 	 * Otherwise user-space soft-dirty page tracker won't
1737 	 * be able to distinguish situation when vma area unmapped,
1738 	 * then new mapped in-place (which must be aimed as
1739 	 * a completely new data area).
1740 	 */
1741 	vma->vm_flags |= VM_SOFTDIRTY;
1742 
1743 	vma_set_page_prot(vma);
1744 
1745 	return addr;
1746 
1747 unmap_and_free_vma:
1748 	vma->vm_file = NULL;
1749 	fput(file);
1750 
1751 	/* Undo any partial mapping done by a device driver. */
1752 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1753 	charged = 0;
1754 	if (vm_flags & VM_SHARED)
1755 		mapping_unmap_writable(file->f_mapping);
1756 allow_write_and_free_vma:
1757 	if (vm_flags & VM_DENYWRITE)
1758 		allow_write_access(file);
1759 free_vma:
1760 	kmem_cache_free(vm_area_cachep, vma);
1761 unacct_error:
1762 	if (charged)
1763 		vm_unacct_memory(charged);
1764 	return error;
1765 }
1766 
1767 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1768 {
1769 	/*
1770 	 * We implement the search by looking for an rbtree node that
1771 	 * immediately follows a suitable gap. That is,
1772 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1773 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1774 	 * - gap_end - gap_start >= length
1775 	 */
1776 
1777 	struct mm_struct *mm = current->mm;
1778 	struct vm_area_struct *vma;
1779 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1780 
1781 	/* Adjust search length to account for worst case alignment overhead */
1782 	length = info->length + info->align_mask;
1783 	if (length < info->length)
1784 		return -ENOMEM;
1785 
1786 	/* Adjust search limits by the desired length */
1787 	if (info->high_limit < length)
1788 		return -ENOMEM;
1789 	high_limit = info->high_limit - length;
1790 
1791 	if (info->low_limit > high_limit)
1792 		return -ENOMEM;
1793 	low_limit = info->low_limit + length;
1794 
1795 	/* Check if rbtree root looks promising */
1796 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1797 		goto check_highest;
1798 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1799 	if (vma->rb_subtree_gap < length)
1800 		goto check_highest;
1801 
1802 	while (true) {
1803 		/* Visit left subtree if it looks promising */
1804 		gap_end = vm_start_gap(vma);
1805 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1806 			struct vm_area_struct *left =
1807 				rb_entry(vma->vm_rb.rb_left,
1808 					 struct vm_area_struct, vm_rb);
1809 			if (left->rb_subtree_gap >= length) {
1810 				vma = left;
1811 				continue;
1812 			}
1813 		}
1814 
1815 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1816 check_current:
1817 		/* Check if current node has a suitable gap */
1818 		if (gap_start > high_limit)
1819 			return -ENOMEM;
1820 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1821 			goto found;
1822 
1823 		/* Visit right subtree if it looks promising */
1824 		if (vma->vm_rb.rb_right) {
1825 			struct vm_area_struct *right =
1826 				rb_entry(vma->vm_rb.rb_right,
1827 					 struct vm_area_struct, vm_rb);
1828 			if (right->rb_subtree_gap >= length) {
1829 				vma = right;
1830 				continue;
1831 			}
1832 		}
1833 
1834 		/* Go back up the rbtree to find next candidate node */
1835 		while (true) {
1836 			struct rb_node *prev = &vma->vm_rb;
1837 			if (!rb_parent(prev))
1838 				goto check_highest;
1839 			vma = rb_entry(rb_parent(prev),
1840 				       struct vm_area_struct, vm_rb);
1841 			if (prev == vma->vm_rb.rb_left) {
1842 				gap_start = vm_end_gap(vma->vm_prev);
1843 				gap_end = vm_start_gap(vma);
1844 				goto check_current;
1845 			}
1846 		}
1847 	}
1848 
1849 check_highest:
1850 	/* Check highest gap, which does not precede any rbtree node */
1851 	gap_start = mm->highest_vm_end;
1852 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1853 	if (gap_start > high_limit)
1854 		return -ENOMEM;
1855 
1856 found:
1857 	/* We found a suitable gap. Clip it with the original low_limit. */
1858 	if (gap_start < info->low_limit)
1859 		gap_start = info->low_limit;
1860 
1861 	/* Adjust gap address to the desired alignment */
1862 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1863 
1864 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1865 	VM_BUG_ON(gap_start + info->length > gap_end);
1866 	return gap_start;
1867 }
1868 
1869 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1870 {
1871 	struct mm_struct *mm = current->mm;
1872 	struct vm_area_struct *vma;
1873 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1874 
1875 	/* Adjust search length to account for worst case alignment overhead */
1876 	length = info->length + info->align_mask;
1877 	if (length < info->length)
1878 		return -ENOMEM;
1879 
1880 	/*
1881 	 * Adjust search limits by the desired length.
1882 	 * See implementation comment at top of unmapped_area().
1883 	 */
1884 	gap_end = info->high_limit;
1885 	if (gap_end < length)
1886 		return -ENOMEM;
1887 	high_limit = gap_end - length;
1888 
1889 	if (info->low_limit > high_limit)
1890 		return -ENOMEM;
1891 	low_limit = info->low_limit + length;
1892 
1893 	/* Check highest gap, which does not precede any rbtree node */
1894 	gap_start = mm->highest_vm_end;
1895 	if (gap_start <= high_limit)
1896 		goto found_highest;
1897 
1898 	/* Check if rbtree root looks promising */
1899 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1900 		return -ENOMEM;
1901 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1902 	if (vma->rb_subtree_gap < length)
1903 		return -ENOMEM;
1904 
1905 	while (true) {
1906 		/* Visit right subtree if it looks promising */
1907 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1908 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1909 			struct vm_area_struct *right =
1910 				rb_entry(vma->vm_rb.rb_right,
1911 					 struct vm_area_struct, vm_rb);
1912 			if (right->rb_subtree_gap >= length) {
1913 				vma = right;
1914 				continue;
1915 			}
1916 		}
1917 
1918 check_current:
1919 		/* Check if current node has a suitable gap */
1920 		gap_end = vm_start_gap(vma);
1921 		if (gap_end < low_limit)
1922 			return -ENOMEM;
1923 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1924 			goto found;
1925 
1926 		/* Visit left subtree if it looks promising */
1927 		if (vma->vm_rb.rb_left) {
1928 			struct vm_area_struct *left =
1929 				rb_entry(vma->vm_rb.rb_left,
1930 					 struct vm_area_struct, vm_rb);
1931 			if (left->rb_subtree_gap >= length) {
1932 				vma = left;
1933 				continue;
1934 			}
1935 		}
1936 
1937 		/* Go back up the rbtree to find next candidate node */
1938 		while (true) {
1939 			struct rb_node *prev = &vma->vm_rb;
1940 			if (!rb_parent(prev))
1941 				return -ENOMEM;
1942 			vma = rb_entry(rb_parent(prev),
1943 				       struct vm_area_struct, vm_rb);
1944 			if (prev == vma->vm_rb.rb_right) {
1945 				gap_start = vma->vm_prev ?
1946 					vm_end_gap(vma->vm_prev) : 0;
1947 				goto check_current;
1948 			}
1949 		}
1950 	}
1951 
1952 found:
1953 	/* We found a suitable gap. Clip it with the original high_limit. */
1954 	if (gap_end > info->high_limit)
1955 		gap_end = info->high_limit;
1956 
1957 found_highest:
1958 	/* Compute highest gap address at the desired alignment */
1959 	gap_end -= info->length;
1960 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1961 
1962 	VM_BUG_ON(gap_end < info->low_limit);
1963 	VM_BUG_ON(gap_end < gap_start);
1964 	return gap_end;
1965 }
1966 
1967 /* Get an address range which is currently unmapped.
