xref: /openbmc/linux/mm/mmap.c (revision e5c86679)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52 
53 #include "internal.h"
54 
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags)	(0)
57 #endif
58 
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69 
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72 
73 static void unmap_region(struct mm_struct *mm,
74 		struct vm_area_struct *vma, struct vm_area_struct *prev,
75 		unsigned long start, unsigned long end);
76 
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type	prot
82  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
83  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
84  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
85  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
86  *
87  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
88  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
89  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
90  *
91  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92  * MAP_PRIVATE:
93  *								r: (no) no
94  *								w: (no) no
95  *								x: (yes) yes
96  */
97 pgprot_t protection_map[16] = {
98 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101 
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
103 {
104 	return __pgprot(pgprot_val(protection_map[vm_flags &
105 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
107 }
108 EXPORT_SYMBOL(vm_get_page_prot);
109 
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111 {
112 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113 }
114 
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
117 {
118 	unsigned long vm_flags = vma->vm_flags;
119 	pgprot_t vm_page_prot;
120 
121 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
122 	if (vma_wants_writenotify(vma, vm_page_prot)) {
123 		vm_flags &= ~VM_SHARED;
124 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
125 	}
126 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
128 }
129 
130 /*
131  * Requires inode->i_mapping->i_mmap_rwsem
132  */
133 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
134 		struct file *file, struct address_space *mapping)
135 {
136 	if (vma->vm_flags & VM_DENYWRITE)
137 		atomic_inc(&file_inode(file)->i_writecount);
138 	if (vma->vm_flags & VM_SHARED)
139 		mapping_unmap_writable(mapping);
140 
141 	flush_dcache_mmap_lock(mapping);
142 	vma_interval_tree_remove(vma, &mapping->i_mmap);
143 	flush_dcache_mmap_unlock(mapping);
144 }
145 
146 /*
147  * Unlink a file-based vm structure from its interval tree, to hide
148  * vma from rmap and vmtruncate before freeing its page tables.
149  */
150 void unlink_file_vma(struct vm_area_struct *vma)
151 {
152 	struct file *file = vma->vm_file;
153 
154 	if (file) {
155 		struct address_space *mapping = file->f_mapping;
156 		i_mmap_lock_write(mapping);
157 		__remove_shared_vm_struct(vma, file, mapping);
158 		i_mmap_unlock_write(mapping);
159 	}
160 }
161 
162 /*
163  * Close a vm structure and free it, returning the next.
164  */
165 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
166 {
167 	struct vm_area_struct *next = vma->vm_next;
168 
169 	might_sleep();
170 	if (vma->vm_ops && vma->vm_ops->close)
171 		vma->vm_ops->close(vma);
172 	if (vma->vm_file)
173 		fput(vma->vm_file);
174 	mpol_put(vma_policy(vma));
175 	kmem_cache_free(vm_area_cachep, vma);
176 	return next;
177 }
178 
179 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf);
180 
181 SYSCALL_DEFINE1(brk, unsigned long, brk)
182 {
183 	unsigned long retval;
184 	unsigned long newbrk, oldbrk;
185 	struct mm_struct *mm = current->mm;
186 	unsigned long min_brk;
187 	bool populate;
188 	LIST_HEAD(uf);
189 
190 	if (down_write_killable(&mm->mmap_sem))
191 		return -EINTR;
192 
193 #ifdef CONFIG_COMPAT_BRK
194 	/*
195 	 * CONFIG_COMPAT_BRK can still be overridden by setting
196 	 * randomize_va_space to 2, which will still cause mm->start_brk
197 	 * to be arbitrarily shifted
198 	 */
199 	if (current->brk_randomized)
200 		min_brk = mm->start_brk;
201 	else
202 		min_brk = mm->end_data;
203 #else
204 	min_brk = mm->start_brk;
205 #endif
206 	if (brk < min_brk)
207 		goto out;
208 
209 	/*
210 	 * Check against rlimit here. If this check is done later after the test
211 	 * of oldbrk with newbrk then it can escape the test and let the data
212 	 * segment grow beyond its set limit the in case where the limit is
213 	 * not page aligned -Ram Gupta
214 	 */
215 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 			      mm->end_data, mm->start_data))
217 		goto out;
218 
219 	newbrk = PAGE_ALIGN(brk);
220 	oldbrk = PAGE_ALIGN(mm->brk);
221 	if (oldbrk == newbrk)
222 		goto set_brk;
223 
224 	/* Always allow shrinking brk. */
225 	if (brk <= mm->brk) {
226 		if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
227 			goto set_brk;
228 		goto out;
229 	}
230 
231 	/* Check against existing mmap mappings. */
232 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
233 		goto out;
234 
235 	/* Ok, looks good - let it rip. */
236 	if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
237 		goto out;
238 
239 set_brk:
240 	mm->brk = brk;
241 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
242 	up_write(&mm->mmap_sem);
243 	userfaultfd_unmap_complete(mm, &uf);
244 	if (populate)
245 		mm_populate(oldbrk, newbrk - oldbrk);
246 	return brk;
247 
248 out:
249 	retval = mm->brk;
250 	up_write(&mm->mmap_sem);
251 	return retval;
252 }
253 
254 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
255 {
256 	unsigned long max, subtree_gap;
257 	max = vma->vm_start;
258 	if (vma->vm_prev)
259 		max -= vma->vm_prev->vm_end;
260 	if (vma->vm_rb.rb_left) {
261 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
262 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
263 		if (subtree_gap > max)
264 			max = subtree_gap;
265 	}
266 	if (vma->vm_rb.rb_right) {
267 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
268 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
269 		if (subtree_gap > max)
270 			max = subtree_gap;
271 	}
272 	return max;
273 }
274 
275 #ifdef CONFIG_DEBUG_VM_RB
276 static int browse_rb(struct mm_struct *mm)
277 {
278 	struct rb_root *root = &mm->mm_rb;
279 	int i = 0, j, bug = 0;
280 	struct rb_node *nd, *pn = NULL;
281 	unsigned long prev = 0, pend = 0;
282 
283 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
284 		struct vm_area_struct *vma;
285 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
286 		if (vma->vm_start < prev) {
287 			pr_emerg("vm_start %lx < prev %lx\n",
288 				  vma->vm_start, prev);
289 			bug = 1;
290 		}
291 		if (vma->vm_start < pend) {
292 			pr_emerg("vm_start %lx < pend %lx\n",
293 				  vma->vm_start, pend);
294 			bug = 1;
295 		}
296 		if (vma->vm_start > vma->vm_end) {
297 			pr_emerg("vm_start %lx > vm_end %lx\n",
298 				  vma->vm_start, vma->vm_end);
299 			bug = 1;
300 		}
301 		spin_lock(&mm->page_table_lock);
302 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
303 			pr_emerg("free gap %lx, correct %lx\n",
304 			       vma->rb_subtree_gap,
305 			       vma_compute_subtree_gap(vma));
306 			bug = 1;
307 		}
308 		spin_unlock(&mm->page_table_lock);
309 		i++;
310 		pn = nd;
311 		prev = vma->vm_start;
312 		pend = vma->vm_end;
313 	}
314 	j = 0;
315 	for (nd = pn; nd; nd = rb_prev(nd))
316 		j++;
317 	if (i != j) {
318 		pr_emerg("backwards %d, forwards %d\n", j, i);
319 		bug = 1;
320 	}
321 	return bug ? -1 : i;
322 }
323 
324 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
325 {
326 	struct rb_node *nd;
327 
328 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
329 		struct vm_area_struct *vma;
330 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
331 		VM_BUG_ON_VMA(vma != ignore &&
332 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
333 			vma);
334 	}
335 }
336 
337 static void validate_mm(struct mm_struct *mm)
338 {
339 	int bug = 0;
340 	int i = 0;
341 	unsigned long highest_address = 0;
342 	struct vm_area_struct *vma = mm->mmap;
343 
344 	while (vma) {
345 		struct anon_vma *anon_vma = vma->anon_vma;
346 		struct anon_vma_chain *avc;
347 
348 		if (anon_vma) {
349 			anon_vma_lock_read(anon_vma);
350 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
351 				anon_vma_interval_tree_verify(avc);
352 			anon_vma_unlock_read(anon_vma);
353 		}
354 
355 		highest_address = vma->vm_end;
356 		vma = vma->vm_next;
357 		i++;
358 	}
359 	if (i != mm->map_count) {
360 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
361 		bug = 1;
362 	}
363 	if (highest_address != mm->highest_vm_end) {
364 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
365 			  mm->highest_vm_end, highest_address);
366 		bug = 1;
367 	}
368 	i = browse_rb(mm);
369 	if (i != mm->map_count) {
370 		if (i != -1)
371 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
372 		bug = 1;
373 	}
374 	VM_BUG_ON_MM(bug, mm);
375 }
376 #else
377 #define validate_mm_rb(root, ignore) do { } while (0)
378 #define validate_mm(mm) do { } while (0)
379 #endif
380 
381 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
382 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
383 
384 /*
385  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
386  * vma->vm_prev->vm_end values changed, without modifying the vma's position
387  * in the rbtree.
388  */
389 static void vma_gap_update(struct vm_area_struct *vma)
390 {
391 	/*
392 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
393 	 * function that does exacltly what we want.
394 	 */
395 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
396 }
397 
398 static inline void vma_rb_insert(struct vm_area_struct *vma,
399 				 struct rb_root *root)
400 {
401 	/* All rb_subtree_gap values must be consistent prior to insertion */
402 	validate_mm_rb(root, NULL);
403 
404 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
405 }
406 
407 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
408 {
409 	/*
410 	 * Note rb_erase_augmented is a fairly large inline function,
411 	 * so make sure we instantiate it only once with our desired
412 	 * augmented rbtree callbacks.
413 	 */
414 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
415 }
416 
417 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
418 						struct rb_root *root,
419 						struct vm_area_struct *ignore)
420 {
421 	/*
422 	 * All rb_subtree_gap values must be consistent prior to erase,
423 	 * with the possible exception of the "next" vma being erased if
424 	 * next->vm_start was reduced.
425 	 */
426 	validate_mm_rb(root, ignore);
427 
428 	__vma_rb_erase(vma, root);
429 }
430 
431 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
432 					 struct rb_root *root)
433 {
434 	/*
435 	 * All rb_subtree_gap values must be consistent prior to erase,
436 	 * with the possible exception of the vma being erased.
437 	 */
438 	validate_mm_rb(root, vma);
439 
440 	__vma_rb_erase(vma, root);
441 }
442 
443 /*
444  * vma has some anon_vma assigned, and is already inserted on that
445  * anon_vma's interval trees.
446  *
447  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
448  * vma must be removed from the anon_vma's interval trees using
449  * anon_vma_interval_tree_pre_update_vma().
450  *
451  * After the update, the vma will be reinserted using
452  * anon_vma_interval_tree_post_update_vma().
453  *
454  * The entire update must be protected by exclusive mmap_sem and by
455  * the root anon_vma's mutex.
456  */
457 static inline void
458 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
459 {
460 	struct anon_vma_chain *avc;
461 
462 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
463 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
464 }
465 
466 static inline void
467 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
468 {
469 	struct anon_vma_chain *avc;
470 
471 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
472 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
473 }
474 
475 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
476 		unsigned long end, struct vm_area_struct **pprev,
477 		struct rb_node ***rb_link, struct rb_node **rb_parent)
478 {
479 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
480 
481 	__rb_link = &mm->mm_rb.rb_node;
482 	rb_prev = __rb_parent = NULL;
483 
484 	while (*__rb_link) {
485 		struct vm_area_struct *vma_tmp;
486 
487 		__rb_parent = *__rb_link;
488 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
489 
490 		if (vma_tmp->vm_end > addr) {
491 			/* Fail if an existing vma overlaps the area */
492 			if (vma_tmp->vm_start < end)
493 				return -ENOMEM;
494 			__rb_link = &__rb_parent->rb_left;
495 		} else {
496 			rb_prev = __rb_parent;
497 			__rb_link = &__rb_parent->rb_right;
498 		}
499 	}
500 
501 	*pprev = NULL;
502 	if (rb_prev)
503 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
504 	*rb_link = __rb_link;
505 	*rb_parent = __rb_parent;
506 	return 0;
507 }
508 
509 static unsigned long count_vma_pages_range(struct mm_struct *mm,
510 		unsigned long addr, unsigned long end)
511 {
512 	unsigned long nr_pages = 0;
513 	struct vm_area_struct *vma;
514 
515 	/* Find first overlaping mapping */
516 	vma = find_vma_intersection(mm, addr, end);
517 	if (!vma)
518 		return 0;
519 
520 	nr_pages = (min(end, vma->vm_end) -
521 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
522 
523 	/* Iterate over the rest of the overlaps */
524 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
525 		unsigned long overlap_len;
526 
527 		if (vma->vm_start > end)
528 			break;
529 
530 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
531 		nr_pages += overlap_len >> PAGE_SHIFT;
532 	}
533 
534 	return nr_pages;
535 }
536 
537 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
538 		struct rb_node **rb_link, struct rb_node *rb_parent)
539 {
540 	/* Update tracking information for the gap following the new vma. */
541 	if (vma->vm_next)
542 		vma_gap_update(vma->vm_next);
543 	else
544 		mm->highest_vm_end = vma->vm_end;
545 
546 	/*
547 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
548 	 * correct insertion point for that vma. As a result, we could not
549 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
550 	 * So, we first insert the vma with a zero rb_subtree_gap value
551 	 * (to be consistent with what we did on the way down), and then
552 	 * immediately update the gap to the correct value. Finally we
553 	 * rebalance the rbtree after all augmented values have been set.
