1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 struct vm_area_struct *next, unsigned long start, 82 unsigned long end, bool mm_wr_locked); 83 84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 85 { 86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 87 } 88 89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 90 void vma_set_page_prot(struct vm_area_struct *vma) 91 { 92 unsigned long vm_flags = vma->vm_flags; 93 pgprot_t vm_page_prot; 94 95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 96 if (vma_wants_writenotify(vma, vm_page_prot)) { 97 vm_flags &= ~VM_SHARED; 98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 99 } 100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 102 } 103 104 /* 105 * Requires inode->i_mapping->i_mmap_rwsem 106 */ 107 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 108 struct file *file, struct address_space *mapping) 109 { 110 if (vma->vm_flags & VM_SHARED) 111 mapping_unmap_writable(mapping); 112 113 flush_dcache_mmap_lock(mapping); 114 vma_interval_tree_remove(vma, &mapping->i_mmap); 115 flush_dcache_mmap_unlock(mapping); 116 } 117 118 /* 119 * Unlink a file-based vm structure from its interval tree, to hide 120 * vma from rmap and vmtruncate before freeing its page tables. 121 */ 122 void unlink_file_vma(struct vm_area_struct *vma) 123 { 124 struct file *file = vma->vm_file; 125 126 if (file) { 127 struct address_space *mapping = file->f_mapping; 128 i_mmap_lock_write(mapping); 129 __remove_shared_vm_struct(vma, file, mapping); 130 i_mmap_unlock_write(mapping); 131 } 132 } 133 134 /* 135 * Close a vm structure and free it. 136 */ 137 static void remove_vma(struct vm_area_struct *vma, bool unreachable) 138 { 139 might_sleep(); 140 if (vma->vm_ops && vma->vm_ops->close) 141 vma->vm_ops->close(vma); 142 if (vma->vm_file) 143 fput(vma->vm_file); 144 mpol_put(vma_policy(vma)); 145 if (unreachable) 146 __vm_area_free(vma); 147 else 148 vm_area_free(vma); 149 } 150 151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 152 unsigned long min) 153 { 154 return mas_prev(&vmi->mas, min); 155 } 156 157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 158 unsigned long start, unsigned long end, gfp_t gfp) 159 { 160 vmi->mas.index = start; 161 vmi->mas.last = end - 1; 162 mas_store_gfp(&vmi->mas, NULL, gfp); 163 if (unlikely(mas_is_err(&vmi->mas))) 164 return -ENOMEM; 165 166 return 0; 167 } 168 169 /* 170 * check_brk_limits() - Use platform specific check of range & verify mlock 171 * limits. 172 * @addr: The address to check 173 * @len: The size of increase. 174 * 175 * Return: 0 on success. 176 */ 177 static int check_brk_limits(unsigned long addr, unsigned long len) 178 { 179 unsigned long mapped_addr; 180 181 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 182 if (IS_ERR_VALUE(mapped_addr)) 183 return mapped_addr; 184 185 return mlock_future_ok(current->mm, current->mm->def_flags, len) 186 ? 0 : -EAGAIN; 187 } 188 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 189 unsigned long addr, unsigned long request, unsigned long flags); 190 SYSCALL_DEFINE1(brk, unsigned long, brk) 191 { 192 unsigned long newbrk, oldbrk, origbrk; 193 struct mm_struct *mm = current->mm; 194 struct vm_area_struct *brkvma, *next = NULL; 195 unsigned long min_brk; 196 bool populate = false; 197 LIST_HEAD(uf); 198 struct vma_iterator vmi; 199 200 if (mmap_write_lock_killable(mm)) 201 return -EINTR; 202 203 origbrk = mm->brk; 204 205 #ifdef CONFIG_COMPAT_BRK 206 /* 207 * CONFIG_COMPAT_BRK can still be overridden by setting 208 * randomize_va_space to 2, which will still cause mm->start_brk 209 * to be arbitrarily shifted 210 */ 211 if (current->brk_randomized) 212 min_brk = mm->start_brk; 213 else 214 min_brk = mm->end_data; 215 #else 216 min_brk = mm->start_brk; 217 #endif 218 if (brk < min_brk) 219 goto out; 220 221 /* 222 * Check against rlimit here. If this check is done later after the test 223 * of oldbrk with newbrk then it can escape the test and let the data 224 * segment grow beyond its set limit the in case where the limit is 225 * not page aligned -Ram Gupta 226 */ 227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 228 mm->end_data, mm->start_data)) 229 goto out; 230 231 newbrk = PAGE_ALIGN(brk); 232 oldbrk = PAGE_ALIGN(mm->brk); 233 if (oldbrk == newbrk) { 234 mm->brk = brk; 235 goto success; 236 } 237 238 /* Always allow shrinking brk. */ 239 if (brk <= mm->brk) { 240 /* Search one past newbrk */ 241 vma_iter_init(&vmi, mm, newbrk); 242 brkvma = vma_find(&vmi, oldbrk); 243 if (!brkvma || brkvma->vm_start >= oldbrk) 244 goto out; /* mapping intersects with an existing non-brk vma. */ 245 /* 246 * mm->brk must be protected by write mmap_lock. 247 * do_vma_munmap() will drop the lock on success, so update it 248 * before calling do_vma_munmap(). 249 */ 250 mm->brk = brk; 251 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true)) 252 goto out; 253 254 goto success_unlocked; 255 } 256 257 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 258 goto out; 259 260 /* 261 * Only check if the next VMA is within the stack_guard_gap of the 262 * expansion area 263 */ 264 vma_iter_init(&vmi, mm, oldbrk); 265 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 266 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 267 goto out; 268 269 brkvma = vma_prev_limit(&vmi, mm->start_brk); 270 /* Ok, looks good - let it rip. */ 271 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 272 goto out; 273 274 mm->brk = brk; 275 if (mm->def_flags & VM_LOCKED) 276 populate = true; 277 278 success: 279 mmap_write_unlock(mm); 280 success_unlocked: 281 userfaultfd_unmap_complete(mm, &uf); 282 if (populate) 283 mm_populate(oldbrk, newbrk - oldbrk); 284 return brk; 285 286 out: 287 mm->brk = origbrk; 288 mmap_write_unlock(mm); 289 return origbrk; 290 } 291 292 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 293 static void validate_mm(struct mm_struct *mm) 294 { 295 int bug = 0; 296 int i = 0; 297 struct vm_area_struct *vma; 298 VMA_ITERATOR(vmi, mm, 0); 299 300 mt_validate(&mm->mm_mt); 301 for_each_vma(vmi, vma) { 302 #ifdef CONFIG_DEBUG_VM_RB 303 struct anon_vma *anon_vma = vma->anon_vma; 304 struct anon_vma_chain *avc; 305 #endif 306 unsigned long vmi_start, vmi_end; 307 bool warn = 0; 308 309 vmi_start = vma_iter_addr(&vmi); 310 vmi_end = vma_iter_end(&vmi); 311 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 312 warn = 1; 313 314 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 315 warn = 1; 316 317 if (warn) { 318 pr_emerg("issue in %s\n", current->comm); 319 dump_stack(); 320 dump_vma(vma); 321 pr_emerg("tree range: %px start %lx end %lx\n", vma, 322 vmi_start, vmi_end - 1); 323 vma_iter_dump_tree(&vmi); 324 } 325 326 #ifdef CONFIG_DEBUG_VM_RB 327 if (anon_vma) { 328 anon_vma_lock_read(anon_vma); 329 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 330 anon_vma_interval_tree_verify(avc); 331 anon_vma_unlock_read(anon_vma); 332 } 333 #endif 334 i++; 335 } 336 if (i != mm->map_count) { 337 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 338 bug = 1; 339 } 340 VM_BUG_ON_MM(bug, mm); 341 } 342 343 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 344 #define validate_mm(mm) do { } while (0) 345 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 346 347 /* 348 * vma has some anon_vma assigned, and is already inserted on that 349 * anon_vma's interval trees. 350 * 351 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 352 * vma must be removed from the anon_vma's interval trees using 353 * anon_vma_interval_tree_pre_update_vma(). 354 * 355 * After the update, the vma will be reinserted using 356 * anon_vma_interval_tree_post_update_vma(). 357 * 358 * The entire update must be protected by exclusive mmap_lock and by 359 * the root anon_vma's mutex. 360 */ 361 static inline void 362 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 363 { 364 struct anon_vma_chain *avc; 365 366 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 367 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 368 } 369 370 static inline void 371 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 372 { 373 struct anon_vma_chain *avc; 374 375 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 376 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 377 } 378 379 static unsigned long count_vma_pages_range(struct mm_struct *mm, 380 unsigned long addr, unsigned long end) 381 { 382 VMA_ITERATOR(vmi, mm, addr); 383 struct vm_area_struct *vma; 384 unsigned long nr_pages = 0; 385 386 for_each_vma_range(vmi, vma, end) { 387 unsigned long vm_start = max(addr, vma->vm_start); 388 unsigned long vm_end = min(end, vma->vm_end); 389 390 nr_pages += PHYS_PFN(vm_end - vm_start); 391 } 392 393 return nr_pages; 394 } 395 396 static void __vma_link_file(struct vm_area_struct *vma, 397 struct address_space *mapping) 398 { 399 if (vma->vm_flags & VM_SHARED) 400 mapping_allow_writable(mapping); 401 402 flush_dcache_mmap_lock(mapping); 403 vma_interval_tree_insert(vma, &mapping->i_mmap); 404 flush_dcache_mmap_unlock(mapping); 405 } 406 407 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 408 { 409 VMA_ITERATOR(vmi, mm, 0); 410 struct address_space *mapping = NULL; 411 412 if (vma_iter_prealloc(&vmi)) 413 return -ENOMEM; 414 415 if (vma->vm_file) { 416 mapping = vma->vm_file->f_mapping; 417 i_mmap_lock_write(mapping); 418 } 419 420 vma_iter_store(&vmi, vma); 421 422 if (mapping) { 423 __vma_link_file(vma, mapping); 424 i_mmap_unlock_write(mapping); 425 } 426 427 mm->map_count++; 428 validate_mm(mm); 429 return 0; 430 } 431 432 /* 433 * init_multi_vma_prep() - Initializer for struct vma_prepare 434 * @vp: The vma_prepare struct 435 * @vma: The vma that will be altered once locked 436 * @next: The next vma if it is to be adjusted 437 * @remove: The first vma to be removed 438 * @remove2: The second vma to be removed 439 */ 440 static inline void init_multi_vma_prep(struct vma_prepare *vp, 441 struct vm_area_struct *vma, struct vm_area_struct *next, 442 struct vm_area_struct *remove, struct vm_area_struct *remove2) 443 { 444 memset(vp, 0, sizeof(struct vma_prepare)); 445 vp->vma = vma; 446 vp->anon_vma = vma->anon_vma; 447 vp->remove = remove; 448 vp->remove2 = remove2; 449 vp->adj_next = next; 450 if (!vp->anon_vma && next) 451 vp->anon_vma = next->anon_vma; 452 453 vp->file = vma->vm_file; 454 if (vp->file) 455 vp->mapping = vma->vm_file->f_mapping; 456 457 } 458 459 /* 460 * init_vma_prep() - Initializer wrapper for vma_prepare struct 461 * @vp: The vma_prepare struct 462 * @vma: The vma that will be altered once locked 463 */ 464 static inline void init_vma_prep(struct vma_prepare *vp, 465 struct vm_area_struct *vma) 466 { 467 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 468 } 469 470 471 /* 472 * vma_prepare() - Helper function for handling locking VMAs prior to altering 473 * @vp: The initialized vma_prepare struct 474 */ 475 static inline void vma_prepare(struct vma_prepare *vp) 476 { 477 vma_start_write(vp->vma); 478 if (vp->adj_next) 479 vma_start_write(vp->adj_next); 480 /* vp->insert is always a newly created VMA, no need for locking */ 481 if (vp->remove) 482 vma_start_write(vp->remove); 483 if (vp->remove2) 484 vma_start_write(vp->remove2); 485 486 if (vp->file) { 487 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 488 489 if (vp->adj_next) 490 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 491 vp->adj_next->vm_end); 492 493 i_mmap_lock_write(vp->mapping); 494 if (vp->insert && vp->insert->vm_file) { 495 /* 496 * Put into interval tree now, so instantiated pages 497 * are visible to arm/parisc __flush_dcache_page 498 * throughout; but we cannot insert into address 499 * space until vma start or end is updated. 500 */ 501 __vma_link_file(vp->insert, 502 vp->insert->vm_file->f_mapping); 503 } 504 } 505 506 if (vp->anon_vma) { 507 anon_vma_lock_write(vp->anon_vma); 508 anon_vma_interval_tree_pre_update_vma(vp->vma); 509 if (vp->adj_next) 510 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 511 } 512 513 if (vp->file) { 514 flush_dcache_mmap_lock(vp->mapping); 515 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 516 if (vp->adj_next) 517 vma_interval_tree_remove(vp->adj_next, 518 &vp->mapping->i_mmap); 519 } 520 521 } 522 523 /* 524 * vma_complete- Helper function for handling the unlocking after altering VMAs, 525 * or for inserting a VMA. 526 * 527 * @vp: The vma_prepare struct 528 * @vmi: The vma iterator 529 * @mm: The mm_struct 530 */ 531 static inline void vma_complete(struct vma_prepare *vp, 532 struct vma_iterator *vmi, struct mm_struct *mm) 533 { 534 if (vp->file) { 535 if (vp->adj_next) 536 vma_interval_tree_insert(vp->adj_next, 537 &vp->mapping->i_mmap); 538 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 539 flush_dcache_mmap_unlock(vp->mapping); 540 } 541 542 if (vp->remove && vp->file) { 543 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping); 544 if (vp->remove2) 545 __remove_shared_vm_struct(vp->remove2, vp->file, 546 vp->mapping); 547 } else if (vp->insert) { 548 /* 549 * split_vma has split insert from vma, and needs 550 * us to insert it before dropping the locks 551 * (it may either follow vma or precede it). 552 */ 553 vma_iter_store(vmi, vp->insert); 554 mm->map_count++; 555 } 556 557 if (vp->anon_vma) { 558 anon_vma_interval_tree_post_update_vma(vp->vma); 559 if (vp->adj_next) 560 anon_vma_interval_tree_post_update_vma(vp->adj_next); 561 anon_vma_unlock_write(vp->anon_vma); 562 } 563 564 if (vp->file) { 565 i_mmap_unlock_write(vp->mapping); 566 uprobe_mmap(vp->vma); 567 568 if (vp->adj_next) 569 uprobe_mmap(vp->adj_next); 570 } 571 572 if (vp->remove) { 573 again: 574 vma_mark_detached(vp->remove, true); 575 if (vp->file) { 576 uprobe_munmap(vp->remove, vp->remove->vm_start, 577 vp->remove->vm_end); 578 fput(vp->file); 579 } 580 if (vp->remove->anon_vma) 581 anon_vma_merge(vp->vma, vp->remove); 582 mm->map_count--; 583 mpol_put(vma_policy(vp->remove)); 584 if (!vp->remove2) 585 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 586 vm_area_free(vp->remove); 587 588 /* 589 * In mprotect's case 6 (see comments on vma_merge), 590 * we are removing both mid and next vmas 591 */ 592 if (vp->remove2) { 593 vp->remove = vp->remove2; 594 vp->remove2 = NULL; 595 goto again; 596 } 597 } 598 if (vp->insert && vp->file) 599 uprobe_mmap(vp->insert); 600 } 601 602 /* 603 * dup_anon_vma() - Helper function to duplicate anon_vma 604 * @dst: The destination VMA 605 * @src: The source VMA 606 * 607 * Returns: 0 on success. 