1968  * For shmat() with addr=0.
1969  *
1970  * Ugly calling convention alert:
1971  * Return value with the low bits set means error value,
1972  * ie
1973  *	if (ret & ~PAGE_MASK)
1974  *		error = ret;
1975  *
1976  * This function "knows" that -ENOMEM has the bits set.
1977  */
1978 #ifndef HAVE_ARCH_UNMAPPED_AREA
1979 unsigned long
1980 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1981 		unsigned long len, unsigned long pgoff, unsigned long flags)
1982 {
1983 	struct mm_struct *mm = current->mm;
1984 	struct vm_area_struct *vma, *prev;
1985 	struct vm_unmapped_area_info info;
1986 
1987 	if (len > TASK_SIZE - mmap_min_addr)
1988 		return -ENOMEM;
1989 
1990 	if (flags & MAP_FIXED)
1991 		return addr;
1992 
1993 	if (addr) {
1994 		addr = PAGE_ALIGN(addr);
1995 		vma = find_vma_prev(mm, addr, &prev);
1996 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1997 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1998 		    (!prev || addr >= vm_end_gap(prev)))
1999 			return addr;
2000 	}
2001 
2002 	info.flags = 0;
2003 	info.length = len;
2004 	info.low_limit = mm->mmap_base;
2005 	info.high_limit = TASK_SIZE;
2006 	info.align_mask = 0;
2007 	return vm_unmapped_area(&info);
2008 }
2009 #endif
2010 
2011 /*
2012  * This mmap-allocator allocates new areas top-down from below the
2013  * stack's low limit (the base):
2014  */
2015 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2016 unsigned long
2017 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2018 			  const unsigned long len, const unsigned long pgoff,
2019 			  const unsigned long flags)
2020 {
2021 	struct vm_area_struct *vma, *prev;
2022 	struct mm_struct *mm = current->mm;
2023 	unsigned long addr = addr0;
2024 	struct vm_unmapped_area_info info;
2025 
2026 	/* requested length too big for entire address space */
2027 	if (len > TASK_SIZE - mmap_min_addr)
2028 		return -ENOMEM;
2029 
2030 	if (flags & MAP_FIXED)
2031 		return addr;
2032 
2033 	/* requesting a specific address */
2034 	if (addr) {
2035 		addr = PAGE_ALIGN(addr);
2036 		vma = find_vma_prev(mm, addr, &prev);
2037 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2038 				(!vma || addr + len <= vm_start_gap(vma)) &&
2039 				(!prev || addr >= vm_end_gap(prev)))
2040 			return addr;
2041 	}
2042 
2043 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2044 	info.length = len;
2045 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2046 	info.high_limit = mm->mmap_base;
2047 	info.align_mask = 0;
2048 	addr = vm_unmapped_area(&info);
2049 
2050 	/*
2051 	 * A failed mmap() very likely causes application failure,
2052 	 * so fall back to the bottom-up function here. This scenario
2053 	 * can happen with large stack limits and large mmap()
2054 	 * allocations.
2055 	 */
2056 	if (offset_in_page(addr)) {
2057 		VM_BUG_ON(addr != -ENOMEM);
2058 		info.flags = 0;
2059 		info.low_limit = TASK_UNMAPPED_BASE;
2060 		info.high_limit = TASK_SIZE;
2061 		addr = vm_unmapped_area(&info);
2062 	}
2063 
2064 	return addr;
2065 }
2066 #endif
2067 
2068 unsigned long
2069 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2070 		unsigned long pgoff, unsigned long flags)
2071 {
2072 	unsigned long (*get_area)(struct file *, unsigned long,
2073 				  unsigned long, unsigned long, unsigned long);
2074 
2075 	unsigned long error = arch_mmap_check(addr, len, flags);
2076 	if (error)
2077 		return error;
2078 
2079 	/* Careful about overflows.. */
2080 	if (len > TASK_SIZE)
2081 		return -ENOMEM;
2082 
2083 	get_area = current->mm->get_unmapped_area;
2084 	if (file) {
2085 		if (file->f_op->get_unmapped_area)
2086 			get_area = file->f_op->get_unmapped_area;
2087 	} else if (flags & MAP_SHARED) {
2088 		/*
2089 		 * mmap_region() will call shmem_zero_setup() to create a file,
2090 		 * so use shmem's get_unmapped_area in case it can be huge.
2091 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2092 		 */
2093 		pgoff = 0;
2094 		get_area = shmem_get_unmapped_area;
2095 	}
2096 
2097 	addr = get_area(file, addr, len, pgoff, flags);
2098 	if (IS_ERR_VALUE(addr))
2099 		return addr;
2100 
2101 	if (addr > TASK_SIZE - len)
2102 		return -ENOMEM;
2103 	if (offset_in_page(addr))
2104 		return -EINVAL;
2105 
2106 	error = security_mmap_addr(addr);
2107 	return error ? error : addr;
2108 }
2109 
2110 EXPORT_SYMBOL(get_unmapped_area);
2111 
2112 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2113 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2114 {
2115 	struct rb_node *rb_node;
2116 	struct vm_area_struct *vma;
2117 
2118 	/* Check the cache first. */
2119 	vma = vmacache_find(mm, addr);
2120 	if (likely(vma))
2121 		return vma;
2122 
2123 	rb_node = mm->mm_rb.rb_node;
2124 
2125 	while (rb_node) {
2126 		struct vm_area_struct *tmp;
2127 
2128 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2129 
2130 		if (tmp->vm_end > addr) {
2131 			vma = tmp;
2132 			if (tmp->vm_start <= addr)
2133 				break;
2134 			rb_node = rb_node->rb_left;
2135 		} else
2136 			rb_node = rb_node->rb_right;
2137 	}
2138 
2139 	if (vma)
2140 		vmacache_update(addr, vma);
2141 	return vma;
2142 }
2143 
2144 EXPORT_SYMBOL(find_vma);
2145 
2146 /*
2147  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2148  */
2149 struct vm_area_struct *
2150 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2151 			struct vm_area_struct **pprev)
2152 {
2153 	struct vm_area_struct *vma;
2154 
2155 	vma = find_vma(mm, addr);
2156 	if (vma) {
2157 		*pprev = vma->vm_prev;
2158 	} else {
2159 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2160 		*pprev = NULL;
2161 		while (rb_node) {
2162 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2163 			rb_node = rb_node->rb_right;
2164 		}
2165 	}
2166 	return vma;
2167 }
2168 
2169 /*
2170  * Verify that the stack growth is acceptable and
2171  * update accounting. This is shared with both the
2172  * grow-up and grow-down cases.
2173  */
2174 static int acct_stack_growth(struct vm_area_struct *vma,
2175 			     unsigned long size, unsigned long grow)
2176 {
2177 	struct mm_struct *mm = vma->vm_mm;
2178 	struct rlimit *rlim = current->signal->rlim;
2179 	unsigned long new_start;
2180 
2181 	/* address space limit tests */
2182 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2183 		return -ENOMEM;
2184 
2185 	/* Stack limit test */
2186 	if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2187 		return -ENOMEM;
2188 
2189 	/* mlock limit tests */
2190 	if (vma->vm_flags & VM_LOCKED) {
2191 		unsigned long locked;
2192 		unsigned long limit;
2193 		locked = mm->locked_vm + grow;
2194 		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2195 		limit >>= PAGE_SHIFT;
2196 		if (locked > limit && !capable(CAP_IPC_LOCK))
2197 			return -ENOMEM;
2198 	}
2199 
2200 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2201 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2202 			vma->vm_end - size;
2203 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2204 		return -EFAULT;
2205 
2206 	/*
2207 	 * Overcommit..  This must be the final test, as it will
2208 	 * update security statistics.