554 	 */
555 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
556 	vma->rb_subtree_gap = 0;
557 	vma_gap_update(vma);
558 	vma_rb_insert(vma, &mm->mm_rb);
559 }
560 
561 static void __vma_link_file(struct vm_area_struct *vma)
562 {
563 	struct file *file;
564 
565 	file = vma->vm_file;
566 	if (file) {
567 		struct address_space *mapping = file->f_mapping;
568 
569 		if (vma->vm_flags & VM_DENYWRITE)
570 			atomic_dec(&file_inode(file)->i_writecount);
571 		if (vma->vm_flags & VM_SHARED)
572 			atomic_inc(&mapping->i_mmap_writable);
573 
574 		flush_dcache_mmap_lock(mapping);
575 		vma_interval_tree_insert(vma, &mapping->i_mmap);
576 		flush_dcache_mmap_unlock(mapping);
577 	}
578 }
579 
580 static void
581 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
582 	struct vm_area_struct *prev, struct rb_node **rb_link,
583 	struct rb_node *rb_parent)
584 {
585 	__vma_link_list(mm, vma, prev, rb_parent);
586 	__vma_link_rb(mm, vma, rb_link, rb_parent);
587 }
588 
589 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
590 			struct vm_area_struct *prev, struct rb_node **rb_link,
591 			struct rb_node *rb_parent)
592 {
593 	struct address_space *mapping = NULL;
594 
595 	if (vma->vm_file) {
596 		mapping = vma->vm_file->f_mapping;
597 		i_mmap_lock_write(mapping);
598 	}
599 
600 	__vma_link(mm, vma, prev, rb_link, rb_parent);
601 	__vma_link_file(vma);
602 
603 	if (mapping)
604 		i_mmap_unlock_write(mapping);
605 
606 	mm->map_count++;
607 	validate_mm(mm);
608 }
609 
610 /*
611  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
612  * mm's list and rbtree.  It has already been inserted into the interval tree.
613  */
614 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
615 {
616 	struct vm_area_struct *prev;
617 	struct rb_node **rb_link, *rb_parent;
618 
619 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
620 			   &prev, &rb_link, &rb_parent))
621 		BUG();
622 	__vma_link(mm, vma, prev, rb_link, rb_parent);
623 	mm->map_count++;
624 }
625 
626 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
627 						struct vm_area_struct *vma,
628 						struct vm_area_struct *prev,
629 						bool has_prev,
630 						struct vm_area_struct *ignore)
631 {
632 	struct vm_area_struct *next;
633 
634 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
635 	next = vma->vm_next;
636 	if (has_prev)
637 		prev->vm_next = next;
638 	else {
639 		prev = vma->vm_prev;
640 		if (prev)
641 			prev->vm_next = next;
642 		else
643 			mm->mmap = next;
644 	}
645 	if (next)
646 		next->vm_prev = prev;
647 
648 	/* Kill the cache */
649 	vmacache_invalidate(mm);
650 }
651 
652 static inline void __vma_unlink_prev(struct mm_struct *mm,
653 				     struct vm_area_struct *vma,
654 				     struct vm_area_struct *prev)
655 {
656 	__vma_unlink_common(mm, vma, prev, true, vma);
657 }
658 
659 /*
660  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
661  * is already present in an i_mmap tree without adjusting the tree.
662  * The following helper function should be used when such adjustments
663  * are necessary.  The "insert" vma (if any) is to be inserted
664  * before we drop the necessary locks.
665  */
666 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
667 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
668 	struct vm_area_struct *expand)
669 {
670 	struct mm_struct *mm = vma->vm_mm;
671 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
672 	struct address_space *mapping = NULL;
673 	struct rb_root *root = NULL;
674 	struct anon_vma *anon_vma = NULL;
675 	struct file *file = vma->vm_file;
676 	bool start_changed = false, end_changed = false;
677 	long adjust_next = 0;
678 	int remove_next = 0;
679 
680 	if (next && !insert) {
681 		struct vm_area_struct *exporter = NULL, *importer = NULL;
682 
683 		if (end >= next->vm_end) {
684 			/*
685 			 * vma expands, overlapping all the next, and
686 			 * perhaps the one after too (mprotect case 6).
687 			 * The only other cases that gets here are
688 			 * case 1, case 7 and case 8.
689 			 */
690 			if (next == expand) {
691 				/*
692 				 * The only case where we don't expand "vma"
693 				 * and we expand "next" instead is case 8.
694 				 */
695 				VM_WARN_ON(end != next->vm_end);
696 				/*
697 				 * remove_next == 3 means we're
698 				 * removing "vma" and that to do so we
699 				 * swapped "vma" and "next".
700 				 */
701 				remove_next = 3;
702 				VM_WARN_ON(file != next->vm_file);
703 				swap(vma, next);
704 			} else {
705 				VM_WARN_ON(expand != vma);
706 				/*
707 				 * case 1, 6, 7, remove_next == 2 is case 6,
708 				 * remove_next == 1 is case 1 or 7.
709 				 */
710 				remove_next = 1 + (end > next->vm_end);
711 				VM_WARN_ON(remove_next == 2 &&
712 					   end != next->vm_next->vm_end);
713 				VM_WARN_ON(remove_next == 1 &&
714 					   end != next->vm_end);
715 				/* trim end to next, for case 6 first pass */
716 				end = next->vm_end;
717 			}
718 
719 			exporter = next;
720 			importer = vma;
721 
722 			/*
723 			 * If next doesn't have anon_vma, import from vma after
724 			 * next, if the vma overlaps with it.
725 			 */
726 			if (remove_next == 2 && !next->anon_vma)
727 				exporter = next->vm_next;
728 
729 		} else if (end > next->vm_start) {
730 			/*
731 			 * vma expands, overlapping part of the next:
732 			 * mprotect case 5 shifting the boundary up.
733 			 */
734 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
735 			exporter = next;
736 			importer = vma;
737 			VM_WARN_ON(expand != importer);
738 		} else if (end < vma->vm_end) {
739 			/*
740 			 * vma shrinks, and !insert tells it's not
741 			 * split_vma inserting another: so it must be
742 			 * mprotect case 4 shifting the boundary down.
743 			 */
744 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
745 			exporter = vma;
746 			importer = next;
747 			VM_WARN_ON(expand != importer);
748 		}
749 
750 		/*
751 		 * Easily overlooked: when mprotect shifts the boundary,
752 		 * make sure the expanding vma has anon_vma set if the
753 		 * shrinking vma had, to cover any anon pages imported.
754 		 */
755 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
756 			int error;
757 
758 			importer->anon_vma = exporter->anon_vma;
759 			error = anon_vma_clone(importer, exporter);
760 			if (error)
761 				return error;
762 		}
763 	}
764 again:
765 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
766 
767 	if (file) {
768 		mapping = file->f_mapping;
769 		root = &mapping->i_mmap;
770 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
771 
772 		if (adjust_next)
773 			uprobe_munmap(next, next->vm_start, next->vm_end);
774 
775 		i_mmap_lock_write(mapping);
776 		if (insert) {
777 			/*
778 			 * Put into interval tree now, so instantiated pages
779 			 * are visible to arm/parisc __flush_dcache_page
780 			 * throughout; but we cannot insert into address
781 			 * space until vma start or end is updated.
782 			 */
783 			__vma_link_file(insert);
784 		}
785 	}
786 
787 	anon_vma = vma->anon_vma;
788 	if (!anon_vma && adjust_next)
789 		anon_vma = next->anon_vma;
790 	if (anon_vma) {
791 		VM_WARN_ON(adjust_next && next->anon_vma &&
792 			   anon_vma != next->anon_vma);
793 		anon_vma_lock_write(anon_vma);
794 		anon_vma_interval_tree_pre_update_vma(vma);
795 		if (adjust_next)
796 			anon_vma_interval_tree_pre_update_vma(next);
797 	}
798 
799 	if (root) {
800 		flush_dcache_mmap_lock(mapping);
801 		vma_interval_tree_remove(vma, root);
802 		if (adjust_next)
803 			vma_interval_tree_remove(next, root);
804 	}
805 
806 	if (start != vma->vm_start) {
807 		vma->vm_start = start;
808 		start_changed = true;
809 	}
810 	if (end != vma->vm_end) {
811 		vma->vm_end = end;
812 		end_changed = true;
813 	}
814 	vma->vm_pgoff = pgoff;
815 	if (adjust_next) {
816 		next->vm_start += adjust_next << PAGE_SHIFT;
817 		next->vm_pgoff += adjust_next;
818 	}
819 
820 	if (root) {
821 		if (adjust_next)
822 			vma_interval_tree_insert(next, root);
823 		vma_interval_tree_insert(vma, root);
824 		flush_dcache_mmap_unlock(mapping);
825 	}
826 
827 	if (remove_next) {
828 		/*
829 		 * vma_merge has merged next into vma, and needs
830 		 * us to remove next before dropping the locks.
831 		 */
832 		if (remove_next != 3)
833 			__vma_unlink_prev(mm, next, vma);
834 		else
835 			/*
836 			 * vma is not before next if they've been
837 			 * swapped.
838 			 *
839 			 * pre-swap() next->vm_start was reduced so
840 			 * tell validate_mm_rb to ignore pre-swap()
841 			 * "next" (which is stored in post-swap()
842 			 * "vma").
843 			 */
844 			__vma_unlink_common(mm, next, NULL, false, vma);
845 		if (file)
846 			__remove_shared_vm_struct(next, file, mapping);
847 	} else if (insert) {
848 		/*
849 		 * split_vma has split insert from vma, and needs
850 		 * us to insert it before dropping the locks
851 		 * (it may either follow vma or precede it).
852 		 */
853 		__insert_vm_struct(mm, insert);
854 	} else {
855 		if (start_changed)
856 			vma_gap_update(vma);
857 		if (end_changed) {
858 			if (!next)
859 				mm->highest_vm_end = end;
860 			else if (!adjust_next)
861 				vma_gap_update(next);
862 		}
863 	}
864 
865 	if (anon_vma) {
866 		anon_vma_interval_tree_post_update_vma(vma);
867 		if (adjust_next)
868 			anon_vma_interval_tree_post_update_vma(next);
869 		anon_vma_unlock_write(anon_vma);
870 	}
871 	if (mapping)
872 		i_mmap_unlock_write(mapping);
873 
874 	if (root) {
875 		uprobe_mmap(vma);
876 
877 		if (adjust_next)
878 			uprobe_mmap(next);
879 	}
880 
881 	if (remove_next) {
882 		if (file) {
883 			uprobe_munmap(next, next->vm_start, next->vm_end);
884 			fput(file);
885 		}
886 		if (next->anon_vma)
887 			anon_vma_merge(vma, next);
888 		mm->map_count--;
889 		mpol_put(vma_policy(next));
890 		kmem_cache_free(vm_area_cachep, next);
891 		/*
892 		 * In mprotect's case 6 (see comments on vma_merge),
893 		 * we must remove another next too. It would clutter
894 		 * up the code too much to do both in one go.
895 		 */
896 		if (remove_next != 3) {
897 			/*
898 			 * If "next" was removed and vma->vm_end was
899 			 * expanded (up) over it, in turn
900 			 * "next->vm_prev->vm_end" changed and the
901 			 * "vma->vm_next" gap must be updated.
902 			 */
903 			next = vma->vm_next;
904 		} else {
905 			/*
906 			 * For the scope of the comment "next" and
907 			 * "vma" considered pre-swap(): if "vma" was
908 			 * removed, next->vm_start was expanded (down)
909 			 * over it and the "next" gap must be updated.
910 			 * Because of the swap() the post-swap() "vma"
911 			 * actually points to pre-swap() "next"
912 			 * (post-swap() "next" as opposed is now a
913 			 * dangling pointer).
914 			 */
915 			next = vma;
916 		}
917 		if (remove_next == 2) {
918 			remove_next = 1;
919 			end = next->vm_end;
920 			goto again;
921 		}
922 		else if (next)
923 			vma_gap_update(next);
924 		else {
925 			/*
926 			 * If remove_next == 2 we obviously can't
927 			 * reach this path.
928 			 *
929 			 * If remove_next == 3 we can't reach this
930 			 * path because pre-swap() next is always not
931 			 * NULL. pre-swap() "next" is not being
932 			 * removed and its next->vm_end is not altered
933 			 * (and furthermore "end" already matches
934 			 * next->vm_end in remove_next == 3).
935 			 *
936 			 * We reach this only in the remove_next == 1
937 			 * case if the "next" vma that was removed was
938 			 * the highest vma of the mm. However in such
939 			 * case next->vm_end == "end" and the extended
940 			 * "vma" has vma->vm_end == next->vm_end so
941 			 * mm->highest_vm_end doesn't need any update
942 			 * in remove_next == 1 case.
943 			 */
944 			VM_WARN_ON(mm->highest_vm_end != end);
945 		}
946 	}
947 	if (insert && file)
948 		uprobe_mmap(insert);
949 
950 	validate_mm(mm);
951 
952 	return 0;
953 }
954 
955 /*
956  * If the vma has a ->close operation then the driver probably needs to release
957  * per-vma resources, so we don't attempt to merge those.
958  */
959 static inline int is_mergeable_vma(struct vm_area_struct *vma,
960 				struct file *file, unsigned long vm_flags,
961 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
962 {
963 	/*
964 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
965 	 * match the flags but dirty bit -- the caller should mark
966 	 * merged VMA as dirty. If dirty bit won't be excluded from
967 	 * comparison, we increase pressue on the memory system forcing
968 	 * the kernel to generate new VMAs when old one could be
969 	 * extended instead.
970 	 */
971 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
972 		return 0;
973 	if (vma->vm_file != file)
974 		return 0;
975 	if (vma->vm_ops && vma->vm_ops->close)
976 		return 0;
977 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
978 		return 0;
979 	return 1;
980 }
981 
982 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
983 					struct anon_vma *anon_vma2,
984 					struct vm_area_struct *vma)
985 {
986 	/*
987 	 * The list_is_singular() test is to avoid merging VMA cloned from
988 	 * parents. This can improve scalability caused by anon_vma lock.
