1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 struct vm_area_struct *next, unsigned long start, 82 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 83 84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 85 { 86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 87 } 88 89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 90 void vma_set_page_prot(struct vm_area_struct *vma) 91 { 92 unsigned long vm_flags = vma->vm_flags; 93 pgprot_t vm_page_prot; 94 95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 96 if (vma_wants_writenotify(vma, vm_page_prot)) { 97 vm_flags &= ~VM_SHARED; 98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 99 } 100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 102 } 103 104 /* 105 * Requires inode->i_mapping->i_mmap_rwsem 106 */ 107 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 108 struct file *file, struct address_space *mapping) 109 { 110 if (vma->vm_flags & VM_SHARED) 111 mapping_unmap_writable(mapping); 112 113 flush_dcache_mmap_lock(mapping); 114 vma_interval_tree_remove(vma, &mapping->i_mmap); 115 flush_dcache_mmap_unlock(mapping); 116 } 117 118 /* 119 * Unlink a file-based vm structure from its interval tree, to hide 120 * vma from rmap and vmtruncate before freeing its page tables. 121 */ 122 void unlink_file_vma(struct vm_area_struct *vma) 123 { 124 struct file *file = vma->vm_file; 125 126 if (file) { 127 struct address_space *mapping = file->f_mapping; 128 i_mmap_lock_write(mapping); 129 __remove_shared_vm_struct(vma, file, mapping); 130 i_mmap_unlock_write(mapping); 131 } 132 } 133 134 /* 135 * Close a vm structure and free it. 136 */ 137 static void remove_vma(struct vm_area_struct *vma, bool unreachable) 138 { 139 might_sleep(); 140 vma_close(vma); 141 if (vma->vm_file) 142 fput(vma->vm_file); 143 mpol_put(vma_policy(vma)); 144 if (unreachable) 145 __vm_area_free(vma); 146 else 147 vm_area_free(vma); 148 } 149 150 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 151 unsigned long min) 152 { 153 return mas_prev(&vmi->mas, min); 154 } 155 156 /* 157 * check_brk_limits() - Use platform specific check of range & verify mlock 158 * limits. 159 * @addr: The address to check 160 * @len: The size of increase. 161 * 162 * Return: 0 on success. 163 */ 164 static int check_brk_limits(unsigned long addr, unsigned long len) 165 { 166 unsigned long mapped_addr; 167 168 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 169 if (IS_ERR_VALUE(mapped_addr)) 170 return mapped_addr; 171 172 return mlock_future_ok(current->mm, current->mm->def_flags, len) 173 ? 0 : -EAGAIN; 174 } 175 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 176 unsigned long addr, unsigned long request, unsigned long flags); 177 SYSCALL_DEFINE1(brk, unsigned long, brk) 178 { 179 unsigned long newbrk, oldbrk, origbrk; 180 struct mm_struct *mm = current->mm; 181 struct vm_area_struct *brkvma, *next = NULL; 182 unsigned long min_brk; 183 bool populate = false; 184 LIST_HEAD(uf); 185 struct vma_iterator vmi; 186 187 if (mmap_write_lock_killable(mm)) 188 return -EINTR; 189 190 origbrk = mm->brk; 191 192 #ifdef CONFIG_COMPAT_BRK 193 /* 194 * CONFIG_COMPAT_BRK can still be overridden by setting 195 * randomize_va_space to 2, which will still cause mm->start_brk 196 * to be arbitrarily shifted 197 */ 198 if (current->brk_randomized) 199 min_brk = mm->start_brk; 200 else 201 min_brk = mm->end_data; 202 #else 203 min_brk = mm->start_brk; 204 #endif 205 if (brk < min_brk) 206 goto out; 207 208 /* 209 * Check against rlimit here. If this check is done later after the test 210 * of oldbrk with newbrk then it can escape the test and let the data 211 * segment grow beyond its set limit the in case where the limit is 212 * not page aligned -Ram Gupta 213 */ 214 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 215 mm->end_data, mm->start_data)) 216 goto out; 217 218 newbrk = PAGE_ALIGN(brk); 219 oldbrk = PAGE_ALIGN(mm->brk); 220 if (oldbrk == newbrk) { 221 mm->brk = brk; 222 goto success; 223 } 224 225 /* Always allow shrinking brk. */ 226 if (brk <= mm->brk) { 227 /* Search one past newbrk */ 228 vma_iter_init(&vmi, mm, newbrk); 229 brkvma = vma_find(&vmi, oldbrk); 230 if (!brkvma || brkvma->vm_start >= oldbrk) 231 goto out; /* mapping intersects with an existing non-brk vma. */ 232 /* 233 * mm->brk must be protected by write mmap_lock. 234 * do_vma_munmap() will drop the lock on success, so update it 235 * before calling do_vma_munmap(). 236 */ 237 mm->brk = brk; 238 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true)) 239 goto out; 240 241 goto success_unlocked; 242 } 243 244 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 245 goto out; 246 247 /* 248 * Only check if the next VMA is within the stack_guard_gap of the 249 * expansion area 250 */ 251 vma_iter_init(&vmi, mm, oldbrk); 252 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 253 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 254 goto out; 255 256 brkvma = vma_prev_limit(&vmi, mm->start_brk); 257 /* Ok, looks good - let it rip. */ 258 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 259 goto out; 260 261 mm->brk = brk; 262 if (mm->def_flags & VM_LOCKED) 263 populate = true; 264 265 success: 266 mmap_write_unlock(mm); 267 success_unlocked: 268 userfaultfd_unmap_complete(mm, &uf); 269 if (populate) 270 mm_populate(oldbrk, newbrk - oldbrk); 271 return brk; 272 273 out: 274 mm->brk = origbrk; 275 mmap_write_unlock(mm); 276 return origbrk; 277 } 278 279 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 280 static void validate_mm(struct mm_struct *mm) 281 { 282 int bug = 0; 283 int i = 0; 284 struct vm_area_struct *vma; 285 VMA_ITERATOR(vmi, mm, 0); 286 287 mt_validate(&mm->mm_mt); 288 for_each_vma(vmi, vma) { 289 #ifdef CONFIG_DEBUG_VM_RB 290 struct anon_vma *anon_vma = vma->anon_vma; 291 struct anon_vma_chain *avc; 292 #endif 293 unsigned long vmi_start, vmi_end; 294 bool warn = 0; 295 296 vmi_start = vma_iter_addr(&vmi); 297 vmi_end = vma_iter_end(&vmi); 298 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 299 warn = 1; 300 301 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 302 warn = 1; 303 304 if (warn) { 305 pr_emerg("issue in %s\n", current->comm); 306 dump_stack(); 307 dump_vma(vma); 308 pr_emerg("tree range: %px start %lx end %lx\n", vma, 309 vmi_start, vmi_end - 1); 310 vma_iter_dump_tree(&vmi); 311 } 312 313 #ifdef CONFIG_DEBUG_VM_RB 314 if (anon_vma) { 315 anon_vma_lock_read(anon_vma); 316 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 317 anon_vma_interval_tree_verify(avc); 318 anon_vma_unlock_read(anon_vma); 319 } 320 #endif 321 i++; 322 } 323 if (i != mm->map_count) { 324 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 325 bug = 1; 326 } 327 VM_BUG_ON_MM(bug, mm); 328 } 329 330 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 331 #define validate_mm(mm) do { } while (0) 332 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 333 334 /* 335 * vma has some anon_vma assigned, and is already inserted on that 336 * anon_vma's interval trees. 337 * 338 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 339 * vma must be removed from the anon_vma's interval trees using 340 * anon_vma_interval_tree_pre_update_vma(). 341 * 342 * After the update, the vma will be reinserted using 343 * anon_vma_interval_tree_post_update_vma(). 344 * 345 * The entire update must be protected by exclusive mmap_lock and by 346 * the root anon_vma's mutex. 347 */ 348 static inline void 349 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 350 { 351 struct anon_vma_chain *avc; 352 353 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 354 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 355 } 356 357 static inline void 358 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 359 { 360 struct anon_vma_chain *avc; 361 362 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 363 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 364 } 365 366 static unsigned long count_vma_pages_range(struct mm_struct *mm, 367 unsigned long addr, unsigned long end) 368 { 369 VMA_ITERATOR(vmi, mm, addr); 370 struct vm_area_struct *vma; 371 unsigned long nr_pages = 0; 372 373 for_each_vma_range(vmi, vma, end) { 374 unsigned long vm_start = max(addr, vma->vm_start); 375 unsigned long vm_end = min(end, vma->vm_end); 376 377 nr_pages += PHYS_PFN(vm_end - vm_start); 378 } 379 380 return nr_pages; 381 } 382 383 static void __vma_link_file(struct vm_area_struct *vma, 384 struct address_space *mapping) 385 { 386 if (vma->vm_flags & VM_SHARED) 387 mapping_allow_writable(mapping); 388 389 flush_dcache_mmap_lock(mapping); 390 vma_interval_tree_insert(vma, &mapping->i_mmap); 391 flush_dcache_mmap_unlock(mapping); 392 } 393 394 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 395 { 396 VMA_ITERATOR(vmi, mm, 0); 397 struct address_space *mapping = NULL; 398 399 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 400 if (vma_iter_prealloc(&vmi, vma)) 401 return -ENOMEM; 402 403 vma_start_write(vma); 404 405 vma_iter_store(&vmi, vma); 406 407 if (vma->vm_file) { 408 mapping = vma->vm_file->f_mapping; 409 i_mmap_lock_write(mapping); 410 __vma_link_file(vma, mapping); 411 i_mmap_unlock_write(mapping); 412 } 413 414 mm->map_count++; 415 validate_mm(mm); 416 return 0; 417 } 418 419 /* 420 * init_multi_vma_prep() - Initializer for struct vma_prepare 421 * @vp: The vma_prepare struct 422 * @vma: The vma that will be altered once locked 423 * @next: The next vma if it is to be adjusted 424 * @remove: The first vma to be removed 425 * @remove2: The second vma to be removed 426 */ 427 static inline void init_multi_vma_prep(struct vma_prepare *vp, 428 struct vm_area_struct *vma, struct vm_area_struct *next, 429 struct vm_area_struct *remove, struct vm_area_struct *remove2) 430 { 431 memset(vp, 0, sizeof(struct vma_prepare)); 432 vp->vma = vma; 433 vp->anon_vma = vma->anon_vma; 434 vp->remove = remove; 435 vp->remove2 = remove2; 436 vp->adj_next = next; 437 if (!vp->anon_vma && next) 438 vp->anon_vma = next->anon_vma; 439 440 vp->file = vma->vm_file; 441 if (vp->file) 442 vp->mapping = vma->vm_file->f_mapping; 443 444 } 445 446 /* 447 * init_vma_prep() - Initializer wrapper for vma_prepare struct 448 * @vp: The vma_prepare struct 449 * @vma: The vma that will be altered once locked 450 */ 451 static inline void init_vma_prep(struct vma_prepare *vp, 452 struct vm_area_struct *vma) 453 { 454 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 455 } 456 457 458 /* 459 * vma_prepare() - Helper function for handling locking VMAs prior to altering 460 * @vp: The initialized vma_prepare struct 461 */ 462 static inline void vma_prepare(struct vma_prepare *vp) 463 { 464 if (vp->file) { 465 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 466 467 if (vp->adj_next) 468 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 469 vp->adj_next->vm_end); 470 471 i_mmap_lock_write(vp->mapping); 472 if (vp->insert && vp->insert->vm_file) { 473 /* 474 * Put into interval tree now, so instantiated pages 475 * are visible to arm/parisc __flush_dcache_page 476 * throughout; but we cannot insert into address 477 * space until vma start or end is updated. 