2209 	 */
2210 	if (security_vm_enough_memory_mm(mm, grow))
2211 		return -ENOMEM;
2212 
2213 	return 0;
2214 }
2215 
2216 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2217 /*
2218  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2219  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2220  */
2221 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2222 {
2223 	struct mm_struct *mm = vma->vm_mm;
2224 	struct vm_area_struct *next;
2225 	unsigned long gap_addr;
2226 	int error = 0;
2227 
2228 	if (!(vma->vm_flags & VM_GROWSUP))
2229 		return -EFAULT;
2230 
2231 	/* Guard against wrapping around to address 0. */
2232 	address &= PAGE_MASK;
2233 	address += PAGE_SIZE;
2234 	if (!address)
2235 		return -ENOMEM;
2236 
2237 	/* Enforce stack_guard_gap */
2238 	gap_addr = address + stack_guard_gap;
2239 	if (gap_addr < address)
2240 		return -ENOMEM;
2241 	next = vma->vm_next;
2242 	if (next && next->vm_start < gap_addr) {
2243 		if (!(next->vm_flags & VM_GROWSUP))
2244 			return -ENOMEM;
2245 		/* Check that both stack segments have the same anon_vma? */
2246 	}
2247 
2248 	/* We must make sure the anon_vma is allocated. */
2249 	if (unlikely(anon_vma_prepare(vma)))
2250 		return -ENOMEM;
2251 
2252 	/*
2253 	 * vma->vm_start/vm_end cannot change under us because the caller
2254 	 * is required to hold the mmap_sem in read mode.  We need the
2255 	 * anon_vma lock to serialize against concurrent expand_stacks.
2256 	 */
2257 	anon_vma_lock_write(vma->anon_vma);
2258 
2259 	/* Somebody else might have raced and expanded it already */
2260 	if (address > vma->vm_end) {
2261 		unsigned long size, grow;
2262 
2263 		size = address - vma->vm_start;
2264 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2265 
2266 		error = -ENOMEM;
2267 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2268 			error = acct_stack_growth(vma, size, grow);
2269 			if (!error) {
2270 				/*
2271 				 * vma_gap_update() doesn't support concurrent
2272 				 * updates, but we only hold a shared mmap_sem
2273 				 * lock here, so we need to protect against
2274 				 * concurrent vma expansions.
2275 				 * anon_vma_lock_write() doesn't help here, as
2276 				 * we don't guarantee that all growable vmas
2277 				 * in a mm share the same root anon vma.
2278 				 * So, we reuse mm->page_table_lock to guard
2279 				 * against concurrent vma expansions.
2280 				 */
2281 				spin_lock(&mm->page_table_lock);
2282 				if (vma->vm_flags & VM_LOCKED)
2283 					mm->locked_vm += grow;
2284 				vm_stat_account(mm, vma->vm_flags, grow);
2285 				anon_vma_interval_tree_pre_update_vma(vma);
2286 				vma->vm_end = address;
2287 				anon_vma_interval_tree_post_update_vma(vma);
2288 				if (vma->vm_next)
2289 					vma_gap_update(vma->vm_next);
2290 				else
2291 					mm->highest_vm_end = vm_end_gap(vma);
2292 				spin_unlock(&mm->page_table_lock);
2293 
2294 				perf_event_mmap(vma);
2295 			}
2296 		}
2297 	}
2298 	anon_vma_unlock_write(vma->anon_vma);
2299 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2300 	validate_mm(mm);
2301 	return error;
2302 }
2303 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2304 
2305 /*
2306  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2307  */
2308 int expand_downwards(struct vm_area_struct *vma,
2309 				   unsigned long address)
2310 {
2311 	struct mm_struct *mm = vma->vm_mm;
2312 	struct vm_area_struct *prev;
2313 	unsigned long gap_addr;
2314 	int error;
2315 
2316 	address &= PAGE_MASK;
2317 	error = security_mmap_addr(address);
2318 	if (error)
2319 		return error;
2320 
2321 	/* Enforce stack_guard_gap */
2322 	gap_addr = address - stack_guard_gap;
2323 	if (gap_addr > address)
2324 		return -ENOMEM;
2325 	prev = vma->vm_prev;
2326 	if (prev && prev->vm_end > gap_addr) {
2327 		if (!(prev->vm_flags & VM_GROWSDOWN))
2328 			return -ENOMEM;
2329 		/* Check that both stack segments have the same anon_vma? */
2330 	}
2331 
2332 	/* We must make sure the anon_vma is allocated. */
2333 	if (unlikely(anon_vma_prepare(vma)))
2334 		return -ENOMEM;
2335 
2336 	/*
2337 	 * vma->vm_start/vm_end cannot change under us because the caller
2338 	 * is required to hold the mmap_sem in read mode.  We need the
2339 	 * anon_vma lock to serialize against concurrent expand_stacks.
2340 	 */
2341 	anon_vma_lock_write(vma->anon_vma);
2342 
2343 	/* Somebody else might have raced and expanded it already */
2344 	if (address < vma->vm_start) {
2345 		unsigned long size, grow;
2346 
2347 		size = vma->vm_end - address;
2348 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2349 
2350 		error = -ENOMEM;
2351 		if (grow <= vma->vm_pgoff) {
2352 			error = acct_stack_growth(vma, size, grow);
2353 			if (!error) {
2354 				/*
2355 				 * vma_gap_update() doesn't support concurrent
2356 				 * updates, but we only hold a shared mmap_sem
2357 				 * lock here, so we need to protect against
2358 				 * concurrent vma expansions.
2359 				 * anon_vma_lock_write() doesn't help here, as
2360 				 * we don't guarantee that all growable vmas
2361 				 * in a mm share the same root anon vma.
2362 				 * So, we reuse mm->page_table_lock to guard
2363 				 * against concurrent vma expansions.