608 */ 609 static inline int dup_anon_vma(struct vm_area_struct *dst, 610 struct vm_area_struct *src) 611 { 612 /* 613 * Easily overlooked: when mprotect shifts the boundary, make sure the 614 * expanding vma has anon_vma set if the shrinking vma had, to cover any 615 * anon pages imported. 616 */ 617 if (src->anon_vma && !dst->anon_vma) { 618 dst->anon_vma = src->anon_vma; 619 return anon_vma_clone(dst, src); 620 } 621 622 return 0; 623 } 624 625 /* 626 * vma_expand - Expand an existing VMA 627 * 628 * @vmi: The vma iterator 629 * @vma: The vma to expand 630 * @start: The start of the vma 631 * @end: The exclusive end of the vma 632 * @pgoff: The page offset of vma 633 * @next: The current of next vma. 634 * 635 * Expand @vma to @start and @end. Can expand off the start and end. Will 636 * expand over @next if it's different from @vma and @end == @next->vm_end. 637 * Checking if the @vma can expand and merge with @next needs to be handled by 638 * the caller. 639 * 640 * Returns: 0 on success 641 */ 642 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 643 unsigned long start, unsigned long end, pgoff_t pgoff, 644 struct vm_area_struct *next) 645 { 646 bool remove_next = false; 647 struct vma_prepare vp; 648 649 if (next && (vma != next) && (end == next->vm_end)) { 650 int ret; 651 652 remove_next = true; 653 ret = dup_anon_vma(vma, next); 654 if (ret) 655 return ret; 656 } 657 658 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 659 /* Not merging but overwriting any part of next is not handled. */ 660 VM_WARN_ON(next && !vp.remove && 661 next != vma && end > next->vm_start); 662 /* Only handles expanding */ 663 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 664 665 if (vma_iter_prealloc(vmi)) 666 goto nomem; 667 668 vma_prepare(&vp); 669 vma_adjust_trans_huge(vma, start, end, 0); 670 /* VMA iterator points to previous, so set to start if necessary */ 671 if (vma_iter_addr(vmi) != start) 672 vma_iter_set(vmi, start); 673 674 vma->vm_start = start; 675 vma->vm_end = end; 676 vma->vm_pgoff = pgoff; 677 /* Note: mas must be pointing to the expanding VMA */ 678 vma_iter_store(vmi, vma); 679 680 vma_complete(&vp, vmi, vma->vm_mm); 681 validate_mm(vma->vm_mm); 682 return 0; 683 684 nomem: 685 return -ENOMEM; 686 } 687 688 /* 689 * vma_shrink() - Reduce an existing VMAs memory area 690 * @vmi: The vma iterator 691 * @vma: The VMA to modify 692 * @start: The new start 693 * @end: The new end 694 * 695 * Returns: 0 on success, -ENOMEM otherwise 696 */ 697 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 698 unsigned long start, unsigned long end, pgoff_t pgoff) 699 { 700 struct vma_prepare vp; 701 702 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 703 704 if (vma_iter_prealloc(vmi)) 705 return -ENOMEM; 706 707 init_vma_prep(&vp, vma); 708 vma_prepare(&vp); 709 vma_adjust_trans_huge(vma, start, end, 0); 710 711 if (vma->vm_start < start) 712 vma_iter_clear(vmi, vma->vm_start, start); 713 714 if (vma->vm_end > end) 715 vma_iter_clear(vmi, end, vma->vm_end); 716 717 vma->vm_start = start; 718 vma->vm_end = end; 719 vma->vm_pgoff = pgoff; 720 vma_complete(&vp, vmi, vma->vm_mm); 721 validate_mm(vma->vm_mm); 722 return 0; 723 } 724 725 /* 726 * If the vma has a ->close operation then the driver probably needs to release 727 * per-vma resources, so we don't attempt to merge those if the caller indicates 728 * the current vma may be removed as part of the merge. 729 */ 730 static inline bool is_mergeable_vma(struct vm_area_struct *vma, 731 struct file *file, unsigned long vm_flags, 732 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 733 struct anon_vma_name *anon_name, bool may_remove_vma) 734 { 735 /* 736 * VM_SOFTDIRTY should not prevent from VMA merging, if we 737 * match the flags but dirty bit -- the caller should mark 738 * merged VMA as dirty. If dirty bit won't be excluded from 739 * comparison, we increase pressure on the memory system forcing 740 * the kernel to generate new VMAs when old one could be 741 * extended instead. 742 */ 743 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 744 return false; 745 if (vma->vm_file != file) 746 return false; 747 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 748 return false; 749 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 750 return false; 751 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 752 return false; 753 return true; 754 } 755 756 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 757 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 758 { 759 /* 760 * The list_is_singular() test is to avoid merging VMA cloned from 761 * parents. This can improve scalability caused by anon_vma lock. 762 */ 763 if ((!anon_vma1 || !anon_vma2) && (!vma || 764 list_is_singular(&vma->anon_vma_chain))) 765 return true; 766 return anon_vma1 == anon_vma2; 767 } 768 769 /* 770 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 771 * in front of (at a lower virtual address and file offset than) the vma. 772 * 773 * We cannot merge two vmas if they have differently assigned (non-NULL) 774 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 775 * 776 * We don't check here for the merged mmap wrapping around the end of pagecache 777 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 778 * wrap, nor mmaps which cover the final page at index -1UL. 779 * 780 * We assume the vma may be removed as part of the merge. 781 */ 782 static bool 783 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 784 struct anon_vma *anon_vma, struct file *file, 785 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 786 struct anon_vma_name *anon_name) 787 { 788 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 789 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 790 if (vma->vm_pgoff == vm_pgoff) 791 return true; 792 } 793 return false; 794 } 795 796 /* 797 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 798 * beyond (at a higher virtual address and file offset than) the vma. 799 * 800 * We cannot merge two vmas if they have differently assigned (non-NULL) 801 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 802 * 803 * We assume that vma is not removed as part of the merge. 804 */ 805 static bool 806 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 807 struct anon_vma *anon_vma, struct file *file, 808 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 809 struct anon_vma_name *anon_name) 810 { 811 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 812 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 813 pgoff_t vm_pglen; 814 vm_pglen = vma_pages(vma); 815 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 816 return true; 817 } 818 return false; 819 } 820 821 /* 822 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 823 * figure out whether that can be merged with its predecessor or its 824 * successor. Or both (it neatly fills a hole). 825 * 826 * In most cases - when called for mmap, brk or mremap - [addr,end) is 827 * certain not to be mapped by the time vma_merge is called; but when 828 * called for mprotect, it is certain to be already mapped (either at 829 * an offset within prev, or at the start of next), and the flags of 830 * this area are about to be changed to vm_flags - and the no-change 831 * case has already been eliminated. 832 * 833 * The following mprotect cases have to be considered, where **** is 834 * the area passed down from mprotect_fixup, never extending beyond one 835 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 836 * at the same address as **** and is of the same or larger span, and 837 * NNNN the next vma after ****: 838 * 839 * **** **** **** 840 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 841 * cannot merge might become might become 842 * PPNNNNNNNNNN PPPPPPPPPPCC 843 * mmap, brk or case 4 below case 5 below 844 * mremap move: 845 * **** **** 846 * PPPP NNNN PPPPCCCCNNNN 847 * might become might become 848 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 849 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 850 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 851 * 852 * It is important for case 8 that the vma CCCC overlapping the 853 * region **** is never going to extended over NNNN. Instead NNNN must 854 * be extended in region **** and CCCC must be removed. This way in 855 * all cases where vma_merge succeeds, the moment vma_merge drops the 856 * rmap_locks, the properties of the merged vma will be already 857 * correct for the whole merged range. Some of those properties like 858 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 859 * be correct for the whole merged range immediately after the 860 * rmap_locks are released. Otherwise if NNNN would be removed and 861 * CCCC would be extended over the NNNN range, remove_migration_ptes 862 * or other rmap walkers (if working on addresses beyond the "end" 863 * parameter) may establish ptes with the wrong permissions of CCCC 864 * instead of the right permissions of NNNN. 865 * 866 * In the code below: 867 * PPPP is represented by *prev 868 * CCCC is represented by *curr or not represented at all (NULL) 869 * NNNN is represented by *next or not represented at all (NULL) 870 * **** is not represented - it will be merged and the vma containing the 871 * area is returned, or the function will return NULL 872 */ 873 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm, 874 struct vm_area_struct *prev, unsigned long addr, 875 unsigned long end, unsigned long vm_flags, 876 struct anon_vma *anon_vma, struct file *file, 877 pgoff_t pgoff, struct mempolicy *policy, 878 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 879 struct anon_vma_name *anon_name) 880 { 881 struct vm_area_struct *curr, *next, *res; 882 struct vm_area_struct *vma, *adjust, *remove, *remove2; 883 struct vma_prepare vp; 884 pgoff_t vma_pgoff; 885 int err = 0; 886 bool merge_prev = false; 887 bool merge_next = false; 888 bool vma_expanded = false; 889 unsigned long vma_start = addr; 890 unsigned long vma_end = end; 891 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 892 long adj_start = 0; 893 894 validate_mm(mm); 895 /* 896 * We later require that vma->vm_flags == vm_flags, 897 * so this tests vma->vm_flags & VM_SPECIAL, too. 898 */ 899 if (vm_flags & VM_SPECIAL) 900 return NULL; 901 902 /* Does the input range span an existing VMA? (cases 5 - 8) */ 903 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 904 905 if (!curr || /* cases 1 - 4 */ 906 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 907 next = vma_lookup(mm, end); 908 else 909 next = NULL; /* case 5 */ 910 911 if (prev) { 912 vma_start = prev->vm_start; 913 vma_pgoff = prev->vm_pgoff; 914 915 /* Can we merge the predecessor? */ 916 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 917 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 918 pgoff, vm_userfaultfd_ctx, anon_name)) { 919 merge_prev = true; 920 vma_prev(vmi); 921 } 922 } 923 924 /* Can we merge the successor? */ 925 if (next && mpol_equal(policy, vma_policy(next)) && 926 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 927 vm_userfaultfd_ctx, anon_name)) { 928 merge_next = true; 929 } 930 931 /* Verify some invariant that must be enforced by the caller. */ 932 VM_WARN_ON(prev && addr <= prev->vm_start); 933 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 934 VM_WARN_ON(addr >= end); 935 936 if (!merge_prev && !merge_next) 937 return NULL; /* Not mergeable. */ 938 939 res = vma = prev; 940 remove = remove2 = adjust = NULL; 941 942 /* Can we merge both the predecessor and the successor? */ 943 if (merge_prev && merge_next && 944 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 945 remove = next; /* case 1 */ 946 vma_end = next->vm_end; 947 err = dup_anon_vma(prev, next); 948 if (curr) { /* case 6 */ 949 remove = curr; 950 remove2 = next; 951 if (!next->anon_vma) 952 err = dup_anon_vma(prev, curr); 953 } 954 } else if (merge_prev) { /* case 2 */ 955 if (curr) { 956 err = dup_anon_vma(prev, curr); 957 if (end == curr->vm_end) { /* case 7 */ 958 remove = curr; 959 } else { /* case 5 */ 960 adjust = curr; 961 adj_start = (end - curr->vm_start); 962 } 963 } 964 } else { /* merge_next */ 965 res = next; 966 if (prev && addr < prev->vm_end) { /* case 4 */ 967 vma_end = addr; 968 adjust = next; 969 adj_start = -(prev->vm_end - addr); 970 err = dup_anon_vma(next, prev); 971 } else { 972 /* 973 * Note that cases 3 and 8 are the ONLY ones where prev 974 * is permitted to be (but is not necessarily) NULL. 975 */ 976 vma = next; /* case 3 */ 977 vma_start = addr; 978 vma_end = next->vm_end; 979 vma_pgoff = next->vm_pgoff - pglen; 980 if (curr) { /* case 8 */ 981 vma_pgoff = curr->vm_pgoff; 982 remove = curr; 983 err = dup_anon_vma(next, curr); 984 } 985 } 986 } 987 988 /* Error in anon_vma clone. */ 989 if (err) 990 return NULL; 991 992 if (vma_iter_prealloc(vmi)) 993 return NULL; 994 995 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 996 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 997 vp.anon_vma != adjust->anon_vma); 998 999 vma_prepare(&vp); 1000 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1001 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 1002 vma_expanded = true; 1003 1004 vma->vm_start = vma_start; 1005 vma->vm_end = vma_end; 1006 vma->vm_pgoff = vma_pgoff; 1007 1008 if (vma_expanded) 1009 vma_iter_store(vmi, vma); 1010 1011 if (adj_start) { 1012 adjust->vm_start += adj_start; 1013 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1014 if (adj_start < 0) { 1015 WARN_ON(vma_expanded); 1016 vma_iter_store(vmi, next); 1017 } 1018 } 1019 1020 vma_complete(&vp, vmi, mm); 1021 vma_iter_free(vmi); 1022 validate_mm(mm); 1023 khugepaged_enter_vma(res, vm_flags); 1024 1025 return res; 1026 } 1027 1028 /* 1029 * Rough compatibility check to quickly see if it's even worth looking 1030 * at sharing an anon_vma. 1031 * 1032 * They need to have the same vm_file, and the flags can only differ 1033 * in things that mprotect may change. 