xref: /openbmc/linux/mm/mmap.c (revision ee8a99bd)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 
45 #include "internal.h"
46 
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags)	(0)
49 #endif
50 
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len)		(addr)
53 #endif
54 
55 static void unmap_region(struct mm_struct *mm,
56 		struct vm_area_struct *vma, struct vm_area_struct *prev,
57 		unsigned long start, unsigned long end);
58 
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type	prot
64  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
65  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
66  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
67  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
68  *
69  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
70  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
71  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78 
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 	return __pgprot(pgprot_val(protection_map[vm_flags &
82 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86 
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
91 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
92 /*
93  * Make sure vm_committed_as in one cacheline and not cacheline shared with
94  * other variables. It can be updated by several CPUs frequently.
95  */
96 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
97 
98 /*
99  * The global memory commitment made in the system can be a metric
100  * that can be used to drive ballooning decisions when Linux is hosted
101  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
102  * balancing memory across competing virtual machines that are hosted.
103  * Several metrics drive this policy engine including the guest reported
104  * memory commitment.
105  */
106 unsigned long vm_memory_committed(void)
107 {
108 	return percpu_counter_read_positive(&vm_committed_as);
109 }
110 EXPORT_SYMBOL_GPL(vm_memory_committed);
111 
112 /*
113  * Check that a process has enough memory to allocate a new virtual
114  * mapping. 0 means there is enough memory for the allocation to
115  * succeed and -ENOMEM implies there is not.
116  *
117  * We currently support three overcommit policies, which are set via the
118  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
119  *
120  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
121  * Additional code 2002 Jul 20 by Robert Love.
122  *
123  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
124  *
125  * Note this is a helper function intended to be used by LSMs which
126  * wish to use this logic.
127  */
128 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
129 {
130 	unsigned long free, allowed, reserve;
131 
132 	vm_acct_memory(pages);
133 
134 	/*
135 	 * Sometimes we want to use more memory than we have
136 	 */
137 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
138 		return 0;
139 
140 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
141 		free = global_page_state(NR_FREE_PAGES);
142 		free += global_page_state(NR_FILE_PAGES);
143 
144 		/*
145 		 * shmem pages shouldn't be counted as free in this
146 		 * case, they can't be purged, only swapped out, and
147 		 * that won't affect the overall amount of available
148 		 * memory in the system.
149 		 */
150 		free -= global_page_state(NR_SHMEM);
151 
152 		free += get_nr_swap_pages();
153 
154 		/*
155 		 * Any slabs which are created with the
156 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
157 		 * which are reclaimable, under pressure.  The dentry
158 		 * cache and most inode caches should fall into this
159 		 */
160 		free += global_page_state(NR_SLAB_RECLAIMABLE);
161 
162 		/*
163 		 * Leave reserved pages. The pages are not for anonymous pages.
164 		 */
165 		if (free <= totalreserve_pages)
166 			goto error;
167 		else
168 			free -= totalreserve_pages;
169 
170 		/*
171 		 * Reserve some for root
172 		 */
173 		if (!cap_sys_admin)
174 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
175 
176 		if (free > pages)
177 			return 0;
178 
179 		goto error;
180 	}
181 
182 	allowed = (totalram_pages - hugetlb_total_pages())
183 	       	* sysctl_overcommit_ratio / 100;
184 	/*
185 	 * Reserve some for root
186 	 */
187 	if (!cap_sys_admin)
188 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
189 	allowed += total_swap_pages;
190 
191 	/*
192 	 * Don't let a single process grow so big a user can't recover
193 	 */
194 	if (mm) {
195 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196 		allowed -= min(mm->total_vm / 32, reserve);
197 	}
198 
199 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200 		return 0;
201 error:
202 	vm_unacct_memory(pages);
203 
204 	return -ENOMEM;
205 }
206 
207 /*
208  * Requires inode->i_mapping->i_mmap_mutex
209  */
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211 		struct file *file, struct address_space *mapping)
212 {
213 	if (vma->vm_flags & VM_DENYWRITE)
214 		atomic_inc(&file_inode(file)->i_writecount);
215 	if (vma->vm_flags & VM_SHARED)
216 		mapping->i_mmap_writable--;
217 
218 	flush_dcache_mmap_lock(mapping);
219 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
220 		list_del_init(&vma->shared.nonlinear);
221 	else
222 		vma_interval_tree_remove(vma, &mapping->i_mmap);
223 	flush_dcache_mmap_unlock(mapping);
224 }
225 
226 /*
227  * Unlink a file-based vm structure from its interval tree, to hide
228  * vma from rmap and vmtruncate before freeing its page tables.
229  */
230 void unlink_file_vma(struct vm_area_struct *vma)
231 {
232 	struct file *file = vma->vm_file;
233 
234 	if (file) {
235 		struct address_space *mapping = file->f_mapping;
236 		mutex_lock(&mapping->i_mmap_mutex);
237 		__remove_shared_vm_struct(vma, file, mapping);
238 		mutex_unlock(&mapping->i_mmap_mutex);
239 	}
240 }
241 
242 /*
243  * Close a vm structure and free it, returning the next.
244  */
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246 {
247 	struct vm_area_struct *next = vma->vm_next;
248 
249 	might_sleep();
250 	if (vma->vm_ops && vma->vm_ops->close)
251 		vma->vm_ops->close(vma);
252 	if (vma->vm_file)
253 		fput(vma->vm_file);
254 	mpol_put(vma_policy(vma));
255 	kmem_cache_free(vm_area_cachep, vma);
256 	return next;
257 }
258 
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
260 
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
262 {
263 	unsigned long rlim, retval;
264 	unsigned long newbrk, oldbrk;
265 	struct mm_struct *mm = current->mm;
266 	unsigned long min_brk;
267 	bool populate;
268 
269 	down_write(&mm->mmap_sem);
270 
271 #ifdef CONFIG_COMPAT_BRK
272 	/*
273 	 * CONFIG_COMPAT_BRK can still be overridden by setting
274 	 * randomize_va_space to 2, which will still cause mm->start_brk
275 	 * to be arbitrarily shifted
276 	 */
277 	if (current->brk_randomized)
278 		min_brk = mm->start_brk;
279 	else
280 		min_brk = mm->end_data;
281 #else
282 	min_brk = mm->start_brk;
283 #endif
284 	if (brk < min_brk)
285 		goto out;
286 
287 	/*
288 	 * Check against rlimit here. If this check is done later after the test
289 	 * of oldbrk with newbrk then it can escape the test and let the data
290 	 * segment grow beyond its set limit the in case where the limit is
291 	 * not page aligned -Ram Gupta
292 	 */
293 	rlim = rlimit(RLIMIT_DATA);
294 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295 			(mm->end_data - mm->start_data) > rlim)
296 		goto out;
297 
298 	newbrk = PAGE_ALIGN(brk);
299 	oldbrk = PAGE_ALIGN(mm->brk);
300 	if (oldbrk == newbrk)
301 		goto set_brk;
302 
303 	/* Always allow shrinking brk. */
304 	if (brk <= mm->brk) {
305 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306 			goto set_brk;
307 		goto out;
308 	}
309 
310 	/* Check against existing mmap mappings. */
311 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312 		goto out;
313 
314 	/* Ok, looks good - let it rip. */
315 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316 		goto out;
317 
318 set_brk:
319 	mm->brk = brk;
320 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321 	up_write(&mm->mmap_sem);
322 	if (populate)
323 		mm_populate(oldbrk, newbrk - oldbrk);
324 	return brk;
325 
326 out:
327 	retval = mm->brk;
328 	up_write(&mm->mmap_sem);
329 	return retval;
330 }
331 
332 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333 {
334 	unsigned long max, subtree_gap;
335 	max = vma->vm_start;
336 	if (vma->vm_prev)
337 		max -= vma->vm_prev->vm_end;
338 	if (vma->vm_rb.rb_left) {
339 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
340 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
341 		if (subtree_gap > max)
342 			max = subtree_gap;
343 	}
344 	if (vma->vm_rb.rb_right) {
345 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
346 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
347 		if (subtree_gap > max)
348 			max = subtree_gap;
349 	}
350 	return max;
351 }
352 
353 #ifdef CONFIG_DEBUG_VM_RB
354 static int browse_rb(struct rb_root *root)
355 {
356 	int i = 0, j, bug = 0;
357 	struct rb_node *nd, *pn = NULL;
358 	unsigned long prev = 0, pend = 0;
359 
360 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361 		struct vm_area_struct *vma;
362 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363 		if (vma->vm_start < prev) {
364 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365 			bug = 1;
366 		}
367 		if (vma->vm_start < pend) {
368 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369 			bug = 1;
370 		}
371 		if (vma->vm_start > vma->vm_end) {
372 			printk("vm_end %lx < vm_start %lx\n",
373 				vma->vm_end, vma->vm_start);
374 			bug = 1;
375 		}
376 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377 			printk("free gap %lx, correct %lx\n",
378 			       vma->rb_subtree_gap,
379 			       vma_compute_subtree_gap(vma));
380 			bug = 1;
381 		}
382 		i++;
383 		pn = nd;
384 		prev = vma->vm_start;
385 		pend = vma->vm_end;
386 	}
387 	j = 0;
388 	for (nd = pn; nd; nd = rb_prev(nd))
389 		j++;
390 	if (i != j) {
391 		printk("backwards %d, forwards %d\n", j, i);
392 		bug = 1;
393 	}
394 	return bug ? -1 : i;
395 }
396 
397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398 {
399 	struct rb_node *nd;
400 
401 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402 		struct vm_area_struct *vma;
403 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404 		BUG_ON(vma != ignore &&
405 		       vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406 	}
407 }
408 
409 void validate_mm(struct mm_struct *mm)
410 {
411 	int bug = 0;
412 	int i = 0;
413 	unsigned long highest_address = 0;
414 	struct vm_area_struct *vma = mm->mmap;
415 	while (vma) {
416 		struct anon_vma_chain *avc;
417 		vma_lock_anon_vma(vma);
418 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419 			anon_vma_interval_tree_verify(avc);
420 		vma_unlock_anon_vma(vma);
421 		highest_address = vma->vm_end;
422 		vma = vma->vm_next;
423 		i++;
424 	}
425 	if (i != mm->map_count) {
426 		printk("map_count %d vm_next %d\n", mm->map_count, i);
427 		bug = 1;
428 	}
429 	if (highest_address != mm->highest_vm_end) {
430 		printk("mm->highest_vm_end %lx, found %lx\n",
431 		       mm->highest_vm_end, highest_address);
432 		bug = 1;
433 	}
434 	i = browse_rb(&mm->mm_rb);
435 	if (i != mm->map_count) {
436 		printk("map_count %d rb %d\n", mm->map_count, i);
437 		bug = 1;
438 	}
439 	BUG_ON(bug);
440 }
441 #else
442 #define validate_mm_rb(root, ignore) do { } while (0)
443 #define validate_mm(mm) do { } while (0)
444 #endif
445 
446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448 
449 /*
450  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451  * vma->vm_prev->vm_end values changed, without modifying the vma's position
452  * in the rbtree.
453  */
454 static void vma_gap_update(struct vm_area_struct *vma)
455 {
456 	/*
457 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458 	 * function that does exacltly what we want.
459 	 */
460 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461 }
462 
463 static inline void vma_rb_insert(struct vm_area_struct *vma,
464 				 struct rb_root *root)
465 {
466 	/* All rb_subtree_gap values must be consistent prior to insertion */
467 	validate_mm_rb(root, NULL);
468 
469 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 }
471 
472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473 {
474 	/*
475 	 * All rb_subtree_gap values must be consistent prior to erase,
476 	 * with the possible exception of the vma being erased.
477 	 */
478 	validate_mm_rb(root, vma);
479 
480 	/*
481 	 * Note rb_erase_augmented is a fairly large inline function,
482 	 * so make sure we instantiate it only once with our desired
483 	 * augmented rbtree callbacks.
484 	 */
485 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486 }
487 
488 /*
489  * vma has some anon_vma assigned, and is already inserted on that
490  * anon_vma's interval trees.
491  *
492  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493  * vma must be removed from the anon_vma's interval trees using
494  * anon_vma_interval_tree_pre_update_vma().
495  *
496  * After the update, the vma will be reinserted using
497  * anon_vma_interval_tree_post_update_vma().
498  *
499  * The entire update must be protected by exclusive mmap_sem and by
500  * the root anon_vma's mutex.