2364 				 */
2365 				spin_lock(&mm->page_table_lock);
2366 				if (vma->vm_flags & VM_LOCKED)
2367 					mm->locked_vm += grow;
2368 				vm_stat_account(mm, vma->vm_flags, grow);
2369 				anon_vma_interval_tree_pre_update_vma(vma);
2370 				vma->vm_start = address;
2371 				vma->vm_pgoff -= grow;
2372 				anon_vma_interval_tree_post_update_vma(vma);
2373 				vma_gap_update(vma);
2374 				spin_unlock(&mm->page_table_lock);
2375 
2376 				perf_event_mmap(vma);
2377 			}
2378 		}
2379 	}
2380 	anon_vma_unlock_write(vma->anon_vma);
2381 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2382 	validate_mm(mm);
2383 	return error;
2384 }
2385 
2386 /* enforced gap between the expanding stack and other mappings. */
2387 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2388 
2389 static int __init cmdline_parse_stack_guard_gap(char *p)
2390 {
2391 	unsigned long val;
2392 	char *endptr;
2393 
2394 	val = simple_strtoul(p, &endptr, 10);
2395 	if (!*endptr)
2396 		stack_guard_gap = val << PAGE_SHIFT;
2397 
2398 	return 0;
2399 }
2400 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2401 
2402 #ifdef CONFIG_STACK_GROWSUP
2403 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2404 {
2405 	return expand_upwards(vma, address);
2406 }
2407 
2408 struct vm_area_struct *
2409 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2410 {
2411 	struct vm_area_struct *vma, *prev;
2412 
2413 	addr &= PAGE_MASK;
2414 	vma = find_vma_prev(mm, addr, &prev);
2415 	if (vma && (vma->vm_start <= addr))
2416 		return vma;
2417 	if (!prev || expand_stack(prev, addr))
2418 		return NULL;
2419 	if (prev->vm_flags & VM_LOCKED)
2420 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2421 	return prev;
2422 }
2423 #else
2424 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2425 {
2426 	return expand_downwards(vma, address);
2427 }
2428 
2429 struct vm_area_struct *
2430 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2431 {
2432 	struct vm_area_struct *vma;
2433 	unsigned long start;
2434 
2435 	addr &= PAGE_MASK;
2436 	vma = find_vma(mm, addr);
2437 	if (!vma)
2438 		return NULL;
2439 	if (vma->vm_start <= addr)
2440 		return vma;
2441 	if (!(vma->vm_flags & VM_GROWSDOWN))
2442 		return NULL;
2443 	start = vma->vm_start;
2444 	if (expand_stack(vma, addr))
2445 		return NULL;
2446 	if (vma->vm_flags & VM_LOCKED)
2447 		populate_vma_page_range(vma, addr, start, NULL);
2448 	return vma;
2449 }
2450 #endif
2451 
2452 EXPORT_SYMBOL_GPL(find_extend_vma);
2453 
2454 /*
2455  * Ok - we have the memory areas we should free on the vma list,
2456  * so release them, and do the vma updates.
2457  *
2458  * Called with the mm semaphore held.
2459  */
2460 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2461 {
2462 	unsigned long nr_accounted = 0;
2463 
2464 	/* Update high watermark before we lower total_vm */
2465 	update_hiwater_vm(mm);
2466 	do {
2467 		long nrpages = vma_pages(vma);
2468 
2469 		if (vma->vm_flags & VM_ACCOUNT)
2470 			nr_accounted += nrpages;
2471 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2472 		vma = remove_vma(vma);
2473 	} while (vma);
2474 	vm_unacct_memory(nr_accounted);
2475 	validate_mm(mm);
2476 }
2477 
2478 /*
2479  * Get rid of page table information in the indicated region.
2480  *
2481  * Called with the mm semaphore held.
2482  */
2483 static void unmap_region(struct mm_struct *mm,
2484 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2485 		unsigned long start, unsigned long end)
2486 {
2487 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2488 	struct mmu_gather tlb;
2489 
2490 	lru_add_drain();
2491 	tlb_gather_mmu(&tlb, mm, start, end);
2492 	update_hiwater_rss(mm);
2493 	unmap_vmas(&tlb, vma, start, end);
2494 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2495 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2496 	tlb_finish_mmu(&tlb, start, end);
2497 }
2498 
2499 /*
2500  * Create a list of vma's touched by the unmap, removing them from the mm's
2501  * vma list as we go..
2502  */
2503 static void
2504 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2505 	struct vm_area_struct *prev, unsigned long end)
2506 {
2507 	struct vm_area_struct **insertion_point;
2508 	struct vm_area_struct *tail_vma = NULL;
2509 
2510 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2511 	vma->vm_prev = NULL;
2512 	do {
2513 		vma_rb_erase(vma, &mm->mm_rb);
2514 		mm->map_count--;
2515 		tail_vma = vma;
2516 		vma = vma->vm_next;
2517 	} while (vma && vma->vm_start < end);
2518 	*insertion_point = vma;
2519 	if (vma) {
2520 		vma->vm_prev = prev;
2521 		vma_gap_update(vma);
2522 	} else
2523 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2524 	tail_vma->vm_next = NULL;
2525 
2526 	/* Kill the cache */
2527 	vmacache_invalidate(mm);
2528 }
2529 
2530 /*
2531  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2532  * has already been checked or doesn't make sense to fail.
2533  */
2534 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2535 		unsigned long addr, int new_below)
2536 {
2537 	struct vm_area_struct *new;
2538 	int err;
2539 
2540 	if (is_vm_hugetlb_page(vma) && (addr &
2541 					~(huge_page_mask(hstate_vma(vma)))))
2542 		return -EINVAL;
2543 
2544 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2545 	if (!new)
2546 		return -ENOMEM;
2547 
2548 	/* most fields are the same, copy all, and then fixup */
2549 	*new = *vma;
2550 
2551 	INIT_LIST_HEAD(&new->anon_vma_chain);
2552 
2553 	if (new_below)
2554 		new->vm_end = addr;
2555 	else {
2556 		new->vm_start = addr;
2557 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2558 	}
2559 
2560 	err = vma_dup_policy(vma, new);
2561 	if (err)
2562 		goto out_free_vma;
2563 
2564 	err = anon_vma_clone(new, vma);
2565 	if (err)
2566 		goto out_free_mpol;
2567 
2568 	if (new->vm_file)
2569 		get_file(new->vm_file);
2570 
2571 	if (new->vm_ops && new->vm_ops->open)
2572 		new->vm_ops->open(new);
2573 
2574 	if (new_below)
2575 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2576 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2577 	else
2578 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2579 
2580 	/* Success. */
2581 	if (!err)
2582 		return 0;
2583 
2584 	/* Clean everything up if vma_adjust failed. */
2585 	if (new->vm_ops && new->vm_ops->close)
2586 		new->vm_ops->close(new);
2587 	if (new->vm_file)
2588 		fput(new->vm_file);
2589 	unlink_anon_vmas(new);
2590  out_free_mpol:
2591 	mpol_put(vma_policy(new));
2592  out_free_vma:
2593 	kmem_cache_free(vm_area_cachep, new);
2594 	return err;
2595 }
2596 
2597 /*
2598  * Split a vma into two pieces at address 'addr', a new vma is allocated
2599  * either for the first part or the tail.
2600  */
2601 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2602 	      unsigned long addr, int new_below)
2603 {
2604 	if (mm->map_count >= sysctl_max_map_count)
2605 		return -ENOMEM;
2606 
2607 	return __split_vma(mm, vma, addr, new_below);
2608 }
2609 
2610 /* Munmap is split into 2 main parts -- this part which finds
2611  * what needs doing, and the areas themselves, which do the
2612  * work.  This now handles partial unmappings.
2613  * Jeremy Fitzhardinge <jeremy@goop.org>
2614  */
2615 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2616 	      struct list_head *uf)
2617 {
2618 	unsigned long end;
2619 	struct vm_area_struct *vma, *prev, *last;
2620 
2621 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2622 		return -EINVAL;
2623 
2624 	len = PAGE_ALIGN(len);
2625 	if (len == 0)
2626 		return -EINVAL;
2627 
2628 	/* Find the first overlapping VMA */
2629 	vma = find_vma(mm, start);
2630 	if (!vma)
2631 		return 0;
2632 	prev = vma->vm_prev;
2633 	/* we have  start < vma->vm_end  */
2634 
2635 	/* if it doesn't overlap, we have nothing.. */
2636 	end = start + len;
2637 	if (vma->vm_start >= end)
2638 		return 0;
2639 
2640 	if (uf) {
2641 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2642 
2643 		if (error)
2644 			return error;
2645 	}
2646 
2647 	/*
2648 	 * If we need to split any vma, do it now to save pain later.
2649 	 *
2650 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2651 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2652 	 * places tmp vma above, and higher split_vma places tmp vma below.
