xref: /openbmc/linux/mm/mmap.c (revision e8069f5a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, bool mm_wr_locked);
83 
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 		struct file *file, struct address_space *mapping)
109 {
110 	if (vma->vm_flags & VM_SHARED)
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, file, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 	might_sleep();
140 	if (vma->vm_ops && vma->vm_ops->close)
141 		vma->vm_ops->close(vma);
142 	if (vma->vm_file)
143 		fput(vma->vm_file);
144 	mpol_put(vma_policy(vma));
145 	if (unreachable)
146 		__vm_area_free(vma);
147 	else
148 		vm_area_free(vma);
149 }
150 
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 						    unsigned long min)
153 {
154 	return mas_prev(&vmi->mas, min);
155 }
156 
157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
158 			unsigned long start, unsigned long end, gfp_t gfp)
159 {
160 	vmi->mas.index = start;
161 	vmi->mas.last = end - 1;
162 	mas_store_gfp(&vmi->mas, NULL, gfp);
163 	if (unlikely(mas_is_err(&vmi->mas)))
164 		return -ENOMEM;
165 
166 	return 0;
167 }
168 
169 /*
170  * check_brk_limits() - Use platform specific check of range & verify mlock
171  * limits.
172  * @addr: The address to check
173  * @len: The size of increase.
174  *
175  * Return: 0 on success.
176  */
177 static int check_brk_limits(unsigned long addr, unsigned long len)
178 {
179 	unsigned long mapped_addr;
180 
181 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
182 	if (IS_ERR_VALUE(mapped_addr))
183 		return mapped_addr;
184 
185 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
186 		? 0 : -EAGAIN;
187 }
188 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
189 		unsigned long addr, unsigned long request, unsigned long flags);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192 	unsigned long newbrk, oldbrk, origbrk;
193 	struct mm_struct *mm = current->mm;
194 	struct vm_area_struct *brkvma, *next = NULL;
195 	unsigned long min_brk;
196 	bool populate = false;
197 	LIST_HEAD(uf);
198 	struct vma_iterator vmi;
199 
200 	if (mmap_write_lock_killable(mm))
201 		return -EINTR;
202 
203 	origbrk = mm->brk;
204 
205 #ifdef CONFIG_COMPAT_BRK
206 	/*
207 	 * CONFIG_COMPAT_BRK can still be overridden by setting
208 	 * randomize_va_space to 2, which will still cause mm->start_brk
209 	 * to be arbitrarily shifted
210 	 */
211 	if (current->brk_randomized)
212 		min_brk = mm->start_brk;
213 	else
214 		min_brk = mm->end_data;
215 #else
216 	min_brk = mm->start_brk;
217 #endif
218 	if (brk < min_brk)
219 		goto out;
220 
221 	/*
222 	 * Check against rlimit here. If this check is done later after the test
223 	 * of oldbrk with newbrk then it can escape the test and let the data
224 	 * segment grow beyond its set limit the in case where the limit is
225 	 * not page aligned -Ram Gupta
226 	 */
227 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228 			      mm->end_data, mm->start_data))
229 		goto out;
230 
231 	newbrk = PAGE_ALIGN(brk);
232 	oldbrk = PAGE_ALIGN(mm->brk);
233 	if (oldbrk == newbrk) {
234 		mm->brk = brk;
235 		goto success;
236 	}
237 
238 	/* Always allow shrinking brk. */
239 	if (brk <= mm->brk) {
240 		/* Search one past newbrk */
241 		vma_iter_init(&vmi, mm, newbrk);
242 		brkvma = vma_find(&vmi, oldbrk);
243 		if (!brkvma || brkvma->vm_start >= oldbrk)
244 			goto out; /* mapping intersects with an existing non-brk vma. */
245 		/*
246 		 * mm->brk must be protected by write mmap_lock.
247 		 * do_vma_munmap() will drop the lock on success,  so update it
248 		 * before calling do_vma_munmap().
249 		 */
250 		mm->brk = brk;
251 		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
252 			goto out;
253 
254 		goto success_unlocked;
255 	}
256 
257 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
258 		goto out;
259 
260 	/*
261 	 * Only check if the next VMA is within the stack_guard_gap of the
262 	 * expansion area
263 	 */
264 	vma_iter_init(&vmi, mm, oldbrk);
265 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
266 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
267 		goto out;
268 
269 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
270 	/* Ok, looks good - let it rip. */
271 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
272 		goto out;
273 
274 	mm->brk = brk;
275 	if (mm->def_flags & VM_LOCKED)
276 		populate = true;
277 
278 success:
279 	mmap_write_unlock(mm);
280 success_unlocked:
281 	userfaultfd_unmap_complete(mm, &uf);
282 	if (populate)
283 		mm_populate(oldbrk, newbrk - oldbrk);
284 	return brk;
285 
286 out:
287 	mm->brk = origbrk;
288 	mmap_write_unlock(mm);
289 	return origbrk;
290 }
291 
292 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
293 static void validate_mm(struct mm_struct *mm)
294 {
295 	int bug = 0;
296 	int i = 0;
297 	struct vm_area_struct *vma;
298 	VMA_ITERATOR(vmi, mm, 0);
299 
300 	mt_validate(&mm->mm_mt);
301 	for_each_vma(vmi, vma) {
302 #ifdef CONFIG_DEBUG_VM_RB
303 		struct anon_vma *anon_vma = vma->anon_vma;
304 		struct anon_vma_chain *avc;
305 #endif
306 		unsigned long vmi_start, vmi_end;
307 		bool warn = 0;
308 
309 		vmi_start = vma_iter_addr(&vmi);
310 		vmi_end = vma_iter_end(&vmi);
311 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
312 			warn = 1;
313 
314 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
315 			warn = 1;
316 
317 		if (warn) {
318 			pr_emerg("issue in %s\n", current->comm);
319 			dump_stack();
320 			dump_vma(vma);
321 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
322 				 vmi_start, vmi_end - 1);
323 			vma_iter_dump_tree(&vmi);
324 		}
325 
326 #ifdef CONFIG_DEBUG_VM_RB
327 		if (anon_vma) {
328 			anon_vma_lock_read(anon_vma);
329 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
330 				anon_vma_interval_tree_verify(avc);
331 			anon_vma_unlock_read(anon_vma);
332 		}
333 #endif
334 		i++;
335 	}
336 	if (i != mm->map_count) {
337 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
338 		bug = 1;
339 	}
340 	VM_BUG_ON_MM(bug, mm);
341 }
342 
343 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
344 #define validate_mm(mm) do { } while (0)
345 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
346 
347 /*
348  * vma has some anon_vma assigned, and is already inserted on that
349  * anon_vma's interval trees.
350  *
351  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
352  * vma must be removed from the anon_vma's interval trees using
353  * anon_vma_interval_tree_pre_update_vma().
354  *
355  * After the update, the vma will be reinserted using
356  * anon_vma_interval_tree_post_update_vma().
357  *
358  * The entire update must be protected by exclusive mmap_lock and by
359  * the root anon_vma's mutex.
360  */
361 static inline void
362 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
363 {
364 	struct anon_vma_chain *avc;
365 
366 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
367 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
368 }
369 
370 static inline void
371 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
372 {
373 	struct anon_vma_chain *avc;
374 
375 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
376 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
377 }
378 
379 static unsigned long count_vma_pages_range(struct mm_struct *mm,
380 		unsigned long addr, unsigned long end)
381 {
382 	VMA_ITERATOR(vmi, mm, addr);
383 	struct vm_area_struct *vma;
384 	unsigned long nr_pages = 0;
385 
386 	for_each_vma_range(vmi, vma, end) {
387 		unsigned long vm_start = max(addr, vma->vm_start);
388 		unsigned long vm_end = min(end, vma->vm_end);
389 
390 		nr_pages += PHYS_PFN(vm_end - vm_start);
391 	}
392 
393 	return nr_pages;
394 }
395 
396 static void __vma_link_file(struct vm_area_struct *vma,
397 			    struct address_space *mapping)
398 {
399 	if (vma->vm_flags & VM_SHARED)
400 		mapping_allow_writable(mapping);
401 
402 	flush_dcache_mmap_lock(mapping);
403 	vma_interval_tree_insert(vma, &mapping->i_mmap);
404 	flush_dcache_mmap_unlock(mapping);
405 }
406 
407 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
408 {
409 	VMA_ITERATOR(vmi, mm, 0);
410 	struct address_space *mapping = NULL;
411 
412 	if (vma_iter_prealloc(&vmi))
413 		return -ENOMEM;
414 
415 	if (vma->vm_file) {
416 		mapping = vma->vm_file->f_mapping;
417 		i_mmap_lock_write(mapping);
418 	}
419 
420 	vma_iter_store(&vmi, vma);
421 
422 	if (mapping) {
423 		__vma_link_file(vma, mapping);
424 		i_mmap_unlock_write(mapping);
425 	}
426 
427 	mm->map_count++;
428 	validate_mm(mm);
429 	return 0;
430 }
431 
432 /*
433  * init_multi_vma_prep() - Initializer for struct vma_prepare
434  * @vp: The vma_prepare struct
435  * @vma: The vma that will be altered once locked
436  * @next: The next vma if it is to be adjusted
437  * @remove: The first vma to be removed
438  * @remove2: The second vma to be removed
439  */
440 static inline void init_multi_vma_prep(struct vma_prepare *vp,
441 		struct vm_area_struct *vma, struct vm_area_struct *next,
442 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
443 {
444 	memset(vp, 0, sizeof(struct vma_prepare));
445 	vp->vma = vma;
446 	vp->anon_vma = vma->anon_vma;
447 	vp->remove = remove;
448 	vp->remove2 = remove2;
449 	vp->adj_next = next;
450 	if (!vp->anon_vma && next)
451 		vp->anon_vma = next->anon_vma;
452 
453 	vp->file = vma->vm_file;
454 	if (vp->file)
455 		vp->mapping = vma->vm_file->f_mapping;
456 
457 }
458 
459 /*
460  * init_vma_prep() - Initializer wrapper for vma_prepare struct
461  * @vp: The vma_prepare struct
462  * @vma: The vma that will be altered once locked
463  */
464 static inline void init_vma_prep(struct vma_prepare *vp,
465 				 struct vm_area_struct *vma)
466 {
467 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
468 }
469 
470 
471 /*
472  * vma_prepare() - Helper function for handling locking VMAs prior to altering
473  * @vp: The initialized vma_prepare struct
474  */
475 static inline void vma_prepare(struct vma_prepare *vp)
476 {
477 	vma_start_write(vp->vma);
478 	if (vp->adj_next)
479 		vma_start_write(vp->adj_next);
480 	/* vp->insert is always a newly created VMA, no need for locking */
481 	if (vp->remove)
482 		vma_start_write(vp->remove);
483 	if (vp->remove2)
484 		vma_start_write(vp->remove2);
485 
486 	if (vp->file) {
487 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
488 
489 		if (vp->adj_next)
490 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
491 				      vp->adj_next->vm_end);
492 
493 		i_mmap_lock_write(vp->mapping);
494 		if (vp->insert && vp->insert->vm_file) {
495 			/*
496 			 * Put into interval tree now, so instantiated pages
497 			 * are visible to arm/parisc __flush_dcache_page
498 			 * throughout; but we cannot insert into address
499 			 * space until vma start or end is updated.
500 			 */
501 			__vma_link_file(vp->insert,
502 					vp->insert->vm_file->f_mapping);
503 		}
504 	}
505 
506 	if (vp->anon_vma) {
507 		anon_vma_lock_write(vp->anon_vma);
508 		anon_vma_interval_tree_pre_update_vma(vp->vma);
509 		if (vp->adj_next)
510 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
511 	}
512 
513 	if (vp->file) {
514 		flush_dcache_mmap_lock(vp->mapping);
515 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
516 		if (vp->adj_next)
517 			vma_interval_tree_remove(vp->adj_next,
518 						 &vp->mapping->i_mmap);
519 	}
520 
521 }
522 
523 /*
524  * vma_complete- Helper function for handling the unlocking after altering VMAs,
525  * or for inserting a VMA.
526  *
527  * @vp: The vma_prepare struct
528  * @vmi: The vma iterator
529  * @mm: The mm_struct
530  */
531 static inline void vma_complete(struct vma_prepare *vp,
532 				struct vma_iterator *vmi, struct mm_struct *mm)
533 {
534 	if (vp->file) {
535 		if (vp->adj_next)
536 			vma_interval_tree_insert(vp->adj_next,
537 						 &vp->mapping->i_mmap);
538 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
539 		flush_dcache_mmap_unlock(vp->mapping);
540 	}
541 
542 	if (vp->remove && vp->file) {
543 		__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
544 		if (vp->remove2)
545 			__remove_shared_vm_struct(vp->remove2, vp->file,
546 						  vp->mapping);
547 	} else if (vp->insert) {
548 		/*
549 		 * split_vma has split insert from vma, and needs
550 		 * us to insert it before dropping the locks
551 		 * (it may either follow vma or precede it).
552 		 */
553 		vma_iter_store(vmi, vp->insert);
554 		mm->map_count++;
555 	}
556 
557 	if (vp->anon_vma) {
558 		anon_vma_interval_tree_post_update_vma(vp->vma);
559 		if (vp->adj_next)
560 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
561 		anon_vma_unlock_write(vp->anon_vma);
562 	}
563 
564 	if (vp->file) {
565 		i_mmap_unlock_write(vp->mapping);
566 		uprobe_mmap(vp->vma);
567 
568 		if (vp->adj_next)
569 			uprobe_mmap(vp->adj_next);
570 	}
571 
572 	if (vp->remove) {
573 again:
574 		vma_mark_detached(vp->remove, true);
575 		if (vp->file) {
576 			uprobe_munmap(vp->remove, vp->remove->vm_start,
577 				      vp->remove->vm_end);
578 			fput(vp->file);
579 		}
580 		if (vp->remove->anon_vma)
581 			anon_vma_merge(vp->vma, vp->remove);
582 		mm->map_count--;
583 		mpol_put(vma_policy(vp->remove));
584 		if (!vp->remove2)
585 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
586 		vm_area_free(vp->remove);
587 
588 		/*
589 		 * In mprotect's case 6 (see comments on vma_merge),
590 		 * we are removing both mid and next vmas
591 		 */
592 		if (vp->remove2) {
593 			vp->remove = vp->remove2;
594 			vp->remove2 = NULL;
595 			goto again;
596 		}
597 	}
598 	if (vp->insert && vp->file)
599 		uprobe_mmap(vp->insert);
600 }
601 
602 /*
603  * dup_anon_vma() - Helper function to duplicate anon_vma
604  * @dst: The destination VMA
605  * @src: The source VMA
606  *
607  * Returns: 0 on success.
608  */
609 static inline int dup_anon_vma(struct vm_area_struct *dst,
610 			       struct vm_area_struct *src)
611 {
612 	/*
613 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
614 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
615 	 * anon pages imported.
