xref: /openbmc/linux/mm/mmap.c (revision ee8ec048)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		unsigned long start, unsigned long end);
82 
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type	prot
88  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
89  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
90  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
91  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
92  *
93  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
94  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
95  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
96  *
97  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98  * MAP_PRIVATE (with Enhanced PAN supported):
99  *								r: (no) no
100  *								w: (no) no
101  *								x: (yes) yes
102  */
103 pgprot_t protection_map[16] __ro_after_init = {
104 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
105 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
106 };
107 
108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
110 {
111 	return prot;
112 }
113 #endif
114 
115 pgprot_t vm_get_page_prot(unsigned long vm_flags)
116 {
117 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
118 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
119 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
120 
121 	return arch_filter_pgprot(ret);
122 }
123 EXPORT_SYMBOL(vm_get_page_prot);
124 
125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
126 {
127 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
128 }
129 
130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
131 void vma_set_page_prot(struct vm_area_struct *vma)
132 {
133 	unsigned long vm_flags = vma->vm_flags;
134 	pgprot_t vm_page_prot;
135 
136 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
137 	if (vma_wants_writenotify(vma, vm_page_prot)) {
138 		vm_flags &= ~VM_SHARED;
139 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
140 	}
141 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
142 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 }
144 
145 /*
146  * Requires inode->i_mapping->i_mmap_rwsem
147  */
148 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
149 		struct file *file, struct address_space *mapping)
150 {
151 	if (vma->vm_flags & VM_SHARED)
152 		mapping_unmap_writable(mapping);
153 
154 	flush_dcache_mmap_lock(mapping);
155 	vma_interval_tree_remove(vma, &mapping->i_mmap);
156 	flush_dcache_mmap_unlock(mapping);
157 }
158 
159 /*
160  * Unlink a file-based vm structure from its interval tree, to hide
161  * vma from rmap and vmtruncate before freeing its page tables.
162  */
163 void unlink_file_vma(struct vm_area_struct *vma)
164 {
165 	struct file *file = vma->vm_file;
166 
167 	if (file) {
168 		struct address_space *mapping = file->f_mapping;
169 		i_mmap_lock_write(mapping);
170 		__remove_shared_vm_struct(vma, file, mapping);
171 		i_mmap_unlock_write(mapping);
172 	}
173 }
174 
175 /*
176  * Close a vm structure and free it, returning the next.
177  */
178 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
179 {
180 	struct vm_area_struct *next = vma->vm_next;
181 
182 	might_sleep();
183 	if (vma->vm_ops && vma->vm_ops->close)
184 		vma->vm_ops->close(vma);
185 	if (vma->vm_file)
186 		fput(vma->vm_file);
187 	mpol_put(vma_policy(vma));
188 	vm_area_free(vma);
189 	return next;
190 }
191 
192 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
193 		struct list_head *uf);
194 SYSCALL_DEFINE1(brk, unsigned long, brk)
195 {
196 	unsigned long newbrk, oldbrk, origbrk;
197 	struct mm_struct *mm = current->mm;
198 	struct vm_area_struct *next;
199 	unsigned long min_brk;
200 	bool populate;
201 	bool downgraded = false;
202 	LIST_HEAD(uf);
203 
204 	if (mmap_write_lock_killable(mm))
205 		return -EINTR;
206 
207 	origbrk = mm->brk;
208 
209 #ifdef CONFIG_COMPAT_BRK
210 	/*
211 	 * CONFIG_COMPAT_BRK can still be overridden by setting
212 	 * randomize_va_space to 2, which will still cause mm->start_brk
213 	 * to be arbitrarily shifted
214 	 */
215 	if (current->brk_randomized)
216 		min_brk = mm->start_brk;
217 	else
218 		min_brk = mm->end_data;
219 #else
220 	min_brk = mm->start_brk;
221 #endif
222 	if (brk < min_brk)
223 		goto out;
224 
225 	/*
226 	 * Check against rlimit here. If this check is done later after the test
227 	 * of oldbrk with newbrk then it can escape the test and let the data
228 	 * segment grow beyond its set limit the in case where the limit is
229 	 * not page aligned -Ram Gupta
230 	 */
231 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
232 			      mm->end_data, mm->start_data))
233 		goto out;
234 
235 	newbrk = PAGE_ALIGN(brk);
236 	oldbrk = PAGE_ALIGN(mm->brk);
237 	if (oldbrk == newbrk) {
238 		mm->brk = brk;
239 		goto success;
240 	}
241 
242 	/*
243 	 * Always allow shrinking brk.
244 	 * __do_munmap() may downgrade mmap_lock to read.
245 	 */
246 	if (brk <= mm->brk) {
247 		int ret;
248 
249 		/*
250 		 * mm->brk must to be protected by write mmap_lock so update it
251 		 * before downgrading mmap_lock. When __do_munmap() fails,
252 		 * mm->brk will be restored from origbrk.
253 		 */
254 		mm->brk = brk;
255 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
256 		if (ret < 0) {
257 			mm->brk = origbrk;
258 			goto out;
259 		} else if (ret == 1) {
260 			downgraded = true;
261 		}
262 		goto success;
263 	}
264 
265 	/* Check against existing mmap mappings. */
266 	next = find_vma(mm, oldbrk);
267 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
268 		goto out;
269 
270 	/* Ok, looks good - let it rip. */
271 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
272 		goto out;
273 	mm->brk = brk;
274 
275 success:
276 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
277 	if (downgraded)
278 		mmap_read_unlock(mm);
279 	else
280 		mmap_write_unlock(mm);
281 	userfaultfd_unmap_complete(mm, &uf);
282 	if (populate)
283 		mm_populate(oldbrk, newbrk - oldbrk);
284 	return brk;
285 
286 out:
287 	mmap_write_unlock(mm);
288 	return origbrk;
289 }
290 
291 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
292 {
293 	unsigned long gap, prev_end;
294 
295 	/*
296 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
297 	 * allow two stack_guard_gaps between them here, and when choosing
298 	 * an unmapped area; whereas when expanding we only require one.
299 	 * That's a little inconsistent, but keeps the code here simpler.
300 	 */
301 	gap = vm_start_gap(vma);
302 	if (vma->vm_prev) {
303 		prev_end = vm_end_gap(vma->vm_prev);
304 		if (gap > prev_end)
305 			gap -= prev_end;
306 		else
307 			gap = 0;
308 	}
309 	return gap;
310 }
311 
312 #ifdef CONFIG_DEBUG_VM_RB
313 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
314 {
315 	unsigned long max = vma_compute_gap(vma), subtree_gap;
316 	if (vma->vm_rb.rb_left) {
317 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
318 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
319 		if (subtree_gap > max)
320 			max = subtree_gap;
321 	}
322 	if (vma->vm_rb.rb_right) {
323 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
324 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
325 		if (subtree_gap > max)
326 			max = subtree_gap;
327 	}
328 	return max;
329 }
330 
331 static int browse_rb(struct mm_struct *mm)
332 {
333 	struct rb_root *root = &mm->mm_rb;
334 	int i = 0, j, bug = 0;
335 	struct rb_node *nd, *pn = NULL;
336 	unsigned long prev = 0, pend = 0;
337 
338 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
339 		struct vm_area_struct *vma;
340 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
341 		if (vma->vm_start < prev) {
342 			pr_emerg("vm_start %lx < prev %lx\n",
343 				  vma->vm_start, prev);
344 			bug = 1;
345 		}
346 		if (vma->vm_start < pend) {
347 			pr_emerg("vm_start %lx < pend %lx\n",
348 				  vma->vm_start, pend);
349 			bug = 1;
350 		}
351 		if (vma->vm_start > vma->vm_end) {
352 			pr_emerg("vm_start %lx > vm_end %lx\n",
353 				  vma->vm_start, vma->vm_end);
354 			bug = 1;
355 		}
356 		spin_lock(&mm->page_table_lock);
357 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
358 			pr_emerg("free gap %lx, correct %lx\n",
359 			       vma->rb_subtree_gap,
360 			       vma_compute_subtree_gap(vma));
361 			bug = 1;
362 		}
363 		spin_unlock(&mm->page_table_lock);
364 		i++;
365 		pn = nd;
366 		prev = vma->vm_start;
367 		pend = vma->vm_end;
368 	}
369 	j = 0;
370 	for (nd = pn; nd; nd = rb_prev(nd))
371 		j++;
372 	if (i != j) {
373 		pr_emerg("backwards %d, forwards %d\n", j, i);
374 		bug = 1;
375 	}
376 	return bug ? -1 : i;
377 }
378 
379 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
380 {
381 	struct rb_node *nd;
382 
383 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
384 		struct vm_area_struct *vma;
385 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
386 		VM_BUG_ON_VMA(vma != ignore &&
387 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
388 			vma);
389 	}
390 }
391 
392 static void validate_mm(struct mm_struct *mm)
393 {
394 	int bug = 0;
395 	int i = 0;
396 	unsigned long highest_address = 0;
397 	struct vm_area_struct *vma = mm->mmap;
398 
399 	while (vma) {
400 		struct anon_vma *anon_vma = vma->anon_vma;
401 		struct anon_vma_chain *avc;
402 
403 		if (anon_vma) {
404 			anon_vma_lock_read(anon_vma);
405 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
406 				anon_vma_interval_tree_verify(avc);
407 			anon_vma_unlock_read(anon_vma);
408 		}
409 
410 		highest_address = vm_end_gap(vma);
411 		vma = vma->vm_next;
412 		i++;
413 	}
414 	if (i != mm->map_count) {
415 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
416 		bug = 1;
417 	}
418 	if (highest_address != mm->highest_vm_end) {
419 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
420 			  mm->highest_vm_end, highest_address);
421 		bug = 1;
422 	}
423 	i = browse_rb(mm);
424 	if (i != mm->map_count) {
425 		if (i != -1)
426 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
427 		bug = 1;
428 	}
429 	VM_BUG_ON_MM(bug, mm);
430 }
431 #else
432 #define validate_mm_rb(root, ignore) do { } while (0)
433 #define validate_mm(mm) do { } while (0)
434 #endif
435 
436 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
437 			 struct vm_area_struct, vm_rb,
438 			 unsigned long, rb_subtree_gap, vma_compute_gap)
439 
440 /*
441  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
442  * vma->vm_prev->vm_end values changed, without modifying the vma's position
443  * in the rbtree.
444  */
445 static void vma_gap_update(struct vm_area_struct *vma)
446 {
447 	/*
448 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
449 	 * a callback function that does exactly what we want.
450 	 */
451 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
452 }
453 
454 static inline void vma_rb_insert(struct vm_area_struct *vma,
455 				 struct rb_root *root)
456 {
457 	/* All rb_subtree_gap values must be consistent prior to insertion */
458 	validate_mm_rb(root, NULL);
459 
460 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
461 }
462 
463 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
464 {
465 	/*
466 	 * Note rb_erase_augmented is a fairly large inline function,
467 	 * so make sure we instantiate it only once with our desired
468 	 * augmented rbtree callbacks.
469 	 */
470 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
471 }
472 
473 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
474 						struct rb_root *root,
475 						struct vm_area_struct *ignore)
476 {
477 	/*
478 	 * All rb_subtree_gap values must be consistent prior to erase,
479 	 * with the possible exception of
480 	 *
481 	 * a. the "next" vma being erased if next->vm_start was reduced in
482 	 *    __vma_adjust() -> __vma_unlink()
483 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
484 	 *    vma_rb_erase()
485 	 */
486 	validate_mm_rb(root, ignore);
487 
488 	__vma_rb_erase(vma, root);
489 }
490 
491 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
492 					 struct rb_root *root)
493 {
494 	vma_rb_erase_ignore(vma, root, vma);
495 }
496 
497 /*
498  * vma has some anon_vma assigned, and is already inserted on that
499  * anon_vma's interval trees.
500  *
501  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
502  * vma must be removed from the anon_vma's interval trees using
503  * anon_vma_interval_tree_pre_update_vma().
504  *
505  * After the update, the vma will be reinserted using
506  * anon_vma_interval_tree_post_update_vma().
507  *
508  * The entire update must be protected by exclusive mmap_lock and by
509  * the root anon_vma's mutex.
510  */
511 static inline void
512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
513 {
514 	struct anon_vma_chain *avc;
515 
516 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
518 }
519 
520 static inline void
521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
522 {
523 	struct anon_vma_chain *avc;
524 
525 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
526 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
527 }
528 
529 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
530 		unsigned long end, struct vm_area_struct **pprev,
531 		struct rb_node ***rb_link, struct rb_node **rb_parent)
532 {
533 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
534 
535 	mmap_assert_locked(mm);
536 	__rb_link = &mm->mm_rb.rb_node;
537 	rb_prev = __rb_parent = NULL;
538 
539 	while (*__rb_link) {
540 		struct vm_area_struct *vma_tmp;
541 
542 		__rb_parent = *__rb_link;
543 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
544 
545 		if (vma_tmp->vm_end > addr) {
546 			/* Fail if an existing vma overlaps the area */
547 			if (vma_tmp->vm_start < end)
548 				return -ENOMEM;
549 			__rb_link = &__rb_parent->rb_left;
550 		} else {
551 			rb_prev = __rb_parent;
552 			__rb_link = &__rb_parent->rb_right;
553 		}
554 	}
555 
556 	*pprev = NULL;
557 	if (rb_prev)
558 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
559 	*rb_link = __rb_link;
560 	*rb_parent = __rb_parent;
561 	return 0;
562 }
563 
564 /*
565  * vma_next() - Get the next VMA.
566  * @mm: The mm_struct.
567  * @vma: The current vma.
568  *
569  * If @vma is NULL, return the first vma in the mm.
570  *
571  * Returns: The next VMA after @vma.
572  */
573 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
574 					 struct vm_area_struct *vma)
575 {
576 	if (!vma)
577 		return mm->mmap;
578 
579 	return vma->vm_next;
580 }
581 
582 /*
583  * munmap_vma_range() - munmap VMAs that overlap a range.
584  * @mm: The mm struct
585  * @start: The start of the range.
586  * @len: The length of the range.
587  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
588  * @rb_link: the rb_node
589  * @rb_parent: the parent rb_node
590  *
591  * Find all the vm_area_struct that overlap from @start to
592  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
593  *
594  * Returns: -ENOMEM on munmap failure or 0 on success.