478 */ 479 __vma_link_file(vp->insert, 480 vp->insert->vm_file->f_mapping); 481 } 482 } 483 484 if (vp->anon_vma) { 485 anon_vma_lock_write(vp->anon_vma); 486 anon_vma_interval_tree_pre_update_vma(vp->vma); 487 if (vp->adj_next) 488 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 489 } 490 491 if (vp->file) { 492 flush_dcache_mmap_lock(vp->mapping); 493 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 494 if (vp->adj_next) 495 vma_interval_tree_remove(vp->adj_next, 496 &vp->mapping->i_mmap); 497 } 498 499 } 500 501 /* 502 * vma_complete- Helper function for handling the unlocking after altering VMAs, 503 * or for inserting a VMA. 504 * 505 * @vp: The vma_prepare struct 506 * @vmi: The vma iterator 507 * @mm: The mm_struct 508 */ 509 static inline void vma_complete(struct vma_prepare *vp, 510 struct vma_iterator *vmi, struct mm_struct *mm) 511 { 512 if (vp->file) { 513 if (vp->adj_next) 514 vma_interval_tree_insert(vp->adj_next, 515 &vp->mapping->i_mmap); 516 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 517 flush_dcache_mmap_unlock(vp->mapping); 518 } 519 520 if (vp->remove && vp->file) { 521 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping); 522 if (vp->remove2) 523 __remove_shared_vm_struct(vp->remove2, vp->file, 524 vp->mapping); 525 } else if (vp->insert) { 526 /* 527 * split_vma has split insert from vma, and needs 528 * us to insert it before dropping the locks 529 * (it may either follow vma or precede it). 530 */ 531 vma_iter_store(vmi, vp->insert); 532 mm->map_count++; 533 } 534 535 if (vp->anon_vma) { 536 anon_vma_interval_tree_post_update_vma(vp->vma); 537 if (vp->adj_next) 538 anon_vma_interval_tree_post_update_vma(vp->adj_next); 539 anon_vma_unlock_write(vp->anon_vma); 540 } 541 542 if (vp->file) { 543 i_mmap_unlock_write(vp->mapping); 544 uprobe_mmap(vp->vma); 545 546 if (vp->adj_next) 547 uprobe_mmap(vp->adj_next); 548 } 549 550 if (vp->remove) { 551 again: 552 vma_mark_detached(vp->remove, true); 553 if (vp->file) { 554 uprobe_munmap(vp->remove, vp->remove->vm_start, 555 vp->remove->vm_end); 556 fput(vp->file); 557 } 558 if (vp->remove->anon_vma) 559 anon_vma_merge(vp->vma, vp->remove); 560 mm->map_count--; 561 mpol_put(vma_policy(vp->remove)); 562 if (!vp->remove2) 563 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 564 vm_area_free(vp->remove); 565 566 /* 567 * In mprotect's case 6 (see comments on vma_merge), 568 * we are removing both mid and next vmas 569 */ 570 if (vp->remove2) { 571 vp->remove = vp->remove2; 572 vp->remove2 = NULL; 573 goto again; 574 } 575 } 576 if (vp->insert && vp->file) 577 uprobe_mmap(vp->insert); 578 validate_mm(mm); 579 } 580 581 /* 582 * dup_anon_vma() - Helper function to duplicate anon_vma 583 * @dst: The destination VMA 584 * @src: The source VMA 585 * @dup: Pointer to the destination VMA when successful. 586 * 587 * Returns: 0 on success. 588 */ 589 static inline int dup_anon_vma(struct vm_area_struct *dst, 590 struct vm_area_struct *src, struct vm_area_struct **dup) 591 { 592 /* 593 * Easily overlooked: when mprotect shifts the boundary, make sure the 594 * expanding vma has anon_vma set if the shrinking vma had, to cover any 595 * anon pages imported. 596 */ 597 if (src->anon_vma && !dst->anon_vma) { 598 int ret; 599 600 vma_assert_write_locked(dst); 601 dst->anon_vma = src->anon_vma; 602 ret = anon_vma_clone(dst, src); 603 if (ret) 604 return ret; 605 606 *dup = dst; 607 } 608 609 return 0; 610 } 611 612 /* 613 * vma_expand - Expand an existing VMA 614 * 615 * @vmi: The vma iterator 616 * @vma: The vma to expand 617 * @start: The start of the vma 618 * @end: The exclusive end of the vma 619 * @pgoff: The page offset of vma 620 * @next: The current of next vma. 621 * 622 * Expand @vma to @start and @end. Can expand off the start and end. Will 623 * expand over @next if it's different from @vma and @end == @next->vm_end. 624 * Checking if the @vma can expand and merge with @next needs to be handled by 625 * the caller. 626 * 627 * Returns: 0 on success 628 */ 629 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 630 unsigned long start, unsigned long end, pgoff_t pgoff, 631 struct vm_area_struct *next) 632 { 633 struct vm_area_struct *anon_dup = NULL; 634 bool remove_next = false; 635 struct vma_prepare vp; 636 637 vma_start_write(vma); 638 if (next && (vma != next) && (end == next->vm_end)) { 639 int ret; 640 641 remove_next = true; 642 vma_start_write(next); 643 ret = dup_anon_vma(vma, next, &anon_dup); 644 if (ret) 645 return ret; 646 } 647 648 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 649 /* Not merging but overwriting any part of next is not handled. */ 650 VM_WARN_ON(next && !vp.remove && 651 next != vma && end > next->vm_start); 652 /* Only handles expanding */ 653 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 654 655 /* Note: vma iterator must be pointing to 'start' */ 656 vma_iter_config(vmi, start, end); 657 if (vma_iter_prealloc(vmi, vma)) 658 goto nomem; 659 660 vma_prepare(&vp); 661 vma_adjust_trans_huge(vma, start, end, 0); 662 vma->vm_start = start; 663 vma->vm_end = end; 664 vma->vm_pgoff = pgoff; 665 vma_iter_store(vmi, vma); 666 667 vma_complete(&vp, vmi, vma->vm_mm); 668 return 0; 669 670 nomem: 671 if (anon_dup) 672 unlink_anon_vmas(anon_dup); 673 return -ENOMEM; 674 } 675 676 /* 677 * vma_shrink() - Reduce an existing VMAs memory area 678 * @vmi: The vma iterator 679 * @vma: The VMA to modify 680 * @start: The new start 681 * @end: The new end 682 * 683 * Returns: 0 on success, -ENOMEM otherwise 684 */ 685 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 686 unsigned long start, unsigned long end, pgoff_t pgoff) 687 { 688 struct vma_prepare vp; 689 690 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 691 692 if (vma->vm_start < start) 693 vma_iter_config(vmi, vma->vm_start, start); 694 else 695 vma_iter_config(vmi, end, vma->vm_end); 696 697 if (vma_iter_prealloc(vmi, NULL)) 698 return -ENOMEM; 699 700 vma_start_write(vma); 701 702 init_vma_prep(&vp, vma); 703 vma_prepare(&vp); 704 vma_adjust_trans_huge(vma, start, end, 0); 705 706 vma_iter_clear(vmi); 707 vma->vm_start = start; 708 vma->vm_end = end; 709 vma->vm_pgoff = pgoff; 710 vma_complete(&vp, vmi, vma->vm_mm); 711 return 0; 712 } 713 714 /* 715 * If the vma has a ->close operation then the driver probably needs to release 716 * per-vma resources, so we don't attempt to merge those if the caller indicates 717 * the current vma may be removed as part of the merge. 718 */ 719 static inline bool is_mergeable_vma(struct vm_area_struct *vma, 720 struct file *file, unsigned long vm_flags, 721 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 722 struct anon_vma_name *anon_name, bool may_remove_vma) 723 { 724 /* 725 * VM_SOFTDIRTY should not prevent from VMA merging, if we 726 * match the flags but dirty bit -- the caller should mark 727 * merged VMA as dirty. If dirty bit won't be excluded from 728 * comparison, we increase pressure on the memory system forcing 729 * the kernel to generate new VMAs when old one could be 730 * extended instead. 731 */ 732 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 733 return false; 734 if (vma->vm_file != file) 735 return false; 736 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 737 return false; 738 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 739 return false; 740 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 741 return false; 742 return true; 743 } 744 745 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 746 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 747 { 748 /* 749 * The list_is_singular() test is to avoid merging VMA cloned from 750 * parents. This can improve scalability caused by anon_vma lock. 751 */ 752 if ((!anon_vma1 || !anon_vma2) && (!vma || 753 list_is_singular(&vma->anon_vma_chain))) 754 return true; 755 return anon_vma1 == anon_vma2; 756 } 757 758 /* 759 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 760 * in front of (at a lower virtual address and file offset than) the vma. 761 * 762 * We cannot merge two vmas if they have differently assigned (non-NULL) 763 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 764 * 765 * We don't check here for the merged mmap wrapping around the end of pagecache 766 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 767 * wrap, nor mmaps which cover the final page at index -1UL. 768 * 769 * We assume the vma may be removed as part of the merge. 770 */ 771 static bool 772 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 773 struct anon_vma *anon_vma, struct file *file, 774 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 775 struct anon_vma_name *anon_name) 776 { 777 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 778 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 779 if (vma->vm_pgoff == vm_pgoff) 780 return true; 781 } 782 return false; 783 } 784 785 /* 786 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 787 * beyond (at a higher virtual address and file offset than) the vma. 788 * 789 * We cannot merge two vmas if they have differently assigned (non-NULL) 790 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 791 * 792 * We assume that vma is not removed as part of the merge. 793 */ 794 static bool 795 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 796 struct anon_vma *anon_vma, struct file *file, 797 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 798 struct anon_vma_name *anon_name) 799 { 800 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 801 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 802 pgoff_t vm_pglen; 803 vm_pglen = vma_pages(vma); 804 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 805 return true; 806 } 807 return false; 808 } 809 810 /* 811 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 812 * figure out whether that can be merged with its predecessor or its 813 * successor. Or both (it neatly fills a hole). 814 * 815 * In most cases - when called for mmap, brk or mremap - [addr,end) is 816 * certain not to be mapped by the time vma_merge is called; but when 817 * called for mprotect, it is certain to be already mapped (either at 818 * an offset within prev, or at the start of next), and the flags of 819 * this area are about to be changed to vm_flags - and the no-change 820 * case has already been eliminated. 