501  */
502 static inline void
503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504 {
505 	struct anon_vma_chain *avc;
506 
507 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509 }
510 
511 static inline void
512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513 {
514 	struct anon_vma_chain *avc;
515 
516 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518 }
519 
520 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521 		unsigned long end, struct vm_area_struct **pprev,
522 		struct rb_node ***rb_link, struct rb_node **rb_parent)
523 {
524 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525 
526 	__rb_link = &mm->mm_rb.rb_node;
527 	rb_prev = __rb_parent = NULL;
528 
529 	while (*__rb_link) {
530 		struct vm_area_struct *vma_tmp;
531 
532 		__rb_parent = *__rb_link;
533 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534 
535 		if (vma_tmp->vm_end > addr) {
536 			/* Fail if an existing vma overlaps the area */
537 			if (vma_tmp->vm_start < end)
538 				return -ENOMEM;
539 			__rb_link = &__rb_parent->rb_left;
540 		} else {
541 			rb_prev = __rb_parent;
542 			__rb_link = &__rb_parent->rb_right;
543 		}
544 	}
545 
546 	*pprev = NULL;
547 	if (rb_prev)
548 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549 	*rb_link = __rb_link;
550 	*rb_parent = __rb_parent;
551 	return 0;
552 }
553 
554 static unsigned long count_vma_pages_range(struct mm_struct *mm,
555 		unsigned long addr, unsigned long end)
556 {
557 	unsigned long nr_pages = 0;
558 	struct vm_area_struct *vma;
559 
560 	/* Find first overlaping mapping */
561 	vma = find_vma_intersection(mm, addr, end);
562 	if (!vma)
563 		return 0;
564 
565 	nr_pages = (min(end, vma->vm_end) -
566 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
567 
568 	/* Iterate over the rest of the overlaps */
569 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570 		unsigned long overlap_len;
571 
572 		if (vma->vm_start > end)
573 			break;
574 
575 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
576 		nr_pages += overlap_len >> PAGE_SHIFT;
577 	}
578 
579 	return nr_pages;
580 }
581 
582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583 		struct rb_node **rb_link, struct rb_node *rb_parent)
584 {
585 	/* Update tracking information for the gap following the new vma. */
586 	if (vma->vm_next)
587 		vma_gap_update(vma->vm_next);
588 	else
589 		mm->highest_vm_end = vma->vm_end;
590 
591 	/*
592 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
593 	 * correct insertion point for that vma. As a result, we could not
594 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
595 	 * So, we first insert the vma with a zero rb_subtree_gap value
596 	 * (to be consistent with what we did on the way down), and then
597 	 * immediately update the gap to the correct value. Finally we
598 	 * rebalance the rbtree after all augmented values have been set.
599 	 */
600 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601 	vma->rb_subtree_gap = 0;
602 	vma_gap_update(vma);
603 	vma_rb_insert(vma, &mm->mm_rb);
604 }
605 
606 static void __vma_link_file(struct vm_area_struct *vma)
607 {
608 	struct file *file;
609 
610 	file = vma->vm_file;
611 	if (file) {
612 		struct address_space *mapping = file->f_mapping;
613 
614 		if (vma->vm_flags & VM_DENYWRITE)
615 			atomic_dec(&file_inode(file)->i_writecount);
616 		if (vma->vm_flags & VM_SHARED)
617 			mapping->i_mmap_writable++;
618 
619 		flush_dcache_mmap_lock(mapping);
620 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
621 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622 		else
623 			vma_interval_tree_insert(vma, &mapping->i_mmap);
624 		flush_dcache_mmap_unlock(mapping);
625 	}
626 }
627 
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630 	struct vm_area_struct *prev, struct rb_node **rb_link,
631 	struct rb_node *rb_parent)
632 {
633 	__vma_link_list(mm, vma, prev, rb_parent);
634 	__vma_link_rb(mm, vma, rb_link, rb_parent);
635 }
636 
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 			struct vm_area_struct *prev, struct rb_node **rb_link,
639 			struct rb_node *rb_parent)
640 {
641 	struct address_space *mapping = NULL;
642 
643 	if (vma->vm_file)
644 		mapping = vma->vm_file->f_mapping;
645 
646 	if (mapping)
647 		mutex_lock(&mapping->i_mmap_mutex);
648 
649 	__vma_link(mm, vma, prev, rb_link, rb_parent);
650 	__vma_link_file(vma);
651 
652 	if (mapping)
653 		mutex_unlock(&mapping->i_mmap_mutex);
654 
655 	mm->map_count++;
656 	validate_mm(mm);
657 }
658 
659 /*
660  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661  * mm's list and rbtree.  It has already been inserted into the interval tree.
662  */
663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665 	struct vm_area_struct *prev;
666 	struct rb_node **rb_link, *rb_parent;
667 
668 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669 			   &prev, &rb_link, &rb_parent))
670 		BUG();
671 	__vma_link(mm, vma, prev, rb_link, rb_parent);
672 	mm->map_count++;
673 }
674 
675 static inline void
676 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677 		struct vm_area_struct *prev)
678 {
679 	struct vm_area_struct *next;
680 
681 	vma_rb_erase(vma, &mm->mm_rb);
682 	prev->vm_next = next = vma->vm_next;
683 	if (next)
684 		next->vm_prev = prev;
685 	if (mm->mmap_cache == vma)
686 		mm->mmap_cache = prev;
687 }
688 
689 /*
690  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691  * is already present in an i_mmap tree without adjusting the tree.
692  * The following helper function should be used when such adjustments
693  * are necessary.  The "insert" vma (if any) is to be inserted
694  * before we drop the necessary locks.
695  */
696 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
697 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
698 {
699 	struct mm_struct *mm = vma->vm_mm;
700 	struct vm_area_struct *next = vma->vm_next;
701 	struct vm_area_struct *importer = NULL;
702 	struct address_space *mapping = NULL;
703 	struct rb_root *root = NULL;
704 	struct anon_vma *anon_vma = NULL;
705 	struct file *file = vma->vm_file;
706 	bool start_changed = false, end_changed = false;
707 	long adjust_next = 0;
708 	int remove_next = 0;
709 
710 	if (next && !insert) {
711 		struct vm_area_struct *exporter = NULL;
712 
713 		if (end >= next->vm_end) {
714 			/*
715 			 * vma expands, overlapping all the next, and
716 			 * perhaps the one after too (mprotect case 6).
717 			 */
718 again:			remove_next = 1 + (end > next->vm_end);
719 			end = next->vm_end;
720 			exporter = next;
721 			importer = vma;
722 		} else if (end > next->vm_start) {
723 			/*
724 			 * vma expands, overlapping part of the next:
725 			 * mprotect case 5 shifting the boundary up.
726 			 */
727 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
728 			exporter = next;
729 			importer = vma;
730 		} else if (end < vma->vm_end) {
731 			/*
732 			 * vma shrinks, and !insert tells it's not
733 			 * split_vma inserting another: so it must be
734 			 * mprotect case 4 shifting the boundary down.
735 			 */
736 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
737 			exporter = vma;
738 			importer = next;
739 		}
740 
741 		/*
742 		 * Easily overlooked: when mprotect shifts the boundary,
743 		 * make sure the expanding vma has anon_vma set if the
744 		 * shrinking vma had, to cover any anon pages imported.
745 		 */
746 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
747 			if (anon_vma_clone(importer, exporter))
748 				return -ENOMEM;
749 			importer->anon_vma = exporter->anon_vma;
750 		}
751 	}
752 
753 	if (file) {
754 		mapping = file->f_mapping;
755 		if (!(vma->vm_flags & VM_NONLINEAR)) {
756 			root = &mapping->i_mmap;
757 			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
758 
759 			if (adjust_next)
760 				uprobe_munmap(next, next->vm_start,
761 							next->vm_end);
762 		}
763 
764 		mutex_lock(&mapping->i_mmap_mutex);
765 		if (insert) {
766 			/*
767 			 * Put into interval tree now, so instantiated pages
768 			 * are visible to arm/parisc __flush_dcache_page
769 			 * throughout; but we cannot insert into address
770 			 * space until vma start or end is updated.
771 			 */
772 			__vma_link_file(insert);
773 		}
774 	}
775 
776 	vma_adjust_trans_huge(vma, start, end, adjust_next);
777 
778 	anon_vma = vma->anon_vma;
779 	if (!anon_vma && adjust_next)
780 		anon_vma = next->anon_vma;
781 	if (anon_vma) {
782 		VM_BUG_ON(adjust_next && next->anon_vma &&
783 			  anon_vma != next->anon_vma);
784 		anon_vma_lock_write(anon_vma);
785 		anon_vma_interval_tree_pre_update_vma(vma);
786 		if (adjust_next)
787 			anon_vma_interval_tree_pre_update_vma(next);
788 	}
789 
790 	if (root) {
791 		flush_dcache_mmap_lock(mapping);
792 		vma_interval_tree_remove(vma, root);
793 		if (adjust_next)
794 			vma_interval_tree_remove(next, root);
795 	}
796 
797 	if (start != vma->vm_start) {
798 		vma->vm_start = start;
799 		start_changed = true;
800 	}
801 	if (end != vma->vm_end) {
802 		vma->vm_end = end;
803 		end_changed = true;
804 	}
805 	vma->vm_pgoff = pgoff;
806 	if (adjust_next) {
807 		next->vm_start += adjust_next << PAGE_SHIFT;
808 		next->vm_pgoff += adjust_next;
809 	}
810 
811 	if (root) {
812 		if (adjust_next)
813 			vma_interval_tree_insert(next, root);
814 		vma_interval_tree_insert(vma, root);
815 		flush_dcache_mmap_unlock(mapping);
816 	}
817 
818 	if (remove_next) {
819 		/*
820 		 * vma_merge has merged next into vma, and needs
821 		 * us to remove next before dropping the locks.
822 		 */
823 		__vma_unlink(mm, next, vma);
824 		if (file)
825 			__remove_shared_vm_struct(next, file, mapping);
826 	} else if (insert) {
827 		/*
828 		 * split_vma has split insert from vma, and needs
829 		 * us to insert it before dropping the locks
830 		 * (it may either follow vma or precede it).
831 		 */
832 		__insert_vm_struct(mm, insert);
833 	} else {
834 		if (start_changed)
835 			vma_gap_update(vma);
836 		if (end_changed) {
837 			if (!next)
838 				mm->highest_vm_end = end;
839 			else if (!adjust_next)
840 				vma_gap_update(next);
841 		}
842 	}
843 
844 	if (anon_vma) {
845 		anon_vma_interval_tree_post_update_vma(vma);
846 		if (adjust_next)
847 			anon_vma_interval_tree_post_update_vma(next);
848 		anon_vma_unlock_write(anon_vma);
849 	}
850 	if (mapping)
851 		mutex_unlock(&mapping->i_mmap_mutex);
852 
853 	if (root) {
854 		uprobe_mmap(vma);
855 
856 		if (adjust_next)
857 			uprobe_mmap(next);
858 	}
859 
860 	if (remove_next) {
861 		if (file) {
862 			uprobe_munmap(next, next->vm_start, next->vm_end);
863 			fput(file);
864 		}
865 		if (next->anon_vma)
866 			anon_vma_merge(vma, next);
867 		mm->map_count--;
868 		mpol_put(vma_policy(next));
869 		kmem_cache_free(vm_area_cachep, next);
870 		/*
871 		 * In mprotect's case 6 (see comments on vma_merge),
872 		 * we must remove another next too. It would clutter
873 		 * up the code too much to do both in one go.
874 		 */
875 		next = vma->vm_next;
876 		if (remove_next == 2)
877 			goto again;
878 		else if (next)
879 			vma_gap_update(next);
880 		else
881 			mm->highest_vm_end = end;
882 	}
883 	if (insert && file)
884 		uprobe_mmap(insert);
885 
886 	validate_mm(mm);
887 
888 	return 0;
889 }
890 
891 /*
892  * If the vma has a ->close operation then the driver probably needs to release
893  * per-vma resources, so we don't attempt to merge those.
894  */
895 static inline int is_mergeable_vma(struct vm_area_struct *vma,
896 			struct file *file, unsigned long vm_flags)
897 {
898 	if (vma->vm_flags ^ vm_flags)
899 		return 0;
900 	if (vma->vm_file != file)
901 		return 0;
902 	if (vma->vm_ops && vma->vm_ops->close)
903 		return 0;
904 	return 1;
905 }
906 
907 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
908 					struct anon_vma *anon_vma2,
909 					struct vm_area_struct *vma)
910 {
911 	/*
912 	 * The list_is_singular() test is to avoid merging VMA cloned from
913 	 * parents. This can improve scalability caused by anon_vma lock.