616 	 */
617 	if (src->anon_vma && !dst->anon_vma) {
618 		dst->anon_vma = src->anon_vma;
619 		return anon_vma_clone(dst, src);
620 	}
621 
622 	return 0;
623 }
624 
625 /*
626  * vma_expand - Expand an existing VMA
627  *
628  * @vmi: The vma iterator
629  * @vma: The vma to expand
630  * @start: The start of the vma
631  * @end: The exclusive end of the vma
632  * @pgoff: The page offset of vma
633  * @next: The current of next vma.
634  *
635  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
636  * expand over @next if it's different from @vma and @end == @next->vm_end.
637  * Checking if the @vma can expand and merge with @next needs to be handled by
638  * the caller.
639  *
640  * Returns: 0 on success
641  */
642 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
643 	       unsigned long start, unsigned long end, pgoff_t pgoff,
644 	       struct vm_area_struct *next)
645 {
646 	bool remove_next = false;
647 	struct vma_prepare vp;
648 
649 	if (next && (vma != next) && (end == next->vm_end)) {
650 		int ret;
651 
652 		remove_next = true;
653 		ret = dup_anon_vma(vma, next);
654 		if (ret)
655 			return ret;
656 	}
657 
658 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
659 	/* Not merging but overwriting any part of next is not handled. */
660 	VM_WARN_ON(next && !vp.remove &&
661 		  next != vma && end > next->vm_start);
662 	/* Only handles expanding */
663 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
664 
665 	if (vma_iter_prealloc(vmi))
666 		goto nomem;
667 
668 	vma_prepare(&vp);
669 	vma_adjust_trans_huge(vma, start, end, 0);
670 	/* VMA iterator points to previous, so set to start if necessary */
671 	if (vma_iter_addr(vmi) != start)
672 		vma_iter_set(vmi, start);
673 
674 	vma->vm_start = start;
675 	vma->vm_end = end;
676 	vma->vm_pgoff = pgoff;
677 	/* Note: mas must be pointing to the expanding VMA */
678 	vma_iter_store(vmi, vma);
679 
680 	vma_complete(&vp, vmi, vma->vm_mm);
681 	validate_mm(vma->vm_mm);
682 	return 0;
683 
684 nomem:
685 	return -ENOMEM;
686 }
687 
688 /*
689  * vma_shrink() - Reduce an existing VMAs memory area
690  * @vmi: The vma iterator
691  * @vma: The VMA to modify
692  * @start: The new start
693  * @end: The new end
694  *
695  * Returns: 0 on success, -ENOMEM otherwise
696  */
697 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
698 	       unsigned long start, unsigned long end, pgoff_t pgoff)
699 {
700 	struct vma_prepare vp;
701 
702 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
703 
704 	if (vma_iter_prealloc(vmi))
705 		return -ENOMEM;
706 
707 	init_vma_prep(&vp, vma);
708 	vma_prepare(&vp);
709 	vma_adjust_trans_huge(vma, start, end, 0);
710 
711 	if (vma->vm_start < start)
712 		vma_iter_clear(vmi, vma->vm_start, start);
713 
714 	if (vma->vm_end > end)
715 		vma_iter_clear(vmi, end, vma->vm_end);
716 
717 	vma->vm_start = start;
718 	vma->vm_end = end;
719 	vma->vm_pgoff = pgoff;
720 	vma_complete(&vp, vmi, vma->vm_mm);
721 	validate_mm(vma->vm_mm);
722 	return 0;
723 }
724 
725 /*
726  * If the vma has a ->close operation then the driver probably needs to release
727  * per-vma resources, so we don't attempt to merge those if the caller indicates
728  * the current vma may be removed as part of the merge.
729  */
730 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
731 		struct file *file, unsigned long vm_flags,
732 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
733 		struct anon_vma_name *anon_name, bool may_remove_vma)
734 {
735 	/*
736 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
737 	 * match the flags but dirty bit -- the caller should mark
738 	 * merged VMA as dirty. If dirty bit won't be excluded from
739 	 * comparison, we increase pressure on the memory system forcing
740 	 * the kernel to generate new VMAs when old one could be
741 	 * extended instead.
742 	 */
743 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
744 		return false;
745 	if (vma->vm_file != file)
746 		return false;
747 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
748 		return false;
749 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
750 		return false;
751 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
752 		return false;
753 	return true;
754 }
755 
756 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
757 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
758 {
759 	/*
760 	 * The list_is_singular() test is to avoid merging VMA cloned from
761 	 * parents. This can improve scalability caused by anon_vma lock.
762 	 */
763 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
764 		list_is_singular(&vma->anon_vma_chain)))
765 		return true;
766 	return anon_vma1 == anon_vma2;
767 }
768 
769 /*
770  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
771  * in front of (at a lower virtual address and file offset than) the vma.
772  *
773  * We cannot merge two vmas if they have differently assigned (non-NULL)
774  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
775  *
776  * We don't check here for the merged mmap wrapping around the end of pagecache
777  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
778  * wrap, nor mmaps which cover the final page at index -1UL.
779  *
780  * We assume the vma may be removed as part of the merge.
781  */
782 static bool
783 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
784 		struct anon_vma *anon_vma, struct file *file,
785 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
786 		struct anon_vma_name *anon_name)
787 {
788 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
789 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
790 		if (vma->vm_pgoff == vm_pgoff)
791 			return true;
792 	}
793 	return false;
794 }
795 
796 /*
797  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
798  * beyond (at a higher virtual address and file offset than) the vma.
799  *
800  * We cannot merge two vmas if they have differently assigned (non-NULL)
801  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
802  *
803  * We assume that vma is not removed as part of the merge.
804  */
805 static bool
806 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
807 		struct anon_vma *anon_vma, struct file *file,
808 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
809 		struct anon_vma_name *anon_name)
810 {
811 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
812 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
813 		pgoff_t vm_pglen;
814 		vm_pglen = vma_pages(vma);
815 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
816 			return true;
817 	}
818 	return false;
819 }
820 
821 /*
822  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
823  * figure out whether that can be merged with its predecessor or its
824  * successor.  Or both (it neatly fills a hole).
825  *
826  * In most cases - when called for mmap, brk or mremap - [addr,end) is
827  * certain not to be mapped by the time vma_merge is called; but when
828  * called for mprotect, it is certain to be already mapped (either at
829  * an offset within prev, or at the start of next), and the flags of
830  * this area are about to be changed to vm_flags - and the no-change
831  * case has already been eliminated.
832  *
833  * The following mprotect cases have to be considered, where **** is
834  * the area passed down from mprotect_fixup, never extending beyond one
835  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
836  * at the same address as **** and is of the same or larger span, and
837  * NNNN the next vma after ****:
838  *
839  *     ****             ****                   ****
840  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
841  *    cannot merge    might become       might become
842  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
843  *    mmap, brk or    case 4 below       case 5 below
844  *    mremap move:
845  *                        ****               ****
846  *                    PPPP    NNNN       PPPPCCCCNNNN
847  *                    might become       might become
848  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
849  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
850  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
851  *
852  * It is important for case 8 that the vma CCCC overlapping the
853  * region **** is never going to extended over NNNN. Instead NNNN must
854  * be extended in region **** and CCCC must be removed. This way in
855  * all cases where vma_merge succeeds, the moment vma_merge drops the
856  * rmap_locks, the properties of the merged vma will be already
857  * correct for the whole merged range. Some of those properties like
858  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
859  * be correct for the whole merged range immediately after the
860  * rmap_locks are released. Otherwise if NNNN would be removed and
861  * CCCC would be extended over the NNNN range, remove_migration_ptes
862  * or other rmap walkers (if working on addresses beyond the "end"
863  * parameter) may establish ptes with the wrong permissions of CCCC
864  * instead of the right permissions of NNNN.
865  *
866  * In the code below:
867  * PPPP is represented by *prev
868  * CCCC is represented by *curr or not represented at all (NULL)
869  * NNNN is represented by *next or not represented at all (NULL)
870  * **** is not represented - it will be merged and the vma containing the
871  *      area is returned, or the function will return NULL
872  */
873 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
874 			struct vm_area_struct *prev, unsigned long addr,
875 			unsigned long end, unsigned long vm_flags,
876 			struct anon_vma *anon_vma, struct file *file,
877 			pgoff_t pgoff, struct mempolicy *policy,
878 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
879 			struct anon_vma_name *anon_name)
880 {
881 	struct vm_area_struct *curr, *next, *res;
882 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
883 	struct vma_prepare vp;
884 	pgoff_t vma_pgoff;
885 	int err = 0;
886 	bool merge_prev = false;
887 	bool merge_next = false;
888 	bool vma_expanded = false;
889 	unsigned long vma_start = addr;
890 	unsigned long vma_end = end;
891 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
892 	long adj_start = 0;
893 
894 	validate_mm(mm);
895 	/*
896 	 * We later require that vma->vm_flags == vm_flags,
897 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
898 	 */
899 	if (vm_flags & VM_SPECIAL)
900 		return NULL;
901 
902 	/* Does the input range span an existing VMA? (cases 5 - 8) */
903 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
904 
905 	if (!curr ||			/* cases 1 - 4 */
906 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
907 		next = vma_lookup(mm, end);
908 	else
909 		next = NULL;		/* case 5 */
910 
911 	if (prev) {
912 		vma_start = prev->vm_start;
913 		vma_pgoff = prev->vm_pgoff;
914 
915 		/* Can we merge the predecessor? */
916 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
917 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
918 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
919 			merge_prev = true;
920 			vma_prev(vmi);
921 		}
922 	}
923 
924 	/* Can we merge the successor? */
925 	if (next && mpol_equal(policy, vma_policy(next)) &&
926 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
927 				 vm_userfaultfd_ctx, anon_name)) {
928 		merge_next = true;
929 	}
930 
931 	/* Verify some invariant that must be enforced by the caller. */
932 	VM_WARN_ON(prev && addr <= prev->vm_start);
933 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
934 	VM_WARN_ON(addr >= end);
935 
936 	if (!merge_prev && !merge_next)
937 		return NULL; /* Not mergeable. */
938 
939 	res = vma = prev;
940 	remove = remove2 = adjust = NULL;
941 
942 	/* Can we merge both the predecessor and the successor? */
943 	if (merge_prev && merge_next &&
944 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
945 		remove = next;				/* case 1 */
946 		vma_end = next->vm_end;
947 		err = dup_anon_vma(prev, next);
948 		if (curr) {				/* case 6 */
949 			remove = curr;
950 			remove2 = next;
951 			if (!next->anon_vma)
952 				err = dup_anon_vma(prev, curr);
953 		}
954 	} else if (merge_prev) {			/* case 2 */
955 		if (curr) {
956 			err = dup_anon_vma(prev, curr);
957 			if (end == curr->vm_end) {	/* case 7 */
958 				remove = curr;
959 			} else {			/* case 5 */
960 				adjust = curr;
961 				adj_start = (end - curr->vm_start);
962 			}
963 		}
964 	} else { /* merge_next */
965 		res = next;
966 		if (prev && addr < prev->vm_end) {	/* case 4 */
967 			vma_end = addr;
968 			adjust = next;
969 			adj_start = -(prev->vm_end - addr);
970 			err = dup_anon_vma(next, prev);
971 		} else {
972 			/*
973 			 * Note that cases 3 and 8 are the ONLY ones where prev
974 			 * is permitted to be (but is not necessarily) NULL.
975 			 */
976 			vma = next;			/* case 3 */
977 			vma_start = addr;
978 			vma_end = next->vm_end;
979 			vma_pgoff = next->vm_pgoff - pglen;
980 			if (curr) {			/* case 8 */
981 				vma_pgoff = curr->vm_pgoff;
982 				remove = curr;
983 				err = dup_anon_vma(next, curr);
984 			}
985 		}
986 	}
987 
988 	/* Error in anon_vma clone. */
989 	if (err)
990 		return NULL;
991 
992 	if (vma_iter_prealloc(vmi))
993 		return NULL;
994 
995 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
996 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
997 		   vp.anon_vma != adjust->anon_vma);
998 
999 	vma_prepare(&vp);
1000 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1001 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1002 		vma_expanded = true;
1003 
1004 	vma->vm_start = vma_start;
1005 	vma->vm_end = vma_end;
1006 	vma->vm_pgoff = vma_pgoff;
1007 
1008 	if (vma_expanded)
1009 		vma_iter_store(vmi, vma);
1010 
1011 	if (adj_start) {
1012 		adjust->vm_start += adj_start;
1013 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1014 		if (adj_start < 0) {
1015 			WARN_ON(vma_expanded);
1016 			vma_iter_store(vmi, next);
1017 		}
1018 	}
1019 
1020 	vma_complete(&vp, vmi, mm);
1021 	vma_iter_free(vmi);
1022 	validate_mm(mm);
1023 	khugepaged_enter_vma(res, vm_flags);
1024 
1025 	return res;
1026 }
1027 
1028 /*
1029  * Rough compatibility check to quickly see if it's even worth looking
1030  * at sharing an anon_vma.
1031  *
1032  * They need to have the same vm_file, and the flags can only differ
1033  * in things that mprotect may change.
1034  *
1035  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1036  * we can merge the two vma's. For example, we refuse to merge a vma if
1037  * there is a vm_ops->close() function, because that indicates that the
1038  * driver is doing some kind of reference counting. But that doesn't
1039  * really matter for the anon_vma sharing case.
1040  */
1041 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1042 {
1043 	return a->vm_end == b->vm_start &&
1044 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1045 		a->vm_file == b->vm_file &&
1046 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1047 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1048 }
1049 
1050 /*
1051  * Do some basic sanity checking to see if we can re-use the anon_vma
1052  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1053  * the same as 'old', the other will be the new one that is trying
1054  * to share the anon_vma.
1055  *
1056  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1057  * the anon_vma of 'old' is concurrently in the process of being set up
1058  * by another page fault trying to merge _that_. But that's ok: if it
1059  * is being set up, that automatically means that it will be a singleton
1060  * acceptable for merging, so we can do all of this optimistically. But
1061  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1062  *
1063  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1064  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1065  * is to return an anon_vma that is "complex" due to having gone through
1066  * a fork).
1067  *
1068  * We also make sure that the two vma's are compatible (adjacent,
1069  * and with the same memory policies). That's all stable, even with just
1070  * a read lock on the mmap_lock.
1071  */
1072 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1073 {
1074 	if (anon_vma_compatible(a, b)) {
1075 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1076 
1077 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1078 			return anon_vma;
1079 	}
1080 	return NULL;
1081 }
1082 
1083 /*
1084  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1085  * neighbouring vmas for a suitable anon_vma, before it goes off
1086  * to allocate a new anon_vma.  It checks because a repetitive
1087  * sequence of mprotects and faults may otherwise lead to distinct
1088  * anon_vmas being allocated, preventing vma merge in subsequent
1089  * mprotect.