595  */
596 static inline int
597 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
598 		 struct vm_area_struct **pprev, struct rb_node ***link,
599 		 struct rb_node **parent, struct list_head *uf)
600 {
601 
602 	while (find_vma_links(mm, start, start + len, pprev, link, parent))
603 		if (do_munmap(mm, start, len, uf))
604 			return -ENOMEM;
605 
606 	return 0;
607 }
608 static unsigned long count_vma_pages_range(struct mm_struct *mm,
609 		unsigned long addr, unsigned long end)
610 {
611 	unsigned long nr_pages = 0;
612 	struct vm_area_struct *vma;
613 
614 	/* Find first overlapping mapping */
615 	vma = find_vma_intersection(mm, addr, end);
616 	if (!vma)
617 		return 0;
618 
619 	nr_pages = (min(end, vma->vm_end) -
620 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
621 
622 	/* Iterate over the rest of the overlaps */
623 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
624 		unsigned long overlap_len;
625 
626 		if (vma->vm_start > end)
627 			break;
628 
629 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
630 		nr_pages += overlap_len >> PAGE_SHIFT;
631 	}
632 
633 	return nr_pages;
634 }
635 
636 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
637 		struct rb_node **rb_link, struct rb_node *rb_parent)
638 {
639 	/* Update tracking information for the gap following the new vma. */
640 	if (vma->vm_next)
641 		vma_gap_update(vma->vm_next);
642 	else
643 		mm->highest_vm_end = vm_end_gap(vma);
644 
645 	/*
646 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
647 	 * correct insertion point for that vma. As a result, we could not
648 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
649 	 * So, we first insert the vma with a zero rb_subtree_gap value
650 	 * (to be consistent with what we did on the way down), and then
651 	 * immediately update the gap to the correct value. Finally we
652 	 * rebalance the rbtree after all augmented values have been set.
653 	 */
654 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
655 	vma->rb_subtree_gap = 0;
656 	vma_gap_update(vma);
657 	vma_rb_insert(vma, &mm->mm_rb);
658 }
659 
660 static void __vma_link_file(struct vm_area_struct *vma)
661 {
662 	struct file *file;
663 
664 	file = vma->vm_file;
665 	if (file) {
666 		struct address_space *mapping = file->f_mapping;
667 
668 		if (vma->vm_flags & VM_SHARED)
669 			mapping_allow_writable(mapping);
670 
671 		flush_dcache_mmap_lock(mapping);
672 		vma_interval_tree_insert(vma, &mapping->i_mmap);
673 		flush_dcache_mmap_unlock(mapping);
674 	}
675 }
676 
677 static void
678 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
679 	struct vm_area_struct *prev, struct rb_node **rb_link,
680 	struct rb_node *rb_parent)
681 {
682 	__vma_link_list(mm, vma, prev);
683 	__vma_link_rb(mm, vma, rb_link, rb_parent);
684 }
685 
686 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
687 			struct vm_area_struct *prev, struct rb_node **rb_link,
688 			struct rb_node *rb_parent)
689 {
690 	struct address_space *mapping = NULL;
691 
692 	if (vma->vm_file) {
693 		mapping = vma->vm_file->f_mapping;
694 		i_mmap_lock_write(mapping);
695 	}
696 
697 	__vma_link(mm, vma, prev, rb_link, rb_parent);
698 	__vma_link_file(vma);
699 
700 	if (mapping)
701 		i_mmap_unlock_write(mapping);
702 
703 	mm->map_count++;
704 	validate_mm(mm);
705 }
706 
707 /*
708  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
709  * mm's list and rbtree.  It has already been inserted into the interval tree.
710  */
711 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
712 {
713 	struct vm_area_struct *prev;
714 	struct rb_node **rb_link, *rb_parent;
715 
716 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
717 			   &prev, &rb_link, &rb_parent))
718 		BUG();
719 	__vma_link(mm, vma, prev, rb_link, rb_parent);
720 	mm->map_count++;
721 }
722 
723 static __always_inline void __vma_unlink(struct mm_struct *mm,
724 						struct vm_area_struct *vma,
725 						struct vm_area_struct *ignore)
726 {
727 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
728 	__vma_unlink_list(mm, vma);
729 	/* Kill the cache */
730 	vmacache_invalidate(mm);
731 }
732 
733 /*
734  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
735  * is already present in an i_mmap tree without adjusting the tree.
736  * The following helper function should be used when such adjustments
737  * are necessary.  The "insert" vma (if any) is to be inserted
738  * before we drop the necessary locks.
739  */
740 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
741 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
742 	struct vm_area_struct *expand)
743 {
744 	struct mm_struct *mm = vma->vm_mm;
745 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
746 	struct address_space *mapping = NULL;
747 	struct rb_root_cached *root = NULL;
748 	struct anon_vma *anon_vma = NULL;
749 	struct file *file = vma->vm_file;
750 	bool start_changed = false, end_changed = false;
751 	long adjust_next = 0;
752 	int remove_next = 0;
753 
754 	if (next && !insert) {
755 		struct vm_area_struct *exporter = NULL, *importer = NULL;
756 
757 		if (end >= next->vm_end) {
758 			/*
759 			 * vma expands, overlapping all the next, and
760 			 * perhaps the one after too (mprotect case 6).
761 			 * The only other cases that gets here are
762 			 * case 1, case 7 and case 8.
763 			 */
764 			if (next == expand) {
765 				/*
766 				 * The only case where we don't expand "vma"
767 				 * and we expand "next" instead is case 8.
768 				 */
769 				VM_WARN_ON(end != next->vm_end);
770 				/*
771 				 * remove_next == 3 means we're
772 				 * removing "vma" and that to do so we
773 				 * swapped "vma" and "next".
774 				 */
775 				remove_next = 3;
776 				VM_WARN_ON(file != next->vm_file);
777 				swap(vma, next);
778 			} else {
779 				VM_WARN_ON(expand != vma);
780 				/*
781 				 * case 1, 6, 7, remove_next == 2 is case 6,
782 				 * remove_next == 1 is case 1 or 7.
783 				 */
784 				remove_next = 1 + (end > next->vm_end);
785 				VM_WARN_ON(remove_next == 2 &&
786 					   end != next->vm_next->vm_end);
787 				/* trim end to next, for case 6 first pass */
788 				end = next->vm_end;
789 			}
790 
791 			exporter = next;
792 			importer = vma;
793 
794 			/*
795 			 * If next doesn't have anon_vma, import from vma after
796 			 * next, if the vma overlaps with it.
797 			 */
798 			if (remove_next == 2 && !next->anon_vma)
799 				exporter = next->vm_next;
800 
801 		} else if (end > next->vm_start) {
802 			/*
803 			 * vma expands, overlapping part of the next:
804 			 * mprotect case 5 shifting the boundary up.
805 			 */
806 			adjust_next = (end - next->vm_start);
807 			exporter = next;
808 			importer = vma;
809 			VM_WARN_ON(expand != importer);
810 		} else if (end < vma->vm_end) {
811 			/*
812 			 * vma shrinks, and !insert tells it's not
813 			 * split_vma inserting another: so it must be
814 			 * mprotect case 4 shifting the boundary down.
815 			 */
816 			adjust_next = -(vma->vm_end - end);
817 			exporter = vma;
818 			importer = next;
819 			VM_WARN_ON(expand != importer);
820 		}
821 
822 		/*
823 		 * Easily overlooked: when mprotect shifts the boundary,
824 		 * make sure the expanding vma has anon_vma set if the
825 		 * shrinking vma had, to cover any anon pages imported.
826 		 */
827 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
828 			int error;
829 
830 			importer->anon_vma = exporter->anon_vma;
831 			error = anon_vma_clone(importer, exporter);
832 			if (error)
833 				return error;
834 		}
835 	}
836 again:
837 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
838 
839 	if (file) {
840 		mapping = file->f_mapping;
841 		root = &mapping->i_mmap;
842 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
843 
844 		if (adjust_next)
845 			uprobe_munmap(next, next->vm_start, next->vm_end);
846 
847 		i_mmap_lock_write(mapping);
848 		if (insert) {
849 			/*
850 			 * Put into interval tree now, so instantiated pages
851 			 * are visible to arm/parisc __flush_dcache_page
852 			 * throughout; but we cannot insert into address
853 			 * space until vma start or end is updated.
854 			 */
855 			__vma_link_file(insert);
856 		}
857 	}
858 
859 	anon_vma = vma->anon_vma;
860 	if (!anon_vma && adjust_next)
861 		anon_vma = next->anon_vma;
862 	if (anon_vma) {
863 		VM_WARN_ON(adjust_next && next->anon_vma &&
864 			   anon_vma != next->anon_vma);
865 		anon_vma_lock_write(anon_vma);
866 		anon_vma_interval_tree_pre_update_vma(vma);
867 		if (adjust_next)
868 			anon_vma_interval_tree_pre_update_vma(next);
869 	}
870 
871 	if (file) {
872 		flush_dcache_mmap_lock(mapping);
873 		vma_interval_tree_remove(vma, root);
874 		if (adjust_next)
875 			vma_interval_tree_remove(next, root);
876 	}
877 
878 	if (start != vma->vm_start) {
879 		vma->vm_start = start;
880 		start_changed = true;
881 	}
882 	if (end != vma->vm_end) {
883 		vma->vm_end = end;
884 		end_changed = true;
885 	}
886 	vma->vm_pgoff = pgoff;
887 	if (adjust_next) {
888 		next->vm_start += adjust_next;
889 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
890 	}
891 
892 	if (file) {
893 		if (adjust_next)
894 			vma_interval_tree_insert(next, root);
895 		vma_interval_tree_insert(vma, root);
896 		flush_dcache_mmap_unlock(mapping);
897 	}
898 
899 	if (remove_next) {
900 		/*
901 		 * vma_merge has merged next into vma, and needs
902 		 * us to remove next before dropping the locks.
903 		 */
904 		if (remove_next != 3)
905 			__vma_unlink(mm, next, next);
906 		else
907 			/*
908 			 * vma is not before next if they've been
909 			 * swapped.
910 			 *
911 			 * pre-swap() next->vm_start was reduced so
912 			 * tell validate_mm_rb to ignore pre-swap()
913 			 * "next" (which is stored in post-swap()
914 			 * "vma").
915 			 */
916 			__vma_unlink(mm, next, vma);
917 		if (file)
918 			__remove_shared_vm_struct(next, file, mapping);
919 	} else if (insert) {
920 		/*
921 		 * split_vma has split insert from vma, and needs
922 		 * us to insert it before dropping the locks
923 		 * (it may either follow vma or precede it).
924 		 */
925 		__insert_vm_struct(mm, insert);
926 	} else {
927 		if (start_changed)
928 			vma_gap_update(vma);
929 		if (end_changed) {
930 			if (!next)
931 				mm->highest_vm_end = vm_end_gap(vma);
932 			else if (!adjust_next)
933 				vma_gap_update(next);
934 		}
935 	}
936 
937 	if (anon_vma) {
938 		anon_vma_interval_tree_post_update_vma(vma);
939 		if (adjust_next)
940 			anon_vma_interval_tree_post_update_vma(next);
941 		anon_vma_unlock_write(anon_vma);
942 	}
943 
944 	if (file) {
945 		i_mmap_unlock_write(mapping);
946 		uprobe_mmap(vma);
947 
948 		if (adjust_next)
949 			uprobe_mmap(next);
950 	}
951 
952 	if (remove_next) {
953 		if (file) {
954 			uprobe_munmap(next, next->vm_start, next->vm_end);
955 			fput(file);
956 		}
957 		if (next->anon_vma)
958 			anon_vma_merge(vma, next);
959 		mm->map_count--;
960 		mpol_put(vma_policy(next));
961 		vm_area_free(next);
962 		/*
963 		 * In mprotect's case 6 (see comments on vma_merge),
964 		 * we must remove another next too. It would clutter
965 		 * up the code too much to do both in one go.
966 		 */
967 		if (remove_next != 3) {
968 			/*
969 			 * If "next" was removed and vma->vm_end was
970 			 * expanded (up) over it, in turn
971 			 * "next->vm_prev->vm_end" changed and the
972 			 * "vma->vm_next" gap must be updated.
973 			 */
974 			next = vma->vm_next;
975 		} else {
976 			/*
977 			 * For the scope of the comment "next" and
978 			 * "vma" considered pre-swap(): if "vma" was
979 			 * removed, next->vm_start was expanded (down)
980 			 * over it and the "next" gap must be updated.
981 			 * Because of the swap() the post-swap() "vma"
982 			 * actually points to pre-swap() "next"
983 			 * (post-swap() "next" as opposed is now a
984 			 * dangling pointer).
985 			 */
986 			next = vma;
987 		}
988 		if (remove_next == 2) {
989 			remove_next = 1;
990 			end = next->vm_end;
991 			goto again;
992 		}
993 		else if (next)
994 			vma_gap_update(next);
995 		else {
996 			/*
997 			 * If remove_next == 2 we obviously can't
998 			 * reach this path.
999 			 *
1000 			 * If remove_next == 3 we can't reach this
1001 			 * path because pre-swap() next is always not
1002 			 * NULL. pre-swap() "next" is not being
1003 			 * removed and its next->vm_end is not altered
1004 			 * (and furthermore "end" already matches
1005 			 * next->vm_end in remove_next == 3).
1006 			 *
1007 			 * We reach this only in the remove_next == 1
1008 			 * case if the "next" vma that was removed was
1009 			 * the highest vma of the mm. However in such
1010 			 * case next->vm_end == "end" and the extended
1011 			 * "vma" has vma->vm_end == next->vm_end so
1012 			 * mm->highest_vm_end doesn't need any update
1013 			 * in remove_next == 1 case.
1014 			 */
1015 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1016 		}
1017 	}
1018 	if (insert && file)
1019 		uprobe_mmap(insert);
1020 
1021 	validate_mm(mm);
1022 
1023 	return 0;
1024 }
1025 
1026 /*
1027  * If the vma has a ->close operation then the driver probably needs to release
1028  * per-vma resources, so we don't attempt to merge those.
1029  */
1030 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1031 				struct file *file, unsigned long vm_flags,
1032 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1033 {
1034 	/*
1035 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1036 	 * match the flags but dirty bit -- the caller should mark
1037 	 * merged VMA as dirty. If dirty bit won't be excluded from
1038 	 * comparison, we increase pressure on the memory system forcing
1039 	 * the kernel to generate new VMAs when old one could be
1040 	 * extended instead.
1041 	 */
1042 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1043 		return 0;
1044 	if (vma->vm_file != file)
1045 		return 0;
1046 	if (vma->vm_ops && vma->vm_ops->close)
1047 		return 0;
1048 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1049 		return 0;
1050 	return 1;
1051 }
1052 
1053 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1054 					struct anon_vma *anon_vma2,
1055 					struct vm_area_struct *vma)
1056 {
1057 	/*
1058 	 * The list_is_singular() test is to avoid merging VMA cloned from
1059 	 * parents. This can improve scalability caused by anon_vma lock.