914 	 */
915 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
916 		list_is_singular(&vma->anon_vma_chain)))
917 		return 1;
918 	return anon_vma1 == anon_vma2;
919 }
920 
921 /*
922  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
923  * in front of (at a lower virtual address and file offset than) the vma.
924  *
925  * We cannot merge two vmas if they have differently assigned (non-NULL)
926  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
927  *
928  * We don't check here for the merged mmap wrapping around the end of pagecache
929  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
930  * wrap, nor mmaps which cover the final page at index -1UL.
931  */
932 static int
933 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
934 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
935 {
936 	if (is_mergeable_vma(vma, file, vm_flags) &&
937 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
938 		if (vma->vm_pgoff == vm_pgoff)
939 			return 1;
940 	}
941 	return 0;
942 }
943 
944 /*
945  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
946  * beyond (at a higher virtual address and file offset than) the vma.
947  *
948  * We cannot merge two vmas if they have differently assigned (non-NULL)
949  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
950  */
951 static int
952 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
953 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
954 {
955 	if (is_mergeable_vma(vma, file, vm_flags) &&
956 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
957 		pgoff_t vm_pglen;
958 		vm_pglen = vma_pages(vma);
959 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
960 			return 1;
961 	}
962 	return 0;
963 }
964 
965 /*
966  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
967  * whether that can be merged with its predecessor or its successor.
968  * Or both (it neatly fills a hole).
969  *
970  * In most cases - when called for mmap, brk or mremap - [addr,end) is
971  * certain not to be mapped by the time vma_merge is called; but when
972  * called for mprotect, it is certain to be already mapped (either at
973  * an offset within prev, or at the start of next), and the flags of
974  * this area are about to be changed to vm_flags - and the no-change
975  * case has already been eliminated.
976  *
977  * The following mprotect cases have to be considered, where AAAA is
978  * the area passed down from mprotect_fixup, never extending beyond one
979  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
980  *
981  *     AAAA             AAAA                AAAA          AAAA
982  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
983  *    cannot merge    might become    might become    might become
984  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
985  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
986  *    mremap move:                                    PPPPNNNNNNNN 8
987  *        AAAA
988  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
989  *    might become    case 1 below    case 2 below    case 3 below
990  *
991  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
992  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
993  */
994 struct vm_area_struct *vma_merge(struct mm_struct *mm,
995 			struct vm_area_struct *prev, unsigned long addr,
996 			unsigned long end, unsigned long vm_flags,
997 		     	struct anon_vma *anon_vma, struct file *file,
998 			pgoff_t pgoff, struct mempolicy *policy)
999 {
1000 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1001 	struct vm_area_struct *area, *next;
1002 	int err;
1003 
1004 	/*
1005 	 * We later require that vma->vm_flags == vm_flags,
1006 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1007 	 */
1008 	if (vm_flags & VM_SPECIAL)
1009 		return NULL;
1010 
1011 	if (prev)
1012 		next = prev->vm_next;
1013 	else
1014 		next = mm->mmap;
1015 	area = next;
1016 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1017 		next = next->vm_next;
1018 
1019 	/*
1020 	 * Can it merge with the predecessor?
1021 	 */
1022 	if (prev && prev->vm_end == addr &&
1023   			mpol_equal(vma_policy(prev), policy) &&
1024 			can_vma_merge_after(prev, vm_flags,
1025 						anon_vma, file, pgoff)) {
1026 		/*
1027 		 * OK, it can.  Can we now merge in the successor as well?
1028 		 */
1029 		if (next && end == next->vm_start &&
1030 				mpol_equal(policy, vma_policy(next)) &&
1031 				can_vma_merge_before(next, vm_flags,
1032 					anon_vma, file, pgoff+pglen) &&
1033 				is_mergeable_anon_vma(prev->anon_vma,
1034 						      next->anon_vma, NULL)) {
1035 							/* cases 1, 6 */
1036 			err = vma_adjust(prev, prev->vm_start,
1037 				next->vm_end, prev->vm_pgoff, NULL);
1038 		} else					/* cases 2, 5, 7 */
1039 			err = vma_adjust(prev, prev->vm_start,
1040 				end, prev->vm_pgoff, NULL);
1041 		if (err)
1042 			return NULL;
1043 		khugepaged_enter_vma_merge(prev);
1044 		return prev;
1045 	}
1046 
1047 	/*
1048 	 * Can this new request be merged in front of next?
1049 	 */
1050 	if (next && end == next->vm_start &&
1051  			mpol_equal(policy, vma_policy(next)) &&
1052 			can_vma_merge_before(next, vm_flags,
1053 					anon_vma, file, pgoff+pglen)) {
1054 		if (prev && addr < prev->vm_end)	/* case 4 */
1055 			err = vma_adjust(prev, prev->vm_start,
1056 				addr, prev->vm_pgoff, NULL);
1057 		else					/* cases 3, 8 */
1058 			err = vma_adjust(area, addr, next->vm_end,
1059 				next->vm_pgoff - pglen, NULL);
1060 		if (err)
1061 			return NULL;
1062 		khugepaged_enter_vma_merge(area);
1063 		return area;
1064 	}
1065 
1066 	return NULL;
1067 }
1068 
1069 /*
1070  * Rough compatbility check to quickly see if it's even worth looking
1071  * at sharing an anon_vma.
1072  *
1073  * They need to have the same vm_file, and the flags can only differ
1074  * in things that mprotect may change.
1075  *
1076  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1077  * we can merge the two vma's. For example, we refuse to merge a vma if
1078  * there is a vm_ops->close() function, because that indicates that the
1079  * driver is doing some kind of reference counting. But that doesn't
1080  * really matter for the anon_vma sharing case.
1081  */
1082 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1083 {
1084 	return a->vm_end == b->vm_start &&
1085 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1086 		a->vm_file == b->vm_file &&
1087 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1088 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1089 }
1090 
1091 /*
1092  * Do some basic sanity checking to see if we can re-use the anon_vma
1093  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1094  * the same as 'old', the other will be the new one that is trying
1095  * to share the anon_vma.
1096  *
1097  * NOTE! This runs with mm_sem held for reading, so it is possible that
1098  * the anon_vma of 'old' is concurrently in the process of being set up
1099  * by another page fault trying to merge _that_. But that's ok: if it
1100  * is being set up, that automatically means that it will be a singleton
1101  * acceptable for merging, so we can do all of this optimistically. But
1102  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1103  *
1104  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1105  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1106  * is to return an anon_vma that is "complex" due to having gone through
1107  * a fork).
1108  *
1109  * We also make sure that the two vma's are compatible (adjacent,
1110  * and with the same memory policies). That's all stable, even with just
1111  * a read lock on the mm_sem.
1112  */
1113 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1114 {
1115 	if (anon_vma_compatible(a, b)) {
1116 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1117 
1118 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1119 			return anon_vma;
1120 	}
1121 	return NULL;
1122 }
1123 
1124 /*
1125  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1126  * neighbouring vmas for a suitable anon_vma, before it goes off
1127  * to allocate a new anon_vma.  It checks because a repetitive
1128  * sequence of mprotects and faults may otherwise lead to distinct
1129  * anon_vmas being allocated, preventing vma merge in subsequent
1130  * mprotect.
1131  */
1132 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1133 {
1134 	struct anon_vma *anon_vma;
1135 	struct vm_area_struct *near;
1136 
1137 	near = vma->vm_next;
1138 	if (!near)
1139 		goto try_prev;
1140 
1141 	anon_vma = reusable_anon_vma(near, vma, near);
1142 	if (anon_vma)
1143 		return anon_vma;
1144 try_prev:
1145 	near = vma->vm_prev;
1146 	if (!near)
1147 		goto none;
1148 
1149 	anon_vma = reusable_anon_vma(near, near, vma);
1150 	if (anon_vma)
1151 		return anon_vma;
1152 none:
1153 	/*
1154 	 * There's no absolute need to look only at touching neighbours:
1155 	 * we could search further afield for "compatible" anon_vmas.
1156 	 * But it would probably just be a waste of time searching,
1157 	 * or lead to too many vmas hanging off the same anon_vma.
1158 	 * We're trying to allow mprotect remerging later on,
1159 	 * not trying to minimize memory used for anon_vmas.
1160 	 */
1161 	return NULL;
1162 }
1163 
1164 #ifdef CONFIG_PROC_FS
1165 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1166 						struct file *file, long pages)
1167 {
1168 	const unsigned long stack_flags
1169 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1170 
1171 	mm->total_vm += pages;
1172 
1173 	if (file) {
1174 		mm->shared_vm += pages;
1175 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1176 			mm->exec_vm += pages;
1177 	} else if (flags & stack_flags)
1178 		mm->stack_vm += pages;
1179 }
1180 #endif /* CONFIG_PROC_FS */
1181 
1182 /*
1183  * If a hint addr is less than mmap_min_addr change hint to be as
1184  * low as possible but still greater than mmap_min_addr
1185  */
1186 static inline unsigned long round_hint_to_min(unsigned long hint)
1187 {
1188 	hint &= PAGE_MASK;
1189 	if (((void *)hint != NULL) &&
1190 	    (hint < mmap_min_addr))
1191 		return PAGE_ALIGN(mmap_min_addr);
1192 	return hint;
1193 }
1194 
1195 /*
1196  * The caller must hold down_write(&current->mm->mmap_sem).
1197  */
1198 
1199 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1200 			unsigned long len, unsigned long prot,
1201 			unsigned long flags, unsigned long pgoff,
1202 			unsigned long *populate)
1203 {
1204 	struct mm_struct * mm = current->mm;
1205 	struct inode *inode;
1206 	vm_flags_t vm_flags;
1207 
1208 	*populate = 0;
1209 
1210 	/*
1211 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1212 	 *
1213 	 * (the exception is when the underlying filesystem is noexec
1214 	 *  mounted, in which case we dont add PROT_EXEC.)
1215 	 */
1216 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1217 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1218 			prot |= PROT_EXEC;
1219 
1220 	if (!len)
1221 		return -EINVAL;
1222 
1223 	if (!(flags & MAP_FIXED))
1224 		addr = round_hint_to_min(addr);
1225 
1226 	/* Careful about overflows.. */
1227 	len = PAGE_ALIGN(len);
1228 	if (!len)
1229 		return -ENOMEM;
1230 
1231 	/* offset overflow? */
1232 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1233                return -EOVERFLOW;
1234 
1235 	/* Too many mappings? */
1236 	if (mm->map_count > sysctl_max_map_count)
1237 		return -ENOMEM;
1238 
1239 	/* Obtain the address to map to. we verify (or select) it and ensure
1240 	 * that it represents a valid section of the address space.
1241 	 */
1242 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1243 	if (addr & ~PAGE_MASK)
1244 		return addr;
1245 
1246 	/* Do simple checking here so the lower-level routines won't have
1247 	 * to. we assume access permissions have been handled by the open
1248 	 * of the memory object, so we don't do any here.
1249 	 */
1250 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1251 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1252 
1253 	if (flags & MAP_LOCKED)
1254 		if (!can_do_mlock())
1255 			return -EPERM;
1256 
1257 	/* mlock MCL_FUTURE? */
1258 	if (vm_flags & VM_LOCKED) {
1259 		unsigned long locked, lock_limit;
1260 		locked = len >> PAGE_SHIFT;
1261 		locked += mm->locked_vm;
1262 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1263 		lock_limit >>= PAGE_SHIFT;
1264 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1265 			return -EAGAIN;
1266 	}
1267 
1268 	inode = file ? file_inode(file) : NULL;
1269 
1270 	if (file) {
1271 		switch (flags & MAP_TYPE) {
1272 		case MAP_SHARED:
1273 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1274 				return -EACCES;
1275 
1276 			/*
1277 			 * Make sure we don't allow writing to an append-only
1278 			 * file..
1279 			 */
1280 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1281 				return -EACCES;
1282 
1283 			/*
1284 			 * Make sure there are no mandatory locks on the file.