2653 	 */
2654 	if (start > vma->vm_start) {
2655 		int error;
2656 
2657 		/*
2658 		 * Make sure that map_count on return from munmap() will
2659 		 * not exceed its limit; but let map_count go just above
2660 		 * its limit temporarily, to help free resources as expected.
2661 		 */
2662 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2663 			return -ENOMEM;
2664 
2665 		error = __split_vma(mm, vma, start, 0);
2666 		if (error)
2667 			return error;
2668 		prev = vma;
2669 	}
2670 
2671 	/* Does it split the last one? */
2672 	last = find_vma(mm, end);
2673 	if (last && end > last->vm_start) {
2674 		int error = __split_vma(mm, last, end, 1);
2675 		if (error)
2676 			return error;
2677 	}
2678 	vma = prev ? prev->vm_next : mm->mmap;
2679 
2680 	/*
2681 	 * unlock any mlock()ed ranges before detaching vmas
2682 	 */
2683 	if (mm->locked_vm) {
2684 		struct vm_area_struct *tmp = vma;
2685 		while (tmp && tmp->vm_start < end) {
2686 			if (tmp->vm_flags & VM_LOCKED) {
2687 				mm->locked_vm -= vma_pages(tmp);
2688 				munlock_vma_pages_all(tmp);
2689 			}
2690 			tmp = tmp->vm_next;
2691 		}
2692 	}
2693 
2694 	/*
2695 	 * Remove the vma's, and unmap the actual pages
2696 	 */
2697 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2698 	unmap_region(mm, vma, prev, start, end);
2699 
2700 	arch_unmap(mm, vma, start, end);
2701 
2702 	/* Fix up all other VM information */
2703 	remove_vma_list(mm, vma);
2704 
2705 	return 0;
2706 }
2707 
2708 int vm_munmap(unsigned long start, size_t len)
2709 {
2710 	int ret;
2711 	struct mm_struct *mm = current->mm;
2712 	LIST_HEAD(uf);
2713 
2714 	if (down_write_killable(&mm->mmap_sem))
2715 		return -EINTR;
2716 
2717 	ret = do_munmap(mm, start, len, &uf);
2718 	up_write(&mm->mmap_sem);
2719 	userfaultfd_unmap_complete(mm, &uf);
2720 	return ret;
2721 }
2722 EXPORT_SYMBOL(vm_munmap);
2723 
2724 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2725 {
2726 	profile_munmap(addr);
2727 	return vm_munmap(addr, len);
2728 }
2729 
2730 
2731 /*
2732  * Emulation of deprecated remap_file_pages() syscall.
2733  */
2734 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2735 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2736 {
2737 
2738 	struct mm_struct *mm = current->mm;
2739 	struct vm_area_struct *vma;
2740 	unsigned long populate = 0;
2741 	unsigned long ret = -EINVAL;
2742 	struct file *file;
2743 
2744 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2745 		     current->comm, current->pid);
2746 
2747 	if (prot)
2748 		return ret;
2749 	start = start & PAGE_MASK;
2750 	size = size & PAGE_MASK;
2751 
2752 	if (start + size <= start)
2753 		return ret;
2754 
2755 	/* Does pgoff wrap? */
2756 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2757 		return ret;
2758 
2759 	if (down_write_killable(&mm->mmap_sem))
2760 		return -EINTR;
2761 
2762 	vma = find_vma(mm, start);
2763 
2764 	if (!vma || !(vma->vm_flags & VM_SHARED))
2765 		goto out;
2766 
2767 	if (start < vma->vm_start)
2768 		goto out;
2769 
2770 	if (start + size > vma->vm_end) {
2771 		struct vm_area_struct *next;
2772 
2773 		for (next = vma->vm_next; next; next = next->vm_next) {
2774 			/* hole between vmas ? */
2775 			if (next->vm_start != next->vm_prev->vm_end)
2776 				goto out;
2777 
2778 			if (next->vm_file != vma->vm_file)
2779 				goto out;
2780 
2781 			if (next->vm_flags != vma->vm_flags)
2782 				goto out;
2783 
2784 			if (start + size <= next->vm_end)
2785 				break;
2786 		}
2787 
2788 		if (!next)
2789 			goto out;
2790 	}
2791 
2792 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2793 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2794 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2795 
2796 	flags &= MAP_NONBLOCK;
2797 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2798 	if (vma->vm_flags & VM_LOCKED) {
2799 		struct vm_area_struct *tmp;
2800 		flags |= MAP_LOCKED;
2801 
2802 		/* drop PG_Mlocked flag for over-mapped range */
2803 		for (tmp = vma; tmp->vm_start >= start + size;
2804 				tmp = tmp->vm_next) {
2805 			/*
2806 			 * Split pmd and munlock page on the border
2807 			 * of the range.
2808 			 */
2809 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2810 
2811 			munlock_vma_pages_range(tmp,
2812 					max(tmp->vm_start, start),
2813 					min(tmp->vm_end, start + size));
2814 		}
2815 	}
2816 
2817 	file = get_file(vma->vm_file);
2818 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2819 			prot, flags, pgoff, &populate, NULL);
2820 	fput(file);
2821 out:
2822 	up_write(&mm->mmap_sem);
2823 	if (populate)
2824 		mm_populate(ret, populate);
2825 	if (!IS_ERR_VALUE(ret))
2826 		ret = 0;
2827 	return ret;
2828 }
2829 
2830 static inline void verify_mm_writelocked(struct mm_struct *mm)
2831 {
2832 #ifdef CONFIG_DEBUG_VM
2833 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2834 		WARN_ON(1);
2835 		up_read(&mm->mmap_sem);
2836 	}
2837 #endif
2838 }
2839 
2840 /*
2841  *  this is really a simplified "do_mmap".  it only handles
2842  *  anonymous maps.  eventually we may be able to do some
2843  *  brk-specific accounting here.
2844  */
2845 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
2846 {
2847 	struct mm_struct *mm = current->mm;
2848 	struct vm_area_struct *vma, *prev;
2849 	unsigned long len;
2850 	struct rb_node **rb_link, *rb_parent;
2851 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2852 	int error;
2853 
2854 	len = PAGE_ALIGN(request);
2855 	if (len < request)
2856 		return -ENOMEM;
2857 	if (!len)
2858 		return 0;
2859 
2860 	/* Until we need other flags, refuse anything except VM_EXEC. */
2861 	if ((flags & (~VM_EXEC)) != 0)
2862 		return -EINVAL;
2863 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2864 
2865 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2866 	if (offset_in_page(error))
2867 		return error;
2868 
2869 	error = mlock_future_check(mm, mm->def_flags, len);
2870 	if (error)
2871 		return error;
2872 
2873 	/*
2874 	 * mm->mmap_sem is required to protect against another thread
2875 	 * changing the mappings in case we sleep.