1060 	 */
1061 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1062 		list_is_singular(&vma->anon_vma_chain)))
1063 		return 1;
1064 	return anon_vma1 == anon_vma2;
1065 }
1066 
1067 /*
1068  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1069  * in front of (at a lower virtual address and file offset than) the vma.
1070  *
1071  * We cannot merge two vmas if they have differently assigned (non-NULL)
1072  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1073  *
1074  * We don't check here for the merged mmap wrapping around the end of pagecache
1075  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1076  * wrap, nor mmaps which cover the final page at index -1UL.
1077  */
1078 static int
1079 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1080 		     struct anon_vma *anon_vma, struct file *file,
1081 		     pgoff_t vm_pgoff,
1082 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1083 {
1084 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1085 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1086 		if (vma->vm_pgoff == vm_pgoff)
1087 			return 1;
1088 	}
1089 	return 0;
1090 }
1091 
1092 /*
1093  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1094  * beyond (at a higher virtual address and file offset than) the vma.
1095  *
1096  * We cannot merge two vmas if they have differently assigned (non-NULL)
1097  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1098  */
1099 static int
1100 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1101 		    struct anon_vma *anon_vma, struct file *file,
1102 		    pgoff_t vm_pgoff,
1103 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1104 {
1105 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1106 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1107 		pgoff_t vm_pglen;
1108 		vm_pglen = vma_pages(vma);
1109 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1110 			return 1;
1111 	}
1112 	return 0;
1113 }
1114 
1115 /*
1116  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1117  * whether that can be merged with its predecessor or its successor.
1118  * Or both (it neatly fills a hole).
1119  *
1120  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1121  * certain not to be mapped by the time vma_merge is called; but when
1122  * called for mprotect, it is certain to be already mapped (either at
1123  * an offset within prev, or at the start of next), and the flags of
1124  * this area are about to be changed to vm_flags - and the no-change
1125  * case has already been eliminated.
1126  *
1127  * The following mprotect cases have to be considered, where AAAA is
1128  * the area passed down from mprotect_fixup, never extending beyond one
1129  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1130  *
1131  *     AAAA             AAAA                   AAAA
1132  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1133  *    cannot merge    might become       might become
1134  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1135  *    mmap, brk or    case 4 below       case 5 below
1136  *    mremap move:
1137  *                        AAAA               AAAA
1138  *                    PPPP    NNNN       PPPPNNNNXXXX
1139  *                    might become       might become
1140  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1141  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1142  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1143  *
1144  * It is important for case 8 that the vma NNNN overlapping the
1145  * region AAAA is never going to extended over XXXX. Instead XXXX must
1146  * be extended in region AAAA and NNNN must be removed. This way in
1147  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1148  * rmap_locks, the properties of the merged vma will be already
1149  * correct for the whole merged range. Some of those properties like
1150  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1151  * be correct for the whole merged range immediately after the
1152  * rmap_locks are released. Otherwise if XXXX would be removed and
1153  * NNNN would be extended over the XXXX range, remove_migration_ptes
1154  * or other rmap walkers (if working on addresses beyond the "end"
1155  * parameter) may establish ptes with the wrong permissions of NNNN
1156  * instead of the right permissions of XXXX.
1157  */
1158 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1159 			struct vm_area_struct *prev, unsigned long addr,
1160 			unsigned long end, unsigned long vm_flags,
1161 			struct anon_vma *anon_vma, struct file *file,
1162 			pgoff_t pgoff, struct mempolicy *policy,
1163 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1164 {
1165 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1166 	struct vm_area_struct *area, *next;
1167 	int err;
1168 
1169 	/*
1170 	 * We later require that vma->vm_flags == vm_flags,
1171 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1172 	 */
1173 	if (vm_flags & VM_SPECIAL)
1174 		return NULL;
1175 
1176 	next = vma_next(mm, prev);
1177 	area = next;
1178 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1179 		next = next->vm_next;
1180 
1181 	/* verify some invariant that must be enforced by the caller */
1182 	VM_WARN_ON(prev && addr <= prev->vm_start);
1183 	VM_WARN_ON(area && end > area->vm_end);
1184 	VM_WARN_ON(addr >= end);
1185 
1186 	/*
1187 	 * Can it merge with the predecessor?
1188 	 */
1189 	if (prev && prev->vm_end == addr &&
1190 			mpol_equal(vma_policy(prev), policy) &&
1191 			can_vma_merge_after(prev, vm_flags,
1192 					    anon_vma, file, pgoff,
1193 					    vm_userfaultfd_ctx)) {
1194 		/*
1195 		 * OK, it can.  Can we now merge in the successor as well?
1196 		 */
1197 		if (next && end == next->vm_start &&
1198 				mpol_equal(policy, vma_policy(next)) &&
1199 				can_vma_merge_before(next, vm_flags,
1200 						     anon_vma, file,
1201 						     pgoff+pglen,
1202 						     vm_userfaultfd_ctx) &&
1203 				is_mergeable_anon_vma(prev->anon_vma,
1204 						      next->anon_vma, NULL)) {
1205 							/* cases 1, 6 */
1206 			err = __vma_adjust(prev, prev->vm_start,
1207 					 next->vm_end, prev->vm_pgoff, NULL,
1208 					 prev);
1209 		} else					/* cases 2, 5, 7 */
1210 			err = __vma_adjust(prev, prev->vm_start,
1211 					 end, prev->vm_pgoff, NULL, prev);
1212 		if (err)
1213 			return NULL;
1214 		khugepaged_enter_vma_merge(prev, vm_flags);
1215 		return prev;
1216 	}
1217 
1218 	/*
1219 	 * Can this new request be merged in front of next?
1220 	 */
1221 	if (next && end == next->vm_start &&
1222 			mpol_equal(policy, vma_policy(next)) &&
1223 			can_vma_merge_before(next, vm_flags,
1224 					     anon_vma, file, pgoff+pglen,
1225 					     vm_userfaultfd_ctx)) {
1226 		if (prev && addr < prev->vm_end)	/* case 4 */
1227 			err = __vma_adjust(prev, prev->vm_start,
1228 					 addr, prev->vm_pgoff, NULL, next);
1229 		else {					/* cases 3, 8 */
1230 			err = __vma_adjust(area, addr, next->vm_end,
1231 					 next->vm_pgoff - pglen, NULL, next);
1232 			/*
1233 			 * In case 3 area is already equal to next and
1234 			 * this is a noop, but in case 8 "area" has
1235 			 * been removed and next was expanded over it.
1236 			 */
1237 			area = next;
1238 		}
1239 		if (err)
1240 			return NULL;
1241 		khugepaged_enter_vma_merge(area, vm_flags);
1242 		return area;
1243 	}
1244 
1245 	return NULL;
1246 }
1247 
1248 /*
1249  * Rough compatibility check to quickly see if it's even worth looking
1250  * at sharing an anon_vma.
1251  *
1252  * They need to have the same vm_file, and the flags can only differ
1253  * in things that mprotect may change.
1254  *
1255  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1256  * we can merge the two vma's. For example, we refuse to merge a vma if
1257  * there is a vm_ops->close() function, because that indicates that the
1258  * driver is doing some kind of reference counting. But that doesn't
1259  * really matter for the anon_vma sharing case.
1260  */
1261 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1262 {
1263 	return a->vm_end == b->vm_start &&
1264 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1265 		a->vm_file == b->vm_file &&
1266 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1267 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1268 }
1269 
1270 /*
1271  * Do some basic sanity checking to see if we can re-use the anon_vma
1272  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1273  * the same as 'old', the other will be the new one that is trying
1274  * to share the anon_vma.
1275  *
1276  * NOTE! This runs with mm_sem held for reading, so it is possible that
1277  * the anon_vma of 'old' is concurrently in the process of being set up
1278  * by another page fault trying to merge _that_. But that's ok: if it
1279  * is being set up, that automatically means that it will be a singleton
1280  * acceptable for merging, so we can do all of this optimistically. But
1281  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1282  *
1283  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1284  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1285  * is to return an anon_vma that is "complex" due to having gone through
1286  * a fork).
1287  *
1288  * We also make sure that the two vma's are compatible (adjacent,
1289  * and with the same memory policies). That's all stable, even with just
1290  * a read lock on the mm_sem.
1291  */
1292 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1293 {
1294 	if (anon_vma_compatible(a, b)) {
1295 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1296 
1297 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1298 			return anon_vma;
1299 	}
1300 	return NULL;
1301 }
1302 
1303 /*
1304  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1305  * neighbouring vmas for a suitable anon_vma, before it goes off
1306  * to allocate a new anon_vma.  It checks because a repetitive
1307  * sequence of mprotects and faults may otherwise lead to distinct
1308  * anon_vmas being allocated, preventing vma merge in subsequent
1309  * mprotect.
1310  */
1311 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1312 {
1313 	struct anon_vma *anon_vma = NULL;
1314 
1315 	/* Try next first. */
1316 	if (vma->vm_next) {
1317 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1318 		if (anon_vma)
1319 			return anon_vma;
1320 	}
1321 
1322 	/* Try prev next. */
1323 	if (vma->vm_prev)
1324 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1325 
1326 	/*
1327 	 * We might reach here with anon_vma == NULL if we can't find
1328 	 * any reusable anon_vma.
1329 	 * There's no absolute need to look only at touching neighbours:
1330 	 * we could search further afield for "compatible" anon_vmas.
1331 	 * But it would probably just be a waste of time searching,
1332 	 * or lead to too many vmas hanging off the same anon_vma.
1333 	 * We're trying to allow mprotect remerging later on,
1334 	 * not trying to minimize memory used for anon_vmas.
1335 	 */
1336 	return anon_vma;
1337 }
1338 
1339 /*
1340  * If a hint addr is less than mmap_min_addr change hint to be as
1341  * low as possible but still greater than mmap_min_addr
1342  */
1343 static inline unsigned long round_hint_to_min(unsigned long hint)
1344 {
1345 	hint &= PAGE_MASK;
1346 	if (((void *)hint != NULL) &&
1347 	    (hint < mmap_min_addr))
1348 		return PAGE_ALIGN(mmap_min_addr);
1349 	return hint;
1350 }
1351 
1352 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1353 		       unsigned long len)
1354 {
1355 	unsigned long locked, lock_limit;
1356 
1357 	/*  mlock MCL_FUTURE? */
1358 	if (flags & VM_LOCKED) {
1359 		locked = len >> PAGE_SHIFT;
1360 		locked += mm->locked_vm;
1361 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1362 		lock_limit >>= PAGE_SHIFT;
1363 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1364 			return -EAGAIN;
1365 	}
1366 	return 0;
1367 }
1368 
1369 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1370 {
1371 	if (S_ISREG(inode->i_mode))
1372 		return MAX_LFS_FILESIZE;
1373 
1374 	if (S_ISBLK(inode->i_mode))
1375 		return MAX_LFS_FILESIZE;
1376 
1377 	if (S_ISSOCK(inode->i_mode))
1378 		return MAX_LFS_FILESIZE;
1379 
1380 	/* Special "we do even unsigned file positions" case */
1381 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1382 		return 0;
1383 
1384 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1385 	return ULONG_MAX;
1386 }
1387 
1388 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1389 				unsigned long pgoff, unsigned long len)
1390 {
1391 	u64 maxsize = file_mmap_size_max(file, inode);
1392 
1393 	if (maxsize && len > maxsize)
1394 		return false;
1395 	maxsize -= len;
1396 	if (pgoff > maxsize >> PAGE_SHIFT)
1397 		return false;
1398 	return true;
1399 }
1400 
1401 /*
1402  * The caller must write-lock current->mm->mmap_lock.
1403  */
1404 unsigned long do_mmap(struct file *file, unsigned long addr,
1405 			unsigned long len, unsigned long prot,
1406 			unsigned long flags, unsigned long pgoff,
1407 			unsigned long *populate, struct list_head *uf)
1408 {
1409 	struct mm_struct *mm = current->mm;
1410 	vm_flags_t vm_flags;
1411 	int pkey = 0;
1412 
1413 	*populate = 0;
1414 
1415 	if (!len)
1416 		return -EINVAL;
1417 
1418 	/*
1419 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1420 	 *
1421 	 * (the exception is when the underlying filesystem is noexec
1422 	 *  mounted, in which case we dont add PROT_EXEC.)
1423 	 */
1424 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1425 		if (!(file && path_noexec(&file->f_path)))
1426 			prot |= PROT_EXEC;
1427 
1428 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1429 	if (flags & MAP_FIXED_NOREPLACE)
1430 		flags |= MAP_FIXED;
1431 
1432 	if (!(flags & MAP_FIXED))
1433 		addr = round_hint_to_min(addr);
1434 
1435 	/* Careful about overflows.. */
1436 	len = PAGE_ALIGN(len);
1437 	if (!len)
1438 		return -ENOMEM;
1439 
1440 	/* offset overflow? */
1441 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1442 		return -EOVERFLOW;
1443 
1444 	/* Too many mappings? */
1445 	if (mm->map_count > sysctl_max_map_count)
1446 		return -ENOMEM;
1447 
1448 	/* Obtain the address to map to. we verify (or select) it and ensure
1449 	 * that it represents a valid section of the address space.
1450 	 */
1451 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1452 	if (IS_ERR_VALUE(addr))
1453 		return addr;
1454 
1455 	if (flags & MAP_FIXED_NOREPLACE) {
1456 		if (find_vma_intersection(mm, addr, addr + len))
1457 			return -EEXIST;
1458 	}
1459 
1460 	if (prot == PROT_EXEC) {
1461 		pkey = execute_only_pkey(mm);
1462 		if (pkey < 0)
1463 			pkey = 0;
1464 	}
1465 
1466 	/* Do simple checking here so the lower-level routines won't have
1467 	 * to. we assume access permissions have been handled by the open
1468 	 * of the memory object, so we don't do any here.
1469 	 */
1470 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1471 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1472 
1473 	if (flags & MAP_LOCKED)
1474 		if (!can_do_mlock())
1475 			return -EPERM;
1476 
1477 	if (mlock_future_check(mm, vm_flags, len))
1478 		return -EAGAIN;
1479 
1480 	if (file) {
1481 		struct inode *inode = file_inode(file);
1482 		unsigned long flags_mask;
1483 
1484 		if (!file_mmap_ok(file, inode, pgoff, len))
1485 			return -EOVERFLOW;
1486 
1487 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1488 
1489 		switch (flags & MAP_TYPE) {
1490 		case MAP_SHARED:
1491 			/*
1492 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1493 			 * flags. E.g. MAP_SYNC is dangerous to use with
1494 			 * MAP_SHARED as you don't know which consistency model
1495 			 * you will get. We silently ignore unsupported flags
1496 			 * with MAP_SHARED to preserve backward compatibility.
