1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 unsigned long start, unsigned long end); 82 83 /* description of effects of mapping type and prot in current implementation. 84 * this is due to the limited x86 page protection hardware. The expected 85 * behavior is in parens: 86 * 87 * map_type prot 88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 90 * w: (no) no w: (no) no w: (yes) yes w: (no) no 91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 92 * 93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 94 * w: (no) no w: (no) no w: (copy) copy w: (no) no 95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 96 * 97 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 98 * MAP_PRIVATE (with Enhanced PAN supported): 99 * r: (no) no 100 * w: (no) no 101 * x: (yes) yes 102 */ 103 pgprot_t protection_map[16] __ro_after_init = { 104 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 105 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 106 }; 107 108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 110 { 111 return prot; 112 } 113 #endif 114 115 pgprot_t vm_get_page_prot(unsigned long vm_flags) 116 { 117 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 118 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 119 pgprot_val(arch_vm_get_page_prot(vm_flags))); 120 121 return arch_filter_pgprot(ret); 122 } 123 EXPORT_SYMBOL(vm_get_page_prot); 124 125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 126 { 127 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 128 } 129 130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 131 void vma_set_page_prot(struct vm_area_struct *vma) 132 { 133 unsigned long vm_flags = vma->vm_flags; 134 pgprot_t vm_page_prot; 135 136 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 137 if (vma_wants_writenotify(vma, vm_page_prot)) { 138 vm_flags &= ~VM_SHARED; 139 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 140 } 141 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 142 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 143 } 144 145 /* 146 * Requires inode->i_mapping->i_mmap_rwsem 147 */ 148 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 149 struct file *file, struct address_space *mapping) 150 { 151 if (vma->vm_flags & VM_SHARED) 152 mapping_unmap_writable(mapping); 153 154 flush_dcache_mmap_lock(mapping); 155 vma_interval_tree_remove(vma, &mapping->i_mmap); 156 flush_dcache_mmap_unlock(mapping); 157 } 158 159 /* 160 * Unlink a file-based vm structure from its interval tree, to hide 161 * vma from rmap and vmtruncate before freeing its page tables. 162 */ 163 void unlink_file_vma(struct vm_area_struct *vma) 164 { 165 struct file *file = vma->vm_file; 166 167 if (file) { 168 struct address_space *mapping = file->f_mapping; 169 i_mmap_lock_write(mapping); 170 __remove_shared_vm_struct(vma, file, mapping); 171 i_mmap_unlock_write(mapping); 172 } 173 } 174 175 /* 176 * Close a vm structure and free it, returning the next. 177 */ 178 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 179 { 180 struct vm_area_struct *next = vma->vm_next; 181 182 might_sleep(); 183 if (vma->vm_ops && vma->vm_ops->close) 184 vma->vm_ops->close(vma); 185 if (vma->vm_file) 186 fput(vma->vm_file); 187 mpol_put(vma_policy(vma)); 188 vm_area_free(vma); 189 return next; 190 } 191 192 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 193 struct list_head *uf); 194 SYSCALL_DEFINE1(brk, unsigned long, brk) 195 { 196 unsigned long newbrk, oldbrk, origbrk; 197 struct mm_struct *mm = current->mm; 198 struct vm_area_struct *next; 199 unsigned long min_brk; 200 bool populate; 201 bool downgraded = false; 202 LIST_HEAD(uf); 203 204 if (mmap_write_lock_killable(mm)) 205 return -EINTR; 206 207 origbrk = mm->brk; 208 209 #ifdef CONFIG_COMPAT_BRK 210 /* 211 * CONFIG_COMPAT_BRK can still be overridden by setting 212 * randomize_va_space to 2, which will still cause mm->start_brk 213 * to be arbitrarily shifted 214 */ 215 if (current->brk_randomized) 216 min_brk = mm->start_brk; 217 else 218 min_brk = mm->end_data; 219 #else 220 min_brk = mm->start_brk; 221 #endif 222 if (brk < min_brk) 223 goto out; 224 225 /* 226 * Check against rlimit here. If this check is done later after the test 227 * of oldbrk with newbrk then it can escape the test and let the data 228 * segment grow beyond its set limit the in case where the limit is 229 * not page aligned -Ram Gupta 230 */ 231 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 232 mm->end_data, mm->start_data)) 233 goto out; 234 235 newbrk = PAGE_ALIGN(brk); 236 oldbrk = PAGE_ALIGN(mm->brk); 237 if (oldbrk == newbrk) { 238 mm->brk = brk; 239 goto success; 240 } 241 242 /* 243 * Always allow shrinking brk. 244 * __do_munmap() may downgrade mmap_lock to read. 245 */ 246 if (brk <= mm->brk) { 247 int ret; 248 249 /* 250 * mm->brk must to be protected by write mmap_lock so update it 251 * before downgrading mmap_lock. When __do_munmap() fails, 252 * mm->brk will be restored from origbrk. 253 */ 254 mm->brk = brk; 255 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 256 if (ret < 0) { 257 mm->brk = origbrk; 258 goto out; 259 } else if (ret == 1) { 260 downgraded = true; 261 } 262 goto success; 263 } 264 265 /* Check against existing mmap mappings. */ 266 next = find_vma(mm, oldbrk); 267 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 268 goto out; 269 270 /* Ok, looks good - let it rip. */ 271 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 272 goto out; 273 mm->brk = brk; 274 275 success: 276 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 277 if (downgraded) 278 mmap_read_unlock(mm); 279 else 280 mmap_write_unlock(mm); 281 userfaultfd_unmap_complete(mm, &uf); 282 if (populate) 283 mm_populate(oldbrk, newbrk - oldbrk); 284 return brk; 285 286 out: 287 mmap_write_unlock(mm); 288 return origbrk; 289 } 290 291 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 292 { 293 unsigned long gap, prev_end; 294 295 /* 296 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 297 * allow two stack_guard_gaps between them here, and when choosing 298 * an unmapped area; whereas when expanding we only require one. 299 * That's a little inconsistent, but keeps the code here simpler. 300 */ 301 gap = vm_start_gap(vma); 302 if (vma->vm_prev) { 303 prev_end = vm_end_gap(vma->vm_prev); 304 if (gap > prev_end) 305 gap -= prev_end; 306 else 307 gap = 0; 308 } 309 return gap; 310 } 311 312 #ifdef CONFIG_DEBUG_VM_RB 313 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 314 { 315 unsigned long max = vma_compute_gap(vma), subtree_gap; 316 if (vma->vm_rb.rb_left) { 317 subtree_gap = rb_entry(vma->vm_rb.rb_left, 318 struct vm_area_struct, vm_rb)->rb_subtree_gap; 319 if (subtree_gap > max) 320 max = subtree_gap; 321 } 322 if (vma->vm_rb.rb_right) { 323 subtree_gap = rb_entry(vma->vm_rb.rb_right, 324 struct vm_area_struct, vm_rb)->rb_subtree_gap; 325 if (subtree_gap > max) 326 max = subtree_gap; 327 } 328 return max; 329 } 330 331 static int browse_rb(struct mm_struct *mm) 332 { 333 struct rb_root *root = &mm->mm_rb; 334 int i = 0, j, bug = 0; 335 struct rb_node *nd, *pn = NULL; 336 unsigned long prev = 0, pend = 0; 337 338 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 339 struct vm_area_struct *vma; 340 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 341 if (vma->vm_start < prev) { 342 pr_emerg("vm_start %lx < prev %lx\n", 343 vma->vm_start, prev); 344 bug = 1; 345 } 346 if (vma->vm_start < pend) { 347 pr_emerg("vm_start %lx < pend %lx\n", 348 vma->vm_start, pend); 349 bug = 1; 350 } 351 if (vma->vm_start > vma->vm_end) { 352 pr_emerg("vm_start %lx > vm_end %lx\n", 353 vma->vm_start, vma->vm_end); 354 bug = 1; 355 } 356 spin_lock(&mm->page_table_lock); 357 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 358 pr_emerg("free gap %lx, correct %lx\n", 359 vma->rb_subtree_gap, 360 vma_compute_subtree_gap(vma)); 361 bug = 1; 362 } 363 spin_unlock(&mm->page_table_lock); 364 i++; 365 pn = nd; 366 prev = vma->vm_start; 367 pend = vma->vm_end; 368 } 369 j = 0; 370 for (nd = pn; nd; nd = rb_prev(nd)) 371 j++; 372 if (i != j) { 373 pr_emerg("backwards %d, forwards %d\n", j, i); 374 bug = 1; 375 } 376 return bug ? -1 : i; 377 } 378 379 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 380 { 381 struct rb_node *nd; 382 383 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 384 struct vm_area_struct *vma; 385 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 386 VM_BUG_ON_VMA(vma != ignore && 387 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 388 vma); 389 } 390 } 391 392 static void validate_mm(struct mm_struct *mm) 393 { 394 int bug = 0; 395 int i = 0; 396 unsigned long highest_address = 0; 397 struct vm_area_struct *vma = mm->mmap; 398 399 while (vma) { 400 struct anon_vma *anon_vma = vma->anon_vma; 401 struct anon_vma_chain *avc; 402 403 if (anon_vma) { 404 anon_vma_lock_read(anon_vma); 405 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 406 anon_vma_interval_tree_verify(avc); 407 anon_vma_unlock_read(anon_vma); 408 } 409 410 highest_address = vm_end_gap(vma); 411 vma = vma->vm_next; 412 i++; 413 } 414 if (i != mm->map_count) { 415 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 416 bug = 1; 417 } 418 if (highest_address != mm->highest_vm_end) { 419 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 420 mm->highest_vm_end, highest_address); 421 bug = 1; 422 } 423 i = browse_rb(mm); 424 if (i != mm->map_count) { 425 if (i != -1) 426 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 427 bug = 1; 428 } 429 VM_BUG_ON_MM(bug, mm); 430 } 431 #else 432 #define validate_mm_rb(root, ignore) do { } while (0) 433 #define validate_mm(mm) do { } while (0) 434 #endif 435 436 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 437 struct vm_area_struct, vm_rb, 438 unsigned long, rb_subtree_gap, vma_compute_gap) 439 440 /* 441 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 442 * vma->vm_prev->vm_end values changed, without modifying the vma's position 443 * in the rbtree. 444 */ 445 static void vma_gap_update(struct vm_area_struct *vma) 446 { 447 /* 448 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 449 * a callback function that does exactly what we want. 450 */ 451 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 452 } 453 454 static inline void vma_rb_insert(struct vm_area_struct *vma, 455 struct rb_root *root) 456 { 457 /* All rb_subtree_gap values must be consistent prior to insertion */ 458 validate_mm_rb(root, NULL); 459 460 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 461 } 462 463 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 464 { 465 /* 466 * Note rb_erase_augmented is a fairly large inline function, 467 * so make sure we instantiate it only once with our desired 468 * augmented rbtree callbacks. 469 */ 470 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 471 } 472 473 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 474 struct rb_root *root, 475 struct vm_area_struct *ignore) 476 { 477 /* 478 * All rb_subtree_gap values must be consistent prior to erase, 479 * with the possible exception of 480 * 481 * a. the "next" vma being erased if next->vm_start was reduced in 482 * __vma_adjust() -> __vma_unlink() 483 * b. the vma being erased in detach_vmas_to_be_unmapped() -> 484 * vma_rb_erase() 485 */ 486 validate_mm_rb(root, ignore); 487 488 __vma_rb_erase(vma, root); 489 } 490 491 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 492 struct rb_root *root) 493 { 494 vma_rb_erase_ignore(vma, root, vma); 495 } 496 497 /* 498 * vma has some anon_vma assigned, and is already inserted on that 499 * anon_vma's interval trees. 500 * 501 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 502 * vma must be removed from the anon_vma's interval trees using 503 * anon_vma_interval_tree_pre_update_vma(). 504 * 505 * After the update, the vma will be reinserted using 506 * anon_vma_interval_tree_post_update_vma(). 507 * 508 * The entire update must be protected by exclusive mmap_lock and by 509 * the root anon_vma's mutex. 510 */ 511 static inline void 512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 513 { 514 struct anon_vma_chain *avc; 515 516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 517 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 518 } 519 520 static inline void 521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 522 { 523 struct anon_vma_chain *avc; 524 525 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 526 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 527 } 528 529 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 530 unsigned long end, struct vm_area_struct **pprev, 531 struct rb_node ***rb_link, struct rb_node **rb_parent) 532 { 533 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 534 535 mmap_assert_locked(mm); 536 __rb_link = &mm->mm_rb.rb_node; 537 rb_prev = __rb_parent = NULL; 538 539 while (*__rb_link) { 540 struct vm_area_struct *vma_tmp; 541 542 __rb_parent = *__rb_link; 543 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 544 545 if (vma_tmp->vm_end > addr) { 546 /* Fail if an existing vma overlaps the area */ 547 if (vma_tmp->vm_start < end) 548 return -ENOMEM; 549 __rb_link = &__rb_parent->rb_left; 550 } else { 551 rb_prev = __rb_parent; 552 __rb_link = &__rb_parent->rb_right; 553 } 554 } 555 556 *pprev = NULL; 557 if (rb_prev) 558 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 559 *rb_link = __rb_link; 560 *rb_parent = __rb_parent; 561 return 0; 562 } 563 564 /* 565 * vma_next() - Get the next VMA. 566 * @mm: The mm_struct. 567 * @vma: The current vma. 568 * 569 * If @vma is NULL, return the first vma in the mm. 570 * 571 * Returns: The next VMA after @vma. 572 */ 573 static inline struct vm_area_struct *vma_next(struct mm_struct *mm, 574 struct vm_area_struct *vma) 575 { 576 if (!vma) 577 return mm->mmap; 578 579 return vma->vm_next; 580 } 581 582 /* 583 * munmap_vma_range() - munmap VMAs that overlap a range. 