989 	 */
990 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
991 		list_is_singular(&vma->anon_vma_chain)))
992 		return 1;
993 	return anon_vma1 == anon_vma2;
994 }
995 
996 /*
997  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
998  * in front of (at a lower virtual address and file offset than) the vma.
999  *
1000  * We cannot merge two vmas if they have differently assigned (non-NULL)
1001  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1002  *
1003  * We don't check here for the merged mmap wrapping around the end of pagecache
1004  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1005  * wrap, nor mmaps which cover the final page at index -1UL.
1006  */
1007 static int
1008 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1009 		     struct anon_vma *anon_vma, struct file *file,
1010 		     pgoff_t vm_pgoff,
1011 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1012 {
1013 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1014 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1015 		if (vma->vm_pgoff == vm_pgoff)
1016 			return 1;
1017 	}
1018 	return 0;
1019 }
1020 
1021 /*
1022  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1023  * beyond (at a higher virtual address and file offset than) the vma.
1024  *
1025  * We cannot merge two vmas if they have differently assigned (non-NULL)
1026  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1027  */
1028 static int
1029 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1030 		    struct anon_vma *anon_vma, struct file *file,
1031 		    pgoff_t vm_pgoff,
1032 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1033 {
1034 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1035 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1036 		pgoff_t vm_pglen;
1037 		vm_pglen = vma_pages(vma);
1038 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1039 			return 1;
1040 	}
1041 	return 0;
1042 }
1043 
1044 /*
1045  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1046  * whether that can be merged with its predecessor or its successor.
1047  * Or both (it neatly fills a hole).
1048  *
1049  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1050  * certain not to be mapped by the time vma_merge is called; but when
1051  * called for mprotect, it is certain to be already mapped (either at
1052  * an offset within prev, or at the start of next), and the flags of
1053  * this area are about to be changed to vm_flags - and the no-change
1054  * case has already been eliminated.
1055  *
1056  * The following mprotect cases have to be considered, where AAAA is
1057  * the area passed down from mprotect_fixup, never extending beyond one
1058  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1059  *
1060  *     AAAA             AAAA                AAAA          AAAA
1061  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1062  *    cannot merge    might become    might become    might become
1063  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1064  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1065  *    mremap move:                                    PPPPXXXXXXXX 8
1066  *        AAAA
1067  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1068  *    might become    case 1 below    case 2 below    case 3 below
1069  *
1070  * It is important for case 8 that the the vma NNNN overlapping the
1071  * region AAAA is never going to extended over XXXX. Instead XXXX must
1072  * be extended in region AAAA and NNNN must be removed. This way in
1073  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1074  * rmap_locks, the properties of the merged vma will be already
1075  * correct for the whole merged range. Some of those properties like
1076  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1077  * be correct for the whole merged range immediately after the
1078  * rmap_locks are released. Otherwise if XXXX would be removed and
1079  * NNNN would be extended over the XXXX range, remove_migration_ptes
1080  * or other rmap walkers (if working on addresses beyond the "end"
1081  * parameter) may establish ptes with the wrong permissions of NNNN
1082  * instead of the right permissions of XXXX.
1083  */
1084 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1085 			struct vm_area_struct *prev, unsigned long addr,
1086 			unsigned long end, unsigned long vm_flags,
1087 			struct anon_vma *anon_vma, struct file *file,
1088 			pgoff_t pgoff, struct mempolicy *policy,
1089 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1090 {
1091 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1092 	struct vm_area_struct *area, *next;
1093 	int err;
1094 
1095 	/*
1096 	 * We later require that vma->vm_flags == vm_flags,
1097 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1098 	 */
1099 	if (vm_flags & VM_SPECIAL)
1100 		return NULL;
1101 
1102 	if (prev)
1103 		next = prev->vm_next;
1104 	else
1105 		next = mm->mmap;
1106 	area = next;
1107 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1108 		next = next->vm_next;
1109 
1110 	/* verify some invariant that must be enforced by the caller */
1111 	VM_WARN_ON(prev && addr <= prev->vm_start);
1112 	VM_WARN_ON(area && end > area->vm_end);
1113 	VM_WARN_ON(addr >= end);
1114 
1115 	/*
1116 	 * Can it merge with the predecessor?
1117 	 */
1118 	if (prev && prev->vm_end == addr &&
1119 			mpol_equal(vma_policy(prev), policy) &&
1120 			can_vma_merge_after(prev, vm_flags,
1121 					    anon_vma, file, pgoff,
1122 					    vm_userfaultfd_ctx)) {
1123 		/*
1124 		 * OK, it can.  Can we now merge in the successor as well?
1125 		 */
1126 		if (next && end == next->vm_start &&
1127 				mpol_equal(policy, vma_policy(next)) &&
1128 				can_vma_merge_before(next, vm_flags,
1129 						     anon_vma, file,
1130 						     pgoff+pglen,
1131 						     vm_userfaultfd_ctx) &&
1132 				is_mergeable_anon_vma(prev->anon_vma,
1133 						      next->anon_vma, NULL)) {
1134 							/* cases 1, 6 */
1135 			err = __vma_adjust(prev, prev->vm_start,
1136 					 next->vm_end, prev->vm_pgoff, NULL,
1137 					 prev);
1138 		} else					/* cases 2, 5, 7 */
1139 			err = __vma_adjust(prev, prev->vm_start,
1140 					 end, prev->vm_pgoff, NULL, prev);
1141 		if (err)
1142 			return NULL;
1143 		khugepaged_enter_vma_merge(prev, vm_flags);
1144 		return prev;
1145 	}
1146 
1147 	/*
1148 	 * Can this new request be merged in front of next?
1149 	 */
1150 	if (next && end == next->vm_start &&
1151 			mpol_equal(policy, vma_policy(next)) &&
1152 			can_vma_merge_before(next, vm_flags,
1153 					     anon_vma, file, pgoff+pglen,
1154 					     vm_userfaultfd_ctx)) {
1155 		if (prev && addr < prev->vm_end)	/* case 4 */
1156 			err = __vma_adjust(prev, prev->vm_start,
1157 					 addr, prev->vm_pgoff, NULL, next);
1158 		else {					/* cases 3, 8 */
1159 			err = __vma_adjust(area, addr, next->vm_end,
1160 					 next->vm_pgoff - pglen, NULL, next);
1161 			/*
1162 			 * In case 3 area is already equal to next and
1163 			 * this is a noop, but in case 8 "area" has
1164 			 * been removed and next was expanded over it.
1165 			 */
1166 			area = next;
1167 		}
1168 		if (err)
1169 			return NULL;
1170 		khugepaged_enter_vma_merge(area, vm_flags);
1171 		return area;
1172 	}
1173 
1174 	return NULL;
1175 }
1176 
1177 /*
1178  * Rough compatbility check to quickly see if it's even worth looking
1179  * at sharing an anon_vma.
1180  *
1181  * They need to have the same vm_file, and the flags can only differ
1182  * in things that mprotect may change.
1183  *
1184  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1185  * we can merge the two vma's. For example, we refuse to merge a vma if
1186  * there is a vm_ops->close() function, because that indicates that the
1187  * driver is doing some kind of reference counting. But that doesn't
1188  * really matter for the anon_vma sharing case.
1189  */
1190 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1191 {
1192 	return a->vm_end == b->vm_start &&
1193 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1194 		a->vm_file == b->vm_file &&
1195 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1196 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1197 }
1198 
1199 /*
1200  * Do some basic sanity checking to see if we can re-use the anon_vma
1201  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1202  * the same as 'old', the other will be the new one that is trying
1203  * to share the anon_vma.
1204  *
1205  * NOTE! This runs with mm_sem held for reading, so it is possible that
1206  * the anon_vma of 'old' is concurrently in the process of being set up
1207  * by another page fault trying to merge _that_. But that's ok: if it
1208  * is being set up, that automatically means that it will be a singleton
1209  * acceptable for merging, so we can do all of this optimistically. But
1210  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1211  *
1212  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1213  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1214  * is to return an anon_vma that is "complex" due to having gone through
1215  * a fork).
1216  *
1217  * We also make sure that the two vma's are compatible (adjacent,
1218  * and with the same memory policies). That's all stable, even with just
1219  * a read lock on the mm_sem.
1220  */
1221 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1222 {
1223 	if (anon_vma_compatible(a, b)) {
1224 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1225 
1226 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1227 			return anon_vma;
1228 	}
1229 	return NULL;
1230 }
1231 
1232 /*
1233  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1234  * neighbouring vmas for a suitable anon_vma, before it goes off
1235  * to allocate a new anon_vma.  It checks because a repetitive
1236  * sequence of mprotects and faults may otherwise lead to distinct
1237  * anon_vmas being allocated, preventing vma merge in subsequent
1238  * mprotect.
1239  */
1240 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1241 {
1242 	struct anon_vma *anon_vma;
1243 	struct vm_area_struct *near;
1244 
1245 	near = vma->vm_next;
1246 	if (!near)
1247 		goto try_prev;
1248 
1249 	anon_vma = reusable_anon_vma(near, vma, near);
1250 	if (anon_vma)
1251 		return anon_vma;
1252 try_prev:
1253 	near = vma->vm_prev;
1254 	if (!near)
1255 		goto none;
1256 
1257 	anon_vma = reusable_anon_vma(near, near, vma);
1258 	if (anon_vma)
1259 		return anon_vma;
1260 none:
1261 	/*
1262 	 * There's no absolute need to look only at touching neighbours:
1263 	 * we could search further afield for "compatible" anon_vmas.
1264 	 * But it would probably just be a waste of time searching,
1265 	 * or lead to too many vmas hanging off the same anon_vma.
1266 	 * We're trying to allow mprotect remerging later on,
1267 	 * not trying to minimize memory used for anon_vmas.
1268 	 */
1269 	return NULL;
1270 }
1271 
1272 /*
1273  * If a hint addr is less than mmap_min_addr change hint to be as
1274  * low as possible but still greater than mmap_min_addr
1275  */
1276 static inline unsigned long round_hint_to_min(unsigned long hint)
1277 {
1278 	hint &= PAGE_MASK;
1279 	if (((void *)hint != NULL) &&
1280 	    (hint < mmap_min_addr))
1281 		return PAGE_ALIGN(mmap_min_addr);
1282 	return hint;
1283 }
1284 
1285 static inline int mlock_future_check(struct mm_struct *mm,
1286 				     unsigned long flags,
1287 				     unsigned long len)
1288 {
1289 	unsigned long locked, lock_limit;
1290 
1291 	/*  mlock MCL_FUTURE? */
1292 	if (flags & VM_LOCKED) {
1293 		locked = len >> PAGE_SHIFT;
1294 		locked += mm->locked_vm;
1295 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1296 		lock_limit >>= PAGE_SHIFT;
1297 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1298 			return -EAGAIN;
1299 	}
1300 	return 0;
1301 }
1302 
1303 /*
1304  * The caller must hold down_write(&current->mm->mmap_sem).
1305  */
1306 unsigned long do_mmap(struct file *file, unsigned long addr,
1307 			unsigned long len, unsigned long prot,
1308 			unsigned long flags, vm_flags_t vm_flags,
1309 			unsigned long pgoff, unsigned long *populate,
1310 			struct list_head *uf)
1311 {
1312 	struct mm_struct *mm = current->mm;
1313 	int pkey = 0;
1314 
1315 	*populate = 0;
1316 
1317 	if (!len)
1318 		return -EINVAL;
1319 
1320 	/*
1321 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1322 	 *
1323 	 * (the exception is when the underlying filesystem is noexec
1324 	 *  mounted, in which case we dont add PROT_EXEC.)
1325 	 */
1326 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1327 		if (!(file && path_noexec(&file->f_path)))
1328 			prot |= PROT_EXEC;
1329 
1330 	if (!(flags & MAP_FIXED))
1331 		addr = round_hint_to_min(addr);
1332 
1333 	/* Careful about overflows.. */
1334 	len = PAGE_ALIGN(len);
1335 	if (!len)
1336 		return -ENOMEM;
1337 
1338 	/* offset overflow? */
1339 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1340 		return -EOVERFLOW;
1341 
1342 	/* Too many mappings? */
1343 	if (mm->map_count > sysctl_max_map_count)
1344 		return -ENOMEM;
1345 
1346 	/* Obtain the address to map to. we verify (or select) it and ensure
1347 	 * that it represents a valid section of the address space.
1348 	 */
1349 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1350 	if (offset_in_page(addr))
1351 		return addr;
1352 
1353 	if (prot == PROT_EXEC) {
1354 		pkey = execute_only_pkey(mm);
1355 		if (pkey < 0)
1356 			pkey = 0;
1357 	}
1358 
1359 	/* Do simple checking here so the lower-level routines won't have
1360 	 * to. we assume access permissions have been handled by the open
1361 	 * of the memory object, so we don't do any here.
1362 	 */
1363 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1364 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1365 
1366 	if (flags & MAP_LOCKED)
1367 		if (!can_do_mlock())
1368 			return -EPERM;
1369 
1370 	if (mlock_future_check(mm, vm_flags, len))
1371 		return -EAGAIN;
1372 
1373 	if (file) {
1374 		struct inode *inode = file_inode(file);
1375 
1376 		switch (flags & MAP_TYPE) {
1377 		case MAP_SHARED:
1378 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1379 				return -EACCES;
1380 
1381 			/*
1382 			 * Make sure we don't allow writing to an append-only
1383 			 * file..
1384 			 */
1385 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1386 				return -EACCES;
1387 
1388 			/*
1389 			 * Make sure there are no mandatory locks on the file.