1285 			 */
1286 			if (locks_verify_locked(inode))
1287 				return -EAGAIN;
1288 
1289 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1290 			if (!(file->f_mode & FMODE_WRITE))
1291 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1292 
1293 			/* fall through */
1294 		case MAP_PRIVATE:
1295 			if (!(file->f_mode & FMODE_READ))
1296 				return -EACCES;
1297 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1298 				if (vm_flags & VM_EXEC)
1299 					return -EPERM;
1300 				vm_flags &= ~VM_MAYEXEC;
1301 			}
1302 
1303 			if (!file->f_op || !file->f_op->mmap)
1304 				return -ENODEV;
1305 			break;
1306 
1307 		default:
1308 			return -EINVAL;
1309 		}
1310 	} else {
1311 		switch (flags & MAP_TYPE) {
1312 		case MAP_SHARED:
1313 			/*
1314 			 * Ignore pgoff.
1315 			 */
1316 			pgoff = 0;
1317 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1318 			break;
1319 		case MAP_PRIVATE:
1320 			/*
1321 			 * Set pgoff according to addr for anon_vma.
1322 			 */
1323 			pgoff = addr >> PAGE_SHIFT;
1324 			break;
1325 		default:
1326 			return -EINVAL;
1327 		}
1328 	}
1329 
1330 	/*
1331 	 * Set 'VM_NORESERVE' if we should not account for the
1332 	 * memory use of this mapping.
1333 	 */
1334 	if (flags & MAP_NORESERVE) {
1335 		/* We honor MAP_NORESERVE if allowed to overcommit */
1336 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1337 			vm_flags |= VM_NORESERVE;
1338 
1339 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1340 		if (file && is_file_hugepages(file))
1341 			vm_flags |= VM_NORESERVE;
1342 	}
1343 
1344 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1345 	if (!IS_ERR_VALUE(addr) &&
1346 	    ((vm_flags & VM_LOCKED) ||
1347 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1348 		*populate = len;
1349 	return addr;
1350 }
1351 
1352 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1353 		unsigned long, prot, unsigned long, flags,
1354 		unsigned long, fd, unsigned long, pgoff)
1355 {
1356 	struct file *file = NULL;
1357 	unsigned long retval = -EBADF;
1358 
1359 	if (!(flags & MAP_ANONYMOUS)) {
1360 		audit_mmap_fd(fd, flags);
1361 		file = fget(fd);
1362 		if (!file)
1363 			goto out;
1364 		if (is_file_hugepages(file))
1365 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1366 		retval = -EINVAL;
1367 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1368 			goto out_fput;
1369 	} else if (flags & MAP_HUGETLB) {
1370 		struct user_struct *user = NULL;
1371 		struct hstate *hs;
1372 
1373 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1374 		if (!hs)
1375 			return -EINVAL;
1376 
1377 		len = ALIGN(len, huge_page_size(hs));
1378 		/*
1379 		 * VM_NORESERVE is used because the reservations will be
1380 		 * taken when vm_ops->mmap() is called
1381 		 * A dummy user value is used because we are not locking
1382 		 * memory so no accounting is necessary
1383 		 */
1384 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1385 				VM_NORESERVE,
1386 				&user, HUGETLB_ANONHUGE_INODE,
1387 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1388 		if (IS_ERR(file))
1389 			return PTR_ERR(file);
1390 	}
1391 
1392 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1393 
1394 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1395 out_fput:
1396 	if (file)
1397 		fput(file);
1398 out:
1399 	return retval;
1400 }
1401 
1402 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1403 struct mmap_arg_struct {
1404 	unsigned long addr;
1405 	unsigned long len;
1406 	unsigned long prot;
1407 	unsigned long flags;
1408 	unsigned long fd;
1409 	unsigned long offset;
1410 };
1411 
1412 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1413 {
1414 	struct mmap_arg_struct a;
1415 
1416 	if (copy_from_user(&a, arg, sizeof(a)))
1417 		return -EFAULT;
1418 	if (a.offset & ~PAGE_MASK)
1419 		return -EINVAL;
1420 
1421 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1422 			      a.offset >> PAGE_SHIFT);
1423 }
1424 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1425 
1426 /*
1427  * Some shared mappigns will want the pages marked read-only
1428  * to track write events. If so, we'll downgrade vm_page_prot
1429  * to the private version (using protection_map[] without the
1430  * VM_SHARED bit).
1431  */
1432 int vma_wants_writenotify(struct vm_area_struct *vma)
1433 {
1434 	vm_flags_t vm_flags = vma->vm_flags;
1435 
1436 	/* If it was private or non-writable, the write bit is already clear */
1437 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1438 		return 0;
1439 
1440 	/* The backer wishes to know when pages are first written to? */
1441 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1442 		return 1;
1443 
1444 	/* The open routine did something to the protections already? */
1445 	if (pgprot_val(vma->vm_page_prot) !=
1446 	    pgprot_val(vm_get_page_prot(vm_flags)))
1447 		return 0;
1448 
1449 	/* Specialty mapping? */
1450 	if (vm_flags & VM_PFNMAP)
1451 		return 0;
1452 
1453 	/* Can the mapping track the dirty pages? */
1454 	return vma->vm_file && vma->vm_file->f_mapping &&
1455 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1456 }
1457 
1458 /*
1459  * We account for memory if it's a private writeable mapping,
1460  * not hugepages and VM_NORESERVE wasn't set.
1461  */
1462 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1463 {
1464 	/*
1465 	 * hugetlb has its own accounting separate from the core VM
1466 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1467 	 */
1468 	if (file && is_file_hugepages(file))
1469 		return 0;
1470 
1471 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1472 }
1473 
1474 unsigned long mmap_region(struct file *file, unsigned long addr,
1475 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1476 {
1477 	struct mm_struct *mm = current->mm;
1478 	struct vm_area_struct *vma, *prev;
1479 	int correct_wcount = 0;
1480 	int error;
1481 	struct rb_node **rb_link, *rb_parent;
1482 	unsigned long charged = 0;
1483 	struct inode *inode =  file ? file_inode(file) : NULL;
1484 
1485 	/* Check against address space limit. */
1486 	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1487 		unsigned long nr_pages;
1488 
1489 		/*
1490 		 * MAP_FIXED may remove pages of mappings that intersects with
1491 		 * requested mapping. Account for the pages it would unmap.
1492 		 */
1493 		if (!(vm_flags & MAP_FIXED))
1494 			return -ENOMEM;
1495 
1496 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1497 
1498 		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1499 			return -ENOMEM;
1500 	}
1501 
1502 	/* Clear old maps */
1503 	error = -ENOMEM;
1504 munmap_back:
1505 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1506 		if (do_munmap(mm, addr, len))
1507 			return -ENOMEM;
1508 		goto munmap_back;
1509 	}
1510 
1511 	/*
1512 	 * Private writable mapping: check memory availability
1513 	 */
1514 	if (accountable_mapping(file, vm_flags)) {
1515 		charged = len >> PAGE_SHIFT;
1516 		if (security_vm_enough_memory_mm(mm, charged))
1517 			return -ENOMEM;
1518 		vm_flags |= VM_ACCOUNT;
1519 	}
1520 
1521 	/*
1522 	 * Can we just expand an old mapping?
1523 	 */
1524 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1525 	if (vma)
1526 		goto out;
1527 
1528 	/*
1529 	 * Determine the object being mapped and call the appropriate
1530 	 * specific mapper. the address has already been validated, but
1531 	 * not unmapped, but the maps are removed from the list.
1532 	 */
1533 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1534 	if (!vma) {
1535 		error = -ENOMEM;
1536 		goto unacct_error;
1537 	}
1538 
1539 	vma->vm_mm = mm;
1540 	vma->vm_start = addr;
1541 	vma->vm_end = addr + len;
1542 	vma->vm_flags = vm_flags;
1543 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1544 	vma->vm_pgoff = pgoff;
1545 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1546 
1547 	error = -EINVAL;	/* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1548 
1549 	if (file) {
1550 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1551 			goto free_vma;
1552 		if (vm_flags & VM_DENYWRITE) {
1553 			error = deny_write_access(file);
1554 			if (error)
1555 				goto free_vma;
1556 			correct_wcount = 1;
1557 		}
1558 		vma->vm_file = get_file(file);
1559 		error = file->f_op->mmap(file, vma);
1560 		if (error)
1561 			goto unmap_and_free_vma;
1562 
1563 		/* Can addr have changed??
1564 		 *
1565 		 * Answer: Yes, several device drivers can do it in their
1566 		 *         f_op->mmap method. -DaveM
1567 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1568 		 *      be updated for vma_link()
1569 		 */
1570 		WARN_ON_ONCE(addr != vma->vm_start);
1571 
1572 		addr = vma->vm_start;
1573 		pgoff = vma->vm_pgoff;
1574 		vm_flags = vma->vm_flags;
1575 	} else if (vm_flags & VM_SHARED) {
1576 		if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1577 			goto free_vma;
1578 		error = shmem_zero_setup(vma);
1579 		if (error)
1580 			goto free_vma;
1581 	}
1582 
1583 	if (vma_wants_writenotify(vma)) {
1584 		pgprot_t pprot = vma->vm_page_prot;
1585 
1586 		/* Can vma->vm_page_prot have changed??
1587 		 *
1588 		 * Answer: Yes, drivers may have changed it in their
1589 		 *         f_op->mmap method.
1590 		 *
1591 		 * Ensures that vmas marked as uncached stay that way.
1592 		 */
1593 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1594 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1595 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1596 	}
1597 
1598 	vma_link(mm, vma, prev, rb_link, rb_parent);
1599 	file = vma->vm_file;
1600 
1601 	/* Once vma denies write, undo our temporary denial count */
1602 	if (correct_wcount)
1603 		atomic_inc(&inode->i_writecount);
1604 out:
1605 	perf_event_mmap(vma);
1606 
1607 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1608 	if (vm_flags & VM_LOCKED) {
1609 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1610 					vma == get_gate_vma(current->mm)))
1611 			mm->locked_vm += (len >> PAGE_SHIFT);
1612 		else
1613 			vma->vm_flags &= ~VM_LOCKED;
1614 	}
1615 
1616 	if (file)
1617 		uprobe_mmap(vma);
1618 
1619 	return addr;
1620 
1621 unmap_and_free_vma:
1622 	if (correct_wcount)
1623 		atomic_inc(&inode->i_writecount);
1624 	vma->vm_file = NULL;
1625 	fput(file);
1626 
1627 	/* Undo any partial mapping done by a device driver. */
1628 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1629 	charged = 0;
1630 free_vma:
1631 	kmem_cache_free(vm_area_cachep, vma);
1632 unacct_error:
1633 	if (charged)
1634 		vm_unacct_memory(charged);
1635 	return error;
1636 }
1637 
1638 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1639 {
1640 	/*
1641 	 * We implement the search by looking for an rbtree node that
1642 	 * immediately follows a suitable gap. That is,
1643 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1644 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1645 	 * - gap_end - gap_start >= length
1646 	 */
1647 
1648 	struct mm_struct *mm = current->mm;
1649 	struct vm_area_struct *vma;
1650 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1651 
1652 	/* Adjust search length to account for worst case alignment overhead */
1653 	length = info->length + info->align_mask;
1654 	if (length < info->length)
1655 		return -ENOMEM;
1656 
1657 	/* Adjust search limits by the desired length */
1658 	if (info->high_limit < length)
1659 		return -ENOMEM;
1660 	high_limit = info->high_limit - length;
1661 
1662 	if (info->low_limit > high_limit)
1663 		return -ENOMEM;
1664 	low_limit = info->low_limit + length;
1665 
1666 	/* Check if rbtree root looks promising */
1667 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1668 		goto check_highest;
1669 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1670 	if (vma->rb_subtree_gap < length)
1671 		goto check_highest;
1672 
1673 	while (true) {
1674 		/* Visit left subtree if it looks promising */
1675 		gap_end = vma->vm_start;
1676 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1677 			struct vm_area_struct *left =
1678 				rb_entry(vma->vm_rb.rb_left,
1679 					 struct vm_area_struct, vm_rb);
1680 			if (left->rb_subtree_gap >= length) {
1681 				vma = left;
1682 				continue;
1683 			}
1684 		}
1685 
1686 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1687 check_current:
1688 		/* Check if current node has a suitable gap */
1689 		if (gap_start > high_limit)
1690 			return -ENOMEM;
1691 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1692 			goto found;
1693 
1694 		/* Visit right subtree if it looks promising */
1695 		if (vma->vm_rb.rb_right) {
1696 			struct vm_area_struct *right =
1697 				rb_entry(vma->vm_rb.rb_right,
1698 					 struct vm_area_struct, vm_rb);
1699 			if (right->rb_subtree_gap >= length) {
1700 				vma = right;
1701 				continue;
1702 			}
1703 		}
1704 
1705 		/* Go back up the rbtree to find next candidate node */
1706 		while (true) {
1707 			struct rb_node *prev = &vma->vm_rb;
1708 			if (!rb_parent(prev))
1709 				goto check_highest;
1710 			vma = rb_entry(rb_parent(prev),
1711 				       struct vm_area_struct, vm_rb);
1712 			if (prev == vma->vm_rb.rb_left) {
1713 				gap_start = vma->vm_prev->vm_end;
1714 				gap_end = vma->vm_start;
1715 				goto check_current;
1716 			}
1717 		}
1718 	}
1719 
1720 check_highest:
1721 	/* Check highest gap, which does not precede any rbtree node */
1722 	gap_start = mm->highest_vm_end;
1723 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1724 	if (gap_start > high_limit)
1725 		return -ENOMEM;
1726 
1727 found:
1728 	/* We found a suitable gap. Clip it with the original low_limit. */
1729 	if (gap_start < info->low_limit)
1730 		gap_start = info->low_limit;
1731 
1732 	/* Adjust gap address to the desired alignment */
1733 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1734 
1735 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1736 	VM_BUG_ON(gap_start + info->length > gap_end);
1737 	return gap_start;
1738 }
1739 
1740 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1741 {
1742 	struct mm_struct *mm = current->mm;
1743 	struct vm_area_struct *vma;
1744 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1745 
1746 	/* Adjust search length to account for worst case alignment overhead */
1747 	length = info->length + info->align_mask;
1748 	if (length < info->length)
1749 		return -ENOMEM;
1750 
1751 	/*
1752 	 * Adjust search limits by the desired length.