584 * @mm: The mm struct 585 * @start: The start of the range. 586 * @len: The length of the range. 587 * @pprev: pointer to the pointer that will be set to previous vm_area_struct 588 * @rb_link: the rb_node 589 * @rb_parent: the parent rb_node 590 * 591 * Find all the vm_area_struct that overlap from @start to 592 * @end and munmap them. Set @pprev to the previous vm_area_struct. 593 * 594 * Returns: -ENOMEM on munmap failure or 0 on success. 595 */ 596 static inline int 597 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len, 598 struct vm_area_struct **pprev, struct rb_node ***link, 599 struct rb_node **parent, struct list_head *uf) 600 { 601 602 while (find_vma_links(mm, start, start + len, pprev, link, parent)) 603 if (do_munmap(mm, start, len, uf)) 604 return -ENOMEM; 605 606 return 0; 607 } 608 static unsigned long count_vma_pages_range(struct mm_struct *mm, 609 unsigned long addr, unsigned long end) 610 { 611 unsigned long nr_pages = 0; 612 struct vm_area_struct *vma; 613 614 /* Find first overlapping mapping */ 615 vma = find_vma_intersection(mm, addr, end); 616 if (!vma) 617 return 0; 618 619 nr_pages = (min(end, vma->vm_end) - 620 max(addr, vma->vm_start)) >> PAGE_SHIFT; 621 622 /* Iterate over the rest of the overlaps */ 623 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 624 unsigned long overlap_len; 625 626 if (vma->vm_start > end) 627 break; 628 629 overlap_len = min(end, vma->vm_end) - vma->vm_start; 630 nr_pages += overlap_len >> PAGE_SHIFT; 631 } 632 633 return nr_pages; 634 } 635 636 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 637 struct rb_node **rb_link, struct rb_node *rb_parent) 638 { 639 /* Update tracking information for the gap following the new vma. */ 640 if (vma->vm_next) 641 vma_gap_update(vma->vm_next); 642 else 643 mm->highest_vm_end = vm_end_gap(vma); 644 645 /* 646 * vma->vm_prev wasn't known when we followed the rbtree to find the 647 * correct insertion point for that vma. As a result, we could not 648 * update the vma vm_rb parents rb_subtree_gap values on the way down. 649 * So, we first insert the vma with a zero rb_subtree_gap value 650 * (to be consistent with what we did on the way down), and then 651 * immediately update the gap to the correct value. Finally we 652 * rebalance the rbtree after all augmented values have been set. 653 */ 654 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 655 vma->rb_subtree_gap = 0; 656 vma_gap_update(vma); 657 vma_rb_insert(vma, &mm->mm_rb); 658 } 659 660 static void __vma_link_file(struct vm_area_struct *vma) 661 { 662 struct file *file; 663 664 file = vma->vm_file; 665 if (file) { 666 struct address_space *mapping = file->f_mapping; 667 668 if (vma->vm_flags & VM_SHARED) 669 mapping_allow_writable(mapping); 670 671 flush_dcache_mmap_lock(mapping); 672 vma_interval_tree_insert(vma, &mapping->i_mmap); 673 flush_dcache_mmap_unlock(mapping); 674 } 675 } 676 677 static void 678 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 679 struct vm_area_struct *prev, struct rb_node **rb_link, 680 struct rb_node *rb_parent) 681 { 682 __vma_link_list(mm, vma, prev); 683 __vma_link_rb(mm, vma, rb_link, rb_parent); 684 } 685 686 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 687 struct vm_area_struct *prev, struct rb_node **rb_link, 688 struct rb_node *rb_parent) 689 { 690 struct address_space *mapping = NULL; 691 692 if (vma->vm_file) { 693 mapping = vma->vm_file->f_mapping; 694 i_mmap_lock_write(mapping); 695 } 696 697 __vma_link(mm, vma, prev, rb_link, rb_parent); 698 __vma_link_file(vma); 699 700 if (mapping) 701 i_mmap_unlock_write(mapping); 702 703 mm->map_count++; 704 validate_mm(mm); 705 } 706 707 /* 708 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 709 * mm's list and rbtree. It has already been inserted into the interval tree. 710 */ 711 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 712 { 713 struct vm_area_struct *prev; 714 struct rb_node **rb_link, *rb_parent; 715 716 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 717 &prev, &rb_link, &rb_parent)) 718 BUG(); 719 __vma_link(mm, vma, prev, rb_link, rb_parent); 720 mm->map_count++; 721 } 722 723 static __always_inline void __vma_unlink(struct mm_struct *mm, 724 struct vm_area_struct *vma, 725 struct vm_area_struct *ignore) 726 { 727 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 728 __vma_unlink_list(mm, vma); 729 /* Kill the cache */ 730 vmacache_invalidate(mm); 731 } 732 733 /* 734 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 735 * is already present in an i_mmap tree without adjusting the tree. 736 * The following helper function should be used when such adjustments 737 * are necessary. The "insert" vma (if any) is to be inserted 738 * before we drop the necessary locks. 739 */ 740 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 741 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 742 struct vm_area_struct *expand) 743 { 744 struct mm_struct *mm = vma->vm_mm; 745 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 746 struct address_space *mapping = NULL; 747 struct rb_root_cached *root = NULL; 748 struct anon_vma *anon_vma = NULL; 749 struct file *file = vma->vm_file; 750 bool start_changed = false, end_changed = false; 751 long adjust_next = 0; 752 int remove_next = 0; 753 754 if (next && !insert) { 755 struct vm_area_struct *exporter = NULL, *importer = NULL; 756 757 if (end >= next->vm_end) { 758 /* 759 * vma expands, overlapping all the next, and 760 * perhaps the one after too (mprotect case 6). 761 * The only other cases that gets here are 762 * case 1, case 7 and case 8. 763 */ 764 if (next == expand) { 765 /* 766 * The only case where we don't expand "vma" 767 * and we expand "next" instead is case 8. 768 */ 769 VM_WARN_ON(end != next->vm_end); 770 /* 771 * remove_next == 3 means we're 772 * removing "vma" and that to do so we 773 * swapped "vma" and "next". 774 */ 775 remove_next = 3; 776 VM_WARN_ON(file != next->vm_file); 777 swap(vma, next); 778 } else { 779 VM_WARN_ON(expand != vma); 780 /* 781 * case 1, 6, 7, remove_next == 2 is case 6, 782 * remove_next == 1 is case 1 or 7. 783 */ 784 remove_next = 1 + (end > next->vm_end); 785 VM_WARN_ON(remove_next == 2 && 786 end != next->vm_next->vm_end); 787 /* trim end to next, for case 6 first pass */ 788 end = next->vm_end; 789 } 790 791 exporter = next; 792 importer = vma; 793 794 /* 795 * If next doesn't have anon_vma, import from vma after 796 * next, if the vma overlaps with it. 797 */ 798 if (remove_next == 2 && !next->anon_vma) 799 exporter = next->vm_next; 800 801 } else if (end > next->vm_start) { 802 /* 803 * vma expands, overlapping part of the next: 804 * mprotect case 5 shifting the boundary up. 805 */ 806 adjust_next = (end - next->vm_start); 807 exporter = next; 808 importer = vma; 809 VM_WARN_ON(expand != importer); 810 } else if (end < vma->vm_end) { 811 /* 812 * vma shrinks, and !insert tells it's not 813 * split_vma inserting another: so it must be 814 * mprotect case 4 shifting the boundary down. 815 */ 816 adjust_next = -(vma->vm_end - end); 817 exporter = vma; 818 importer = next; 819 VM_WARN_ON(expand != importer); 820 } 821 822 /* 823 * Easily overlooked: when mprotect shifts the boundary, 824 * make sure the expanding vma has anon_vma set if the 825 * shrinking vma had, to cover any anon pages imported. 826 */ 827 if (exporter && exporter->anon_vma && !importer->anon_vma) { 828 int error; 829 830 importer->anon_vma = exporter->anon_vma; 831 error = anon_vma_clone(importer, exporter); 832 if (error) 833 return error; 834 } 835 } 836 again: 837 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 838 839 if (file) { 840 mapping = file->f_mapping; 841 root = &mapping->i_mmap; 842 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 843 844 if (adjust_next) 845 uprobe_munmap(next, next->vm_start, next->vm_end); 846 847 i_mmap_lock_write(mapping); 848 if (insert) { 849 /* 850 * Put into interval tree now, so instantiated pages 851 * are visible to arm/parisc __flush_dcache_page 852 * throughout; but we cannot insert into address 853 * space until vma start or end is updated. 854 */ 855 __vma_link_file(insert); 856 } 857 } 858 859 anon_vma = vma->anon_vma; 860 if (!anon_vma && adjust_next) 861 anon_vma = next->anon_vma; 862 if (anon_vma) { 863 VM_WARN_ON(adjust_next && next->anon_vma && 864 anon_vma != next->anon_vma); 865 anon_vma_lock_write(anon_vma); 866 anon_vma_interval_tree_pre_update_vma(vma); 867 if (adjust_next) 868 anon_vma_interval_tree_pre_update_vma(next); 869 } 870 871 if (file) { 872 flush_dcache_mmap_lock(mapping); 873 vma_interval_tree_remove(vma, root); 874 if (adjust_next) 875 vma_interval_tree_remove(next, root); 876 } 877 878 if (start != vma->vm_start) { 879 vma->vm_start = start; 880 start_changed = true; 881 } 882 if (end != vma->vm_end) { 883 vma->vm_end = end; 884 end_changed = true; 885 } 886 vma->vm_pgoff = pgoff; 887 if (adjust_next) { 888 next->vm_start += adjust_next; 889 next->vm_pgoff += adjust_next >> PAGE_SHIFT; 890 } 891 892 if (file) { 893 if (adjust_next) 894 vma_interval_tree_insert(next, root); 895 vma_interval_tree_insert(vma, root); 896 flush_dcache_mmap_unlock(mapping); 897 } 898 899 if (remove_next) { 900 /* 901 * vma_merge has merged next into vma, and needs 902 * us to remove next before dropping the locks. 903 */ 904 if (remove_next != 3) 905 __vma_unlink(mm, next, next); 906 else 907 /* 908 * vma is not before next if they've been 909 * swapped. 910 * 911 * pre-swap() next->vm_start was reduced so 912 * tell validate_mm_rb to ignore pre-swap() 913 * "next" (which is stored in post-swap() 914 * "vma"). 915 */ 916 __vma_unlink(mm, next, vma); 917 if (file) 918 __remove_shared_vm_struct(next, file, mapping); 919 } else if (insert) { 920 /* 921 * split_vma has split insert from vma, and needs 922 * us to insert it before dropping the locks 923 * (it may either follow vma or precede it). 924 */ 925 __insert_vm_struct(mm, insert); 926 } else { 927 if (start_changed) 928 vma_gap_update(vma); 929 if (end_changed) { 930 if (!next) 931 mm->highest_vm_end = vm_end_gap(vma); 932 else if (!adjust_next) 933 vma_gap_update(next); 934 } 935 } 936 937 if (anon_vma) { 938 anon_vma_interval_tree_post_update_vma(vma); 939 if (adjust_next) 940 anon_vma_interval_tree_post_update_vma(next); 941 anon_vma_unlock_write(anon_vma); 942 } 943 944 if (file) { 945 i_mmap_unlock_write(mapping); 946 uprobe_mmap(vma); 947 948 if (adjust_next) 949 uprobe_mmap(next); 950 } 951 952 if (remove_next) { 953 if (file) { 954 uprobe_munmap(next, next->vm_start, next->vm_end); 955 fput(file); 956 } 957 if (next->anon_vma) 958 anon_vma_merge(vma, next); 959 mm->map_count--; 960 mpol_put(vma_policy(next)); 961 vm_area_free(next); 962 /* 963 * In mprotect's case 6 (see comments on vma_merge), 964 * we must remove another next too. It would clutter 965 * up the code too much to do both in one go. 966 */ 967 if (remove_next != 3) { 968 /* 969 * If "next" was removed and vma->vm_end was 970 * expanded (up) over it, in turn 971 * "next->vm_prev->vm_end" changed and the 972 * "vma->vm_next" gap must be updated. 973 */ 974 next = vma->vm_next; 975 } else { 976 /* 977 * For the scope of the comment "next" and 978 * "vma" considered pre-swap(): if "vma" was 979 * removed, next->vm_start was expanded (down) 980 * over it and the "next" gap must be updated. 981 * Because of the swap() the post-swap() "vma" 982 * actually points to pre-swap() "next" 983 * (post-swap() "next" as opposed is now a 984 * dangling pointer). 985 */ 986 next = vma; 987 } 988 if (remove_next == 2) { 989 remove_next = 1; 990 end = next->vm_end; 991 goto again; 992 } 993 else if (next) 994 vma_gap_update(next); 995 else { 996 /* 997 * If remove_next == 2 we obviously can't 998 * reach this path. 999 * 1000 * If remove_next == 3 we can't reach this 1001 * path because pre-swap() next is always not 1002 * NULL. pre-swap() "next" is not being 1003 * removed and its next->vm_end is not altered 1004 * (and furthermore "end" already matches 1005 * next->vm_end in remove_next == 3). 1006 * 1007 * We reach this only in the remove_next == 1 1008 * case if the "next" vma that was removed was 1009 * the highest vma of the mm. However in such 1010 * case next->vm_end == "end" and the extended 1011 * "vma" has vma->vm_end == next->vm_end so 1012 * mm->highest_vm_end doesn't need any update 1013 * in remove_next == 1 case. 1014 */ 1015 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 1016 } 1017 } 1018 if (insert && file) 1019 uprobe_mmap(insert); 1020 1021 validate_mm(mm); 1022 1023 return 0; 1024 } 1025 1026 /* 1027 * If the vma has a ->close operation then the driver probably needs to release 1028 * per-vma resources, so we don't attempt to merge those. 1029 */ 1030 static inline int is_mergeable_vma(struct vm_area_struct *vma, 1031 struct file *file, unsigned long vm_flags, 1032 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1033 { 1034 /* 1035 * VM_SOFTDIRTY should not prevent from VMA merging, if we 1036 * match the flags but dirty bit -- the caller should mark 1037 * merged VMA as dirty. If dirty bit won't be excluded from 1038 * comparison, we increase pressure on the memory system forcing 1039 * the kernel to generate new VMAs when old one could be 1040 * extended instead. 