1390 			 */
1391 			if (locks_verify_locked(file))
1392 				return -EAGAIN;
1393 
1394 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1395 			if (!(file->f_mode & FMODE_WRITE))
1396 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1397 
1398 			/* fall through */
1399 		case MAP_PRIVATE:
1400 			if (!(file->f_mode & FMODE_READ))
1401 				return -EACCES;
1402 			if (path_noexec(&file->f_path)) {
1403 				if (vm_flags & VM_EXEC)
1404 					return -EPERM;
1405 				vm_flags &= ~VM_MAYEXEC;
1406 			}
1407 
1408 			if (!file->f_op->mmap)
1409 				return -ENODEV;
1410 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1411 				return -EINVAL;
1412 			break;
1413 
1414 		default:
1415 			return -EINVAL;
1416 		}
1417 	} else {
1418 		switch (flags & MAP_TYPE) {
1419 		case MAP_SHARED:
1420 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1421 				return -EINVAL;
1422 			/*
1423 			 * Ignore pgoff.
1424 			 */
1425 			pgoff = 0;
1426 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1427 			break;
1428 		case MAP_PRIVATE:
1429 			/*
1430 			 * Set pgoff according to addr for anon_vma.
1431 			 */
1432 			pgoff = addr >> PAGE_SHIFT;
1433 			break;
1434 		default:
1435 			return -EINVAL;
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * Set 'VM_NORESERVE' if we should not account for the
1441 	 * memory use of this mapping.
1442 	 */
1443 	if (flags & MAP_NORESERVE) {
1444 		/* We honor MAP_NORESERVE if allowed to overcommit */
1445 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1446 			vm_flags |= VM_NORESERVE;
1447 
1448 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1449 		if (file && is_file_hugepages(file))
1450 			vm_flags |= VM_NORESERVE;
1451 	}
1452 
1453 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1454 	if (!IS_ERR_VALUE(addr) &&
1455 	    ((vm_flags & VM_LOCKED) ||
1456 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1457 		*populate = len;
1458 	return addr;
1459 }
1460 
1461 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1462 		unsigned long, prot, unsigned long, flags,
1463 		unsigned long, fd, unsigned long, pgoff)
1464 {
1465 	struct file *file = NULL;
1466 	unsigned long retval;
1467 
1468 	if (!(flags & MAP_ANONYMOUS)) {
1469 		audit_mmap_fd(fd, flags);
1470 		file = fget(fd);
1471 		if (!file)
1472 			return -EBADF;
1473 		if (is_file_hugepages(file))
1474 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1475 		retval = -EINVAL;
1476 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1477 			goto out_fput;
1478 	} else if (flags & MAP_HUGETLB) {
1479 		struct user_struct *user = NULL;
1480 		struct hstate *hs;
1481 
1482 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1483 		if (!hs)
1484 			return -EINVAL;
1485 
1486 		len = ALIGN(len, huge_page_size(hs));
1487 		/*
1488 		 * VM_NORESERVE is used because the reservations will be
1489 		 * taken when vm_ops->mmap() is called
1490 		 * A dummy user value is used because we are not locking
1491 		 * memory so no accounting is necessary
1492 		 */
1493 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1494 				VM_NORESERVE,
1495 				&user, HUGETLB_ANONHUGE_INODE,
1496 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1497 		if (IS_ERR(file))
1498 			return PTR_ERR(file);
1499 	}
1500 
1501 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1502 
1503 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1504 out_fput:
1505 	if (file)
1506 		fput(file);
1507 	return retval;
1508 }
1509 
1510 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1511 struct mmap_arg_struct {
1512 	unsigned long addr;
1513 	unsigned long len;
1514 	unsigned long prot;
1515 	unsigned long flags;
1516 	unsigned long fd;
1517 	unsigned long offset;
1518 };
1519 
1520 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1521 {
1522 	struct mmap_arg_struct a;
1523 
1524 	if (copy_from_user(&a, arg, sizeof(a)))
1525 		return -EFAULT;
1526 	if (offset_in_page(a.offset))
1527 		return -EINVAL;
1528 
1529 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1530 			      a.offset >> PAGE_SHIFT);
1531 }
1532 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1533 
1534 /*
1535  * Some shared mappigns will want the pages marked read-only
1536  * to track write events. If so, we'll downgrade vm_page_prot
1537  * to the private version (using protection_map[] without the
1538  * VM_SHARED bit).
1539  */
1540 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1541 {
1542 	vm_flags_t vm_flags = vma->vm_flags;
1543 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1544 
1545 	/* If it was private or non-writable, the write bit is already clear */
1546 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1547 		return 0;
1548 
1549 	/* The backer wishes to know when pages are first written to? */
1550 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1551 		return 1;
1552 
1553 	/* The open routine did something to the protections that pgprot_modify
1554 	 * won't preserve? */
1555 	if (pgprot_val(vm_page_prot) !=
1556 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1557 		return 0;
1558 
1559 	/* Do we need to track softdirty? */
1560 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1561 		return 1;
1562 
1563 	/* Specialty mapping? */
1564 	if (vm_flags & VM_PFNMAP)
1565 		return 0;
1566 
1567 	/* Can the mapping track the dirty pages? */
1568 	return vma->vm_file && vma->vm_file->f_mapping &&
1569 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1570 }
1571 
1572 /*
1573  * We account for memory if it's a private writeable mapping,
1574  * not hugepages and VM_NORESERVE wasn't set.
1575  */
1576 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1577 {
1578 	/*
1579 	 * hugetlb has its own accounting separate from the core VM
1580 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1581 	 */
1582 	if (file && is_file_hugepages(file))
1583 		return 0;
1584 
1585 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1586 }
1587 
1588 unsigned long mmap_region(struct file *file, unsigned long addr,
1589 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1590 		struct list_head *uf)
1591 {
1592 	struct mm_struct *mm = current->mm;
1593 	struct vm_area_struct *vma, *prev;
1594 	int error;
1595 	struct rb_node **rb_link, *rb_parent;
1596 	unsigned long charged = 0;
1597 
1598 	/* Check against address space limit. */
1599 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1600 		unsigned long nr_pages;
1601 
1602 		/*
1603 		 * MAP_FIXED may remove pages of mappings that intersects with
1604 		 * requested mapping. Account for the pages it would unmap.
1605 		 */
1606 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1607 
1608 		if (!may_expand_vm(mm, vm_flags,
1609 					(len >> PAGE_SHIFT) - nr_pages))
1610 			return -ENOMEM;
1611 	}
1612 
1613 	/* Clear old maps */
1614 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1615 			      &rb_parent)) {
1616 		if (do_munmap(mm, addr, len, uf))
1617 			return -ENOMEM;
1618 	}
1619 
1620 	/*
1621 	 * Private writable mapping: check memory availability
1622 	 */
1623 	if (accountable_mapping(file, vm_flags)) {
1624 		charged = len >> PAGE_SHIFT;
1625 		if (security_vm_enough_memory_mm(mm, charged))
1626 			return -ENOMEM;
1627 		vm_flags |= VM_ACCOUNT;
1628 	}
1629 
1630 	/*
1631 	 * Can we just expand an old mapping?
1632 	 */
1633 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1634 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1635 	if (vma)
1636 		goto out;
1637 
1638 	/*
1639 	 * Determine the object being mapped and call the appropriate
1640 	 * specific mapper. the address has already been validated, but
1641 	 * not unmapped, but the maps are removed from the list.
1642 	 */
1643 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1644 	if (!vma) {
1645 		error = -ENOMEM;
1646 		goto unacct_error;
1647 	}
1648 
1649 	vma->vm_mm = mm;
1650 	vma->vm_start = addr;
1651 	vma->vm_end = addr + len;
1652 	vma->vm_flags = vm_flags;
1653 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1654 	vma->vm_pgoff = pgoff;
1655 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1656 
1657 	if (file) {
1658 		if (vm_flags & VM_DENYWRITE) {
1659 			error = deny_write_access(file);
1660 			if (error)
1661 				goto free_vma;
1662 		}
1663 		if (vm_flags & VM_SHARED) {
1664 			error = mapping_map_writable(file->f_mapping);
1665 			if (error)
1666 				goto allow_write_and_free_vma;
1667 		}
1668 
1669 		/* ->mmap() can change vma->vm_file, but must guarantee that
1670 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1671 		 * and map writably if VM_SHARED is set. This usually means the
1672 		 * new file must not have been exposed to user-space, yet.
1673 		 */
1674 		vma->vm_file = get_file(file);
1675 		error = call_mmap(file, vma);
1676 		if (error)
1677 			goto unmap_and_free_vma;
1678 
1679 		/* Can addr have changed??
1680 		 *
1681 		 * Answer: Yes, several device drivers can do it in their
1682 		 *         f_op->mmap method. -DaveM
1683 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1684 		 *      be updated for vma_link()
1685 		 */
1686 		WARN_ON_ONCE(addr != vma->vm_start);
1687 
1688 		addr = vma->vm_start;
1689 		vm_flags = vma->vm_flags;
1690 	} else if (vm_flags & VM_SHARED) {
1691 		error = shmem_zero_setup(vma);
1692 		if (error)
1693 			goto free_vma;
1694 	}
1695 
1696 	vma_link(mm, vma, prev, rb_link, rb_parent);
1697 	/* Once vma denies write, undo our temporary denial count */
1698 	if (file) {
1699 		if (vm_flags & VM_SHARED)
1700 			mapping_unmap_writable(file->f_mapping);
1701 		if (vm_flags & VM_DENYWRITE)
1702 			allow_write_access(file);
1703 	}
1704 	file = vma->vm_file;
1705 out:
1706 	perf_event_mmap(vma);
1707 
1708 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1709 	if (vm_flags & VM_LOCKED) {
1710 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1711 					vma == get_gate_vma(current->mm)))
1712 			mm->locked_vm += (len >> PAGE_SHIFT);
1713 		else
1714 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1715 	}
1716 
1717 	if (file)
1718 		uprobe_mmap(vma);
1719 
1720 	/*
1721 	 * New (or expanded) vma always get soft dirty status.
1722 	 * Otherwise user-space soft-dirty page tracker won't
1723 	 * be able to distinguish situation when vma area unmapped,
1724 	 * then new mapped in-place (which must be aimed as
1725 	 * a completely new data area).
1726 	 */
1727 	vma->vm_flags |= VM_SOFTDIRTY;
1728 
1729 	vma_set_page_prot(vma);
1730 
1731 	return addr;
1732 
1733 unmap_and_free_vma:
1734 	vma->vm_file = NULL;
1735 	fput(file);
1736 
1737 	/* Undo any partial mapping done by a device driver. */
1738 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1739 	charged = 0;
1740 	if (vm_flags & VM_SHARED)
1741 		mapping_unmap_writable(file->f_mapping);
1742 allow_write_and_free_vma:
1743 	if (vm_flags & VM_DENYWRITE)
1744 		allow_write_access(file);
1745 free_vma:
1746 	kmem_cache_free(vm_area_cachep, vma);
1747 unacct_error:
1748 	if (charged)
1749 		vm_unacct_memory(charged);
1750 	return error;
1751 }
1752 
1753 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1754 {
1755 	/*
1756 	 * We implement the search by looking for an rbtree node that
1757 	 * immediately follows a suitable gap. That is,
1758 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1759 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1760 	 * - gap_end - gap_start >= length
1761 	 */
1762 
1763 	struct mm_struct *mm = current->mm;
1764 	struct vm_area_struct *vma;
1765 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1766 
1767 	/* Adjust search length to account for worst case alignment overhead */
1768 	length = info->length + info->align_mask;
1769 	if (length < info->length)
1770 		return -ENOMEM;
1771 
1772 	/* Adjust search limits by the desired length */
1773 	if (info->high_limit < length)
1774 		return -ENOMEM;
1775 	high_limit = info->high_limit - length;
1776 
1777 	if (info->low_limit > high_limit)
1778 		return -ENOMEM;
1779 	low_limit = info->low_limit + length;
1780 
1781 	/* Check if rbtree root looks promising */
1782 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1783 		goto check_highest;
1784 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1785 	if (vma->rb_subtree_gap < length)
1786 		goto check_highest;
1787 
1788 	while (true) {
1789 		/* Visit left subtree if it looks promising */
1790 		gap_end = vma->vm_start;
1791 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1792 			struct vm_area_struct *left =
1793 				rb_entry(vma->vm_rb.rb_left,
1794 					 struct vm_area_struct, vm_rb);
1795 			if (left->rb_subtree_gap >= length) {
1796 				vma = left;
1797 				continue;
1798 			}
1799 		}
1800 
1801 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1802 check_current:
1803 		/* Check if current node has a suitable gap */
1804 		if (gap_start > high_limit)
1805 			return -ENOMEM;
1806 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1807 			goto found;
1808 
1809 		/* Visit right subtree if it looks promising */
1810 		if (vma->vm_rb.rb_right) {
1811 			struct vm_area_struct *right =
1812 				rb_entry(vma->vm_rb.rb_right,
1813 					 struct vm_area_struct, vm_rb);
1814 			if (right->rb_subtree_gap >= length) {
1815 				vma = right;
1816 				continue;
1817 			}
1818 		}
1819 
1820 		/* Go back up the rbtree to find next candidate node */
1821 		while (true) {
1822 			struct rb_node *prev = &vma->vm_rb;
1823 			if (!rb_parent(prev))
1824 				goto check_highest;
1825 			vma = rb_entry(rb_parent(prev),
1826 				       struct vm_area_struct, vm_rb);
1827 			if (prev == vma->vm_rb.rb_left) {
1828 				gap_start = vma->vm_prev->vm_end;
1829 				gap_end = vma->vm_start;
1830 				goto check_current;
1831 			}
1832 		}
1833 	}
1834 
1835 check_highest:
1836 	/* Check highest gap, which does not precede any rbtree node */
1837 	gap_start = mm->highest_vm_end;
1838 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1839 	if (gap_start > high_limit)
1840 		return -ENOMEM;
1841 
1842 found:
1843 	/* We found a suitable gap. Clip it with the original low_limit. */
1844 	if (gap_start < info->low_limit)
1845 		gap_start = info->low_limit;
1846 
1847 	/* Adjust gap address to the desired alignment */
1848 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1849 
1850 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1851 	VM_BUG_ON(gap_start + info->length > gap_end);
1852 	return gap_start;
1853 }
1854 
1855 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1856 {
1857 	struct mm_struct *mm = current->mm;
1858 	struct vm_area_struct *vma;
1859 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1860 
1861 	/* Adjust search length to account for worst case alignment overhead */
1862 	length = info->length + info->align_mask;
1863 	if (length < info->length)
1864 		return -ENOMEM;
1865 
1866 	/*
1867 	 * Adjust search limits by the desired length.