1497 			 */
1498 			flags &= LEGACY_MAP_MASK;
1499 			fallthrough;
1500 		case MAP_SHARED_VALIDATE:
1501 			if (flags & ~flags_mask)
1502 				return -EOPNOTSUPP;
1503 			if (prot & PROT_WRITE) {
1504 				if (!(file->f_mode & FMODE_WRITE))
1505 					return -EACCES;
1506 				if (IS_SWAPFILE(file->f_mapping->host))
1507 					return -ETXTBSY;
1508 			}
1509 
1510 			/*
1511 			 * Make sure we don't allow writing to an append-only
1512 			 * file..
1513 			 */
1514 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1515 				return -EACCES;
1516 
1517 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1518 			if (!(file->f_mode & FMODE_WRITE))
1519 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1520 			fallthrough;
1521 		case MAP_PRIVATE:
1522 			if (!(file->f_mode & FMODE_READ))
1523 				return -EACCES;
1524 			if (path_noexec(&file->f_path)) {
1525 				if (vm_flags & VM_EXEC)
1526 					return -EPERM;
1527 				vm_flags &= ~VM_MAYEXEC;
1528 			}
1529 
1530 			if (!file->f_op->mmap)
1531 				return -ENODEV;
1532 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1533 				return -EINVAL;
1534 			break;
1535 
1536 		default:
1537 			return -EINVAL;
1538 		}
1539 	} else {
1540 		switch (flags & MAP_TYPE) {
1541 		case MAP_SHARED:
1542 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1543 				return -EINVAL;
1544 			/*
1545 			 * Ignore pgoff.
1546 			 */
1547 			pgoff = 0;
1548 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1549 			break;
1550 		case MAP_PRIVATE:
1551 			/*
1552 			 * Set pgoff according to addr for anon_vma.
1553 			 */
1554 			pgoff = addr >> PAGE_SHIFT;
1555 			break;
1556 		default:
1557 			return -EINVAL;
1558 		}
1559 	}
1560 
1561 	/*
1562 	 * Set 'VM_NORESERVE' if we should not account for the
1563 	 * memory use of this mapping.
1564 	 */
1565 	if (flags & MAP_NORESERVE) {
1566 		/* We honor MAP_NORESERVE if allowed to overcommit */
1567 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1568 			vm_flags |= VM_NORESERVE;
1569 
1570 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1571 		if (file && is_file_hugepages(file))
1572 			vm_flags |= VM_NORESERVE;
1573 	}
1574 
1575 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1576 	if (!IS_ERR_VALUE(addr) &&
1577 	    ((vm_flags & VM_LOCKED) ||
1578 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1579 		*populate = len;
1580 	return addr;
1581 }
1582 
1583 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1584 			      unsigned long prot, unsigned long flags,
1585 			      unsigned long fd, unsigned long pgoff)
1586 {
1587 	struct file *file = NULL;
1588 	unsigned long retval;
1589 
1590 	if (!(flags & MAP_ANONYMOUS)) {
1591 		audit_mmap_fd(fd, flags);
1592 		file = fget(fd);
1593 		if (!file)
1594 			return -EBADF;
1595 		if (is_file_hugepages(file)) {
1596 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1597 		} else if (unlikely(flags & MAP_HUGETLB)) {
1598 			retval = -EINVAL;
1599 			goto out_fput;
1600 		}
1601 	} else if (flags & MAP_HUGETLB) {
1602 		struct hstate *hs;
1603 
1604 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1605 		if (!hs)
1606 			return -EINVAL;
1607 
1608 		len = ALIGN(len, huge_page_size(hs));
1609 		/*
1610 		 * VM_NORESERVE is used because the reservations will be
1611 		 * taken when vm_ops->mmap() is called
1612 		 * A dummy user value is used because we are not locking
1613 		 * memory so no accounting is necessary
1614 		 */
1615 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1616 				VM_NORESERVE,
1617 				HUGETLB_ANONHUGE_INODE,
1618 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1619 		if (IS_ERR(file))
1620 			return PTR_ERR(file);
1621 	}
1622 
1623 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1624 out_fput:
1625 	if (file)
1626 		fput(file);
1627 	return retval;
1628 }
1629 
1630 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1631 		unsigned long, prot, unsigned long, flags,
1632 		unsigned long, fd, unsigned long, pgoff)
1633 {
1634 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1635 }
1636 
1637 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1638 struct mmap_arg_struct {
1639 	unsigned long addr;
1640 	unsigned long len;
1641 	unsigned long prot;
1642 	unsigned long flags;
1643 	unsigned long fd;
1644 	unsigned long offset;
1645 };
1646 
1647 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1648 {
1649 	struct mmap_arg_struct a;
1650 
1651 	if (copy_from_user(&a, arg, sizeof(a)))
1652 		return -EFAULT;
1653 	if (offset_in_page(a.offset))
1654 		return -EINVAL;
1655 
1656 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1657 			       a.offset >> PAGE_SHIFT);
1658 }
1659 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1660 
1661 /*
1662  * Some shared mappings will want the pages marked read-only
1663  * to track write events. If so, we'll downgrade vm_page_prot
1664  * to the private version (using protection_map[] without the
1665  * VM_SHARED bit).
1666  */
1667 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1668 {
1669 	vm_flags_t vm_flags = vma->vm_flags;
1670 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1671 
1672 	/* If it was private or non-writable, the write bit is already clear */
1673 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1674 		return 0;
1675 
1676 	/* The backer wishes to know when pages are first written to? */
1677 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1678 		return 1;
1679 
1680 	/* The open routine did something to the protections that pgprot_modify
1681 	 * won't preserve? */
1682 	if (pgprot_val(vm_page_prot) !=
1683 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1684 		return 0;
1685 
1686 	/* Do we need to track softdirty? */
1687 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1688 		return 1;
1689 
1690 	/* Specialty mapping? */
1691 	if (vm_flags & VM_PFNMAP)
1692 		return 0;
1693 
1694 	/* Can the mapping track the dirty pages? */
1695 	return vma->vm_file && vma->vm_file->f_mapping &&
1696 		mapping_can_writeback(vma->vm_file->f_mapping);
1697 }
1698 
1699 /*
1700  * We account for memory if it's a private writeable mapping,
1701  * not hugepages and VM_NORESERVE wasn't set.
1702  */
1703 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1704 {
1705 	/*
1706 	 * hugetlb has its own accounting separate from the core VM
1707 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1708 	 */
1709 	if (file && is_file_hugepages(file))
1710 		return 0;
1711 
1712 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1713 }
1714 
1715 unsigned long mmap_region(struct file *file, unsigned long addr,
1716 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1717 		struct list_head *uf)
1718 {
1719 	struct mm_struct *mm = current->mm;
1720 	struct vm_area_struct *vma, *prev, *merge;
1721 	int error;
1722 	struct rb_node **rb_link, *rb_parent;
1723 	unsigned long charged = 0;
1724 
1725 	/* Check against address space limit. */
1726 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1727 		unsigned long nr_pages;
1728 
1729 		/*
1730 		 * MAP_FIXED may remove pages of mappings that intersects with
1731 		 * requested mapping. Account for the pages it would unmap.
1732 		 */
1733 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1734 
1735 		if (!may_expand_vm(mm, vm_flags,
1736 					(len >> PAGE_SHIFT) - nr_pages))
1737 			return -ENOMEM;
1738 	}
1739 
1740 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1741 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1742 		return -ENOMEM;
1743 	/*
1744 	 * Private writable mapping: check memory availability
1745 	 */
1746 	if (accountable_mapping(file, vm_flags)) {
1747 		charged = len >> PAGE_SHIFT;
1748 		if (security_vm_enough_memory_mm(mm, charged))
1749 			return -ENOMEM;
1750 		vm_flags |= VM_ACCOUNT;
1751 	}
1752 
1753 	/*
1754 	 * Can we just expand an old mapping?
1755 	 */
1756 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1757 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1758 	if (vma)
1759 		goto out;
1760 
1761 	/*
1762 	 * Determine the object being mapped and call the appropriate
1763 	 * specific mapper. the address has already been validated, but
1764 	 * not unmapped, but the maps are removed from the list.
1765 	 */
1766 	vma = vm_area_alloc(mm);
1767 	if (!vma) {
1768 		error = -ENOMEM;
1769 		goto unacct_error;
1770 	}
1771 
1772 	vma->vm_start = addr;
1773 	vma->vm_end = addr + len;
1774 	vma->vm_flags = vm_flags;
1775 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1776 	vma->vm_pgoff = pgoff;
1777 
1778 	if (file) {
1779 		if (vm_flags & VM_SHARED) {
1780 			error = mapping_map_writable(file->f_mapping);
1781 			if (error)
1782 				goto free_vma;
1783 		}
1784 
1785 		vma->vm_file = get_file(file);
1786 		error = call_mmap(file, vma);
1787 		if (error)
1788 			goto unmap_and_free_vma;
1789 
1790 		/* Can addr have changed??
1791 		 *
1792 		 * Answer: Yes, several device drivers can do it in their
1793 		 *         f_op->mmap method. -DaveM
1794 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1795 		 *      be updated for vma_link()
1796 		 */
1797 		WARN_ON_ONCE(addr != vma->vm_start);
1798 
1799 		addr = vma->vm_start;
1800 
1801 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1802 		 * as we may succeed this time.
1803 		 */
1804 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1805 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1806 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1807 			if (merge) {
1808 				/* ->mmap() can change vma->vm_file and fput the original file. So
1809 				 * fput the vma->vm_file here or we would add an extra fput for file
1810 				 * and cause general protection fault ultimately.
1811 				 */
1812 				fput(vma->vm_file);
1813 				vm_area_free(vma);
1814 				vma = merge;
1815 				/* Update vm_flags to pick up the change. */
1816 				vm_flags = vma->vm_flags;
1817 				goto unmap_writable;
1818 			}
1819 		}
1820 
1821 		vm_flags = vma->vm_flags;
1822 	} else if (vm_flags & VM_SHARED) {
1823 		error = shmem_zero_setup(vma);
1824 		if (error)
1825 			goto free_vma;
1826 	} else {
1827 		vma_set_anonymous(vma);
1828 	}
1829 
1830 	/* Allow architectures to sanity-check the vm_flags */
1831 	if (!arch_validate_flags(vma->vm_flags)) {
1832 		error = -EINVAL;
1833 		if (file)
1834 			goto unmap_and_free_vma;
1835 		else
1836 			goto free_vma;
1837 	}
1838 
1839 	vma_link(mm, vma, prev, rb_link, rb_parent);
1840 	/* Once vma denies write, undo our temporary denial count */
1841 unmap_writable:
1842 	if (file && vm_flags & VM_SHARED)
1843 		mapping_unmap_writable(file->f_mapping);
1844 	file = vma->vm_file;
1845 out:
1846 	perf_event_mmap(vma);
1847 
1848 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1849 	if (vm_flags & VM_LOCKED) {
1850 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1851 					is_vm_hugetlb_page(vma) ||
1852 					vma == get_gate_vma(current->mm))
1853 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1854 		else
1855 			mm->locked_vm += (len >> PAGE_SHIFT);
1856 	}
1857 
1858 	if (file)
1859 		uprobe_mmap(vma);
1860 
1861 	/*
1862 	 * New (or expanded) vma always get soft dirty status.
1863 	 * Otherwise user-space soft-dirty page tracker won't
1864 	 * be able to distinguish situation when vma area unmapped,
1865 	 * then new mapped in-place (which must be aimed as
1866 	 * a completely new data area).
1867 	 */
1868 	vma->vm_flags |= VM_SOFTDIRTY;
1869 
1870 	vma_set_page_prot(vma);
1871 
1872 	return addr;
1873 
1874 unmap_and_free_vma:
1875 	fput(vma->vm_file);
1876 	vma->vm_file = NULL;
1877 
1878 	/* Undo any partial mapping done by a device driver. */
1879 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1880 	charged = 0;
1881 	if (vm_flags & VM_SHARED)
1882 		mapping_unmap_writable(file->f_mapping);
1883 free_vma:
1884 	vm_area_free(vma);
1885 unacct_error:
1886 	if (charged)
1887 		vm_unacct_memory(charged);
1888 	return error;
1889 }
1890 
1891 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1892 {
1893 	/*
1894 	 * We implement the search by looking for an rbtree node that
1895 	 * immediately follows a suitable gap. That is,
1896 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1897 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1898 	 * - gap_end - gap_start >= length
1899 	 */
1900 
1901 	struct mm_struct *mm = current->mm;
1902 	struct vm_area_struct *vma;
1903 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1904 
1905 	/* Adjust search length to account for worst case alignment overhead */
1906 	length = info->length + info->align_mask;
1907 	if (length < info->length)
1908 		return -ENOMEM;
1909 
1910 	/* Adjust search limits by the desired length */
1911 	if (info->high_limit < length)
1912 		return -ENOMEM;
1913 	high_limit = info->high_limit - length;
1914 
1915 	if (info->low_limit > high_limit)
1916 		return -ENOMEM;
1917 	low_limit = info->low_limit + length;
1918 
1919 	/* Check if rbtree root looks promising */
1920 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1921 		goto check_highest;
1922 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1923 	if (vma->rb_subtree_gap < length)
1924 		goto check_highest;
1925 
1926 	while (true) {
1927 		/* Visit left subtree if it looks promising */
1928 		gap_end = vm_start_gap(vma);
1929 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1930 			struct vm_area_struct *left =
1931 				rb_entry(vma->vm_rb.rb_left,
1932 					 struct vm_area_struct, vm_rb);
1933 			if (left->rb_subtree_gap >= length) {
1934 				vma = left;
1935 				continue;
1936 			}
1937 		}
1938 
1939 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1940 check_current:
1941 		/* Check if current node has a suitable gap */
1942 		if (gap_start > high_limit)
1943 			return -ENOMEM;
1944 		if (gap_end >= low_limit &&
1945 		    gap_end > gap_start && gap_end - gap_start >= length)
1946 			goto found;
1947 
1948 		/* Visit right subtree if it looks promising */
1949 		if (vma->vm_rb.rb_right) {
1950 			struct vm_area_struct *right =
1951 				rb_entry(vma->vm_rb.rb_right,
1952 					 struct vm_area_struct, vm_rb);
1953 			if (right->rb_subtree_gap >= length) {
1954 				vma = right;
1955 				continue;
1956 			}
1957 		}
1958 
1959 		/* Go back up the rbtree to find next candidate node */
1960 		while (true) {
1961 			struct rb_node *prev = &vma->vm_rb;
1962 			if (!rb_parent(prev))
1963 				goto check_highest;
1964 			vma = rb_entry(rb_parent(prev),
1965 				       struct vm_area_struct, vm_rb);
1966 			if (prev == vma->vm_rb.rb_left) {
1967 				gap_start = vm_end_gap(vma->vm_prev);
1968 				gap_end = vm_start_gap(vma);
1969 				goto check_current;
1970 			}
1971 		}
1972 	}
1973 
1974 check_highest:
1975 	/* Check highest gap, which does not precede any rbtree node */
1976 	gap_start = mm->highest_vm_end;
1977 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1978 	if (gap_start > high_limit)
1979 		return -ENOMEM;
1980 
1981 found:
1982 	/* We found a suitable gap. Clip it with the original low_limit. */
1983 	if (gap_start < info->low_limit)
1984 		gap_start = info->low_limit;
1985 
1986 	/* Adjust gap address to the desired alignment */
1987 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1988 
1989 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1990 	VM_BUG_ON(gap_start + info->length > gap_end);
1991 	return gap_start;
1992 }
1993 
1994 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1995 {
1996 	struct mm_struct *mm = current->mm;
1997 	struct vm_area_struct *vma;
1998 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1999 
2000 	/* Adjust search length to account for worst case alignment overhead */
2001 	length = info->length + info->align_mask;
2002 	if (length < info->length)
2003 		return -ENOMEM;
2004 
2005 	/*
2006 	 * Adjust search limits by the desired length.