821 * 822 * The following mprotect cases have to be considered, where **** is 823 * the area passed down from mprotect_fixup, never extending beyond one 824 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 825 * at the same address as **** and is of the same or larger span, and 826 * NNNN the next vma after ****: 827 * 828 * **** **** **** 829 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 830 * cannot merge might become might become 831 * PPNNNNNNNNNN PPPPPPPPPPCC 832 * mmap, brk or case 4 below case 5 below 833 * mremap move: 834 * **** **** 835 * PPPP NNNN PPPPCCCCNNNN 836 * might become might become 837 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 838 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 839 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 840 * 841 * It is important for case 8 that the vma CCCC overlapping the 842 * region **** is never going to extended over NNNN. Instead NNNN must 843 * be extended in region **** and CCCC must be removed. This way in 844 * all cases where vma_merge succeeds, the moment vma_merge drops the 845 * rmap_locks, the properties of the merged vma will be already 846 * correct for the whole merged range. Some of those properties like 847 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 848 * be correct for the whole merged range immediately after the 849 * rmap_locks are released. Otherwise if NNNN would be removed and 850 * CCCC would be extended over the NNNN range, remove_migration_ptes 851 * or other rmap walkers (if working on addresses beyond the "end" 852 * parameter) may establish ptes with the wrong permissions of CCCC 853 * instead of the right permissions of NNNN. 854 * 855 * In the code below: 856 * PPPP is represented by *prev 857 * CCCC is represented by *curr or not represented at all (NULL) 858 * NNNN is represented by *next or not represented at all (NULL) 859 * **** is not represented - it will be merged and the vma containing the 860 * area is returned, or the function will return NULL 861 */ 862 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm, 863 struct vm_area_struct *prev, unsigned long addr, 864 unsigned long end, unsigned long vm_flags, 865 struct anon_vma *anon_vma, struct file *file, 866 pgoff_t pgoff, struct mempolicy *policy, 867 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 868 struct anon_vma_name *anon_name) 869 { 870 struct vm_area_struct *curr, *next, *res; 871 struct vm_area_struct *vma, *adjust, *remove, *remove2; 872 struct vm_area_struct *anon_dup = NULL; 873 struct vma_prepare vp; 874 pgoff_t vma_pgoff; 875 int err = 0; 876 bool merge_prev = false; 877 bool merge_next = false; 878 bool vma_expanded = false; 879 unsigned long vma_start = addr; 880 unsigned long vma_end = end; 881 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 882 long adj_start = 0; 883 884 /* 885 * We later require that vma->vm_flags == vm_flags, 886 * so this tests vma->vm_flags & VM_SPECIAL, too. 887 */ 888 if (vm_flags & VM_SPECIAL) 889 return NULL; 890 891 /* Does the input range span an existing VMA? (cases 5 - 8) */ 892 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 893 894 if (!curr || /* cases 1 - 4 */ 895 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 896 next = vma_lookup(mm, end); 897 else 898 next = NULL; /* case 5 */ 899 900 if (prev) { 901 vma_start = prev->vm_start; 902 vma_pgoff = prev->vm_pgoff; 903 904 /* Can we merge the predecessor? */ 905 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 906 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 907 pgoff, vm_userfaultfd_ctx, anon_name)) { 908 merge_prev = true; 909 vma_prev(vmi); 910 } 911 } 912 913 /* Can we merge the successor? */ 914 if (next && mpol_equal(policy, vma_policy(next)) && 915 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 916 vm_userfaultfd_ctx, anon_name)) { 917 merge_next = true; 918 } 919 920 /* Verify some invariant that must be enforced by the caller. */ 921 VM_WARN_ON(prev && addr <= prev->vm_start); 922 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 923 VM_WARN_ON(addr >= end); 924 925 if (!merge_prev && !merge_next) 926 return NULL; /* Not mergeable. */ 927 928 if (merge_prev) 929 vma_start_write(prev); 930 931 res = vma = prev; 932 remove = remove2 = adjust = NULL; 933 934 /* Can we merge both the predecessor and the successor? */ 935 if (merge_prev && merge_next && 936 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 937 vma_start_write(next); 938 remove = next; /* case 1 */ 939 vma_end = next->vm_end; 940 err = dup_anon_vma(prev, next, &anon_dup); 941 if (curr) { /* case 6 */ 942 vma_start_write(curr); 943 remove = curr; 944 remove2 = next; 945 if (!next->anon_vma) 946 err = dup_anon_vma(prev, curr, &anon_dup); 947 } 948 } else if (merge_prev) { /* case 2 */ 949 if (curr) { 950 vma_start_write(curr); 951 if (end == curr->vm_end) { /* case 7 */ 952 /* 953 * can_vma_merge_after() assumed we would not be 954 * removing prev vma, so it skipped the check 955 * for vm_ops->close, but we are removing curr 956 */ 957 if (curr->vm_ops && curr->vm_ops->close) 958 err = -EINVAL; 959 remove = curr; 960 } else { /* case 5 */ 961 adjust = curr; 962 adj_start = (end - curr->vm_start); 963 } 964 if (!err) 965 err = dup_anon_vma(prev, curr, &anon_dup); 966 } 967 } else { /* merge_next */ 968 vma_start_write(next); 969 res = next; 970 if (prev && addr < prev->vm_end) { /* case 4 */ 971 vma_start_write(prev); 972 vma_end = addr; 973 adjust = next; 974 adj_start = -(prev->vm_end - addr); 975 err = dup_anon_vma(next, prev, &anon_dup); 976 } else { 977 /* 978 * Note that cases 3 and 8 are the ONLY ones where prev 979 * is permitted to be (but is not necessarily) NULL. 980 */ 981 vma = next; /* case 3 */ 982 vma_start = addr; 983 vma_end = next->vm_end; 984 vma_pgoff = next->vm_pgoff - pglen; 985 if (curr) { /* case 8 */ 986 vma_pgoff = curr->vm_pgoff; 987 vma_start_write(curr); 988 remove = curr; 989 err = dup_anon_vma(next, curr, &anon_dup); 990 } 991 } 992 } 993 994 /* Error in anon_vma clone. */ 995 if (err) 996 goto anon_vma_fail; 997 998 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 999 vma_expanded = true; 1000 1001 if (vma_expanded) { 1002 vma_iter_config(vmi, vma_start, vma_end); 1003 } else { 1004 vma_iter_config(vmi, adjust->vm_start + adj_start, 1005 adjust->vm_end); 1006 } 1007 1008 if (vma_iter_prealloc(vmi, vma)) 1009 goto prealloc_fail; 1010 1011 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 1012 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 1013 vp.anon_vma != adjust->anon_vma); 1014 1015 vma_prepare(&vp); 1016 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1017 1018 vma->vm_start = vma_start; 1019 vma->vm_end = vma_end; 1020 vma->vm_pgoff = vma_pgoff; 1021 1022 if (vma_expanded) 1023 vma_iter_store(vmi, vma); 1024 1025 if (adj_start) { 1026 adjust->vm_start += adj_start; 1027 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1028 if (adj_start < 0) { 1029 WARN_ON(vma_expanded); 1030 vma_iter_store(vmi, next); 1031 } 1032 } 1033 1034 vma_complete(&vp, vmi, mm); 1035 khugepaged_enter_vma(res, vm_flags); 1036 return res; 1037 1038 prealloc_fail: 1039 if (anon_dup) 1040 unlink_anon_vmas(anon_dup); 1041 1042 anon_vma_fail: 1043 vma_iter_set(vmi, addr); 1044 vma_iter_load(vmi); 1045 return NULL; 1046 } 1047 1048 /* 1049 * Rough compatibility check to quickly see if it's even worth looking 1050 * at sharing an anon_vma. 1051 * 1052 * They need to have the same vm_file, and the flags can only differ 1053 * in things that mprotect may change. 1054 * 1055 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1056 * we can merge the two vma's. For example, we refuse to merge a vma if 1057 * there is a vm_ops->close() function, because that indicates that the 1058 * driver is doing some kind of reference counting. But that doesn't 1059 * really matter for the anon_vma sharing case. 1060 */ 1061 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1062 { 1063 return a->vm_end == b->vm_start && 1064 mpol_equal(vma_policy(a), vma_policy(b)) && 1065 a->vm_file == b->vm_file && 1066 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1067 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1068 } 1069 1070 /* 1071 * Do some basic sanity checking to see if we can re-use the anon_vma 1072 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1073 * the same as 'old', the other will be the new one that is trying 1074 * to share the anon_vma. 1075 * 1076 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1077 * the anon_vma of 'old' is concurrently in the process of being set up 1078 * by another page fault trying to merge _that_. But that's ok: if it 1079 * is being set up, that automatically means that it will be a singleton 1080 * acceptable for merging, so we can do all of this optimistically. But 1081 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1082 * 1083 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1084 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1085 * is to return an anon_vma that is "complex" due to having gone through 1086 * a fork). 1087 * 1088 * We also make sure that the two vma's are compatible (adjacent, 1089 * and with the same memory policies). That's all stable, even with just 1090 * a read lock on the mmap_lock. 1091 */ 1092 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1093 { 1094 if (anon_vma_compatible(a, b)) { 1095 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1096 1097 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1098 return anon_vma; 1099 } 1100 return NULL; 1101 } 1102 1103 /* 1104 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1105 * neighbouring vmas for a suitable anon_vma, before it goes off 1106 * to allocate a new anon_vma. It checks because a repetitive 1107 * sequence of mprotects and faults may otherwise lead to distinct 1108 * anon_vmas being allocated, preventing vma merge in subsequent 1109 * mprotect. 