1090  */
1091 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1092 {
1093 	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1094 	struct anon_vma *anon_vma = NULL;
1095 	struct vm_area_struct *prev, *next;
1096 
1097 	/* Try next first. */
1098 	next = mas_walk(&mas);
1099 	if (next) {
1100 		anon_vma = reusable_anon_vma(next, vma, next);
1101 		if (anon_vma)
1102 			return anon_vma;
1103 	}
1104 
1105 	prev = mas_prev(&mas, 0);
1106 	VM_BUG_ON_VMA(prev != vma, vma);
1107 	prev = mas_prev(&mas, 0);
1108 	/* Try prev next. */
1109 	if (prev)
1110 		anon_vma = reusable_anon_vma(prev, prev, vma);
1111 
1112 	/*
1113 	 * We might reach here with anon_vma == NULL if we can't find
1114 	 * any reusable anon_vma.
1115 	 * There's no absolute need to look only at touching neighbours:
1116 	 * we could search further afield for "compatible" anon_vmas.
1117 	 * But it would probably just be a waste of time searching,
1118 	 * or lead to too many vmas hanging off the same anon_vma.
1119 	 * We're trying to allow mprotect remerging later on,
1120 	 * not trying to minimize memory used for anon_vmas.
1121 	 */
1122 	return anon_vma;
1123 }
1124 
1125 /*
1126  * If a hint addr is less than mmap_min_addr change hint to be as
1127  * low as possible but still greater than mmap_min_addr
1128  */
1129 static inline unsigned long round_hint_to_min(unsigned long hint)
1130 {
1131 	hint &= PAGE_MASK;
1132 	if (((void *)hint != NULL) &&
1133 	    (hint < mmap_min_addr))
1134 		return PAGE_ALIGN(mmap_min_addr);
1135 	return hint;
1136 }
1137 
1138 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1139 			unsigned long bytes)
1140 {
1141 	unsigned long locked_pages, limit_pages;
1142 
1143 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1144 		return true;
1145 
1146 	locked_pages = bytes >> PAGE_SHIFT;
1147 	locked_pages += mm->locked_vm;
1148 
1149 	limit_pages = rlimit(RLIMIT_MEMLOCK);
1150 	limit_pages >>= PAGE_SHIFT;
1151 
1152 	return locked_pages <= limit_pages;
1153 }
1154 
1155 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1156 {
1157 	if (S_ISREG(inode->i_mode))
1158 		return MAX_LFS_FILESIZE;
1159 
1160 	if (S_ISBLK(inode->i_mode))
1161 		return MAX_LFS_FILESIZE;
1162 
1163 	if (S_ISSOCK(inode->i_mode))
1164 		return MAX_LFS_FILESIZE;
1165 
1166 	/* Special "we do even unsigned file positions" case */
1167 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1168 		return 0;
1169 
1170 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1171 	return ULONG_MAX;
1172 }
1173 
1174 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1175 				unsigned long pgoff, unsigned long len)
1176 {
1177 	u64 maxsize = file_mmap_size_max(file, inode);
1178 
1179 	if (maxsize && len > maxsize)
1180 		return false;
1181 	maxsize -= len;
1182 	if (pgoff > maxsize >> PAGE_SHIFT)
1183 		return false;
1184 	return true;
1185 }
1186 
1187 /*
1188  * The caller must write-lock current->mm->mmap_lock.
1189  */
1190 unsigned long do_mmap(struct file *file, unsigned long addr,
1191 			unsigned long len, unsigned long prot,
1192 			unsigned long flags, unsigned long pgoff,
1193 			unsigned long *populate, struct list_head *uf)
1194 {
1195 	struct mm_struct *mm = current->mm;
1196 	vm_flags_t vm_flags;
1197 	int pkey = 0;
1198 
1199 	validate_mm(mm);
1200 	*populate = 0;
1201 
1202 	if (!len)
1203 		return -EINVAL;
1204 
1205 	/*
1206 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1207 	 *
1208 	 * (the exception is when the underlying filesystem is noexec
1209 	 *  mounted, in which case we dont add PROT_EXEC.)
1210 	 */
1211 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1212 		if (!(file && path_noexec(&file->f_path)))
1213 			prot |= PROT_EXEC;
1214 
1215 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1216 	if (flags & MAP_FIXED_NOREPLACE)
1217 		flags |= MAP_FIXED;
1218 
1219 	if (!(flags & MAP_FIXED))
1220 		addr = round_hint_to_min(addr);
1221 
1222 	/* Careful about overflows.. */
1223 	len = PAGE_ALIGN(len);
1224 	if (!len)
1225 		return -ENOMEM;
1226 
1227 	/* offset overflow? */
1228 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1229 		return -EOVERFLOW;
1230 
1231 	/* Too many mappings? */
1232 	if (mm->map_count > sysctl_max_map_count)
1233 		return -ENOMEM;
1234 
1235 	/* Obtain the address to map to. we verify (or select) it and ensure
1236 	 * that it represents a valid section of the address space.
1237 	 */
1238 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1239 	if (IS_ERR_VALUE(addr))
1240 		return addr;
1241 
1242 	if (flags & MAP_FIXED_NOREPLACE) {
1243 		if (find_vma_intersection(mm, addr, addr + len))
1244 			return -EEXIST;
1245 	}
1246 
1247 	if (prot == PROT_EXEC) {
1248 		pkey = execute_only_pkey(mm);
1249 		if (pkey < 0)
1250 			pkey = 0;
1251 	}
1252 
1253 	/* Do simple checking here so the lower-level routines won't have
1254 	 * to. we assume access permissions have been handled by the open
1255 	 * of the memory object, so we don't do any here.
1256 	 */
1257 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1258 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1259 
1260 	if (flags & MAP_LOCKED)
1261 		if (!can_do_mlock())
1262 			return -EPERM;
1263 
1264 	if (!mlock_future_ok(mm, vm_flags, len))
1265 		return -EAGAIN;
1266 
1267 	if (file) {
1268 		struct inode *inode = file_inode(file);
1269 		unsigned long flags_mask;
1270 
1271 		if (!file_mmap_ok(file, inode, pgoff, len))
1272 			return -EOVERFLOW;
1273 
1274 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1275 
1276 		switch (flags & MAP_TYPE) {
1277 		case MAP_SHARED:
1278 			/*
1279 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1280 			 * flags. E.g. MAP_SYNC is dangerous to use with
1281 			 * MAP_SHARED as you don't know which consistency model
1282 			 * you will get. We silently ignore unsupported flags
1283 			 * with MAP_SHARED to preserve backward compatibility.
1284 			 */
1285 			flags &= LEGACY_MAP_MASK;
1286 			fallthrough;
1287 		case MAP_SHARED_VALIDATE:
1288 			if (flags & ~flags_mask)
1289 				return -EOPNOTSUPP;
1290 			if (prot & PROT_WRITE) {
1291 				if (!(file->f_mode & FMODE_WRITE))
1292 					return -EACCES;
1293 				if (IS_SWAPFILE(file->f_mapping->host))
1294 					return -ETXTBSY;
1295 			}
1296 
1297 			/*
1298 			 * Make sure we don't allow writing to an append-only
1299 			 * file..
1300 			 */
1301 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1302 				return -EACCES;
1303 
1304 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1305 			if (!(file->f_mode & FMODE_WRITE))
1306 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1307 			fallthrough;
1308 		case MAP_PRIVATE:
1309 			if (!(file->f_mode & FMODE_READ))
1310 				return -EACCES;
1311 			if (path_noexec(&file->f_path)) {
1312 				if (vm_flags & VM_EXEC)
1313 					return -EPERM;
1314 				vm_flags &= ~VM_MAYEXEC;
1315 			}
1316 
1317 			if (!file->f_op->mmap)
1318 				return -ENODEV;
1319 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1320 				return -EINVAL;
1321 			break;
1322 
1323 		default:
1324 			return -EINVAL;
1325 		}
1326 	} else {
1327 		switch (flags & MAP_TYPE) {
1328 		case MAP_SHARED:
1329 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1330 				return -EINVAL;
1331 			/*
1332 			 * Ignore pgoff.
1333 			 */
1334 			pgoff = 0;
1335 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1336 			break;
1337 		case MAP_PRIVATE:
1338 			/*
1339 			 * Set pgoff according to addr for anon_vma.
1340 			 */
1341 			pgoff = addr >> PAGE_SHIFT;
1342 			break;
1343 		default:
1344 			return -EINVAL;
1345 		}
1346 	}
1347 
1348 	/*
1349 	 * Set 'VM_NORESERVE' if we should not account for the
1350 	 * memory use of this mapping.
1351 	 */
1352 	if (flags & MAP_NORESERVE) {
1353 		/* We honor MAP_NORESERVE if allowed to overcommit */
1354 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1355 			vm_flags |= VM_NORESERVE;
1356 
1357 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1358 		if (file && is_file_hugepages(file))
1359 			vm_flags |= VM_NORESERVE;
1360 	}
1361 
1362 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1363 	if (!IS_ERR_VALUE(addr) &&
1364 	    ((vm_flags & VM_LOCKED) ||
1365 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1366 		*populate = len;
1367 	return addr;
1368 }
1369 
1370 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1371 			      unsigned long prot, unsigned long flags,
1372 			      unsigned long fd, unsigned long pgoff)
1373 {
1374 	struct file *file = NULL;
1375 	unsigned long retval;
1376 
1377 	if (!(flags & MAP_ANONYMOUS)) {
1378 		audit_mmap_fd(fd, flags);
1379 		file = fget(fd);
1380 		if (!file)
1381 			return -EBADF;
1382 		if (is_file_hugepages(file)) {
1383 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1384 		} else if (unlikely(flags & MAP_HUGETLB)) {
1385 			retval = -EINVAL;
1386 			goto out_fput;
1387 		}
1388 	} else if (flags & MAP_HUGETLB) {
1389 		struct hstate *hs;
1390 
1391 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1392 		if (!hs)
1393 			return -EINVAL;
1394 
1395 		len = ALIGN(len, huge_page_size(hs));
1396 		/*
1397 		 * VM_NORESERVE is used because the reservations will be
1398 		 * taken when vm_ops->mmap() is called
1399 		 */
1400 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1401 				VM_NORESERVE,
1402 				HUGETLB_ANONHUGE_INODE,
1403 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1404 		if (IS_ERR(file))
1405 			return PTR_ERR(file);
1406 	}
1407 
1408 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1409 out_fput:
1410 	if (file)
1411 		fput(file);
1412 	return retval;
1413 }
1414 
1415 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1416 		unsigned long, prot, unsigned long, flags,
1417 		unsigned long, fd, unsigned long, pgoff)
1418 {
1419 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1420 }
1421 
1422 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1423 struct mmap_arg_struct {
1424 	unsigned long addr;
1425 	unsigned long len;
1426 	unsigned long prot;
1427 	unsigned long flags;
1428 	unsigned long fd;
1429 	unsigned long offset;
1430 };
1431 
1432 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1433 {
1434 	struct mmap_arg_struct a;
1435 
1436 	if (copy_from_user(&a, arg, sizeof(a)))
1437 		return -EFAULT;
1438 	if (offset_in_page(a.offset))
1439 		return -EINVAL;
1440 
1441 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1442 			       a.offset >> PAGE_SHIFT);
1443 }
1444 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1445 
1446 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1447 {
1448 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1449 }
1450 
1451 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1452 {
1453 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1454 		(VM_WRITE | VM_SHARED);
1455 }
1456 
1457 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1458 {
1459 	/* No managed pages to writeback. */
1460 	if (vma->vm_flags & VM_PFNMAP)
1461 		return false;
1462 
1463 	return vma->vm_file && vma->vm_file->f_mapping &&
1464 		mapping_can_writeback(vma->vm_file->f_mapping);
1465 }
1466 
1467 /*
1468  * Does this VMA require the underlying folios to have their dirty state
1469  * tracked?
1470  */
1471 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1472 {
1473 	/* Only shared, writable VMAs require dirty tracking. */
1474 	if (!vma_is_shared_writable(vma))
1475 		return false;
1476 
1477 	/* Does the filesystem need to be notified? */
1478 	if (vm_ops_needs_writenotify(vma->vm_ops))
1479 		return true;
1480 
1481 	/*
1482 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1483 	 * can writeback, dirty tracking is still required.
1484 	 */
1485 	return vma_fs_can_writeback(vma);
1486 }
1487 
1488 /*
1489  * Some shared mappings will want the pages marked read-only
1490  * to track write events. If so, we'll downgrade vm_page_prot
1491  * to the private version (using protection_map[] without the
1492  * VM_SHARED bit).
1493  */
1494 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1495 {
1496 	/* If it was private or non-writable, the write bit is already clear */
1497 	if (!vma_is_shared_writable(vma))
1498 		return 0;
1499 
1500 	/* The backer wishes to know when pages are first written to? */
1501 	if (vm_ops_needs_writenotify(vma->vm_ops))
1502 		return 1;
1503 
1504 	/* The open routine did something to the protections that pgprot_modify
1505 	 * won't preserve? */
1506 	if (pgprot_val(vm_page_prot) !=
1507 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1508 		return 0;
1509 
1510 	/*
1511 	 * Do we need to track softdirty? hugetlb does not support softdirty
1512 	 * tracking yet.
1513 	 */
1514 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1515 		return 1;
1516 
1517 	/* Do we need write faults for uffd-wp tracking? */
1518 	if (userfaultfd_wp(vma))
1519 		return 1;
1520 
1521 	/* Can the mapping track the dirty pages? */
1522 	return vma_fs_can_writeback(vma);
1523 }
1524 
1525 /*
1526  * We account for memory if it's a private writeable mapping,
1527  * not hugepages and VM_NORESERVE wasn't set.
1528  */
1529 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1530 {
1531 	/*
1532 	 * hugetlb has its own accounting separate from the core VM
1533 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1534 	 */
1535 	if (file && is_file_hugepages(file))
1536 		return 0;
1537 
1538 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1539 }
1540 
1541 /**
1542  * unmapped_area() - Find an area between the low_limit and the high_limit with
1543  * the correct alignment and offset, all from @info. Note: current->mm is used
1544  * for the search.
1545  *
1546  * @info: The unmapped area information including the range [low_limit -
1547  * high_limit), the alignment offset and mask.
1548  *
1549  * Return: A memory address or -ENOMEM.