1041 */ 1042 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1043 return 0; 1044 if (vma->vm_file != file) 1045 return 0; 1046 if (vma->vm_ops && vma->vm_ops->close) 1047 return 0; 1048 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1049 return 0; 1050 return 1; 1051 } 1052 1053 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1054 struct anon_vma *anon_vma2, 1055 struct vm_area_struct *vma) 1056 { 1057 /* 1058 * The list_is_singular() test is to avoid merging VMA cloned from 1059 * parents. This can improve scalability caused by anon_vma lock. 1060 */ 1061 if ((!anon_vma1 || !anon_vma2) && (!vma || 1062 list_is_singular(&vma->anon_vma_chain))) 1063 return 1; 1064 return anon_vma1 == anon_vma2; 1065 } 1066 1067 /* 1068 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1069 * in front of (at a lower virtual address and file offset than) the vma. 1070 * 1071 * We cannot merge two vmas if they have differently assigned (non-NULL) 1072 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1073 * 1074 * We don't check here for the merged mmap wrapping around the end of pagecache 1075 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 1076 * wrap, nor mmaps which cover the final page at index -1UL. 1077 */ 1078 static int 1079 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1080 struct anon_vma *anon_vma, struct file *file, 1081 pgoff_t vm_pgoff, 1082 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1083 { 1084 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1085 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1086 if (vma->vm_pgoff == vm_pgoff) 1087 return 1; 1088 } 1089 return 0; 1090 } 1091 1092 /* 1093 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1094 * beyond (at a higher virtual address and file offset than) the vma. 1095 * 1096 * We cannot merge two vmas if they have differently assigned (non-NULL) 1097 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1098 */ 1099 static int 1100 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1101 struct anon_vma *anon_vma, struct file *file, 1102 pgoff_t vm_pgoff, 1103 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1104 { 1105 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1106 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1107 pgoff_t vm_pglen; 1108 vm_pglen = vma_pages(vma); 1109 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1110 return 1; 1111 } 1112 return 0; 1113 } 1114 1115 /* 1116 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1117 * whether that can be merged with its predecessor or its successor. 1118 * Or both (it neatly fills a hole). 1119 * 1120 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1121 * certain not to be mapped by the time vma_merge is called; but when 1122 * called for mprotect, it is certain to be already mapped (either at 1123 * an offset within prev, or at the start of next), and the flags of 1124 * this area are about to be changed to vm_flags - and the no-change 1125 * case has already been eliminated. 1126 * 1127 * The following mprotect cases have to be considered, where AAAA is 1128 * the area passed down from mprotect_fixup, never extending beyond one 1129 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1130 * 1131 * AAAA AAAA AAAA 1132 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1133 * cannot merge might become might become 1134 * PPNNNNNNNNNN PPPPPPPPPPNN 1135 * mmap, brk or case 4 below case 5 below 1136 * mremap move: 1137 * AAAA AAAA 1138 * PPPP NNNN PPPPNNNNXXXX 1139 * might become might become 1140 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1141 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1142 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1143 * 1144 * It is important for case 8 that the vma NNNN overlapping the 1145 * region AAAA is never going to extended over XXXX. Instead XXXX must 1146 * be extended in region AAAA and NNNN must be removed. This way in 1147 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1148 * rmap_locks, the properties of the merged vma will be already 1149 * correct for the whole merged range. Some of those properties like 1150 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1151 * be correct for the whole merged range immediately after the 1152 * rmap_locks are released. Otherwise if XXXX would be removed and 1153 * NNNN would be extended over the XXXX range, remove_migration_ptes 1154 * or other rmap walkers (if working on addresses beyond the "end" 1155 * parameter) may establish ptes with the wrong permissions of NNNN 1156 * instead of the right permissions of XXXX. 1157 */ 1158 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1159 struct vm_area_struct *prev, unsigned long addr, 1160 unsigned long end, unsigned long vm_flags, 1161 struct anon_vma *anon_vma, struct file *file, 1162 pgoff_t pgoff, struct mempolicy *policy, 1163 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1164 { 1165 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1166 struct vm_area_struct *area, *next; 1167 int err; 1168 1169 /* 1170 * We later require that vma->vm_flags == vm_flags, 1171 * so this tests vma->vm_flags & VM_SPECIAL, too. 1172 */ 1173 if (vm_flags & VM_SPECIAL) 1174 return NULL; 1175 1176 next = vma_next(mm, prev); 1177 area = next; 1178 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1179 next = next->vm_next; 1180 1181 /* verify some invariant that must be enforced by the caller */ 1182 VM_WARN_ON(prev && addr <= prev->vm_start); 1183 VM_WARN_ON(area && end > area->vm_end); 1184 VM_WARN_ON(addr >= end); 1185 1186 /* 1187 * Can it merge with the predecessor? 1188 */ 1189 if (prev && prev->vm_end == addr && 1190 mpol_equal(vma_policy(prev), policy) && 1191 can_vma_merge_after(prev, vm_flags, 1192 anon_vma, file, pgoff, 1193 vm_userfaultfd_ctx)) { 1194 /* 1195 * OK, it can. Can we now merge in the successor as well? 1196 */ 1197 if (next && end == next->vm_start && 1198 mpol_equal(policy, vma_policy(next)) && 1199 can_vma_merge_before(next, vm_flags, 1200 anon_vma, file, 1201 pgoff+pglen, 1202 vm_userfaultfd_ctx) && 1203 is_mergeable_anon_vma(prev->anon_vma, 1204 next->anon_vma, NULL)) { 1205 /* cases 1, 6 */ 1206 err = __vma_adjust(prev, prev->vm_start, 1207 next->vm_end, prev->vm_pgoff, NULL, 1208 prev); 1209 } else /* cases 2, 5, 7 */ 1210 err = __vma_adjust(prev, prev->vm_start, 1211 end, prev->vm_pgoff, NULL, prev); 1212 if (err) 1213 return NULL; 1214 khugepaged_enter_vma_merge(prev, vm_flags); 1215 return prev; 1216 } 1217 1218 /* 1219 * Can this new request be merged in front of next? 1220 */ 1221 if (next && end == next->vm_start && 1222 mpol_equal(policy, vma_policy(next)) && 1223 can_vma_merge_before(next, vm_flags, 1224 anon_vma, file, pgoff+pglen, 1225 vm_userfaultfd_ctx)) { 1226 if (prev && addr < prev->vm_end) /* case 4 */ 1227 err = __vma_adjust(prev, prev->vm_start, 1228 addr, prev->vm_pgoff, NULL, next); 1229 else { /* cases 3, 8 */ 1230 err = __vma_adjust(area, addr, next->vm_end, 1231 next->vm_pgoff - pglen, NULL, next); 1232 /* 1233 * In case 3 area is already equal to next and 1234 * this is a noop, but in case 8 "area" has 1235 * been removed and next was expanded over it. 1236 */ 1237 area = next; 1238 } 1239 if (err) 1240 return NULL; 1241 khugepaged_enter_vma_merge(area, vm_flags); 1242 return area; 1243 } 1244 1245 return NULL; 1246 } 1247 1248 /* 1249 * Rough compatibility check to quickly see if it's even worth looking 1250 * at sharing an anon_vma. 1251 * 1252 * They need to have the same vm_file, and the flags can only differ 1253 * in things that mprotect may change. 1254 * 1255 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1256 * we can merge the two vma's. For example, we refuse to merge a vma if 1257 * there is a vm_ops->close() function, because that indicates that the 1258 * driver is doing some kind of reference counting. But that doesn't 1259 * really matter for the anon_vma sharing case. 1260 */ 1261 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1262 { 1263 return a->vm_end == b->vm_start && 1264 mpol_equal(vma_policy(a), vma_policy(b)) && 1265 a->vm_file == b->vm_file && 1266 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1267 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1268 } 1269 1270 /* 1271 * Do some basic sanity checking to see if we can re-use the anon_vma 1272 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1273 * the same as 'old', the other will be the new one that is trying 1274 * to share the anon_vma. 1275 * 1276 * NOTE! This runs with mm_sem held for reading, so it is possible that 1277 * the anon_vma of 'old' is concurrently in the process of being set up 1278 * by another page fault trying to merge _that_. But that's ok: if it 1279 * is being set up, that automatically means that it will be a singleton 1280 * acceptable for merging, so we can do all of this optimistically. But 1281 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1282 * 1283 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1284 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1285 * is to return an anon_vma that is "complex" due to having gone through 1286 * a fork). 1287 * 1288 * We also make sure that the two vma's are compatible (adjacent, 1289 * and with the same memory policies). That's all stable, even with just 1290 * a read lock on the mm_sem. 1291 */ 1292 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1293 { 1294 if (anon_vma_compatible(a, b)) { 1295 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1296 1297 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1298 return anon_vma; 1299 } 1300 return NULL; 1301 } 1302 1303 /* 1304 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1305 * neighbouring vmas for a suitable anon_vma, before it goes off 1306 * to allocate a new anon_vma. It checks because a repetitive 1307 * sequence of mprotects and faults may otherwise lead to distinct 1308 * anon_vmas being allocated, preventing vma merge in subsequent 1309 * mprotect. 1310 */ 1311 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1312 { 1313 struct anon_vma *anon_vma = NULL; 1314 1315 /* Try next first. */ 1316 if (vma->vm_next) { 1317 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next); 1318 if (anon_vma) 1319 return anon_vma; 1320 } 1321 1322 /* Try prev next. */ 1323 if (vma->vm_prev) 1324 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma); 1325 1326 /* 1327 * We might reach here with anon_vma == NULL if we can't find 1328 * any reusable anon_vma. 1329 * There's no absolute need to look only at touching neighbours: 1330 * we could search further afield for "compatible" anon_vmas. 1331 * But it would probably just be a waste of time searching, 1332 * or lead to too many vmas hanging off the same anon_vma. 1333 * We're trying to allow mprotect remerging later on, 1334 * not trying to minimize memory used for anon_vmas. 1335 */ 1336 return anon_vma; 1337 } 1338 1339 /* 1340 * If a hint addr is less than mmap_min_addr change hint to be as 1341 * low as possible but still greater than mmap_min_addr 1342 */ 1343 static inline unsigned long round_hint_to_min(unsigned long hint) 1344 { 1345 hint &= PAGE_MASK; 1346 if (((void *)hint != NULL) && 1347 (hint < mmap_min_addr)) 1348 return PAGE_ALIGN(mmap_min_addr); 1349 return hint; 1350 } 1351 1352 int mlock_future_check(struct mm_struct *mm, unsigned long flags, 1353 unsigned long len) 1354 { 1355 unsigned long locked, lock_limit; 1356 1357 /* mlock MCL_FUTURE? */ 1358 if (flags & VM_LOCKED) { 1359 locked = len >> PAGE_SHIFT; 1360 locked += mm->locked_vm; 1361 lock_limit = rlimit(RLIMIT_MEMLOCK); 1362 lock_limit >>= PAGE_SHIFT; 1363 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1364 return -EAGAIN; 1365 } 1366 return 0; 1367 } 1368 1369 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1370 { 1371 if (S_ISREG(inode->i_mode)) 1372 return MAX_LFS_FILESIZE; 1373 1374 if (S_ISBLK(inode->i_mode)) 1375 return MAX_LFS_FILESIZE; 1376 1377 if (S_ISSOCK(inode->i_mode)) 1378 return MAX_LFS_FILESIZE; 1379 1380 /* Special "we do even unsigned file positions" case */ 1381 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1382 return 0; 1383 1384 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1385 return ULONG_MAX; 1386 } 1387 1388 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1389 unsigned long pgoff, unsigned long len) 1390 { 1391 u64 maxsize = file_mmap_size_max(file, inode); 1392 1393 if (maxsize && len > maxsize) 1394 return false; 1395 maxsize -= len; 1396 if (pgoff > maxsize >> PAGE_SHIFT) 1397 return false; 1398 return true; 1399 } 1400 1401 /* 1402 * The caller must write-lock current->mm->mmap_lock. 1403 */ 1404 unsigned long do_mmap(struct file *file, unsigned long addr, 1405 unsigned long len, unsigned long prot, 1406 unsigned long flags, unsigned long pgoff, 1407 unsigned long *populate, struct list_head *uf) 1408 { 1409 struct mm_struct *mm = current->mm; 1410 vm_flags_t vm_flags; 1411 int pkey = 0; 1412 1413 *populate = 0; 1414 1415 if (!len) 1416 return -EINVAL; 1417 1418 /* 1419 * Does the application expect PROT_READ to imply PROT_EXEC? 1420 * 1421 * (the exception is when the underlying filesystem is noexec 1422 * mounted, in which case we dont add PROT_EXEC.) 1423 */ 1424 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1425 if (!(file && path_noexec(&file->f_path))) 1426 prot |= PROT_EXEC; 1427 1428 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1429 if (flags & MAP_FIXED_NOREPLACE) 1430 flags |= MAP_FIXED; 1431 1432 if (!(flags & MAP_FIXED)) 1433 addr = round_hint_to_min(addr); 1434 1435 /* Careful about overflows.. */ 1436 len = PAGE_ALIGN(len); 1437 if (!len) 1438 return -ENOMEM; 1439 1440 /* offset overflow? */ 1441 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1442 return -EOVERFLOW; 1443 1444 /* Too many mappings? */ 1445 if (mm->map_count > sysctl_max_map_count) 1446 return -ENOMEM; 1447 1448 /* Obtain the address to map to. we verify (or select) it and ensure 1449 * that it represents a valid section of the address space. 