2876 	 */
2877 	verify_mm_writelocked(mm);
2878 
2879 	/*
2880 	 * Clear old maps.  this also does some error checking for us
2881 	 */
2882 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2883 			      &rb_parent)) {
2884 		if (do_munmap(mm, addr, len, uf))
2885 			return -ENOMEM;
2886 	}
2887 
2888 	/* Check against address space limits *after* clearing old maps... */
2889 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2890 		return -ENOMEM;
2891 
2892 	if (mm->map_count > sysctl_max_map_count)
2893 		return -ENOMEM;
2894 
2895 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2896 		return -ENOMEM;
2897 
2898 	/* Can we just expand an old private anonymous mapping? */
2899 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2900 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2901 	if (vma)
2902 		goto out;
2903 
2904 	/*
2905 	 * create a vma struct for an anonymous mapping
2906 	 */
2907 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2908 	if (!vma) {
2909 		vm_unacct_memory(len >> PAGE_SHIFT);
2910 		return -ENOMEM;
2911 	}
2912 
2913 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2914 	vma->vm_mm = mm;
2915 	vma->vm_start = addr;
2916 	vma->vm_end = addr + len;
2917 	vma->vm_pgoff = pgoff;
2918 	vma->vm_flags = flags;
2919 	vma->vm_page_prot = vm_get_page_prot(flags);
2920 	vma_link(mm, vma, prev, rb_link, rb_parent);
2921 out:
2922 	perf_event_mmap(vma);
2923 	mm->total_vm += len >> PAGE_SHIFT;
2924 	mm->data_vm += len >> PAGE_SHIFT;
2925 	if (flags & VM_LOCKED)
2926 		mm->locked_vm += (len >> PAGE_SHIFT);
2927 	vma->vm_flags |= VM_SOFTDIRTY;
2928 	return 0;
2929 }
2930 
2931 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
2932 {
2933 	return do_brk_flags(addr, len, 0, uf);
2934 }
2935 
2936 int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags)
2937 {
2938 	struct mm_struct *mm = current->mm;
2939 	int ret;
2940 	bool populate;
2941 	LIST_HEAD(uf);
2942 
2943 	if (down_write_killable(&mm->mmap_sem))
2944 		return -EINTR;
2945 
2946 	ret = do_brk_flags(addr, len, flags, &uf);
2947 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2948 	up_write(&mm->mmap_sem);
2949 	userfaultfd_unmap_complete(mm, &uf);
2950 	if (populate && !ret)
2951 		mm_populate(addr, len);
2952 	return ret;
2953 }
2954 EXPORT_SYMBOL(vm_brk_flags);
2955 
2956 int vm_brk(unsigned long addr, unsigned long len)
2957 {
2958 	return vm_brk_flags(addr, len, 0);
2959 }
2960 EXPORT_SYMBOL(vm_brk);
2961 
2962 /* Release all mmaps. */
2963 void exit_mmap(struct mm_struct *mm)
2964 {
2965 	struct mmu_gather tlb;
2966 	struct vm_area_struct *vma;
2967 	unsigned long nr_accounted = 0;
2968 
2969 	/* mm's last user has gone, and its about to be pulled down */
2970 	mmu_notifier_release(mm);
2971 
2972 	if (mm->locked_vm) {
2973 		vma = mm->mmap;
2974 		while (vma) {
2975 			if (vma->vm_flags & VM_LOCKED)
2976 				munlock_vma_pages_all(vma);
2977 			vma = vma->vm_next;
2978 		}
2979 	}
2980 
2981 	arch_exit_mmap(mm);
2982 
2983 	vma = mm->mmap;
2984 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2985 		return;
2986 
2987 	lru_add_drain();
2988 	flush_cache_mm(mm);
2989 	tlb_gather_mmu(&tlb, mm, 0, -1);
2990 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2991 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2992 	unmap_vmas(&tlb, vma, 0, -1);
2993 
2994 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2995 	tlb_finish_mmu(&tlb, 0, -1);
2996 
2997 	/*
2998 	 * Walk the list again, actually closing and freeing it,
2999 	 * with preemption enabled, without holding any MM locks.
3000 	 */
3001 	while (vma) {
3002 		if (vma->vm_flags & VM_ACCOUNT)
3003 			nr_accounted += vma_pages(vma);
3004 		vma = remove_vma(vma);
3005 	}
3006 	vm_unacct_memory(nr_accounted);
3007 }
3008 
3009 /* Insert vm structure into process list sorted by address
3010  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3011  * then i_mmap_rwsem is taken here.
3012  */
3013 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3014 {
3015 	struct vm_area_struct *prev;
3016 	struct rb_node **rb_link, *rb_parent;
3017 
3018 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3019 			   &prev, &rb_link, &rb_parent))
3020 		return -ENOMEM;
3021 	if ((vma->vm_flags & VM_ACCOUNT) &&
3022 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3023 		return -ENOMEM;
3024 
3025 	/*
3026 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3027 	 * until its first write fault, when page's anon_vma and index
3028 	 * are set.  But now set the vm_pgoff it will almost certainly
3029 	 * end up with (unless mremap moves it elsewhere before that
3030 	 * first wfault), so /proc/pid/maps tells a consistent story.
3031 	 *
3032 	 * By setting it to reflect the virtual start address of the
3033 	 * vma, merges and splits can happen in a seamless way, just
3034 	 * using the existing file pgoff checks and manipulations.
3035 	 * Similarly in do_mmap_pgoff and in do_brk.
3036 	 */
3037 	if (vma_is_anonymous(vma)) {
3038 		BUG_ON(vma->anon_vma);
3039 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3040 	}
3041 
3042 	vma_link(mm, vma, prev, rb_link, rb_parent);
3043 	return 0;
3044 }
3045 
3046 /*
3047  * Copy the vma structure to a new location in the same mm,
3048  * prior to moving page table entries, to effect an mremap move.
3049  */
3050 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3051 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3052 	bool *need_rmap_locks)
3053 {
3054 	struct vm_area_struct *vma = *vmap;
3055 	unsigned long vma_start = vma->vm_start;
3056 	struct mm_struct *mm = vma->vm_mm;
3057 	struct vm_area_struct *new_vma, *prev;
3058 	struct rb_node **rb_link, *rb_parent;
3059 	bool faulted_in_anon_vma = true;
3060 
3061 	/*
3062 	 * If anonymous vma has not yet been faulted, update new pgoff
3063 	 * to match new location, to increase its chance of merging.
3064 	 */
3065 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3066 		pgoff = addr >> PAGE_SHIFT;
3067 		faulted_in_anon_vma = false;
3068 	}
3069 
3070 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3071 		return NULL;	/* should never get here */
3072 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3073 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3074 			    vma->vm_userfaultfd_ctx);
3075 	if (new_vma) {
3076 		/*
3077 		 * Source vma may have been merged into new_vma
3078 		 */
3079 		if (unlikely(vma_start >= new_vma->vm_start &&
3080 			     vma_start < new_vma->vm_end)) {
3081 			/*
3082 			 * The only way we can get a vma_merge with
3083 			 * self during an mremap is if the vma hasn't
3084 			 * been faulted in yet and we were allowed to
3085 			 * reset the dst vma->vm_pgoff to the
3086 			 * destination address of the mremap to allow
3087 			 * the merge to happen. mremap must change the
3088 			 * vm_pgoff linearity between src and dst vmas
3089 			 * (in turn preventing a vma_merge) to be
3090 			 * safe. It is only safe to keep the vm_pgoff
3091 			 * linear if there are no pages mapped yet.