1550  */
1551 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1552 {
1553 	unsigned long length, gap;
1554 	unsigned long low_limit, high_limit;
1555 	struct vm_area_struct *tmp;
1556 
1557 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1558 
1559 	/* Adjust search length to account for worst case alignment overhead */
1560 	length = info->length + info->align_mask;
1561 	if (length < info->length)
1562 		return -ENOMEM;
1563 
1564 	low_limit = info->low_limit;
1565 	if (low_limit < mmap_min_addr)
1566 		low_limit = mmap_min_addr;
1567 	high_limit = info->high_limit;
1568 retry:
1569 	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1570 		return -ENOMEM;
1571 
1572 	gap = mas.index;
1573 	gap += (info->align_offset - gap) & info->align_mask;
1574 	tmp = mas_next(&mas, ULONG_MAX);
1575 	if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1576 		if (vm_start_gap(tmp) < gap + length - 1) {
1577 			low_limit = tmp->vm_end;
1578 			mas_reset(&mas);
1579 			goto retry;
1580 		}
1581 	} else {
1582 		tmp = mas_prev(&mas, 0);
1583 		if (tmp && vm_end_gap(tmp) > gap) {
1584 			low_limit = vm_end_gap(tmp);
1585 			mas_reset(&mas);
1586 			goto retry;
1587 		}
1588 	}
1589 
1590 	return gap;
1591 }
1592 
1593 /**
1594  * unmapped_area_topdown() - Find an area between the low_limit and the
1595  * high_limit with the correct alignment and offset at the highest available
1596  * address, all from @info. Note: current->mm is used for the search.
1597  *
1598  * @info: The unmapped area information including the range [low_limit -
1599  * high_limit), the alignment offset and mask.
1600  *
1601  * Return: A memory address or -ENOMEM.
1602  */
1603 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1604 {
1605 	unsigned long length, gap, gap_end;
1606 	unsigned long low_limit, high_limit;
1607 	struct vm_area_struct *tmp;
1608 
1609 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1610 	/* Adjust search length to account for worst case alignment overhead */
1611 	length = info->length + info->align_mask;
1612 	if (length < info->length)
1613 		return -ENOMEM;
1614 
1615 	low_limit = info->low_limit;
1616 	if (low_limit < mmap_min_addr)
1617 		low_limit = mmap_min_addr;
1618 	high_limit = info->high_limit;
1619 retry:
1620 	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1621 		return -ENOMEM;
1622 
1623 	gap = mas.last + 1 - info->length;
1624 	gap -= (gap - info->align_offset) & info->align_mask;
1625 	gap_end = mas.last;
1626 	tmp = mas_next(&mas, ULONG_MAX);
1627 	if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1628 		if (vm_start_gap(tmp) <= gap_end) {
1629 			high_limit = vm_start_gap(tmp);
1630 			mas_reset(&mas);
1631 			goto retry;
1632 		}
1633 	} else {
1634 		tmp = mas_prev(&mas, 0);
1635 		if (tmp && vm_end_gap(tmp) > gap) {
1636 			high_limit = tmp->vm_start;
1637 			mas_reset(&mas);
1638 			goto retry;
1639 		}
1640 	}
1641 
1642 	return gap;
1643 }
1644 
1645 /*
1646  * Search for an unmapped address range.
1647  *
1648  * We are looking for a range that:
1649  * - does not intersect with any VMA;
1650  * - is contained within the [low_limit, high_limit) interval;
1651  * - is at least the desired size.
1652  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1653  */
1654 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1655 {
1656 	unsigned long addr;
1657 
1658 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1659 		addr = unmapped_area_topdown(info);
1660 	else
1661 		addr = unmapped_area(info);
1662 
1663 	trace_vm_unmapped_area(addr, info);
1664 	return addr;
1665 }
1666 
1667 /* Get an address range which is currently unmapped.
1668  * For shmat() with addr=0.
1669  *
1670  * Ugly calling convention alert:
1671  * Return value with the low bits set means error value,
1672  * ie
1673  *	if (ret & ~PAGE_MASK)
1674  *		error = ret;
1675  *
1676  * This function "knows" that -ENOMEM has the bits set.
1677  */
1678 unsigned long
1679 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1680 			  unsigned long len, unsigned long pgoff,
1681 			  unsigned long flags)
1682 {
1683 	struct mm_struct *mm = current->mm;
1684 	struct vm_area_struct *vma, *prev;
1685 	struct vm_unmapped_area_info info;
1686 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1687 
1688 	if (len > mmap_end - mmap_min_addr)
1689 		return -ENOMEM;
1690 
1691 	if (flags & MAP_FIXED)
1692 		return addr;
1693 
1694 	if (addr) {
1695 		addr = PAGE_ALIGN(addr);
1696 		vma = find_vma_prev(mm, addr, &prev);
1697 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1698 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1699 		    (!prev || addr >= vm_end_gap(prev)))
1700 			return addr;
1701 	}
1702 
1703 	info.flags = 0;
1704 	info.length = len;
1705 	info.low_limit = mm->mmap_base;
1706 	info.high_limit = mmap_end;
1707 	info.align_mask = 0;
1708 	info.align_offset = 0;
1709 	return vm_unmapped_area(&info);
1710 }
1711 
1712 #ifndef HAVE_ARCH_UNMAPPED_AREA
1713 unsigned long
1714 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1715 		       unsigned long len, unsigned long pgoff,
1716 		       unsigned long flags)
1717 {
1718 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1719 }
1720 #endif
1721 
1722 /*
1723  * This mmap-allocator allocates new areas top-down from below the
1724  * stack's low limit (the base):
1725  */
1726 unsigned long
1727 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1728 				  unsigned long len, unsigned long pgoff,
1729 				  unsigned long flags)
1730 {
1731 	struct vm_area_struct *vma, *prev;
1732 	struct mm_struct *mm = current->mm;
1733 	struct vm_unmapped_area_info info;
1734 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1735 
1736 	/* requested length too big for entire address space */
1737 	if (len > mmap_end - mmap_min_addr)
1738 		return -ENOMEM;
1739 
1740 	if (flags & MAP_FIXED)
1741 		return addr;
1742 
1743 	/* requesting a specific address */
1744 	if (addr) {
1745 		addr = PAGE_ALIGN(addr);
1746 		vma = find_vma_prev(mm, addr, &prev);
1747 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1748 				(!vma || addr + len <= vm_start_gap(vma)) &&
1749 				(!prev || addr >= vm_end_gap(prev)))
1750 			return addr;
1751 	}
1752 
1753 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1754 	info.length = len;
1755 	info.low_limit = PAGE_SIZE;
1756 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1757 	info.align_mask = 0;
1758 	info.align_offset = 0;
1759 	addr = vm_unmapped_area(&info);
1760 
1761 	/*
1762 	 * A failed mmap() very likely causes application failure,
1763 	 * so fall back to the bottom-up function here. This scenario
1764 	 * can happen with large stack limits and large mmap()
1765 	 * allocations.
1766 	 */
1767 	if (offset_in_page(addr)) {
1768 		VM_BUG_ON(addr != -ENOMEM);
1769 		info.flags = 0;
1770 		info.low_limit = TASK_UNMAPPED_BASE;
1771 		info.high_limit = mmap_end;
1772 		addr = vm_unmapped_area(&info);
1773 	}
1774 
1775 	return addr;
1776 }
1777 
1778 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1779 unsigned long
1780 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1781 			       unsigned long len, unsigned long pgoff,
1782 			       unsigned long flags)
1783 {
1784 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1785 }
1786 #endif
1787 
1788 unsigned long
1789 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1790 		unsigned long pgoff, unsigned long flags)
1791 {
1792 	unsigned long (*get_area)(struct file *, unsigned long,
1793 				  unsigned long, unsigned long, unsigned long);
1794 
1795 	unsigned long error = arch_mmap_check(addr, len, flags);
1796 	if (error)
1797 		return error;
1798 
1799 	/* Careful about overflows.. */
1800 	if (len > TASK_SIZE)
1801 		return -ENOMEM;
1802 
1803 	get_area = current->mm->get_unmapped_area;
1804 	if (file) {
1805 		if (file->f_op->get_unmapped_area)
1806 			get_area = file->f_op->get_unmapped_area;
1807 	} else if (flags & MAP_SHARED) {
1808 		/*
1809 		 * mmap_region() will call shmem_zero_setup() to create a file,
1810 		 * so use shmem's get_unmapped_area in case it can be huge.
1811 		 * do_mmap() will clear pgoff, so match alignment.
1812 		 */
1813 		pgoff = 0;
1814 		get_area = shmem_get_unmapped_area;
1815 	}
1816 
1817 	addr = get_area(file, addr, len, pgoff, flags);
1818 	if (IS_ERR_VALUE(addr))
1819 		return addr;
1820 
1821 	if (addr > TASK_SIZE - len)
1822 		return -ENOMEM;
1823 	if (offset_in_page(addr))
1824 		return -EINVAL;
1825 
1826 	error = security_mmap_addr(addr);
1827 	return error ? error : addr;
1828 }
1829 
1830 EXPORT_SYMBOL(get_unmapped_area);
1831 
1832 /**
1833  * find_vma_intersection() - Look up the first VMA which intersects the interval
1834  * @mm: The process address space.
1835  * @start_addr: The inclusive start user address.
1836  * @end_addr: The exclusive end user address.
1837  *
1838  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1839  * start_addr < end_addr.
1840  */
1841 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1842 					     unsigned long start_addr,
1843 					     unsigned long end_addr)
1844 {
1845 	unsigned long index = start_addr;
1846 
1847 	mmap_assert_locked(mm);
1848 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1849 }
1850 EXPORT_SYMBOL(find_vma_intersection);
1851 
1852 /**
1853  * find_vma() - Find the VMA for a given address, or the next VMA.
1854  * @mm: The mm_struct to check
1855  * @addr: The address
1856  *
1857  * Returns: The VMA associated with addr, or the next VMA.
1858  * May return %NULL in the case of no VMA at addr or above.
1859  */
1860 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1861 {
1862 	unsigned long index = addr;
1863 
1864 	mmap_assert_locked(mm);
1865 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1866 }
1867 EXPORT_SYMBOL(find_vma);
1868 
1869 /**
1870  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1871  * set %pprev to the previous VMA, if any.
1872  * @mm: The mm_struct to check
1873  * @addr: The address
1874  * @pprev: The pointer to set to the previous VMA
1875  *
1876  * Note that RCU lock is missing here since the external mmap_lock() is used
1877  * instead.
1878  *
1879  * Returns: The VMA associated with @addr, or the next vma.
1880  * May return %NULL in the case of no vma at addr or above.
1881  */
1882 struct vm_area_struct *
1883 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1884 			struct vm_area_struct **pprev)
1885 {
1886 	struct vm_area_struct *vma;
1887 	MA_STATE(mas, &mm->mm_mt, addr, addr);
1888 
1889 	vma = mas_walk(&mas);
1890 	*pprev = mas_prev(&mas, 0);
1891 	if (!vma)
1892 		vma = mas_next(&mas, ULONG_MAX);
1893 	return vma;
1894 }
1895 
1896 /*
1897  * Verify that the stack growth is acceptable and
1898  * update accounting. This is shared with both the
1899  * grow-up and grow-down cases.
1900  */
1901 static int acct_stack_growth(struct vm_area_struct *vma,
1902 			     unsigned long size, unsigned long grow)
1903 {
1904 	struct mm_struct *mm = vma->vm_mm;
1905 	unsigned long new_start;
1906 
1907 	/* address space limit tests */
1908 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1909 		return -ENOMEM;
1910 
1911 	/* Stack limit test */
1912 	if (size > rlimit(RLIMIT_STACK))
1913 		return -ENOMEM;
1914 
1915 	/* mlock limit tests */
1916 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1917 		return -ENOMEM;
1918 
1919 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1920 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1921 			vma->vm_end - size;
1922 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1923 		return -EFAULT;
1924 
1925 	/*
1926 	 * Overcommit..  This must be the final test, as it will
1927 	 * update security statistics.
1928 	 */
1929 	if (security_vm_enough_memory_mm(mm, grow))
1930 		return -ENOMEM;
1931 
1932 	return 0;
1933 }
1934 
1935 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1936 /*
1937  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1938  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1939  */
1940 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1941 {
1942 	struct mm_struct *mm = vma->vm_mm;
1943 	struct vm_area_struct *next;
1944 	unsigned long gap_addr;
1945 	int error = 0;
1946 	MA_STATE(mas, &mm->mm_mt, 0, 0);
1947 
1948 	if (!(vma->vm_flags & VM_GROWSUP))
1949 		return -EFAULT;
1950 
1951 	/* Guard against exceeding limits of the address space. */
1952 	address &= PAGE_MASK;
1953 	if (address >= (TASK_SIZE & PAGE_MASK))
1954 		return -ENOMEM;
1955 	address += PAGE_SIZE;
1956 
1957 	/* Enforce stack_guard_gap */
1958 	gap_addr = address + stack_guard_gap;
1959 
1960 	/* Guard against overflow */
1961 	if (gap_addr < address || gap_addr > TASK_SIZE)
1962 		gap_addr = TASK_SIZE;
1963 
1964 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1965 	if (next && vma_is_accessible(next)) {
1966 		if (!(next->vm_flags & VM_GROWSUP))
1967 			return -ENOMEM;
1968 		/* Check that both stack segments have the same anon_vma? */
1969 	}
1970 
1971 	if (mas_preallocate(&mas, GFP_KERNEL))
1972 		return -ENOMEM;
1973 
1974 	/* We must make sure the anon_vma is allocated. */
1975 	if (unlikely(anon_vma_prepare(vma))) {
1976 		mas_destroy(&mas);
1977 		return -ENOMEM;
1978 	}
1979 
1980 	/*
1981 	 * vma->vm_start/vm_end cannot change under us because the caller
1982 	 * is required to hold the mmap_lock in read mode.  We need the
1983 	 * anon_vma lock to serialize against concurrent expand_stacks.
1984 	 */
1985 	anon_vma_lock_write(vma->anon_vma);
1986 
1987 	/* Somebody else might have raced and expanded it already */
1988 	if (address > vma->vm_end) {
1989 		unsigned long size, grow;
1990 
1991 		size = address - vma->vm_start;
1992 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1993 
1994 		error = -ENOMEM;
1995 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1996 			error = acct_stack_growth(vma, size, grow);
1997 			if (!error) {
1998 				/*
1999 				 * We only hold a shared mmap_lock lock here, so
2000 				 * we need to protect against concurrent vma
2001 				 * expansions.  anon_vma_lock_write() doesn't
2002 				 * help here, as we don't guarantee that all
2003 				 * growable vmas in a mm share the same root
2004 				 * anon vma.  So, we reuse mm->page_table_lock
2005 				 * to guard against concurrent vma expansions.
2006 				 */
2007 				spin_lock(&mm->page_table_lock);
2008 				if (vma->vm_flags & VM_LOCKED)
2009 					mm->locked_vm += grow;
2010 				vm_stat_account(mm, vma->vm_flags, grow);
2011 				anon_vma_interval_tree_pre_update_vma(vma);
2012 				vma->vm_end = address;
2013 				/* Overwrite old entry in mtree. */
2014 				mas_set_range(&mas, vma->vm_start, address - 1);
2015 				mas_store_prealloc(&mas, vma);
2016 				anon_vma_interval_tree_post_update_vma(vma);
2017 				spin_unlock(&mm->page_table_lock);
2018 
2019 				perf_event_mmap(vma);
2020 			}
2021 		}
2022 	}
2023 	anon_vma_unlock_write(vma->anon_vma);
2024 	khugepaged_enter_vma(vma, vma->vm_flags);
2025 	mas_destroy(&mas);
2026 	return error;
2027 }
2028 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2029 
2030 /*
2031  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2032  * mmap_lock held for writing.