1450 */ 1451 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1452 if (IS_ERR_VALUE(addr)) 1453 return addr; 1454 1455 if (flags & MAP_FIXED_NOREPLACE) { 1456 if (find_vma_intersection(mm, addr, addr + len)) 1457 return -EEXIST; 1458 } 1459 1460 if (prot == PROT_EXEC) { 1461 pkey = execute_only_pkey(mm); 1462 if (pkey < 0) 1463 pkey = 0; 1464 } 1465 1466 /* Do simple checking here so the lower-level routines won't have 1467 * to. we assume access permissions have been handled by the open 1468 * of the memory object, so we don't do any here. 1469 */ 1470 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1471 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1472 1473 if (flags & MAP_LOCKED) 1474 if (!can_do_mlock()) 1475 return -EPERM; 1476 1477 if (mlock_future_check(mm, vm_flags, len)) 1478 return -EAGAIN; 1479 1480 if (file) { 1481 struct inode *inode = file_inode(file); 1482 unsigned long flags_mask; 1483 1484 if (!file_mmap_ok(file, inode, pgoff, len)) 1485 return -EOVERFLOW; 1486 1487 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1488 1489 switch (flags & MAP_TYPE) { 1490 case MAP_SHARED: 1491 /* 1492 * Force use of MAP_SHARED_VALIDATE with non-legacy 1493 * flags. E.g. MAP_SYNC is dangerous to use with 1494 * MAP_SHARED as you don't know which consistency model 1495 * you will get. We silently ignore unsupported flags 1496 * with MAP_SHARED to preserve backward compatibility. 1497 */ 1498 flags &= LEGACY_MAP_MASK; 1499 fallthrough; 1500 case MAP_SHARED_VALIDATE: 1501 if (flags & ~flags_mask) 1502 return -EOPNOTSUPP; 1503 if (prot & PROT_WRITE) { 1504 if (!(file->f_mode & FMODE_WRITE)) 1505 return -EACCES; 1506 if (IS_SWAPFILE(file->f_mapping->host)) 1507 return -ETXTBSY; 1508 } 1509 1510 /* 1511 * Make sure we don't allow writing to an append-only 1512 * file.. 1513 */ 1514 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1515 return -EACCES; 1516 1517 vm_flags |= VM_SHARED | VM_MAYSHARE; 1518 if (!(file->f_mode & FMODE_WRITE)) 1519 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1520 fallthrough; 1521 case MAP_PRIVATE: 1522 if (!(file->f_mode & FMODE_READ)) 1523 return -EACCES; 1524 if (path_noexec(&file->f_path)) { 1525 if (vm_flags & VM_EXEC) 1526 return -EPERM; 1527 vm_flags &= ~VM_MAYEXEC; 1528 } 1529 1530 if (!file->f_op->mmap) 1531 return -ENODEV; 1532 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1533 return -EINVAL; 1534 break; 1535 1536 default: 1537 return -EINVAL; 1538 } 1539 } else { 1540 switch (flags & MAP_TYPE) { 1541 case MAP_SHARED: 1542 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1543 return -EINVAL; 1544 /* 1545 * Ignore pgoff. 1546 */ 1547 pgoff = 0; 1548 vm_flags |= VM_SHARED | VM_MAYSHARE; 1549 break; 1550 case MAP_PRIVATE: 1551 /* 1552 * Set pgoff according to addr for anon_vma. 1553 */ 1554 pgoff = addr >> PAGE_SHIFT; 1555 break; 1556 default: 1557 return -EINVAL; 1558 } 1559 } 1560 1561 /* 1562 * Set 'VM_NORESERVE' if we should not account for the 1563 * memory use of this mapping. 1564 */ 1565 if (flags & MAP_NORESERVE) { 1566 /* We honor MAP_NORESERVE if allowed to overcommit */ 1567 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1568 vm_flags |= VM_NORESERVE; 1569 1570 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1571 if (file && is_file_hugepages(file)) 1572 vm_flags |= VM_NORESERVE; 1573 } 1574 1575 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1576 if (!IS_ERR_VALUE(addr) && 1577 ((vm_flags & VM_LOCKED) || 1578 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1579 *populate = len; 1580 return addr; 1581 } 1582 1583 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1584 unsigned long prot, unsigned long flags, 1585 unsigned long fd, unsigned long pgoff) 1586 { 1587 struct file *file = NULL; 1588 unsigned long retval; 1589 1590 if (!(flags & MAP_ANONYMOUS)) { 1591 audit_mmap_fd(fd, flags); 1592 file = fget(fd); 1593 if (!file) 1594 return -EBADF; 1595 if (is_file_hugepages(file)) { 1596 len = ALIGN(len, huge_page_size(hstate_file(file))); 1597 } else if (unlikely(flags & MAP_HUGETLB)) { 1598 retval = -EINVAL; 1599 goto out_fput; 1600 } 1601 } else if (flags & MAP_HUGETLB) { 1602 struct hstate *hs; 1603 1604 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1605 if (!hs) 1606 return -EINVAL; 1607 1608 len = ALIGN(len, huge_page_size(hs)); 1609 /* 1610 * VM_NORESERVE is used because the reservations will be 1611 * taken when vm_ops->mmap() is called 1612 * A dummy user value is used because we are not locking 1613 * memory so no accounting is necessary 1614 */ 1615 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1616 VM_NORESERVE, 1617 HUGETLB_ANONHUGE_INODE, 1618 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1619 if (IS_ERR(file)) 1620 return PTR_ERR(file); 1621 } 1622 1623 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1624 out_fput: 1625 if (file) 1626 fput(file); 1627 return retval; 1628 } 1629 1630 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1631 unsigned long, prot, unsigned long, flags, 1632 unsigned long, fd, unsigned long, pgoff) 1633 { 1634 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1635 } 1636 1637 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1638 struct mmap_arg_struct { 1639 unsigned long addr; 1640 unsigned long len; 1641 unsigned long prot; 1642 unsigned long flags; 1643 unsigned long fd; 1644 unsigned long offset; 1645 }; 1646 1647 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1648 { 1649 struct mmap_arg_struct a; 1650 1651 if (copy_from_user(&a, arg, sizeof(a))) 1652 return -EFAULT; 1653 if (offset_in_page(a.offset)) 1654 return -EINVAL; 1655 1656 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1657 a.offset >> PAGE_SHIFT); 1658 } 1659 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1660 1661 /* 1662 * Some shared mappings will want the pages marked read-only 1663 * to track write events. If so, we'll downgrade vm_page_prot 1664 * to the private version (using protection_map[] without the 1665 * VM_SHARED bit). 1666 */ 1667 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1668 { 1669 vm_flags_t vm_flags = vma->vm_flags; 1670 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1671 1672 /* If it was private or non-writable, the write bit is already clear */ 1673 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1674 return 0; 1675 1676 /* The backer wishes to know when pages are first written to? */ 1677 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1678 return 1; 1679 1680 /* The open routine did something to the protections that pgprot_modify 1681 * won't preserve? */ 1682 if (pgprot_val(vm_page_prot) != 1683 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1684 return 0; 1685 1686 /* Do we need to track softdirty? */ 1687 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1688 return 1; 1689 1690 /* Specialty mapping? */ 1691 if (vm_flags & VM_PFNMAP) 1692 return 0; 1693 1694 /* Can the mapping track the dirty pages? */ 1695 return vma->vm_file && vma->vm_file->f_mapping && 1696 mapping_can_writeback(vma->vm_file->f_mapping); 1697 } 1698 1699 /* 1700 * We account for memory if it's a private writeable mapping, 1701 * not hugepages and VM_NORESERVE wasn't set. 1702 */ 1703 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1704 { 1705 /* 1706 * hugetlb has its own accounting separate from the core VM 1707 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1708 */ 1709 if (file && is_file_hugepages(file)) 1710 return 0; 1711 1712 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1713 } 1714 1715 unsigned long mmap_region(struct file *file, unsigned long addr, 1716 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1717 struct list_head *uf) 1718 { 1719 struct mm_struct *mm = current->mm; 1720 struct vm_area_struct *vma, *prev, *merge; 1721 int error; 1722 struct rb_node **rb_link, *rb_parent; 1723 unsigned long charged = 0; 1724 1725 /* Check against address space limit. */ 1726 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1727 unsigned long nr_pages; 1728 1729 /* 1730 * MAP_FIXED may remove pages of mappings that intersects with 1731 * requested mapping. Account for the pages it would unmap. 1732 */ 1733 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1734 1735 if (!may_expand_vm(mm, vm_flags, 1736 (len >> PAGE_SHIFT) - nr_pages)) 1737 return -ENOMEM; 1738 } 1739 1740 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 1741 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 1742 return -ENOMEM; 1743 /* 1744 * Private writable mapping: check memory availability 1745 */ 1746 if (accountable_mapping(file, vm_flags)) { 1747 charged = len >> PAGE_SHIFT; 1748 if (security_vm_enough_memory_mm(mm, charged)) 1749 return -ENOMEM; 1750 vm_flags |= VM_ACCOUNT; 1751 } 1752 1753 /* 1754 * Can we just expand an old mapping? 1755 */ 1756 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1757 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1758 if (vma) 1759 goto out; 1760 1761 /* 1762 * Determine the object being mapped and call the appropriate 1763 * specific mapper. the address has already been validated, but 1764 * not unmapped, but the maps are removed from the list. 1765 */ 1766 vma = vm_area_alloc(mm); 1767 if (!vma) { 1768 error = -ENOMEM; 1769 goto unacct_error; 1770 } 1771 1772 vma->vm_start = addr; 1773 vma->vm_end = addr + len; 1774 vma->vm_flags = vm_flags; 1775 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1776 vma->vm_pgoff = pgoff; 1777 1778 if (file) { 1779 if (vm_flags & VM_SHARED) { 1780 error = mapping_map_writable(file->f_mapping); 1781 if (error) 1782 goto free_vma; 1783 } 1784 1785 vma->vm_file = get_file(file); 1786 error = call_mmap(file, vma); 1787 if (error) 1788 goto unmap_and_free_vma; 1789 1790 /* Can addr have changed?? 1791 * 1792 * Answer: Yes, several device drivers can do it in their 1793 * f_op->mmap method. -DaveM 1794 * Bug: If addr is changed, prev, rb_link, rb_parent should 1795 * be updated for vma_link() 1796 */ 1797 WARN_ON_ONCE(addr != vma->vm_start); 1798 1799 addr = vma->vm_start; 1800 1801 /* If vm_flags changed after call_mmap(), we should try merge vma again 1802 * as we may succeed this time. 1803 */ 1804 if (unlikely(vm_flags != vma->vm_flags && prev)) { 1805 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, 1806 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX); 1807 if (merge) { 1808 /* ->mmap() can change vma->vm_file and fput the original file. So 1809 * fput the vma->vm_file here or we would add an extra fput for file 1810 * and cause general protection fault ultimately. 1811 */ 1812 fput(vma->vm_file); 1813 vm_area_free(vma); 1814 vma = merge; 1815 /* Update vm_flags to pick up the change. */ 1816 vm_flags = vma->vm_flags; 1817 goto unmap_writable; 1818 } 1819 } 1820 1821 vm_flags = vma->vm_flags; 1822 } else if (vm_flags & VM_SHARED) { 1823 error = shmem_zero_setup(vma); 1824 if (error) 1825 goto free_vma; 1826 } else { 1827 vma_set_anonymous(vma); 1828 } 1829 1830 /* Allow architectures to sanity-check the vm_flags */ 1831 if (!arch_validate_flags(vma->vm_flags)) { 1832 error = -EINVAL; 1833 if (file) 1834 goto unmap_and_free_vma; 1835 else 1836 goto free_vma; 1837 } 1838 1839 vma_link(mm, vma, prev, rb_link, rb_parent); 1840 /* Once vma denies write, undo our temporary denial count */ 1841 unmap_writable: 1842 if (file && vm_flags & VM_SHARED) 1843 mapping_unmap_writable(file->f_mapping); 1844 file = vma->vm_file; 1845 out: 1846 perf_event_mmap(vma); 1847 1848 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1849 if (vm_flags & VM_LOCKED) { 1850 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1851 is_vm_hugetlb_page(vma) || 1852 vma == get_gate_vma(current->mm)) 1853 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1854 else 1855 mm->locked_vm += (len >> PAGE_SHIFT); 1856 } 1857 1858 if (file) 1859 uprobe_mmap(vma); 1860 1861 /* 1862 * New (or expanded) vma always get soft dirty status. 1863 * Otherwise user-space soft-dirty page tracker won't 1864 * be able to distinguish situation when vma area unmapped, 1865 * then new mapped in-place (which must be aimed as 1866 * a completely new data area). 