1110 */ 1111 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1112 { 1113 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end); 1114 struct anon_vma *anon_vma = NULL; 1115 struct vm_area_struct *prev, *next; 1116 1117 /* Try next first. */ 1118 next = mas_walk(&mas); 1119 if (next) { 1120 anon_vma = reusable_anon_vma(next, vma, next); 1121 if (anon_vma) 1122 return anon_vma; 1123 } 1124 1125 prev = mas_prev(&mas, 0); 1126 VM_BUG_ON_VMA(prev != vma, vma); 1127 prev = mas_prev(&mas, 0); 1128 /* Try prev next. */ 1129 if (prev) 1130 anon_vma = reusable_anon_vma(prev, prev, vma); 1131 1132 /* 1133 * We might reach here with anon_vma == NULL if we can't find 1134 * any reusable anon_vma. 1135 * There's no absolute need to look only at touching neighbours: 1136 * we could search further afield for "compatible" anon_vmas. 1137 * But it would probably just be a waste of time searching, 1138 * or lead to too many vmas hanging off the same anon_vma. 1139 * We're trying to allow mprotect remerging later on, 1140 * not trying to minimize memory used for anon_vmas. 1141 */ 1142 return anon_vma; 1143 } 1144 1145 /* 1146 * If a hint addr is less than mmap_min_addr change hint to be as 1147 * low as possible but still greater than mmap_min_addr 1148 */ 1149 static inline unsigned long round_hint_to_min(unsigned long hint) 1150 { 1151 hint &= PAGE_MASK; 1152 if (((void *)hint != NULL) && 1153 (hint < mmap_min_addr)) 1154 return PAGE_ALIGN(mmap_min_addr); 1155 return hint; 1156 } 1157 1158 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 1159 unsigned long bytes) 1160 { 1161 unsigned long locked_pages, limit_pages; 1162 1163 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 1164 return true; 1165 1166 locked_pages = bytes >> PAGE_SHIFT; 1167 locked_pages += mm->locked_vm; 1168 1169 limit_pages = rlimit(RLIMIT_MEMLOCK); 1170 limit_pages >>= PAGE_SHIFT; 1171 1172 return locked_pages <= limit_pages; 1173 } 1174 1175 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1176 { 1177 if (S_ISREG(inode->i_mode)) 1178 return MAX_LFS_FILESIZE; 1179 1180 if (S_ISBLK(inode->i_mode)) 1181 return MAX_LFS_FILESIZE; 1182 1183 if (S_ISSOCK(inode->i_mode)) 1184 return MAX_LFS_FILESIZE; 1185 1186 /* Special "we do even unsigned file positions" case */ 1187 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1188 return 0; 1189 1190 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1191 return ULONG_MAX; 1192 } 1193 1194 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1195 unsigned long pgoff, unsigned long len) 1196 { 1197 u64 maxsize = file_mmap_size_max(file, inode); 1198 1199 if (maxsize && len > maxsize) 1200 return false; 1201 maxsize -= len; 1202 if (pgoff > maxsize >> PAGE_SHIFT) 1203 return false; 1204 return true; 1205 } 1206 1207 /* 1208 * The caller must write-lock current->mm->mmap_lock. 1209 */ 1210 unsigned long do_mmap(struct file *file, unsigned long addr, 1211 unsigned long len, unsigned long prot, 1212 unsigned long flags, vm_flags_t vm_flags, 1213 unsigned long pgoff, unsigned long *populate, 1214 struct list_head *uf) 1215 { 1216 struct mm_struct *mm = current->mm; 1217 int pkey = 0; 1218 1219 *populate = 0; 1220 1221 if (!len) 1222 return -EINVAL; 1223 1224 /* 1225 * Does the application expect PROT_READ to imply PROT_EXEC? 1226 * 1227 * (the exception is when the underlying filesystem is noexec 1228 * mounted, in which case we dont add PROT_EXEC.) 1229 */ 1230 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1231 if (!(file && path_noexec(&file->f_path))) 1232 prot |= PROT_EXEC; 1233 1234 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1235 if (flags & MAP_FIXED_NOREPLACE) 1236 flags |= MAP_FIXED; 1237 1238 if (!(flags & MAP_FIXED)) 1239 addr = round_hint_to_min(addr); 1240 1241 /* Careful about overflows.. */ 1242 len = PAGE_ALIGN(len); 1243 if (!len) 1244 return -ENOMEM; 1245 1246 /* offset overflow? */ 1247 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1248 return -EOVERFLOW; 1249 1250 /* Too many mappings? */ 1251 if (mm->map_count > sysctl_max_map_count) 1252 return -ENOMEM; 1253 1254 /* Obtain the address to map to. we verify (or select) it and ensure 1255 * that it represents a valid section of the address space. 1256 */ 1257 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1258 if (IS_ERR_VALUE(addr)) 1259 return addr; 1260 1261 if (flags & MAP_FIXED_NOREPLACE) { 1262 if (find_vma_intersection(mm, addr, addr + len)) 1263 return -EEXIST; 1264 } 1265 1266 if (prot == PROT_EXEC) { 1267 pkey = execute_only_pkey(mm); 1268 if (pkey < 0) 1269 pkey = 0; 1270 } 1271 1272 /* Do simple checking here so the lower-level routines won't have 1273 * to. we assume access permissions have been handled by the open 1274 * of the memory object, so we don't do any here. 1275 */ 1276 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) | 1277 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1278 1279 if (flags & MAP_LOCKED) 1280 if (!can_do_mlock()) 1281 return -EPERM; 1282 1283 if (!mlock_future_ok(mm, vm_flags, len)) 1284 return -EAGAIN; 1285 1286 if (file) { 1287 struct inode *inode = file_inode(file); 1288 unsigned long flags_mask; 1289 1290 if (!file_mmap_ok(file, inode, pgoff, len)) 1291 return -EOVERFLOW; 1292 1293 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1294 1295 switch (flags & MAP_TYPE) { 1296 case MAP_SHARED: 1297 /* 1298 * Force use of MAP_SHARED_VALIDATE with non-legacy 1299 * flags. E.g. MAP_SYNC is dangerous to use with 1300 * MAP_SHARED as you don't know which consistency model 1301 * you will get. We silently ignore unsupported flags 1302 * with MAP_SHARED to preserve backward compatibility. 1303 */ 1304 flags &= LEGACY_MAP_MASK; 1305 fallthrough; 1306 case MAP_SHARED_VALIDATE: 1307 if (flags & ~flags_mask) 1308 return -EOPNOTSUPP; 1309 if (prot & PROT_WRITE) { 1310 if (!(file->f_mode & FMODE_WRITE)) 1311 return -EACCES; 1312 if (IS_SWAPFILE(file->f_mapping->host)) 1313 return -ETXTBSY; 1314 } 1315 1316 /* 1317 * Make sure we don't allow writing to an append-only 1318 * file.. 1319 */ 1320 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1321 return -EACCES; 1322 1323 vm_flags |= VM_SHARED | VM_MAYSHARE; 1324 if (!(file->f_mode & FMODE_WRITE)) 1325 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1326 fallthrough; 1327 case MAP_PRIVATE: 1328 if (!(file->f_mode & FMODE_READ)) 1329 return -EACCES; 1330 if (path_noexec(&file->f_path)) { 1331 if (vm_flags & VM_EXEC) 1332 return -EPERM; 1333 vm_flags &= ~VM_MAYEXEC; 1334 } 1335 1336 if (!file->f_op->mmap) 1337 return -ENODEV; 1338 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1339 return -EINVAL; 1340 break; 1341 1342 default: 1343 return -EINVAL; 1344 } 1345 } else { 1346 switch (flags & MAP_TYPE) { 1347 case MAP_SHARED: 1348 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1349 return -EINVAL; 1350 /* 1351 * Ignore pgoff. 1352 */ 1353 pgoff = 0; 1354 vm_flags |= VM_SHARED | VM_MAYSHARE; 1355 break; 1356 case MAP_PRIVATE: 1357 /* 1358 * Set pgoff according to addr for anon_vma. 1359 */ 1360 pgoff = addr >> PAGE_SHIFT; 1361 break; 1362 default: 1363 return -EINVAL; 1364 } 1365 } 1366 1367 /* 1368 * Set 'VM_NORESERVE' if we should not account for the 1369 * memory use of this mapping. 1370 */ 1371 if (flags & MAP_NORESERVE) { 1372 /* We honor MAP_NORESERVE if allowed to overcommit */ 1373 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1374 vm_flags |= VM_NORESERVE; 1375 1376 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1377 if (file && is_file_hugepages(file)) 1378 vm_flags |= VM_NORESERVE; 1379 } 1380 1381 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1382 if (!IS_ERR_VALUE(addr) && 1383 ((vm_flags & VM_LOCKED) || 1384 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1385 *populate = len; 1386 return addr; 1387 } 1388 1389 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1390 unsigned long prot, unsigned long flags, 1391 unsigned long fd, unsigned long pgoff) 1392 { 1393 struct file *file = NULL; 1394 unsigned long retval; 1395 1396 if (!(flags & MAP_ANONYMOUS)) { 1397 audit_mmap_fd(fd, flags); 1398 file = fget(fd); 1399 if (!file) 1400 return -EBADF; 1401 if (is_file_hugepages(file)) { 1402 len = ALIGN(len, huge_page_size(hstate_file(file))); 1403 } else if (unlikely(flags & MAP_HUGETLB)) { 1404 retval = -EINVAL; 1405 goto out_fput; 1406 } 1407 } else if (flags & MAP_HUGETLB) { 1408 struct hstate *hs; 1409 1410 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1411 if (!hs) 1412 return -EINVAL; 1413 1414 len = ALIGN(len, huge_page_size(hs)); 1415 /* 1416 * VM_NORESERVE is used because the reservations will be 1417 * taken when vm_ops->mmap() is called 1418 */ 1419 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1420 VM_NORESERVE, 1421 HUGETLB_ANONHUGE_INODE, 1422 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1423 if (IS_ERR(file)) 1424 return PTR_ERR(file); 1425 } 1426 1427 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1428 out_fput: 1429 if (file) 1430 fput(file); 1431 return retval; 1432 } 1433 1434 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1435 unsigned long, prot, unsigned long, flags, 1436 unsigned long, fd, unsigned long, pgoff) 1437 { 1438 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1439 } 1440 1441 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1442 struct mmap_arg_struct { 1443 unsigned long addr; 1444 unsigned long len; 1445 unsigned long prot; 1446 unsigned long flags; 1447 unsigned long fd; 1448 unsigned long offset; 1449 }; 1450 1451 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1452 { 1453 struct mmap_arg_struct a; 1454 1455 if (copy_from_user(&a, arg, sizeof(a))) 1456 return -EFAULT; 1457 if (offset_in_page(a.offset)) 1458 return -EINVAL; 1459 1460 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1461 a.offset >> PAGE_SHIFT); 1462 } 1463 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1464 1465 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1466 { 1467 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1468 } 1469 1470 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1471 { 1472 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1473 (VM_WRITE | VM_SHARED); 1474 } 1475 1476 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1477 { 1478 /* No managed pages to writeback. */ 1479 if (vma->vm_flags & VM_PFNMAP) 1480 return false; 1481 1482 return vma->vm_file && vma->vm_file->f_mapping && 1483 mapping_can_writeback(vma->vm_file->f_mapping); 1484 } 1485 1486 /* 1487 * Does this VMA require the underlying folios to have their dirty state 1488 * tracked? 1489 */ 1490 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1491 { 1492 /* Only shared, writable VMAs require dirty tracking. */ 1493 if (!vma_is_shared_writable(vma)) 1494 return false; 1495 1496 /* Does the filesystem need to be notified? */ 1497 if (vm_ops_needs_writenotify(vma->vm_ops)) 1498 return true; 1499 1500 /* 1501 * Even if the filesystem doesn't indicate a need for writenotify, if it 1502 * can writeback, dirty tracking is still required. 