2033  */
2034 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2035 {
2036 	struct mm_struct *mm = vma->vm_mm;
2037 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2038 	struct vm_area_struct *prev;
2039 	int error = 0;
2040 
2041 	if (!(vma->vm_flags & VM_GROWSDOWN))
2042 		return -EFAULT;
2043 
2044 	address &= PAGE_MASK;
2045 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2046 		return -EPERM;
2047 
2048 	/* Enforce stack_guard_gap */
2049 	prev = mas_prev(&mas, 0);
2050 	/* Check that both stack segments have the same anon_vma? */
2051 	if (prev) {
2052 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2053 		    vma_is_accessible(prev) &&
2054 		    (address - prev->vm_end < stack_guard_gap))
2055 			return -ENOMEM;
2056 	}
2057 
2058 	if (mas_preallocate(&mas, GFP_KERNEL))
2059 		return -ENOMEM;
2060 
2061 	/* We must make sure the anon_vma is allocated. */
2062 	if (unlikely(anon_vma_prepare(vma))) {
2063 		mas_destroy(&mas);
2064 		return -ENOMEM;
2065 	}
2066 
2067 	/*
2068 	 * vma->vm_start/vm_end cannot change under us because the caller
2069 	 * is required to hold the mmap_lock in read mode.  We need the
2070 	 * anon_vma lock to serialize against concurrent expand_stacks.
2071 	 */
2072 	anon_vma_lock_write(vma->anon_vma);
2073 
2074 	/* Somebody else might have raced and expanded it already */
2075 	if (address < vma->vm_start) {
2076 		unsigned long size, grow;
2077 
2078 		size = vma->vm_end - address;
2079 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2080 
2081 		error = -ENOMEM;
2082 		if (grow <= vma->vm_pgoff) {
2083 			error = acct_stack_growth(vma, size, grow);
2084 			if (!error) {
2085 				/*
2086 				 * We only hold a shared mmap_lock lock here, so
2087 				 * we need to protect against concurrent vma
2088 				 * expansions.  anon_vma_lock_write() doesn't
2089 				 * help here, as we don't guarantee that all
2090 				 * growable vmas in a mm share the same root
2091 				 * anon vma.  So, we reuse mm->page_table_lock
2092 				 * to guard against concurrent vma expansions.
2093 				 */
2094 				spin_lock(&mm->page_table_lock);
2095 				if (vma->vm_flags & VM_LOCKED)
2096 					mm->locked_vm += grow;
2097 				vm_stat_account(mm, vma->vm_flags, grow);
2098 				anon_vma_interval_tree_pre_update_vma(vma);
2099 				vma->vm_start = address;
2100 				vma->vm_pgoff -= grow;
2101 				/* Overwrite old entry in mtree. */
2102 				mas_set_range(&mas, address, vma->vm_end - 1);
2103 				mas_store_prealloc(&mas, vma);
2104 				anon_vma_interval_tree_post_update_vma(vma);
2105 				spin_unlock(&mm->page_table_lock);
2106 
2107 				perf_event_mmap(vma);
2108 			}
2109 		}
2110 	}
2111 	anon_vma_unlock_write(vma->anon_vma);
2112 	khugepaged_enter_vma(vma, vma->vm_flags);
2113 	mas_destroy(&mas);
2114 	return error;
2115 }
2116 
2117 /* enforced gap between the expanding stack and other mappings. */
2118 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2119 
2120 static int __init cmdline_parse_stack_guard_gap(char *p)
2121 {
2122 	unsigned long val;
2123 	char *endptr;
2124 
2125 	val = simple_strtoul(p, &endptr, 10);
2126 	if (!*endptr)
2127 		stack_guard_gap = val << PAGE_SHIFT;
2128 
2129 	return 1;
2130 }
2131 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2132 
2133 #ifdef CONFIG_STACK_GROWSUP
2134 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2135 {
2136 	return expand_upwards(vma, address);
2137 }
2138 
2139 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2140 {
2141 	struct vm_area_struct *vma, *prev;
2142 
2143 	addr &= PAGE_MASK;
2144 	vma = find_vma_prev(mm, addr, &prev);
2145 	if (vma && (vma->vm_start <= addr))
2146 		return vma;
2147 	if (!prev)
2148 		return NULL;
2149 	if (expand_stack_locked(prev, addr))
2150 		return NULL;
2151 	if (prev->vm_flags & VM_LOCKED)
2152 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2153 	return prev;
2154 }
2155 #else
2156 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2157 {
2158 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2159 		return -EINVAL;
2160 	return expand_downwards(vma, address);
2161 }
2162 
2163 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2164 {
2165 	struct vm_area_struct *vma;
2166 	unsigned long start;
2167 
2168 	addr &= PAGE_MASK;
2169 	vma = find_vma(mm, addr);
2170 	if (!vma)
2171 		return NULL;
2172 	if (vma->vm_start <= addr)
2173 		return vma;
2174 	start = vma->vm_start;
2175 	if (expand_stack_locked(vma, addr))
2176 		return NULL;
2177 	if (vma->vm_flags & VM_LOCKED)
2178 		populate_vma_page_range(vma, addr, start, NULL);
2179 	return vma;
2180 }
2181 #endif
2182 
2183 /*
2184  * IA64 has some horrid mapping rules: it can expand both up and down,
2185  * but with various special rules.
2186  *
2187  * We'll get rid of this architecture eventually, so the ugliness is
2188  * temporary.
2189  */
2190 #ifdef CONFIG_IA64
2191 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2192 {
2193 	return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2194 		REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2195 }
2196 
2197 /*
2198  * IA64 stacks grow down, but there's a special register backing store
2199  * that can grow up. Only sequentially, though, so the new address must
2200  * match vm_end.
2201  */
2202 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2203 {
2204 	if (!vma_expand_ok(vma, addr))
2205 		return -EFAULT;
2206 	if (vma->vm_end != (addr & PAGE_MASK))
2207 		return -EFAULT;
2208 	return expand_upwards(vma, addr);
2209 }
2210 
2211 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2212 {
2213 	if (!vma_expand_ok(vma, addr))
2214 		return -EFAULT;
2215 	return expand_downwards(vma, addr);
2216 }
2217 
2218 #elif defined(CONFIG_STACK_GROWSUP)
2219 
2220 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2221 #define vma_expand_down(vma, addr) (-EFAULT)
2222 
2223 #else
2224 
2225 #define vma_expand_up(vma,addr) (-EFAULT)
2226 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2227 
2228 #endif
2229 
2230 /*
2231  * expand_stack(): legacy interface for page faulting. Don't use unless
2232  * you have to.
2233  *
2234  * This is called with the mm locked for reading, drops the lock, takes
2235  * the lock for writing, tries to look up a vma again, expands it if
2236  * necessary, and downgrades the lock to reading again.
2237  *
2238  * If no vma is found or it can't be expanded, it returns NULL and has
2239  * dropped the lock.
2240  */
2241 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2242 {
2243 	struct vm_area_struct *vma, *prev;
2244 
2245 	mmap_read_unlock(mm);
2246 	if (mmap_write_lock_killable(mm))
2247 		return NULL;
2248 
2249 	vma = find_vma_prev(mm, addr, &prev);
2250 	if (vma && vma->vm_start <= addr)
2251 		goto success;
2252 
2253 	if (prev && !vma_expand_up(prev, addr)) {
2254 		vma = prev;
2255 		goto success;
2256 	}
2257 
2258 	if (vma && !vma_expand_down(vma, addr))
2259 		goto success;
2260 
2261 	mmap_write_unlock(mm);
2262 	return NULL;
2263 
2264 success:
2265 	mmap_write_downgrade(mm);
2266 	return vma;
2267 }
2268 
2269 /*
2270  * Ok - we have the memory areas we should free on a maple tree so release them,
2271  * and do the vma updates.
2272  *
2273  * Called with the mm semaphore held.
2274  */
2275 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2276 {
2277 	unsigned long nr_accounted = 0;
2278 	struct vm_area_struct *vma;
2279 
2280 	/* Update high watermark before we lower total_vm */
2281 	update_hiwater_vm(mm);
2282 	mas_for_each(mas, vma, ULONG_MAX) {
2283 		long nrpages = vma_pages(vma);
2284 
2285 		if (vma->vm_flags & VM_ACCOUNT)
2286 			nr_accounted += nrpages;
2287 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2288 		remove_vma(vma, false);
2289 	}
2290 	vm_unacct_memory(nr_accounted);
2291 	validate_mm(mm);
2292 }
2293 
2294 /*
2295  * Get rid of page table information in the indicated region.
2296  *
2297  * Called with the mm semaphore held.
2298  */
2299 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2300 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2301 		struct vm_area_struct *next,
2302 		unsigned long start, unsigned long end, bool mm_wr_locked)
2303 {
2304 	struct mmu_gather tlb;
2305 
2306 	lru_add_drain();
2307 	tlb_gather_mmu(&tlb, mm);
2308 	update_hiwater_rss(mm);
2309 	unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2310 	free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2311 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2312 				 mm_wr_locked);
2313 	tlb_finish_mmu(&tlb);
2314 }
2315 
2316 /*
2317  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2318  * has already been checked or doesn't make sense to fail.
2319  * VMA Iterator will point to the end VMA.
2320  */
2321 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2322 		unsigned long addr, int new_below)
2323 {
2324 	struct vma_prepare vp;
2325 	struct vm_area_struct *new;
2326 	int err;
2327 
2328 	validate_mm(vma->vm_mm);
2329 
2330 	WARN_ON(vma->vm_start >= addr);
2331 	WARN_ON(vma->vm_end <= addr);
2332 
2333 	if (vma->vm_ops && vma->vm_ops->may_split) {
2334 		err = vma->vm_ops->may_split(vma, addr);
2335 		if (err)
2336 			return err;
2337 	}
2338 
2339 	new = vm_area_dup(vma);
2340 	if (!new)
2341 		return -ENOMEM;
2342 
2343 	err = -ENOMEM;
2344 	if (vma_iter_prealloc(vmi))
2345 		goto out_free_vma;
2346 
2347 	if (new_below) {
2348 		new->vm_end = addr;
2349 	} else {
2350 		new->vm_start = addr;
2351 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2352 	}
2353 
2354 	err = vma_dup_policy(vma, new);
2355 	if (err)
2356 		goto out_free_vmi;
2357 
2358 	err = anon_vma_clone(new, vma);
2359 	if (err)
2360 		goto out_free_mpol;
2361 
2362 	if (new->vm_file)
2363 		get_file(new->vm_file);
2364 
2365 	if (new->vm_ops && new->vm_ops->open)
2366 		new->vm_ops->open(new);
2367 
2368 	init_vma_prep(&vp, vma);
2369 	vp.insert = new;
2370 	vma_prepare(&vp);
2371 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2372 
2373 	if (new_below) {
2374 		vma->vm_start = addr;
2375 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2376 	} else {
2377 		vma->vm_end = addr;
2378 	}
2379 
2380 	/* vma_complete stores the new vma */
2381 	vma_complete(&vp, vmi, vma->vm_mm);
2382 
2383 	/* Success. */
2384 	if (new_below)
2385 		vma_next(vmi);
2386 	validate_mm(vma->vm_mm);
2387 	return 0;
2388 
2389 out_free_mpol:
2390 	mpol_put(vma_policy(new));
2391 out_free_vmi:
2392 	vma_iter_free(vmi);
2393 out_free_vma:
2394 	vm_area_free(new);
2395 	validate_mm(vma->vm_mm);
2396 	return err;
2397 }
2398 
2399 /*
2400  * Split a vma into two pieces at address 'addr', a new vma is allocated
2401  * either for the first part or the tail.
2402  */
2403 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2404 	      unsigned long addr, int new_below)
2405 {
2406 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2407 		return -ENOMEM;
2408 
2409 	return __split_vma(vmi, vma, addr, new_below);
2410 }
2411 
2412 /*
2413  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2414  * @vmi: The vma iterator
2415  * @vma: The starting vm_area_struct
2416  * @mm: The mm_struct
2417  * @start: The aligned start address to munmap.
2418  * @end: The aligned end address to munmap.
2419  * @uf: The userfaultfd list_head
2420  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2421  * success.
2422  *
2423  * Return: 0 on success and drops the lock if so directed, error and leaves the
2424  * lock held otherwise.
2425  */
2426 static int
2427 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2428 		    struct mm_struct *mm, unsigned long start,
2429 		    unsigned long end, struct list_head *uf, bool unlock)
2430 {
2431 	struct vm_area_struct *prev, *next = NULL;
2432 	struct maple_tree mt_detach;
2433 	int count = 0;
2434 	int error = -ENOMEM;
2435 	unsigned long locked_vm = 0;
2436 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2437 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2438 	mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2439 
2440 	/*
2441 	 * If we need to split any vma, do it now to save pain later.
2442 	 *
2443 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2444 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2445 	 * places tmp vma above, and higher split_vma places tmp vma below.
2446 	 */
2447 
2448 	/* Does it split the first one? */
2449 	if (start > vma->vm_start) {
2450 
2451 		/*
2452 		 * Make sure that map_count on return from munmap() will
2453 		 * not exceed its limit; but let map_count go just above
2454 		 * its limit temporarily, to help free resources as expected.
2455 		 */
2456 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2457 			goto map_count_exceeded;
2458 
2459 		error = __split_vma(vmi, vma, start, 0);
2460 		if (error)
2461 			goto start_split_failed;
2462 
2463 		vma = vma_iter_load(vmi);
2464 	}
2465 
2466 	prev = vma_prev(vmi);
2467 	if (unlikely((!prev)))
2468 		vma_iter_set(vmi, start);
2469 
2470 	/*
2471 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2472 	 * it is always overwritten.
2473 	 */
2474 	for_each_vma_range(*vmi, next, end) {
2475 		/* Does it split the end? */
2476 		if (next->vm_end > end) {
2477 			error = __split_vma(vmi, next, end, 0);
2478 			if (error)
2479 				goto end_split_failed;
2480 		}
2481 		vma_start_write(next);
2482 		mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1);
2483 		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2484 		if (error)
2485 			goto munmap_gather_failed;
2486 		vma_mark_detached(next, true);
2487 		if (next->vm_flags & VM_LOCKED)
2488 			locked_vm += vma_pages(next);
2489 
2490 		count++;
2491 		if (unlikely(uf)) {
2492 			/*
2493 			 * If userfaultfd_unmap_prep returns an error the vmas
2494 			 * will remain split, but userland will get a
2495 			 * highly unexpected error anyway. This is no
2496 			 * different than the case where the first of the two
2497 			 * __split_vma fails, but we don't undo the first
2498 			 * split, despite we could. This is unlikely enough
2499 			 * failure that it's not worth optimizing it for.