1867 */ 1868 vma->vm_flags |= VM_SOFTDIRTY; 1869 1870 vma_set_page_prot(vma); 1871 1872 return addr; 1873 1874 unmap_and_free_vma: 1875 fput(vma->vm_file); 1876 vma->vm_file = NULL; 1877 1878 /* Undo any partial mapping done by a device driver. */ 1879 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1880 charged = 0; 1881 if (vm_flags & VM_SHARED) 1882 mapping_unmap_writable(file->f_mapping); 1883 free_vma: 1884 vm_area_free(vma); 1885 unacct_error: 1886 if (charged) 1887 vm_unacct_memory(charged); 1888 return error; 1889 } 1890 1891 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1892 { 1893 /* 1894 * We implement the search by looking for an rbtree node that 1895 * immediately follows a suitable gap. That is, 1896 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1897 * - gap_end = vma->vm_start >= info->low_limit + length; 1898 * - gap_end - gap_start >= length 1899 */ 1900 1901 struct mm_struct *mm = current->mm; 1902 struct vm_area_struct *vma; 1903 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1904 1905 /* Adjust search length to account for worst case alignment overhead */ 1906 length = info->length + info->align_mask; 1907 if (length < info->length) 1908 return -ENOMEM; 1909 1910 /* Adjust search limits by the desired length */ 1911 if (info->high_limit < length) 1912 return -ENOMEM; 1913 high_limit = info->high_limit - length; 1914 1915 if (info->low_limit > high_limit) 1916 return -ENOMEM; 1917 low_limit = info->low_limit + length; 1918 1919 /* Check if rbtree root looks promising */ 1920 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1921 goto check_highest; 1922 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1923 if (vma->rb_subtree_gap < length) 1924 goto check_highest; 1925 1926 while (true) { 1927 /* Visit left subtree if it looks promising */ 1928 gap_end = vm_start_gap(vma); 1929 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1930 struct vm_area_struct *left = 1931 rb_entry(vma->vm_rb.rb_left, 1932 struct vm_area_struct, vm_rb); 1933 if (left->rb_subtree_gap >= length) { 1934 vma = left; 1935 continue; 1936 } 1937 } 1938 1939 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1940 check_current: 1941 /* Check if current node has a suitable gap */ 1942 if (gap_start > high_limit) 1943 return -ENOMEM; 1944 if (gap_end >= low_limit && 1945 gap_end > gap_start && gap_end - gap_start >= length) 1946 goto found; 1947 1948 /* Visit right subtree if it looks promising */ 1949 if (vma->vm_rb.rb_right) { 1950 struct vm_area_struct *right = 1951 rb_entry(vma->vm_rb.rb_right, 1952 struct vm_area_struct, vm_rb); 1953 if (right->rb_subtree_gap >= length) { 1954 vma = right; 1955 continue; 1956 } 1957 } 1958 1959 /* Go back up the rbtree to find next candidate node */ 1960 while (true) { 1961 struct rb_node *prev = &vma->vm_rb; 1962 if (!rb_parent(prev)) 1963 goto check_highest; 1964 vma = rb_entry(rb_parent(prev), 1965 struct vm_area_struct, vm_rb); 1966 if (prev == vma->vm_rb.rb_left) { 1967 gap_start = vm_end_gap(vma->vm_prev); 1968 gap_end = vm_start_gap(vma); 1969 goto check_current; 1970 } 1971 } 1972 } 1973 1974 check_highest: 1975 /* Check highest gap, which does not precede any rbtree node */ 1976 gap_start = mm->highest_vm_end; 1977 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1978 if (gap_start > high_limit) 1979 return -ENOMEM; 1980 1981 found: 1982 /* We found a suitable gap. Clip it with the original low_limit. */ 1983 if (gap_start < info->low_limit) 1984 gap_start = info->low_limit; 1985 1986 /* Adjust gap address to the desired alignment */ 1987 gap_start += (info->align_offset - gap_start) & info->align_mask; 1988 1989 VM_BUG_ON(gap_start + info->length > info->high_limit); 1990 VM_BUG_ON(gap_start + info->length > gap_end); 1991 return gap_start; 1992 } 1993 1994 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1995 { 1996 struct mm_struct *mm = current->mm; 1997 struct vm_area_struct *vma; 1998 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1999 2000 /* Adjust search length to account for worst case alignment overhead */ 2001 length = info->length + info->align_mask; 2002 if (length < info->length) 2003 return -ENOMEM; 2004 2005 /* 2006 * Adjust search limits by the desired length. 2007 * See implementation comment at top of unmapped_area(). 2008 */ 2009 gap_end = info->high_limit; 2010 if (gap_end < length) 2011 return -ENOMEM; 2012 high_limit = gap_end - length; 2013 2014 if (info->low_limit > high_limit) 2015 return -ENOMEM; 2016 low_limit = info->low_limit + length; 2017 2018 /* Check highest gap, which does not precede any rbtree node */ 2019 gap_start = mm->highest_vm_end; 2020 if (gap_start <= high_limit) 2021 goto found_highest; 2022 2023 /* Check if rbtree root looks promising */ 2024 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2025 return -ENOMEM; 2026 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2027 if (vma->rb_subtree_gap < length) 2028 return -ENOMEM; 2029 2030 while (true) { 2031 /* Visit right subtree if it looks promising */ 2032 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2033 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2034 struct vm_area_struct *right = 2035 rb_entry(vma->vm_rb.rb_right, 2036 struct vm_area_struct, vm_rb); 2037 if (right->rb_subtree_gap >= length) { 2038 vma = right; 2039 continue; 2040 } 2041 } 2042 2043 check_current: 2044 /* Check if current node has a suitable gap */ 2045 gap_end = vm_start_gap(vma); 2046 if (gap_end < low_limit) 2047 return -ENOMEM; 2048 if (gap_start <= high_limit && 2049 gap_end > gap_start && gap_end - gap_start >= length) 2050 goto found; 2051 2052 /* Visit left subtree if it looks promising */ 2053 if (vma->vm_rb.rb_left) { 2054 struct vm_area_struct *left = 2055 rb_entry(vma->vm_rb.rb_left, 2056 struct vm_area_struct, vm_rb); 2057 if (left->rb_subtree_gap >= length) { 2058 vma = left; 2059 continue; 2060 } 2061 } 2062 2063 /* Go back up the rbtree to find next candidate node */ 2064 while (true) { 2065 struct rb_node *prev = &vma->vm_rb; 2066 if (!rb_parent(prev)) 2067 return -ENOMEM; 2068 vma = rb_entry(rb_parent(prev), 2069 struct vm_area_struct, vm_rb); 2070 if (prev == vma->vm_rb.rb_right) { 2071 gap_start = vma->vm_prev ? 2072 vm_end_gap(vma->vm_prev) : 0; 2073 goto check_current; 2074 } 2075 } 2076 } 2077 2078 found: 2079 /* We found a suitable gap. Clip it with the original high_limit. */ 2080 if (gap_end > info->high_limit) 2081 gap_end = info->high_limit; 2082 2083 found_highest: 2084 /* Compute highest gap address at the desired alignment */ 2085 gap_end -= info->length; 2086 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2087 2088 VM_BUG_ON(gap_end < info->low_limit); 2089 VM_BUG_ON(gap_end < gap_start); 2090 return gap_end; 2091 } 2092 2093 /* 2094 * Search for an unmapped address range. 2095 * 2096 * We are looking for a range that: 2097 * - does not intersect with any VMA; 2098 * - is contained within the [low_limit, high_limit) interval; 2099 * - is at least the desired size. 2100 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2101 */ 2102 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 2103 { 2104 unsigned long addr; 2105 2106 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2107 addr = unmapped_area_topdown(info); 2108 else 2109 addr = unmapped_area(info); 2110 2111 trace_vm_unmapped_area(addr, info); 2112 return addr; 2113 } 2114 2115 #ifndef arch_get_mmap_end 2116 #define arch_get_mmap_end(addr) (TASK_SIZE) 2117 #endif 2118 2119 #ifndef arch_get_mmap_base 2120 #define arch_get_mmap_base(addr, base) (base) 2121 #endif 2122 2123 /* Get an address range which is currently unmapped. 2124 * For shmat() with addr=0. 2125 * 2126 * Ugly calling convention alert: 2127 * Return value with the low bits set means error value, 2128 * ie 2129 * if (ret & ~PAGE_MASK) 2130 * error = ret; 2131 * 2132 * This function "knows" that -ENOMEM has the bits set. 2133 */ 2134 #ifndef HAVE_ARCH_UNMAPPED_AREA 2135 unsigned long 2136 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2137 unsigned long len, unsigned long pgoff, unsigned long flags) 2138 { 2139 struct mm_struct *mm = current->mm; 2140 struct vm_area_struct *vma, *prev; 2141 struct vm_unmapped_area_info info; 2142 const unsigned long mmap_end = arch_get_mmap_end(addr); 2143 2144 if (len > mmap_end - mmap_min_addr) 2145 return -ENOMEM; 2146 2147 if (flags & MAP_FIXED) 2148 return addr; 2149 2150 if (addr) { 2151 addr = PAGE_ALIGN(addr); 2152 vma = find_vma_prev(mm, addr, &prev); 2153 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2154 (!vma || addr + len <= vm_start_gap(vma)) && 2155 (!prev || addr >= vm_end_gap(prev))) 2156 return addr; 2157 } 2158 2159 info.flags = 0; 2160 info.length = len; 2161 info.low_limit = mm->mmap_base; 2162 info.high_limit = mmap_end; 2163 info.align_mask = 0; 2164 info.align_offset = 0; 2165 return vm_unmapped_area(&info); 2166 } 2167 #endif 2168 2169 /* 2170 * This mmap-allocator allocates new areas top-down from below the 2171 * stack's low limit (the base): 2172 */ 2173 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2174 unsigned long 2175 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2176 unsigned long len, unsigned long pgoff, 2177 unsigned long flags) 2178 { 2179 struct vm_area_struct *vma, *prev; 2180 struct mm_struct *mm = current->mm; 2181 struct vm_unmapped_area_info info; 2182 const unsigned long mmap_end = arch_get_mmap_end(addr); 2183 2184 /* requested length too big for entire address space */ 2185 if (len > mmap_end - mmap_min_addr) 2186 return -ENOMEM; 2187 2188 if (flags & MAP_FIXED) 2189 return addr; 2190 2191 /* requesting a specific address */ 2192 if (addr) { 2193 addr = PAGE_ALIGN(addr); 2194 vma = find_vma_prev(mm, addr, &prev); 2195 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2196 (!vma || addr + len <= vm_start_gap(vma)) && 2197 (!prev || addr >= vm_end_gap(prev))) 2198 return addr; 2199 } 2200 2201 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2202 info.length = len; 2203 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2204 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2205 info.align_mask = 0; 2206 info.align_offset = 0; 2207 addr = vm_unmapped_area(&info); 2208 2209 /* 2210 * A failed mmap() very likely causes application failure, 2211 * so fall back to the bottom-up function here. This scenario 2212 * can happen with large stack limits and large mmap() 2213 * allocations. 2214 */ 2215 if (offset_in_page(addr)) { 2216 VM_BUG_ON(addr != -ENOMEM); 2217 info.flags = 0; 2218 info.low_limit = TASK_UNMAPPED_BASE; 2219 info.high_limit = mmap_end; 2220 addr = vm_unmapped_area(&info); 2221 } 2222 2223 return addr; 2224 } 2225 #endif 2226 2227 unsigned long 2228 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2229 unsigned long pgoff, unsigned long flags) 2230 { 2231 unsigned long (*get_area)(struct file *, unsigned long, 2232 unsigned long, unsigned long, unsigned long); 2233 2234 unsigned long error = arch_mmap_check(addr, len, flags); 2235 if (error) 2236 return error; 2237 2238 /* Careful about overflows.. */ 2239 if (len > TASK_SIZE) 2240 return -ENOMEM; 2241 2242 get_area = current->mm->get_unmapped_area; 2243 if (file) { 2244 if (file->f_op->get_unmapped_area) 2245 get_area = file->f_op->get_unmapped_area; 2246 } else if (flags & MAP_SHARED) { 2247 /* 2248 * mmap_region() will call shmem_zero_setup() to create a file, 2249 * so use shmem's get_unmapped_area in case it can be huge. 2250 * do_mmap() will clear pgoff, so match alignment. 2251 */ 2252 pgoff = 0; 2253 get_area = shmem_get_unmapped_area; 2254 } 2255 2256 addr = get_area(file, addr, len, pgoff, flags); 2257 if (IS_ERR_VALUE(addr)) 2258 return addr; 2259 2260 if (addr > TASK_SIZE - len) 2261 return -ENOMEM; 2262 if (offset_in_page(addr)) 2263 return -EINVAL; 2264 2265 error = security_mmap_addr(addr); 2266 return error ? error : addr; 2267 } 2268 2269 EXPORT_SYMBOL(get_unmapped_area); 2270 2271 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2272 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2273 { 2274 struct rb_node *rb_node; 2275 struct vm_area_struct *vma; 2276 2277 mmap_assert_locked(mm); 2278 /* Check the cache first. */ 2279 vma = vmacache_find(mm, addr); 2280 if (likely(vma)) 2281 return vma; 2282 2283 rb_node = mm->mm_rb.rb_node; 2284 2285 while (rb_node) { 2286 struct vm_area_struct *tmp; 2287 2288 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2289 2290 if (tmp->vm_end > addr) { 2291 vma = tmp; 2292 if (tmp->vm_start <= addr) 2293 break; 2294 rb_node = rb_node->rb_left; 2295 } else 2296 rb_node = rb_node->rb_right; 2297 } 2298 2299 if (vma) 2300 vmacache_update(addr, vma); 2301 return vma; 2302 } 2303 2304 EXPORT_SYMBOL(find_vma); 2305 2306 /* 2307 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2308 */ 2309 struct vm_area_struct * 2310 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2311 struct vm_area_struct **pprev) 2312 { 2313 struct vm_area_struct *vma; 2314 2315 vma = find_vma(mm, addr); 2316 if (vma) { 2317 *pprev = vma->vm_prev; 2318 } else { 2319 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2320 2321 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2322 } 2323 return vma; 2324 } 2325 2326 /* 2327 * Verify that the stack growth is acceptable and 2328 * update accounting. This is shared with both the 2329 * grow-up and grow-down cases. 2330 */ 2331 static int acct_stack_growth(struct vm_area_struct *vma, 2332 unsigned long size, unsigned long grow) 2333 { 2334 struct mm_struct *mm = vma->vm_mm; 2335 unsigned long new_start; 2336 2337 /* address space limit tests */ 2338 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2339 return -ENOMEM; 2340 2341 /* Stack limit test */ 2342 if (size > rlimit(RLIMIT_STACK)) 2343 return -ENOMEM; 2344 2345 /* mlock limit tests */ 2346 if (vma->vm_flags & VM_LOCKED) { 2347 unsigned long locked; 2348 unsigned long limit; 2349 locked = mm->locked_vm + grow; 2350 limit = rlimit(RLIMIT_MEMLOCK); 2351 limit >>= PAGE_SHIFT; 2352 if (locked > limit && !capable(CAP_IPC_LOCK)) 2353 return -ENOMEM; 2354 } 2355 2356 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2357 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2358 vma->vm_end - size; 2359 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2360 return -EFAULT; 2361 2362 /* 2363 * Overcommit.. This must be the final test, as it will 2364 * update security statistics. 2365 */ 2366 if (security_vm_enough_memory_mm(mm, grow)) 2367 return -ENOMEM; 2368 2369 return 0; 2370 } 2371 2372 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2373 /* 2374 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2375 * vma is the last one with address > vma->vm_end. Have to extend vma. 2376 */ 2377 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2378 { 2379 struct mm_struct *mm = vma->vm_mm; 2380 struct vm_area_struct *next; 2381 unsigned long gap_addr; 2382 int error = 0; 2383 2384 if (!(vma->vm_flags & VM_GROWSUP)) 2385 return -EFAULT; 2386 2387 /* Guard against exceeding limits of the address space. */ 2388 address &= PAGE_MASK; 2389 if (address >= (TASK_SIZE & PAGE_MASK)) 2390 return -ENOMEM; 2391 address += PAGE_SIZE; 2392 2393 /* Enforce stack_guard_gap */ 2394 gap_addr = address + stack_guard_gap; 2395 2396 /* Guard against overflow */ 2397 if (gap_addr < address || gap_addr > TASK_SIZE) 2398 gap_addr = TASK_SIZE; 2399 2400 next = vma->vm_next; 2401 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) { 2402 if (!