1034 * 1035 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1036 * we can merge the two vma's. For example, we refuse to merge a vma if 1037 * there is a vm_ops->close() function, because that indicates that the 1038 * driver is doing some kind of reference counting. But that doesn't 1039 * really matter for the anon_vma sharing case. 1040 */ 1041 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1042 { 1043 return a->vm_end == b->vm_start && 1044 mpol_equal(vma_policy(a), vma_policy(b)) && 1045 a->vm_file == b->vm_file && 1046 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1047 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1048 } 1049 1050 /* 1051 * Do some basic sanity checking to see if we can re-use the anon_vma 1052 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1053 * the same as 'old', the other will be the new one that is trying 1054 * to share the anon_vma. 1055 * 1056 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1057 * the anon_vma of 'old' is concurrently in the process of being set up 1058 * by another page fault trying to merge _that_. But that's ok: if it 1059 * is being set up, that automatically means that it will be a singleton 1060 * acceptable for merging, so we can do all of this optimistically. But 1061 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1062 * 1063 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1064 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1065 * is to return an anon_vma that is "complex" due to having gone through 1066 * a fork). 1067 * 1068 * We also make sure that the two vma's are compatible (adjacent, 1069 * and with the same memory policies). That's all stable, even with just 1070 * a read lock on the mmap_lock. 1071 */ 1072 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1073 { 1074 if (anon_vma_compatible(a, b)) { 1075 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1076 1077 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1078 return anon_vma; 1079 } 1080 return NULL; 1081 } 1082 1083 /* 1084 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1085 * neighbouring vmas for a suitable anon_vma, before it goes off 1086 * to allocate a new anon_vma. It checks because a repetitive 1087 * sequence of mprotects and faults may otherwise lead to distinct 1088 * anon_vmas being allocated, preventing vma merge in subsequent 1089 * mprotect. 1090 */ 1091 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1092 { 1093 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end); 1094 struct anon_vma *anon_vma = NULL; 1095 struct vm_area_struct *prev, *next; 1096 1097 /* Try next first. */ 1098 next = mas_walk(&mas); 1099 if (next) { 1100 anon_vma = reusable_anon_vma(next, vma, next); 1101 if (anon_vma) 1102 return anon_vma; 1103 } 1104 1105 prev = mas_prev(&mas, 0); 1106 VM_BUG_ON_VMA(prev != vma, vma); 1107 prev = mas_prev(&mas, 0); 1108 /* Try prev next. */ 1109 if (prev) 1110 anon_vma = reusable_anon_vma(prev, prev, vma); 1111 1112 /* 1113 * We might reach here with anon_vma == NULL if we can't find 1114 * any reusable anon_vma. 1115 * There's no absolute need to look only at touching neighbours: 1116 * we could search further afield for "compatible" anon_vmas. 1117 * But it would probably just be a waste of time searching, 1118 * or lead to too many vmas hanging off the same anon_vma. 1119 * We're trying to allow mprotect remerging later on, 1120 * not trying to minimize memory used for anon_vmas. 1121 */ 1122 return anon_vma; 1123 } 1124 1125 /* 1126 * If a hint addr is less than mmap_min_addr change hint to be as 1127 * low as possible but still greater than mmap_min_addr 1128 */ 1129 static inline unsigned long round_hint_to_min(unsigned long hint) 1130 { 1131 hint &= PAGE_MASK; 1132 if (((void *)hint != NULL) && 1133 (hint < mmap_min_addr)) 1134 return PAGE_ALIGN(mmap_min_addr); 1135 return hint; 1136 } 1137 1138 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 1139 unsigned long bytes) 1140 { 1141 unsigned long locked_pages, limit_pages; 1142 1143 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 1144 return true; 1145 1146 locked_pages = bytes >> PAGE_SHIFT; 1147 locked_pages += mm->locked_vm; 1148 1149 limit_pages = rlimit(RLIMIT_MEMLOCK); 1150 limit_pages >>= PAGE_SHIFT; 1151 1152 return locked_pages <= limit_pages; 1153 } 1154 1155 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1156 { 1157 if (S_ISREG(inode->i_mode)) 1158 return MAX_LFS_FILESIZE; 1159 1160 if (S_ISBLK(inode->i_mode)) 1161 return MAX_LFS_FILESIZE; 1162 1163 if (S_ISSOCK(inode->i_mode)) 1164 return MAX_LFS_FILESIZE; 1165 1166 /* Special "we do even unsigned file positions" case */ 1167 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1168 return 0; 1169 1170 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1171 return ULONG_MAX; 1172 } 1173 1174 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1175 unsigned long pgoff, unsigned long len) 1176 { 1177 u64 maxsize = file_mmap_size_max(file, inode); 1178 1179 if (maxsize && len > maxsize) 1180 return false; 1181 maxsize -= len; 1182 if (pgoff > maxsize >> PAGE_SHIFT) 1183 return false; 1184 return true; 1185 } 1186 1187 /* 1188 * The caller must write-lock current->mm->mmap_lock. 1189 */ 1190 unsigned long do_mmap(struct file *file, unsigned long addr, 1191 unsigned long len, unsigned long prot, 1192 unsigned long flags, unsigned long pgoff, 1193 unsigned long *populate, struct list_head *uf) 1194 { 1195 struct mm_struct *mm = current->mm; 1196 vm_flags_t vm_flags; 1197 int pkey = 0; 1198 1199 validate_mm(mm); 1200 *populate = 0; 1201 1202 if (!len) 1203 return -EINVAL; 1204 1205 /* 1206 * Does the application expect PROT_READ to imply PROT_EXEC? 1207 * 1208 * (the exception is when the underlying filesystem is noexec 1209 * mounted, in which case we dont add PROT_EXEC.) 1210 */ 1211 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1212 if (!(file && path_noexec(&file->f_path))) 1213 prot |= PROT_EXEC; 1214 1215 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1216 if (flags & MAP_FIXED_NOREPLACE) 1217 flags |= MAP_FIXED; 1218 1219 if (!(flags & MAP_FIXED)) 1220 addr = round_hint_to_min(addr); 1221 1222 /* Careful about overflows.. */ 1223 len = PAGE_ALIGN(len); 1224 if (!len) 1225 return -ENOMEM; 1226 1227 /* offset overflow? */ 1228 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1229 return -EOVERFLOW; 1230 1231 /* Too many mappings? */ 1232 if (mm->map_count > sysctl_max_map_count) 1233 return -ENOMEM; 1234 1235 /* Obtain the address to map to. we verify (or select) it and ensure 1236 * that it represents a valid section of the address space. 1237 */ 1238 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1239 if (IS_ERR_VALUE(addr)) 1240 return addr; 1241 1242 if (flags & MAP_FIXED_NOREPLACE) { 1243 if (find_vma_intersection(mm, addr, addr + len)) 1244 return -EEXIST; 1245 } 1246 1247 if (prot == PROT_EXEC) { 1248 pkey = execute_only_pkey(mm); 1249 if (pkey < 0) 1250 pkey = 0; 1251 } 1252 1253 /* Do simple checking here so the lower-level routines won't have 1254 * to. we assume access permissions have been handled by the open 1255 * of the memory object, so we don't do any here. 1256 */ 1257 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1258 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1259 1260 if (flags & MAP_LOCKED) 1261 if (!can_do_mlock()) 1262 return -EPERM; 1263 1264 if (!mlock_future_ok(mm, vm_flags, len)) 1265 return -EAGAIN; 1266 1267 if (file) { 1268 struct inode *inode = file_inode(file); 1269 unsigned long flags_mask; 1270 1271 if (!file_mmap_ok(file, inode, pgoff, len)) 1272 return -EOVERFLOW; 1273 1274 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1275 1276 switch (flags & MAP_TYPE) { 1277 case MAP_SHARED: 1278 /* 1279 * Force use of MAP_SHARED_VALIDATE with non-legacy 1280 * flags. E.g. MAP_SYNC is dangerous to use with 1281 * MAP_SHARED as you don't know which consistency model 1282 * you will get. We silently ignore unsupported flags 1283 * with MAP_SHARED to preserve backward compatibility. 1284 */ 1285 flags &= LEGACY_MAP_MASK; 1286 fallthrough; 1287 case MAP_SHARED_VALIDATE: 1288 if (flags & ~flags_mask) 1289 return -EOPNOTSUPP; 1290 if (prot & PROT_WRITE) { 1291 if (!(file->f_mode & FMODE_WRITE)) 1292 return -EACCES; 1293 if (IS_SWAPFILE(file->f_mapping->host)) 1294 return -ETXTBSY; 1295 } 1296 1297 /* 1298 * Make sure we don't allow writing to an append-only 1299 * file.. 1300 */ 1301 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1302 return -EACCES; 1303 1304 vm_flags |= VM_SHARED | VM_MAYSHARE; 1305 if (!(file->f_mode & FMODE_WRITE)) 1306 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1307 fallthrough; 1308 case MAP_PRIVATE: 1309 if (!(file->f_mode & FMODE_READ)) 1310 return -EACCES; 1311 if (path_noexec(&file->f_path)) { 1312 if (vm_flags & VM_EXEC) 1313 return -EPERM; 1314 vm_flags &= ~VM_MAYEXEC; 1315 } 1316 1317 if (!file->f_op->mmap) 1318 return -ENODEV; 1319 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1320 return -EINVAL; 1321 break; 1322 1323 default: 1324 return -EINVAL; 1325 } 1326 } else { 1327 switch (flags & MAP_TYPE) { 1328 case MAP_SHARED: 1329 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1330 return -EINVAL; 1331 /* 1332 * Ignore pgoff. 1333 */ 1334 pgoff = 0; 1335 vm_flags |= VM_SHARED | VM_MAYSHARE; 1336 break; 1337 case MAP_PRIVATE: 1338 /* 1339 * Set pgoff according to addr for anon_vma. 1340 */ 1341 pgoff = addr >> PAGE_SHIFT; 1342 break; 1343 default: 1344 return -EINVAL; 1345 } 1346 } 1347 1348 /* 1349 * Set 'VM_NORESERVE' if we should not account for the 1350 * memory use of this mapping. 1351 */ 1352 if (flags & MAP_NORESERVE) { 1353 /* We honor MAP_NORESERVE if allowed to overcommit */ 1354 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1355 vm_flags |= VM_NORESERVE; 1356 1357 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1358 if (file && is_file_hugepages(file)) 1359 vm_flags |= VM_NORESERVE; 1360 } 1361 1362 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1363 if (!IS_ERR_VALUE(addr) && 1364 ((vm_flags & VM_LOCKED) || 1365 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1366 *populate = len; 1367 return addr; 1368 } 1369 1370 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1371 unsigned long prot, unsigned long flags, 1372 unsigned long fd, unsigned long pgoff) 1373 { 1374 struct file *file = NULL; 1375 unsigned long retval; 1376 1377 if (!(flags & MAP_ANONYMOUS)) { 1378 audit_mmap_fd(fd, flags); 1379 file = fget(fd); 1380 if (!file) 1381 return -EBADF; 1382 if (is_file_hugepages(file)) { 1383 len = ALIGN(len, huge_page_size(hstate_file(file))); 1384 } else if (unlikely(flags & MAP_HUGETLB)) { 1385 retval = -EINVAL; 1386 goto out_fput; 1387 } 1388 } else if (flags & MAP_HUGETLB) { 1389 struct hstate *hs; 1390 1391 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1392 if (!hs) 1393 return -EINVAL; 1394 1395 len = ALIGN(len, huge_page_size(hs)); 1396 /* 1397 * VM_NORESERVE is used because the reservations will be 1398 * taken when vm_ops->mmap() is called 1399 */ 1400 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1401 VM_NORESERVE, 1402 HUGETLB_ANONHUGE_INODE, 1403 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1404 if (IS_ERR(file)) 1405 return PTR_ERR(file); 1406 } 1407 1408 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1409 out_fput: 1410 if (file) 1411 fput(file); 1412 return retval; 1413 } 1414 1415 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1416 unsigned long, prot, unsigned long, flags, 1417 unsigned long, fd, unsigned long, pgoff) 1418 { 1419 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1420 } 1421 1422 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1423 struct mmap_arg_struct { 1424 unsigned long addr; 1425 unsigned long len; 1426 unsigned long prot; 1427 unsigned long flags; 1428 unsigned long fd; 1429 unsigned long offset; 1430 }; 1431 1432 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1433 { 1434 struct mmap_arg_struct a; 1435 1436 if (copy_from_user(&a, arg, sizeof(a))) 1437 return -EFAULT; 1438 if (offset_in_page(a.offset)) 1439 return -EINVAL; 1440 1441 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1442 a.offset >> PAGE_SHIFT); 1443 } 1444 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1445 1446 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1447 { 1448 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1449 } 1450 1451 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1452 { 1453 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1454 (VM_WRITE | VM_SHARED); 1455 } 1456 1457 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1458 { 1459 /* No managed pages to writeback. */ 1460 if (vma->vm_flags & VM_PFNMAP) 1461 return false; 1462 1463 return vma->vm_file && vma->vm_file->f_mapping && 1464 mapping_can_writeback(vma->vm_file->f_mapping); 1465 } 1466 1467 /* 1468 * Does this VMA require the underlying folios to have their dirty state 1469 * tracked? 1470 */ 1471 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1472 { 1473 /* Only shared, writable VMAs require dirty tracking. */ 1474 if (!vma_is_shared_writable(vma)) 1475 return false; 1476 1477 /* Does the filesystem need to be notified? */ 1478 if (vm_ops_needs_writenotify(vma->vm_ops)) 1479 return true; 1480 1481 /* 1482 * Even if the filesystem doesn't indicate a need for writenotify, if it 1483 * can writeback, dirty tracking is still required. 1484 */ 1485 return vma_fs_can_writeback(vma); 1486 } 1487 1488 /* 1489 * Some shared mappings will want the pages marked read-only 1490 * to track write events. If so, we'll downgrade vm_page_prot 1491 * to the private version (using protection_map[] without the 1492 * VM_SHARED bit). 