1503 */ 1504 return vma_fs_can_writeback(vma); 1505 } 1506 1507 /* 1508 * Some shared mappings will want the pages marked read-only 1509 * to track write events. If so, we'll downgrade vm_page_prot 1510 * to the private version (using protection_map[] without the 1511 * VM_SHARED bit). 1512 */ 1513 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1514 { 1515 /* If it was private or non-writable, the write bit is already clear */ 1516 if (!vma_is_shared_writable(vma)) 1517 return 0; 1518 1519 /* The backer wishes to know when pages are first written to? */ 1520 if (vm_ops_needs_writenotify(vma->vm_ops)) 1521 return 1; 1522 1523 /* The open routine did something to the protections that pgprot_modify 1524 * won't preserve? */ 1525 if (pgprot_val(vm_page_prot) != 1526 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1527 return 0; 1528 1529 /* 1530 * Do we need to track softdirty? hugetlb does not support softdirty 1531 * tracking yet. 1532 */ 1533 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1534 return 1; 1535 1536 /* Do we need write faults for uffd-wp tracking? */ 1537 if (userfaultfd_wp(vma)) 1538 return 1; 1539 1540 /* Can the mapping track the dirty pages? */ 1541 return vma_fs_can_writeback(vma); 1542 } 1543 1544 /* 1545 * We account for memory if it's a private writeable mapping, 1546 * not hugepages and VM_NORESERVE wasn't set. 1547 */ 1548 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1549 { 1550 /* 1551 * hugetlb has its own accounting separate from the core VM 1552 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1553 */ 1554 if (file && is_file_hugepages(file)) 1555 return 0; 1556 1557 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1558 } 1559 1560 /** 1561 * unmapped_area() - Find an area between the low_limit and the high_limit with 1562 * the correct alignment and offset, all from @info. Note: current->mm is used 1563 * for the search. 1564 * 1565 * @info: The unmapped area information including the range [low_limit - 1566 * high_limit), the alignment offset and mask. 1567 * 1568 * Return: A memory address or -ENOMEM. 1569 */ 1570 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1571 { 1572 unsigned long length, gap; 1573 unsigned long low_limit, high_limit; 1574 struct vm_area_struct *tmp; 1575 1576 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1577 1578 /* Adjust search length to account for worst case alignment overhead */ 1579 length = info->length + info->align_mask; 1580 if (length < info->length) 1581 return -ENOMEM; 1582 1583 low_limit = info->low_limit; 1584 if (low_limit < mmap_min_addr) 1585 low_limit = mmap_min_addr; 1586 high_limit = info->high_limit; 1587 retry: 1588 if (mas_empty_area(&mas, low_limit, high_limit - 1, length)) 1589 return -ENOMEM; 1590 1591 gap = mas.index; 1592 gap += (info->align_offset - gap) & info->align_mask; 1593 tmp = mas_next(&mas, ULONG_MAX); 1594 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1595 if (vm_start_gap(tmp) < gap + length - 1) { 1596 low_limit = tmp->vm_end; 1597 mas_reset(&mas); 1598 goto retry; 1599 } 1600 } else { 1601 tmp = mas_prev(&mas, 0); 1602 if (tmp && vm_end_gap(tmp) > gap) { 1603 low_limit = vm_end_gap(tmp); 1604 mas_reset(&mas); 1605 goto retry; 1606 } 1607 } 1608 1609 return gap; 1610 } 1611 1612 /** 1613 * unmapped_area_topdown() - Find an area between the low_limit and the 1614 * high_limit with the correct alignment and offset at the highest available 1615 * address, all from @info. Note: current->mm is used for the search. 1616 * 1617 * @info: The unmapped area information including the range [low_limit - 1618 * high_limit), the alignment offset and mask. 1619 * 1620 * Return: A memory address or -ENOMEM. 1621 */ 1622 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1623 { 1624 unsigned long length, gap, gap_end; 1625 unsigned long low_limit, high_limit; 1626 struct vm_area_struct *tmp; 1627 1628 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1629 /* Adjust search length to account for worst case alignment overhead */ 1630 length = info->length + info->align_mask; 1631 if (length < info->length) 1632 return -ENOMEM; 1633 1634 low_limit = info->low_limit; 1635 if (low_limit < mmap_min_addr) 1636 low_limit = mmap_min_addr; 1637 high_limit = info->high_limit; 1638 retry: 1639 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length)) 1640 return -ENOMEM; 1641 1642 gap = mas.last + 1 - info->length; 1643 gap -= (gap - info->align_offset) & info->align_mask; 1644 gap_end = mas.last; 1645 tmp = mas_next(&mas, ULONG_MAX); 1646 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1647 if (vm_start_gap(tmp) <= gap_end) { 1648 high_limit = vm_start_gap(tmp); 1649 mas_reset(&mas); 1650 goto retry; 1651 } 1652 } else { 1653 tmp = mas_prev(&mas, 0); 1654 if (tmp && vm_end_gap(tmp) > gap) { 1655 high_limit = tmp->vm_start; 1656 mas_reset(&mas); 1657 goto retry; 1658 } 1659 } 1660 1661 return gap; 1662 } 1663 1664 /* 1665 * Search for an unmapped address range. 1666 * 1667 * We are looking for a range that: 1668 * - does not intersect with any VMA; 1669 * - is contained within the [low_limit, high_limit) interval; 1670 * - is at least the desired size. 1671 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1672 */ 1673 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1674 { 1675 unsigned long addr; 1676 1677 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1678 addr = unmapped_area_topdown(info); 1679 else 1680 addr = unmapped_area(info); 1681 1682 trace_vm_unmapped_area(addr, info); 1683 return addr; 1684 } 1685 1686 /* Get an address range which is currently unmapped. 1687 * For shmat() with addr=0. 1688 * 1689 * Ugly calling convention alert: 1690 * Return value with the low bits set means error value, 1691 * ie 1692 * if (ret & ~PAGE_MASK) 1693 * error = ret; 1694 * 1695 * This function "knows" that -ENOMEM has the bits set. 1696 */ 1697 unsigned long 1698 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1699 unsigned long len, unsigned long pgoff, 1700 unsigned long flags) 1701 { 1702 struct mm_struct *mm = current->mm; 1703 struct vm_area_struct *vma, *prev; 1704 struct vm_unmapped_area_info info; 1705 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1706 1707 if (len > mmap_end - mmap_min_addr) 1708 return -ENOMEM; 1709 1710 if (flags & MAP_FIXED) 1711 return addr; 1712 1713 if (addr) { 1714 addr = PAGE_ALIGN(addr); 1715 vma = find_vma_prev(mm, addr, &prev); 1716 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1717 (!vma || addr + len <= vm_start_gap(vma)) && 1718 (!prev || addr >= vm_end_gap(prev))) 1719 return addr; 1720 } 1721 1722 info.flags = 0; 1723 info.length = len; 1724 info.low_limit = mm->mmap_base; 1725 info.high_limit = mmap_end; 1726 info.align_mask = 0; 1727 info.align_offset = 0; 1728 return vm_unmapped_area(&info); 1729 } 1730 1731 #ifndef HAVE_ARCH_UNMAPPED_AREA 1732 unsigned long 1733 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1734 unsigned long len, unsigned long pgoff, 1735 unsigned long flags) 1736 { 1737 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1738 } 1739 #endif 1740 1741 /* 1742 * This mmap-allocator allocates new areas top-down from below the 1743 * stack's low limit (the base): 1744 */ 1745 unsigned long 1746 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1747 unsigned long len, unsigned long pgoff, 1748 unsigned long flags) 1749 { 1750 struct vm_area_struct *vma, *prev; 1751 struct mm_struct *mm = current->mm; 1752 struct vm_unmapped_area_info info; 1753 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1754 1755 /* requested length too big for entire address space */ 1756 if (len > mmap_end - mmap_min_addr) 1757 return -ENOMEM; 1758 1759 if (flags & MAP_FIXED) 1760 return addr; 1761 1762 /* requesting a specific address */ 1763 if (addr) { 1764 addr = PAGE_ALIGN(addr); 1765 vma = find_vma_prev(mm, addr, &prev); 1766 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1767 (!vma || addr + len <= vm_start_gap(vma)) && 1768 (!prev || addr >= vm_end_gap(prev))) 1769 return addr; 1770 } 1771 1772 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1773 info.length = len; 1774 info.low_limit = PAGE_SIZE; 1775 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1776 info.align_mask = 0; 1777 info.align_offset = 0; 1778 addr = vm_unmapped_area(&info); 1779 1780 /* 1781 * A failed mmap() very likely causes application failure, 1782 * so fall back to the bottom-up function here. This scenario 1783 * can happen with large stack limits and large mmap() 1784 * allocations. 1785 */ 1786 if (offset_in_page(addr)) { 1787 VM_BUG_ON(addr != -ENOMEM); 1788 info.flags = 0; 1789 info.low_limit = TASK_UNMAPPED_BASE; 1790 info.high_limit = mmap_end; 1791 addr = vm_unmapped_area(&info); 1792 } 1793 1794 return addr; 1795 } 1796 1797 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1798 unsigned long 1799 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1800 unsigned long len, unsigned long pgoff, 1801 unsigned long flags) 1802 { 1803 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1804 } 1805 #endif 1806 1807 unsigned long 1808 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1809 unsigned long pgoff, unsigned long flags) 1810 { 1811 unsigned long (*get_area)(struct file *, unsigned long, 1812 unsigned long, unsigned long, unsigned long); 1813 1814 unsigned long error = arch_mmap_check(addr, len, flags); 1815 if (error) 1816 return error; 1817 1818 /* Careful about overflows.. */ 1819 if (len > TASK_SIZE) 1820 return -ENOMEM; 1821 1822 get_area = current->mm->get_unmapped_area; 1823 if (file) { 1824 if (file->f_op->get_unmapped_area) 1825 get_area = file->f_op->get_unmapped_area; 1826 } else if (flags & MAP_SHARED) { 1827 /* 1828 * mmap_region() will call shmem_zero_setup() to create a file, 1829 * so use shmem's get_unmapped_area in case it can be huge. 1830 * do_mmap() will clear pgoff, so match alignment. 1831 */ 1832 pgoff = 0; 1833 get_area = shmem_get_unmapped_area; 1834 } 1835 1836 addr = get_area(file, addr, len, pgoff, flags); 1837 if (IS_ERR_VALUE(addr)) 1838 return addr; 1839 1840 if (addr > TASK_SIZE - len) 1841 return -ENOMEM; 1842 if (offset_in_page(addr)) 1843 return -EINVAL; 1844 1845 error = security_mmap_addr(addr); 1846 return error ? error : addr; 1847 } 1848 1849 EXPORT_SYMBOL(get_unmapped_area); 1850 1851 /** 1852 * find_vma_intersection() - Look up the first VMA which intersects the interval 1853 * @mm: The process address space. 1854 * @start_addr: The inclusive start user address. 1855 * @end_addr: The exclusive end user address. 