(next->vm_flags & VM_GROWSUP)) 2403 return -ENOMEM; 2404 /* Check that both stack segments have the same anon_vma? */ 2405 } 2406 2407 /* We must make sure the anon_vma is allocated. */ 2408 if (unlikely(anon_vma_prepare(vma))) 2409 return -ENOMEM; 2410 2411 /* 2412 * vma->vm_start/vm_end cannot change under us because the caller 2413 * is required to hold the mmap_lock in read mode. We need the 2414 * anon_vma lock to serialize against concurrent expand_stacks. 2415 */ 2416 anon_vma_lock_write(vma->anon_vma); 2417 2418 /* Somebody else might have raced and expanded it already */ 2419 if (address > vma->vm_end) { 2420 unsigned long size, grow; 2421 2422 size = address - vma->vm_start; 2423 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2424 2425 error = -ENOMEM; 2426 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2427 error = acct_stack_growth(vma, size, grow); 2428 if (!error) { 2429 /* 2430 * vma_gap_update() doesn't support concurrent 2431 * updates, but we only hold a shared mmap_lock 2432 * lock here, so we need to protect against 2433 * concurrent vma expansions. 2434 * anon_vma_lock_write() doesn't help here, as 2435 * we don't guarantee that all growable vmas 2436 * in a mm share the same root anon vma. 2437 * So, we reuse mm->page_table_lock to guard 2438 * against concurrent vma expansions. 2439 */ 2440 spin_lock(&mm->page_table_lock); 2441 if (vma->vm_flags & VM_LOCKED) 2442 mm->locked_vm += grow; 2443 vm_stat_account(mm, vma->vm_flags, grow); 2444 anon_vma_interval_tree_pre_update_vma(vma); 2445 vma->vm_end = address; 2446 anon_vma_interval_tree_post_update_vma(vma); 2447 if (vma->vm_next) 2448 vma_gap_update(vma->vm_next); 2449 else 2450 mm->highest_vm_end = vm_end_gap(vma); 2451 spin_unlock(&mm->page_table_lock); 2452 2453 perf_event_mmap(vma); 2454 } 2455 } 2456 } 2457 anon_vma_unlock_write(vma->anon_vma); 2458 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2459 validate_mm(mm); 2460 return error; 2461 } 2462 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2463 2464 /* 2465 * vma is the first one with address < vma->vm_start. Have to extend vma. 2466 */ 2467 int expand_downwards(struct vm_area_struct *vma, 2468 unsigned long address) 2469 { 2470 struct mm_struct *mm = vma->vm_mm; 2471 struct vm_area_struct *prev; 2472 int error = 0; 2473 2474 address &= PAGE_MASK; 2475 if (address < mmap_min_addr) 2476 return -EPERM; 2477 2478 /* Enforce stack_guard_gap */ 2479 prev = vma->vm_prev; 2480 /* Check that both stack segments have the same anon_vma? */ 2481 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2482 vma_is_accessible(prev)) { 2483 if (address - prev->vm_end < stack_guard_gap) 2484 return -ENOMEM; 2485 } 2486 2487 /* We must make sure the anon_vma is allocated. */ 2488 if (unlikely(anon_vma_prepare(vma))) 2489 return -ENOMEM; 2490 2491 /* 2492 * vma->vm_start/vm_end cannot change under us because the caller 2493 * is required to hold the mmap_lock in read mode. We need the 2494 * anon_vma lock to serialize against concurrent expand_stacks. 2495 */ 2496 anon_vma_lock_write(vma->anon_vma); 2497 2498 /* Somebody else might have raced and expanded it already */ 2499 if (address < vma->vm_start) { 2500 unsigned long size, grow; 2501 2502 size = vma->vm_end - address; 2503 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2504 2505 error = -ENOMEM; 2506 if (grow <= vma->vm_pgoff) { 2507 error = acct_stack_growth(vma, size, grow); 2508 if (!error) { 2509 /* 2510 * vma_gap_update() doesn't support concurrent 2511 * updates, but we only hold a shared mmap_lock 2512 * lock here, so we need to protect against 2513 * concurrent vma expansions. 2514 * anon_vma_lock_write() doesn't help here, as 2515 * we don't guarantee that all growable vmas 2516 * in a mm share the same root anon vma. 2517 * So, we reuse mm->page_table_lock to guard 2518 * against concurrent vma expansions. 2519 */ 2520 spin_lock(&mm->page_table_lock); 2521 if (vma->vm_flags & VM_LOCKED) 2522 mm->locked_vm += grow; 2523 vm_stat_account(mm, vma->vm_flags, grow); 2524 anon_vma_interval_tree_pre_update_vma(vma); 2525 vma->vm_start = address; 2526 vma->vm_pgoff -= grow; 2527 anon_vma_interval_tree_post_update_vma(vma); 2528 vma_gap_update(vma); 2529 spin_unlock(&mm->page_table_lock); 2530 2531 perf_event_mmap(vma); 2532 } 2533 } 2534 } 2535 anon_vma_unlock_write(vma->anon_vma); 2536 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2537 validate_mm(mm); 2538 return error; 2539 } 2540 2541 /* enforced gap between the expanding stack and other mappings. */ 2542 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2543 2544 static int __init cmdline_parse_stack_guard_gap(char *p) 2545 { 2546 unsigned long val; 2547 char *endptr; 2548 2549 val = simple_strtoul(p, &endptr, 10); 2550 if (!*endptr) 2551 stack_guard_gap = val << PAGE_SHIFT; 2552 2553 return 0; 2554 } 2555 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2556 2557 #ifdef CONFIG_STACK_GROWSUP 2558 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2559 { 2560 return expand_upwards(vma, address); 2561 } 2562 2563 struct vm_area_struct * 2564 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2565 { 2566 struct vm_area_struct *vma, *prev; 2567 2568 addr &= PAGE_MASK; 2569 vma = find_vma_prev(mm, addr, &prev); 2570 if (vma && (vma->vm_start <= addr)) 2571 return vma; 2572 /* don't alter vm_end if the coredump is running */ 2573 if (!prev || expand_stack(prev, addr)) 2574 return NULL; 2575 if (prev->vm_flags & VM_LOCKED) 2576 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2577 return prev; 2578 } 2579 #else 2580 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2581 { 2582 return expand_downwards(vma, address); 2583 } 2584 2585 struct vm_area_struct * 2586 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2587 { 2588 struct vm_area_struct *vma; 2589 unsigned long start; 2590 2591 addr &= PAGE_MASK; 2592 vma = find_vma(mm, addr); 2593 if (!vma) 2594 return NULL; 2595 if (vma->vm_start <= addr) 2596 return vma; 2597 if (!(vma->vm_flags & VM_GROWSDOWN)) 2598 return NULL; 2599 start = vma->vm_start; 2600 if (expand_stack(vma, addr)) 2601 return NULL; 2602 if (vma->vm_flags & VM_LOCKED) 2603 populate_vma_page_range(vma, addr, start, NULL); 2604 return vma; 2605 } 2606 #endif 2607 2608 EXPORT_SYMBOL_GPL(find_extend_vma); 2609 2610 /* 2611 * Ok - we have the memory areas we should free on the vma list, 2612 * so release them, and do the vma updates. 2613 * 2614 * Called with the mm semaphore held. 2615 */ 2616 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2617 { 2618 unsigned long nr_accounted = 0; 2619 2620 /* Update high watermark before we lower total_vm */ 2621 update_hiwater_vm(mm); 2622 do { 2623 long nrpages = vma_pages(vma); 2624 2625 if (vma->vm_flags & VM_ACCOUNT) 2626 nr_accounted += nrpages; 2627 vm_stat_account(mm, vma->vm_flags, -nrpages); 2628 vma = remove_vma(vma); 2629 } while (vma); 2630 vm_unacct_memory(nr_accounted); 2631 validate_mm(mm); 2632 } 2633 2634 /* 2635 * Get rid of page table information in the indicated region. 2636 * 2637 * Called with the mm semaphore held. 2638 */ 2639 static void unmap_region(struct mm_struct *mm, 2640 struct vm_area_struct *vma, struct vm_area_struct *prev, 2641 unsigned long start, unsigned long end) 2642 { 2643 struct vm_area_struct *next = vma_next(mm, prev); 2644 struct mmu_gather tlb; 2645 2646 lru_add_drain(); 2647 tlb_gather_mmu(&tlb, mm); 2648 update_hiwater_rss(mm); 2649 unmap_vmas(&tlb, vma, start, end); 2650 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2651 next ? next->vm_start : USER_PGTABLES_CEILING); 2652 tlb_finish_mmu(&tlb); 2653 } 2654 2655 /* 2656 * Create a list of vma's touched by the unmap, removing them from the mm's 2657 * vma list as we go.. 2658 */ 2659 static bool 2660 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2661 struct vm_area_struct *prev, unsigned long end) 2662 { 2663 struct vm_area_struct **insertion_point; 2664 struct vm_area_struct *tail_vma = NULL; 2665 2666 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2667 vma->vm_prev = NULL; 2668 do { 2669 vma_rb_erase(vma, &mm->mm_rb); 2670 mm->map_count--; 2671 tail_vma = vma; 2672 vma = vma->vm_next; 2673 } while (vma && vma->vm_start < end); 2674 *insertion_point = vma; 2675 if (vma) { 2676 vma->vm_prev = prev; 2677 vma_gap_update(vma); 2678 } else 2679 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2680 tail_vma->vm_next = NULL; 2681 2682 /* Kill the cache */ 2683 vmacache_invalidate(mm); 2684 2685 /* 2686 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2687 * VM_GROWSUP VMA. Such VMAs can change their size under 2688 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2689 */ 2690 if (vma && (vma->vm_flags & VM_GROWSDOWN)) 2691 return false; 2692 if (prev && (prev->vm_flags & VM_GROWSUP)) 2693 return false; 2694 return true; 2695 } 2696 2697 /* 2698 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2699 * has already been checked or doesn't make sense to fail. 2700 */ 2701 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2702 unsigned long addr, int new_below) 2703 { 2704 struct vm_area_struct *new; 2705 int err; 2706 2707 if (vma->vm_ops && vma->vm_ops->may_split) { 2708 err = vma->vm_ops->may_split(vma, addr); 2709 if (err) 2710 return err; 2711 } 2712 2713 new = vm_area_dup(vma); 2714 if (!new) 2715 return -ENOMEM; 2716 2717 if (new_below) 2718 new->vm_end = addr; 2719 else { 2720 new->vm_start = addr; 2721 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2722 } 2723 2724 err = vma_dup_policy(vma, new); 2725 if (err) 2726 goto out_free_vma; 2727 2728 err = anon_vma_clone(new, vma); 2729 if (err) 2730 goto out_free_mpol; 2731 2732 if (new->vm_file) 2733 get_file(new->vm_file); 2734 2735 if (new->vm_ops && new->vm_ops->open) 2736 new->vm_ops->open(new); 2737 2738 if (new_below) 2739 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2740 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2741 else 2742 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2743 2744 /* Success. */ 2745 if (!err) 2746 return 0; 2747 2748 /* Clean everything up if vma_adjust failed. */ 2749 if (new->vm_ops && new->vm_ops->close) 2750 new->vm_ops->close(new); 2751 if (new->vm_file) 2752 fput(new->vm_file); 2753 unlink_anon_vmas(new); 2754 out_free_mpol: 2755 mpol_put(vma_policy(new)); 2756 out_free_vma: 2757 vm_area_free(new); 2758 return err; 2759 } 2760 2761 /* 2762 * Split a vma into two pieces at address 'addr', a new vma is allocated 2763 * either for the first part or the tail. 2764 */ 2765 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2766 unsigned long addr, int new_below) 2767 { 2768 if (mm->map_count >= sysctl_max_map_count) 2769 return -ENOMEM; 2770 2771 return __split_vma(mm, vma, addr, new_below); 2772 } 2773 2774 static inline void 2775 unlock_range(struct vm_area_struct *start, unsigned long limit) 2776 { 2777 struct mm_struct *mm = start->vm_mm; 2778 struct vm_area_struct *tmp = start; 2779 2780 while (tmp && tmp->vm_start < limit) { 2781 if (tmp->vm_flags & VM_LOCKED) { 2782 mm->locked_vm -= vma_pages(tmp); 2783 munlock_vma_pages_all(tmp); 2784 } 2785 2786 tmp = tmp->vm_next; 2787 } 2788 } 2789 2790 /* Munmap is split into 2 main parts -- this part which finds 2791 * what needs doing, and the areas themselves, which do the 2792 * work. This now handles partial unmappings. 2793 * Jeremy Fitzhardinge <jeremy@goop.org> 2794 */ 2795 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2796 struct list_head *uf, bool downgrade) 2797 { 2798 unsigned long end; 2799 struct vm_area_struct *vma, *prev, *last; 2800 2801 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2802 return -EINVAL; 2803 2804 len = PAGE_ALIGN(len); 2805 end = start + len; 2806 if (len == 0) 2807 return -EINVAL; 2808 2809 /* 2810 * arch_unmap() might do unmaps itself. It must be called 2811 * and finish any rbtree manipulation before this code 2812 * runs and also starts to manipulate the rbtree. 2813 */ 2814 arch_unmap(mm, start, end); 2815 2816 /* Find the first overlapping VMA where start < vma->vm_end */ 2817 vma = find_vma_intersection(mm, start, end); 2818 if (!vma) 2819 return 0; 2820 prev = vma->vm_prev; 2821 2822 /* 2823 * If we need to split any vma, do it now to save pain later. 2824 * 2825 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2826 * unmapped vm_area_struct will remain in use: so lower split_vma 2827 * places tmp vma above, and higher split_vma places tmp vma below. 2828 */ 2829 if (start > vma->vm_start) { 2830 int error; 2831 2832 /* 2833 * Make sure that map_count on return from munmap() will 2834 * not exceed its limit; but let map_count go just above 2835 * its limit temporarily, to help free resources as expected. 2836 */ 2837 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2838 return -ENOMEM; 2839 2840 error = __split_vma(mm, vma, start, 0); 2841 if (error) 2842 return error; 2843 prev = vma; 2844 } 2845 2846 /* Does it split the last one? */ 2847 last = find_vma(mm, end); 2848 if (last && end > last->vm_start) { 2849 int error = __split_vma(mm, last, end, 1); 2850 if (error) 2851 return error; 2852 } 2853 vma = vma_next(mm, prev); 2854 2855 if (unlikely(uf)) { 2856 /* 2857 * If userfaultfd_unmap_prep returns an error the vmas 2858 * will remain split, but userland will get a 2859 * highly unexpected error anyway. This is no 2860 * different than the case where the first of the two 2861 * __split_vma fails, but we don't undo the first 2862 * split, despite we could. This is unlikely enough 2863 * failure that it's not worth optimizing it for. 2864 */ 2865 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2866 if (error) 2867 return error; 2868 } 2869 2870 /* 2871 * unlock any mlock()ed ranges before detaching vmas 2872 */ 2873 if (mm->locked_vm) 2874 unlock_range(vma, end); 2875 2876 /* Detach vmas from rbtree */ 2877 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end)) 2878 downgrade = false; 2879 2880 if (downgrade) 2881 mmap_write_downgrade(mm); 2882 2883 unmap_region(mm, vma, prev, start, end); 2884 2885 /* Fix up all other VM information */ 2886 remove_vma_list(mm, vma); 2887 2888 return downgrade ? 