2500 			 */
2501 			error = userfaultfd_unmap_prep(next, start, end, uf);
2502 
2503 			if (error)
2504 				goto userfaultfd_error;
2505 		}
2506 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2507 		BUG_ON(next->vm_start < start);
2508 		BUG_ON(next->vm_start > end);
2509 #endif
2510 	}
2511 
2512 	if (vma_iter_end(vmi) > end)
2513 		next = vma_iter_load(vmi);
2514 
2515 	if (!next)
2516 		next = vma_next(vmi);
2517 
2518 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2519 	/* Make sure no VMAs are about to be lost. */
2520 	{
2521 		MA_STATE(test, &mt_detach, start, end - 1);
2522 		struct vm_area_struct *vma_mas, *vma_test;
2523 		int test_count = 0;
2524 
2525 		vma_iter_set(vmi, start);
2526 		rcu_read_lock();
2527 		vma_test = mas_find(&test, end - 1);
2528 		for_each_vma_range(*vmi, vma_mas, end) {
2529 			BUG_ON(vma_mas != vma_test);
2530 			test_count++;
2531 			vma_test = mas_next(&test, end - 1);
2532 		}
2533 		rcu_read_unlock();
2534 		BUG_ON(count != test_count);
2535 	}
2536 #endif
2537 	vma_iter_set(vmi, start);
2538 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2539 	if (error)
2540 		goto clear_tree_failed;
2541 
2542 	/* Point of no return */
2543 	mm->locked_vm -= locked_vm;
2544 	mm->map_count -= count;
2545 	if (unlock)
2546 		mmap_write_downgrade(mm);
2547 
2548 	/*
2549 	 * We can free page tables without write-locking mmap_lock because VMAs
2550 	 * were isolated before we downgraded mmap_lock.
2551 	 */
2552 	unmap_region(mm, &mt_detach, vma, prev, next, start, end, !unlock);
2553 	/* Statistics and freeing VMAs */
2554 	mas_set(&mas_detach, start);
2555 	remove_mt(mm, &mas_detach);
2556 	__mt_destroy(&mt_detach);
2557 	validate_mm(mm);
2558 	if (unlock)
2559 		mmap_read_unlock(mm);
2560 
2561 	return 0;
2562 
2563 clear_tree_failed:
2564 userfaultfd_error:
2565 munmap_gather_failed:
2566 end_split_failed:
2567 	mas_set(&mas_detach, 0);
2568 	mas_for_each(&mas_detach, next, end)
2569 		vma_mark_detached(next, false);
2570 
2571 	__mt_destroy(&mt_detach);
2572 start_split_failed:
2573 map_count_exceeded:
2574 	return error;
2575 }
2576 
2577 /*
2578  * do_vmi_munmap() - munmap a given range.
2579  * @vmi: The vma iterator
2580  * @mm: The mm_struct
2581  * @start: The start address to munmap
2582  * @len: The length of the range to munmap
2583  * @uf: The userfaultfd list_head
2584  * @unlock: set to true if the user wants to drop the mmap_lock on success
2585  *
2586  * This function takes a @mas that is either pointing to the previous VMA or set
2587  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2588  * aligned and any arch_unmap work will be preformed.
2589  *
2590  * Return: 0 on success and drops the lock if so directed, error and leaves the
2591  * lock held otherwise.
2592  */
2593 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2594 		  unsigned long start, size_t len, struct list_head *uf,
2595 		  bool unlock)
2596 {
2597 	unsigned long end;
2598 	struct vm_area_struct *vma;
2599 
2600 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2601 		return -EINVAL;
2602 
2603 	end = start + PAGE_ALIGN(len);
2604 	if (end == start)
2605 		return -EINVAL;
2606 
2607 	 /* arch_unmap() might do unmaps itself.  */
2608 	arch_unmap(mm, start, end);
2609 
2610 	/* Find the first overlapping VMA */
2611 	vma = vma_find(vmi, end);
2612 	if (!vma) {
2613 		if (unlock)
2614 			mmap_write_unlock(mm);
2615 		return 0;
2616 	}
2617 
2618 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2619 }
2620 
2621 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2622  * @mm: The mm_struct
2623  * @start: The start address to munmap
2624  * @len: The length to be munmapped.
2625  * @uf: The userfaultfd list_head
2626  *
2627  * Return: 0 on success, error otherwise.
2628  */
2629 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2630 	      struct list_head *uf)
2631 {
2632 	VMA_ITERATOR(vmi, mm, start);
2633 
2634 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2635 }
2636 
2637 unsigned long mmap_region(struct file *file, unsigned long addr,
2638 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2639 		struct list_head *uf)
2640 {
2641 	struct mm_struct *mm = current->mm;
2642 	struct vm_area_struct *vma = NULL;
2643 	struct vm_area_struct *next, *prev, *merge;
2644 	pgoff_t pglen = len >> PAGE_SHIFT;
2645 	unsigned long charged = 0;
2646 	unsigned long end = addr + len;
2647 	unsigned long merge_start = addr, merge_end = end;
2648 	pgoff_t vm_pgoff;
2649 	int error;
2650 	VMA_ITERATOR(vmi, mm, addr);
2651 
2652 	/* Check against address space limit. */
2653 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2654 		unsigned long nr_pages;
2655 
2656 		/*
2657 		 * MAP_FIXED may remove pages of mappings that intersects with
2658 		 * requested mapping. Account for the pages it would unmap.
2659 		 */
2660 		nr_pages = count_vma_pages_range(mm, addr, end);
2661 
2662 		if (!may_expand_vm(mm, vm_flags,
2663 					(len >> PAGE_SHIFT) - nr_pages))
2664 			return -ENOMEM;
2665 	}
2666 
2667 	/* Unmap any existing mapping in the area */
2668 	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2669 		return -ENOMEM;
2670 
2671 	/*
2672 	 * Private writable mapping: check memory availability
2673 	 */
2674 	if (accountable_mapping(file, vm_flags)) {
2675 		charged = len >> PAGE_SHIFT;
2676 		if (security_vm_enough_memory_mm(mm, charged))
2677 			return -ENOMEM;
2678 		vm_flags |= VM_ACCOUNT;
2679 	}
2680 
2681 	next = vma_next(&vmi);
2682 	prev = vma_prev(&vmi);
2683 	if (vm_flags & VM_SPECIAL)
2684 		goto cannot_expand;
2685 
2686 	/* Attempt to expand an old mapping */
2687 	/* Check next */
2688 	if (next && next->vm_start == end && !vma_policy(next) &&
2689 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2690 				 NULL_VM_UFFD_CTX, NULL)) {
2691 		merge_end = next->vm_end;
2692 		vma = next;
2693 		vm_pgoff = next->vm_pgoff - pglen;
2694 	}
2695 
2696 	/* Check prev */
2697 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2698 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2699 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2700 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2701 				       NULL_VM_UFFD_CTX, NULL))) {
2702 		merge_start = prev->vm_start;
2703 		vma = prev;
2704 		vm_pgoff = prev->vm_pgoff;
2705 	}
2706 
2707 
2708 	/* Actually expand, if possible */
2709 	if (vma &&
2710 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2711 		khugepaged_enter_vma(vma, vm_flags);
2712 		goto expanded;
2713 	}
2714 
2715 cannot_expand:
2716 	if (prev)
2717 		vma_iter_next_range(&vmi);
2718 
2719 	/*
2720 	 * Determine the object being mapped and call the appropriate
2721 	 * specific mapper. the address has already been validated, but
2722 	 * not unmapped, but the maps are removed from the list.
2723 	 */
2724 	vma = vm_area_alloc(mm);
2725 	if (!vma) {
2726 		error = -ENOMEM;
2727 		goto unacct_error;
2728 	}
2729 
2730 	vma_iter_set(&vmi, addr);
2731 	vma->vm_start = addr;
2732 	vma->vm_end = end;
2733 	vm_flags_init(vma, vm_flags);
2734 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2735 	vma->vm_pgoff = pgoff;
2736 
2737 	if (file) {
2738 		if (vm_flags & VM_SHARED) {
2739 			error = mapping_map_writable(file->f_mapping);
2740 			if (error)
2741 				goto free_vma;
2742 		}
2743 
2744 		vma->vm_file = get_file(file);
2745 		error = call_mmap(file, vma);
2746 		if (error)
2747 			goto unmap_and_free_vma;
2748 
2749 		/*
2750 		 * Expansion is handled above, merging is handled below.
2751 		 * Drivers should not alter the address of the VMA.
2752 		 */
2753 		error = -EINVAL;
2754 		if (WARN_ON((addr != vma->vm_start)))
2755 			goto close_and_free_vma;
2756 
2757 		vma_iter_set(&vmi, addr);
2758 		/*
2759 		 * If vm_flags changed after call_mmap(), we should try merge
2760 		 * vma again as we may succeed this time.
2761 		 */
2762 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2763 			merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2764 				    vma->vm_end, vma->vm_flags, NULL,
2765 				    vma->vm_file, vma->vm_pgoff, NULL,
2766 				    NULL_VM_UFFD_CTX, NULL);
2767 			if (merge) {
2768 				/*
2769 				 * ->mmap() can change vma->vm_file and fput
2770 				 * the original file. So fput the vma->vm_file
2771 				 * here or we would add an extra fput for file
2772 				 * and cause general protection fault
2773 				 * ultimately.
2774 				 */
2775 				fput(vma->vm_file);
2776 				vm_area_free(vma);
2777 				vma = merge;
2778 				/* Update vm_flags to pick up the change. */
2779 				vm_flags = vma->vm_flags;
2780 				goto unmap_writable;
2781 			}
2782 		}
2783 
2784 		vm_flags = vma->vm_flags;
2785 	} else if (vm_flags & VM_SHARED) {
2786 		error = shmem_zero_setup(vma);
2787 		if (error)
2788 			goto free_vma;
2789 	} else {
2790 		vma_set_anonymous(vma);
2791 	}
2792 
2793 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2794 		error = -EACCES;
2795 		goto close_and_free_vma;
2796 	}
2797 
2798 	/* Allow architectures to sanity-check the vm_flags */
2799 	error = -EINVAL;
2800 	if (!arch_validate_flags(vma->vm_flags))
2801 		goto close_and_free_vma;
2802 
2803 	error = -ENOMEM;
2804 	if (vma_iter_prealloc(&vmi))
2805 		goto close_and_free_vma;
2806 
2807 	if (vma->vm_file)
2808 		i_mmap_lock_write(vma->vm_file->f_mapping);
2809 
2810 	vma_iter_store(&vmi, vma);
2811 	mm->map_count++;
2812 	if (vma->vm_file) {
2813 		if (vma->vm_flags & VM_SHARED)
2814 			mapping_allow_writable(vma->vm_file->f_mapping);
2815 
2816 		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2817 		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2818 		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2819 		i_mmap_unlock_write(vma->vm_file->f_mapping);
2820 	}
2821 
2822 	/*
2823 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2824 	 * call covers the non-merge case.
2825 	 */
2826 	khugepaged_enter_vma(vma, vma->vm_flags);
2827 
2828 	/* Once vma denies write, undo our temporary denial count */
2829 unmap_writable:
2830 	if (file && vm_flags & VM_SHARED)
2831 		mapping_unmap_writable(file->f_mapping);
2832 	file = vma->vm_file;
2833 	ksm_add_vma(vma);
2834 expanded:
2835 	perf_event_mmap(vma);
2836 
2837 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2838 	if (vm_flags & VM_LOCKED) {
2839 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2840 					is_vm_hugetlb_page(vma) ||
2841 					vma == get_gate_vma(current->mm))
2842 			vm_flags_clear(vma, VM_LOCKED_MASK);
2843 		else
2844 			mm->locked_vm += (len >> PAGE_SHIFT);
2845 	}
2846 
2847 	if (file)
2848 		uprobe_mmap(vma);
2849 
2850 	/*
2851 	 * New (or expanded) vma always get soft dirty status.
2852 	 * Otherwise user-space soft-dirty page tracker won't
2853 	 * be able to distinguish situation when vma area unmapped,
2854 	 * then new mapped in-place (which must be aimed as
2855 	 * a completely new data area).
2856 	 */
2857 	vm_flags_set(vma, VM_SOFTDIRTY);
2858 
2859 	vma_set_page_prot(vma);
2860 
2861 	validate_mm(mm);
2862 	return addr;
2863 
2864 close_and_free_vma:
2865 	if (file && vma->vm_ops && vma->vm_ops->close)
2866 		vma->vm_ops->close(vma);
2867 
2868 	if (file || vma->vm_file) {
2869 unmap_and_free_vma:
2870 		fput(vma->vm_file);
2871 		vma->vm_file = NULL;
2872 
2873 		/* Undo any partial mapping done by a device driver. */
2874 		unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2875 			     vma->vm_end, true);
2876 	}
2877 	if (file && (vm_flags & VM_SHARED))
2878 		mapping_unmap_writable(file->f_mapping);
2879 free_vma:
2880 	vm_area_free(vma);
2881 unacct_error:
2882 	if (charged)
2883 		vm_unacct_memory(charged);
2884 	validate_mm(mm);
2885 	return error;
2886 }
2887 
2888 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2889 {
2890 	int ret;
2891 	struct mm_struct *mm = current->mm;
2892 	LIST_HEAD(uf);
2893 	VMA_ITERATOR(vmi, mm, start);
2894 
2895 	if (mmap_write_lock_killable(mm))
2896 		return -EINTR;
2897 
2898 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2899 	if (ret || !unlock)
2900 		mmap_write_unlock(mm);
2901 
2902 	userfaultfd_unmap_complete(mm, &uf);
2903 	return ret;
2904 }
2905 
2906 int vm_munmap(unsigned long start, size_t len)
2907 {
2908 	return __vm_munmap(start, len, false);
2909 }
2910 EXPORT_SYMBOL(vm_munmap);
2911 
2912 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2913 {
2914 	addr = untagged_addr(addr);
2915 	return __vm_munmap(addr, len, true);
2916 }
2917 
2918 
2919 /*
2920  * Emulation of deprecated remap_file_pages() syscall.