1856 * 1857 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1858 * start_addr < end_addr. 1859 */ 1860 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1861 unsigned long start_addr, 1862 unsigned long end_addr) 1863 { 1864 unsigned long index = start_addr; 1865 1866 mmap_assert_locked(mm); 1867 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1868 } 1869 EXPORT_SYMBOL(find_vma_intersection); 1870 1871 /** 1872 * find_vma() - Find the VMA for a given address, or the next VMA. 1873 * @mm: The mm_struct to check 1874 * @addr: The address 1875 * 1876 * Returns: The VMA associated with addr, or the next VMA. 1877 * May return %NULL in the case of no VMA at addr or above. 1878 */ 1879 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1880 { 1881 unsigned long index = addr; 1882 1883 mmap_assert_locked(mm); 1884 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1885 } 1886 EXPORT_SYMBOL(find_vma); 1887 1888 /** 1889 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1890 * set %pprev to the previous VMA, if any. 1891 * @mm: The mm_struct to check 1892 * @addr: The address 1893 * @pprev: The pointer to set to the previous VMA 1894 * 1895 * Note that RCU lock is missing here since the external mmap_lock() is used 1896 * instead. 1897 * 1898 * Returns: The VMA associated with @addr, or the next vma. 1899 * May return %NULL in the case of no vma at addr or above. 1900 */ 1901 struct vm_area_struct * 1902 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1903 struct vm_area_struct **pprev) 1904 { 1905 struct vm_area_struct *vma; 1906 MA_STATE(mas, &mm->mm_mt, addr, addr); 1907 1908 vma = mas_walk(&mas); 1909 *pprev = mas_prev(&mas, 0); 1910 if (!vma) 1911 vma = mas_next(&mas, ULONG_MAX); 1912 return vma; 1913 } 1914 1915 /* 1916 * Verify that the stack growth is acceptable and 1917 * update accounting. This is shared with both the 1918 * grow-up and grow-down cases. 1919 */ 1920 static int acct_stack_growth(struct vm_area_struct *vma, 1921 unsigned long size, unsigned long grow) 1922 { 1923 struct mm_struct *mm = vma->vm_mm; 1924 unsigned long new_start; 1925 1926 /* address space limit tests */ 1927 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1928 return -ENOMEM; 1929 1930 /* Stack limit test */ 1931 if (size > rlimit(RLIMIT_STACK)) 1932 return -ENOMEM; 1933 1934 /* mlock limit tests */ 1935 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1936 return -ENOMEM; 1937 1938 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1939 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1940 vma->vm_end - size; 1941 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1942 return -EFAULT; 1943 1944 /* 1945 * Overcommit.. This must be the final test, as it will 1946 * update security statistics. 1947 */ 1948 if (security_vm_enough_memory_mm(mm, grow)) 1949 return -ENOMEM; 1950 1951 return 0; 1952 } 1953 1954 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1955 /* 1956 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1957 * vma is the last one with address > vma->vm_end. Have to extend vma. 1958 */ 1959 static int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1960 { 1961 struct mm_struct *mm = vma->vm_mm; 1962 struct vm_area_struct *next; 1963 unsigned long gap_addr; 1964 int error = 0; 1965 MA_STATE(mas, &mm->mm_mt, vma->vm_start, address); 1966 1967 if (!(vma->vm_flags & VM_GROWSUP)) 1968 return -EFAULT; 1969 1970 /* Guard against exceeding limits of the address space. */ 1971 address &= PAGE_MASK; 1972 if (address >= (TASK_SIZE & PAGE_MASK)) 1973 return -ENOMEM; 1974 address += PAGE_SIZE; 1975 1976 /* Enforce stack_guard_gap */ 1977 gap_addr = address + stack_guard_gap; 1978 1979 /* Guard against overflow */ 1980 if (gap_addr < address || gap_addr > TASK_SIZE) 1981 gap_addr = TASK_SIZE; 1982 1983 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1984 if (next && vma_is_accessible(next)) { 1985 if (!(next->vm_flags & VM_GROWSUP)) 1986 return -ENOMEM; 1987 /* Check that both stack segments have the same anon_vma? */ 1988 } 1989 1990 if (next) 1991 mas_prev_range(&mas, address); 1992 1993 __mas_set_range(&mas, vma->vm_start, address - 1); 1994 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 1995 return -ENOMEM; 1996 1997 /* We must make sure the anon_vma is allocated. */ 1998 if (unlikely(anon_vma_prepare(vma))) { 1999 mas_destroy(&mas); 2000 return -ENOMEM; 2001 } 2002 2003 /* Lock the VMA before expanding to prevent concurrent page faults */ 2004 vma_start_write(vma); 2005 /* 2006 * vma->vm_start/vm_end cannot change under us because the caller 2007 * is required to hold the mmap_lock in read mode. We need the 2008 * anon_vma lock to serialize against concurrent expand_stacks. 2009 */ 2010 anon_vma_lock_write(vma->anon_vma); 2011 2012 /* Somebody else might have raced and expanded it already */ 2013 if (address > vma->vm_end) { 2014 unsigned long size, grow; 2015 2016 size = address - vma->vm_start; 2017 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2018 2019 error = -ENOMEM; 2020 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2021 error = acct_stack_growth(vma, size, grow); 2022 if (!error) { 2023 /* 2024 * We only hold a shared mmap_lock lock here, so 2025 * we need to protect against concurrent vma 2026 * expansions. anon_vma_lock_write() doesn't 2027 * help here, as we don't guarantee that all 2028 * growable vmas in a mm share the same root 2029 * anon vma. So, we reuse mm->page_table_lock 2030 * to guard against concurrent vma expansions. 2031 */ 2032 spin_lock(&mm->page_table_lock); 2033 if (vma->vm_flags & VM_LOCKED) 2034 mm->locked_vm += grow; 2035 vm_stat_account(mm, vma->vm_flags, grow); 2036 anon_vma_interval_tree_pre_update_vma(vma); 2037 vma->vm_end = address; 2038 /* Overwrite old entry in mtree. */ 2039 mas_store_prealloc(&mas, vma); 2040 anon_vma_interval_tree_post_update_vma(vma); 2041 spin_unlock(&mm->page_table_lock); 2042 2043 perf_event_mmap(vma); 2044 } 2045 } 2046 } 2047 anon_vma_unlock_write(vma->anon_vma); 2048 khugepaged_enter_vma(vma, vma->vm_flags); 2049 mas_destroy(&mas); 2050 validate_mm(mm); 2051 return error; 2052 } 2053 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2054 2055 /* 2056 * vma is the first one with address < vma->vm_start. Have to extend vma. 2057 * mmap_lock held for writing. 2058 */ 2059 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2060 { 2061 struct mm_struct *mm = vma->vm_mm; 2062 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start); 2063 struct vm_area_struct *prev; 2064 int error = 0; 2065 2066 if (!(vma->vm_flags & VM_GROWSDOWN)) 2067 return -EFAULT; 2068 2069 address &= PAGE_MASK; 2070 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2071 return -EPERM; 2072 2073 /* Enforce stack_guard_gap */ 2074 prev = mas_prev(&mas, 0); 2075 /* Check that both stack segments have the same anon_vma? */ 2076 if (prev) { 2077 if (!(prev->vm_flags & VM_GROWSDOWN) && 2078 vma_is_accessible(prev) && 2079 (address - prev->vm_end < stack_guard_gap)) 2080 return -ENOMEM; 2081 } 2082 2083 if (prev) 2084 mas_next_range(&mas, vma->vm_start); 2085 2086 __mas_set_range(&mas, address, vma->vm_end - 1); 2087 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 2088 return -ENOMEM; 2089 2090 /* We must make sure the anon_vma is allocated. */ 2091 if (unlikely(anon_vma_prepare(vma))) { 2092 mas_destroy(&mas); 2093 return -ENOMEM; 2094 } 2095 2096 /* Lock the VMA before expanding to prevent concurrent page faults */ 2097 vma_start_write(vma); 2098 /* 2099 * vma->vm_start/vm_end cannot change under us because the caller 2100 * is required to hold the mmap_lock in read mode. We need the 2101 * anon_vma lock to serialize against concurrent expand_stacks. 2102 */ 2103 anon_vma_lock_write(vma->anon_vma); 2104 2105 /* Somebody else might have raced and expanded it already */ 2106 if (address < vma->vm_start) { 2107 unsigned long size, grow; 2108 2109 size = vma->vm_end - address; 2110 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2111 2112 error = -ENOMEM; 2113 if (grow <= vma->vm_pgoff) { 2114 error = acct_stack_growth(vma, size, grow); 2115 if (!error) { 2116 /* 2117 * We only hold a shared mmap_lock lock here, so 2118 * we need to protect against concurrent vma 2119 * expansions. anon_vma_lock_write() doesn't 2120 * help here, as we don't guarantee that all 2121 * growable vmas in a mm share the same root 2122 * anon vma. So, we reuse mm->page_table_lock 2123 * to guard against concurrent vma expansions. 2124 */ 2125 spin_lock(&mm->page_table_lock); 2126 if (vma->vm_flags & VM_LOCKED) 2127 mm->locked_vm += grow; 2128 vm_stat_account(mm, vma->vm_flags, grow); 2129 anon_vma_interval_tree_pre_update_vma(vma); 2130 vma->vm_start = address; 2131 vma->vm_pgoff -= grow; 2132 /* Overwrite old entry in mtree. */ 2133 mas_store_prealloc(&mas, vma); 2134 anon_vma_interval_tree_post_update_vma(vma); 2135 spin_unlock(&mm->page_table_lock); 2136 2137 perf_event_mmap(vma); 2138 } 2139 } 2140 } 2141 anon_vma_unlock_write(vma->anon_vma); 2142 khugepaged_enter_vma(vma, vma->vm_flags); 2143 mas_destroy(&mas); 2144 validate_mm(mm); 2145 return error; 2146 } 2147 2148 /* enforced gap between the expanding stack and other mappings. */ 2149 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2150 2151 static int __init cmdline_parse_stack_guard_gap(char *p) 2152 { 2153 unsigned long val; 2154 char *endptr; 2155 2156 val = simple_strtoul(p, &endptr, 10); 2157 if (!*endptr) 2158 stack_guard_gap = val << PAGE_SHIFT; 2159 2160 return 1; 2161 } 2162 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2163 2164 #ifdef CONFIG_STACK_GROWSUP 2165 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2166 { 2167 return expand_upwards(vma, address); 2168 } 2169 2170 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2171 { 2172 struct vm_area_struct *vma, *prev; 2173 2174 addr &= PAGE_MASK; 2175 vma = find_vma_prev(mm, addr, &prev); 2176 if (vma && (vma->vm_start <= addr)) 2177 return vma; 2178 if (!prev) 2179 return NULL; 2180 if (expand_stack_locked(prev, addr)) 2181 return NULL; 2182 if (prev->vm_flags & VM_LOCKED) 2183 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2184 return prev; 2185 } 2186 #else 2187 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2188 { 2189 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 2190 return -EINVAL; 2191 return expand_downwards(vma, address); 2192 } 2193 2194 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2195 { 2196 struct vm_area_struct *vma; 2197 unsigned long start; 2198 2199 addr &= PAGE_MASK; 2200 vma = find_vma(mm, addr); 2201 if (!vma) 2202 return NULL; 2203 if (vma->vm_start <= addr) 2204 return vma; 2205 start = vma->vm_start; 2206 if (expand_stack_locked(vma, addr)) 2207 return NULL; 2208 if (vma->vm_flags & VM_LOCKED) 2209 populate_vma_page_range(vma, addr, start, NULL); 2210 return vma; 2211 } 2212 #endif 2213 2214 /* 2215 * IA64 has some horrid mapping rules: it can expand both up and down, 2216 * but with various special rules. 