1493 */ 1494 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1495 { 1496 /* If it was private or non-writable, the write bit is already clear */ 1497 if (!vma_is_shared_writable(vma)) 1498 return 0; 1499 1500 /* The backer wishes to know when pages are first written to? */ 1501 if (vm_ops_needs_writenotify(vma->vm_ops)) 1502 return 1; 1503 1504 /* The open routine did something to the protections that pgprot_modify 1505 * won't preserve? */ 1506 if (pgprot_val(vm_page_prot) != 1507 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1508 return 0; 1509 1510 /* 1511 * Do we need to track softdirty? hugetlb does not support softdirty 1512 * tracking yet. 1513 */ 1514 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1515 return 1; 1516 1517 /* Do we need write faults for uffd-wp tracking? */ 1518 if (userfaultfd_wp(vma)) 1519 return 1; 1520 1521 /* Can the mapping track the dirty pages? */ 1522 return vma_fs_can_writeback(vma); 1523 } 1524 1525 /* 1526 * We account for memory if it's a private writeable mapping, 1527 * not hugepages and VM_NORESERVE wasn't set. 1528 */ 1529 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1530 { 1531 /* 1532 * hugetlb has its own accounting separate from the core VM 1533 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1534 */ 1535 if (file && is_file_hugepages(file)) 1536 return 0; 1537 1538 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1539 } 1540 1541 /** 1542 * unmapped_area() - Find an area between the low_limit and the high_limit with 1543 * the correct alignment and offset, all from @info. Note: current->mm is used 1544 * for the search. 1545 * 1546 * @info: The unmapped area information including the range [low_limit - 1547 * high_limit), the alignment offset and mask. 1548 * 1549 * Return: A memory address or -ENOMEM. 1550 */ 1551 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1552 { 1553 unsigned long length, gap; 1554 unsigned long low_limit, high_limit; 1555 struct vm_area_struct *tmp; 1556 1557 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1558 1559 /* Adjust search length to account for worst case alignment overhead */ 1560 length = info->length + info->align_mask; 1561 if (length < info->length) 1562 return -ENOMEM; 1563 1564 low_limit = info->low_limit; 1565 if (low_limit < mmap_min_addr) 1566 low_limit = mmap_min_addr; 1567 high_limit = info->high_limit; 1568 retry: 1569 if (mas_empty_area(&mas, low_limit, high_limit - 1, length)) 1570 return -ENOMEM; 1571 1572 gap = mas.index; 1573 gap += (info->align_offset - gap) & info->align_mask; 1574 tmp = mas_next(&mas, ULONG_MAX); 1575 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */ 1576 if (vm_start_gap(tmp) < gap + length - 1) { 1577 low_limit = tmp->vm_end; 1578 mas_reset(&mas); 1579 goto retry; 1580 } 1581 } else { 1582 tmp = mas_prev(&mas, 0); 1583 if (tmp && vm_end_gap(tmp) > gap) { 1584 low_limit = vm_end_gap(tmp); 1585 mas_reset(&mas); 1586 goto retry; 1587 } 1588 } 1589 1590 return gap; 1591 } 1592 1593 /** 1594 * unmapped_area_topdown() - Find an area between the low_limit and the 1595 * high_limit with the correct alignment and offset at the highest available 1596 * address, all from @info. Note: current->mm is used for the search. 1597 * 1598 * @info: The unmapped area information including the range [low_limit - 1599 * high_limit), the alignment offset and mask. 1600 * 1601 * Return: A memory address or -ENOMEM. 1602 */ 1603 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1604 { 1605 unsigned long length, gap, gap_end; 1606 unsigned long low_limit, high_limit; 1607 struct vm_area_struct *tmp; 1608 1609 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1610 /* Adjust search length to account for worst case alignment overhead */ 1611 length = info->length + info->align_mask; 1612 if (length < info->length) 1613 return -ENOMEM; 1614 1615 low_limit = info->low_limit; 1616 if (low_limit < mmap_min_addr) 1617 low_limit = mmap_min_addr; 1618 high_limit = info->high_limit; 1619 retry: 1620 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length)) 1621 return -ENOMEM; 1622 1623 gap = mas.last + 1 - info->length; 1624 gap -= (gap - info->align_offset) & info->align_mask; 1625 gap_end = mas.last; 1626 tmp = mas_next(&mas, ULONG_MAX); 1627 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */ 1628 if (vm_start_gap(tmp) <= gap_end) { 1629 high_limit = vm_start_gap(tmp); 1630 mas_reset(&mas); 1631 goto retry; 1632 } 1633 } else { 1634 tmp = mas_prev(&mas, 0); 1635 if (tmp && vm_end_gap(tmp) > gap) { 1636 high_limit = tmp->vm_start; 1637 mas_reset(&mas); 1638 goto retry; 1639 } 1640 } 1641 1642 return gap; 1643 } 1644 1645 /* 1646 * Search for an unmapped address range. 1647 * 1648 * We are looking for a range that: 1649 * - does not intersect with any VMA; 1650 * - is contained within the [low_limit, high_limit) interval; 1651 * - is at least the desired size. 1652 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1653 */ 1654 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1655 { 1656 unsigned long addr; 1657 1658 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1659 addr = unmapped_area_topdown(info); 1660 else 1661 addr = unmapped_area(info); 1662 1663 trace_vm_unmapped_area(addr, info); 1664 return addr; 1665 } 1666 1667 /* Get an address range which is currently unmapped. 1668 * For shmat() with addr=0. 1669 * 1670 * Ugly calling convention alert: 1671 * Return value with the low bits set means error value, 1672 * ie 1673 * if (ret & ~PAGE_MASK) 1674 * error = ret; 1675 * 1676 * This function "knows" that -ENOMEM has the bits set. 1677 */ 1678 unsigned long 1679 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1680 unsigned long len, unsigned long pgoff, 1681 unsigned long flags) 1682 { 1683 struct mm_struct *mm = current->mm; 1684 struct vm_area_struct *vma, *prev; 1685 struct vm_unmapped_area_info info; 1686 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1687 1688 if (len > mmap_end - mmap_min_addr) 1689 return -ENOMEM; 1690 1691 if (flags & MAP_FIXED) 1692 return addr; 1693 1694 if (addr) { 1695 addr = PAGE_ALIGN(addr); 1696 vma = find_vma_prev(mm, addr, &prev); 1697 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1698 (!vma || addr + len <= vm_start_gap(vma)) && 1699 (!prev || addr >= vm_end_gap(prev))) 1700 return addr; 1701 } 1702 1703 info.flags = 0; 1704 info.length = len; 1705 info.low_limit = mm->mmap_base; 1706 info.high_limit = mmap_end; 1707 info.align_mask = 0; 1708 info.align_offset = 0; 1709 return vm_unmapped_area(&info); 1710 } 1711 1712 #ifndef HAVE_ARCH_UNMAPPED_AREA 1713 unsigned long 1714 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1715 unsigned long len, unsigned long pgoff, 1716 unsigned long flags) 1717 { 1718 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1719 } 1720 #endif 1721 1722 /* 1723 * This mmap-allocator allocates new areas top-down from below the 1724 * stack's low limit (the base): 1725 */ 1726 unsigned long 1727 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1728 unsigned long len, unsigned long pgoff, 1729 unsigned long flags) 1730 { 1731 struct vm_area_struct *vma, *prev; 1732 struct mm_struct *mm = current->mm; 1733 struct vm_unmapped_area_info info; 1734 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1735 1736 /* requested length too big for entire address space */ 1737 if (len > mmap_end - mmap_min_addr) 1738 return -ENOMEM; 1739 1740 if (flags & MAP_FIXED) 1741 return addr; 1742 1743 /* requesting a specific address */ 1744 if (addr) { 1745 addr = PAGE_ALIGN(addr); 1746 vma = find_vma_prev(mm, addr, &prev); 1747 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1748 (!vma || addr + len <= vm_start_gap(vma)) && 1749 (!prev || addr >= vm_end_gap(prev))) 1750 return addr; 1751 } 1752 1753 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1754 info.length = len; 1755 info.low_limit = PAGE_SIZE; 1756 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1757 info.align_mask = 0; 1758 info.align_offset = 0; 1759 addr = vm_unmapped_area(&info); 1760 1761 /* 1762 * A failed mmap() very likely causes application failure, 1763 * so fall back to the bottom-up function here. This scenario 1764 * can happen with large stack limits and large mmap() 1765 * allocations. 1766 */ 1767 if (offset_in_page(addr)) { 1768 VM_BUG_ON(addr != -ENOMEM); 1769 info.flags = 0; 1770 info.low_limit = TASK_UNMAPPED_BASE; 1771 info.high_limit = mmap_end; 1772 addr = vm_unmapped_area(&info); 1773 } 1774 1775 return addr; 1776 } 1777 1778 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1779 unsigned long 1780 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1781 unsigned long len, unsigned long pgoff, 1782 unsigned long flags) 1783 { 1784 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1785 } 1786 #endif 1787 1788 unsigned long 1789 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1790 unsigned long pgoff, unsigned long flags) 1791 { 1792 unsigned long (*get_area)(struct file *, unsigned long, 1793 unsigned long, unsigned long, unsigned long); 1794 1795 unsigned long error = arch_mmap_check(addr, len, flags); 1796 if (error) 1797 return error; 1798 1799 /* Careful about overflows.. */ 1800 if (len > TASK_SIZE) 1801 return -ENOMEM; 1802 1803 get_area = current->mm->get_unmapped_area; 1804 if (file) { 1805 if (file->f_op->get_unmapped_area) 1806 get_area = file->f_op->get_unmapped_area; 1807 } else if (flags & MAP_SHARED) { 1808 /* 1809 * mmap_region() will call shmem_zero_setup() to create a file, 1810 * so use shmem's get_unmapped_area in case it can be huge. 1811 * do_mmap() will clear pgoff, so match alignment. 1812 */ 1813 pgoff = 0; 1814 get_area = shmem_get_unmapped_area; 1815 } 1816 1817 addr = get_area(file, addr, len, pgoff, flags); 1818 if (IS_ERR_VALUE(addr)) 1819 return addr; 1820 1821 if (addr > TASK_SIZE - len) 1822 return -ENOMEM; 1823 if (offset_in_page(addr)) 1824 return -EINVAL; 1825 1826 error = security_mmap_addr(addr); 1827 return error ? error : addr; 1828 } 1829 1830 EXPORT_SYMBOL(get_unmapped_area); 1831 1832 /** 1833 * find_vma_intersection() - Look up the first VMA which intersects the interval 1834 * @mm: The process address space. 1835 * @start_addr: The inclusive start user address. 1836 * @end_addr: The exclusive end user address. 1837 * 1838 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1839 * start_addr < end_addr. 1840 */ 1841 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1842 unsigned long start_addr, 1843 unsigned long end_addr) 1844 { 1845 unsigned long index = start_addr; 1846 1847 mmap_assert_locked(mm); 1848 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1849 } 1850 EXPORT_SYMBOL(find_vma_intersection); 1851 1852 /** 1853 * find_vma() - Find the VMA for a given address, or the next VMA. 1854 * @mm: The mm_struct to check 1855 * @addr: The address 1856 * 1857 * Returns: The VMA associated with addr, or the next VMA. 1858 * May return %NULL in the case of no VMA at addr or above. 1859 */ 1860 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1861 { 1862 unsigned long index = addr; 1863 1864 mmap_assert_locked(mm); 1865 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1866 } 1867 EXPORT_SYMBOL(find_vma); 1868 1869 /** 1870 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1871 * set %pprev to the previous VMA, if any. 1872 * @mm: The mm_struct to check 1873 * @addr: The address 1874 * @pprev: The pointer to set to the previous VMA 1875 * 1876 * Note that RCU lock is missing here since the external mmap_lock() is used 1877 * instead. 1878 * 1879 * Returns: The VMA associated with @addr, or the next vma. 1880 * May return %NULL in the case of no vma at addr or above. 1881 */ 1882 struct vm_area_struct * 1883 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1884 struct vm_area_struct **pprev) 1885 { 1886 struct vm_area_struct *vma; 1887 MA_STATE(mas, &mm->mm_mt, addr, addr); 1888 1889 vma = mas_walk(&mas); 1890 *pprev = mas_prev(&mas, 0); 1891 if (!vma) 1892 vma = mas_next(&mas, ULONG_MAX); 1893 return vma; 1894 } 1895 1896 /* 1897 * Verify that the stack growth is acceptable and 1898 * update accounting. This is shared with both the 1899 * grow-up and grow-down cases. 1900 */ 1901 static int acct_stack_growth(struct vm_area_struct *vma, 1902 unsigned long size, unsigned long grow) 1903 { 1904 struct mm_struct *mm = vma->vm_mm; 1905 unsigned long new_start; 1906 1907 /* address space limit tests */ 1908 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1909 return -ENOMEM; 1910 1911 /* Stack limit test */ 1912 if (size > rlimit(RLIMIT_STACK)) 1913 return -ENOMEM; 1914 1915 /* mlock limit tests */ 1916 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1917 return -ENOMEM; 1918 1919 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1920 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1921 vma->vm_end - size; 1922 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1923 return -EFAULT; 1924 1925 /* 1926 * Overcommit.. This must be the final test, as it will 1927 * update security statistics. 1928 */ 1929 if (security_vm_enough_memory_mm(mm, grow)) 1930 return -ENOMEM; 1931 1932 return 0; 1933 } 1934 1935 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1936 /* 1937 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1938 * vma is the last one with address > vma->vm_end. Have to extend vma. 1939 */ 1940 static int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1941 { 1942 struct mm_struct *mm = vma->vm_mm; 1943 struct vm_area_struct *next; 1944 unsigned long gap_addr; 1945 int error = 0; 1946 MA_STATE(mas, &mm->mm_mt, 0, 0); 1947 1948 if (!(vma->vm_flags & VM_GROWSUP)) 1949 return -EFAULT; 1950 1951 /* Guard against exceeding limits of the address space. */ 1952 address &= PAGE_MASK; 1953 if (address >= (TASK_SIZE & PAGE_MASK)) 1954 return -ENOMEM; 1955 address += PAGE_SIZE; 1956 1957 /* Enforce stack_guard_gap */ 1958 gap_addr = address + stack_guard_gap; 1959 1960 /* Guard against overflow */ 1961 if (gap_addr < address || gap_addr > TASK_SIZE) 1962 gap_addr = TASK_SIZE; 1963 1964 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1965 if (next && vma_is_accessible(next)) { 1966 if (!