2921  */
2922 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2923 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2924 {
2925 
2926 	struct mm_struct *mm = current->mm;
2927 	struct vm_area_struct *vma;
2928 	unsigned long populate = 0;
2929 	unsigned long ret = -EINVAL;
2930 	struct file *file;
2931 
2932 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2933 		     current->comm, current->pid);
2934 
2935 	if (prot)
2936 		return ret;
2937 	start = start & PAGE_MASK;
2938 	size = size & PAGE_MASK;
2939 
2940 	if (start + size <= start)
2941 		return ret;
2942 
2943 	/* Does pgoff wrap? */
2944 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2945 		return ret;
2946 
2947 	if (mmap_write_lock_killable(mm))
2948 		return -EINTR;
2949 
2950 	vma = vma_lookup(mm, start);
2951 
2952 	if (!vma || !(vma->vm_flags & VM_SHARED))
2953 		goto out;
2954 
2955 	if (start + size > vma->vm_end) {
2956 		VMA_ITERATOR(vmi, mm, vma->vm_end);
2957 		struct vm_area_struct *next, *prev = vma;
2958 
2959 		for_each_vma_range(vmi, next, start + size) {
2960 			/* hole between vmas ? */
2961 			if (next->vm_start != prev->vm_end)
2962 				goto out;
2963 
2964 			if (next->vm_file != vma->vm_file)
2965 				goto out;
2966 
2967 			if (next->vm_flags != vma->vm_flags)
2968 				goto out;
2969 
2970 			if (start + size <= next->vm_end)
2971 				break;
2972 
2973 			prev = next;
2974 		}
2975 
2976 		if (!next)
2977 			goto out;
2978 	}
2979 
2980 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2981 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2982 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2983 
2984 	flags &= MAP_NONBLOCK;
2985 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2986 	if (vma->vm_flags & VM_LOCKED)
2987 		flags |= MAP_LOCKED;
2988 
2989 	file = get_file(vma->vm_file);
2990 	ret = do_mmap(vma->vm_file, start, size,
2991 			prot, flags, pgoff, &populate, NULL);
2992 	fput(file);
2993 out:
2994 	mmap_write_unlock(mm);
2995 	if (populate)
2996 		mm_populate(ret, populate);
2997 	if (!IS_ERR_VALUE(ret))
2998 		ret = 0;
2999 	return ret;
3000 }
3001 
3002 /*
3003  * do_vma_munmap() - Unmap a full or partial vma.
3004  * @vmi: The vma iterator pointing at the vma
3005  * @vma: The first vma to be munmapped
3006  * @start: the start of the address to unmap
3007  * @end: The end of the address to unmap
3008  * @uf: The userfaultfd list_head
3009  * @unlock: Drop the lock on success
3010  *
3011  * unmaps a VMA mapping when the vma iterator is already in position.
3012  * Does not handle alignment.
3013  *
3014  * Return: 0 on success drops the lock of so directed, error on failure and will
3015  * still hold the lock.
3016  */
3017 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3018 		unsigned long start, unsigned long end, struct list_head *uf,
3019 		bool unlock)
3020 {
3021 	struct mm_struct *mm = vma->vm_mm;
3022 	int ret;
3023 
3024 	arch_unmap(mm, start, end);
3025 	ret = do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3026 	validate_mm(mm);
3027 	return ret;
3028 }
3029 
3030 /*
3031  * do_brk_flags() - Increase the brk vma if the flags match.
3032  * @vmi: The vma iterator
3033  * @addr: The start address
3034  * @len: The length of the increase
3035  * @vma: The vma,
3036  * @flags: The VMA Flags
3037  *
3038  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3039  * do not match then create a new anonymous VMA.  Eventually we may be able to
3040  * do some brk-specific accounting here.
3041  */
3042 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3043 		unsigned long addr, unsigned long len, unsigned long flags)
3044 {
3045 	struct mm_struct *mm = current->mm;
3046 	struct vma_prepare vp;
3047 
3048 	validate_mm(mm);
3049 	/*
3050 	 * Check against address space limits by the changed size
3051 	 * Note: This happens *after* clearing old mappings in some code paths.
3052 	 */
3053 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3054 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3055 		return -ENOMEM;
3056 
3057 	if (mm->map_count > sysctl_max_map_count)
3058 		return -ENOMEM;
3059 
3060 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3061 		return -ENOMEM;
3062 
3063 	/*
3064 	 * Expand the existing vma if possible; Note that singular lists do not
3065 	 * occur after forking, so the expand will only happen on new VMAs.
3066 	 */
3067 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3068 	    can_vma_merge_after(vma, flags, NULL, NULL,
3069 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3070 		if (vma_iter_prealloc(vmi))
3071 			goto unacct_fail;
3072 
3073 		init_vma_prep(&vp, vma);
3074 		vma_prepare(&vp);
3075 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3076 		vma->vm_end = addr + len;
3077 		vm_flags_set(vma, VM_SOFTDIRTY);
3078 		vma_iter_store(vmi, vma);
3079 
3080 		vma_complete(&vp, vmi, mm);
3081 		khugepaged_enter_vma(vma, flags);
3082 		goto out;
3083 	}
3084 
3085 	/* create a vma struct for an anonymous mapping */
3086 	vma = vm_area_alloc(mm);
3087 	if (!vma)
3088 		goto unacct_fail;
3089 
3090 	vma_set_anonymous(vma);
3091 	vma->vm_start = addr;
3092 	vma->vm_end = addr + len;
3093 	vma->vm_pgoff = addr >> PAGE_SHIFT;
3094 	vm_flags_init(vma, flags);
3095 	vma->vm_page_prot = vm_get_page_prot(flags);
3096 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3097 		goto mas_store_fail;
3098 
3099 	mm->map_count++;
3100 	ksm_add_vma(vma);
3101 out:
3102 	perf_event_mmap(vma);
3103 	mm->total_vm += len >> PAGE_SHIFT;
3104 	mm->data_vm += len >> PAGE_SHIFT;
3105 	if (flags & VM_LOCKED)
3106 		mm->locked_vm += (len >> PAGE_SHIFT);
3107 	vm_flags_set(vma, VM_SOFTDIRTY);
3108 	validate_mm(mm);
3109 	return 0;
3110 
3111 mas_store_fail:
3112 	vm_area_free(vma);
3113 unacct_fail:
3114 	vm_unacct_memory(len >> PAGE_SHIFT);
3115 	return -ENOMEM;
3116 }
3117 
3118 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3119 {
3120 	struct mm_struct *mm = current->mm;
3121 	struct vm_area_struct *vma = NULL;
3122 	unsigned long len;
3123 	int ret;
3124 	bool populate;
3125 	LIST_HEAD(uf);
3126 	VMA_ITERATOR(vmi, mm, addr);
3127 
3128 	len = PAGE_ALIGN(request);
3129 	if (len < request)
3130 		return -ENOMEM;
3131 	if (!len)
3132 		return 0;
3133 
3134 	if (mmap_write_lock_killable(mm))
3135 		return -EINTR;
3136 
3137 	/* Until we need other flags, refuse anything except VM_EXEC. */
3138 	if ((flags & (~VM_EXEC)) != 0)
3139 		return -EINVAL;
3140 
3141 	ret = check_brk_limits(addr, len);
3142 	if (ret)
3143 		goto limits_failed;
3144 
3145 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3146 	if (ret)
3147 		goto munmap_failed;
3148 
3149 	vma = vma_prev(&vmi);
3150 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3151 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3152 	mmap_write_unlock(mm);
3153 	userfaultfd_unmap_complete(mm, &uf);
3154 	if (populate && !ret)
3155 		mm_populate(addr, len);
3156 	return ret;
3157 
3158 munmap_failed:
3159 limits_failed:
3160 	mmap_write_unlock(mm);
3161 	return ret;
3162 }
3163 EXPORT_SYMBOL(vm_brk_flags);
3164 
3165 int vm_brk(unsigned long addr, unsigned long len)
3166 {
3167 	return vm_brk_flags(addr, len, 0);
3168 }
3169 EXPORT_SYMBOL(vm_brk);
3170 
3171 /* Release all mmaps. */
3172 void exit_mmap(struct mm_struct *mm)
3173 {
3174 	struct mmu_gather tlb;
3175 	struct vm_area_struct *vma;
3176 	unsigned long nr_accounted = 0;
3177 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3178 	int count = 0;
3179 
3180 	/* mm's last user has gone, and its about to be pulled down */
3181 	mmu_notifier_release(mm);
3182 
3183 	mmap_read_lock(mm);
3184 	arch_exit_mmap(mm);
3185 
3186 	vma = mas_find(&mas, ULONG_MAX);
3187 	if (!vma) {
3188 		/* Can happen if dup_mmap() received an OOM */
3189 		mmap_read_unlock(mm);
3190 		return;
3191 	}
3192 
3193 	lru_add_drain();
3194 	flush_cache_mm(mm);
3195 	tlb_gather_mmu_fullmm(&tlb, mm);
3196 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3197 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3198 	unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3199 	mmap_read_unlock(mm);
3200 
3201 	/*
3202 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3203 	 * because the memory has been already freed.
3204 	 */
3205 	set_bit(MMF_OOM_SKIP, &mm->flags);
3206 	mmap_write_lock(mm);
3207 	mt_clear_in_rcu(&mm->mm_mt);
3208 	free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3209 		      USER_PGTABLES_CEILING, true);
3210 	tlb_finish_mmu(&tlb);
3211 
3212 	/*
3213 	 * Walk the list again, actually closing and freeing it, with preemption
3214 	 * enabled, without holding any MM locks besides the unreachable
3215 	 * mmap_write_lock.
3216 	 */
3217 	do {
3218 		if (vma->vm_flags & VM_ACCOUNT)
3219 			nr_accounted += vma_pages(vma);
3220 		remove_vma(vma, true);
3221 		count++;
3222 		cond_resched();
3223 	} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3224 
3225 	BUG_ON(count != mm->map_count);
3226 
3227 	trace_exit_mmap(mm);
3228 	__mt_destroy(&mm->mm_mt);
3229 	mmap_write_unlock(mm);
3230 	vm_unacct_memory(nr_accounted);
3231 }
3232 
3233 /* Insert vm structure into process list sorted by address
3234  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3235  * then i_mmap_rwsem is taken here.
3236  */
3237 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3238 {
3239 	unsigned long charged = vma_pages(vma);
3240 
3241 
3242 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3243 		return -ENOMEM;
3244 
3245 	if ((vma->vm_flags & VM_ACCOUNT) &&
3246 	     security_vm_enough_memory_mm(mm, charged))
3247 		return -ENOMEM;
3248 
3249 	/*
3250 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3251 	 * until its first write fault, when page's anon_vma and index
3252 	 * are set.  But now set the vm_pgoff it will almost certainly
3253 	 * end up with (unless mremap moves it elsewhere before that
3254 	 * first wfault), so /proc/pid/maps tells a consistent story.
3255 	 *
3256 	 * By setting it to reflect the virtual start address of the
3257 	 * vma, merges and splits can happen in a seamless way, just
3258 	 * using the existing file pgoff checks and manipulations.
3259 	 * Similarly in do_mmap and in do_brk_flags.
3260 	 */
3261 	if (vma_is_anonymous(vma)) {
3262 		BUG_ON(vma->anon_vma);
3263 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3264 	}
3265 
3266 	if (vma_link(mm, vma)) {
3267 		vm_unacct_memory(charged);
3268 		return -ENOMEM;
3269 	}
3270 
3271 	return 0;
3272 }
3273 
3274 /*
3275  * Copy the vma structure to a new location in the same mm,
3276  * prior to moving page table entries, to effect an mremap move.
3277  */
3278 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3279 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3280 	bool *need_rmap_locks)
3281 {
3282 	struct vm_area_struct *vma = *vmap;
3283 	unsigned long vma_start = vma->vm_start;
3284 	struct mm_struct *mm = vma->vm_mm;
3285 	struct vm_area_struct *new_vma, *prev;
3286 	bool faulted_in_anon_vma = true;
3287 	VMA_ITERATOR(vmi, mm, addr);
3288 
3289 	validate_mm(mm);
3290 	/*
3291 	 * If anonymous vma has not yet been faulted, update new pgoff
3292 	 * to match new location, to increase its chance of merging.
3293 	 */
3294 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3295 		pgoff = addr >> PAGE_SHIFT;
3296 		faulted_in_anon_vma = false;
3297 	}
3298 
3299 	new_vma = find_vma_prev(mm, addr, &prev);
3300 	if (new_vma && new_vma->vm_start < addr + len)
3301 		return NULL;	/* should never get here */
3302 
3303 	new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3304 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3305 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3306 	if (new_vma) {
3307 		/*
3308 		 * Source vma may have been merged into new_vma
3309 		 */
3310 		if (unlikely(vma_start >= new_vma->vm_start &&
3311 			     vma_start < new_vma->vm_end)) {
3312 			/*
3313 			 * The only way we can get a vma_merge with
3314 			 * self during an mremap is if the vma hasn't
3315 			 * been faulted in yet and we were allowed to
3316 			 * reset the dst vma->vm_pgoff to the
3317 			 * destination address of the mremap to allow
3318 			 * the merge to happen. mremap must change the
3319 			 * vm_pgoff linearity between src and dst vmas
3320 			 * (in turn preventing a vma_merge) to be
3321 			 * safe. It is only safe to keep the vm_pgoff
3322 			 * linear if there are no pages mapped yet.
3323 			 */
3324 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3325 			*vmap = vma = new_vma;
3326 		}
3327 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3328 	} else {
3329 		new_vma = vm_area_dup(vma);
3330 		if (!new_vma)
3331 			goto out;
3332 		new_vma->vm_start = addr;
3333 		new_vma->vm_end = addr + len;
3334 		new_vma->vm_pgoff = pgoff;
3335 		if (vma_dup_policy(vma, new_vma))
3336 			goto out_free_vma;
3337 		if (anon_vma_clone(new_vma, vma))
3338 			goto out_free_mempol;
3339 		if (new_vma->vm_file)
3340 			get_file(new_vma->vm_file);
3341 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3342 			new_vma->vm_ops->open(new_vma);
3343 		vma_start_write(new_vma);
3344 		if (vma_link(mm, new_vma))
3345 			goto out_vma_link;
3346 		*need_rmap_locks = false;
3347 	}
3348 	validate_mm(mm);
3349 	return new_vma;
3350 
3351 out_vma_link:
3352 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3353 		new_vma->vm_ops->close(new_vma);
3354 
3355 	if (new_vma->vm_file)
3356 		fput(new_vma->vm_file);
3357 
3358 	unlink_anon_vmas(new_vma);
3359 out_free_mempol:
3360 	mpol_put(vma_policy(new_vma));
3361 out_free_vma:
3362 	vm_area_free(new_vma);
3363 out:
3364 	validate_mm(mm);
3365 	return NULL;
3366 }
3367 
3368 /*
3369  * Return true if the calling process may expand its vm space by the passed
3370  * number of pages
3371  */
3372 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3373 {
3374 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3375 		return false;
3376 
3377 	if (is_data_mapping(flags) &&
3378 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3379 		/* Workaround for Valgrind */
3380 		if (rlimit(RLIMIT_DATA) == 0 &&
3381 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3382 			return true;
3383 
3384 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3385 			     current->comm, current->pid,
3386 			     (mm->data_vm + npages) << PAGE_SHIFT,
3387 			     rlimit(RLIMIT_DATA),
3388 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3389 
3390 		if (!ignore_rlimit_data)
3391 			return false;
3392 	}
3393 
3394 	return true;
3395 }
3396 
3397 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3398 {
3399 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3400 
3401 	if (is_exec_mapping(flags))
3402 		mm->exec_vm += npages;
3403 	else if (is_stack_mapping(flags))
3404 		mm->stack_vm += npages;
3405 	else if (is_data_mapping(flags))
3406 		mm->data_vm += npages;
3407 }
3408 
3409 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3410 
3411 /*
3412  * Having a close hook prevents vma merging regardless of flags.