2217 * 2218 * We'll get rid of this architecture eventually, so the ugliness is 2219 * temporary. 2220 */ 2221 #ifdef CONFIG_IA64 2222 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr) 2223 { 2224 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) && 2225 REGION_OFFSET(addr) < RGN_MAP_LIMIT; 2226 } 2227 2228 /* 2229 * IA64 stacks grow down, but there's a special register backing store 2230 * that can grow up. Only sequentially, though, so the new address must 2231 * match vm_end. 2232 */ 2233 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr) 2234 { 2235 if (!vma_expand_ok(vma, addr)) 2236 return -EFAULT; 2237 if (vma->vm_end != (addr & PAGE_MASK)) 2238 return -EFAULT; 2239 return expand_upwards(vma, addr); 2240 } 2241 2242 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr) 2243 { 2244 if (!vma_expand_ok(vma, addr)) 2245 return -EFAULT; 2246 return expand_downwards(vma, addr); 2247 } 2248 2249 #elif defined(CONFIG_STACK_GROWSUP) 2250 2251 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 2252 #define vma_expand_down(vma, addr) (-EFAULT) 2253 2254 #else 2255 2256 #define vma_expand_up(vma,addr) (-EFAULT) 2257 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 2258 2259 #endif 2260 2261 /* 2262 * expand_stack(): legacy interface for page faulting. Don't use unless 2263 * you have to. 2264 * 2265 * This is called with the mm locked for reading, drops the lock, takes 2266 * the lock for writing, tries to look up a vma again, expands it if 2267 * necessary, and downgrades the lock to reading again. 2268 * 2269 * If no vma is found or it can't be expanded, it returns NULL and has 2270 * dropped the lock. 2271 */ 2272 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 2273 { 2274 struct vm_area_struct *vma, *prev; 2275 2276 mmap_read_unlock(mm); 2277 if (mmap_write_lock_killable(mm)) 2278 return NULL; 2279 2280 vma = find_vma_prev(mm, addr, &prev); 2281 if (vma && vma->vm_start <= addr) 2282 goto success; 2283 2284 if (prev && !vma_expand_up(prev, addr)) { 2285 vma = prev; 2286 goto success; 2287 } 2288 2289 if (vma && !vma_expand_down(vma, addr)) 2290 goto success; 2291 2292 mmap_write_unlock(mm); 2293 return NULL; 2294 2295 success: 2296 mmap_write_downgrade(mm); 2297 return vma; 2298 } 2299 2300 /* 2301 * Ok - we have the memory areas we should free on a maple tree so release them, 2302 * and do the vma updates. 2303 * 2304 * Called with the mm semaphore held. 2305 */ 2306 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2307 { 2308 unsigned long nr_accounted = 0; 2309 struct vm_area_struct *vma; 2310 2311 /* Update high watermark before we lower total_vm */ 2312 update_hiwater_vm(mm); 2313 mas_for_each(mas, vma, ULONG_MAX) { 2314 long nrpages = vma_pages(vma); 2315 2316 if (vma->vm_flags & VM_ACCOUNT) 2317 nr_accounted += nrpages; 2318 vm_stat_account(mm, vma->vm_flags, -nrpages); 2319 remove_vma(vma, false); 2320 } 2321 vm_unacct_memory(nr_accounted); 2322 } 2323 2324 /* 2325 * Get rid of page table information in the indicated region. 2326 * 2327 * Called with the mm semaphore held. 2328 */ 2329 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 2330 struct vm_area_struct *vma, struct vm_area_struct *prev, 2331 struct vm_area_struct *next, unsigned long start, 2332 unsigned long end, unsigned long tree_end, bool mm_wr_locked) 2333 { 2334 struct mmu_gather tlb; 2335 unsigned long mt_start = mas->index; 2336 2337 lru_add_drain(); 2338 tlb_gather_mmu(&tlb, mm); 2339 update_hiwater_rss(mm); 2340 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked); 2341 mas_set(mas, mt_start); 2342 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2343 next ? next->vm_start : USER_PGTABLES_CEILING, 2344 mm_wr_locked); 2345 tlb_finish_mmu(&tlb); 2346 } 2347 2348 /* 2349 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2350 * has already been checked or doesn't make sense to fail. 2351 * VMA Iterator will point to the end VMA. 2352 */ 2353 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2354 unsigned long addr, int new_below) 2355 { 2356 struct vma_prepare vp; 2357 struct vm_area_struct *new; 2358 int err; 2359 2360 WARN_ON(vma->vm_start >= addr); 2361 WARN_ON(vma->vm_end <= addr); 2362 2363 if (vma->vm_ops && vma->vm_ops->may_split) { 2364 err = vma->vm_ops->may_split(vma, addr); 2365 if (err) 2366 return err; 2367 } 2368 2369 new = vm_area_dup(vma); 2370 if (!new) 2371 return -ENOMEM; 2372 2373 if (new_below) { 2374 new->vm_end = addr; 2375 } else { 2376 new->vm_start = addr; 2377 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2378 } 2379 2380 err = -ENOMEM; 2381 vma_iter_config(vmi, new->vm_start, new->vm_end); 2382 if (vma_iter_prealloc(vmi, new)) 2383 goto out_free_vma; 2384 2385 err = vma_dup_policy(vma, new); 2386 if (err) 2387 goto out_free_vmi; 2388 2389 err = anon_vma_clone(new, vma); 2390 if (err) 2391 goto out_free_mpol; 2392 2393 if (new->vm_file) 2394 get_file(new->vm_file); 2395 2396 if (new->vm_ops && new->vm_ops->open) 2397 new->vm_ops->open(new); 2398 2399 vma_start_write(vma); 2400 vma_start_write(new); 2401 2402 init_vma_prep(&vp, vma); 2403 vp.insert = new; 2404 vma_prepare(&vp); 2405 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 2406 2407 if (new_below) { 2408 vma->vm_start = addr; 2409 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 2410 } else { 2411 vma->vm_end = addr; 2412 } 2413 2414 /* vma_complete stores the new vma */ 2415 vma_complete(&vp, vmi, vma->vm_mm); 2416 2417 /* Success. */ 2418 if (new_below) 2419 vma_next(vmi); 2420 return 0; 2421 2422 out_free_mpol: 2423 mpol_put(vma_policy(new)); 2424 out_free_vmi: 2425 vma_iter_free(vmi); 2426 out_free_vma: 2427 vm_area_free(new); 2428 return err; 2429 } 2430 2431 /* 2432 * Split a vma into two pieces at address 'addr', a new vma is allocated 2433 * either for the first part or the tail. 2434 */ 2435 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2436 unsigned long addr, int new_below) 2437 { 2438 if (vma->vm_mm->map_count >= sysctl_max_map_count) 2439 return -ENOMEM; 2440 2441 return __split_vma(vmi, vma, addr, new_below); 2442 } 2443 2444 /* 2445 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 2446 * @vmi: The vma iterator 2447 * @vma: The starting vm_area_struct 2448 * @mm: The mm_struct 2449 * @start: The aligned start address to munmap. 2450 * @end: The aligned end address to munmap. 2451 * @uf: The userfaultfd list_head 2452 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 2453 * success. 2454 * 2455 * Return: 0 on success and drops the lock if so directed, error and leaves the 2456 * lock held otherwise. 2457 */ 2458 static int 2459 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2460 struct mm_struct *mm, unsigned long start, 2461 unsigned long end, struct list_head *uf, bool unlock) 2462 { 2463 struct vm_area_struct *prev, *next = NULL; 2464 struct maple_tree mt_detach; 2465 int count = 0; 2466 int error = -ENOMEM; 2467 unsigned long locked_vm = 0; 2468 MA_STATE(mas_detach, &mt_detach, 0, 0); 2469 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2470 mt_on_stack(mt_detach); 2471 2472 /* 2473 * If we need to split any vma, do it now to save pain later. 2474 * 2475 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2476 * unmapped vm_area_struct will remain in use: so lower split_vma 2477 * places tmp vma above, and higher split_vma places tmp vma below. 2478 */ 2479 2480 /* Does it split the first one? */ 2481 if (start > vma->vm_start) { 2482 2483 /* 2484 * Make sure that map_count on return from munmap() will 2485 * not exceed its limit; but let map_count go just above 2486 * its limit temporarily, to help free resources as expected. 2487 */ 2488 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2489 goto map_count_exceeded; 2490 2491 error = __split_vma(vmi, vma, start, 1); 2492 if (error) 2493 goto start_split_failed; 2494 } 2495 2496 /* 2497 * Detach a range of VMAs from the mm. Using next as a temp variable as 2498 * it is always overwritten. 2499 */ 2500 next = vma; 2501 do { 2502 /* Does it split the end? */ 2503 if (next->vm_end > end) { 2504 error = __split_vma(vmi, next, end, 0); 2505 if (error) 2506 goto end_split_failed; 2507 } 2508 vma_start_write(next); 2509 mas_set(&mas_detach, count); 2510 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL); 2511 if (error) 2512 goto munmap_gather_failed; 2513 vma_mark_detached(next, true); 2514 if (next->vm_flags & VM_LOCKED) 2515 locked_vm += vma_pages(next); 2516 2517 count++; 2518 if (unlikely(uf)) { 2519 /* 2520 * If userfaultfd_unmap_prep returns an error the vmas 2521 * will remain split, but userland will get a 2522 * highly unexpected error anyway. This is no 2523 * different than the case where the first of the two 2524 * __split_vma fails, but we don't undo the first 2525 * split, despite we could. This is unlikely enough 2526 * failure that it's not worth optimizing it for. 2527 */ 2528 error = userfaultfd_unmap_prep(next, start, end, uf); 2529 2530 if (error) 2531 goto userfaultfd_error; 2532 } 2533 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2534 BUG_ON(next->vm_start < start); 2535 BUG_ON(next->vm_start > end); 2536 #endif 2537 } for_each_vma_range(*vmi, next, end); 2538 2539 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2540 /* Make sure no VMAs are about to be lost. */ 2541 { 2542 MA_STATE(test, &mt_detach, 0, 0); 2543 struct vm_area_struct *vma_mas, *vma_test; 2544 int test_count = 0; 2545 2546 vma_iter_set(vmi, start); 2547 rcu_read_lock(); 2548 vma_test = mas_find(&test, count - 1); 2549 for_each_vma_range(*vmi, vma_mas, end) { 2550 BUG_ON(vma_mas != vma_test); 2551 test_count++; 2552 vma_test = mas_next(&test, count - 1); 2553 } 2554 rcu_read_unlock(); 2555 BUG_ON(count != test_count); 2556 } 2557 #endif 2558 2559 while (vma_iter_addr(vmi) > start) 2560 vma_iter_prev_range(vmi); 2561 2562 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 2563 if (error) 2564 goto clear_tree_failed; 2565 2566 /* Point of no return */ 2567 mm->locked_vm -= locked_vm; 2568 mm->map_count -= count; 2569 if (unlock) 2570 mmap_write_downgrade(mm); 2571 2572 prev = vma_iter_prev_range(vmi); 2573 next = vma_next(vmi); 2574 if (next) 2575 vma_iter_prev_range(vmi); 2576 2577 /* 2578 * We can free page tables without write-locking mmap_lock because VMAs 2579 * were isolated before we downgraded mmap_lock. 2580 */ 2581 mas_set(&mas_detach, 1); 2582 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count, 2583 !unlock); 2584 /* Statistics and freeing VMAs */ 2585 mas_set(&mas_detach, 0); 2586 remove_mt(mm, &mas_detach); 2587 validate_mm(mm); 2588 if (unlock) 2589 mmap_read_unlock(mm); 2590 2591 __mt_destroy(&mt_detach); 2592 return 0; 2593 2594 clear_tree_failed: 2595 userfaultfd_error: 2596 munmap_gather_failed: 2597 end_split_failed: 2598 mas_set(&mas_detach, 0); 2599 mas_for_each(&mas_detach, next, end) 2600 vma_mark_detached(next, false); 2601 2602 __mt_destroy(&mt_detach); 2603 start_split_failed: 2604 map_count_exceeded: 2605 validate_mm(mm); 2606 return error; 2607 } 2608 2609 /* 2610 * do_vmi_munmap() - munmap a given range. 