1753 	 * See implementation comment at top of unmapped_area().
1754 	 */
1755 	gap_end = info->high_limit;
1756 	if (gap_end < length)
1757 		return -ENOMEM;
1758 	high_limit = gap_end - length;
1759 
1760 	if (info->low_limit > high_limit)
1761 		return -ENOMEM;
1762 	low_limit = info->low_limit + length;
1763 
1764 	/* Check highest gap, which does not precede any rbtree node */
1765 	gap_start = mm->highest_vm_end;
1766 	if (gap_start <= high_limit)
1767 		goto found_highest;
1768 
1769 	/* Check if rbtree root looks promising */
1770 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1771 		return -ENOMEM;
1772 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1773 	if (vma->rb_subtree_gap < length)
1774 		return -ENOMEM;
1775 
1776 	while (true) {
1777 		/* Visit right subtree if it looks promising */
1778 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1779 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1780 			struct vm_area_struct *right =
1781 				rb_entry(vma->vm_rb.rb_right,
1782 					 struct vm_area_struct, vm_rb);
1783 			if (right->rb_subtree_gap >= length) {
1784 				vma = right;
1785 				continue;
1786 			}
1787 		}
1788 
1789 check_current:
1790 		/* Check if current node has a suitable gap */
1791 		gap_end = vma->vm_start;
1792 		if (gap_end < low_limit)
1793 			return -ENOMEM;
1794 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1795 			goto found;
1796 
1797 		/* Visit left subtree if it looks promising */
1798 		if (vma->vm_rb.rb_left) {
1799 			struct vm_area_struct *left =
1800 				rb_entry(vma->vm_rb.rb_left,
1801 					 struct vm_area_struct, vm_rb);
1802 			if (left->rb_subtree_gap >= length) {
1803 				vma = left;
1804 				continue;
1805 			}
1806 		}
1807 
1808 		/* Go back up the rbtree to find next candidate node */
1809 		while (true) {
1810 			struct rb_node *prev = &vma->vm_rb;
1811 			if (!rb_parent(prev))
1812 				return -ENOMEM;
1813 			vma = rb_entry(rb_parent(prev),
1814 				       struct vm_area_struct, vm_rb);
1815 			if (prev == vma->vm_rb.rb_right) {
1816 				gap_start = vma->vm_prev ?
1817 					vma->vm_prev->vm_end : 0;
1818 				goto check_current;
1819 			}
1820 		}
1821 	}
1822 
1823 found:
1824 	/* We found a suitable gap. Clip it with the original high_limit. */
1825 	if (gap_end > info->high_limit)
1826 		gap_end = info->high_limit;
1827 
1828 found_highest:
1829 	/* Compute highest gap address at the desired alignment */
1830 	gap_end -= info->length;
1831 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1832 
1833 	VM_BUG_ON(gap_end < info->low_limit);
1834 	VM_BUG_ON(gap_end < gap_start);
1835 	return gap_end;
1836 }
1837 
1838 /* Get an address range which is currently unmapped.
1839  * For shmat() with addr=0.
1840  *
1841  * Ugly calling convention alert:
1842  * Return value with the low bits set means error value,
1843  * ie
1844  *	if (ret & ~PAGE_MASK)
1845  *		error = ret;
1846  *
1847  * This function "knows" that -ENOMEM has the bits set.
1848  */
1849 #ifndef HAVE_ARCH_UNMAPPED_AREA
1850 unsigned long
1851 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1852 		unsigned long len, unsigned long pgoff, unsigned long flags)
1853 {
1854 	struct mm_struct *mm = current->mm;
1855 	struct vm_area_struct *vma;
1856 	struct vm_unmapped_area_info info;
1857 
1858 	if (len > TASK_SIZE)
1859 		return -ENOMEM;
1860 
1861 	if (flags & MAP_FIXED)
1862 		return addr;
1863 
1864 	if (addr) {
1865 		addr = PAGE_ALIGN(addr);
1866 		vma = find_vma(mm, addr);
1867 		if (TASK_SIZE - len >= addr &&
1868 		    (!vma || addr + len <= vma->vm_start))
1869 			return addr;
1870 	}
1871 
1872 	info.flags = 0;
1873 	info.length = len;
1874 	info.low_limit = TASK_UNMAPPED_BASE;
1875 	info.high_limit = TASK_SIZE;
1876 	info.align_mask = 0;
1877 	return vm_unmapped_area(&info);
1878 }
1879 #endif
1880 
1881 /*
1882  * This mmap-allocator allocates new areas top-down from below the
1883  * stack's low limit (the base):
1884  */
1885 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1886 unsigned long
1887 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1888 			  const unsigned long len, const unsigned long pgoff,
1889 			  const unsigned long flags)
1890 {
1891 	struct vm_area_struct *vma;
1892 	struct mm_struct *mm = current->mm;
1893 	unsigned long addr = addr0;
1894 	struct vm_unmapped_area_info info;
1895 
1896 	/* requested length too big for entire address space */
1897 	if (len > TASK_SIZE)
1898 		return -ENOMEM;
1899 
1900 	if (flags & MAP_FIXED)
1901 		return addr;
1902 
1903 	/* requesting a specific address */
1904 	if (addr) {
1905 		addr = PAGE_ALIGN(addr);
1906 		vma = find_vma(mm, addr);
1907 		if (TASK_SIZE - len >= addr &&
1908 				(!vma || addr + len <= vma->vm_start))
1909 			return addr;
1910 	}
1911 
1912 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1913 	info.length = len;
1914 	info.low_limit = PAGE_SIZE;
1915 	info.high_limit = mm->mmap_base;
1916 	info.align_mask = 0;
1917 	addr = vm_unmapped_area(&info);
1918 
1919 	/*
1920 	 * A failed mmap() very likely causes application failure,
1921 	 * so fall back to the bottom-up function here. This scenario
1922 	 * can happen with large stack limits and large mmap()
1923 	 * allocations.
1924 	 */
1925 	if (addr & ~PAGE_MASK) {
1926 		VM_BUG_ON(addr != -ENOMEM);
1927 		info.flags = 0;
1928 		info.low_limit = TASK_UNMAPPED_BASE;
1929 		info.high_limit = TASK_SIZE;
1930 		addr = vm_unmapped_area(&info);
1931 	}
1932 
1933 	return addr;
1934 }
1935 #endif
1936 
1937 unsigned long
1938 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1939 		unsigned long pgoff, unsigned long flags)
1940 {
1941 	unsigned long (*get_area)(struct file *, unsigned long,
1942 				  unsigned long, unsigned long, unsigned long);
1943 
1944 	unsigned long error = arch_mmap_check(addr, len, flags);
1945 	if (error)
1946 		return error;
1947 
1948 	/* Careful about overflows.. */
1949 	if (len > TASK_SIZE)
1950 		return -ENOMEM;
1951 
1952 	get_area = current->mm->get_unmapped_area;
1953 	if (file && file->f_op && file->f_op->get_unmapped_area)
1954 		get_area = file->f_op->get_unmapped_area;
1955 	addr = get_area(file, addr, len, pgoff, flags);
1956 	if (IS_ERR_VALUE(addr))
1957 		return addr;
1958 
1959 	if (addr > TASK_SIZE - len)
1960 		return -ENOMEM;
1961 	if (addr & ~PAGE_MASK)
1962 		return -EINVAL;
1963 
1964 	addr = arch_rebalance_pgtables(addr, len);
1965 	error = security_mmap_addr(addr);
1966 	return error ? error : addr;
1967 }
1968 
1969 EXPORT_SYMBOL(get_unmapped_area);
1970 
1971 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1972 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1973 {
1974 	struct vm_area_struct *vma = NULL;
1975 
1976 	/* Check the cache first. */
1977 	/* (Cache hit rate is typically around 35%.) */
1978 	vma = ACCESS_ONCE(mm->mmap_cache);
1979 	if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1980 		struct rb_node *rb_node;
1981 
1982 		rb_node = mm->mm_rb.rb_node;
1983 		vma = NULL;
1984 
1985 		while (rb_node) {
1986 			struct vm_area_struct *vma_tmp;
1987 
1988 			vma_tmp = rb_entry(rb_node,
1989 					   struct vm_area_struct, vm_rb);
1990 
1991 			if (vma_tmp->vm_end > addr) {
1992 				vma = vma_tmp;
1993 				if (vma_tmp->vm_start <= addr)
1994 					break;
1995 				rb_node = rb_node->rb_left;
1996 			} else
1997 				rb_node = rb_node->rb_right;
1998 		}
1999 		if (vma)
2000 			mm->mmap_cache = vma;
2001 	}
2002 	return vma;
2003 }
2004 
2005 EXPORT_SYMBOL(find_vma);
2006 
2007 /*
2008  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2009  */
2010 struct vm_area_struct *
2011 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2012 			struct vm_area_struct **pprev)
2013 {
2014 	struct vm_area_struct *vma;
2015 
2016 	vma = find_vma(mm, addr);
2017 	if (vma) {
2018 		*pprev = vma->vm_prev;
2019 	} else {
2020 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2021 		*pprev = NULL;
2022 		while (rb_node) {
2023 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2024 			rb_node = rb_node->rb_right;
2025 		}
2026 	}
2027 	return vma;
2028 }
2029 
2030 /*
2031  * Verify that the stack growth is acceptable and
2032  * update accounting. This is shared with both the
2033  * grow-up and grow-down cases.
2034  */
2035 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2036 {
2037 	struct mm_struct *mm = vma->vm_mm;
2038 	struct rlimit *rlim = current->signal->rlim;
2039 	unsigned long new_start;
2040 
2041 	/* address space limit tests */
2042 	if (!may_expand_vm(mm, grow))
2043 		return -ENOMEM;
2044 
2045 	/* Stack limit test */
2046 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2047 		return -ENOMEM;
2048 
2049 	/* mlock limit tests */
2050 	if (vma->vm_flags & VM_LOCKED) {
2051 		unsigned long locked;
2052 		unsigned long limit;
2053 		locked = mm->locked_vm + grow;
2054 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2055 		limit >>= PAGE_SHIFT;
2056 		if (locked > limit && !capable(CAP_IPC_LOCK))
2057 			return -ENOMEM;
2058 	}
2059 
2060 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2061 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2062 			vma->vm_end - size;
2063 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2064 		return -EFAULT;
2065 
2066 	/*
2067 	 * Overcommit..  This must be the final test, as it will
2068 	 * update security statistics.
2069 	 */
2070 	if (security_vm_enough_memory_mm(mm, grow))
2071 		return -ENOMEM;
2072 
2073 	/* Ok, everything looks good - let it rip */
2074 	if (vma->vm_flags & VM_LOCKED)
2075 		mm->locked_vm += grow;
2076 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2077 	return 0;
2078 }
2079 
2080 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2081 /*
2082  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2083  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2084  */
2085 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2086 {
2087 	int error;
2088 
2089 	if (!(vma->vm_flags & VM_GROWSUP))
2090 		return -EFAULT;
2091 
2092 	/*
2093 	 * We must make sure the anon_vma is allocated
2094 	 * so that the anon_vma locking is not a noop.