1868 	 * See implementation comment at top of unmapped_area().
1869 	 */
1870 	gap_end = info->high_limit;
1871 	if (gap_end < length)
1872 		return -ENOMEM;
1873 	high_limit = gap_end - length;
1874 
1875 	if (info->low_limit > high_limit)
1876 		return -ENOMEM;
1877 	low_limit = info->low_limit + length;
1878 
1879 	/* Check highest gap, which does not precede any rbtree node */
1880 	gap_start = mm->highest_vm_end;
1881 	if (gap_start <= high_limit)
1882 		goto found_highest;
1883 
1884 	/* Check if rbtree root looks promising */
1885 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1886 		return -ENOMEM;
1887 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1888 	if (vma->rb_subtree_gap < length)
1889 		return -ENOMEM;
1890 
1891 	while (true) {
1892 		/* Visit right subtree if it looks promising */
1893 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1894 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1895 			struct vm_area_struct *right =
1896 				rb_entry(vma->vm_rb.rb_right,
1897 					 struct vm_area_struct, vm_rb);
1898 			if (right->rb_subtree_gap >= length) {
1899 				vma = right;
1900 				continue;
1901 			}
1902 		}
1903 
1904 check_current:
1905 		/* Check if current node has a suitable gap */
1906 		gap_end = vma->vm_start;
1907 		if (gap_end < low_limit)
1908 			return -ENOMEM;
1909 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1910 			goto found;
1911 
1912 		/* Visit left subtree if it looks promising */
1913 		if (vma->vm_rb.rb_left) {
1914 			struct vm_area_struct *left =
1915 				rb_entry(vma->vm_rb.rb_left,
1916 					 struct vm_area_struct, vm_rb);
1917 			if (left->rb_subtree_gap >= length) {
1918 				vma = left;
1919 				continue;
1920 			}
1921 		}
1922 
1923 		/* Go back up the rbtree to find next candidate node */
1924 		while (true) {
1925 			struct rb_node *prev = &vma->vm_rb;
1926 			if (!rb_parent(prev))
1927 				return -ENOMEM;
1928 			vma = rb_entry(rb_parent(prev),
1929 				       struct vm_area_struct, vm_rb);
1930 			if (prev == vma->vm_rb.rb_right) {
1931 				gap_start = vma->vm_prev ?
1932 					vma->vm_prev->vm_end : 0;
1933 				goto check_current;
1934 			}
1935 		}
1936 	}
1937 
1938 found:
1939 	/* We found a suitable gap. Clip it with the original high_limit. */
1940 	if (gap_end > info->high_limit)
1941 		gap_end = info->high_limit;
1942 
1943 found_highest:
1944 	/* Compute highest gap address at the desired alignment */
1945 	gap_end -= info->length;
1946 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1947 
1948 	VM_BUG_ON(gap_end < info->low_limit);
1949 	VM_BUG_ON(gap_end < gap_start);
1950 	return gap_end;
1951 }
1952 
1953 /* Get an address range which is currently unmapped.
1954  * For shmat() with addr=0.
1955  *
1956  * Ugly calling convention alert:
1957  * Return value with the low bits set means error value,
1958  * ie
1959  *	if (ret & ~PAGE_MASK)
1960  *		error = ret;
1961  *
1962  * This function "knows" that -ENOMEM has the bits set.
1963  */
1964 #ifndef HAVE_ARCH_UNMAPPED_AREA
1965 unsigned long
1966 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1967 		unsigned long len, unsigned long pgoff, unsigned long flags)
1968 {
1969 	struct mm_struct *mm = current->mm;
1970 	struct vm_area_struct *vma;
1971 	struct vm_unmapped_area_info info;
1972 
1973 	if (len > TASK_SIZE - mmap_min_addr)
1974 		return -ENOMEM;
1975 
1976 	if (flags & MAP_FIXED)
1977 		return addr;
1978 
1979 	if (addr) {
1980 		addr = PAGE_ALIGN(addr);
1981 		vma = find_vma(mm, addr);
1982 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1983 		    (!vma || addr + len <= vma->vm_start))
1984 			return addr;
1985 	}
1986 
1987 	info.flags = 0;
1988 	info.length = len;
1989 	info.low_limit = mm->mmap_base;
1990 	info.high_limit = TASK_SIZE;
1991 	info.align_mask = 0;
1992 	return vm_unmapped_area(&info);
1993 }
1994 #endif
1995 
1996 /*
1997  * This mmap-allocator allocates new areas top-down from below the
1998  * stack's low limit (the base):
1999  */
2000 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2001 unsigned long
2002 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2003 			  const unsigned long len, const unsigned long pgoff,
2004 			  const unsigned long flags)
2005 {
2006 	struct vm_area_struct *vma;
2007 	struct mm_struct *mm = current->mm;
2008 	unsigned long addr = addr0;
2009 	struct vm_unmapped_area_info info;
2010 
2011 	/* requested length too big for entire address space */
2012 	if (len > TASK_SIZE - mmap_min_addr)
2013 		return -ENOMEM;
2014 
2015 	if (flags & MAP_FIXED)
2016 		return addr;
2017 
2018 	/* requesting a specific address */
2019 	if (addr) {
2020 		addr = PAGE_ALIGN(addr);
2021 		vma = find_vma(mm, addr);
2022 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2023 				(!vma || addr + len <= vma->vm_start))
2024 			return addr;
2025 	}
2026 
2027 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2028 	info.length = len;
2029 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2030 	info.high_limit = mm->mmap_base;
2031 	info.align_mask = 0;
2032 	addr = vm_unmapped_area(&info);
2033 
2034 	/*
2035 	 * A failed mmap() very likely causes application failure,
2036 	 * so fall back to the bottom-up function here. This scenario
2037 	 * can happen with large stack limits and large mmap()
2038 	 * allocations.
2039 	 */
2040 	if (offset_in_page(addr)) {
2041 		VM_BUG_ON(addr != -ENOMEM);
2042 		info.flags = 0;
2043 		info.low_limit = TASK_UNMAPPED_BASE;
2044 		info.high_limit = TASK_SIZE;
2045 		addr = vm_unmapped_area(&info);
2046 	}
2047 
2048 	return addr;
2049 }
2050 #endif
2051 
2052 unsigned long
2053 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2054 		unsigned long pgoff, unsigned long flags)
2055 {
2056 	unsigned long (*get_area)(struct file *, unsigned long,
2057 				  unsigned long, unsigned long, unsigned long);
2058 
2059 	unsigned long error = arch_mmap_check(addr, len, flags);
2060 	if (error)
2061 		return error;
2062 
2063 	/* Careful about overflows.. */
2064 	if (len > TASK_SIZE)
2065 		return -ENOMEM;
2066 
2067 	get_area = current->mm->get_unmapped_area;
2068 	if (file) {
2069 		if (file->f_op->get_unmapped_area)
2070 			get_area = file->f_op->get_unmapped_area;
2071 	} else if (flags & MAP_SHARED) {
2072 		/*
2073 		 * mmap_region() will call shmem_zero_setup() to create a file,
2074 		 * so use shmem's get_unmapped_area in case it can be huge.
2075 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2076 		 */
2077 		pgoff = 0;
2078 		get_area = shmem_get_unmapped_area;
2079 	}
2080 
2081 	addr = get_area(file, addr, len, pgoff, flags);
2082 	if (IS_ERR_VALUE(addr))
2083 		return addr;
2084 
2085 	if (addr > TASK_SIZE - len)
2086 		return -ENOMEM;
2087 	if (offset_in_page(addr))
2088 		return -EINVAL;
2089 
2090 	error = security_mmap_addr(addr);
2091 	return error ? error : addr;
2092 }
2093 
2094 EXPORT_SYMBOL(get_unmapped_area);
2095 
2096 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2097 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2098 {
2099 	struct rb_node *rb_node;
2100 	struct vm_area_struct *vma;
2101 
2102 	/* Check the cache first. */
2103 	vma = vmacache_find(mm, addr);
2104 	if (likely(vma))
2105 		return vma;
2106 
2107 	rb_node = mm->mm_rb.rb_node;
2108 
2109 	while (rb_node) {
2110 		struct vm_area_struct *tmp;
2111 
2112 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2113 
2114 		if (tmp->vm_end > addr) {
2115 			vma = tmp;
2116 			if (tmp->vm_start <= addr)
2117 				break;
2118 			rb_node = rb_node->rb_left;
2119 		} else
2120 			rb_node = rb_node->rb_right;
2121 	}
2122 
2123 	if (vma)
2124 		vmacache_update(addr, vma);
2125 	return vma;
2126 }
2127 
2128 EXPORT_SYMBOL(find_vma);
2129 
2130 /*
2131  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2132  */
2133 struct vm_area_struct *
2134 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2135 			struct vm_area_struct **pprev)
2136 {
2137 	struct vm_area_struct *vma;
2138 
2139 	vma = find_vma(mm, addr);
2140 	if (vma) {
2141 		*pprev = vma->vm_prev;
2142 	} else {
2143 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2144 		*pprev = NULL;
2145 		while (rb_node) {
2146 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2147 			rb_node = rb_node->rb_right;
2148 		}
2149 	}
2150 	return vma;
2151 }
2152 
2153 /*
2154  * Verify that the stack growth is acceptable and
2155  * update accounting. This is shared with both the
2156  * grow-up and grow-down cases.
2157  */
2158 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2159 {
2160 	struct mm_struct *mm = vma->vm_mm;
2161 	struct rlimit *rlim = current->signal->rlim;
2162 	unsigned long new_start, actual_size;
2163 
2164 	/* address space limit tests */
2165 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2166 		return -ENOMEM;
2167 
2168 	/* Stack limit test */
2169 	actual_size = size;
2170 	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2171 		actual_size -= PAGE_SIZE;
2172 	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2173 		return -ENOMEM;
2174 
2175 	/* mlock limit tests */
2176 	if (vma->vm_flags & VM_LOCKED) {
2177 		unsigned long locked;
2178 		unsigned long limit;
2179 		locked = mm->locked_vm + grow;
2180 		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2181 		limit >>= PAGE_SHIFT;
2182 		if (locked > limit && !capable(CAP_IPC_LOCK))
2183 			return -ENOMEM;
2184 	}
2185 
2186 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2187 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2188 			vma->vm_end - size;
2189 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2190 		return -EFAULT;
2191 
2192 	/*
2193 	 * Overcommit..  This must be the final test, as it will
2194 	 * update security statistics.
2195 	 */
2196 	if (security_vm_enough_memory_mm(mm, grow))
2197 		return -ENOMEM;
2198 
2199 	return 0;
2200 }
2201 
2202 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2203 /*
2204  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2205  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2206  */
2207 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2208 {
2209 	struct mm_struct *mm = vma->vm_mm;
2210 	int error = 0;
2211 
2212 	if (!(vma->vm_flags & VM_GROWSUP))
2213 		return -EFAULT;
2214 
2215 	/* Guard against wrapping around to address 0. */
2216 	if (address < PAGE_ALIGN(address+4))
2217 		address = PAGE_ALIGN(address+4);
2218 	else
2219 		return -ENOMEM;
2220 
2221 	/* We must make sure the anon_vma is allocated. */
2222 	if (unlikely(anon_vma_prepare(vma)))
2223 		return -ENOMEM;
2224 
2225 	/*
2226 	 * vma->vm_start/vm_end cannot change under us because the caller
2227 	 * is required to hold the mmap_sem in read mode.  We need the
2228 	 * anon_vma lock to serialize against concurrent expand_stacks.
2229 	 */
2230 	anon_vma_lock_write(vma->anon_vma);
2231 
2232 	/* Somebody else might have raced and expanded it already */
2233 	if (address > vma->vm_end) {
2234 		unsigned long size, grow;
2235 
2236 		size = address - vma->vm_start;
2237 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2238 
2239 		error = -ENOMEM;
2240 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2241 			error = acct_stack_growth(vma, size, grow);
2242 			if (!error) {
2243 				/*
2244 				 * vma_gap_update() doesn't support concurrent
2245 				 * updates, but we only hold a shared mmap_sem
2246 				 * lock here, so we need to protect against
2247 				 * concurrent vma expansions.
2248 				 * anon_vma_lock_write() doesn't help here, as
2249 				 * we don't guarantee that all growable vmas
2250 				 * in a mm share the same root anon vma.
2251 				 * So, we reuse mm->page_table_lock to guard
2252 				 * against concurrent vma expansions.