(next->vm_flags & VM_GROWSUP)) 1967 return -ENOMEM; 1968 /* Check that both stack segments have the same anon_vma? */ 1969 } 1970 1971 if (mas_preallocate(&mas, GFP_KERNEL)) 1972 return -ENOMEM; 1973 1974 /* We must make sure the anon_vma is allocated. */ 1975 if (unlikely(anon_vma_prepare(vma))) { 1976 mas_destroy(&mas); 1977 return -ENOMEM; 1978 } 1979 1980 /* 1981 * vma->vm_start/vm_end cannot change under us because the caller 1982 * is required to hold the mmap_lock in read mode. We need the 1983 * anon_vma lock to serialize against concurrent expand_stacks. 1984 */ 1985 anon_vma_lock_write(vma->anon_vma); 1986 1987 /* Somebody else might have raced and expanded it already */ 1988 if (address > vma->vm_end) { 1989 unsigned long size, grow; 1990 1991 size = address - vma->vm_start; 1992 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1993 1994 error = -ENOMEM; 1995 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1996 error = acct_stack_growth(vma, size, grow); 1997 if (!error) { 1998 /* 1999 * We only hold a shared mmap_lock lock here, so 2000 * we need to protect against concurrent vma 2001 * expansions. anon_vma_lock_write() doesn't 2002 * help here, as we don't guarantee that all 2003 * growable vmas in a mm share the same root 2004 * anon vma. So, we reuse mm->page_table_lock 2005 * to guard against concurrent vma expansions. 2006 */ 2007 spin_lock(&mm->page_table_lock); 2008 if (vma->vm_flags & VM_LOCKED) 2009 mm->locked_vm += grow; 2010 vm_stat_account(mm, vma->vm_flags, grow); 2011 anon_vma_interval_tree_pre_update_vma(vma); 2012 vma->vm_end = address; 2013 /* Overwrite old entry in mtree. */ 2014 mas_set_range(&mas, vma->vm_start, address - 1); 2015 mas_store_prealloc(&mas, vma); 2016 anon_vma_interval_tree_post_update_vma(vma); 2017 spin_unlock(&mm->page_table_lock); 2018 2019 perf_event_mmap(vma); 2020 } 2021 } 2022 } 2023 anon_vma_unlock_write(vma->anon_vma); 2024 khugepaged_enter_vma(vma, vma->vm_flags); 2025 mas_destroy(&mas); 2026 return error; 2027 } 2028 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2029 2030 /* 2031 * vma is the first one with address < vma->vm_start. Have to extend vma. 2032 * mmap_lock held for writing. 2033 */ 2034 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2035 { 2036 struct mm_struct *mm = vma->vm_mm; 2037 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start); 2038 struct vm_area_struct *prev; 2039 int error = 0; 2040 2041 if (!(vma->vm_flags & VM_GROWSDOWN)) 2042 return -EFAULT; 2043 2044 address &= PAGE_MASK; 2045 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2046 return -EPERM; 2047 2048 /* Enforce stack_guard_gap */ 2049 prev = mas_prev(&mas, 0); 2050 /* Check that both stack segments have the same anon_vma? */ 2051 if (prev) { 2052 if (!(prev->vm_flags & VM_GROWSDOWN) && 2053 vma_is_accessible(prev) && 2054 (address - prev->vm_end < stack_guard_gap)) 2055 return -ENOMEM; 2056 } 2057 2058 if (mas_preallocate(&mas, GFP_KERNEL)) 2059 return -ENOMEM; 2060 2061 /* We must make sure the anon_vma is allocated. */ 2062 if (unlikely(anon_vma_prepare(vma))) { 2063 mas_destroy(&mas); 2064 return -ENOMEM; 2065 } 2066 2067 /* 2068 * vma->vm_start/vm_end cannot change under us because the caller 2069 * is required to hold the mmap_lock in read mode. We need the 2070 * anon_vma lock to serialize against concurrent expand_stacks. 2071 */ 2072 anon_vma_lock_write(vma->anon_vma); 2073 2074 /* Somebody else might have raced and expanded it already */ 2075 if (address < vma->vm_start) { 2076 unsigned long size, grow; 2077 2078 size = vma->vm_end - address; 2079 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2080 2081 error = -ENOMEM; 2082 if (grow <= vma->vm_pgoff) { 2083 error = acct_stack_growth(vma, size, grow); 2084 if (!error) { 2085 /* 2086 * We only hold a shared mmap_lock lock here, so 2087 * we need to protect against concurrent vma 2088 * expansions. anon_vma_lock_write() doesn't 2089 * help here, as we don't guarantee that all 2090 * growable vmas in a mm share the same root 2091 * anon vma. So, we reuse mm->page_table_lock 2092 * to guard against concurrent vma expansions. 2093 */ 2094 spin_lock(&mm->page_table_lock); 2095 if (vma->vm_flags & VM_LOCKED) 2096 mm->locked_vm += grow; 2097 vm_stat_account(mm, vma->vm_flags, grow); 2098 anon_vma_interval_tree_pre_update_vma(vma); 2099 vma->vm_start = address; 2100 vma->vm_pgoff -= grow; 2101 /* Overwrite old entry in mtree. */ 2102 mas_set_range(&mas, address, vma->vm_end - 1); 2103 mas_store_prealloc(&mas, vma); 2104 anon_vma_interval_tree_post_update_vma(vma); 2105 spin_unlock(&mm->page_table_lock); 2106 2107 perf_event_mmap(vma); 2108 } 2109 } 2110 } 2111 anon_vma_unlock_write(vma->anon_vma); 2112 khugepaged_enter_vma(vma, vma->vm_flags); 2113 mas_destroy(&mas); 2114 return error; 2115 } 2116 2117 /* enforced gap between the expanding stack and other mappings. */ 2118 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2119 2120 static int __init cmdline_parse_stack_guard_gap(char *p) 2121 { 2122 unsigned long val; 2123 char *endptr; 2124 2125 val = simple_strtoul(p, &endptr, 10); 2126 if (!*endptr) 2127 stack_guard_gap = val << PAGE_SHIFT; 2128 2129 return 1; 2130 } 2131 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2132 2133 #ifdef CONFIG_STACK_GROWSUP 2134 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2135 { 2136 return expand_upwards(vma, address); 2137 } 2138 2139 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2140 { 2141 struct vm_area_struct *vma, *prev; 2142 2143 addr &= PAGE_MASK; 2144 vma = find_vma_prev(mm, addr, &prev); 2145 if (vma && (vma->vm_start <= addr)) 2146 return vma; 2147 if (!prev) 2148 return NULL; 2149 if (expand_stack_locked(prev, addr)) 2150 return NULL; 2151 if (prev->vm_flags & VM_LOCKED) 2152 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2153 return prev; 2154 } 2155 #else 2156 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2157 { 2158 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 2159 return -EINVAL; 2160 return expand_downwards(vma, address); 2161 } 2162 2163 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2164 { 2165 struct vm_area_struct *vma; 2166 unsigned long start; 2167 2168 addr &= PAGE_MASK; 2169 vma = find_vma(mm, addr); 2170 if (!vma) 2171 return NULL; 2172 if (vma->vm_start <= addr) 2173 return vma; 2174 start = vma->vm_start; 2175 if (expand_stack_locked(vma, addr)) 2176 return NULL; 2177 if (vma->vm_flags & VM_LOCKED) 2178 populate_vma_page_range(vma, addr, start, NULL); 2179 return vma; 2180 } 2181 #endif 2182 2183 /* 2184 * IA64 has some horrid mapping rules: it can expand both up and down, 2185 * but with various special rules. 2186 * 2187 * We'll get rid of this architecture eventually, so the ugliness is 2188 * temporary. 2189 */ 2190 #ifdef CONFIG_IA64 2191 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr) 2192 { 2193 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) && 2194 REGION_OFFSET(addr) < RGN_MAP_LIMIT; 2195 } 2196 2197 /* 2198 * IA64 stacks grow down, but there's a special register backing store 2199 * that can grow up. Only sequentially, though, so the new address must 2200 * match vm_end. 2201 */ 2202 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr) 2203 { 2204 if (!vma_expand_ok(vma, addr)) 2205 return -EFAULT; 2206 if (vma->vm_end != (addr & PAGE_MASK)) 2207 return -EFAULT; 2208 return expand_upwards(vma, addr); 2209 } 2210 2211 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr) 2212 { 2213 if (!vma_expand_ok(vma, addr)) 2214 return -EFAULT; 2215 return expand_downwards(vma, addr); 2216 } 2217 2218 #elif defined(CONFIG_STACK_GROWSUP) 2219 2220 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 2221 #define vma_expand_down(vma, addr) (-EFAULT) 2222 2223 #else 2224 2225 #define vma_expand_up(vma,addr) (-EFAULT) 2226 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 2227 2228 #endif 2229 2230 /* 2231 * expand_stack(): legacy interface for page faulting. Don't use unless 2232 * you have to. 2233 * 2234 * This is called with the mm locked for reading, drops the lock, takes 2235 * the lock for writing, tries to look up a vma again, expands it if 2236 * necessary, and downgrades the lock to reading again. 2237 * 2238 * If no vma is found or it can't be expanded, it returns NULL and has 2239 * dropped the lock. 2240 */ 2241 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 2242 { 2243 struct vm_area_struct *vma, *prev; 2244 2245 mmap_read_unlock(mm); 2246 if (mmap_write_lock_killable(mm)) 2247 return NULL; 2248 2249 vma = find_vma_prev(mm, addr, &prev); 2250 if (vma && vma->vm_start <= addr) 2251 goto success; 2252 2253 if (prev && !vma_expand_up(prev, addr)) { 2254 vma = prev; 2255 goto success; 2256 } 2257 2258 if (vma && !vma_expand_down(vma, addr)) 2259 goto success; 2260 2261 mmap_write_unlock(mm); 2262 return NULL; 2263 2264 success: 2265 mmap_write_downgrade(mm); 2266 return vma; 2267 } 2268 2269 /* 2270 * Ok - we have the memory areas we should free on a maple tree so release them, 2271 * and do the vma updates. 2272 * 2273 * Called with the mm semaphore held. 2274 */ 2275 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2276 { 2277 unsigned long nr_accounted = 0; 2278 struct vm_area_struct *vma; 2279 2280 /* Update high watermark before we lower total_vm */ 2281 update_hiwater_vm(mm); 2282 mas_for_each(mas, vma, ULONG_MAX) { 2283 long nrpages = vma_pages(vma); 2284 2285 if (vma->vm_flags & VM_ACCOUNT) 2286 nr_accounted += nrpages; 2287 vm_stat_account(mm, vma->vm_flags, -nrpages); 2288 remove_vma(vma, false); 2289 } 2290 vm_unacct_memory(nr_accounted); 2291 validate_mm(mm); 2292 } 2293 2294 /* 2295 * Get rid of page table information in the indicated region. 2296 * 2297 * Called with the mm semaphore held. 2298 */ 2299 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt, 2300 struct vm_area_struct *vma, struct vm_area_struct *prev, 2301 struct vm_area_struct *next, 2302 unsigned long start, unsigned long end, bool mm_wr_locked) 2303 { 2304 struct mmu_gather tlb; 2305 2306 lru_add_drain(); 2307 tlb_gather_mmu(&tlb, mm); 2308 update_hiwater_rss(mm); 2309 unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked); 2310 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2311 next ? next->vm_start : USER_PGTABLES_CEILING, 2312 mm_wr_locked); 2313 tlb_finish_mmu(&tlb); 2314 } 2315 2316 /* 2317 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2318 * has already been checked or doesn't make sense to fail. 2319 * VMA Iterator will point to the end VMA. 2320 */ 2321 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2322 unsigned long addr, int new_below) 2323 { 2324 struct vma_prepare vp; 2325 struct vm_area_struct *new; 2326 int err; 2327 2328 validate_mm(vma->vm_mm); 2329 2330 WARN_ON(vma->vm_start >= addr); 2331 WARN_ON(vma->vm_end <= addr); 2332 2333 if (vma->vm_ops && vma->vm_ops->may_split) { 2334 err = vma->vm_ops->may_split(vma, addr); 2335 if (err) 2336 return err; 2337 } 2338 2339 new = vm_area_dup(vma); 2340 if (!new) 2341 return -ENOMEM; 2342 2343 err = -ENOMEM; 2344 if (vma_iter_prealloc(vmi)) 2345 goto out_free_vma; 2346 2347 if (new_below) { 2348 new->vm_end = addr; 2349 } else { 2350 new->vm_start = addr; 2351 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2352 } 2353 2354 err = vma_dup_policy(vma, new); 2355 if (err) 2356 goto out_free_vmi; 2357 2358 err = anon_vma_clone(new, vma); 2359 if (err) 2360 goto out_free_mpol; 2361 2362 if (new->vm_file) 2363 get_file(new->vm_file); 2364 2365 if (new->vm_ops && new->vm_ops->open) 2366 new->vm_ops->open(new); 2367 2368 init_vma_prep(&vp, vma); 2369 vp.insert = new; 2370 vma_prepare(&vp); 2371 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 2372 2373 if (new_below) { 2374 vma->vm_start = addr; 2375 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 2376 } else { 2377 vma->vm_end = addr; 2378 } 2379 2380 /* vma_complete stores the new vma */ 2381 vma_complete(&vp, vmi, vma->vm_mm); 2382 2383 /* Success. */ 2384 if (new_below) 2385 vma_next(vmi); 2386 validate_mm(vma->vm_mm); 2387 return 0; 2388 2389 out_free_mpol: 2390 mpol_put(vma_policy(new)); 2391 out_free_vmi: 2392 vma_iter_free(vmi); 2393 out_free_vma: 2394 vm_area_free(new); 2395 validate_mm(vma->vm_mm); 2396 return err; 2397 } 2398 2399 /* 2400 * Split a vma into two pieces at address 'addr', a new vma is allocated 2401 * either for the first part or the tail. 2402 */ 2403 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2404 unsigned long addr, int new_below) 2405 { 2406 if (vma->vm_mm->map_count >= sysctl_max_map_count) 2407 return -ENOMEM; 2408 2409 return __split_vma(vmi, vma, addr, new_below); 2410 } 2411 2412 /* 2413 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 2414 * @vmi: The vma iterator 2415 * @vma: The starting vm_area_struct 2416 * @mm: The mm_struct 2417 * @start: The aligned start address to munmap. 2418 * @end: The aligned end address to munmap. 2419 * @uf: The userfaultfd list_head 2420 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 2421 * success. 2422 * 2423 * Return: 0 on success and drops the lock if so directed, error and leaves the 2424 * lock held otherwise. 2425 */ 2426 static int 2427 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2428 struct mm_struct *mm, unsigned long start, 2429 unsigned long end, struct list_head *uf, bool unlock) 2430 { 2431 struct vm_area_struct *prev, *next = NULL; 2432 struct maple_tree mt_detach; 2433 int count = 0; 2434 int error = -ENOMEM; 2435 unsigned long locked_vm = 0; 2436 MA_STATE(mas_detach, &mt_detach, 0, 0); 2437 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2438 mt_set_external_lock(&mt_detach, &mm->mmap_lock); 2439 2440 /* 2441 * If we need to split any vma, do it now to save pain later. 2442 * 2443 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2444 * unmapped vm_area_struct will remain in use: so lower split_vma 2445 * places tmp vma above, and higher split_vma places tmp vma below. 