1 : 0; 2889 } 2890 2891 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2892 struct list_head *uf) 2893 { 2894 return __do_munmap(mm, start, len, uf, false); 2895 } 2896 2897 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2898 { 2899 int ret; 2900 struct mm_struct *mm = current->mm; 2901 LIST_HEAD(uf); 2902 2903 if (mmap_write_lock_killable(mm)) 2904 return -EINTR; 2905 2906 ret = __do_munmap(mm, start, len, &uf, downgrade); 2907 /* 2908 * Returning 1 indicates mmap_lock is downgraded. 2909 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2910 * it to 0 before return. 2911 */ 2912 if (ret == 1) { 2913 mmap_read_unlock(mm); 2914 ret = 0; 2915 } else 2916 mmap_write_unlock(mm); 2917 2918 userfaultfd_unmap_complete(mm, &uf); 2919 return ret; 2920 } 2921 2922 int vm_munmap(unsigned long start, size_t len) 2923 { 2924 return __vm_munmap(start, len, false); 2925 } 2926 EXPORT_SYMBOL(vm_munmap); 2927 2928 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2929 { 2930 addr = untagged_addr(addr); 2931 profile_munmap(addr); 2932 return __vm_munmap(addr, len, true); 2933 } 2934 2935 2936 /* 2937 * Emulation of deprecated remap_file_pages() syscall. 2938 */ 2939 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2940 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2941 { 2942 2943 struct mm_struct *mm = current->mm; 2944 struct vm_area_struct *vma; 2945 unsigned long populate = 0; 2946 unsigned long ret = -EINVAL; 2947 struct file *file; 2948 2949 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2950 current->comm, current->pid); 2951 2952 if (prot) 2953 return ret; 2954 start = start & PAGE_MASK; 2955 size = size & PAGE_MASK; 2956 2957 if (start + size <= start) 2958 return ret; 2959 2960 /* Does pgoff wrap? */ 2961 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2962 return ret; 2963 2964 if (mmap_write_lock_killable(mm)) 2965 return -EINTR; 2966 2967 vma = vma_lookup(mm, start); 2968 2969 if (!vma || !(vma->vm_flags & VM_SHARED)) 2970 goto out; 2971 2972 if (start + size > vma->vm_end) { 2973 struct vm_area_struct *next; 2974 2975 for (next = vma->vm_next; next; next = next->vm_next) { 2976 /* hole between vmas ? */ 2977 if (next->vm_start != next->vm_prev->vm_end) 2978 goto out; 2979 2980 if (next->vm_file != vma->vm_file) 2981 goto out; 2982 2983 if (next->vm_flags != vma->vm_flags) 2984 goto out; 2985 2986 if (start + size <= next->vm_end) 2987 break; 2988 } 2989 2990 if (!next) 2991 goto out; 2992 } 2993 2994 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2995 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2996 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2997 2998 flags &= MAP_NONBLOCK; 2999 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 3000 if (vma->vm_flags & VM_LOCKED) 3001 flags |= MAP_LOCKED; 3002 3003 file = get_file(vma->vm_file); 3004 ret = do_mmap(vma->vm_file, start, size, 3005 prot, flags, pgoff, &populate, NULL); 3006 fput(file); 3007 out: 3008 mmap_write_unlock(mm); 3009 if (populate) 3010 mm_populate(ret, populate); 3011 if (!IS_ERR_VALUE(ret)) 3012 ret = 0; 3013 return ret; 3014 } 3015 3016 /* 3017 * this is really a simplified "do_mmap". it only handles 3018 * anonymous maps. eventually we may be able to do some 3019 * brk-specific accounting here. 3020 */ 3021 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 3022 { 3023 struct mm_struct *mm = current->mm; 3024 struct vm_area_struct *vma, *prev; 3025 struct rb_node **rb_link, *rb_parent; 3026 pgoff_t pgoff = addr >> PAGE_SHIFT; 3027 int error; 3028 unsigned long mapped_addr; 3029 3030 /* Until we need other flags, refuse anything except VM_EXEC. */ 3031 if ((flags & (~VM_EXEC)) != 0) 3032 return -EINVAL; 3033 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3034 3035 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3036 if (IS_ERR_VALUE(mapped_addr)) 3037 return mapped_addr; 3038 3039 error = mlock_future_check(mm, mm->def_flags, len); 3040 if (error) 3041 return error; 3042 3043 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 3044 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 3045 return -ENOMEM; 3046 3047 /* Check against address space limits *after* clearing old maps... */ 3048 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3049 return -ENOMEM; 3050 3051 if (mm->map_count > sysctl_max_map_count) 3052 return -ENOMEM; 3053 3054 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3055 return -ENOMEM; 3056 3057 /* Can we just expand an old private anonymous mapping? */ 3058 vma = vma_merge(mm, prev, addr, addr + len, flags, 3059 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3060 if (vma) 3061 goto out; 3062 3063 /* 3064 * create a vma struct for an anonymous mapping 3065 */ 3066 vma = vm_area_alloc(mm); 3067 if (!vma) { 3068 vm_unacct_memory(len >> PAGE_SHIFT); 3069 return -ENOMEM; 3070 } 3071 3072 vma_set_anonymous(vma); 3073 vma->vm_start = addr; 3074 vma->vm_end = addr + len; 3075 vma->vm_pgoff = pgoff; 3076 vma->vm_flags = flags; 3077 vma->vm_page_prot = vm_get_page_prot(flags); 3078 vma_link(mm, vma, prev, rb_link, rb_parent); 3079 out: 3080 perf_event_mmap(vma); 3081 mm->total_vm += len >> PAGE_SHIFT; 3082 mm->data_vm += len >> PAGE_SHIFT; 3083 if (flags & VM_LOCKED) 3084 mm->locked_vm += (len >> PAGE_SHIFT); 3085 vma->vm_flags |= VM_SOFTDIRTY; 3086 return 0; 3087 } 3088 3089 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3090 { 3091 struct mm_struct *mm = current->mm; 3092 unsigned long len; 3093 int ret; 3094 bool populate; 3095 LIST_HEAD(uf); 3096 3097 len = PAGE_ALIGN(request); 3098 if (len < request) 3099 return -ENOMEM; 3100 if (!len) 3101 return 0; 3102 3103 if (mmap_write_lock_killable(mm)) 3104 return -EINTR; 3105 3106 ret = do_brk_flags(addr, len, flags, &uf); 3107 populate = ((mm->def_flags & VM_LOCKED) != 0); 3108 mmap_write_unlock(mm); 3109 userfaultfd_unmap_complete(mm, &uf); 3110 if (populate && !ret) 3111 mm_populate(addr, len); 3112 return ret; 3113 } 3114 EXPORT_SYMBOL(vm_brk_flags); 3115 3116 int vm_brk(unsigned long addr, unsigned long len) 3117 { 3118 return vm_brk_flags(addr, len, 0); 3119 } 3120 EXPORT_SYMBOL(vm_brk); 3121 3122 /* Release all mmaps. */ 3123 void exit_mmap(struct mm_struct *mm) 3124 { 3125 struct mmu_gather tlb; 3126 struct vm_area_struct *vma; 3127 unsigned long nr_accounted = 0; 3128 3129 /* mm's last user has gone, and its about to be pulled down */ 3130 mmu_notifier_release(mm); 3131 3132 if (unlikely(mm_is_oom_victim(mm))) { 3133 /* 3134 * Manually reap the mm to free as much memory as possible. 3135 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3136 * this mm from further consideration. Taking mm->mmap_lock for 3137 * write after setting MMF_OOM_SKIP will guarantee that the oom 3138 * reaper will not run on this mm again after mmap_lock is 3139 * dropped. 3140 * 3141 * Nothing can be holding mm->mmap_lock here and the above call 3142 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3143 * __oom_reap_task_mm() will not block. 3144 * 3145 * This needs to be done before calling munlock_vma_pages_all(), 3146 * which clears VM_LOCKED, otherwise the oom reaper cannot 3147 * reliably test it. 3148 */ 3149 (void)__oom_reap_task_mm(mm); 3150 3151 set_bit(MMF_OOM_SKIP, &mm->flags); 3152 mmap_write_lock(mm); 3153 mmap_write_unlock(mm); 3154 } 3155 3156 if (mm->locked_vm) 3157 unlock_range(mm->mmap, ULONG_MAX); 3158 3159 arch_exit_mmap(mm); 3160 3161 vma = mm->mmap; 3162 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3163 return; 3164 3165 lru_add_drain(); 3166 flush_cache_mm(mm); 3167 tlb_gather_mmu_fullmm(&tlb, mm); 3168 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3169 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3170 unmap_vmas(&tlb, vma, 0, -1); 3171 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3172 tlb_finish_mmu(&tlb); 3173 3174 /* 3175 * Walk the list again, actually closing and freeing it, 3176 * with preemption enabled, without holding any MM locks. 3177 */ 3178 while (vma) { 3179 if (vma->vm_flags & VM_ACCOUNT) 3180 nr_accounted += vma_pages(vma); 3181 vma = remove_vma(vma); 3182 cond_resched(); 3183 } 3184 vm_unacct_memory(nr_accounted); 3185 } 3186 3187 /* Insert vm structure into process list sorted by address 3188 * and into the inode's i_mmap tree. If vm_file is non-NULL 3189 * then i_mmap_rwsem is taken here. 3190 */ 3191 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3192 { 3193 struct vm_area_struct *prev; 3194 struct rb_node **rb_link, *rb_parent; 3195 3196 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3197 &prev, &rb_link, &rb_parent)) 3198 return -ENOMEM; 3199 if ((vma->vm_flags & VM_ACCOUNT) && 3200 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3201 return -ENOMEM; 3202 3203 /* 3204 * The vm_pgoff of a purely anonymous vma should be irrelevant 3205 * until its first write fault, when page's anon_vma and index 3206 * are set. But now set the vm_pgoff it will almost certainly 3207 * end up with (unless mremap moves it elsewhere before that 3208 * first wfault), so /proc/pid/maps tells a consistent story. 3209 * 3210 * By setting it to reflect the virtual start address of the 3211 * vma, merges and splits can happen in a seamless way, just 3212 * using the existing file pgoff checks and manipulations. 3213 * Similarly in do_mmap and in do_brk_flags. 3214 */ 3215 if (vma_is_anonymous(vma)) { 3216 BUG_ON(vma->anon_vma); 3217 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3218 } 3219 3220 vma_link(mm, vma, prev, rb_link, rb_parent); 3221 return 0; 3222 } 3223 3224 /* 3225 * Copy the vma structure to a new location in the same mm, 3226 * prior to moving page table entries, to effect an mremap move. 3227 */ 3228 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3229 unsigned long addr, unsigned long len, pgoff_t pgoff, 3230 bool *need_rmap_locks) 3231 { 3232 struct vm_area_struct *vma = *vmap; 3233 unsigned long vma_start = vma->vm_start; 3234 struct mm_struct *mm = vma->vm_mm; 3235 struct vm_area_struct *new_vma, *prev; 3236 struct rb_node **rb_link, *rb_parent; 3237 bool faulted_in_anon_vma = true; 3238 3239 /* 3240 * If anonymous vma has not yet been faulted, update new pgoff 3241 * to match new location, to increase its chance of merging. 3242 */ 3243 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3244 pgoff = addr >> PAGE_SHIFT; 3245 faulted_in_anon_vma = false; 3246 } 3247 3248 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3249 return NULL; /* should never get here */ 3250 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3251 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3252 vma->vm_userfaultfd_ctx); 3253 if (new_vma) { 3254 /* 3255 * Source vma may have been merged into new_vma 3256 */ 3257 if (unlikely(vma_start >= new_vma->vm_start && 3258 vma_start < new_vma->vm_end)) { 3259 /* 3260 * The only way we can get a vma_merge with 3261 * self during an mremap is if the vma hasn't 3262 * been faulted in yet and we were allowed to 3263 * reset the dst vma->vm_pgoff to the 3264 * destination address of the mremap to allow 3265 * the merge to happen. mremap must change the 3266 * vm_pgoff linearity between src and dst vmas 3267 * (in turn preventing a vma_merge) to be 3268 * safe. It is only safe to keep the vm_pgoff 3269 * linear if there are no pages mapped yet. 3270 */ 3271 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3272 *vmap = vma = new_vma; 3273 } 3274 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3275 } else { 3276 new_vma = vm_area_dup(vma); 3277 if (!new_vma) 3278 goto out; 3279 new_vma->vm_start = addr; 3280 new_vma->vm_end = addr + len; 3281 new_vma->vm_pgoff = pgoff; 3282 if (vma_dup_policy(vma, new_vma)) 3283 goto out_free_vma; 3284 if (anon_vma_clone(new_vma, vma)) 3285 goto out_free_mempol; 3286 if (new_vma->vm_file) 3287 get_file(new_vma->vm_file); 3288 if (new_vma->vm_ops && new_vma->vm_ops->open) 3289 new_vma->vm_ops->open(new_vma); 3290 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3291 *need_rmap_locks = false; 3292 } 3293 return new_vma; 3294 3295 out_free_mempol: 3296 mpol_put(vma_policy(new_vma)); 3297 out_free_vma: 3298 vm_area_free(new_vma); 3299 out: 3300 return NULL; 3301 } 3302 3303 /* 3304 * Return true if the calling process may expand its vm space by the passed 3305 * number of pages 3306 */ 3307 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3308 { 3309 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3310 return false; 3311 3312 if (is_data_mapping(flags) && 3313 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3314 /* Workaround for Valgrind */ 3315 if (rlimit(RLIMIT_DATA) == 0 && 3316 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3317 return true; 3318 3319 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3320 current->comm, current->pid, 3321 (mm->data_vm + npages) << PAGE_SHIFT, 3322 rlimit(RLIMIT_DATA), 3323 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3324 3325 if (!ignore_rlimit_data) 3326 return false; 3327 } 3328 3329 return true; 3330 } 3331 3332 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3333 { 3334 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3335 3336 if (is_exec_mapping(flags)) 3337 mm->exec_vm += npages; 3338 else if (is_stack_mapping(flags)) 3339 mm->stack_vm += npages; 3340 else if (is_data_mapping(flags)) 3341 mm->data_vm += npages; 3342 } 3343 3344 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3345 3346 /* 3347 * Having a close hook prevents vma merging regardless of flags. 