2253 				 */
2254 				spin_lock(&mm->page_table_lock);
2255 				if (vma->vm_flags & VM_LOCKED)
2256 					mm->locked_vm += grow;
2257 				vm_stat_account(mm, vma->vm_flags, grow);
2258 				anon_vma_interval_tree_pre_update_vma(vma);
2259 				vma->vm_end = address;
2260 				anon_vma_interval_tree_post_update_vma(vma);
2261 				if (vma->vm_next)
2262 					vma_gap_update(vma->vm_next);
2263 				else
2264 					mm->highest_vm_end = address;
2265 				spin_unlock(&mm->page_table_lock);
2266 
2267 				perf_event_mmap(vma);
2268 			}
2269 		}
2270 	}
2271 	anon_vma_unlock_write(vma->anon_vma);
2272 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2273 	validate_mm(mm);
2274 	return error;
2275 }
2276 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2277 
2278 /*
2279  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2280  */
2281 int expand_downwards(struct vm_area_struct *vma,
2282 				   unsigned long address)
2283 {
2284 	struct mm_struct *mm = vma->vm_mm;
2285 	int error;
2286 
2287 	address &= PAGE_MASK;
2288 	error = security_mmap_addr(address);
2289 	if (error)
2290 		return error;
2291 
2292 	/* We must make sure the anon_vma is allocated. */
2293 	if (unlikely(anon_vma_prepare(vma)))
2294 		return -ENOMEM;
2295 
2296 	/*
2297 	 * vma->vm_start/vm_end cannot change under us because the caller
2298 	 * is required to hold the mmap_sem in read mode.  We need the
2299 	 * anon_vma lock to serialize against concurrent expand_stacks.
2300 	 */
2301 	anon_vma_lock_write(vma->anon_vma);
2302 
2303 	/* Somebody else might have raced and expanded it already */
2304 	if (address < vma->vm_start) {
2305 		unsigned long size, grow;
2306 
2307 		size = vma->vm_end - address;
2308 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2309 
2310 		error = -ENOMEM;
2311 		if (grow <= vma->vm_pgoff) {
2312 			error = acct_stack_growth(vma, size, grow);
2313 			if (!error) {
2314 				/*
2315 				 * vma_gap_update() doesn't support concurrent
2316 				 * updates, but we only hold a shared mmap_sem
2317 				 * lock here, so we need to protect against
2318 				 * concurrent vma expansions.
2319 				 * anon_vma_lock_write() doesn't help here, as
2320 				 * we don't guarantee that all growable vmas
2321 				 * in a mm share the same root anon vma.
2322 				 * So, we reuse mm->page_table_lock to guard
2323 				 * against concurrent vma expansions.
2324 				 */
2325 				spin_lock(&mm->page_table_lock);
2326 				if (vma->vm_flags & VM_LOCKED)
2327 					mm->locked_vm += grow;
2328 				vm_stat_account(mm, vma->vm_flags, grow);
2329 				anon_vma_interval_tree_pre_update_vma(vma);
2330 				vma->vm_start = address;
2331 				vma->vm_pgoff -= grow;
2332 				anon_vma_interval_tree_post_update_vma(vma);
2333 				vma_gap_update(vma);
2334 				spin_unlock(&mm->page_table_lock);
2335 
2336 				perf_event_mmap(vma);
2337 			}
2338 		}
2339 	}
2340 	anon_vma_unlock_write(vma->anon_vma);
2341 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2342 	validate_mm(mm);
2343 	return error;
2344 }
2345 
2346 /*
2347  * Note how expand_stack() refuses to expand the stack all the way to
2348  * abut the next virtual mapping, *unless* that mapping itself is also
2349  * a stack mapping. We want to leave room for a guard page, after all
2350  * (the guard page itself is not added here, that is done by the
2351  * actual page faulting logic)
2352  *
2353  * This matches the behavior of the guard page logic (see mm/memory.c:
2354  * check_stack_guard_page()), which only allows the guard page to be
2355  * removed under these circumstances.
2356  */
2357 #ifdef CONFIG_STACK_GROWSUP
2358 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2359 {
2360 	struct vm_area_struct *next;
2361 
2362 	address &= PAGE_MASK;
2363 	next = vma->vm_next;
2364 	if (next && next->vm_start == address + PAGE_SIZE) {
2365 		if (!(next->vm_flags & VM_GROWSUP))
2366 			return -ENOMEM;
2367 	}
2368 	return expand_upwards(vma, address);
2369 }
2370 
2371 struct vm_area_struct *
2372 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2373 {
2374 	struct vm_area_struct *vma, *prev;
2375 
2376 	addr &= PAGE_MASK;
2377 	vma = find_vma_prev(mm, addr, &prev);
2378 	if (vma && (vma->vm_start <= addr))
2379 		return vma;
2380 	if (!prev || expand_stack(prev, addr))
2381 		return NULL;
2382 	if (prev->vm_flags & VM_LOCKED)
2383 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2384 	return prev;
2385 }
2386 #else
2387 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2388 {
2389 	struct vm_area_struct *prev;
2390 
2391 	address &= PAGE_MASK;
2392 	prev = vma->vm_prev;
2393 	if (prev && prev->vm_end == address) {
2394 		if (!(prev->vm_flags & VM_GROWSDOWN))
2395 			return -ENOMEM;
2396 	}
2397 	return expand_downwards(vma, address);
2398 }
2399 
2400 struct vm_area_struct *
2401 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2402 {
2403 	struct vm_area_struct *vma;
2404 	unsigned long start;
2405 
2406 	addr &= PAGE_MASK;
2407 	vma = find_vma(mm, addr);
2408 	if (!vma)
2409 		return NULL;
2410 	if (vma->vm_start <= addr)
2411 		return vma;
2412 	if (!(vma->vm_flags & VM_GROWSDOWN))
2413 		return NULL;
2414 	start = vma->vm_start;
2415 	if (expand_stack(vma, addr))
2416 		return NULL;
2417 	if (vma->vm_flags & VM_LOCKED)
2418 		populate_vma_page_range(vma, addr, start, NULL);
2419 	return vma;
2420 }
2421 #endif
2422 
2423 EXPORT_SYMBOL_GPL(find_extend_vma);
2424 
2425 /*
2426  * Ok - we have the memory areas we should free on the vma list,
2427  * so release them, and do the vma updates.
2428  *
2429  * Called with the mm semaphore held.
2430  */
2431 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2432 {
2433 	unsigned long nr_accounted = 0;
2434 
2435 	/* Update high watermark before we lower total_vm */
2436 	update_hiwater_vm(mm);
2437 	do {
2438 		long nrpages = vma_pages(vma);
2439 
2440 		if (vma->vm_flags & VM_ACCOUNT)
2441 			nr_accounted += nrpages;
2442 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2443 		vma = remove_vma(vma);
2444 	} while (vma);
2445 	vm_unacct_memory(nr_accounted);
2446 	validate_mm(mm);
2447 }
2448 
2449 /*
2450  * Get rid of page table information in the indicated region.
2451  *
2452  * Called with the mm semaphore held.
2453  */
2454 static void unmap_region(struct mm_struct *mm,
2455 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2456 		unsigned long start, unsigned long end)
2457 {
2458 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2459 	struct mmu_gather tlb;
2460 
2461 	lru_add_drain();
2462 	tlb_gather_mmu(&tlb, mm, start, end);
2463 	update_hiwater_rss(mm);
2464 	unmap_vmas(&tlb, vma, start, end);
2465 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2466 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2467 	tlb_finish_mmu(&tlb, start, end);
2468 }
2469 
2470 /*
2471  * Create a list of vma's touched by the unmap, removing them from the mm's
2472  * vma list as we go..
2473  */
2474 static void
2475 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2476 	struct vm_area_struct *prev, unsigned long end)
2477 {
2478 	struct vm_area_struct **insertion_point;
2479 	struct vm_area_struct *tail_vma = NULL;
2480 
2481 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2482 	vma->vm_prev = NULL;
2483 	do {
2484 		vma_rb_erase(vma, &mm->mm_rb);
2485 		mm->map_count--;
2486 		tail_vma = vma;
2487 		vma = vma->vm_next;
2488 	} while (vma && vma->vm_start < end);
2489 	*insertion_point = vma;
2490 	if (vma) {
2491 		vma->vm_prev = prev;
2492 		vma_gap_update(vma);
2493 	} else
2494 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2495 	tail_vma->vm_next = NULL;
2496 
2497 	/* Kill the cache */
2498 	vmacache_invalidate(mm);
2499 }
2500 
2501 /*
2502  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2503  * has already been checked or doesn't make sense to fail.
2504  */
2505 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2506 		unsigned long addr, int new_below)
2507 {
2508 	struct vm_area_struct *new;
2509 	int err;
2510 
2511 	if (is_vm_hugetlb_page(vma) && (addr &
2512 					~(huge_page_mask(hstate_vma(vma)))))
2513 		return -EINVAL;
2514 
2515 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2516 	if (!new)
2517 		return -ENOMEM;
2518 
2519 	/* most fields are the same, copy all, and then fixup */
2520 	*new = *vma;
2521 
2522 	INIT_LIST_HEAD(&new->anon_vma_chain);
2523 
2524 	if (new_below)
2525 		new->vm_end = addr;
2526 	else {
2527 		new->vm_start = addr;
2528 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2529 	}
2530 
2531 	err = vma_dup_policy(vma, new);
2532 	if (err)
2533 		goto out_free_vma;
2534 
2535 	err = anon_vma_clone(new, vma);
2536 	if (err)
2537 		goto out_free_mpol;
2538 
2539 	if (new->vm_file)
2540 		get_file(new->vm_file);
2541 
2542 	if (new->vm_ops && new->vm_ops->open)
2543 		new->vm_ops->open(new);
2544 
2545 	if (new_below)
2546 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2547 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2548 	else
2549 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2550 
2551 	/* Success. */
2552 	if (!err)
2553 		return 0;
2554 
2555 	/* Clean everything up if vma_adjust failed. */
2556 	if (new->vm_ops && new->vm_ops->close)
2557 		new->vm_ops->close(new);
2558 	if (new->vm_file)
2559 		fput(new->vm_file);
2560 	unlink_anon_vmas(new);
2561  out_free_mpol:
2562 	mpol_put(vma_policy(new));
2563  out_free_vma:
2564 	kmem_cache_free(vm_area_cachep, new);
2565 	return err;
2566 }
2567 
2568 /*
2569  * Split a vma into two pieces at address 'addr', a new vma is allocated
2570  * either for the first part or the tail.
2571  */
2572 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2573 	      unsigned long addr, int new_below)
2574 {
2575 	if (mm->map_count >= sysctl_max_map_count)
2576 		return -ENOMEM;
2577 
2578 	return __split_vma(mm, vma, addr, new_below);
2579 }
2580 
2581 /* Munmap is split into 2 main parts -- this part which finds
2582  * what needs doing, and the areas themselves, which do the
2583  * work.  This now handles partial unmappings.
2584  * Jeremy Fitzhardinge <jeremy@goop.org>
2585  */
2586 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2587 	      struct list_head *uf)
2588 {
2589 	unsigned long end;
2590 	struct vm_area_struct *vma, *prev, *last;
2591 
2592 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2593 		return -EINVAL;
2594 
2595 	len = PAGE_ALIGN(len);
2596 	if (len == 0)
2597 		return -EINVAL;
2598 
2599 	/* Find the first overlapping VMA */
2600 	vma = find_vma(mm, start);
2601 	if (!vma)
2602 		return 0;
2603 	prev = vma->vm_prev;
2604 	/* we have  start < vma->vm_end  */
2605 
2606 	/* if it doesn't overlap, we have nothing.. */
2607 	end = start + len;
2608 	if (vma->vm_start >= end)
2609 		return 0;
2610 
2611 	if (uf) {
2612 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2613 
2614 		if (error)
2615 			return error;
2616 	}
2617 
2618 	/*
2619 	 * If we need to split any vma, do it now to save pain later.
2620 	 *
2621 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2622 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2623 	 * places tmp vma above, and higher split_vma places tmp vma below.
2624 	 */
2625 	if (start > vma->vm_start) {
2626 		int error;
2627 
2628 		/*
2629 		 * Make sure that map_count on return from munmap() will
2630 		 * not exceed its limit; but let map_count go just above
2631 		 * its limit temporarily, to help free resources as expected.
2632 		 */
2633 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2634 			return -ENOMEM;
2635 
2636 		error = __split_vma(mm, vma, start, 0);
2637 		if (error)
2638 			return error;
2639 		prev = vma;
2640 	}
2641 
2642 	/* Does it split the last one? */
2643 	last = find_vma(mm, end);
2644 	if (last && end > last->vm_start) {
2645 		int error = __split_vma(mm, last, end, 1);
2646 		if (error)
2647 			return error;
2648 	}
2649 	vma = prev ? prev->vm_next : mm->mmap;
2650 
2651 	/*
2652 	 * unlock any mlock()ed ranges before detaching vmas
2653 	 */
2654 	if (mm->locked_vm) {
2655 		struct vm_area_struct *tmp = vma;
2656 		while (tmp && tmp->vm_start < end) {
2657 			if (tmp->vm_flags & VM_LOCKED) {
2658 				mm->locked_vm -= vma_pages(tmp);
2659 				munlock_vma_pages_all(tmp);
2660 			}
2661 			tmp = tmp->vm_next;
2662 		}
2663 	}
2664 
2665 	/*
2666 	 * Remove the vma's, and unmap the actual pages
2667 	 */
2668 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2669 	unmap_region(mm, vma, prev, start, end);
2670 
2671 	arch_unmap(mm, vma, start, end);
2672 
2673 	/* Fix up all other VM information */
2674 	remove_vma_list(mm, vma);
2675 
2676 	return 0;
2677 }
2678 
2679 int vm_munmap(unsigned long start, size_t len)
2680 {
2681 	int ret;
2682 	struct mm_struct *mm = current->mm;
2683 	LIST_HEAD(uf);
2684 
2685 	if (down_write_killable(&mm->mmap_sem))
2686 		return -EINTR;
2687 
2688 	ret = do_munmap(mm, start, len, &uf);
2689 	up_write(&mm->mmap_sem);
2690 	userfaultfd_unmap_complete(mm, &uf);
2691 	return ret;
2692 }
2693 EXPORT_SYMBOL(vm_munmap);
2694 
2695 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2696 {
2697 	profile_munmap(addr);
2698 	return vm_munmap(addr, len);
2699 }
2700 
2701 
2702 /*
2703  * Emulation of deprecated remap_file_pages() syscall.