2095 	 */
2096 	if (unlikely(anon_vma_prepare(vma)))
2097 		return -ENOMEM;
2098 	vma_lock_anon_vma(vma);
2099 
2100 	/*
2101 	 * vma->vm_start/vm_end cannot change under us because the caller
2102 	 * is required to hold the mmap_sem in read mode.  We need the
2103 	 * anon_vma lock to serialize against concurrent expand_stacks.
2104 	 * Also guard against wrapping around to address 0.
2105 	 */
2106 	if (address < PAGE_ALIGN(address+4))
2107 		address = PAGE_ALIGN(address+4);
2108 	else {
2109 		vma_unlock_anon_vma(vma);
2110 		return -ENOMEM;
2111 	}
2112 	error = 0;
2113 
2114 	/* Somebody else might have raced and expanded it already */
2115 	if (address > vma->vm_end) {
2116 		unsigned long size, grow;
2117 
2118 		size = address - vma->vm_start;
2119 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2120 
2121 		error = -ENOMEM;
2122 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2123 			error = acct_stack_growth(vma, size, grow);
2124 			if (!error) {
2125 				/*
2126 				 * vma_gap_update() doesn't support concurrent
2127 				 * updates, but we only hold a shared mmap_sem
2128 				 * lock here, so we need to protect against
2129 				 * concurrent vma expansions.
2130 				 * vma_lock_anon_vma() doesn't help here, as
2131 				 * we don't guarantee that all growable vmas
2132 				 * in a mm share the same root anon vma.
2133 				 * So, we reuse mm->page_table_lock to guard
2134 				 * against concurrent vma expansions.
2135 				 */
2136 				spin_lock(&vma->vm_mm->page_table_lock);
2137 				anon_vma_interval_tree_pre_update_vma(vma);
2138 				vma->vm_end = address;
2139 				anon_vma_interval_tree_post_update_vma(vma);
2140 				if (vma->vm_next)
2141 					vma_gap_update(vma->vm_next);
2142 				else
2143 					vma->vm_mm->highest_vm_end = address;
2144 				spin_unlock(&vma->vm_mm->page_table_lock);
2145 
2146 				perf_event_mmap(vma);
2147 			}
2148 		}
2149 	}
2150 	vma_unlock_anon_vma(vma);
2151 	khugepaged_enter_vma_merge(vma);
2152 	validate_mm(vma->vm_mm);
2153 	return error;
2154 }
2155 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2156 
2157 /*
2158  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2159  */
2160 int expand_downwards(struct vm_area_struct *vma,
2161 				   unsigned long address)
2162 {
2163 	int error;
2164 
2165 	/*
2166 	 * We must make sure the anon_vma is allocated
2167 	 * so that the anon_vma locking is not a noop.
2168 	 */
2169 	if (unlikely(anon_vma_prepare(vma)))
2170 		return -ENOMEM;
2171 
2172 	address &= PAGE_MASK;
2173 	error = security_mmap_addr(address);
2174 	if (error)
2175 		return error;
2176 
2177 	vma_lock_anon_vma(vma);
2178 
2179 	/*
2180 	 * vma->vm_start/vm_end cannot change under us because the caller
2181 	 * is required to hold the mmap_sem in read mode.  We need the
2182 	 * anon_vma lock to serialize against concurrent expand_stacks.
2183 	 */
2184 
2185 	/* Somebody else might have raced and expanded it already */
2186 	if (address < vma->vm_start) {
2187 		unsigned long size, grow;
2188 
2189 		size = vma->vm_end - address;
2190 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2191 
2192 		error = -ENOMEM;
2193 		if (grow <= vma->vm_pgoff) {
2194 			error = acct_stack_growth(vma, size, grow);
2195 			if (!error) {
2196 				/*
2197 				 * vma_gap_update() doesn't support concurrent
2198 				 * updates, but we only hold a shared mmap_sem
2199 				 * lock here, so we need to protect against
2200 				 * concurrent vma expansions.
2201 				 * vma_lock_anon_vma() doesn't help here, as
2202 				 * we don't guarantee that all growable vmas
2203 				 * in a mm share the same root anon vma.
2204 				 * So, we reuse mm->page_table_lock to guard
2205 				 * against concurrent vma expansions.
2206 				 */
2207 				spin_lock(&vma->vm_mm->page_table_lock);
2208 				anon_vma_interval_tree_pre_update_vma(vma);
2209 				vma->vm_start = address;
2210 				vma->vm_pgoff -= grow;
2211 				anon_vma_interval_tree_post_update_vma(vma);
2212 				vma_gap_update(vma);
2213 				spin_unlock(&vma->vm_mm->page_table_lock);
2214 
2215 				perf_event_mmap(vma);
2216 			}
2217 		}
2218 	}
2219 	vma_unlock_anon_vma(vma);
2220 	khugepaged_enter_vma_merge(vma);
2221 	validate_mm(vma->vm_mm);
2222 	return error;
2223 }
2224 
2225 /*
2226  * Note how expand_stack() refuses to expand the stack all the way to
2227  * abut the next virtual mapping, *unless* that mapping itself is also
2228  * a stack mapping. We want to leave room for a guard page, after all
2229  * (the guard page itself is not added here, that is done by the
2230  * actual page faulting logic)
2231  *
2232  * This matches the behavior of the guard page logic (see mm/memory.c:
2233  * check_stack_guard_page()), which only allows the guard page to be
2234  * removed under these circumstances.
2235  */
2236 #ifdef CONFIG_STACK_GROWSUP
2237 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2238 {
2239 	struct vm_area_struct *next;
2240 
2241 	address &= PAGE_MASK;
2242 	next = vma->vm_next;
2243 	if (next && next->vm_start == address + PAGE_SIZE) {
2244 		if (!(next->vm_flags & VM_GROWSUP))
2245 			return -ENOMEM;
2246 	}
2247 	return expand_upwards(vma, address);
2248 }
2249 
2250 struct vm_area_struct *
2251 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2252 {
2253 	struct vm_area_struct *vma, *prev;
2254 
2255 	addr &= PAGE_MASK;
2256 	vma = find_vma_prev(mm, addr, &prev);
2257 	if (vma && (vma->vm_start <= addr))
2258 		return vma;
2259 	if (!prev || expand_stack(prev, addr))
2260 		return NULL;
2261 	if (prev->vm_flags & VM_LOCKED)
2262 		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2263 	return prev;
2264 }
2265 #else
2266 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2267 {
2268 	struct vm_area_struct *prev;
2269 
2270 	address &= PAGE_MASK;
2271 	prev = vma->vm_prev;
2272 	if (prev && prev->vm_end == address) {
2273 		if (!(prev->vm_flags & VM_GROWSDOWN))
2274 			return -ENOMEM;
2275 	}
2276 	return expand_downwards(vma, address);
2277 }
2278 
2279 struct vm_area_struct *
2280 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2281 {
2282 	struct vm_area_struct * vma;
2283 	unsigned long start;
2284 
2285 	addr &= PAGE_MASK;
2286 	vma = find_vma(mm,addr);
2287 	if (!vma)
2288 		return NULL;
2289 	if (vma->vm_start <= addr)
2290 		return vma;
2291 	if (!(vma->vm_flags & VM_GROWSDOWN))
2292 		return NULL;
2293 	start = vma->vm_start;
2294 	if (expand_stack(vma, addr))
2295 		return NULL;
2296 	if (vma->vm_flags & VM_LOCKED)
2297 		__mlock_vma_pages_range(vma, addr, start, NULL);
2298 	return vma;
2299 }
2300 #endif
2301 
2302 /*
2303  * Ok - we have the memory areas we should free on the vma list,
2304  * so release them, and do the vma updates.
2305  *
2306  * Called with the mm semaphore held.
2307  */
2308 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2309 {
2310 	unsigned long nr_accounted = 0;
2311 
2312 	/* Update high watermark before we lower total_vm */
2313 	update_hiwater_vm(mm);
2314 	do {
2315 		long nrpages = vma_pages(vma);
2316 
2317 		if (vma->vm_flags & VM_ACCOUNT)
2318 			nr_accounted += nrpages;
2319 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2320 		vma = remove_vma(vma);
2321 	} while (vma);
2322 	vm_unacct_memory(nr_accounted);
2323 	validate_mm(mm);
2324 }
2325 
2326 /*
2327  * Get rid of page table information in the indicated region.
2328  *
2329  * Called with the mm semaphore held.
2330  */
2331 static void unmap_region(struct mm_struct *mm,
2332 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2333 		unsigned long start, unsigned long end)
2334 {
2335 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2336 	struct mmu_gather tlb;
2337 
2338 	lru_add_drain();
2339 	tlb_gather_mmu(&tlb, mm, start, end);
2340 	update_hiwater_rss(mm);
2341 	unmap_vmas(&tlb, vma, start, end);
2342 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2343 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2344 	tlb_finish_mmu(&tlb, start, end);
2345 }
2346 
2347 /*
2348  * Create a list of vma's touched by the unmap, removing them from the mm's
2349  * vma list as we go..
2350  */
2351 static void
2352 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2353 	struct vm_area_struct *prev, unsigned long end)
2354 {
2355 	struct vm_area_struct **insertion_point;
2356 	struct vm_area_struct *tail_vma = NULL;
2357 
2358 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2359 	vma->vm_prev = NULL;
2360 	do {
2361 		vma_rb_erase(vma, &mm->mm_rb);
2362 		mm->map_count--;
2363 		tail_vma = vma;
2364 		vma = vma->vm_next;
2365 	} while (vma && vma->vm_start < end);
2366 	*insertion_point = vma;
2367 	if (vma) {
2368 		vma->vm_prev = prev;
2369 		vma_gap_update(vma);
2370 	} else
2371 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2372 	tail_vma->vm_next = NULL;
2373 	mm->mmap_cache = NULL;		/* Kill the cache. */
2374 }
2375 
2376 /*
2377  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2378  * munmap path where it doesn't make sense to fail.
2379  */
2380 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2381 	      unsigned long addr, int new_below)
2382 {
2383 	struct mempolicy *pol;
2384 	struct vm_area_struct *new;
2385 	int err = -ENOMEM;
2386 
2387 	if (is_vm_hugetlb_page(vma) && (addr &
2388 					~(huge_page_mask(hstate_vma(vma)))))
2389 		return -EINVAL;
2390 
2391 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2392 	if (!new)
2393 		goto out_err;
2394 
2395 	/* most fields are the same, copy all, and then fixup */
2396 	*new = *vma;
2397 
2398 	INIT_LIST_HEAD(&new->anon_vma_chain);
2399 
2400 	if (new_below)
2401 		new->vm_end = addr;
2402 	else {
2403 		new->vm_start = addr;
2404 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2405 	}
2406 
2407 	pol = mpol_dup(vma_policy(vma));
2408 	if (IS_ERR(pol)) {
2409 		err = PTR_ERR(pol);
2410 		goto out_free_vma;
2411 	}
2412 	vma_set_policy(new, pol);
2413 
2414 	if (anon_vma_clone(new, vma))
2415 		goto out_free_mpol;
2416 
2417 	if (new->vm_file)
2418 		get_file(new->vm_file);
2419 
2420 	if (new->vm_ops && new->vm_ops->open)
2421 		new->vm_ops->open(new);
2422 
2423 	if (new_below)
2424 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2425 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2426 	else
2427 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2428 
2429 	/* Success. */
2430 	if (!err)
2431 		return 0;
2432 
2433 	/* Clean everything up if vma_adjust failed. */
2434 	if (new->vm_ops && new->vm_ops->close)
2435 		new->vm_ops->close(new);
2436 	if (new->vm_file)
2437 		fput(new->vm_file);
2438 	unlink_anon_vmas(new);
2439  out_free_mpol:
2440 	mpol_put(pol);
2441  out_free_vma:
2442 	kmem_cache_free(vm_area_cachep, new);
2443  out_err:
2444 	return err;
2445 }
2446 
2447 /*
2448  * Split a vma into two pieces at address 'addr', a new vma is allocated
2449  * either for the first part or the tail.
2450  */
2451 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2452 	      unsigned long addr, int new_below)
2453 {
2454 	if (mm->map_count >= sysctl_max_map_count)
2455 		return -ENOMEM;
2456 
2457 	return __split_vma(mm, vma, addr, new_below);
2458 }
2459 
2460 /* Munmap is split into 2 main parts -- this part which finds
2461  * what needs doing, and the areas themselves, which do the
2462  * work.  This now handles partial unmappings.