2007 	 * See implementation comment at top of unmapped_area().
2008 	 */
2009 	gap_end = info->high_limit;
2010 	if (gap_end < length)
2011 		return -ENOMEM;
2012 	high_limit = gap_end - length;
2013 
2014 	if (info->low_limit > high_limit)
2015 		return -ENOMEM;
2016 	low_limit = info->low_limit + length;
2017 
2018 	/* Check highest gap, which does not precede any rbtree node */
2019 	gap_start = mm->highest_vm_end;
2020 	if (gap_start <= high_limit)
2021 		goto found_highest;
2022 
2023 	/* Check if rbtree root looks promising */
2024 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2025 		return -ENOMEM;
2026 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2027 	if (vma->rb_subtree_gap < length)
2028 		return -ENOMEM;
2029 
2030 	while (true) {
2031 		/* Visit right subtree if it looks promising */
2032 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2033 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2034 			struct vm_area_struct *right =
2035 				rb_entry(vma->vm_rb.rb_right,
2036 					 struct vm_area_struct, vm_rb);
2037 			if (right->rb_subtree_gap >= length) {
2038 				vma = right;
2039 				continue;
2040 			}
2041 		}
2042 
2043 check_current:
2044 		/* Check if current node has a suitable gap */
2045 		gap_end = vm_start_gap(vma);
2046 		if (gap_end < low_limit)
2047 			return -ENOMEM;
2048 		if (gap_start <= high_limit &&
2049 		    gap_end > gap_start && gap_end - gap_start >= length)
2050 			goto found;
2051 
2052 		/* Visit left subtree if it looks promising */
2053 		if (vma->vm_rb.rb_left) {
2054 			struct vm_area_struct *left =
2055 				rb_entry(vma->vm_rb.rb_left,
2056 					 struct vm_area_struct, vm_rb);
2057 			if (left->rb_subtree_gap >= length) {
2058 				vma = left;
2059 				continue;
2060 			}
2061 		}
2062 
2063 		/* Go back up the rbtree to find next candidate node */
2064 		while (true) {
2065 			struct rb_node *prev = &vma->vm_rb;
2066 			if (!rb_parent(prev))
2067 				return -ENOMEM;
2068 			vma = rb_entry(rb_parent(prev),
2069 				       struct vm_area_struct, vm_rb);
2070 			if (prev == vma->vm_rb.rb_right) {
2071 				gap_start = vma->vm_prev ?
2072 					vm_end_gap(vma->vm_prev) : 0;
2073 				goto check_current;
2074 			}
2075 		}
2076 	}
2077 
2078 found:
2079 	/* We found a suitable gap. Clip it with the original high_limit. */
2080 	if (gap_end > info->high_limit)
2081 		gap_end = info->high_limit;
2082 
2083 found_highest:
2084 	/* Compute highest gap address at the desired alignment */
2085 	gap_end -= info->length;
2086 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2087 
2088 	VM_BUG_ON(gap_end < info->low_limit);
2089 	VM_BUG_ON(gap_end < gap_start);
2090 	return gap_end;
2091 }
2092 
2093 /*
2094  * Search for an unmapped address range.
2095  *
2096  * We are looking for a range that:
2097  * - does not intersect with any VMA;
2098  * - is contained within the [low_limit, high_limit) interval;
2099  * - is at least the desired size.
2100  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2101  */
2102 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2103 {
2104 	unsigned long addr;
2105 
2106 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2107 		addr = unmapped_area_topdown(info);
2108 	else
2109 		addr = unmapped_area(info);
2110 
2111 	trace_vm_unmapped_area(addr, info);
2112 	return addr;
2113 }
2114 
2115 #ifndef arch_get_mmap_end
2116 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2117 #endif
2118 
2119 #ifndef arch_get_mmap_base
2120 #define arch_get_mmap_base(addr, base) (base)
2121 #endif
2122 
2123 /* Get an address range which is currently unmapped.
2124  * For shmat() with addr=0.
2125  *
2126  * Ugly calling convention alert:
2127  * Return value with the low bits set means error value,
2128  * ie
2129  *	if (ret & ~PAGE_MASK)
2130  *		error = ret;
2131  *
2132  * This function "knows" that -ENOMEM has the bits set.
2133  */
2134 #ifndef HAVE_ARCH_UNMAPPED_AREA
2135 unsigned long
2136 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2137 		unsigned long len, unsigned long pgoff, unsigned long flags)
2138 {
2139 	struct mm_struct *mm = current->mm;
2140 	struct vm_area_struct *vma, *prev;
2141 	struct vm_unmapped_area_info info;
2142 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2143 
2144 	if (len > mmap_end - mmap_min_addr)
2145 		return -ENOMEM;
2146 
2147 	if (flags & MAP_FIXED)
2148 		return addr;
2149 
2150 	if (addr) {
2151 		addr = PAGE_ALIGN(addr);
2152 		vma = find_vma_prev(mm, addr, &prev);
2153 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2154 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2155 		    (!prev || addr >= vm_end_gap(prev)))
2156 			return addr;
2157 	}
2158 
2159 	info.flags = 0;
2160 	info.length = len;
2161 	info.low_limit = mm->mmap_base;
2162 	info.high_limit = mmap_end;
2163 	info.align_mask = 0;
2164 	info.align_offset = 0;
2165 	return vm_unmapped_area(&info);
2166 }
2167 #endif
2168 
2169 /*
2170  * This mmap-allocator allocates new areas top-down from below the
2171  * stack's low limit (the base):
2172  */
2173 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2174 unsigned long
2175 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2176 			  unsigned long len, unsigned long pgoff,
2177 			  unsigned long flags)
2178 {
2179 	struct vm_area_struct *vma, *prev;
2180 	struct mm_struct *mm = current->mm;
2181 	struct vm_unmapped_area_info info;
2182 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2183 
2184 	/* requested length too big for entire address space */
2185 	if (len > mmap_end - mmap_min_addr)
2186 		return -ENOMEM;
2187 
2188 	if (flags & MAP_FIXED)
2189 		return addr;
2190 
2191 	/* requesting a specific address */
2192 	if (addr) {
2193 		addr = PAGE_ALIGN(addr);
2194 		vma = find_vma_prev(mm, addr, &prev);
2195 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2196 				(!vma || addr + len <= vm_start_gap(vma)) &&
2197 				(!prev || addr >= vm_end_gap(prev)))
2198 			return addr;
2199 	}
2200 
2201 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2202 	info.length = len;
2203 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2204 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2205 	info.align_mask = 0;
2206 	info.align_offset = 0;
2207 	addr = vm_unmapped_area(&info);
2208 
2209 	/*
2210 	 * A failed mmap() very likely causes application failure,
2211 	 * so fall back to the bottom-up function here. This scenario
2212 	 * can happen with large stack limits and large mmap()
2213 	 * allocations.
2214 	 */
2215 	if (offset_in_page(addr)) {
2216 		VM_BUG_ON(addr != -ENOMEM);
2217 		info.flags = 0;
2218 		info.low_limit = TASK_UNMAPPED_BASE;
2219 		info.high_limit = mmap_end;
2220 		addr = vm_unmapped_area(&info);
2221 	}
2222 
2223 	return addr;
2224 }
2225 #endif
2226 
2227 unsigned long
2228 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2229 		unsigned long pgoff, unsigned long flags)
2230 {
2231 	unsigned long (*get_area)(struct file *, unsigned long,
2232 				  unsigned long, unsigned long, unsigned long);
2233 
2234 	unsigned long error = arch_mmap_check(addr, len, flags);
2235 	if (error)
2236 		return error;
2237 
2238 	/* Careful about overflows.. */
2239 	if (len > TASK_SIZE)
2240 		return -ENOMEM;
2241 
2242 	get_area = current->mm->get_unmapped_area;
2243 	if (file) {
2244 		if (file->f_op->get_unmapped_area)
2245 			get_area = file->f_op->get_unmapped_area;
2246 	} else if (flags & MAP_SHARED) {
2247 		/*
2248 		 * mmap_region() will call shmem_zero_setup() to create a file,
2249 		 * so use shmem's get_unmapped_area in case it can be huge.
2250 		 * do_mmap() will clear pgoff, so match alignment.
2251 		 */
2252 		pgoff = 0;
2253 		get_area = shmem_get_unmapped_area;
2254 	}
2255 
2256 	addr = get_area(file, addr, len, pgoff, flags);
2257 	if (IS_ERR_VALUE(addr))
2258 		return addr;
2259 
2260 	if (addr > TASK_SIZE - len)
2261 		return -ENOMEM;
2262 	if (offset_in_page(addr))
2263 		return -EINVAL;
2264 
2265 	error = security_mmap_addr(addr);
2266 	return error ? error : addr;
2267 }
2268 
2269 EXPORT_SYMBOL(get_unmapped_area);
2270 
2271 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2272 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2273 {
2274 	struct rb_node *rb_node;
2275 	struct vm_area_struct *vma;
2276 
2277 	mmap_assert_locked(mm);
2278 	/* Check the cache first. */
2279 	vma = vmacache_find(mm, addr);
2280 	if (likely(vma))
2281 		return vma;
2282 
2283 	rb_node = mm->mm_rb.rb_node;
2284 
2285 	while (rb_node) {
2286 		struct vm_area_struct *tmp;
2287 
2288 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2289 
2290 		if (tmp->vm_end > addr) {
2291 			vma = tmp;
2292 			if (tmp->vm_start <= addr)
2293 				break;
2294 			rb_node = rb_node->rb_left;
2295 		} else
2296 			rb_node = rb_node->rb_right;
2297 	}
2298 
2299 	if (vma)
2300 		vmacache_update(addr, vma);
2301 	return vma;
2302 }
2303 
2304 EXPORT_SYMBOL(find_vma);
2305 
2306 /*
2307  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2308  */
2309 struct vm_area_struct *
2310 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2311 			struct vm_area_struct **pprev)
2312 {
2313 	struct vm_area_struct *vma;
2314 
2315 	vma = find_vma(mm, addr);
2316 	if (vma) {
2317 		*pprev = vma->vm_prev;
2318 	} else {
2319 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2320 
2321 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2322 	}
2323 	return vma;
2324 }
2325 
2326 /*
2327  * Verify that the stack growth is acceptable and
2328  * update accounting. This is shared with both the
2329  * grow-up and grow-down cases.
2330  */
2331 static int acct_stack_growth(struct vm_area_struct *vma,
2332 			     unsigned long size, unsigned long grow)
2333 {
2334 	struct mm_struct *mm = vma->vm_mm;
2335 	unsigned long new_start;
2336 
2337 	/* address space limit tests */
2338 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2339 		return -ENOMEM;
2340 
2341 	/* Stack limit test */
2342 	if (size > rlimit(RLIMIT_STACK))
2343 		return -ENOMEM;
2344 
2345 	/* mlock limit tests */
2346 	if (vma->vm_flags & VM_LOCKED) {
2347 		unsigned long locked;
2348 		unsigned long limit;
2349 		locked = mm->locked_vm + grow;
2350 		limit = rlimit(RLIMIT_MEMLOCK);
2351 		limit >>= PAGE_SHIFT;
2352 		if (locked > limit && !capable(CAP_IPC_LOCK))
2353 			return -ENOMEM;
2354 	}
2355 
2356 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2357 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2358 			vma->vm_end - size;
2359 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2360 		return -EFAULT;
2361 
2362 	/*
2363 	 * Overcommit..  This must be the final test, as it will
2364 	 * update security statistics.
2365 	 */
2366 	if (security_vm_enough_memory_mm(mm, grow))
2367 		return -ENOMEM;
2368 
2369 	return 0;
2370 }
2371 
2372 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2373 /*
2374  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2375  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2376  */
2377 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2378 {
2379 	struct mm_struct *mm = vma->vm_mm;
2380 	struct vm_area_struct *next;
2381 	unsigned long gap_addr;
2382 	int error = 0;
2383 
2384 	if (!(vma->vm_flags & VM_GROWSUP))
2385 		return -EFAULT;
2386 
2387 	/* Guard against exceeding limits of the address space. */
2388 	address &= PAGE_MASK;
2389 	if (address >= (TASK_SIZE & PAGE_MASK))
2390 		return -ENOMEM;
2391 	address += PAGE_SIZE;
2392 
2393 	/* Enforce stack_guard_gap */
2394 	gap_addr = address + stack_guard_gap;
2395 
2396 	/* Guard against overflow */
2397 	if (gap_addr < address || gap_addr > TASK_SIZE)
2398 		gap_addr = TASK_SIZE;
2399 
2400 	next = vma->vm_next;
2401 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2402 		if (!(next->vm_flags & VM_GROWSUP))
2403 			return -ENOMEM;
2404 		/* Check that both stack segments have the same anon_vma? */
2405 	}
2406 
2407 	/* We must make sure the anon_vma is allocated. */
2408 	if (unlikely(anon_vma_prepare(vma)))
2409 		return -ENOMEM;
2410 
2411 	/*
2412 	 * vma->vm_start/vm_end cannot change under us because the caller
2413 	 * is required to hold the mmap_lock in read mode.  We need the
2414 	 * anon_vma lock to serialize against concurrent expand_stacks.