2704  */
2705 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2706 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2707 {
2708 
2709 	struct mm_struct *mm = current->mm;
2710 	struct vm_area_struct *vma;
2711 	unsigned long populate = 0;
2712 	unsigned long ret = -EINVAL;
2713 	struct file *file;
2714 
2715 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2716 		     current->comm, current->pid);
2717 
2718 	if (prot)
2719 		return ret;
2720 	start = start & PAGE_MASK;
2721 	size = size & PAGE_MASK;
2722 
2723 	if (start + size <= start)
2724 		return ret;
2725 
2726 	/* Does pgoff wrap? */
2727 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2728 		return ret;
2729 
2730 	if (down_write_killable(&mm->mmap_sem))
2731 		return -EINTR;
2732 
2733 	vma = find_vma(mm, start);
2734 
2735 	if (!vma || !(vma->vm_flags & VM_SHARED))
2736 		goto out;
2737 
2738 	if (start < vma->vm_start)
2739 		goto out;
2740 
2741 	if (start + size > vma->vm_end) {
2742 		struct vm_area_struct *next;
2743 
2744 		for (next = vma->vm_next; next; next = next->vm_next) {
2745 			/* hole between vmas ? */
2746 			if (next->vm_start != next->vm_prev->vm_end)
2747 				goto out;
2748 
2749 			if (next->vm_file != vma->vm_file)
2750 				goto out;
2751 
2752 			if (next->vm_flags != vma->vm_flags)
2753 				goto out;
2754 
2755 			if (start + size <= next->vm_end)
2756 				break;
2757 		}
2758 
2759 		if (!next)
2760 			goto out;
2761 	}
2762 
2763 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2764 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2765 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2766 
2767 	flags &= MAP_NONBLOCK;
2768 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2769 	if (vma->vm_flags & VM_LOCKED) {
2770 		struct vm_area_struct *tmp;
2771 		flags |= MAP_LOCKED;
2772 
2773 		/* drop PG_Mlocked flag for over-mapped range */
2774 		for (tmp = vma; tmp->vm_start >= start + size;
2775 				tmp = tmp->vm_next) {
2776 			/*
2777 			 * Split pmd and munlock page on the border
2778 			 * of the range.
2779 			 */
2780 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2781 
2782 			munlock_vma_pages_range(tmp,
2783 					max(tmp->vm_start, start),
2784 					min(tmp->vm_end, start + size));
2785 		}
2786 	}
2787 
2788 	file = get_file(vma->vm_file);
2789 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2790 			prot, flags, pgoff, &populate, NULL);
2791 	fput(file);
2792 out:
2793 	up_write(&mm->mmap_sem);
2794 	if (populate)
2795 		mm_populate(ret, populate);
2796 	if (!IS_ERR_VALUE(ret))
2797 		ret = 0;
2798 	return ret;
2799 }
2800 
2801 static inline void verify_mm_writelocked(struct mm_struct *mm)
2802 {
2803 #ifdef CONFIG_DEBUG_VM
2804 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2805 		WARN_ON(1);
2806 		up_read(&mm->mmap_sem);
2807 	}
2808 #endif
2809 }
2810 
2811 /*
2812  *  this is really a simplified "do_mmap".  it only handles
2813  *  anonymous maps.  eventually we may be able to do some
2814  *  brk-specific accounting here.
2815  */
2816 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
2817 {
2818 	struct mm_struct *mm = current->mm;
2819 	struct vm_area_struct *vma, *prev;
2820 	unsigned long len;
2821 	struct rb_node **rb_link, *rb_parent;
2822 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2823 	int error;
2824 
2825 	len = PAGE_ALIGN(request);
2826 	if (len < request)
2827 		return -ENOMEM;
2828 	if (!len)
2829 		return 0;
2830 
2831 	/* Until we need other flags, refuse anything except VM_EXEC. */
2832 	if ((flags & (~VM_EXEC)) != 0)
2833 		return -EINVAL;
2834 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2835 
2836 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2837 	if (offset_in_page(error))
2838 		return error;
2839 
2840 	error = mlock_future_check(mm, mm->def_flags, len);
2841 	if (error)
2842 		return error;
2843 
2844 	/*
2845 	 * mm->mmap_sem is required to protect against another thread
2846 	 * changing the mappings in case we sleep.
2847 	 */
2848 	verify_mm_writelocked(mm);
2849 
2850 	/*
2851 	 * Clear old maps.  this also does some error checking for us
2852 	 */
2853 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2854 			      &rb_parent)) {
2855 		if (do_munmap(mm, addr, len, uf))
2856 			return -ENOMEM;
2857 	}
2858 
2859 	/* Check against address space limits *after* clearing old maps... */
2860 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2861 		return -ENOMEM;
2862 
2863 	if (mm->map_count > sysctl_max_map_count)
2864 		return -ENOMEM;
2865 
2866 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2867 		return -ENOMEM;
2868 
2869 	/* Can we just expand an old private anonymous mapping? */
2870 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2871 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2872 	if (vma)
2873 		goto out;
2874 
2875 	/*
2876 	 * create a vma struct for an anonymous mapping
2877 	 */
2878 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2879 	if (!vma) {
2880 		vm_unacct_memory(len >> PAGE_SHIFT);
2881 		return -ENOMEM;
2882 	}
2883 
2884 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2885 	vma->vm_mm = mm;
2886 	vma->vm_start = addr;
2887 	vma->vm_end = addr + len;
2888 	vma->vm_pgoff = pgoff;
2889 	vma->vm_flags = flags;
2890 	vma->vm_page_prot = vm_get_page_prot(flags);
2891 	vma_link(mm, vma, prev, rb_link, rb_parent);
2892 out:
2893 	perf_event_mmap(vma);
2894 	mm->total_vm += len >> PAGE_SHIFT;
2895 	mm->data_vm += len >> PAGE_SHIFT;
2896 	if (flags & VM_LOCKED)
2897 		mm->locked_vm += (len >> PAGE_SHIFT);
2898 	vma->vm_flags |= VM_SOFTDIRTY;
2899 	return 0;
2900 }
2901 
2902 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
2903 {
2904 	return do_brk_flags(addr, len, 0, uf);
2905 }
2906 
2907 int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags)
2908 {
2909 	struct mm_struct *mm = current->mm;
2910 	int ret;
2911 	bool populate;
2912 	LIST_HEAD(uf);
2913 
2914 	if (down_write_killable(&mm->mmap_sem))
2915 		return -EINTR;
2916 
2917 	ret = do_brk_flags(addr, len, flags, &uf);
2918 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2919 	up_write(&mm->mmap_sem);
2920 	userfaultfd_unmap_complete(mm, &uf);
2921 	if (populate && !ret)
2922 		mm_populate(addr, len);
2923 	return ret;
2924 }
2925 EXPORT_SYMBOL(vm_brk_flags);
2926 
2927 int vm_brk(unsigned long addr, unsigned long len)
2928 {
2929 	return vm_brk_flags(addr, len, 0);
2930 }
2931 EXPORT_SYMBOL(vm_brk);
2932 
2933 /* Release all mmaps. */
2934 void exit_mmap(struct mm_struct *mm)
2935 {
2936 	struct mmu_gather tlb;
2937 	struct vm_area_struct *vma;
2938 	unsigned long nr_accounted = 0;
2939 
2940 	/* mm's last user has gone, and its about to be pulled down */
2941 	mmu_notifier_release(mm);
2942 
2943 	if (mm->locked_vm) {
2944 		vma = mm->mmap;
2945 		while (vma) {
2946 			if (vma->vm_flags & VM_LOCKED)
2947 				munlock_vma_pages_all(vma);
2948 			vma = vma->vm_next;
2949 		}
2950 	}
2951 
2952 	arch_exit_mmap(mm);
2953 
2954 	vma = mm->mmap;
2955 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2956 		return;
2957 
2958 	lru_add_drain();
2959 	flush_cache_mm(mm);
2960 	tlb_gather_mmu(&tlb, mm, 0, -1);
2961 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2962 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2963 	unmap_vmas(&tlb, vma, 0, -1);
2964 
2965 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2966 	tlb_finish_mmu(&tlb, 0, -1);
2967 
2968 	/*
2969 	 * Walk the list again, actually closing and freeing it,
2970 	 * with preemption enabled, without holding any MM locks.
2971 	 */
2972 	while (vma) {
2973 		if (vma->vm_flags & VM_ACCOUNT)
2974 			nr_accounted += vma_pages(vma);
2975 		vma = remove_vma(vma);
2976 	}
2977 	vm_unacct_memory(nr_accounted);
2978 }
2979 
2980 /* Insert vm structure into process list sorted by address
2981  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2982  * then i_mmap_rwsem is taken here.
2983  */
2984 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2985 {
2986 	struct vm_area_struct *prev;
2987 	struct rb_node **rb_link, *rb_parent;
2988 
2989 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2990 			   &prev, &rb_link, &rb_parent))
2991 		return -ENOMEM;
2992 	if ((vma->vm_flags & VM_ACCOUNT) &&
2993 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2994 		return -ENOMEM;
2995 
2996 	/*
2997 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2998 	 * until its first write fault, when page's anon_vma and index
2999 	 * are set.  But now set the vm_pgoff it will almost certainly
3000 	 * end up with (unless mremap moves it elsewhere before that
3001 	 * first wfault), so /proc/pid/maps tells a consistent story.
3002 	 *
3003 	 * By setting it to reflect the virtual start address of the
3004 	 * vma, merges and splits can happen in a seamless way, just
3005 	 * using the existing file pgoff checks and manipulations.
3006 	 * Similarly in do_mmap_pgoff and in do_brk.
3007 	 */
3008 	if (vma_is_anonymous(vma)) {
3009 		BUG_ON(vma->anon_vma);
3010 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3011 	}
3012 
3013 	vma_link(mm, vma, prev, rb_link, rb_parent);
3014 	return 0;
3015 }
3016 
3017 /*
3018  * Copy the vma structure to a new location in the same mm,
3019  * prior to moving page table entries, to effect an mremap move.
3020  */
3021 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3022 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3023 	bool *need_rmap_locks)
3024 {
3025 	struct vm_area_struct *vma = *vmap;
3026 	unsigned long vma_start = vma->vm_start;
3027 	struct mm_struct *mm = vma->vm_mm;
3028 	struct vm_area_struct *new_vma, *prev;
3029 	struct rb_node **rb_link, *rb_parent;
3030 	bool faulted_in_anon_vma = true;
3031 
3032 	/*
3033 	 * If anonymous vma has not yet been faulted, update new pgoff
3034 	 * to match new location, to increase its chance of merging.
3035 	 */
3036 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3037 		pgoff = addr >> PAGE_SHIFT;
3038 		faulted_in_anon_vma = false;
3039 	}
3040 
3041 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3042 		return NULL;	/* should never get here */
3043 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3044 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3045 			    vma->vm_userfaultfd_ctx);
3046 	if (new_vma) {
3047 		/*
3048 		 * Source vma may have been merged into new_vma
3049 		 */
3050 		if (unlikely(vma_start >= new_vma->vm_start &&
3051 			     vma_start < new_vma->vm_end)) {
3052 			/*
3053 			 * The only way we can get a vma_merge with
3054 			 * self during an mremap is if the vma hasn't
3055 			 * been faulted in yet and we were allowed to
3056 			 * reset the dst vma->vm_pgoff to the
3057 			 * destination address of the mremap to allow
3058 			 * the merge to happen. mremap must change the
3059 			 * vm_pgoff linearity between src and dst vmas
3060 			 * (in turn preventing a vma_merge) to be
3061 			 * safe. It is only safe to keep the vm_pgoff
3062 			 * linear if there are no pages mapped yet.
3063 			 */
3064 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3065 			*vmap = vma = new_vma;
3066 		}
3067 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3068 	} else {
3069 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3070 		if (!new_vma)
3071 			goto out;
3072 		*new_vma = *vma;
3073 		new_vma->vm_start = addr;
3074 		new_vma->vm_end = addr + len;
3075 		new_vma->vm_pgoff = pgoff;
3076 		if (vma_dup_policy(vma, new_vma))
3077 			goto out_free_vma;
3078 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3079 		if (anon_vma_clone(new_vma, vma))
3080 			goto out_free_mempol;
3081 		if (new_vma->vm_file)
3082 			get_file(new_vma->vm_file);
3083 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3084 			new_vma->vm_ops->open(new_vma);
3085 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3086 		*need_rmap_locks = false;
3087 	}
3088 	return new_vma;
3089 
3090 out_free_mempol:
3091 	mpol_put(vma_policy(new_vma));
3092 out_free_vma:
3093 	kmem_cache_free(vm_area_cachep, new_vma);
3094 out:
3095 	return NULL;
3096 }
3097 
3098 /*
3099  * Return true if the calling process may expand its vm space by the passed
3100  * number of pages
3101  */
3102 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3103 {
3104 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3105 		return false;
3106 
3107 	if (is_data_mapping(flags) &&
3108 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3109 		/* Workaround for Valgrind */
3110 		if (rlimit(RLIMIT_DATA) == 0 &&
3111 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3112 			return true;
3113 		if (!ignore_rlimit_data) {
3114 			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3115 				     current->comm, current->pid,
3116 				     (mm->data_vm + npages) << PAGE_SHIFT,
3117 				     rlimit(RLIMIT_DATA));
3118 			return false;
3119 		}
3120 	}
3121 
3122 	return true;
3123 }
3124 
3125 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3126 {
3127 	mm->total_vm += npages;
3128 
3129 	if (is_exec_mapping(flags))
3130 		mm->exec_vm += npages;
3131 	else if (is_stack_mapping(flags))
3132 		mm->stack_vm += npages;
3133 	else if (is_data_mapping(flags))
3134 		mm->data_vm += npages;
3135 }
3136 
3137 static int special_mapping_fault(struct vm_fault *vmf);
3138 
3139 /*
3140  * Having a close hook prevents vma merging regardless of flags.