2446 */ 2447 2448 /* Does it split the first one? */ 2449 if (start > vma->vm_start) { 2450 2451 /* 2452 * Make sure that map_count on return from munmap() will 2453 * not exceed its limit; but let map_count go just above 2454 * its limit temporarily, to help free resources as expected. 2455 */ 2456 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2457 goto map_count_exceeded; 2458 2459 error = __split_vma(vmi, vma, start, 0); 2460 if (error) 2461 goto start_split_failed; 2462 2463 vma = vma_iter_load(vmi); 2464 } 2465 2466 prev = vma_prev(vmi); 2467 if (unlikely((!prev))) 2468 vma_iter_set(vmi, start); 2469 2470 /* 2471 * Detach a range of VMAs from the mm. Using next as a temp variable as 2472 * it is always overwritten. 2473 */ 2474 for_each_vma_range(*vmi, next, end) { 2475 /* Does it split the end? */ 2476 if (next->vm_end > end) { 2477 error = __split_vma(vmi, next, end, 0); 2478 if (error) 2479 goto end_split_failed; 2480 } 2481 vma_start_write(next); 2482 mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1); 2483 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL); 2484 if (error) 2485 goto munmap_gather_failed; 2486 vma_mark_detached(next, true); 2487 if (next->vm_flags & VM_LOCKED) 2488 locked_vm += vma_pages(next); 2489 2490 count++; 2491 if (unlikely(uf)) { 2492 /* 2493 * If userfaultfd_unmap_prep returns an error the vmas 2494 * will remain split, but userland will get a 2495 * highly unexpected error anyway. This is no 2496 * different than the case where the first of the two 2497 * __split_vma fails, but we don't undo the first 2498 * split, despite we could. This is unlikely enough 2499 * failure that it's not worth optimizing it for. 2500 */ 2501 error = userfaultfd_unmap_prep(next, start, end, uf); 2502 2503 if (error) 2504 goto userfaultfd_error; 2505 } 2506 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2507 BUG_ON(next->vm_start < start); 2508 BUG_ON(next->vm_start > end); 2509 #endif 2510 } 2511 2512 if (vma_iter_end(vmi) > end) 2513 next = vma_iter_load(vmi); 2514 2515 if (!next) 2516 next = vma_next(vmi); 2517 2518 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2519 /* Make sure no VMAs are about to be lost. */ 2520 { 2521 MA_STATE(test, &mt_detach, start, end - 1); 2522 struct vm_area_struct *vma_mas, *vma_test; 2523 int test_count = 0; 2524 2525 vma_iter_set(vmi, start); 2526 rcu_read_lock(); 2527 vma_test = mas_find(&test, end - 1); 2528 for_each_vma_range(*vmi, vma_mas, end) { 2529 BUG_ON(vma_mas != vma_test); 2530 test_count++; 2531 vma_test = mas_next(&test, end - 1); 2532 } 2533 rcu_read_unlock(); 2534 BUG_ON(count != test_count); 2535 } 2536 #endif 2537 vma_iter_set(vmi, start); 2538 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 2539 if (error) 2540 goto clear_tree_failed; 2541 2542 /* Point of no return */ 2543 mm->locked_vm -= locked_vm; 2544 mm->map_count -= count; 2545 if (unlock) 2546 mmap_write_downgrade(mm); 2547 2548 /* 2549 * We can free page tables without write-locking mmap_lock because VMAs 2550 * were isolated before we downgraded mmap_lock. 2551 */ 2552 unmap_region(mm, &mt_detach, vma, prev, next, start, end, !unlock); 2553 /* Statistics and freeing VMAs */ 2554 mas_set(&mas_detach, start); 2555 remove_mt(mm, &mas_detach); 2556 __mt_destroy(&mt_detach); 2557 validate_mm(mm); 2558 if (unlock) 2559 mmap_read_unlock(mm); 2560 2561 return 0; 2562 2563 clear_tree_failed: 2564 userfaultfd_error: 2565 munmap_gather_failed: 2566 end_split_failed: 2567 mas_set(&mas_detach, 0); 2568 mas_for_each(&mas_detach, next, end) 2569 vma_mark_detached(next, false); 2570 2571 __mt_destroy(&mt_detach); 2572 start_split_failed: 2573 map_count_exceeded: 2574 return error; 2575 } 2576 2577 /* 2578 * do_vmi_munmap() - munmap a given range. 2579 * @vmi: The vma iterator 2580 * @mm: The mm_struct 2581 * @start: The start address to munmap 2582 * @len: The length of the range to munmap 2583 * @uf: The userfaultfd list_head 2584 * @unlock: set to true if the user wants to drop the mmap_lock on success 2585 * 2586 * This function takes a @mas that is either pointing to the previous VMA or set 2587 * to MA_START and sets it up to remove the mapping(s). The @len will be 2588 * aligned and any arch_unmap work will be preformed. 2589 * 2590 * Return: 0 on success and drops the lock if so directed, error and leaves the 2591 * lock held otherwise. 2592 */ 2593 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 2594 unsigned long start, size_t len, struct list_head *uf, 2595 bool unlock) 2596 { 2597 unsigned long end; 2598 struct vm_area_struct *vma; 2599 2600 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2601 return -EINVAL; 2602 2603 end = start + PAGE_ALIGN(len); 2604 if (end == start) 2605 return -EINVAL; 2606 2607 /* arch_unmap() might do unmaps itself. */ 2608 arch_unmap(mm, start, end); 2609 2610 /* Find the first overlapping VMA */ 2611 vma = vma_find(vmi, end); 2612 if (!vma) { 2613 if (unlock) 2614 mmap_write_unlock(mm); 2615 return 0; 2616 } 2617 2618 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 2619 } 2620 2621 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2622 * @mm: The mm_struct 2623 * @start: The start address to munmap 2624 * @len: The length to be munmapped. 2625 * @uf: The userfaultfd list_head 2626 * 2627 * Return: 0 on success, error otherwise. 2628 */ 2629 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2630 struct list_head *uf) 2631 { 2632 VMA_ITERATOR(vmi, mm, start); 2633 2634 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 2635 } 2636 2637 unsigned long mmap_region(struct file *file, unsigned long addr, 2638 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2639 struct list_head *uf) 2640 { 2641 struct mm_struct *mm = current->mm; 2642 struct vm_area_struct *vma = NULL; 2643 struct vm_area_struct *next, *prev, *merge; 2644 pgoff_t pglen = len >> PAGE_SHIFT; 2645 unsigned long charged = 0; 2646 unsigned long end = addr + len; 2647 unsigned long merge_start = addr, merge_end = end; 2648 pgoff_t vm_pgoff; 2649 int error; 2650 VMA_ITERATOR(vmi, mm, addr); 2651 2652 /* Check against address space limit. */ 2653 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2654 unsigned long nr_pages; 2655 2656 /* 2657 * MAP_FIXED may remove pages of mappings that intersects with 2658 * requested mapping. Account for the pages it would unmap. 2659 */ 2660 nr_pages = count_vma_pages_range(mm, addr, end); 2661 2662 if (!may_expand_vm(mm, vm_flags, 2663 (len >> PAGE_SHIFT) - nr_pages)) 2664 return -ENOMEM; 2665 } 2666 2667 /* Unmap any existing mapping in the area */ 2668 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false)) 2669 return -ENOMEM; 2670 2671 /* 2672 * Private writable mapping: check memory availability 2673 */ 2674 if (accountable_mapping(file, vm_flags)) { 2675 charged = len >> PAGE_SHIFT; 2676 if (security_vm_enough_memory_mm(mm, charged)) 2677 return -ENOMEM; 2678 vm_flags |= VM_ACCOUNT; 2679 } 2680 2681 next = vma_next(&vmi); 2682 prev = vma_prev(&vmi); 2683 if (vm_flags & VM_SPECIAL) 2684 goto cannot_expand; 2685 2686 /* Attempt to expand an old mapping */ 2687 /* Check next */ 2688 if (next && next->vm_start == end && !vma_policy(next) && 2689 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2690 NULL_VM_UFFD_CTX, NULL)) { 2691 merge_end = next->vm_end; 2692 vma = next; 2693 vm_pgoff = next->vm_pgoff - pglen; 2694 } 2695 2696 /* Check prev */ 2697 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2698 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2699 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2700 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2701 NULL_VM_UFFD_CTX, NULL))) { 2702 merge_start = prev->vm_start; 2703 vma = prev; 2704 vm_pgoff = prev->vm_pgoff; 2705 } 2706 2707 2708 /* Actually expand, if possible */ 2709 if (vma && 2710 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { 2711 khugepaged_enter_vma(vma, vm_flags); 2712 goto expanded; 2713 } 2714 2715 cannot_expand: 2716 if (prev) 2717 vma_iter_next_range(&vmi); 2718 2719 /* 2720 * Determine the object being mapped and call the appropriate 2721 * specific mapper. the address has already been validated, but 2722 * not unmapped, but the maps are removed from the list. 2723 */ 2724 vma = vm_area_alloc(mm); 2725 if (!vma) { 2726 error = -ENOMEM; 2727 goto unacct_error; 2728 } 2729 2730 vma_iter_set(&vmi, addr); 2731 vma->vm_start = addr; 2732 vma->vm_end = end; 2733 vm_flags_init(vma, vm_flags); 2734 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2735 vma->vm_pgoff = pgoff; 2736 2737 if (file) { 2738 if (vm_flags & VM_SHARED) { 2739 error = mapping_map_writable(file->f_mapping); 2740 if (error) 2741 goto free_vma; 2742 } 2743 2744 vma->vm_file = get_file(file); 2745 error = call_mmap(file, vma); 2746 if (error) 2747 goto unmap_and_free_vma; 2748 2749 /* 2750 * Expansion is handled above, merging is handled below. 2751 * Drivers should not alter the address of the VMA. 2752 */ 2753 error = -EINVAL; 2754 if (WARN_ON((addr != vma->vm_start))) 2755 goto close_and_free_vma; 2756 2757 vma_iter_set(&vmi, addr); 2758 /* 2759 * If vm_flags changed after call_mmap(), we should try merge 2760 * vma again as we may succeed this time. 2761 */ 2762 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2763 merge = vma_merge(&vmi, mm, prev, vma->vm_start, 2764 vma->vm_end, vma->vm_flags, NULL, 2765 vma->vm_file, vma->vm_pgoff, NULL, 2766 NULL_VM_UFFD_CTX, NULL); 2767 if (merge) { 2768 /* 2769 * ->mmap() can change vma->vm_file and fput 2770 * the original file. So fput the vma->vm_file 2771 * here or we would add an extra fput for file 2772 * and cause general protection fault 2773 * ultimately. 2774 */ 2775 fput(vma->vm_file); 2776 vm_area_free(vma); 2777 vma = merge; 2778 /* Update vm_flags to pick up the change. */ 2779 vm_flags = vma->vm_flags; 2780 goto unmap_writable; 2781 } 2782 } 2783 2784 vm_flags = vma->vm_flags; 2785 } else if (vm_flags & VM_SHARED) { 2786 error = shmem_zero_setup(vma); 2787 if (error) 2788 goto free_vma; 2789 } else { 2790 vma_set_anonymous(vma); 2791 } 2792 2793 if (map_deny_write_exec(vma, vma->vm_flags)) { 2794 error = -EACCES; 2795 goto close_and_free_vma; 2796 } 2797 2798 /* Allow architectures to sanity-check the vm_flags */ 2799 error = -EINVAL; 2800 if (!arch_validate_flags(vma->vm_flags)) 2801 goto close_and_free_vma; 2802 2803 error = -ENOMEM; 2804 if (vma_iter_prealloc(&vmi)) 2805 goto close_and_free_vma; 2806 2807 if (vma->vm_file) 2808 i_mmap_lock_write(vma->vm_file->f_mapping); 2809 2810 vma_iter_store(&vmi, vma); 2811 mm->map_count++; 2812 if (vma->vm_file) { 2813 if (vma->vm_flags & VM_SHARED) 2814 mapping_allow_writable(vma->vm_file->f_mapping); 2815 2816 flush_dcache_mmap_lock(vma->vm_file->f_mapping); 2817 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap); 2818 flush_dcache_mmap_unlock(vma->vm_file->f_mapping); 2819 i_mmap_unlock_write(vma->vm_file->f_mapping); 2820 } 2821 2822 /* 2823 * vma_merge() calls khugepaged_enter_vma() either, the below 2824 * call covers the non-merge case. 2825 */ 2826 khugepaged_enter_vma(vma, vma->vm_flags); 2827 2828 /* Once vma denies write, undo our temporary denial count */ 2829 unmap_writable: 2830 if (file && vm_flags & VM_SHARED) 2831 mapping_unmap_writable(file->f_mapping); 2832 file = vma->vm_file; 2833 ksm_add_vma(vma); 2834 expanded: 2835 perf_event_mmap(vma); 2836 2837 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 2838 if (vm_flags & VM_LOCKED) { 2839 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2840 is_vm_hugetlb_page(vma) || 2841 vma == get_gate_vma(current->mm)) 2842 vm_flags_clear(vma, VM_LOCKED_MASK); 2843 else 2844 mm->locked_vm += (len >> PAGE_SHIFT); 2845 } 2846 2847 if (file) 2848 uprobe_mmap(vma); 2849 2850 /* 2851 * New (or expanded) vma always get soft dirty status. 2852 * Otherwise user-space soft-dirty page tracker won't 2853 * be able to distinguish situation when vma area unmapped, 2854 * then new mapped in-place (which must be aimed as 2855 * a completely new data area). 2856 */ 2857 vm_flags_set(vma, VM_SOFTDIRTY); 2858 2859 vma_set_page_prot(vma); 2860 2861 validate_mm(mm); 2862 return addr; 2863 2864 close_and_free_vma: 2865 if (file && vma->vm_ops && vma->vm_ops->close) 2866 vma->vm_ops->close(vma); 2867 2868 if (file || vma->vm_file) { 2869 unmap_and_free_vma: 2870 fput(vma->vm_file); 2871 vma->vm_file = NULL; 2872 2873 /* Undo any partial mapping done by a device driver. */ 2874 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start, 2875 vma->vm_end, true); 2876 } 2877 if (file && (vm_flags & VM_SHARED)) 2878 mapping_unmap_writable(file->f_mapping); 2879 free_vma: 2880 vm_area_free(vma); 2881 unacct_error: 2882 if (charged) 2883 vm_unacct_memory(charged); 2884 validate_mm(mm); 2885 return error; 2886 } 2887 2888 static int __vm_munmap(unsigned long start, size_t len, bool unlock) 2889 { 2890 int ret; 2891 struct mm_struct *mm = current->mm; 2892 LIST_HEAD(uf); 2893 VMA_ITERATOR(vmi, mm, start); 2894 2895 if (mmap_write_lock_killable(mm)) 2896 return -EINTR; 2897 2898 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 2899 if (ret || !unlock) 2900 mmap_write_unlock(mm); 2901 2902 userfaultfd_unmap_complete(mm, &uf); 2903 return ret; 2904 } 2905 2906 int vm_munmap(unsigned long start, size_t len) 2907 { 2908 return __vm_munmap(start, len, false); 2909 } 2910 EXPORT_SYMBOL(vm_munmap); 2911 2912 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2913 { 2914 addr = untagged_addr(addr); 2915 return __vm_munmap(addr, len, true); 2916 } 2917 2918 2919 /* 2920 * Emulation of deprecated remap_file_pages() syscall. 2921 */ 2922 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2923 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2924 { 2925 2926 struct mm_struct *mm = current->mm; 2927 struct vm_area_struct *vma; 2928 unsigned long populate = 0; 2929 unsigned long ret = -EINVAL; 2930 struct file *file; 2931 2932 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 2933 current->comm, current->pid); 2934 2935 if (prot) 2936 return ret; 2937 start = start & PAGE_MASK; 2938 size = size & PAGE_MASK; 2939 2940 if (start + size <= start) 2941 return ret; 2942 2943 /* Does pgoff wrap? */ 2944 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2945 return ret; 2946 2947 if (mmap_write_lock_killable(mm)) 2948 return -EINTR; 2949 2950 vma = vma_lookup(mm, start); 2951 2952 if (!vma || !