3348 */ 3349 static void special_mapping_close(struct vm_area_struct *vma) 3350 { 3351 } 3352 3353 static const char *special_mapping_name(struct vm_area_struct *vma) 3354 { 3355 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3356 } 3357 3358 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3359 { 3360 struct vm_special_mapping *sm = new_vma->vm_private_data; 3361 3362 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3363 return -EFAULT; 3364 3365 if (sm->mremap) 3366 return sm->mremap(sm, new_vma); 3367 3368 return 0; 3369 } 3370 3371 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3372 { 3373 /* 3374 * Forbid splitting special mappings - kernel has expectations over 3375 * the number of pages in mapping. Together with VM_DONTEXPAND 3376 * the size of vma should stay the same over the special mapping's 3377 * lifetime. 3378 */ 3379 return -EINVAL; 3380 } 3381 3382 static const struct vm_operations_struct special_mapping_vmops = { 3383 .close = special_mapping_close, 3384 .fault = special_mapping_fault, 3385 .mremap = special_mapping_mremap, 3386 .name = special_mapping_name, 3387 /* vDSO code relies that VVAR can't be accessed remotely */ 3388 .access = NULL, 3389 .may_split = special_mapping_split, 3390 }; 3391 3392 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3393 .close = special_mapping_close, 3394 .fault = special_mapping_fault, 3395 }; 3396 3397 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3398 { 3399 struct vm_area_struct *vma = vmf->vma; 3400 pgoff_t pgoff; 3401 struct page **pages; 3402 3403 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3404 pages = vma->vm_private_data; 3405 } else { 3406 struct vm_special_mapping *sm = vma->vm_private_data; 3407 3408 if (sm->fault) 3409 return sm->fault(sm, vmf->vma, vmf); 3410 3411 pages = sm->pages; 3412 } 3413 3414 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3415 pgoff--; 3416 3417 if (*pages) { 3418 struct page *page = *pages; 3419 get_page(page); 3420 vmf->page = page; 3421 return 0; 3422 } 3423 3424 return VM_FAULT_SIGBUS; 3425 } 3426 3427 static struct vm_area_struct *__install_special_mapping( 3428 struct mm_struct *mm, 3429 unsigned long addr, unsigned long len, 3430 unsigned long vm_flags, void *priv, 3431 const struct vm_operations_struct *ops) 3432 { 3433 int ret; 3434 struct vm_area_struct *vma; 3435 3436 vma = vm_area_alloc(mm); 3437 if (unlikely(vma == NULL)) 3438 return ERR_PTR(-ENOMEM); 3439 3440 vma->vm_start = addr; 3441 vma->vm_end = addr + len; 3442 3443 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3444 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3445 3446 vma->vm_ops = ops; 3447 vma->vm_private_data = priv; 3448 3449 ret = insert_vm_struct(mm, vma); 3450 if (ret) 3451 goto out; 3452 3453 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3454 3455 perf_event_mmap(vma); 3456 3457 return vma; 3458 3459 out: 3460 vm_area_free(vma); 3461 return ERR_PTR(ret); 3462 } 3463 3464 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3465 const struct vm_special_mapping *sm) 3466 { 3467 return vma->vm_private_data == sm && 3468 (vma->vm_ops == &special_mapping_vmops || 3469 vma->vm_ops == &legacy_special_mapping_vmops); 3470 } 3471 3472 /* 3473 * Called with mm->mmap_lock held for writing. 3474 * Insert a new vma covering the given region, with the given flags. 3475 * Its pages are supplied by the given array of struct page *. 3476 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3477 * The region past the last page supplied will always produce SIGBUS. 3478 * The array pointer and the pages it points to are assumed to stay alive 3479 * for as long as this mapping might exist. 3480 */ 3481 struct vm_area_struct *_install_special_mapping( 3482 struct mm_struct *mm, 3483 unsigned long addr, unsigned long len, 3484 unsigned long vm_flags, const struct vm_special_mapping *spec) 3485 { 3486 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3487 &special_mapping_vmops); 3488 } 3489 3490 int install_special_mapping(struct mm_struct *mm, 3491 unsigned long addr, unsigned long len, 3492 unsigned long vm_flags, struct page **pages) 3493 { 3494 struct vm_area_struct *vma = __install_special_mapping( 3495 mm, addr, len, vm_flags, (void *)pages, 3496 &legacy_special_mapping_vmops); 3497 3498 return PTR_ERR_OR_ZERO(vma); 3499 } 3500 3501 static DEFINE_MUTEX(mm_all_locks_mutex); 3502 3503 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3504 { 3505 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3506 /* 3507 * The LSB of head.next can't change from under us 3508 * because we hold the mm_all_locks_mutex. 3509 */ 3510 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3511 /* 3512 * We can safely modify head.next after taking the 3513 * anon_vma->root->rwsem. If some other vma in this mm shares 3514 * the same anon_vma we won't take it again. 3515 * 3516 * No need of atomic instructions here, head.next 3517 * can't change from under us thanks to the 3518 * anon_vma->root->rwsem. 3519 */ 3520 if (__test_and_set_bit(0, (unsigned long *) 3521 &anon_vma->root->rb_root.rb_root.rb_node)) 3522 BUG(); 3523 } 3524 } 3525 3526 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3527 { 3528 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3529 /* 3530 * AS_MM_ALL_LOCKS can't change from under us because 3531 * we hold the mm_all_locks_mutex. 3532 * 3533 * Operations on ->flags have to be atomic because 3534 * even if AS_MM_ALL_LOCKS is stable thanks to the 3535 * mm_all_locks_mutex, there may be other cpus 3536 * changing other bitflags in parallel to us. 3537 */ 3538 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3539 BUG(); 3540 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3541 } 3542 } 3543 3544 /* 3545 * This operation locks against the VM for all pte/vma/mm related 3546 * operations that could ever happen on a certain mm. This includes 3547 * vmtruncate, try_to_unmap, and all page faults. 3548 * 3549 * The caller must take the mmap_lock in write mode before calling 3550 * mm_take_all_locks(). The caller isn't allowed to release the 3551 * mmap_lock until mm_drop_all_locks() returns. 3552 * 3553 * mmap_lock in write mode is required in order to block all operations 3554 * that could modify pagetables and free pages without need of 3555 * altering the vma layout. It's also needed in write mode to avoid new 3556 * anon_vmas to be associated with existing vmas. 3557 * 3558 * A single task can't take more than one mm_take_all_locks() in a row 3559 * or it would deadlock. 3560 * 3561 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3562 * mapping->flags avoid to take the same lock twice, if more than one 3563 * vma in this mm is backed by the same anon_vma or address_space. 3564 * 3565 * We take locks in following order, accordingly to comment at beginning 3566 * of mm/rmap.c: 3567 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3568 * hugetlb mapping); 3569 * - all i_mmap_rwsem locks; 3570 * - all anon_vma->rwseml 3571 * 3572 * We can take all locks within these types randomly because the VM code 3573 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3574 * mm_all_locks_mutex. 3575 * 3576 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3577 * that may have to take thousand of locks. 3578 * 3579 * mm_take_all_locks() can fail if it's interrupted by signals. 3580 */ 3581 int mm_take_all_locks(struct mm_struct *mm) 3582 { 3583 struct vm_area_struct *vma; 3584 struct anon_vma_chain *avc; 3585 3586 BUG_ON(mmap_read_trylock(mm)); 3587 3588 mutex_lock(&mm_all_locks_mutex); 3589 3590 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3591 if (signal_pending(current)) 3592 goto out_unlock; 3593 if (vma->vm_file && vma->vm_file->f_mapping && 3594 is_vm_hugetlb_page(vma)) 3595 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3596 } 3597 3598 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3599 if (signal_pending(current)) 3600 goto out_unlock; 3601 if (vma->vm_file && vma->vm_file->f_mapping && 3602 !is_vm_hugetlb_page(vma)) 3603 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3604 } 3605 3606 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3607 if (signal_pending(current)) 3608 goto out_unlock; 3609 if (vma->anon_vma) 3610 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3611 vm_lock_anon_vma(mm, avc->anon_vma); 3612 } 3613 3614 return 0; 3615 3616 out_unlock: 3617 mm_drop_all_locks(mm); 3618 return -EINTR; 3619 } 3620 3621 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3622 { 3623 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3624 /* 3625 * The LSB of head.next can't change to 0 from under 3626 * us because we hold the mm_all_locks_mutex. 3627 * 3628 * We must however clear the bitflag before unlocking 3629 * the vma so the users using the anon_vma->rb_root will 3630 * never see our bitflag. 3631 * 3632 * No need of atomic instructions here, head.next 3633 * can't change from under us until we release the 3634 * anon_vma->root->rwsem. 3635 */ 3636 if (!__test_and_clear_bit(0, (unsigned long *) 3637 &anon_vma->root->rb_root.rb_root.rb_node)) 3638 BUG(); 3639 anon_vma_unlock_write(anon_vma); 3640 } 3641 } 3642 3643 static void vm_unlock_mapping(struct address_space *mapping) 3644 { 3645 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3646 /* 3647 * AS_MM_ALL_LOCKS can't change to 0 from under us 3648 * because we hold the mm_all_locks_mutex. 3649 */ 3650 i_mmap_unlock_write(mapping); 3651 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3652 &mapping->flags)) 3653 BUG(); 3654 } 3655 } 3656 3657 /* 3658 * The mmap_lock cannot be released by the caller until 3659 * mm_drop_all_locks() returns. 3660 */ 3661 void mm_drop_all_locks(struct mm_struct *mm) 3662 { 3663 struct vm_area_struct *vma; 3664 struct anon_vma_chain *avc; 3665 3666 BUG_ON(mmap_read_trylock(mm)); 3667 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3668 3669 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3670 if (vma->anon_vma) 3671 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3672 vm_unlock_anon_vma(avc->anon_vma); 3673 if (vma->vm_file && vma->vm_file->f_mapping) 3674 vm_unlock_mapping(vma->vm_file->f_mapping); 3675 } 3676 3677 mutex_unlock(&mm_all_locks_mutex); 3678 } 3679 3680 /* 3681 * initialise the percpu counter for VM 3682 */ 3683 void __init mmap_init(void) 3684 { 3685 int ret; 3686 3687 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3688 VM_BUG_ON(ret); 3689 } 3690 3691 /* 3692 * Initialise sysctl_user_reserve_kbytes. 3693 * 3694 * This is intended to prevent a user from starting a single memory hogging 3695 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3696 * mode. 3697 * 3698 * The default value is min(3% of free memory, 128MB) 3699 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3700 */ 3701 static int init_user_reserve(void) 3702 { 3703 unsigned long free_kbytes; 3704 3705 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3706 3707 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3708 return 0; 3709 } 3710 subsys_initcall(init_user_reserve); 3711 3712 /* 3713 * Initialise sysctl_admin_reserve_kbytes. 3714 * 3715 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3716 * to log in and kill a memory hogging process. 3717 * 3718 * Systems with more than 256MB will reserve 8MB, enough to recover 3719 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3720 * only reserve 3% of free pages by default. 3721 */ 3722 static int init_admin_reserve(void) 3723 { 3724 unsigned long free_kbytes; 3725 3726 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3727 3728 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3729 return 0; 3730 } 3731 subsys_initcall(init_admin_reserve); 3732 3733 /* 3734 * Reinititalise user and admin reserves if memory is added or removed. 3735 * 3736 * The default user reserve max is 128MB, and the default max for the 3737 * admin reserve is 8MB. These are usually, but not always, enough to 3738 * enable recovery from a memory hogging process using login/sshd, a shell, 3739 * and tools like top. It may make sense to increase or even disable the 3740 * reserve depending on the existence of swap or variations in the recovery 3741 * tools. So, the admin may have changed them. 3742 * 3743 * If memory is added and the reserves have been eliminated or increased above 3744 * the default max, then we'll trust the admin. 3745 * 3746 * If memory is removed and there isn't enough free memory, then we 3747 * need to reset the reserves. 3748 * 3749 * Otherwise keep the reserve set by the admin. 3750 */ 3751 static int reserve_mem_notifier(struct notifier_block *nb, 3752 unsigned long action, void *data) 3753 { 3754 unsigned long tmp, free_kbytes; 3755 3756 switch (action) { 3757 case MEM_ONLINE: 3758 /* Default max is 128MB. Leave alone if modified by operator. */ 3759 tmp = sysctl_user_reserve_kbytes; 3760 if (0 < tmp && tmp < (1UL << 17)) 3761 init_user_reserve(); 3762 3763 /* Default max is 8MB. Leave alone if modified by operator. */ 3764 tmp = sysctl_admin_reserve_kbytes; 3765 if (0 < tmp && tmp < (1UL << 13)) 3766 init_admin_reserve(); 3767 3768 break; 3769 case MEM_OFFLINE: 3770 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3771 3772 if (sysctl_user_reserve_kbytes > free_kbytes) { 3773 init_user_reserve(); 3774 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3775 sysctl_user_reserve_kbytes); 3776 } 3777 3778 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3779 init_admin_reserve(); 3780 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3781 sysctl_admin_reserve_kbytes); 3782 } 3783 break; 3784 default: 3785 break; 3786 } 3787 return NOTIFY_OK; 3788 } 3789 3790 static struct notifier_block reserve_mem_nb = { 3791 .notifier_call = reserve_mem_notifier, 3792 }; 3793 3794 static int __meminit init_reserve_notifier(void) 3795 { 3796 if (register_hotmemory_notifier(&reserve_mem_nb)) 3797 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3798 3799 return 0; 3800 } 3801 subsys_initcall(init_reserve_notifier); 3802