3141  */
3142 static void special_mapping_close(struct vm_area_struct *vma)
3143 {
3144 }
3145 
3146 static const char *special_mapping_name(struct vm_area_struct *vma)
3147 {
3148 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3149 }
3150 
3151 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3152 {
3153 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3154 
3155 	if (sm->mremap)
3156 		return sm->mremap(sm, new_vma);
3157 	return 0;
3158 }
3159 
3160 static const struct vm_operations_struct special_mapping_vmops = {
3161 	.close = special_mapping_close,
3162 	.fault = special_mapping_fault,
3163 	.mremap = special_mapping_mremap,
3164 	.name = special_mapping_name,
3165 };
3166 
3167 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3168 	.close = special_mapping_close,
3169 	.fault = special_mapping_fault,
3170 };
3171 
3172 static int special_mapping_fault(struct vm_fault *vmf)
3173 {
3174 	struct vm_area_struct *vma = vmf->vma;
3175 	pgoff_t pgoff;
3176 	struct page **pages;
3177 
3178 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3179 		pages = vma->vm_private_data;
3180 	} else {
3181 		struct vm_special_mapping *sm = vma->vm_private_data;
3182 
3183 		if (sm->fault)
3184 			return sm->fault(sm, vmf->vma, vmf);
3185 
3186 		pages = sm->pages;
3187 	}
3188 
3189 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3190 		pgoff--;
3191 
3192 	if (*pages) {
3193 		struct page *page = *pages;
3194 		get_page(page);
3195 		vmf->page = page;
3196 		return 0;
3197 	}
3198 
3199 	return VM_FAULT_SIGBUS;
3200 }
3201 
3202 static struct vm_area_struct *__install_special_mapping(
3203 	struct mm_struct *mm,
3204 	unsigned long addr, unsigned long len,
3205 	unsigned long vm_flags, void *priv,
3206 	const struct vm_operations_struct *ops)
3207 {
3208 	int ret;
3209 	struct vm_area_struct *vma;
3210 
3211 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3212 	if (unlikely(vma == NULL))
3213 		return ERR_PTR(-ENOMEM);
3214 
3215 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3216 	vma->vm_mm = mm;
3217 	vma->vm_start = addr;
3218 	vma->vm_end = addr + len;
3219 
3220 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3221 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3222 
3223 	vma->vm_ops = ops;
3224 	vma->vm_private_data = priv;
3225 
3226 	ret = insert_vm_struct(mm, vma);
3227 	if (ret)
3228 		goto out;
3229 
3230 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3231 
3232 	perf_event_mmap(vma);
3233 
3234 	return vma;
3235 
3236 out:
3237 	kmem_cache_free(vm_area_cachep, vma);
3238 	return ERR_PTR(ret);
3239 }
3240 
3241 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3242 	const struct vm_special_mapping *sm)
3243 {
3244 	return vma->vm_private_data == sm &&
3245 		(vma->vm_ops == &special_mapping_vmops ||
3246 		 vma->vm_ops == &legacy_special_mapping_vmops);
3247 }
3248 
3249 /*
3250  * Called with mm->mmap_sem held for writing.
3251  * Insert a new vma covering the given region, with the given flags.
3252  * Its pages are supplied by the given array of struct page *.
3253  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3254  * The region past the last page supplied will always produce SIGBUS.
3255  * The array pointer and the pages it points to are assumed to stay alive
3256  * for as long as this mapping might exist.
3257  */
3258 struct vm_area_struct *_install_special_mapping(
3259 	struct mm_struct *mm,
3260 	unsigned long addr, unsigned long len,
3261 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3262 {
3263 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3264 					&special_mapping_vmops);
3265 }
3266 
3267 int install_special_mapping(struct mm_struct *mm,
3268 			    unsigned long addr, unsigned long len,
3269 			    unsigned long vm_flags, struct page **pages)
3270 {
3271 	struct vm_area_struct *vma = __install_special_mapping(
3272 		mm, addr, len, vm_flags, (void *)pages,
3273 		&legacy_special_mapping_vmops);
3274 
3275 	return PTR_ERR_OR_ZERO(vma);
3276 }
3277 
3278 static DEFINE_MUTEX(mm_all_locks_mutex);
3279 
3280 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3281 {
3282 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3283 		/*
3284 		 * The LSB of head.next can't change from under us
3285 		 * because we hold the mm_all_locks_mutex.
3286 		 */
3287 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3288 		/*
3289 		 * We can safely modify head.next after taking the
3290 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3291 		 * the same anon_vma we won't take it again.
3292 		 *
3293 		 * No need of atomic instructions here, head.next
3294 		 * can't change from under us thanks to the
3295 		 * anon_vma->root->rwsem.
3296 		 */
3297 		if (__test_and_set_bit(0, (unsigned long *)
3298 				       &anon_vma->root->rb_root.rb_node))
3299 			BUG();
3300 	}
3301 }
3302 
3303 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3304 {
3305 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3306 		/*
3307 		 * AS_MM_ALL_LOCKS can't change from under us because
3308 		 * we hold the mm_all_locks_mutex.
3309 		 *
3310 		 * Operations on ->flags have to be atomic because
3311 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3312 		 * mm_all_locks_mutex, there may be other cpus
3313 		 * changing other bitflags in parallel to us.
3314 		 */
3315 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3316 			BUG();
3317 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3318 	}
3319 }
3320 
3321 /*
3322  * This operation locks against the VM for all pte/vma/mm related
3323  * operations that could ever happen on a certain mm. This includes
3324  * vmtruncate, try_to_unmap, and all page faults.
3325  *
3326  * The caller must take the mmap_sem in write mode before calling
3327  * mm_take_all_locks(). The caller isn't allowed to release the
3328  * mmap_sem until mm_drop_all_locks() returns.
3329  *
3330  * mmap_sem in write mode is required in order to block all operations
3331  * that could modify pagetables and free pages without need of
3332  * altering the vma layout. It's also needed in write mode to avoid new
3333  * anon_vmas to be associated with existing vmas.
3334  *
3335  * A single task can't take more than one mm_take_all_locks() in a row
3336  * or it would deadlock.
3337  *
3338  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3339  * mapping->flags avoid to take the same lock twice, if more than one
3340  * vma in this mm is backed by the same anon_vma or address_space.
3341  *
3342  * We take locks in following order, accordingly to comment at beginning
3343  * of mm/rmap.c:
3344  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3345  *     hugetlb mapping);
3346  *   - all i_mmap_rwsem locks;
3347  *   - all anon_vma->rwseml
3348  *
3349  * We can take all locks within these types randomly because the VM code
3350  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3351  * mm_all_locks_mutex.
3352  *
3353  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3354  * that may have to take thousand of locks.
3355  *
3356  * mm_take_all_locks() can fail if it's interrupted by signals.
3357  */
3358 int mm_take_all_locks(struct mm_struct *mm)
3359 {
3360 	struct vm_area_struct *vma;
3361 	struct anon_vma_chain *avc;
3362 
3363 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3364 
3365 	mutex_lock(&mm_all_locks_mutex);
3366 
3367 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3368 		if (signal_pending(current))
3369 			goto out_unlock;
3370 		if (vma->vm_file && vma->vm_file->f_mapping &&
3371 				is_vm_hugetlb_page(vma))
3372 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3373 	}
3374 
3375 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3376 		if (signal_pending(current))
3377 			goto out_unlock;
3378 		if (vma->vm_file && vma->vm_file->f_mapping &&
3379 				!is_vm_hugetlb_page(vma))
3380 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3381 	}
3382 
3383 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3384 		if (signal_pending(current))
3385 			goto out_unlock;
3386 		if (vma->anon_vma)
3387 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3388 				vm_lock_anon_vma(mm, avc->anon_vma);
3389 	}
3390 
3391 	return 0;
3392 
3393 out_unlock:
3394 	mm_drop_all_locks(mm);
3395 	return -EINTR;
3396 }
3397 
3398 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3399 {
3400 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3401 		/*
3402 		 * The LSB of head.next can't change to 0 from under
3403 		 * us because we hold the mm_all_locks_mutex.
3404 		 *
3405 		 * We must however clear the bitflag before unlocking
3406 		 * the vma so the users using the anon_vma->rb_root will
3407 		 * never see our bitflag.
3408 		 *
3409 		 * No need of atomic instructions here, head.next
3410 		 * can't change from under us until we release the
3411 		 * anon_vma->root->rwsem.
3412 		 */
3413 		if (!__test_and_clear_bit(0, (unsigned long *)
3414 					  &anon_vma->root->rb_root.rb_node))
3415 			BUG();
3416 		anon_vma_unlock_write(anon_vma);
3417 	}
3418 }
3419 
3420 static void vm_unlock_mapping(struct address_space *mapping)
3421 {
3422 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3423 		/*
3424 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3425 		 * because we hold the mm_all_locks_mutex.
3426 		 */
3427 		i_mmap_unlock_write(mapping);
3428 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3429 					&mapping->flags))
3430 			BUG();
3431 	}
3432 }
3433 
3434 /*
3435  * The mmap_sem cannot be released by the caller until
3436  * mm_drop_all_locks() returns.
3437  */
3438 void mm_drop_all_locks(struct mm_struct *mm)
3439 {
3440 	struct vm_area_struct *vma;
3441 	struct anon_vma_chain *avc;
3442 
3443 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3444 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3445 
3446 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3447 		if (vma->anon_vma)
3448 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3449 				vm_unlock_anon_vma(avc->anon_vma);
3450 		if (vma->vm_file && vma->vm_file->f_mapping)
3451 			vm_unlock_mapping(vma->vm_file->f_mapping);
3452 	}
3453 
3454 	mutex_unlock(&mm_all_locks_mutex);
3455 }
3456 
3457 /*
3458  * initialise the percpu counter for VM
3459  */
3460 void __init mmap_init(void)
3461 {
3462 	int ret;
3463 
3464 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3465 	VM_BUG_ON(ret);
3466 }
3467 
3468 /*
3469  * Initialise sysctl_user_reserve_kbytes.
3470  *
3471  * This is intended to prevent a user from starting a single memory hogging
3472  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3473  * mode.
3474  *
3475  * The default value is min(3% of free memory, 128MB)
3476  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3477  */
3478 static int init_user_reserve(void)
3479 {
3480 	unsigned long free_kbytes;
3481 
3482 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3483 
3484 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3485 	return 0;
3486 }
3487 subsys_initcall(init_user_reserve);
3488 
3489 /*
3490  * Initialise sysctl_admin_reserve_kbytes.
3491  *
3492  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3493  * to log in and kill a memory hogging process.
3494  *
3495  * Systems with more than 256MB will reserve 8MB, enough to recover
3496  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3497  * only reserve 3% of free pages by default.
3498  */
3499 static int init_admin_reserve(void)
3500 {
3501 	unsigned long free_kbytes;
3502 
3503 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3504 
3505 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3506 	return 0;
3507 }
3508 subsys_initcall(init_admin_reserve);
3509 
3510 /*
3511  * Reinititalise user and admin reserves if memory is added or removed.
3512  *
3513  * The default user reserve max is 128MB, and the default max for the
3514  * admin reserve is 8MB. These are usually, but not always, enough to
3515  * enable recovery from a memory hogging process using login/sshd, a shell,
3516  * and tools like top. It may make sense to increase or even disable the
3517  * reserve depending on the existence of swap or variations in the recovery
3518  * tools. So, the admin may have changed them.
3519  *
3520  * If memory is added and the reserves have been eliminated or increased above
3521  * the default max, then we'll trust the admin.
3522  *
3523  * If memory is removed and there isn't enough free memory, then we
3524  * need to reset the reserves.
3525  *
3526  * Otherwise keep the reserve set by the admin.
3527  */
3528 static int reserve_mem_notifier(struct notifier_block *nb,
3529 			     unsigned long action, void *data)
3530 {
3531 	unsigned long tmp, free_kbytes;
3532 
3533 	switch (action) {
3534 	case MEM_ONLINE:
3535 		/* Default max is 128MB. Leave alone if modified by operator. */
3536 		tmp = sysctl_user_reserve_kbytes;
3537 		if (0 < tmp && tmp < (1UL << 17))
3538 			init_user_reserve();
3539 
3540 		/* Default max is 8MB.  Leave alone if modified by operator. */
3541 		tmp = sysctl_admin_reserve_kbytes;
3542 		if (0 < tmp && tmp < (1UL << 13))
3543 			init_admin_reserve();
3544 
3545 		break;
3546 	case MEM_OFFLINE:
3547 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3548 
3549 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3550 			init_user_reserve();
3551 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3552 				sysctl_user_reserve_kbytes);
3553 		}
3554 
3555 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3556 			init_admin_reserve();
3557 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3558 				sysctl_admin_reserve_kbytes);
3559 		}
3560 		break;
3561 	default:
3562 		break;
3563 	}
3564 	return NOTIFY_OK;
3565 }
3566 
3567 static struct notifier_block reserve_mem_nb = {
3568 	.notifier_call = reserve_mem_notifier,
3569 };
3570 
3571 static int __meminit init_reserve_notifier(void)
3572 {
3573 	if (register_hotmemory_notifier(&reserve_mem_nb))
3574 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3575 
3576 	return 0;
3577 }
3578 subsys_initcall(init_reserve_notifier);
3579