(vma->vm_flags & VM_SHARED)) 2953 goto out; 2954 2955 if (start + size > vma->vm_end) { 2956 VMA_ITERATOR(vmi, mm, vma->vm_end); 2957 struct vm_area_struct *next, *prev = vma; 2958 2959 for_each_vma_range(vmi, next, start + size) { 2960 /* hole between vmas ? */ 2961 if (next->vm_start != prev->vm_end) 2962 goto out; 2963 2964 if (next->vm_file != vma->vm_file) 2965 goto out; 2966 2967 if (next->vm_flags != vma->vm_flags) 2968 goto out; 2969 2970 if (start + size <= next->vm_end) 2971 break; 2972 2973 prev = next; 2974 } 2975 2976 if (!next) 2977 goto out; 2978 } 2979 2980 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2981 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2982 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2983 2984 flags &= MAP_NONBLOCK; 2985 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2986 if (vma->vm_flags & VM_LOCKED) 2987 flags |= MAP_LOCKED; 2988 2989 file = get_file(vma->vm_file); 2990 ret = do_mmap(vma->vm_file, start, size, 2991 prot, flags, pgoff, &populate, NULL); 2992 fput(file); 2993 out: 2994 mmap_write_unlock(mm); 2995 if (populate) 2996 mm_populate(ret, populate); 2997 if (!IS_ERR_VALUE(ret)) 2998 ret = 0; 2999 return ret; 3000 } 3001 3002 /* 3003 * do_vma_munmap() - Unmap a full or partial vma. 3004 * @vmi: The vma iterator pointing at the vma 3005 * @vma: The first vma to be munmapped 3006 * @start: the start of the address to unmap 3007 * @end: The end of the address to unmap 3008 * @uf: The userfaultfd list_head 3009 * @unlock: Drop the lock on success 3010 * 3011 * unmaps a VMA mapping when the vma iterator is already in position. 3012 * Does not handle alignment. 3013 * 3014 * Return: 0 on success drops the lock of so directed, error on failure and will 3015 * still hold the lock. 3016 */ 3017 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3018 unsigned long start, unsigned long end, struct list_head *uf, 3019 bool unlock) 3020 { 3021 struct mm_struct *mm = vma->vm_mm; 3022 int ret; 3023 3024 arch_unmap(mm, start, end); 3025 ret = do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 3026 validate_mm(mm); 3027 return ret; 3028 } 3029 3030 /* 3031 * do_brk_flags() - Increase the brk vma if the flags match. 3032 * @vmi: The vma iterator 3033 * @addr: The start address 3034 * @len: The length of the increase 3035 * @vma: The vma, 3036 * @flags: The VMA Flags 3037 * 3038 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 3039 * do not match then create a new anonymous VMA. Eventually we may be able to 3040 * do some brk-specific accounting here. 3041 */ 3042 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 3043 unsigned long addr, unsigned long len, unsigned long flags) 3044 { 3045 struct mm_struct *mm = current->mm; 3046 struct vma_prepare vp; 3047 3048 validate_mm(mm); 3049 /* 3050 * Check against address space limits by the changed size 3051 * Note: This happens *after* clearing old mappings in some code paths. 3052 */ 3053 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3054 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3055 return -ENOMEM; 3056 3057 if (mm->map_count > sysctl_max_map_count) 3058 return -ENOMEM; 3059 3060 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3061 return -ENOMEM; 3062 3063 /* 3064 * Expand the existing vma if possible; Note that singular lists do not 3065 * occur after forking, so the expand will only happen on new VMAs. 3066 */ 3067 if (vma && vma->vm_end == addr && !vma_policy(vma) && 3068 can_vma_merge_after(vma, flags, NULL, NULL, 3069 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { 3070 if (vma_iter_prealloc(vmi)) 3071 goto unacct_fail; 3072 3073 init_vma_prep(&vp, vma); 3074 vma_prepare(&vp); 3075 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 3076 vma->vm_end = addr + len; 3077 vm_flags_set(vma, VM_SOFTDIRTY); 3078 vma_iter_store(vmi, vma); 3079 3080 vma_complete(&vp, vmi, mm); 3081 khugepaged_enter_vma(vma, flags); 3082 goto out; 3083 } 3084 3085 /* create a vma struct for an anonymous mapping */ 3086 vma = vm_area_alloc(mm); 3087 if (!vma) 3088 goto unacct_fail; 3089 3090 vma_set_anonymous(vma); 3091 vma->vm_start = addr; 3092 vma->vm_end = addr + len; 3093 vma->vm_pgoff = addr >> PAGE_SHIFT; 3094 vm_flags_init(vma, flags); 3095 vma->vm_page_prot = vm_get_page_prot(flags); 3096 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 3097 goto mas_store_fail; 3098 3099 mm->map_count++; 3100 ksm_add_vma(vma); 3101 out: 3102 perf_event_mmap(vma); 3103 mm->total_vm += len >> PAGE_SHIFT; 3104 mm->data_vm += len >> PAGE_SHIFT; 3105 if (flags & VM_LOCKED) 3106 mm->locked_vm += (len >> PAGE_SHIFT); 3107 vm_flags_set(vma, VM_SOFTDIRTY); 3108 validate_mm(mm); 3109 return 0; 3110 3111 mas_store_fail: 3112 vm_area_free(vma); 3113 unacct_fail: 3114 vm_unacct_memory(len >> PAGE_SHIFT); 3115 return -ENOMEM; 3116 } 3117 3118 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3119 { 3120 struct mm_struct *mm = current->mm; 3121 struct vm_area_struct *vma = NULL; 3122 unsigned long len; 3123 int ret; 3124 bool populate; 3125 LIST_HEAD(uf); 3126 VMA_ITERATOR(vmi, mm, addr); 3127 3128 len = PAGE_ALIGN(request); 3129 if (len < request) 3130 return -ENOMEM; 3131 if (!len) 3132 return 0; 3133 3134 if (mmap_write_lock_killable(mm)) 3135 return -EINTR; 3136 3137 /* Until we need other flags, refuse anything except VM_EXEC. */ 3138 if ((flags & (~VM_EXEC)) != 0) 3139 return -EINVAL; 3140 3141 ret = check_brk_limits(addr, len); 3142 if (ret) 3143 goto limits_failed; 3144 3145 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 3146 if (ret) 3147 goto munmap_failed; 3148 3149 vma = vma_prev(&vmi); 3150 ret = do_brk_flags(&vmi, vma, addr, len, flags); 3151 populate = ((mm->def_flags & VM_LOCKED) != 0); 3152 mmap_write_unlock(mm); 3153 userfaultfd_unmap_complete(mm, &uf); 3154 if (populate && !ret) 3155 mm_populate(addr, len); 3156 return ret; 3157 3158 munmap_failed: 3159 limits_failed: 3160 mmap_write_unlock(mm); 3161 return ret; 3162 } 3163 EXPORT_SYMBOL(vm_brk_flags); 3164 3165 int vm_brk(unsigned long addr, unsigned long len) 3166 { 3167 return vm_brk_flags(addr, len, 0); 3168 } 3169 EXPORT_SYMBOL(vm_brk); 3170 3171 /* Release all mmaps. */ 3172 void exit_mmap(struct mm_struct *mm) 3173 { 3174 struct mmu_gather tlb; 3175 struct vm_area_struct *vma; 3176 unsigned long nr_accounted = 0; 3177 MA_STATE(mas, &mm->mm_mt, 0, 0); 3178 int count = 0; 3179 3180 /* mm's last user has gone, and its about to be pulled down */ 3181 mmu_notifier_release(mm); 3182 3183 mmap_read_lock(mm); 3184 arch_exit_mmap(mm); 3185 3186 vma = mas_find(&mas, ULONG_MAX); 3187 if (!vma) { 3188 /* Can happen if dup_mmap() received an OOM */ 3189 mmap_read_unlock(mm); 3190 return; 3191 } 3192 3193 lru_add_drain(); 3194 flush_cache_mm(mm); 3195 tlb_gather_mmu_fullmm(&tlb, mm); 3196 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3197 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3198 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false); 3199 mmap_read_unlock(mm); 3200 3201 /* 3202 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3203 * because the memory has been already freed. 3204 */ 3205 set_bit(MMF_OOM_SKIP, &mm->flags); 3206 mmap_write_lock(mm); 3207 mt_clear_in_rcu(&mm->mm_mt); 3208 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS, 3209 USER_PGTABLES_CEILING, true); 3210 tlb_finish_mmu(&tlb); 3211 3212 /* 3213 * Walk the list again, actually closing and freeing it, with preemption 3214 * enabled, without holding any MM locks besides the unreachable 3215 * mmap_write_lock. 3216 */ 3217 do { 3218 if (vma->vm_flags & VM_ACCOUNT) 3219 nr_accounted += vma_pages(vma); 3220 remove_vma(vma, true); 3221 count++; 3222 cond_resched(); 3223 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL); 3224 3225 BUG_ON(count != mm->map_count); 3226 3227 trace_exit_mmap(mm); 3228 __mt_destroy(&mm->mm_mt); 3229 mmap_write_unlock(mm); 3230 vm_unacct_memory(nr_accounted); 3231 } 3232 3233 /* Insert vm structure into process list sorted by address 3234 * and into the inode's i_mmap tree. If vm_file is non-NULL 3235 * then i_mmap_rwsem is taken here. 3236 */ 3237 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3238 { 3239 unsigned long charged = vma_pages(vma); 3240 3241 3242 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3243 return -ENOMEM; 3244 3245 if ((vma->vm_flags & VM_ACCOUNT) && 3246 security_vm_enough_memory_mm(mm, charged)) 3247 return -ENOMEM; 3248 3249 /* 3250 * The vm_pgoff of a purely anonymous vma should be irrelevant 3251 * until its first write fault, when page's anon_vma and index 3252 * are set. But now set the vm_pgoff it will almost certainly 3253 * end up with (unless mremap moves it elsewhere before that 3254 * first wfault), so /proc/pid/maps tells a consistent story. 3255 * 3256 * By setting it to reflect the virtual start address of the 3257 * vma, merges and splits can happen in a seamless way, just 3258 * using the existing file pgoff checks and manipulations. 3259 * Similarly in do_mmap and in do_brk_flags. 3260 */ 3261 if (vma_is_anonymous(vma)) { 3262 BUG_ON(vma->anon_vma); 3263 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3264 } 3265 3266 if (vma_link(mm, vma)) { 3267 vm_unacct_memory(charged); 3268 return -ENOMEM; 3269 } 3270 3271 return 0; 3272 } 3273 3274 /* 3275 * Copy the vma structure to a new location in the same mm, 3276 * prior to moving page table entries, to effect an mremap move. 3277 */ 3278 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3279 unsigned long addr, unsigned long len, pgoff_t pgoff, 3280 bool *need_rmap_locks) 3281 { 3282 struct vm_area_struct *vma = *vmap; 3283 unsigned long vma_start = vma->vm_start; 3284 struct mm_struct *mm = vma->vm_mm; 3285 struct vm_area_struct *new_vma, *prev; 3286 bool faulted_in_anon_vma = true; 3287 VMA_ITERATOR(vmi, mm, addr); 3288 3289 validate_mm(mm); 3290 /* 3291 * If anonymous vma has not yet been faulted, update new pgoff 3292 * to match new location, to increase its chance of merging. 3293 */ 3294 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3295 pgoff = addr >> PAGE_SHIFT; 3296 faulted_in_anon_vma = false; 3297 } 3298 3299 new_vma = find_vma_prev(mm, addr, &prev); 3300 if (new_vma && new_vma->vm_start < addr + len) 3301 return NULL; /* should never get here */ 3302 3303 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags, 3304 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3305 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3306 if (new_vma) { 3307 /* 3308 * Source vma may have been merged into new_vma 3309 */ 3310 if (unlikely(vma_start >= new_vma->vm_start && 3311 vma_start < new_vma->vm_end)) { 3312 /* 3313 * The only way we can get a vma_merge with 3314 * self during an mremap is if the vma hasn't 3315 * been faulted in yet and we were allowed to 3316 * reset the dst vma->vm_pgoff to the 3317 * destination address of the mremap to allow 3318 * the merge to happen. mremap must change the 3319 * vm_pgoff linearity between src and dst vmas 3320 * (in turn preventing a vma_merge) to be 3321 * safe. It is only safe to keep the vm_pgoff 3322 * linear if there are no pages mapped yet. 3323 */ 3324 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3325 *vmap = vma = new_vma; 3326 } 3327 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3328 } else { 3329 new_vma = vm_area_dup(vma); 3330 if (!new_vma) 3331 goto out; 3332 new_vma->vm_start = addr; 3333 new_vma->vm_end = addr + len; 3334 new_vma->vm_pgoff = pgoff; 3335 if (vma_dup_policy(vma, new_vma)) 3336 goto out_free_vma; 3337 if (anon_vma_clone(new_vma, vma)) 3338 goto out_free_mempol; 3339 if (new_vma->vm_file) 3340 get_file(new_vma->vm_file); 3341 if (new_vma->vm_ops && new_vma->vm_ops->open) 3342 new_vma->vm_ops->open(new_vma); 3343 vma_start_write(new_vma); 3344 if (vma_link(mm, new_vma)) 3345 goto out_vma_link; 3346 *need_rmap_locks = false; 3347 } 3348 validate_mm(mm); 3349 return new_vma; 3350 3351 out_vma_link: 3352 if (new_vma->vm_ops && new_vma->vm_ops->close) 3353 new_vma->vm_ops->close(new_vma); 3354 3355 if (new_vma->vm_file) 3356 fput(new_vma->vm_file); 3357 3358 unlink_anon_vmas(new_vma); 3359 out_free_mempol: 3360 mpol_put(vma_policy(new_vma)); 3361 out_free_vma: 3362 vm_area_free(new_vma); 3363 out: 3364 validate_mm(mm); 3365 return NULL; 3366 } 3367 3368 /* 3369 * Return true if the calling process may expand its vm space by the passed 3370 * number of pages 3371 */ 3372 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3373 { 3374 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3375 return false; 3376 3377 if (is_data_mapping(flags) && 3378 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3379 /* Workaround for Valgrind */ 3380 if (rlimit(RLIMIT_DATA) == 0 && 3381 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3382 return true; 3383 3384 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3385 current->comm, current->pid, 3386 (mm->data_vm + npages) << PAGE_SHIFT, 3387 rlimit(RLIMIT_DATA), 3388 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3389 3390 if (!ignore_rlimit_data) 3391 return false; 3392 } 3393 3394 return true; 3395 } 3396 3397 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3398 { 3399 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3400 3401 if (is_exec_mapping(flags)) 3402 mm->exec_vm += npages; 3403 else if (is_stack_mapping(flags)) 3404 mm->stack_vm += npages; 3405 else if (is_data_mapping(flags)) 3406 mm->data_vm += npages; 3407 } 3408 3409 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3410 3411 /* 3412 * Having a close hook prevents vma merging regardless of flags. 