3092 			 */
3093 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3094 			*vmap = vma = new_vma;
3095 		}
3096 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3097 	} else {
3098 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3099 		if (!new_vma)
3100 			goto out;
3101 		*new_vma = *vma;
3102 		new_vma->vm_start = addr;
3103 		new_vma->vm_end = addr + len;
3104 		new_vma->vm_pgoff = pgoff;
3105 		if (vma_dup_policy(vma, new_vma))
3106 			goto out_free_vma;
3107 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3108 		if (anon_vma_clone(new_vma, vma))
3109 			goto out_free_mempol;
3110 		if (new_vma->vm_file)
3111 			get_file(new_vma->vm_file);
3112 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3113 			new_vma->vm_ops->open(new_vma);
3114 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3115 		*need_rmap_locks = false;
3116 	}
3117 	return new_vma;
3118 
3119 out_free_mempol:
3120 	mpol_put(vma_policy(new_vma));
3121 out_free_vma:
3122 	kmem_cache_free(vm_area_cachep, new_vma);
3123 out:
3124 	return NULL;
3125 }
3126 
3127 /*
3128  * Return true if the calling process may expand its vm space by the passed
3129  * number of pages
3130  */
3131 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3132 {
3133 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3134 		return false;
3135 
3136 	if (is_data_mapping(flags) &&
3137 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3138 		/* Workaround for Valgrind */
3139 		if (rlimit(RLIMIT_DATA) == 0 &&
3140 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3141 			return true;
3142 		if (!ignore_rlimit_data) {
3143 			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3144 				     current->comm, current->pid,
3145 				     (mm->data_vm + npages) << PAGE_SHIFT,
3146 				     rlimit(RLIMIT_DATA));
3147 			return false;
3148 		}
3149 	}
3150 
3151 	return true;
3152 }
3153 
3154 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3155 {
3156 	mm->total_vm += npages;
3157 
3158 	if (is_exec_mapping(flags))
3159 		mm->exec_vm += npages;
3160 	else if (is_stack_mapping(flags))
3161 		mm->stack_vm += npages;
3162 	else if (is_data_mapping(flags))
3163 		mm->data_vm += npages;
3164 }
3165 
3166 static int special_mapping_fault(struct vm_fault *vmf);
3167 
3168 /*
3169  * Having a close hook prevents vma merging regardless of flags.
3170  */
3171 static void special_mapping_close(struct vm_area_struct *vma)
3172 {
3173 }
3174 
3175 static const char *special_mapping_name(struct vm_area_struct *vma)
3176 {
3177 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3178 }
3179 
3180 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3181 {
3182 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3183 
3184 	if (sm->mremap)
3185 		return sm->mremap(sm, new_vma);
3186 	return 0;
3187 }
3188 
3189 static const struct vm_operations_struct special_mapping_vmops = {
3190 	.close = special_mapping_close,
3191 	.fault = special_mapping_fault,
3192 	.mremap = special_mapping_mremap,
3193 	.name = special_mapping_name,
3194 };
3195 
3196 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3197 	.close = special_mapping_close,
3198 	.fault = special_mapping_fault,
3199 };
3200 
3201 static int special_mapping_fault(struct vm_fault *vmf)
3202 {
3203 	struct vm_area_struct *vma = vmf->vma;
3204 	pgoff_t pgoff;
3205 	struct page **pages;
3206 
3207 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3208 		pages = vma->vm_private_data;
3209 	} else {
3210 		struct vm_special_mapping *sm = vma->vm_private_data;
3211 
3212 		if (sm->fault)
3213 			return sm->fault(sm, vmf->vma, vmf);
3214 
3215 		pages = sm->pages;
3216 	}
3217 
3218 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3219 		pgoff--;
3220 
3221 	if (*pages) {
3222 		struct page *page = *pages;
3223 		get_page(page);
3224 		vmf->page = page;
3225 		return 0;
3226 	}
3227 
3228 	return VM_FAULT_SIGBUS;
3229 }
3230 
3231 static struct vm_area_struct *__install_special_mapping(
3232 	struct mm_struct *mm,
3233 	unsigned long addr, unsigned long len,
3234 	unsigned long vm_flags, void *priv,
3235 	const struct vm_operations_struct *ops)
3236 {
3237 	int ret;
3238 	struct vm_area_struct *vma;
3239 
3240 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3241 	if (unlikely(vma == NULL))
3242 		return ERR_PTR(-ENOMEM);
3243 
3244 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3245 	vma->vm_mm = mm;
3246 	vma->vm_start = addr;
3247 	vma->vm_end = addr + len;
3248 
3249 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3250 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3251 
3252 	vma->vm_ops = ops;
3253 	vma->vm_private_data = priv;
3254 
3255 	ret = insert_vm_struct(mm, vma);
3256 	if (ret)
3257 		goto out;
3258 
3259 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3260 
3261 	perf_event_mmap(vma);
3262 
3263 	return vma;
3264 
3265 out:
3266 	kmem_cache_free(vm_area_cachep, vma);
3267 	return ERR_PTR(ret);
3268 }
3269 
3270 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3271 	const struct vm_special_mapping *sm)
3272 {
3273 	return vma->vm_private_data == sm &&
3274 		(vma->vm_ops == &special_mapping_vmops ||
3275 		 vma->vm_ops == &legacy_special_mapping_vmops);
3276 }
3277 
3278 /*
3279  * Called with mm->mmap_sem held for writing.
3280  * Insert a new vma covering the given region, with the given flags.
3281  * Its pages are supplied by the given array of struct page *.
3282  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3283  * The region past the last page supplied will always produce SIGBUS.
3284  * The array pointer and the pages it points to are assumed to stay alive
3285  * for as long as this mapping might exist.
3286  */
3287 struct vm_area_struct *_install_special_mapping(
3288 	struct mm_struct *mm,
3289 	unsigned long addr, unsigned long len,
3290 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3291 {
3292 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3293 					&special_mapping_vmops);
3294 }
3295 
3296 int install_special_mapping(struct mm_struct *mm,
3297 			    unsigned long addr, unsigned long len,
3298 			    unsigned long vm_flags, struct page **pages)
3299 {
3300 	struct vm_area_struct *vma = __install_special_mapping(
3301 		mm, addr, len, vm_flags, (void *)pages,
3302 		&legacy_special_mapping_vmops);
3303 
3304 	return PTR_ERR_OR_ZERO(vma);
3305 }
3306 
3307 static DEFINE_MUTEX(mm_all_locks_mutex);
3308 
3309 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3310 {
3311 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3312 		/*
3313 		 * The LSB of head.next can't change from under us
3314 		 * because we hold the mm_all_locks_mutex.
3315 		 */
3316 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3317 		/*
3318 		 * We can safely modify head.next after taking the
3319 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3320 		 * the same anon_vma we won't take it again.
3321 		 *
3322 		 * No need of atomic instructions here, head.next
3323 		 * can't change from under us thanks to the
3324 		 * anon_vma->root->rwsem.
3325 		 */
3326 		if (__test_and_set_bit(0, (unsigned long *)
3327 				       &anon_vma->root->rb_root.rb_node))
3328 			BUG();
3329 	}
3330 }
3331 
3332 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3333 {
3334 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3335 		/*
3336 		 * AS_MM_ALL_LOCKS can't change from under us because
3337 		 * we hold the mm_all_locks_mutex.
3338 		 *
3339 		 * Operations on ->flags have to be atomic because
3340 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3341 		 * mm_all_locks_mutex, there may be other cpus
3342 		 * changing other bitflags in parallel to us.
3343 		 */
3344 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3345 			BUG();
3346 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3347 	}
3348 }
3349 
3350 /*
3351  * This operation locks against the VM for all pte/vma/mm related
3352  * operations that could ever happen on a certain mm. This includes
3353  * vmtruncate, try_to_unmap, and all page faults.
3354  *
3355  * The caller must take the mmap_sem in write mode before calling
3356  * mm_take_all_locks(). The caller isn't allowed to release the
3357  * mmap_sem until mm_drop_all_locks() returns.
3358  *
3359  * mmap_sem in write mode is required in order to block all operations
3360  * that could modify pagetables and free pages without need of
3361  * altering the vma layout. It's also needed in write mode to avoid new
3362  * anon_vmas to be associated with existing vmas.