2463  * Jeremy Fitzhardinge <jeremy@goop.org>
2464  */
2465 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2466 {
2467 	unsigned long end;
2468 	struct vm_area_struct *vma, *prev, *last;
2469 
2470 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2471 		return -EINVAL;
2472 
2473 	if ((len = PAGE_ALIGN(len)) == 0)
2474 		return -EINVAL;
2475 
2476 	/* Find the first overlapping VMA */
2477 	vma = find_vma(mm, start);
2478 	if (!vma)
2479 		return 0;
2480 	prev = vma->vm_prev;
2481 	/* we have  start < vma->vm_end  */
2482 
2483 	/* if it doesn't overlap, we have nothing.. */
2484 	end = start + len;
2485 	if (vma->vm_start >= end)
2486 		return 0;
2487 
2488 	/*
2489 	 * If we need to split any vma, do it now to save pain later.
2490 	 *
2491 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2492 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2493 	 * places tmp vma above, and higher split_vma places tmp vma below.
2494 	 */
2495 	if (start > vma->vm_start) {
2496 		int error;
2497 
2498 		/*
2499 		 * Make sure that map_count on return from munmap() will
2500 		 * not exceed its limit; but let map_count go just above
2501 		 * its limit temporarily, to help free resources as expected.
2502 		 */
2503 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2504 			return -ENOMEM;
2505 
2506 		error = __split_vma(mm, vma, start, 0);
2507 		if (error)
2508 			return error;
2509 		prev = vma;
2510 	}
2511 
2512 	/* Does it split the last one? */
2513 	last = find_vma(mm, end);
2514 	if (last && end > last->vm_start) {
2515 		int error = __split_vma(mm, last, end, 1);
2516 		if (error)
2517 			return error;
2518 	}
2519 	vma = prev? prev->vm_next: mm->mmap;
2520 
2521 	/*
2522 	 * unlock any mlock()ed ranges before detaching vmas
2523 	 */
2524 	if (mm->locked_vm) {
2525 		struct vm_area_struct *tmp = vma;
2526 		while (tmp && tmp->vm_start < end) {
2527 			if (tmp->vm_flags & VM_LOCKED) {
2528 				mm->locked_vm -= vma_pages(tmp);
2529 				munlock_vma_pages_all(tmp);
2530 			}
2531 			tmp = tmp->vm_next;
2532 		}
2533 	}
2534 
2535 	/*
2536 	 * Remove the vma's, and unmap the actual pages
2537 	 */
2538 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2539 	unmap_region(mm, vma, prev, start, end);
2540 
2541 	/* Fix up all other VM information */
2542 	remove_vma_list(mm, vma);
2543 
2544 	return 0;
2545 }
2546 
2547 int vm_munmap(unsigned long start, size_t len)
2548 {
2549 	int ret;
2550 	struct mm_struct *mm = current->mm;
2551 
2552 	down_write(&mm->mmap_sem);
2553 	ret = do_munmap(mm, start, len);
2554 	up_write(&mm->mmap_sem);
2555 	return ret;
2556 }
2557 EXPORT_SYMBOL(vm_munmap);
2558 
2559 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2560 {
2561 	profile_munmap(addr);
2562 	return vm_munmap(addr, len);
2563 }
2564 
2565 static inline void verify_mm_writelocked(struct mm_struct *mm)
2566 {
2567 #ifdef CONFIG_DEBUG_VM
2568 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2569 		WARN_ON(1);
2570 		up_read(&mm->mmap_sem);
2571 	}
2572 #endif
2573 }
2574 
2575 /*
2576  *  this is really a simplified "do_mmap".  it only handles
2577  *  anonymous maps.  eventually we may be able to do some
2578  *  brk-specific accounting here.
2579  */
2580 static unsigned long do_brk(unsigned long addr, unsigned long len)
2581 {
2582 	struct mm_struct * mm = current->mm;
2583 	struct vm_area_struct * vma, * prev;
2584 	unsigned long flags;
2585 	struct rb_node ** rb_link, * rb_parent;
2586 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2587 	int error;
2588 
2589 	len = PAGE_ALIGN(len);
2590 	if (!len)
2591 		return addr;
2592 
2593 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2594 
2595 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2596 	if (error & ~PAGE_MASK)
2597 		return error;
2598 
2599 	/*
2600 	 * mlock MCL_FUTURE?
2601 	 */
2602 	if (mm->def_flags & VM_LOCKED) {
2603 		unsigned long locked, lock_limit;
2604 		locked = len >> PAGE_SHIFT;
2605 		locked += mm->locked_vm;
2606 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2607 		lock_limit >>= PAGE_SHIFT;
2608 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2609 			return -EAGAIN;
2610 	}
2611 
2612 	/*
2613 	 * mm->mmap_sem is required to protect against another thread
2614 	 * changing the mappings in case we sleep.
2615 	 */
2616 	verify_mm_writelocked(mm);
2617 
2618 	/*
2619 	 * Clear old maps.  this also does some error checking for us
2620 	 */
2621  munmap_back:
2622 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2623 		if (do_munmap(mm, addr, len))
2624 			return -ENOMEM;
2625 		goto munmap_back;
2626 	}
2627 
2628 	/* Check against address space limits *after* clearing old maps... */
2629 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2630 		return -ENOMEM;
2631 
2632 	if (mm->map_count > sysctl_max_map_count)
2633 		return -ENOMEM;
2634 
2635 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2636 		return -ENOMEM;
2637 
2638 	/* Can we just expand an old private anonymous mapping? */
2639 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2640 					NULL, NULL, pgoff, NULL);
2641 	if (vma)
2642 		goto out;
2643 
2644 	/*
2645 	 * create a vma struct for an anonymous mapping
2646 	 */
2647 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2648 	if (!vma) {
2649 		vm_unacct_memory(len >> PAGE_SHIFT);
2650 		return -ENOMEM;
2651 	}
2652 
2653 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2654 	vma->vm_mm = mm;
2655 	vma->vm_start = addr;
2656 	vma->vm_end = addr + len;
2657 	vma->vm_pgoff = pgoff;
2658 	vma->vm_flags = flags;
2659 	vma->vm_page_prot = vm_get_page_prot(flags);
2660 	vma_link(mm, vma, prev, rb_link, rb_parent);
2661 out:
2662 	perf_event_mmap(vma);
2663 	mm->total_vm += len >> PAGE_SHIFT;
2664 	if (flags & VM_LOCKED)
2665 		mm->locked_vm += (len >> PAGE_SHIFT);
2666 	return addr;
2667 }
2668 
2669 unsigned long vm_brk(unsigned long addr, unsigned long len)
2670 {
2671 	struct mm_struct *mm = current->mm;
2672 	unsigned long ret;
2673 	bool populate;
2674 
2675 	down_write(&mm->mmap_sem);
2676 	ret = do_brk(addr, len);
2677 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2678 	up_write(&mm->mmap_sem);
2679 	if (populate)
2680 		mm_populate(addr, len);
2681 	return ret;
2682 }
2683 EXPORT_SYMBOL(vm_brk);
2684 
2685 /* Release all mmaps. */
2686 void exit_mmap(struct mm_struct *mm)
2687 {
2688 	struct mmu_gather tlb;
2689 	struct vm_area_struct *vma;
2690 	unsigned long nr_accounted = 0;
2691 
2692 	/* mm's last user has gone, and its about to be pulled down */
2693 	mmu_notifier_release(mm);
2694 
2695 	if (mm->locked_vm) {
2696 		vma = mm->mmap;
2697 		while (vma) {
2698 			if (vma->vm_flags & VM_LOCKED)
2699 				munlock_vma_pages_all(vma);
2700 			vma = vma->vm_next;
2701 		}
2702 	}
2703 
2704 	arch_exit_mmap(mm);
2705 
2706 	vma = mm->mmap;
2707 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2708 		return;
2709 
2710 	lru_add_drain();
2711 	flush_cache_mm(mm);
2712 	tlb_gather_mmu(&tlb, mm, 0, -1);
2713 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2714 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2715 	unmap_vmas(&tlb, vma, 0, -1);
2716 
2717 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2718 	tlb_finish_mmu(&tlb, 0, -1);
2719 
2720 	/*
2721 	 * Walk the list again, actually closing and freeing it,
2722 	 * with preemption enabled, without holding any MM locks.
2723 	 */
2724 	while (vma) {
2725 		if (vma->vm_flags & VM_ACCOUNT)
2726 			nr_accounted += vma_pages(vma);
2727 		vma = remove_vma(vma);
2728 	}
2729 	vm_unacct_memory(nr_accounted);
2730 
2731 	WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2732 }
2733 
2734 /* Insert vm structure into process list sorted by address
2735  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2736  * then i_mmap_mutex is taken here.
2737  */
2738 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2739 {
2740 	struct vm_area_struct *prev;
2741 	struct rb_node **rb_link, *rb_parent;
2742 
2743 	/*
2744 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2745 	 * until its first write fault, when page's anon_vma and index
2746 	 * are set.  But now set the vm_pgoff it will almost certainly
2747 	 * end up with (unless mremap moves it elsewhere before that
2748 	 * first wfault), so /proc/pid/maps tells a consistent story.
2749 	 *
2750 	 * By setting it to reflect the virtual start address of the
2751 	 * vma, merges and splits can happen in a seamless way, just
2752 	 * using the existing file pgoff checks and manipulations.
2753 	 * Similarly in do_mmap_pgoff and in do_brk.
2754 	 */
2755 	if (!vma->vm_file) {
2756 		BUG_ON(vma->anon_vma);
2757 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2758 	}
2759 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2760 			   &prev, &rb_link, &rb_parent))
2761 		return -ENOMEM;
2762 	if ((vma->vm_flags & VM_ACCOUNT) &&
2763 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2764 		return -ENOMEM;
2765 
2766 	vma_link(mm, vma, prev, rb_link, rb_parent);
2767 	return 0;
2768 }
2769 
2770 /*
2771  * Copy the vma structure to a new location in the same mm,
2772  * prior to moving page table entries, to effect an mremap move.
2773  */
2774 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2775 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2776 	bool *need_rmap_locks)
2777 {
2778 	struct vm_area_struct *vma = *vmap;
2779 	unsigned long vma_start = vma->vm_start;
2780 	struct mm_struct *mm = vma->vm_mm;
2781 	struct vm_area_struct *new_vma, *prev;
2782 	struct rb_node **rb_link, *rb_parent;
2783 	struct mempolicy *pol;
2784 	bool faulted_in_anon_vma = true;
2785 
2786 	/*
2787 	 * If anonymous vma has not yet been faulted, update new pgoff
2788 	 * to match new location, to increase its chance of merging.
2789 	 */
2790 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2791 		pgoff = addr >> PAGE_SHIFT;
2792 		faulted_in_anon_vma = false;
2793 	}
2794 
2795 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2796 		return NULL;	/* should never get here */
2797 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2798 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2799 	if (new_vma) {
2800 		/*
2801 		 * Source vma may have been merged into new_vma
2802 		 */
2803 		if (unlikely(vma_start >= new_vma->vm_start &&
2804 			     vma_start < new_vma->vm_end)) {
2805 			/*
2806 			 * The only way we can get a vma_merge with
2807 			 * self during an mremap is if the vma hasn't
2808 			 * been faulted in yet and we were allowed to
2809 			 * reset the dst vma->vm_pgoff to the
2810 			 * destination address of the mremap to allow
2811 			 * the merge to happen. mremap must change the
2812 			 * vm_pgoff linearity between src and dst vmas
2813 			 * (in turn preventing a vma_merge) to be
2814 			 * safe. It is only safe to keep the vm_pgoff
2815 			 * linear if there are no pages mapped yet.