2415 	 */
2416 	anon_vma_lock_write(vma->anon_vma);
2417 
2418 	/* Somebody else might have raced and expanded it already */
2419 	if (address > vma->vm_end) {
2420 		unsigned long size, grow;
2421 
2422 		size = address - vma->vm_start;
2423 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2424 
2425 		error = -ENOMEM;
2426 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2427 			error = acct_stack_growth(vma, size, grow);
2428 			if (!error) {
2429 				/*
2430 				 * vma_gap_update() doesn't support concurrent
2431 				 * updates, but we only hold a shared mmap_lock
2432 				 * lock here, so we need to protect against
2433 				 * concurrent vma expansions.
2434 				 * anon_vma_lock_write() doesn't help here, as
2435 				 * we don't guarantee that all growable vmas
2436 				 * in a mm share the same root anon vma.
2437 				 * So, we reuse mm->page_table_lock to guard
2438 				 * against concurrent vma expansions.
2439 				 */
2440 				spin_lock(&mm->page_table_lock);
2441 				if (vma->vm_flags & VM_LOCKED)
2442 					mm->locked_vm += grow;
2443 				vm_stat_account(mm, vma->vm_flags, grow);
2444 				anon_vma_interval_tree_pre_update_vma(vma);
2445 				vma->vm_end = address;
2446 				anon_vma_interval_tree_post_update_vma(vma);
2447 				if (vma->vm_next)
2448 					vma_gap_update(vma->vm_next);
2449 				else
2450 					mm->highest_vm_end = vm_end_gap(vma);
2451 				spin_unlock(&mm->page_table_lock);
2452 
2453 				perf_event_mmap(vma);
2454 			}
2455 		}
2456 	}
2457 	anon_vma_unlock_write(vma->anon_vma);
2458 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2459 	validate_mm(mm);
2460 	return error;
2461 }
2462 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2463 
2464 /*
2465  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2466  */
2467 int expand_downwards(struct vm_area_struct *vma,
2468 				   unsigned long address)
2469 {
2470 	struct mm_struct *mm = vma->vm_mm;
2471 	struct vm_area_struct *prev;
2472 	int error = 0;
2473 
2474 	address &= PAGE_MASK;
2475 	if (address < mmap_min_addr)
2476 		return -EPERM;
2477 
2478 	/* Enforce stack_guard_gap */
2479 	prev = vma->vm_prev;
2480 	/* Check that both stack segments have the same anon_vma? */
2481 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2482 			vma_is_accessible(prev)) {
2483 		if (address - prev->vm_end < stack_guard_gap)
2484 			return -ENOMEM;
2485 	}
2486 
2487 	/* We must make sure the anon_vma is allocated. */
2488 	if (unlikely(anon_vma_prepare(vma)))
2489 		return -ENOMEM;
2490 
2491 	/*
2492 	 * vma->vm_start/vm_end cannot change under us because the caller
2493 	 * is required to hold the mmap_lock in read mode.  We need the
2494 	 * anon_vma lock to serialize against concurrent expand_stacks.
2495 	 */
2496 	anon_vma_lock_write(vma->anon_vma);
2497 
2498 	/* Somebody else might have raced and expanded it already */
2499 	if (address < vma->vm_start) {
2500 		unsigned long size, grow;
2501 
2502 		size = vma->vm_end - address;
2503 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2504 
2505 		error = -ENOMEM;
2506 		if (grow <= vma->vm_pgoff) {
2507 			error = acct_stack_growth(vma, size, grow);
2508 			if (!error) {
2509 				/*
2510 				 * vma_gap_update() doesn't support concurrent
2511 				 * updates, but we only hold a shared mmap_lock
2512 				 * lock here, so we need to protect against
2513 				 * concurrent vma expansions.
2514 				 * anon_vma_lock_write() doesn't help here, as
2515 				 * we don't guarantee that all growable vmas
2516 				 * in a mm share the same root anon vma.
2517 				 * So, we reuse mm->page_table_lock to guard
2518 				 * against concurrent vma expansions.
2519 				 */
2520 				spin_lock(&mm->page_table_lock);
2521 				if (vma->vm_flags & VM_LOCKED)
2522 					mm->locked_vm += grow;
2523 				vm_stat_account(mm, vma->vm_flags, grow);
2524 				anon_vma_interval_tree_pre_update_vma(vma);
2525 				vma->vm_start = address;
2526 				vma->vm_pgoff -= grow;
2527 				anon_vma_interval_tree_post_update_vma(vma);
2528 				vma_gap_update(vma);
2529 				spin_unlock(&mm->page_table_lock);
2530 
2531 				perf_event_mmap(vma);
2532 			}
2533 		}
2534 	}
2535 	anon_vma_unlock_write(vma->anon_vma);
2536 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2537 	validate_mm(mm);
2538 	return error;
2539 }
2540 
2541 /* enforced gap between the expanding stack and other mappings. */
2542 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2543 
2544 static int __init cmdline_parse_stack_guard_gap(char *p)
2545 {
2546 	unsigned long val;
2547 	char *endptr;
2548 
2549 	val = simple_strtoul(p, &endptr, 10);
2550 	if (!*endptr)
2551 		stack_guard_gap = val << PAGE_SHIFT;
2552 
2553 	return 0;
2554 }
2555 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2556 
2557 #ifdef CONFIG_STACK_GROWSUP
2558 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2559 {
2560 	return expand_upwards(vma, address);
2561 }
2562 
2563 struct vm_area_struct *
2564 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2565 {
2566 	struct vm_area_struct *vma, *prev;
2567 
2568 	addr &= PAGE_MASK;
2569 	vma = find_vma_prev(mm, addr, &prev);
2570 	if (vma && (vma->vm_start <= addr))
2571 		return vma;
2572 	/* don't alter vm_end if the coredump is running */
2573 	if (!prev || expand_stack(prev, addr))
2574 		return NULL;
2575 	if (prev->vm_flags & VM_LOCKED)
2576 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2577 	return prev;
2578 }
2579 #else
2580 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2581 {
2582 	return expand_downwards(vma, address);
2583 }
2584 
2585 struct vm_area_struct *
2586 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2587 {
2588 	struct vm_area_struct *vma;
2589 	unsigned long start;
2590 
2591 	addr &= PAGE_MASK;
2592 	vma = find_vma(mm, addr);
2593 	if (!vma)
2594 		return NULL;
2595 	if (vma->vm_start <= addr)
2596 		return vma;
2597 	if (!(vma->vm_flags & VM_GROWSDOWN))
2598 		return NULL;
2599 	start = vma->vm_start;
2600 	if (expand_stack(vma, addr))
2601 		return NULL;
2602 	if (vma->vm_flags & VM_LOCKED)
2603 		populate_vma_page_range(vma, addr, start, NULL);
2604 	return vma;
2605 }
2606 #endif
2607 
2608 EXPORT_SYMBOL_GPL(find_extend_vma);
2609 
2610 /*
2611  * Ok - we have the memory areas we should free on the vma list,
2612  * so release them, and do the vma updates.
2613  *
2614  * Called with the mm semaphore held.
2615  */
2616 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2617 {
2618 	unsigned long nr_accounted = 0;
2619 
2620 	/* Update high watermark before we lower total_vm */
2621 	update_hiwater_vm(mm);
2622 	do {
2623 		long nrpages = vma_pages(vma);
2624 
2625 		if (vma->vm_flags & VM_ACCOUNT)
2626 			nr_accounted += nrpages;
2627 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2628 		vma = remove_vma(vma);
2629 	} while (vma);
2630 	vm_unacct_memory(nr_accounted);
2631 	validate_mm(mm);
2632 }
2633 
2634 /*
2635  * Get rid of page table information in the indicated region.
2636  *
2637  * Called with the mm semaphore held.
2638  */
2639 static void unmap_region(struct mm_struct *mm,
2640 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2641 		unsigned long start, unsigned long end)
2642 {
2643 	struct vm_area_struct *next = vma_next(mm, prev);
2644 	struct mmu_gather tlb;
2645 
2646 	lru_add_drain();
2647 	tlb_gather_mmu(&tlb, mm);
2648 	update_hiwater_rss(mm);
2649 	unmap_vmas(&tlb, vma, start, end);
2650 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2651 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2652 	tlb_finish_mmu(&tlb);
2653 }
2654 
2655 /*
2656  * Create a list of vma's touched by the unmap, removing them from the mm's
2657  * vma list as we go..
2658  */
2659 static bool
2660 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2661 	struct vm_area_struct *prev, unsigned long end)
2662 {
2663 	struct vm_area_struct **insertion_point;
2664 	struct vm_area_struct *tail_vma = NULL;
2665 
2666 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2667 	vma->vm_prev = NULL;
2668 	do {
2669 		vma_rb_erase(vma, &mm->mm_rb);
2670 		mm->map_count--;
2671 		tail_vma = vma;
2672 		vma = vma->vm_next;
2673 	} while (vma && vma->vm_start < end);
2674 	*insertion_point = vma;
2675 	if (vma) {
2676 		vma->vm_prev = prev;
2677 		vma_gap_update(vma);
2678 	} else
2679 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2680 	tail_vma->vm_next = NULL;
2681 
2682 	/* Kill the cache */
2683 	vmacache_invalidate(mm);
2684 
2685 	/*
2686 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2687 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2688 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2689 	 */
2690 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2691 		return false;
2692 	if (prev && (prev->vm_flags & VM_GROWSUP))
2693 		return false;
2694 	return true;
2695 }
2696 
2697 /*
2698  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2699  * has already been checked or doesn't make sense to fail.
2700  */
2701 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2702 		unsigned long addr, int new_below)
2703 {
2704 	struct vm_area_struct *new;
2705 	int err;
2706 
2707 	if (vma->vm_ops && vma->vm_ops->may_split) {
2708 		err = vma->vm_ops->may_split(vma, addr);
2709 		if (err)
2710 			return err;
2711 	}
2712 
2713 	new = vm_area_dup(vma);
2714 	if (!new)
2715 		return -ENOMEM;
2716 
2717 	if (new_below)
2718 		new->vm_end = addr;
2719 	else {
2720 		new->vm_start = addr;
2721 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2722 	}
2723 
2724 	err = vma_dup_policy(vma, new);
2725 	if (err)
2726 		goto out_free_vma;
2727 
2728 	err = anon_vma_clone(new, vma);
2729 	if (err)
2730 		goto out_free_mpol;
2731 
2732 	if (new->vm_file)
2733 		get_file(new->vm_file);
2734 
2735 	if (new->vm_ops && new->vm_ops->open)
2736 		new->vm_ops->open(new);
2737 
2738 	if (new_below)
2739 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2740 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2741 	else
2742 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2743 
2744 	/* Success. */
2745 	if (!err)
2746 		return 0;
2747 
2748 	/* Clean everything up if vma_adjust failed. */
2749 	if (new->vm_ops && new->vm_ops->close)
2750 		new->vm_ops->close(new);
2751 	if (new->vm_file)
2752 		fput(new->vm_file);
2753 	unlink_anon_vmas(new);
2754  out_free_mpol:
2755 	mpol_put(vma_policy(new));
2756  out_free_vma:
2757 	vm_area_free(new);
2758 	return err;
2759 }
2760 
2761 /*
2762  * Split a vma into two pieces at address 'addr', a new vma is allocated
2763  * either for the first part or the tail.
2764  */
2765 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2766 	      unsigned long addr, int new_below)
2767 {
2768 	if (mm->map_count >= sysctl_max_map_count)
2769 		return -ENOMEM;
2770 
2771 	return __split_vma(mm, vma, addr, new_below);
2772 }
2773 
2774 static inline void
2775 unlock_range(struct vm_area_struct *start, unsigned long limit)
2776 {
2777 	struct mm_struct *mm = start->vm_mm;
2778 	struct vm_area_struct *tmp = start;
2779 
2780 	while (tmp && tmp->vm_start < limit) {
2781 		if (tmp->vm_flags & VM_LOCKED) {
2782 			mm->locked_vm -= vma_pages(tmp);
2783 			munlock_vma_pages_all(tmp);
2784 		}
2785 
2786 		tmp = tmp->vm_next;
2787 	}
2788 }
2789 
2790 /* Munmap is split into 2 main parts -- this part which finds
2791  * what needs doing, and the areas themselves, which do the
2792  * work.  This now handles partial unmappings.
2793  * Jeremy Fitzhardinge <jeremy@goop.org>
2794  */
2795 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2796 		struct list_head *uf, bool downgrade)
2797 {
2798 	unsigned long end;
2799 	struct vm_area_struct *vma, *prev, *last;
2800 
2801 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2802 		return -EINVAL;
2803 
2804 	len = PAGE_ALIGN(len);
2805 	end = start + len;
2806 	if (len == 0)
2807 		return -EINVAL;
2808 
2809 	/*
2810 	 * arch_unmap() might do unmaps itself.  It must be called
2811 	 * and finish any rbtree manipulation before this code
2812 	 * runs and also starts to manipulate the rbtree.
2813 	 */
2814 	arch_unmap(mm, start, end);
2815 
2816 	/* Find the first overlapping VMA where start < vma->vm_end */
2817 	vma = find_vma_intersection(mm, start, end);
2818 	if (!vma)
2819 		return 0;
2820 	prev = vma->vm_prev;
2821 
2822 	/*
2823 	 * If we need to split any vma, do it now to save pain later.
2824 	 *
2825 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2826 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2827 	 * places tmp vma above, and higher split_vma places tmp vma below.
2828 	 */
2829 	if (start > vma->vm_start) {
2830 		int error;
2831 
2832 		/*
2833 		 * Make sure that map_count on return from munmap() will
2834 		 * not exceed its limit; but let map_count go just above
2835 		 * its limit temporarily, to help free resources as expected.
2836 		 */
2837 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2838 			return -ENOMEM;
2839 
2840 		error = __split_vma(mm, vma, start, 0);
2841 		if (error)
2842 			return error;
2843 		prev = vma;
2844 	}
2845 
2846 	/* Does it split the last one? */
2847 	last = find_vma(mm, end);
2848 	if (last && end > last->vm_start) {
2849 		int error = __split_vma(mm, last, end, 1);
2850 		if (error)
2851 			return error;
2852 	}
2853 	vma = vma_next(mm, prev);
2854 
2855 	if (unlikely(uf)) {
2856 		/*
2857 		 * If userfaultfd_unmap_prep returns an error the vmas
2858 		 * will remain split, but userland will get a
2859 		 * highly unexpected error anyway. This is no
2860 		 * different than the case where the first of the two
2861 		 * __split_vma fails, but we don't undo the first
2862 		 * split, despite we could. This is unlikely enough
2863 		 * failure that it's not worth optimizing it for.