3413  */
3414 static void special_mapping_close(struct vm_area_struct *vma)
3415 {
3416 }
3417 
3418 static const char *special_mapping_name(struct vm_area_struct *vma)
3419 {
3420 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3421 }
3422 
3423 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3424 {
3425 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3426 
3427 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3428 		return -EFAULT;
3429 
3430 	if (sm->mremap)
3431 		return sm->mremap(sm, new_vma);
3432 
3433 	return 0;
3434 }
3435 
3436 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3437 {
3438 	/*
3439 	 * Forbid splitting special mappings - kernel has expectations over
3440 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3441 	 * the size of vma should stay the same over the special mapping's
3442 	 * lifetime.
3443 	 */
3444 	return -EINVAL;
3445 }
3446 
3447 static const struct vm_operations_struct special_mapping_vmops = {
3448 	.close = special_mapping_close,
3449 	.fault = special_mapping_fault,
3450 	.mremap = special_mapping_mremap,
3451 	.name = special_mapping_name,
3452 	/* vDSO code relies that VVAR can't be accessed remotely */
3453 	.access = NULL,
3454 	.may_split = special_mapping_split,
3455 };
3456 
3457 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3458 	.close = special_mapping_close,
3459 	.fault = special_mapping_fault,
3460 };
3461 
3462 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3463 {
3464 	struct vm_area_struct *vma = vmf->vma;
3465 	pgoff_t pgoff;
3466 	struct page **pages;
3467 
3468 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3469 		pages = vma->vm_private_data;
3470 	} else {
3471 		struct vm_special_mapping *sm = vma->vm_private_data;
3472 
3473 		if (sm->fault)
3474 			return sm->fault(sm, vmf->vma, vmf);
3475 
3476 		pages = sm->pages;
3477 	}
3478 
3479 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3480 		pgoff--;
3481 
3482 	if (*pages) {
3483 		struct page *page = *pages;
3484 		get_page(page);
3485 		vmf->page = page;
3486 		return 0;
3487 	}
3488 
3489 	return VM_FAULT_SIGBUS;
3490 }
3491 
3492 static struct vm_area_struct *__install_special_mapping(
3493 	struct mm_struct *mm,
3494 	unsigned long addr, unsigned long len,
3495 	unsigned long vm_flags, void *priv,
3496 	const struct vm_operations_struct *ops)
3497 {
3498 	int ret;
3499 	struct vm_area_struct *vma;
3500 
3501 	validate_mm(mm);
3502 	vma = vm_area_alloc(mm);
3503 	if (unlikely(vma == NULL))
3504 		return ERR_PTR(-ENOMEM);
3505 
3506 	vma->vm_start = addr;
3507 	vma->vm_end = addr + len;
3508 
3509 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3510 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3511 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3512 
3513 	vma->vm_ops = ops;
3514 	vma->vm_private_data = priv;
3515 
3516 	ret = insert_vm_struct(mm, vma);
3517 	if (ret)
3518 		goto out;
3519 
3520 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3521 
3522 	perf_event_mmap(vma);
3523 
3524 	validate_mm(mm);
3525 	return vma;
3526 
3527 out:
3528 	vm_area_free(vma);
3529 	validate_mm(mm);
3530 	return ERR_PTR(ret);
3531 }
3532 
3533 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3534 	const struct vm_special_mapping *sm)
3535 {
3536 	return vma->vm_private_data == sm &&
3537 		(vma->vm_ops == &special_mapping_vmops ||
3538 		 vma->vm_ops == &legacy_special_mapping_vmops);
3539 }
3540 
3541 /*
3542  * Called with mm->mmap_lock held for writing.
3543  * Insert a new vma covering the given region, with the given flags.
3544  * Its pages are supplied by the given array of struct page *.
3545  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3546  * The region past the last page supplied will always produce SIGBUS.
3547  * The array pointer and the pages it points to are assumed to stay alive
3548  * for as long as this mapping might exist.
3549  */
3550 struct vm_area_struct *_install_special_mapping(
3551 	struct mm_struct *mm,
3552 	unsigned long addr, unsigned long len,
3553 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3554 {
3555 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3556 					&special_mapping_vmops);
3557 }
3558 
3559 int install_special_mapping(struct mm_struct *mm,
3560 			    unsigned long addr, unsigned long len,
3561 			    unsigned long vm_flags, struct page **pages)
3562 {
3563 	struct vm_area_struct *vma = __install_special_mapping(
3564 		mm, addr, len, vm_flags, (void *)pages,
3565 		&legacy_special_mapping_vmops);
3566 
3567 	return PTR_ERR_OR_ZERO(vma);
3568 }
3569 
3570 static DEFINE_MUTEX(mm_all_locks_mutex);
3571 
3572 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3573 {
3574 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3575 		/*
3576 		 * The LSB of head.next can't change from under us
3577 		 * because we hold the mm_all_locks_mutex.
3578 		 */
3579 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3580 		/*
3581 		 * We can safely modify head.next after taking the
3582 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3583 		 * the same anon_vma we won't take it again.
3584 		 *
3585 		 * No need of atomic instructions here, head.next
3586 		 * can't change from under us thanks to the
3587 		 * anon_vma->root->rwsem.
3588 		 */
3589 		if (__test_and_set_bit(0, (unsigned long *)
3590 				       &anon_vma->root->rb_root.rb_root.rb_node))
3591 			BUG();
3592 	}
3593 }
3594 
3595 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3596 {
3597 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3598 		/*
3599 		 * AS_MM_ALL_LOCKS can't change from under us because
3600 		 * we hold the mm_all_locks_mutex.
3601 		 *
3602 		 * Operations on ->flags have to be atomic because
3603 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3604 		 * mm_all_locks_mutex, there may be other cpus
3605 		 * changing other bitflags in parallel to us.
3606 		 */
3607 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3608 			BUG();
3609 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3610 	}
3611 }
3612 
3613 /*
3614  * This operation locks against the VM for all pte/vma/mm related
3615  * operations that could ever happen on a certain mm. This includes
3616  * vmtruncate, try_to_unmap, and all page faults.
3617  *
3618  * The caller must take the mmap_lock in write mode before calling
3619  * mm_take_all_locks(). The caller isn't allowed to release the
3620  * mmap_lock until mm_drop_all_locks() returns.
3621  *
3622  * mmap_lock in write mode is required in order to block all operations
3623  * that could modify pagetables and free pages without need of
3624  * altering the vma layout. It's also needed in write mode to avoid new
3625  * anon_vmas to be associated with existing vmas.
3626  *
3627  * A single task can't take more than one mm_take_all_locks() in a row
3628  * or it would deadlock.
3629  *
3630  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3631  * mapping->flags avoid to take the same lock twice, if more than one
3632  * vma in this mm is backed by the same anon_vma or address_space.
3633  *
3634  * We take locks in following order, accordingly to comment at beginning
3635  * of mm/rmap.c:
3636  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3637  *     hugetlb mapping);
3638  *   - all vmas marked locked
3639  *   - all i_mmap_rwsem locks;
3640  *   - all anon_vma->rwseml
3641  *
3642  * We can take all locks within these types randomly because the VM code
3643  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3644  * mm_all_locks_mutex.
3645  *
3646  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3647  * that may have to take thousand of locks.
3648  *
3649  * mm_take_all_locks() can fail if it's interrupted by signals.
3650  */
3651 int mm_take_all_locks(struct mm_struct *mm)
3652 {
3653 	struct vm_area_struct *vma;
3654 	struct anon_vma_chain *avc;
3655 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3656 
3657 	mmap_assert_write_locked(mm);
3658 
3659 	mutex_lock(&mm_all_locks_mutex);
3660 
3661 	mas_for_each(&mas, vma, ULONG_MAX) {
3662 		if (signal_pending(current))
3663 			goto out_unlock;
3664 		vma_start_write(vma);
3665 	}
3666 
3667 	mas_set(&mas, 0);
3668 	mas_for_each(&mas, vma, ULONG_MAX) {
3669 		if (signal_pending(current))
3670 			goto out_unlock;
3671 		if (vma->vm_file && vma->vm_file->f_mapping &&
3672 				is_vm_hugetlb_page(vma))
3673 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3674 	}
3675 
3676 	mas_set(&mas, 0);
3677 	mas_for_each(&mas, vma, ULONG_MAX) {
3678 		if (signal_pending(current))
3679 			goto out_unlock;
3680 		if (vma->vm_file && vma->vm_file->f_mapping &&
3681 				!is_vm_hugetlb_page(vma))
3682 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3683 	}
3684 
3685 	mas_set(&mas, 0);
3686 	mas_for_each(&mas, vma, ULONG_MAX) {
3687 		if (signal_pending(current))
3688 			goto out_unlock;
3689 		if (vma->anon_vma)
3690 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3691 				vm_lock_anon_vma(mm, avc->anon_vma);
3692 	}
3693 
3694 	return 0;
3695 
3696 out_unlock:
3697 	mm_drop_all_locks(mm);
3698 	return -EINTR;
3699 }
3700 
3701 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3702 {
3703 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3704 		/*
3705 		 * The LSB of head.next can't change to 0 from under
3706 		 * us because we hold the mm_all_locks_mutex.
3707 		 *
3708 		 * We must however clear the bitflag before unlocking
3709 		 * the vma so the users using the anon_vma->rb_root will
3710 		 * never see our bitflag.
3711 		 *
3712 		 * No need of atomic instructions here, head.next
3713 		 * can't change from under us until we release the
3714 		 * anon_vma->root->rwsem.
3715 		 */
3716 		if (!__test_and_clear_bit(0, (unsigned long *)
3717 					  &anon_vma->root->rb_root.rb_root.rb_node))
3718 			BUG();
3719 		anon_vma_unlock_write(anon_vma);
3720 	}
3721 }
3722 
3723 static void vm_unlock_mapping(struct address_space *mapping)
3724 {
3725 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3726 		/*
3727 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3728 		 * because we hold the mm_all_locks_mutex.
3729 		 */
3730 		i_mmap_unlock_write(mapping);
3731 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3732 					&mapping->flags))
3733 			BUG();
3734 	}
3735 }
3736 
3737 /*
3738  * The mmap_lock cannot be released by the caller until
3739  * mm_drop_all_locks() returns.
3740  */
3741 void mm_drop_all_locks(struct mm_struct *mm)
3742 {
3743 	struct vm_area_struct *vma;
3744 	struct anon_vma_chain *avc;
3745 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3746 
3747 	mmap_assert_write_locked(mm);
3748 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3749 
3750 	mas_for_each(&mas, vma, ULONG_MAX) {
3751 		if (vma->anon_vma)
3752 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3753 				vm_unlock_anon_vma(avc->anon_vma);
3754 		if (vma->vm_file && vma->vm_file->f_mapping)
3755 			vm_unlock_mapping(vma->vm_file->f_mapping);
3756 	}
3757 	vma_end_write_all(mm);
3758 
3759 	mutex_unlock(&mm_all_locks_mutex);
3760 }
3761 
3762 /*
3763  * initialise the percpu counter for VM
3764  */
3765 void __init mmap_init(void)
3766 {
3767 	int ret;
3768 
3769 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3770 	VM_BUG_ON(ret);
3771 }
3772 
3773 /*
3774  * Initialise sysctl_user_reserve_kbytes.
3775  *
3776  * This is intended to prevent a user from starting a single memory hogging
3777  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3778  * mode.
3779  *
3780  * The default value is min(3% of free memory, 128MB)
3781  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3782  */
3783 static int init_user_reserve(void)
3784 {
3785 	unsigned long free_kbytes;
3786 
3787 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3788 
3789 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3790 	return 0;
3791 }
3792 subsys_initcall(init_user_reserve);
3793 
3794 /*
3795  * Initialise sysctl_admin_reserve_kbytes.
3796  *
3797  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3798  * to log in and kill a memory hogging process.
3799  *
3800  * Systems with more than 256MB will reserve 8MB, enough to recover
3801  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3802  * only reserve 3% of free pages by default.
3803  */
3804 static int init_admin_reserve(void)
3805 {
3806 	unsigned long free_kbytes;
3807 
3808 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3809 
3810 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3811 	return 0;
3812 }
3813 subsys_initcall(init_admin_reserve);
3814 
3815 /*
3816  * Reinititalise user and admin reserves if memory is added or removed.
3817  *
3818  * The default user reserve max is 128MB, and the default max for the
3819  * admin reserve is 8MB. These are usually, but not always, enough to
3820  * enable recovery from a memory hogging process using login/sshd, a shell,
3821  * and tools like top. It may make sense to increase or even disable the
3822  * reserve depending on the existence of swap or variations in the recovery
3823  * tools. So, the admin may have changed them.
3824  *
3825  * If memory is added and the reserves have been eliminated or increased above
3826  * the default max, then we'll trust the admin.
3827  *
3828  * If memory is removed and there isn't enough free memory, then we
3829  * need to reset the reserves.
3830  *
3831  * Otherwise keep the reserve set by the admin.
3832  */
3833 static int reserve_mem_notifier(struct notifier_block *nb,
3834 			     unsigned long action, void *data)
3835 {
3836 	unsigned long tmp, free_kbytes;
3837 
3838 	switch (action) {
3839 	case MEM_ONLINE:
3840 		/* Default max is 128MB. Leave alone if modified by operator. */
3841 		tmp = sysctl_user_reserve_kbytes;
3842 		if (0 < tmp && tmp < (1UL << 17))
3843 			init_user_reserve();
3844 
3845 		/* Default max is 8MB.  Leave alone if modified by operator. */
3846 		tmp = sysctl_admin_reserve_kbytes;
3847 		if (0 < tmp && tmp < (1UL << 13))
3848 			init_admin_reserve();
3849 
3850 		break;
3851 	case MEM_OFFLINE:
3852 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3853 
3854 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3855 			init_user_reserve();
3856 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3857 				sysctl_user_reserve_kbytes);
3858 		}
3859 
3860 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3861 			init_admin_reserve();
3862 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3863 				sysctl_admin_reserve_kbytes);
3864 		}
3865 		break;
3866 	default:
3867 		break;
3868 	}
3869 	return NOTIFY_OK;
3870 }
3871 
3872 static int __meminit init_reserve_notifier(void)
3873 {
3874 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3875 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3876 
3877 	return 0;
3878 }
3879 subsys_initcall(init_reserve_notifier);
3880