3363  *
3364  * A single task can't take more than one mm_take_all_locks() in a row
3365  * or it would deadlock.
3366  *
3367  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3368  * mapping->flags avoid to take the same lock twice, if more than one
3369  * vma in this mm is backed by the same anon_vma or address_space.
3370  *
3371  * We take locks in following order, accordingly to comment at beginning
3372  * of mm/rmap.c:
3373  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3374  *     hugetlb mapping);
3375  *   - all i_mmap_rwsem locks;
3376  *   - all anon_vma->rwseml
3377  *
3378  * We can take all locks within these types randomly because the VM code
3379  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3380  * mm_all_locks_mutex.
3381  *
3382  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3383  * that may have to take thousand of locks.
3384  *
3385  * mm_take_all_locks() can fail if it's interrupted by signals.
3386  */
3387 int mm_take_all_locks(struct mm_struct *mm)
3388 {
3389 	struct vm_area_struct *vma;
3390 	struct anon_vma_chain *avc;
3391 
3392 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3393 
3394 	mutex_lock(&mm_all_locks_mutex);
3395 
3396 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3397 		if (signal_pending(current))
3398 			goto out_unlock;
3399 		if (vma->vm_file && vma->vm_file->f_mapping &&
3400 				is_vm_hugetlb_page(vma))
3401 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3402 	}
3403 
3404 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3405 		if (signal_pending(current))
3406 			goto out_unlock;
3407 		if (vma->vm_file && vma->vm_file->f_mapping &&
3408 				!is_vm_hugetlb_page(vma))
3409 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3410 	}
3411 
3412 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3413 		if (signal_pending(current))
3414 			goto out_unlock;
3415 		if (vma->anon_vma)
3416 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3417 				vm_lock_anon_vma(mm, avc->anon_vma);
3418 	}
3419 
3420 	return 0;
3421 
3422 out_unlock:
3423 	mm_drop_all_locks(mm);
3424 	return -EINTR;
3425 }
3426 
3427 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3428 {
3429 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3430 		/*
3431 		 * The LSB of head.next can't change to 0 from under
3432 		 * us because we hold the mm_all_locks_mutex.
3433 		 *
3434 		 * We must however clear the bitflag before unlocking
3435 		 * the vma so the users using the anon_vma->rb_root will
3436 		 * never see our bitflag.
3437 		 *
3438 		 * No need of atomic instructions here, head.next
3439 		 * can't change from under us until we release the
3440 		 * anon_vma->root->rwsem.
3441 		 */
3442 		if (!__test_and_clear_bit(0, (unsigned long *)
3443 					  &anon_vma->root->rb_root.rb_node))
3444 			BUG();
3445 		anon_vma_unlock_write(anon_vma);
3446 	}
3447 }
3448 
3449 static void vm_unlock_mapping(struct address_space *mapping)
3450 {
3451 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3452 		/*
3453 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3454 		 * because we hold the mm_all_locks_mutex.
3455 		 */
3456 		i_mmap_unlock_write(mapping);
3457 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3458 					&mapping->flags))
3459 			BUG();
3460 	}
3461 }
3462 
3463 /*
3464  * The mmap_sem cannot be released by the caller until
3465  * mm_drop_all_locks() returns.
3466  */
3467 void mm_drop_all_locks(struct mm_struct *mm)
3468 {
3469 	struct vm_area_struct *vma;
3470 	struct anon_vma_chain *avc;
3471 
3472 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3473 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3474 
3475 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3476 		if (vma->anon_vma)
3477 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3478 				vm_unlock_anon_vma(avc->anon_vma);
3479 		if (vma->vm_file && vma->vm_file->f_mapping)
3480 			vm_unlock_mapping(vma->vm_file->f_mapping);
3481 	}
3482 
3483 	mutex_unlock(&mm_all_locks_mutex);
3484 }
3485 
3486 /*
3487  * initialise the percpu counter for VM
3488  */
3489 void __init mmap_init(void)
3490 {
3491 	int ret;
3492 
3493 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3494 	VM_BUG_ON(ret);
3495 }
3496 
3497 /*
3498  * Initialise sysctl_user_reserve_kbytes.
3499  *
3500  * This is intended to prevent a user from starting a single memory hogging
3501  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3502  * mode.
3503  *
3504  * The default value is min(3% of free memory, 128MB)
3505  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3506  */
3507 static int init_user_reserve(void)
3508 {
3509 	unsigned long free_kbytes;
3510 
3511 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3512 
3513 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3514 	return 0;
3515 }
3516 subsys_initcall(init_user_reserve);
3517 
3518 /*
3519  * Initialise sysctl_admin_reserve_kbytes.
3520  *
3521  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3522  * to log in and kill a memory hogging process.
3523  *
3524  * Systems with more than 256MB will reserve 8MB, enough to recover
3525  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3526  * only reserve 3% of free pages by default.
3527  */
3528 static int init_admin_reserve(void)
3529 {
3530 	unsigned long free_kbytes;
3531 
3532 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3533 
3534 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3535 	return 0;
3536 }
3537 subsys_initcall(init_admin_reserve);
3538 
3539 /*
3540  * Reinititalise user and admin reserves if memory is added or removed.
3541  *
3542  * The default user reserve max is 128MB, and the default max for the
3543  * admin reserve is 8MB. These are usually, but not always, enough to
3544  * enable recovery from a memory hogging process using login/sshd, a shell,
3545  * and tools like top. It may make sense to increase or even disable the
3546  * reserve depending on the existence of swap or variations in the recovery
3547  * tools. So, the admin may have changed them.
3548  *
3549  * If memory is added and the reserves have been eliminated or increased above
3550  * the default max, then we'll trust the admin.
3551  *
3552  * If memory is removed and there isn't enough free memory, then we
3553  * need to reset the reserves.
3554  *
3555  * Otherwise keep the reserve set by the admin.
3556  */
3557 static int reserve_mem_notifier(struct notifier_block *nb,
3558 			     unsigned long action, void *data)
3559 {
3560 	unsigned long tmp, free_kbytes;
3561 
3562 	switch (action) {
3563 	case MEM_ONLINE:
3564 		/* Default max is 128MB. Leave alone if modified by operator. */
3565 		tmp = sysctl_user_reserve_kbytes;
3566 		if (0 < tmp && tmp < (1UL << 17))
3567 			init_user_reserve();
3568 
3569 		/* Default max is 8MB.  Leave alone if modified by operator. */
3570 		tmp = sysctl_admin_reserve_kbytes;
3571 		if (0 < tmp && tmp < (1UL << 13))
3572 			init_admin_reserve();
3573 
3574 		break;
3575 	case MEM_OFFLINE:
3576 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3577 
3578 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3579 			init_user_reserve();
3580 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3581 				sysctl_user_reserve_kbytes);
3582 		}
3583 
3584 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3585 			init_admin_reserve();
3586 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3587 				sysctl_admin_reserve_kbytes);
3588 		}
3589 		break;
3590 	default:
3591 		break;
3592 	}
3593 	return NOTIFY_OK;
3594 }
3595 
3596 static struct notifier_block reserve_mem_nb = {
3597 	.notifier_call = reserve_mem_notifier,
3598 };
3599 
3600 static int __meminit init_reserve_notifier(void)
3601 {
3602 	if (register_hotmemory_notifier(&reserve_mem_nb))
3603 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3604 
3605 	return 0;
3606 }
3607 subsys_initcall(init_reserve_notifier);
3608