2864 		 */
2865 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2866 		if (error)
2867 			return error;
2868 	}
2869 
2870 	/*
2871 	 * unlock any mlock()ed ranges before detaching vmas
2872 	 */
2873 	if (mm->locked_vm)
2874 		unlock_range(vma, end);
2875 
2876 	/* Detach vmas from rbtree */
2877 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2878 		downgrade = false;
2879 
2880 	if (downgrade)
2881 		mmap_write_downgrade(mm);
2882 
2883 	unmap_region(mm, vma, prev, start, end);
2884 
2885 	/* Fix up all other VM information */
2886 	remove_vma_list(mm, vma);
2887 
2888 	return downgrade ? 1 : 0;
2889 }
2890 
2891 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2892 	      struct list_head *uf)
2893 {
2894 	return __do_munmap(mm, start, len, uf, false);
2895 }
2896 
2897 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2898 {
2899 	int ret;
2900 	struct mm_struct *mm = current->mm;
2901 	LIST_HEAD(uf);
2902 
2903 	if (mmap_write_lock_killable(mm))
2904 		return -EINTR;
2905 
2906 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2907 	/*
2908 	 * Returning 1 indicates mmap_lock is downgraded.
2909 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2910 	 * it to 0 before return.
2911 	 */
2912 	if (ret == 1) {
2913 		mmap_read_unlock(mm);
2914 		ret = 0;
2915 	} else
2916 		mmap_write_unlock(mm);
2917 
2918 	userfaultfd_unmap_complete(mm, &uf);
2919 	return ret;
2920 }
2921 
2922 int vm_munmap(unsigned long start, size_t len)
2923 {
2924 	return __vm_munmap(start, len, false);
2925 }
2926 EXPORT_SYMBOL(vm_munmap);
2927 
2928 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2929 {
2930 	addr = untagged_addr(addr);
2931 	profile_munmap(addr);
2932 	return __vm_munmap(addr, len, true);
2933 }
2934 
2935 
2936 /*
2937  * Emulation of deprecated remap_file_pages() syscall.
2938  */
2939 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2940 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2941 {
2942 
2943 	struct mm_struct *mm = current->mm;
2944 	struct vm_area_struct *vma;
2945 	unsigned long populate = 0;
2946 	unsigned long ret = -EINVAL;
2947 	struct file *file;
2948 
2949 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2950 		     current->comm, current->pid);
2951 
2952 	if (prot)
2953 		return ret;
2954 	start = start & PAGE_MASK;
2955 	size = size & PAGE_MASK;
2956 
2957 	if (start + size <= start)
2958 		return ret;
2959 
2960 	/* Does pgoff wrap? */
2961 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2962 		return ret;
2963 
2964 	if (mmap_write_lock_killable(mm))
2965 		return -EINTR;
2966 
2967 	vma = vma_lookup(mm, start);
2968 
2969 	if (!vma || !(vma->vm_flags & VM_SHARED))
2970 		goto out;
2971 
2972 	if (start + size > vma->vm_end) {
2973 		struct vm_area_struct *next;
2974 
2975 		for (next = vma->vm_next; next; next = next->vm_next) {
2976 			/* hole between vmas ? */
2977 			if (next->vm_start != next->vm_prev->vm_end)
2978 				goto out;
2979 
2980 			if (next->vm_file != vma->vm_file)
2981 				goto out;
2982 
2983 			if (next->vm_flags != vma->vm_flags)
2984 				goto out;
2985 
2986 			if (start + size <= next->vm_end)
2987 				break;
2988 		}
2989 
2990 		if (!next)
2991 			goto out;
2992 	}
2993 
2994 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2995 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2996 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2997 
2998 	flags &= MAP_NONBLOCK;
2999 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3000 	if (vma->vm_flags & VM_LOCKED)
3001 		flags |= MAP_LOCKED;
3002 
3003 	file = get_file(vma->vm_file);
3004 	ret = do_mmap(vma->vm_file, start, size,
3005 			prot, flags, pgoff, &populate, NULL);
3006 	fput(file);
3007 out:
3008 	mmap_write_unlock(mm);
3009 	if (populate)
3010 		mm_populate(ret, populate);
3011 	if (!IS_ERR_VALUE(ret))
3012 		ret = 0;
3013 	return ret;
3014 }
3015 
3016 /*
3017  *  this is really a simplified "do_mmap".  it only handles
3018  *  anonymous maps.  eventually we may be able to do some
3019  *  brk-specific accounting here.
3020  */
3021 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3022 {
3023 	struct mm_struct *mm = current->mm;
3024 	struct vm_area_struct *vma, *prev;
3025 	struct rb_node **rb_link, *rb_parent;
3026 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3027 	int error;
3028 	unsigned long mapped_addr;
3029 
3030 	/* Until we need other flags, refuse anything except VM_EXEC. */
3031 	if ((flags & (~VM_EXEC)) != 0)
3032 		return -EINVAL;
3033 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3034 
3035 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3036 	if (IS_ERR_VALUE(mapped_addr))
3037 		return mapped_addr;
3038 
3039 	error = mlock_future_check(mm, mm->def_flags, len);
3040 	if (error)
3041 		return error;
3042 
3043 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3044 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3045 		return -ENOMEM;
3046 
3047 	/* Check against address space limits *after* clearing old maps... */
3048 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3049 		return -ENOMEM;
3050 
3051 	if (mm->map_count > sysctl_max_map_count)
3052 		return -ENOMEM;
3053 
3054 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3055 		return -ENOMEM;
3056 
3057 	/* Can we just expand an old private anonymous mapping? */
3058 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3059 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3060 	if (vma)
3061 		goto out;
3062 
3063 	/*
3064 	 * create a vma struct for an anonymous mapping
3065 	 */
3066 	vma = vm_area_alloc(mm);
3067 	if (!vma) {
3068 		vm_unacct_memory(len >> PAGE_SHIFT);
3069 		return -ENOMEM;
3070 	}
3071 
3072 	vma_set_anonymous(vma);
3073 	vma->vm_start = addr;
3074 	vma->vm_end = addr + len;
3075 	vma->vm_pgoff = pgoff;
3076 	vma->vm_flags = flags;
3077 	vma->vm_page_prot = vm_get_page_prot(flags);
3078 	vma_link(mm, vma, prev, rb_link, rb_parent);
3079 out:
3080 	perf_event_mmap(vma);
3081 	mm->total_vm += len >> PAGE_SHIFT;
3082 	mm->data_vm += len >> PAGE_SHIFT;
3083 	if (flags & VM_LOCKED)
3084 		mm->locked_vm += (len >> PAGE_SHIFT);
3085 	vma->vm_flags |= VM_SOFTDIRTY;
3086 	return 0;
3087 }
3088 
3089 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3090 {
3091 	struct mm_struct *mm = current->mm;
3092 	unsigned long len;
3093 	int ret;
3094 	bool populate;
3095 	LIST_HEAD(uf);
3096 
3097 	len = PAGE_ALIGN(request);
3098 	if (len < request)
3099 		return -ENOMEM;
3100 	if (!len)
3101 		return 0;
3102 
3103 	if (mmap_write_lock_killable(mm))
3104 		return -EINTR;
3105 
3106 	ret = do_brk_flags(addr, len, flags, &uf);
3107 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3108 	mmap_write_unlock(mm);
3109 	userfaultfd_unmap_complete(mm, &uf);
3110 	if (populate && !ret)
3111 		mm_populate(addr, len);
3112 	return ret;
3113 }
3114 EXPORT_SYMBOL(vm_brk_flags);
3115 
3116 int vm_brk(unsigned long addr, unsigned long len)
3117 {
3118 	return vm_brk_flags(addr, len, 0);
3119 }
3120 EXPORT_SYMBOL(vm_brk);
3121 
3122 /* Release all mmaps. */
3123 void exit_mmap(struct mm_struct *mm)
3124 {
3125 	struct mmu_gather tlb;
3126 	struct vm_area_struct *vma;
3127 	unsigned long nr_accounted = 0;
3128 
3129 	/* mm's last user has gone, and its about to be pulled down */
3130 	mmu_notifier_release(mm);
3131 
3132 	if (unlikely(mm_is_oom_victim(mm))) {
3133 		/*
3134 		 * Manually reap the mm to free as much memory as possible.
3135 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3136 		 * this mm from further consideration.  Taking mm->mmap_lock for
3137 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3138 		 * reaper will not run on this mm again after mmap_lock is
3139 		 * dropped.
3140 		 *
3141 		 * Nothing can be holding mm->mmap_lock here and the above call
3142 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3143 		 * __oom_reap_task_mm() will not block.
3144 		 *
3145 		 * This needs to be done before calling munlock_vma_pages_all(),
3146 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3147 		 * reliably test it.
3148 		 */
3149 		(void)__oom_reap_task_mm(mm);
3150 
3151 		set_bit(MMF_OOM_SKIP, &mm->flags);
3152 		mmap_write_lock(mm);
3153 		mmap_write_unlock(mm);
3154 	}
3155 
3156 	if (mm->locked_vm)
3157 		unlock_range(mm->mmap, ULONG_MAX);
3158 
3159 	arch_exit_mmap(mm);
3160 
3161 	vma = mm->mmap;
3162 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3163 		return;
3164 
3165 	lru_add_drain();
3166 	flush_cache_mm(mm);
3167 	tlb_gather_mmu_fullmm(&tlb, mm);
3168 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3169 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3170 	unmap_vmas(&tlb, vma, 0, -1);
3171 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3172 	tlb_finish_mmu(&tlb);
3173 
3174 	/*
3175 	 * Walk the list again, actually closing and freeing it,
3176 	 * with preemption enabled, without holding any MM locks.
3177 	 */
3178 	while (vma) {
3179 		if (vma->vm_flags & VM_ACCOUNT)
3180 			nr_accounted += vma_pages(vma);
3181 		vma = remove_vma(vma);
3182 		cond_resched();
3183 	}
3184 	vm_unacct_memory(nr_accounted);
3185 }
3186 
3187 /* Insert vm structure into process list sorted by address
3188  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3189  * then i_mmap_rwsem is taken here.
3190  */
3191 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3192 {
3193 	struct vm_area_struct *prev;
3194 	struct rb_node **rb_link, *rb_parent;
3195 
3196 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3197 			   &prev, &rb_link, &rb_parent))
3198 		return -ENOMEM;
3199 	if ((vma->vm_flags & VM_ACCOUNT) &&
3200 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3201 		return -ENOMEM;
3202 
3203 	/*
3204 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3205 	 * until its first write fault, when page's anon_vma and index
3206 	 * are set.  But now set the vm_pgoff it will almost certainly
3207 	 * end up with (unless mremap moves it elsewhere before that
3208 	 * first wfault), so /proc/pid/maps tells a consistent story.
3209 	 *
3210 	 * By setting it to reflect the virtual start address of the
3211 	 * vma, merges and splits can happen in a seamless way, just
3212 	 * using the existing file pgoff checks and manipulations.
3213 	 * Similarly in do_mmap and in do_brk_flags.
3214 	 */
3215 	if (vma_is_anonymous(vma)) {
3216 		BUG_ON(vma->anon_vma);
3217 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3218 	}
3219 
3220 	vma_link(mm, vma, prev, rb_link, rb_parent);
3221 	return 0;
3222 }
3223 
3224 /*
3225  * Copy the vma structure to a new location in the same mm,
3226  * prior to moving page table entries, to effect an mremap move.
3227  */
3228 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3229 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3230 	bool *need_rmap_locks)
3231 {
3232 	struct vm_area_struct *vma = *vmap;
3233 	unsigned long vma_start = vma->vm_start;
3234 	struct mm_struct *mm = vma->vm_mm;
3235 	struct vm_area_struct *new_vma, *prev;
3236 	struct rb_node **rb_link, *rb_parent;
3237 	bool faulted_in_anon_vma = true;
3238 
3239 	/*
3240 	 * If anonymous vma has not yet been faulted, update new pgoff
3241 	 * to match new location, to increase its chance of merging.
3242 	 */
3243 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3244 		pgoff = addr >> PAGE_SHIFT;
3245 		faulted_in_anon_vma = false;
3246 	}
3247 
3248 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3249 		return NULL;	/* should never get here */
3250 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3251 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3252 			    vma->vm_userfaultfd_ctx);
3253 	if (new_vma) {
3254 		/*
3255 		 * Source vma may have been merged into new_vma
3256 		 */
3257 		if (unlikely(vma_start >= new_vma->vm_start &&
3258 			     vma_start < new_vma->vm_end)) {
3259 			/*
3260 			 * The only way we can get a vma_merge with
3261 			 * self during an mremap is if the vma hasn't
3262 			 * been faulted in yet and we were allowed to
3263 			 * reset the dst vma->vm_pgoff to the
3264 			 * destination address of the mremap to allow
3265 			 * the merge to happen. mremap must change the
3266 			 * vm_pgoff linearity between src and dst vmas
3267 			 * (in turn preventing a vma_merge) to be
3268 			 * safe. It is only safe to keep the vm_pgoff
3269 			 * linear if there are no pages mapped yet.
3270 			 */
3271 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3272 			*vmap = vma = new_vma;
3273 		}
3274 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3275 	} else {
3276 		new_vma = vm_area_dup(vma);
3277 		if (!new_vma)
3278 			goto out;
3279 		new_vma->vm_start = addr;
3280 		new_vma->vm_end = addr + len;
3281 		new_vma->vm_pgoff = pgoff;
3282 		if (vma_dup_policy(vma, new_vma))
3283 			goto out_free_vma;
3284 		if (anon_vma_clone(new_vma, vma))
3285 			goto out_free_mempol;
3286 		if (new_vma->vm_file)
3287 			get_file(new_vma->vm_file);
3288 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3289 			new_vma->vm_ops->open(new_vma);
3290 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3291 		*need_rmap_locks = false;
3292 	}
3293 	return new_vma;
3294 
3295 out_free_mempol:
3296 	mpol_put(vma_policy(new_vma));
3297 out_free_vma:
3298 	vm_area_free(new_vma);
3299 out:
3300 	return NULL;
3301 }
3302 
3303 /*
3304  * Return true if the calling process may expand its vm space by the passed
3305  * number of pages
3306  */
3307 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3308 {
3309 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3310 		return false;
3311 
3312 	if (is_data_mapping(flags) &&
3313 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3314 		/* Workaround for Valgrind */
3315 		if (rlimit(RLIMIT_DATA) == 0 &&
3316 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3317 			return true;
3318 
3319 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3320 			     current->comm, current->pid,
3321 			     (mm->data_vm + npages) << PAGE_SHIFT,
3322 			     rlimit(RLIMIT_DATA),
3323 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3324 
3325 		if (!ignore_rlimit_data)
3326 			return false;
3327 	}
3328 
3329 	return true;
3330 }
3331 
3332 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3333 {
3334 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3335 
3336 	if (is_exec_mapping(flags))
3337 		mm->exec_vm += npages;
3338 	else if (is_stack_mapping(flags))
3339 		mm->stack_vm += npages;
3340 	else if (is_data_mapping(flags))
3341 		mm->data_vm += npages;
3342 }
3343 
3344 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3345 
3346 /*
3347  * Having a close hook prevents vma merging regardless of flags.