3413 */ 3414 static void special_mapping_close(struct vm_area_struct *vma) 3415 { 3416 } 3417 3418 static const char *special_mapping_name(struct vm_area_struct *vma) 3419 { 3420 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3421 } 3422 3423 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3424 { 3425 struct vm_special_mapping *sm = new_vma->vm_private_data; 3426 3427 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3428 return -EFAULT; 3429 3430 if (sm->mremap) 3431 return sm->mremap(sm, new_vma); 3432 3433 return 0; 3434 } 3435 3436 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3437 { 3438 /* 3439 * Forbid splitting special mappings - kernel has expectations over 3440 * the number of pages in mapping. Together with VM_DONTEXPAND 3441 * the size of vma should stay the same over the special mapping's 3442 * lifetime. 3443 */ 3444 return -EINVAL; 3445 } 3446 3447 static const struct vm_operations_struct special_mapping_vmops = { 3448 .close = special_mapping_close, 3449 .fault = special_mapping_fault, 3450 .mremap = special_mapping_mremap, 3451 .name = special_mapping_name, 3452 /* vDSO code relies that VVAR can't be accessed remotely */ 3453 .access = NULL, 3454 .may_split = special_mapping_split, 3455 }; 3456 3457 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3458 .close = special_mapping_close, 3459 .fault = special_mapping_fault, 3460 }; 3461 3462 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3463 { 3464 struct vm_area_struct *vma = vmf->vma; 3465 pgoff_t pgoff; 3466 struct page **pages; 3467 3468 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3469 pages = vma->vm_private_data; 3470 } else { 3471 struct vm_special_mapping *sm = vma->vm_private_data; 3472 3473 if (sm->fault) 3474 return sm->fault(sm, vmf->vma, vmf); 3475 3476 pages = sm->pages; 3477 } 3478 3479 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3480 pgoff--; 3481 3482 if (*pages) { 3483 struct page *page = *pages; 3484 get_page(page); 3485 vmf->page = page; 3486 return 0; 3487 } 3488 3489 return VM_FAULT_SIGBUS; 3490 } 3491 3492 static struct vm_area_struct *__install_special_mapping( 3493 struct mm_struct *mm, 3494 unsigned long addr, unsigned long len, 3495 unsigned long vm_flags, void *priv, 3496 const struct vm_operations_struct *ops) 3497 { 3498 int ret; 3499 struct vm_area_struct *vma; 3500 3501 validate_mm(mm); 3502 vma = vm_area_alloc(mm); 3503 if (unlikely(vma == NULL)) 3504 return ERR_PTR(-ENOMEM); 3505 3506 vma->vm_start = addr; 3507 vma->vm_end = addr + len; 3508 3509 vm_flags_init(vma, (vm_flags | mm->def_flags | 3510 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 3511 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3512 3513 vma->vm_ops = ops; 3514 vma->vm_private_data = priv; 3515 3516 ret = insert_vm_struct(mm, vma); 3517 if (ret) 3518 goto out; 3519 3520 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3521 3522 perf_event_mmap(vma); 3523 3524 validate_mm(mm); 3525 return vma; 3526 3527 out: 3528 vm_area_free(vma); 3529 validate_mm(mm); 3530 return ERR_PTR(ret); 3531 } 3532 3533 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3534 const struct vm_special_mapping *sm) 3535 { 3536 return vma->vm_private_data == sm && 3537 (vma->vm_ops == &special_mapping_vmops || 3538 vma->vm_ops == &legacy_special_mapping_vmops); 3539 } 3540 3541 /* 3542 * Called with mm->mmap_lock held for writing. 3543 * Insert a new vma covering the given region, with the given flags. 3544 * Its pages are supplied by the given array of struct page *. 3545 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3546 * The region past the last page supplied will always produce SIGBUS. 3547 * The array pointer and the pages it points to are assumed to stay alive 3548 * for as long as this mapping might exist. 3549 */ 3550 struct vm_area_struct *_install_special_mapping( 3551 struct mm_struct *mm, 3552 unsigned long addr, unsigned long len, 3553 unsigned long vm_flags, const struct vm_special_mapping *spec) 3554 { 3555 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3556 &special_mapping_vmops); 3557 } 3558 3559 int install_special_mapping(struct mm_struct *mm, 3560 unsigned long addr, unsigned long len, 3561 unsigned long vm_flags, struct page **pages) 3562 { 3563 struct vm_area_struct *vma = __install_special_mapping( 3564 mm, addr, len, vm_flags, (void *)pages, 3565 &legacy_special_mapping_vmops); 3566 3567 return PTR_ERR_OR_ZERO(vma); 3568 } 3569 3570 static DEFINE_MUTEX(mm_all_locks_mutex); 3571 3572 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3573 { 3574 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3575 /* 3576 * The LSB of head.next can't change from under us 3577 * because we hold the mm_all_locks_mutex. 3578 */ 3579 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3580 /* 3581 * We can safely modify head.next after taking the 3582 * anon_vma->root->rwsem. If some other vma in this mm shares 3583 * the same anon_vma we won't take it again. 3584 * 3585 * No need of atomic instructions here, head.next 3586 * can't change from under us thanks to the 3587 * anon_vma->root->rwsem. 3588 */ 3589 if (__test_and_set_bit(0, (unsigned long *) 3590 &anon_vma->root->rb_root.rb_root.rb_node)) 3591 BUG(); 3592 } 3593 } 3594 3595 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3596 { 3597 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3598 /* 3599 * AS_MM_ALL_LOCKS can't change from under us because 3600 * we hold the mm_all_locks_mutex. 3601 * 3602 * Operations on ->flags have to be atomic because 3603 * even if AS_MM_ALL_LOCKS is stable thanks to the 3604 * mm_all_locks_mutex, there may be other cpus 3605 * changing other bitflags in parallel to us. 3606 */ 3607 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3608 BUG(); 3609 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3610 } 3611 } 3612 3613 /* 3614 * This operation locks against the VM for all pte/vma/mm related 3615 * operations that could ever happen on a certain mm. This includes 3616 * vmtruncate, try_to_unmap, and all page faults. 3617 * 3618 * The caller must take the mmap_lock in write mode before calling 3619 * mm_take_all_locks(). The caller isn't allowed to release the 3620 * mmap_lock until mm_drop_all_locks() returns. 3621 * 3622 * mmap_lock in write mode is required in order to block all operations 3623 * that could modify pagetables and free pages without need of 3624 * altering the vma layout. It's also needed in write mode to avoid new 3625 * anon_vmas to be associated with existing vmas. 3626 * 3627 * A single task can't take more than one mm_take_all_locks() in a row 3628 * or it would deadlock. 3629 * 3630 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3631 * mapping->flags avoid to take the same lock twice, if more than one 3632 * vma in this mm is backed by the same anon_vma or address_space. 3633 * 3634 * We take locks in following order, accordingly to comment at beginning 3635 * of mm/rmap.c: 3636 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3637 * hugetlb mapping); 3638 * - all vmas marked locked 3639 * - all i_mmap_rwsem locks; 3640 * - all anon_vma->rwseml 3641 * 3642 * We can take all locks within these types randomly because the VM code 3643 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3644 * mm_all_locks_mutex. 3645 * 3646 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3647 * that may have to take thousand of locks. 3648 * 3649 * mm_take_all_locks() can fail if it's interrupted by signals. 3650 */ 3651 int mm_take_all_locks(struct mm_struct *mm) 3652 { 3653 struct vm_area_struct *vma; 3654 struct anon_vma_chain *avc; 3655 MA_STATE(mas, &mm->mm_mt, 0, 0); 3656 3657 mmap_assert_write_locked(mm); 3658 3659 mutex_lock(&mm_all_locks_mutex); 3660 3661 mas_for_each(&mas, vma, ULONG_MAX) { 3662 if (signal_pending(current)) 3663 goto out_unlock; 3664 vma_start_write(vma); 3665 } 3666 3667 mas_set(&mas, 0); 3668 mas_for_each(&mas, vma, ULONG_MAX) { 3669 if (signal_pending(current)) 3670 goto out_unlock; 3671 if (vma->vm_file && vma->vm_file->f_mapping && 3672 is_vm_hugetlb_page(vma)) 3673 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3674 } 3675 3676 mas_set(&mas, 0); 3677 mas_for_each(&mas, vma, ULONG_MAX) { 3678 if (signal_pending(current)) 3679 goto out_unlock; 3680 if (vma->vm_file && vma->vm_file->f_mapping && 3681 !is_vm_hugetlb_page(vma)) 3682 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3683 } 3684 3685 mas_set(&mas, 0); 3686 mas_for_each(&mas, vma, ULONG_MAX) { 3687 if (signal_pending(current)) 3688 goto out_unlock; 3689 if (vma->anon_vma) 3690 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3691 vm_lock_anon_vma(mm, avc->anon_vma); 3692 } 3693 3694 return 0; 3695 3696 out_unlock: 3697 mm_drop_all_locks(mm); 3698 return -EINTR; 3699 } 3700 3701 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3702 { 3703 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3704 /* 3705 * The LSB of head.next can't change to 0 from under 3706 * us because we hold the mm_all_locks_mutex. 3707 * 3708 * We must however clear the bitflag before unlocking 3709 * the vma so the users using the anon_vma->rb_root will 3710 * never see our bitflag. 3711 * 3712 * No need of atomic instructions here, head.next 3713 * can't change from under us until we release the 3714 * anon_vma->root->rwsem. 3715 */ 3716 if (!__test_and_clear_bit(0, (unsigned long *) 3717 &anon_vma->root->rb_root.rb_root.rb_node)) 3718 BUG(); 3719 anon_vma_unlock_write(anon_vma); 3720 } 3721 } 3722 3723 static void vm_unlock_mapping(struct address_space *mapping) 3724 { 3725 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3726 /* 3727 * AS_MM_ALL_LOCKS can't change to 0 from under us 3728 * because we hold the mm_all_locks_mutex. 3729 */ 3730 i_mmap_unlock_write(mapping); 3731 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3732 &mapping->flags)) 3733 BUG(); 3734 } 3735 } 3736 3737 /* 3738 * The mmap_lock cannot be released by the caller until 3739 * mm_drop_all_locks() returns. 3740 */ 3741 void mm_drop_all_locks(struct mm_struct *mm) 3742 { 3743 struct vm_area_struct *vma; 3744 struct anon_vma_chain *avc; 3745 MA_STATE(mas, &mm->mm_mt, 0, 0); 3746 3747 mmap_assert_write_locked(mm); 3748 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3749 3750 mas_for_each(&mas, vma, ULONG_MAX) { 3751 if (vma->anon_vma) 3752 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3753 vm_unlock_anon_vma(avc->anon_vma); 3754 if (vma->vm_file && vma->vm_file->f_mapping) 3755 vm_unlock_mapping(vma->vm_file->f_mapping); 3756 } 3757 vma_end_write_all(mm); 3758 3759 mutex_unlock(&mm_all_locks_mutex); 3760 } 3761 3762 /* 3763 * initialise the percpu counter for VM 3764 */ 3765 void __init mmap_init(void) 3766 { 3767 int ret; 3768 3769 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3770 VM_BUG_ON(ret); 3771 } 3772 3773 /* 3774 * Initialise sysctl_user_reserve_kbytes. 3775 * 3776 * This is intended to prevent a user from starting a single memory hogging 3777 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3778 * mode. 3779 * 3780 * The default value is min(3% of free memory, 128MB) 3781 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3782 */ 3783 static int init_user_reserve(void) 3784 { 3785 unsigned long free_kbytes; 3786 3787 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3788 3789 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3790 return 0; 3791 } 3792 subsys_initcall(init_user_reserve); 3793 3794 /* 3795 * Initialise sysctl_admin_reserve_kbytes. 3796 * 3797 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3798 * to log in and kill a memory hogging process. 3799 * 3800 * Systems with more than 256MB will reserve 8MB, enough to recover 3801 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3802 * only reserve 3% of free pages by default. 3803 */ 3804 static int init_admin_reserve(void) 3805 { 3806 unsigned long free_kbytes; 3807 3808 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3809 3810 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3811 return 0; 3812 } 3813 subsys_initcall(init_admin_reserve); 3814 3815 /* 3816 * Reinititalise user and admin reserves if memory is added or removed. 3817 * 3818 * The default user reserve max is 128MB, and the default max for the 3819 * admin reserve is 8MB. These are usually, but not always, enough to 3820 * enable recovery from a memory hogging process using login/sshd, a shell, 3821 * and tools like top. It may make sense to increase or even disable the 3822 * reserve depending on the existence of swap or variations in the recovery 3823 * tools. So, the admin may have changed them. 3824 * 3825 * If memory is added and the reserves have been eliminated or increased above 3826 * the default max, then we'll trust the admin. 3827 * 3828 * If memory is removed and there isn't enough free memory, then we 3829 * need to reset the reserves. 3830 * 3831 * Otherwise keep the reserve set by the admin. 3832 */ 3833 static int reserve_mem_notifier(struct notifier_block *nb, 3834 unsigned long action, void *data) 3835 { 3836 unsigned long tmp, free_kbytes; 3837 3838 switch (action) { 3839 case MEM_ONLINE: 3840 /* Default max is 128MB. Leave alone if modified by operator. */ 3841 tmp = sysctl_user_reserve_kbytes; 3842 if (0 < tmp && tmp < (1UL << 17)) 3843 init_user_reserve(); 3844 3845 /* Default max is 8MB. Leave alone if modified by operator. */ 3846 tmp = sysctl_admin_reserve_kbytes; 3847 if (0 < tmp && tmp < (1UL << 13)) 3848 init_admin_reserve(); 3849 3850 break; 3851 case MEM_OFFLINE: 3852 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3853 3854 if (sysctl_user_reserve_kbytes > free_kbytes) { 3855 init_user_reserve(); 3856 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3857 sysctl_user_reserve_kbytes); 3858 } 3859 3860 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3861 init_admin_reserve(); 3862 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3863 sysctl_admin_reserve_kbytes); 3864 } 3865 break; 3866 default: 3867 break; 3868 } 3869 return NOTIFY_OK; 3870 } 3871 3872 static int __meminit init_reserve_notifier(void) 3873 { 3874 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 3875 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3876 3877 return 0; 3878 } 3879 subsys_initcall(init_reserve_notifier); 3880