2816 			 */
2817 			VM_BUG_ON(faulted_in_anon_vma);
2818 			*vmap = vma = new_vma;
2819 		}
2820 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2821 	} else {
2822 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2823 		if (new_vma) {
2824 			*new_vma = *vma;
2825 			new_vma->vm_start = addr;
2826 			new_vma->vm_end = addr + len;
2827 			new_vma->vm_pgoff = pgoff;
2828 			pol = mpol_dup(vma_policy(vma));
2829 			if (IS_ERR(pol))
2830 				goto out_free_vma;
2831 			vma_set_policy(new_vma, pol);
2832 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2833 			if (anon_vma_clone(new_vma, vma))
2834 				goto out_free_mempol;
2835 			if (new_vma->vm_file)
2836 				get_file(new_vma->vm_file);
2837 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2838 				new_vma->vm_ops->open(new_vma);
2839 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2840 			*need_rmap_locks = false;
2841 		}
2842 	}
2843 	return new_vma;
2844 
2845  out_free_mempol:
2846 	mpol_put(pol);
2847  out_free_vma:
2848 	kmem_cache_free(vm_area_cachep, new_vma);
2849 	return NULL;
2850 }
2851 
2852 /*
2853  * Return true if the calling process may expand its vm space by the passed
2854  * number of pages
2855  */
2856 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2857 {
2858 	unsigned long cur = mm->total_vm;	/* pages */
2859 	unsigned long lim;
2860 
2861 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2862 
2863 	if (cur + npages > lim)
2864 		return 0;
2865 	return 1;
2866 }
2867 
2868 
2869 static int special_mapping_fault(struct vm_area_struct *vma,
2870 				struct vm_fault *vmf)
2871 {
2872 	pgoff_t pgoff;
2873 	struct page **pages;
2874 
2875 	/*
2876 	 * special mappings have no vm_file, and in that case, the mm
2877 	 * uses vm_pgoff internally. So we have to subtract it from here.
2878 	 * We are allowed to do this because we are the mm; do not copy
2879 	 * this code into drivers!
2880 	 */
2881 	pgoff = vmf->pgoff - vma->vm_pgoff;
2882 
2883 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2884 		pgoff--;
2885 
2886 	if (*pages) {
2887 		struct page *page = *pages;
2888 		get_page(page);
2889 		vmf->page = page;
2890 		return 0;
2891 	}
2892 
2893 	return VM_FAULT_SIGBUS;
2894 }
2895 
2896 /*
2897  * Having a close hook prevents vma merging regardless of flags.
2898  */
2899 static void special_mapping_close(struct vm_area_struct *vma)
2900 {
2901 }
2902 
2903 static const struct vm_operations_struct special_mapping_vmops = {
2904 	.close = special_mapping_close,
2905 	.fault = special_mapping_fault,
2906 };
2907 
2908 /*
2909  * Called with mm->mmap_sem held for writing.
2910  * Insert a new vma covering the given region, with the given flags.
2911  * Its pages are supplied by the given array of struct page *.
2912  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2913  * The region past the last page supplied will always produce SIGBUS.
2914  * The array pointer and the pages it points to are assumed to stay alive
2915  * for as long as this mapping might exist.
2916  */
2917 int install_special_mapping(struct mm_struct *mm,
2918 			    unsigned long addr, unsigned long len,
2919 			    unsigned long vm_flags, struct page **pages)
2920 {
2921 	int ret;
2922 	struct vm_area_struct *vma;
2923 
2924 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2925 	if (unlikely(vma == NULL))
2926 		return -ENOMEM;
2927 
2928 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2929 	vma->vm_mm = mm;
2930 	vma->vm_start = addr;
2931 	vma->vm_end = addr + len;
2932 
2933 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2934 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2935 
2936 	vma->vm_ops = &special_mapping_vmops;
2937 	vma->vm_private_data = pages;
2938 
2939 	ret = insert_vm_struct(mm, vma);
2940 	if (ret)
2941 		goto out;
2942 
2943 	mm->total_vm += len >> PAGE_SHIFT;
2944 
2945 	perf_event_mmap(vma);
2946 
2947 	return 0;
2948 
2949 out:
2950 	kmem_cache_free(vm_area_cachep, vma);
2951 	return ret;
2952 }
2953 
2954 static DEFINE_MUTEX(mm_all_locks_mutex);
2955 
2956 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2957 {
2958 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2959 		/*
2960 		 * The LSB of head.next can't change from under us
2961 		 * because we hold the mm_all_locks_mutex.
2962 		 */
2963 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2964 		/*
2965 		 * We can safely modify head.next after taking the
2966 		 * anon_vma->root->rwsem. If some other vma in this mm shares
2967 		 * the same anon_vma we won't take it again.
2968 		 *
2969 		 * No need of atomic instructions here, head.next
2970 		 * can't change from under us thanks to the
2971 		 * anon_vma->root->rwsem.
2972 		 */
2973 		if (__test_and_set_bit(0, (unsigned long *)
2974 				       &anon_vma->root->rb_root.rb_node))
2975 			BUG();
2976 	}
2977 }
2978 
2979 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2980 {
2981 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2982 		/*
2983 		 * AS_MM_ALL_LOCKS can't change from under us because
2984 		 * we hold the mm_all_locks_mutex.
2985 		 *
2986 		 * Operations on ->flags have to be atomic because
2987 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2988 		 * mm_all_locks_mutex, there may be other cpus
2989 		 * changing other bitflags in parallel to us.
2990 		 */
2991 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2992 			BUG();
2993 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2994 	}
2995 }
2996 
2997 /*
2998  * This operation locks against the VM for all pte/vma/mm related
2999  * operations that could ever happen on a certain mm. This includes
3000  * vmtruncate, try_to_unmap, and all page faults.
3001  *
3002  * The caller must take the mmap_sem in write mode before calling
3003  * mm_take_all_locks(). The caller isn't allowed to release the
3004  * mmap_sem until mm_drop_all_locks() returns.
3005  *
3006  * mmap_sem in write mode is required in order to block all operations
3007  * that could modify pagetables and free pages without need of
3008  * altering the vma layout (for example populate_range() with
3009  * nonlinear vmas). It's also needed in write mode to avoid new
3010  * anon_vmas to be associated with existing vmas.
3011  *
3012  * A single task can't take more than one mm_take_all_locks() in a row
3013  * or it would deadlock.
3014  *
3015  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3016  * mapping->flags avoid to take the same lock twice, if more than one
3017  * vma in this mm is backed by the same anon_vma or address_space.
3018  *
3019  * We can take all the locks in random order because the VM code
3020  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3021  * takes more than one of them in a row. Secondly we're protected
3022  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3023  *
3024  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3025  * that may have to take thousand of locks.
3026  *
3027  * mm_take_all_locks() can fail if it's interrupted by signals.
3028  */
3029 int mm_take_all_locks(struct mm_struct *mm)
3030 {
3031 	struct vm_area_struct *vma;
3032 	struct anon_vma_chain *avc;
3033 
3034 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3035 
3036 	mutex_lock(&mm_all_locks_mutex);
3037 
3038 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3039 		if (signal_pending(current))
3040 			goto out_unlock;
3041 		if (vma->vm_file && vma->vm_file->f_mapping)
3042 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3043 	}
3044 
3045 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3046 		if (signal_pending(current))
3047 			goto out_unlock;
3048 		if (vma->anon_vma)
3049 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3050 				vm_lock_anon_vma(mm, avc->anon_vma);
3051 	}
3052 
3053 	return 0;
3054 
3055 out_unlock:
3056 	mm_drop_all_locks(mm);
3057 	return -EINTR;
3058 }
3059 
3060 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3061 {
3062 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3063 		/*
3064 		 * The LSB of head.next can't change to 0 from under
3065 		 * us because we hold the mm_all_locks_mutex.
3066 		 *
3067 		 * We must however clear the bitflag before unlocking
3068 		 * the vma so the users using the anon_vma->rb_root will
3069 		 * never see our bitflag.
3070 		 *
3071 		 * No need of atomic instructions here, head.next
3072 		 * can't change from under us until we release the
3073 		 * anon_vma->root->rwsem.
3074 		 */
3075 		if (!__test_and_clear_bit(0, (unsigned long *)
3076 					  &anon_vma->root->rb_root.rb_node))
3077 			BUG();
3078 		anon_vma_unlock_write(anon_vma);
3079 	}
3080 }
3081 
3082 static void vm_unlock_mapping(struct address_space *mapping)
3083 {
3084 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3085 		/*
3086 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3087 		 * because we hold the mm_all_locks_mutex.
3088 		 */
3089 		mutex_unlock(&mapping->i_mmap_mutex);
3090 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3091 					&mapping->flags))
3092 			BUG();
3093 	}
3094 }
3095 
3096 /*
3097  * The mmap_sem cannot be released by the caller until
3098  * mm_drop_all_locks() returns.
3099  */
3100 void mm_drop_all_locks(struct mm_struct *mm)
3101 {
3102 	struct vm_area_struct *vma;
3103 	struct anon_vma_chain *avc;
3104 
3105 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3106 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3107 
3108 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3109 		if (vma->anon_vma)
3110 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3111 				vm_unlock_anon_vma(avc->anon_vma);
3112 		if (vma->vm_file && vma->vm_file->f_mapping)
3113 			vm_unlock_mapping(vma->vm_file->f_mapping);
3114 	}
3115 
3116 	mutex_unlock(&mm_all_locks_mutex);
3117 }
3118 
3119 /*
3120  * initialise the VMA slab
3121  */
3122 void __init mmap_init(void)
3123 {
3124 	int ret;
3125 
3126 	ret = percpu_counter_init(&vm_committed_as, 0);
3127 	VM_BUG_ON(ret);
3128 }
3129 
3130 /*
3131  * Initialise sysctl_user_reserve_kbytes.
3132  *
3133  * This is intended to prevent a user from starting a single memory hogging
3134  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3135  * mode.
3136  *
3137  * The default value is min(3% of free memory, 128MB)
3138  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3139  */
3140 static int init_user_reserve(void)
3141 {
3142 	unsigned long free_kbytes;
3143 
3144 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3145 
3146 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3147 	return 0;
3148 }
3149 module_init(init_user_reserve)
3150 
3151 /*
3152  * Initialise sysctl_admin_reserve_kbytes.
3153  *
3154  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3155  * to log in and kill a memory hogging process.
3156  *
3157  * Systems with more than 256MB will reserve 8MB, enough to recover
3158  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3159  * only reserve 3% of free pages by default.
3160  */
3161 static int init_admin_reserve(void)
3162 {
3163 	unsigned long free_kbytes;
3164 
3165 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3166 
3167 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3168 	return 0;
3169 }
3170 module_init(init_admin_reserve)
3171 
3172 /*
3173  * Reinititalise user and admin reserves if memory is added or removed.
3174  *
3175  * The default user reserve max is 128MB, and the default max for the
3176  * admin reserve is 8MB. These are usually, but not always, enough to
3177  * enable recovery from a memory hogging process using login/sshd, a shell,
3178  * and tools like top. It may make sense to increase or even disable the
3179  * reserve depending on the existence of swap or variations in the recovery
3180  * tools. So, the admin may have changed them.
3181  *
3182  * If memory is added and the reserves have been eliminated or increased above
3183  * the default max, then we'll trust the admin.
3184  *
3185  * If memory is removed and there isn't enough free memory, then we
3186  * need to reset the reserves.
3187  *
3188  * Otherwise keep the reserve set by the admin.
3189  */
3190 static int reserve_mem_notifier(struct notifier_block *nb,
3191 			     unsigned long action, void *data)
3192 {
3193 	unsigned long tmp, free_kbytes;
3194 
3195 	switch (action) {
3196 	case MEM_ONLINE:
3197 		/* Default max is 128MB. Leave alone if modified by operator. */
3198 		tmp = sysctl_user_reserve_kbytes;
3199 		if (0 < tmp && tmp < (1UL << 17))
3200 			init_user_reserve();
3201 
3202 		/* Default max is 8MB.  Leave alone if modified by operator. */
3203 		tmp = sysctl_admin_reserve_kbytes;
3204 		if (0 < tmp && tmp < (1UL << 13))
3205 			init_admin_reserve();
3206 
3207 		break;
3208 	case MEM_OFFLINE:
3209 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3210 
3211 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3212 			init_user_reserve();
3213 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3214 				sysctl_user_reserve_kbytes);
3215 		}
3216 
3217 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3218 			init_admin_reserve();
3219 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3220 				sysctl_admin_reserve_kbytes);
3221 		}
3222 		break;
3223 	default:
3224 		break;
3225 	}
3226 	return NOTIFY_OK;
3227 }
3228 
3229 static struct notifier_block reserve_mem_nb = {
3230 	.notifier_call = reserve_mem_notifier,
3231 };
3232 
3233 static int __meminit init_reserve_notifier(void)
3234 {
3235 	if (register_hotmemory_notifier(&reserve_mem_nb))
3236 		printk("Failed registering memory add/remove notifier for admin reserve");
3237 
3238 	return 0;
3239 }
3240 module_init(init_reserve_notifier)
3241