3348  */
3349 static void special_mapping_close(struct vm_area_struct *vma)
3350 {
3351 }
3352 
3353 static const char *special_mapping_name(struct vm_area_struct *vma)
3354 {
3355 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3356 }
3357 
3358 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3359 {
3360 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3361 
3362 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3363 		return -EFAULT;
3364 
3365 	if (sm->mremap)
3366 		return sm->mremap(sm, new_vma);
3367 
3368 	return 0;
3369 }
3370 
3371 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3372 {
3373 	/*
3374 	 * Forbid splitting special mappings - kernel has expectations over
3375 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3376 	 * the size of vma should stay the same over the special mapping's
3377 	 * lifetime.
3378 	 */
3379 	return -EINVAL;
3380 }
3381 
3382 static const struct vm_operations_struct special_mapping_vmops = {
3383 	.close = special_mapping_close,
3384 	.fault = special_mapping_fault,
3385 	.mremap = special_mapping_mremap,
3386 	.name = special_mapping_name,
3387 	/* vDSO code relies that VVAR can't be accessed remotely */
3388 	.access = NULL,
3389 	.may_split = special_mapping_split,
3390 };
3391 
3392 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3393 	.close = special_mapping_close,
3394 	.fault = special_mapping_fault,
3395 };
3396 
3397 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3398 {
3399 	struct vm_area_struct *vma = vmf->vma;
3400 	pgoff_t pgoff;
3401 	struct page **pages;
3402 
3403 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3404 		pages = vma->vm_private_data;
3405 	} else {
3406 		struct vm_special_mapping *sm = vma->vm_private_data;
3407 
3408 		if (sm->fault)
3409 			return sm->fault(sm, vmf->vma, vmf);
3410 
3411 		pages = sm->pages;
3412 	}
3413 
3414 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3415 		pgoff--;
3416 
3417 	if (*pages) {
3418 		struct page *page = *pages;
3419 		get_page(page);
3420 		vmf->page = page;
3421 		return 0;
3422 	}
3423 
3424 	return VM_FAULT_SIGBUS;
3425 }
3426 
3427 static struct vm_area_struct *__install_special_mapping(
3428 	struct mm_struct *mm,
3429 	unsigned long addr, unsigned long len,
3430 	unsigned long vm_flags, void *priv,
3431 	const struct vm_operations_struct *ops)
3432 {
3433 	int ret;
3434 	struct vm_area_struct *vma;
3435 
3436 	vma = vm_area_alloc(mm);
3437 	if (unlikely(vma == NULL))
3438 		return ERR_PTR(-ENOMEM);
3439 
3440 	vma->vm_start = addr;
3441 	vma->vm_end = addr + len;
3442 
3443 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3444 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3445 
3446 	vma->vm_ops = ops;
3447 	vma->vm_private_data = priv;
3448 
3449 	ret = insert_vm_struct(mm, vma);
3450 	if (ret)
3451 		goto out;
3452 
3453 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3454 
3455 	perf_event_mmap(vma);
3456 
3457 	return vma;
3458 
3459 out:
3460 	vm_area_free(vma);
3461 	return ERR_PTR(ret);
3462 }
3463 
3464 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3465 	const struct vm_special_mapping *sm)
3466 {
3467 	return vma->vm_private_data == sm &&
3468 		(vma->vm_ops == &special_mapping_vmops ||
3469 		 vma->vm_ops == &legacy_special_mapping_vmops);
3470 }
3471 
3472 /*
3473  * Called with mm->mmap_lock held for writing.
3474  * Insert a new vma covering the given region, with the given flags.
3475  * Its pages are supplied by the given array of struct page *.
3476  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3477  * The region past the last page supplied will always produce SIGBUS.
3478  * The array pointer and the pages it points to are assumed to stay alive
3479  * for as long as this mapping might exist.
3480  */
3481 struct vm_area_struct *_install_special_mapping(
3482 	struct mm_struct *mm,
3483 	unsigned long addr, unsigned long len,
3484 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3485 {
3486 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3487 					&special_mapping_vmops);
3488 }
3489 
3490 int install_special_mapping(struct mm_struct *mm,
3491 			    unsigned long addr, unsigned long len,
3492 			    unsigned long vm_flags, struct page **pages)
3493 {
3494 	struct vm_area_struct *vma = __install_special_mapping(
3495 		mm, addr, len, vm_flags, (void *)pages,
3496 		&legacy_special_mapping_vmops);
3497 
3498 	return PTR_ERR_OR_ZERO(vma);
3499 }
3500 
3501 static DEFINE_MUTEX(mm_all_locks_mutex);
3502 
3503 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3504 {
3505 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3506 		/*
3507 		 * The LSB of head.next can't change from under us
3508 		 * because we hold the mm_all_locks_mutex.
3509 		 */
3510 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3511 		/*
3512 		 * We can safely modify head.next after taking the
3513 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3514 		 * the same anon_vma we won't take it again.
3515 		 *
3516 		 * No need of atomic instructions here, head.next
3517 		 * can't change from under us thanks to the
3518 		 * anon_vma->root->rwsem.
3519 		 */
3520 		if (__test_and_set_bit(0, (unsigned long *)
3521 				       &anon_vma->root->rb_root.rb_root.rb_node))
3522 			BUG();
3523 	}
3524 }
3525 
3526 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3527 {
3528 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3529 		/*
3530 		 * AS_MM_ALL_LOCKS can't change from under us because
3531 		 * we hold the mm_all_locks_mutex.
3532 		 *
3533 		 * Operations on ->flags have to be atomic because
3534 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3535 		 * mm_all_locks_mutex, there may be other cpus
3536 		 * changing other bitflags in parallel to us.
3537 		 */
3538 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3539 			BUG();
3540 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3541 	}
3542 }
3543 
3544 /*
3545  * This operation locks against the VM for all pte/vma/mm related
3546  * operations that could ever happen on a certain mm. This includes
3547  * vmtruncate, try_to_unmap, and all page faults.
3548  *
3549  * The caller must take the mmap_lock in write mode before calling
3550  * mm_take_all_locks(). The caller isn't allowed to release the
3551  * mmap_lock until mm_drop_all_locks() returns.
3552  *
3553  * mmap_lock in write mode is required in order to block all operations
3554  * that could modify pagetables and free pages without need of
3555  * altering the vma layout. It's also needed in write mode to avoid new
3556  * anon_vmas to be associated with existing vmas.
3557  *
3558  * A single task can't take more than one mm_take_all_locks() in a row
3559  * or it would deadlock.
3560  *
3561  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3562  * mapping->flags avoid to take the same lock twice, if more than one
3563  * vma in this mm is backed by the same anon_vma or address_space.
3564  *
3565  * We take locks in following order, accordingly to comment at beginning
3566  * of mm/rmap.c:
3567  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3568  *     hugetlb mapping);
3569  *   - all i_mmap_rwsem locks;
3570  *   - all anon_vma->rwseml
3571  *
3572  * We can take all locks within these types randomly because the VM code
3573  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3574  * mm_all_locks_mutex.
3575  *
3576  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3577  * that may have to take thousand of locks.
3578  *
3579  * mm_take_all_locks() can fail if it's interrupted by signals.
3580  */
3581 int mm_take_all_locks(struct mm_struct *mm)
3582 {
3583 	struct vm_area_struct *vma;
3584 	struct anon_vma_chain *avc;
3585 
3586 	BUG_ON(mmap_read_trylock(mm));
3587 
3588 	mutex_lock(&mm_all_locks_mutex);
3589 
3590 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3591 		if (signal_pending(current))
3592 			goto out_unlock;
3593 		if (vma->vm_file && vma->vm_file->f_mapping &&
3594 				is_vm_hugetlb_page(vma))
3595 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3596 	}
3597 
3598 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3599 		if (signal_pending(current))
3600 			goto out_unlock;
3601 		if (vma->vm_file && vma->vm_file->f_mapping &&
3602 				!is_vm_hugetlb_page(vma))
3603 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3604 	}
3605 
3606 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3607 		if (signal_pending(current))
3608 			goto out_unlock;
3609 		if (vma->anon_vma)
3610 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3611 				vm_lock_anon_vma(mm, avc->anon_vma);
3612 	}
3613 
3614 	return 0;
3615 
3616 out_unlock:
3617 	mm_drop_all_locks(mm);
3618 	return -EINTR;
3619 }
3620 
3621 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3622 {
3623 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3624 		/*
3625 		 * The LSB of head.next can't change to 0 from under
3626 		 * us because we hold the mm_all_locks_mutex.
3627 		 *
3628 		 * We must however clear the bitflag before unlocking
3629 		 * the vma so the users using the anon_vma->rb_root will
3630 		 * never see our bitflag.
3631 		 *
3632 		 * No need of atomic instructions here, head.next
3633 		 * can't change from under us until we release the
3634 		 * anon_vma->root->rwsem.
3635 		 */
3636 		if (!__test_and_clear_bit(0, (unsigned long *)
3637 					  &anon_vma->root->rb_root.rb_root.rb_node))
3638 			BUG();
3639 		anon_vma_unlock_write(anon_vma);
3640 	}
3641 }
3642 
3643 static void vm_unlock_mapping(struct address_space *mapping)
3644 {
3645 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3646 		/*
3647 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3648 		 * because we hold the mm_all_locks_mutex.
3649 		 */
3650 		i_mmap_unlock_write(mapping);
3651 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3652 					&mapping->flags))
3653 			BUG();
3654 	}
3655 }
3656 
3657 /*
3658  * The mmap_lock cannot be released by the caller until
3659  * mm_drop_all_locks() returns.
3660  */
3661 void mm_drop_all_locks(struct mm_struct *mm)
3662 {
3663 	struct vm_area_struct *vma;
3664 	struct anon_vma_chain *avc;
3665 
3666 	BUG_ON(mmap_read_trylock(mm));
3667 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3668 
3669 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3670 		if (vma->anon_vma)
3671 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3672 				vm_unlock_anon_vma(avc->anon_vma);
3673 		if (vma->vm_file && vma->vm_file->f_mapping)
3674 			vm_unlock_mapping(vma->vm_file->f_mapping);
3675 	}
3676 
3677 	mutex_unlock(&mm_all_locks_mutex);
3678 }
3679 
3680 /*
3681  * initialise the percpu counter for VM
3682  */
3683 void __init mmap_init(void)
3684 {
3685 	int ret;
3686 
3687 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3688 	VM_BUG_ON(ret);
3689 }
3690 
3691 /*
3692  * Initialise sysctl_user_reserve_kbytes.
3693  *
3694  * This is intended to prevent a user from starting a single memory hogging
3695  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3696  * mode.
3697  *
3698  * The default value is min(3% of free memory, 128MB)
3699  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3700  */
3701 static int init_user_reserve(void)
3702 {
3703 	unsigned long free_kbytes;
3704 
3705 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3706 
3707 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3708 	return 0;
3709 }
3710 subsys_initcall(init_user_reserve);
3711 
3712 /*
3713  * Initialise sysctl_admin_reserve_kbytes.
3714  *
3715  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3716  * to log in and kill a memory hogging process.
3717  *
3718  * Systems with more than 256MB will reserve 8MB, enough to recover
3719  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3720  * only reserve 3% of free pages by default.
3721  */
3722 static int init_admin_reserve(void)
3723 {
3724 	unsigned long free_kbytes;
3725 
3726 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3727 
3728 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3729 	return 0;
3730 }
3731 subsys_initcall(init_admin_reserve);
3732 
3733 /*
3734  * Reinititalise user and admin reserves if memory is added or removed.
3735  *
3736  * The default user reserve max is 128MB, and the default max for the
3737  * admin reserve is 8MB. These are usually, but not always, enough to
3738  * enable recovery from a memory hogging process using login/sshd, a shell,
3739  * and tools like top. It may make sense to increase or even disable the
3740  * reserve depending on the existence of swap or variations in the recovery
3741  * tools. So, the admin may have changed them.
3742  *
3743  * If memory is added and the reserves have been eliminated or increased above
3744  * the default max, then we'll trust the admin.
3745  *
3746  * If memory is removed and there isn't enough free memory, then we
3747  * need to reset the reserves.
3748  *
3749  * Otherwise keep the reserve set by the admin.
3750  */
3751 static int reserve_mem_notifier(struct notifier_block *nb,
3752 			     unsigned long action, void *data)
3753 {
3754 	unsigned long tmp, free_kbytes;
3755 
3756 	switch (action) {
3757 	case MEM_ONLINE:
3758 		/* Default max is 128MB. Leave alone if modified by operator. */
3759 		tmp = sysctl_user_reserve_kbytes;
3760 		if (0 < tmp && tmp < (1UL << 17))
3761 			init_user_reserve();
3762 
3763 		/* Default max is 8MB.  Leave alone if modified by operator. */
3764 		tmp = sysctl_admin_reserve_kbytes;
3765 		if (0 < tmp && tmp < (1UL << 13))
3766 			init_admin_reserve();
3767 
3768 		break;
3769 	case MEM_OFFLINE:
3770 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3771 
3772 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3773 			init_user_reserve();
3774 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3775 				sysctl_user_reserve_kbytes);
3776 		}
3777 
3778 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3779 			init_admin_reserve();
3780 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3781 				sysctl_admin_reserve_kbytes);
3782 		}
3783 		break;
3784 	default:
3785 		break;
3786 	}
3787 	return NOTIFY_OK;
3788 }
3789 
3790 static struct notifier_block reserve_mem_nb = {
3791 	.notifier_call = reserve_mem_notifier,
3792 };
3793 
3794 static int __meminit init_reserve_notifier(void)
3795 {
3796 	if (register_hotmemory_notifier(&reserve_mem_nb))
3797 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3798 
3799 	return 0;
3800 }
3801 subsys_initcall(init_reserve_notifier);
3802