2611 * @vmi: The vma iterator 2612 * @mm: The mm_struct 2613 * @start: The start address to munmap 2614 * @len: The length of the range to munmap 2615 * @uf: The userfaultfd list_head 2616 * @unlock: set to true if the user wants to drop the mmap_lock on success 2617 * 2618 * This function takes a @mas that is either pointing to the previous VMA or set 2619 * to MA_START and sets it up to remove the mapping(s). The @len will be 2620 * aligned and any arch_unmap work will be preformed. 2621 * 2622 * Return: 0 on success and drops the lock if so directed, error and leaves the 2623 * lock held otherwise. 2624 */ 2625 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 2626 unsigned long start, size_t len, struct list_head *uf, 2627 bool unlock) 2628 { 2629 unsigned long end; 2630 struct vm_area_struct *vma; 2631 2632 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2633 return -EINVAL; 2634 2635 end = start + PAGE_ALIGN(len); 2636 if (end == start) 2637 return -EINVAL; 2638 2639 /* arch_unmap() might do unmaps itself. */ 2640 arch_unmap(mm, start, end); 2641 2642 /* Find the first overlapping VMA */ 2643 vma = vma_find(vmi, end); 2644 if (!vma) { 2645 if (unlock) 2646 mmap_write_unlock(mm); 2647 return 0; 2648 } 2649 2650 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 2651 } 2652 2653 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2654 * @mm: The mm_struct 2655 * @start: The start address to munmap 2656 * @len: The length to be munmapped. 2657 * @uf: The userfaultfd list_head 2658 * 2659 * Return: 0 on success, error otherwise. 2660 */ 2661 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2662 struct list_head *uf) 2663 { 2664 VMA_ITERATOR(vmi, mm, start); 2665 2666 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 2667 } 2668 2669 static unsigned long __mmap_region(struct file *file, unsigned long addr, 2670 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2671 struct list_head *uf) 2672 { 2673 struct mm_struct *mm = current->mm; 2674 struct vm_area_struct *vma = NULL; 2675 struct vm_area_struct *next, *prev, *merge; 2676 pgoff_t pglen = PHYS_PFN(len); 2677 unsigned long charged = 0; 2678 unsigned long end = addr + len; 2679 unsigned long merge_start = addr, merge_end = end; 2680 pgoff_t vm_pgoff; 2681 int error; 2682 VMA_ITERATOR(vmi, mm, addr); 2683 2684 /* Check against address space limit. */ 2685 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2686 unsigned long nr_pages; 2687 2688 /* 2689 * MAP_FIXED may remove pages of mappings that intersects with 2690 * requested mapping. Account for the pages it would unmap. 2691 */ 2692 nr_pages = count_vma_pages_range(mm, addr, end); 2693 2694 if (!may_expand_vm(mm, vm_flags, 2695 (len >> PAGE_SHIFT) - nr_pages)) 2696 return -ENOMEM; 2697 } 2698 2699 /* Unmap any existing mapping in the area */ 2700 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false)) 2701 return -ENOMEM; 2702 2703 /* 2704 * Private writable mapping: check memory availability 2705 */ 2706 if (accountable_mapping(file, vm_flags)) { 2707 charged = len >> PAGE_SHIFT; 2708 if (security_vm_enough_memory_mm(mm, charged)) 2709 return -ENOMEM; 2710 vm_flags |= VM_ACCOUNT; 2711 } 2712 2713 next = vma_next(&vmi); 2714 prev = vma_prev(&vmi); 2715 if (vm_flags & VM_SPECIAL) { 2716 if (prev) 2717 vma_iter_next_range(&vmi); 2718 goto cannot_expand; 2719 } 2720 2721 /* Attempt to expand an old mapping */ 2722 /* Check next */ 2723 if (next && next->vm_start == end && !vma_policy(next) && 2724 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2725 NULL_VM_UFFD_CTX, NULL)) { 2726 merge_end = next->vm_end; 2727 vma = next; 2728 vm_pgoff = next->vm_pgoff - pglen; 2729 } 2730 2731 /* Check prev */ 2732 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2733 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2734 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2735 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2736 NULL_VM_UFFD_CTX, NULL))) { 2737 merge_start = prev->vm_start; 2738 vma = prev; 2739 vm_pgoff = prev->vm_pgoff; 2740 } else if (prev) { 2741 vma_iter_next_range(&vmi); 2742 } 2743 2744 /* Actually expand, if possible */ 2745 if (vma && 2746 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { 2747 khugepaged_enter_vma(vma, vm_flags); 2748 goto expanded; 2749 } 2750 2751 if (vma == prev) 2752 vma_iter_set(&vmi, addr); 2753 cannot_expand: 2754 2755 /* 2756 * Determine the object being mapped and call the appropriate 2757 * specific mapper. the address has already been validated, but 2758 * not unmapped, but the maps are removed from the list. 2759 */ 2760 vma = vm_area_alloc(mm); 2761 if (!vma) { 2762 error = -ENOMEM; 2763 goto unacct_error; 2764 } 2765 2766 vma_iter_config(&vmi, addr, end); 2767 vma->vm_start = addr; 2768 vma->vm_end = end; 2769 vm_flags_init(vma, vm_flags); 2770 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2771 vma->vm_pgoff = pgoff; 2772 2773 if (vma_iter_prealloc(&vmi, vma)) { 2774 error = -ENOMEM; 2775 goto free_vma; 2776 } 2777 2778 if (file) { 2779 vma->vm_file = get_file(file); 2780 error = mmap_file(file, vma); 2781 if (error) 2782 goto unmap_and_free_file_vma; 2783 2784 /* Drivers cannot alter the address of the VMA. */ 2785 WARN_ON_ONCE(addr != vma->vm_start); 2786 /* 2787 * Drivers should not permit writability when previously it was 2788 * disallowed. 2789 */ 2790 VM_WARN_ON_ONCE(vm_flags != vma->vm_flags && 2791 !(vm_flags & VM_MAYWRITE) && 2792 (vma->vm_flags & VM_MAYWRITE)); 2793 2794 vma_iter_config(&vmi, addr, end); 2795 /* 2796 * If vm_flags changed after mmap_file(), we should try merge 2797 * vma again as we may succeed this time. 2798 */ 2799 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2800 merge = vma_merge(&vmi, mm, prev, vma->vm_start, 2801 vma->vm_end, vma->vm_flags, NULL, 2802 vma->vm_file, vma->vm_pgoff, NULL, 2803 NULL_VM_UFFD_CTX, NULL); 2804 2805 if (merge) { 2806 /* 2807 * ->mmap() can change vma->vm_file and fput 2808 * the original file. So fput the vma->vm_file 2809 * here or we would add an extra fput for file 2810 * and cause general protection fault 2811 * ultimately. 2812 */ 2813 fput(vma->vm_file); 2814 vm_area_free(vma); 2815 vma = merge; 2816 /* Update vm_flags to pick up the change. */ 2817 vm_flags = vma->vm_flags; 2818 goto file_expanded; 2819 } 2820 } 2821 2822 vm_flags = vma->vm_flags; 2823 } else if (vm_flags & VM_SHARED) { 2824 error = shmem_zero_setup(vma); 2825 if (error) 2826 goto free_iter_vma; 2827 } else { 2828 vma_set_anonymous(vma); 2829 } 2830 2831 #ifdef CONFIG_SPARC64 2832 /* TODO: Fix SPARC ADI! */ 2833 WARN_ON_ONCE(!arch_validate_flags(vm_flags)); 2834 #endif 2835 2836 /* Lock the VMA since it is modified after insertion into VMA tree */ 2837 vma_start_write(vma); 2838 vma_iter_store(&vmi, vma); 2839 mm->map_count++; 2840 if (vma->vm_file) { 2841 i_mmap_lock_write(vma->vm_file->f_mapping); 2842 if (vma->vm_flags & VM_SHARED) 2843 mapping_allow_writable(vma->vm_file->f_mapping); 2844 2845 flush_dcache_mmap_lock(vma->vm_file->f_mapping); 2846 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap); 2847 flush_dcache_mmap_unlock(vma->vm_file->f_mapping); 2848 i_mmap_unlock_write(vma->vm_file->f_mapping); 2849 } 2850 2851 /* 2852 * vma_merge() calls khugepaged_enter_vma() either, the below 2853 * call covers the non-merge case. 2854 */ 2855 khugepaged_enter_vma(vma, vma->vm_flags); 2856 2857 file_expanded: 2858 file = vma->vm_file; 2859 ksm_add_vma(vma); 2860 expanded: 2861 perf_event_mmap(vma); 2862 2863 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 2864 if (vm_flags & VM_LOCKED) { 2865 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2866 is_vm_hugetlb_page(vma) || 2867 vma == get_gate_vma(current->mm)) 2868 vm_flags_clear(vma, VM_LOCKED_MASK); 2869 else 2870 mm->locked_vm += (len >> PAGE_SHIFT); 2871 } 2872 2873 if (file) 2874 uprobe_mmap(vma); 2875 2876 /* 2877 * New (or expanded) vma always get soft dirty status. 2878 * Otherwise user-space soft-dirty page tracker won't 2879 * be able to distinguish situation when vma area unmapped, 2880 * then new mapped in-place (which must be aimed as 2881 * a completely new data area). 2882 */ 2883 vm_flags_set(vma, VM_SOFTDIRTY); 2884 2885 vma_set_page_prot(vma); 2886 2887 return addr; 2888 2889 unmap_and_free_file_vma: 2890 fput(vma->vm_file); 2891 vma->vm_file = NULL; 2892 2893 vma_iter_set(&vmi, vma->vm_end); 2894 /* Undo any partial mapping done by a device driver. */ 2895 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start, 2896 vma->vm_end, vma->vm_end, true); 2897 free_iter_vma: 2898 vma_iter_free(&vmi); 2899 free_vma: 2900 vm_area_free(vma); 2901 unacct_error: 2902 if (charged) 2903 vm_unacct_memory(charged); 2904 return error; 2905 } 2906 2907 unsigned long mmap_region(struct file *file, unsigned long addr, 2908 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2909 struct list_head *uf) 2910 { 2911 unsigned long ret; 2912 bool writable_file_mapping = false; 2913 2914 /* Check to see if MDWE is applicable. */ 2915 if (map_deny_write_exec(vm_flags, vm_flags)) 2916 return -EACCES; 2917 2918 /* Allow architectures to sanity-check the vm_flags. */ 2919 if (!arch_validate_flags(vm_flags)) 2920 return -EINVAL; 2921 2922 /* Map writable and ensure this isn't a sealed memfd. */ 2923 if (file && (vm_flags & VM_SHARED)) { 2924 int error = mapping_map_writable(file->f_mapping); 2925 2926 if (error) 2927 return error; 2928 writable_file_mapping = true; 2929 } 2930 2931 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); 2932 2933 /* Clear our write mapping regardless of error. */ 2934 if (writable_file_mapping) 2935 mapping_unmap_writable(file->f_mapping); 2936 2937 validate_mm(current->mm); 2938 return ret; 2939 } 2940 2941 static int __vm_munmap(unsigned long start, size_t len, bool unlock) 2942 { 2943 int ret; 2944 struct mm_struct *mm = current->mm; 2945 LIST_HEAD(uf); 2946 VMA_ITERATOR(vmi, mm, start); 2947 2948 if (mmap_write_lock_killable(mm)) 2949 return -EINTR; 2950 2951 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 2952 if (ret || !unlock) 2953 mmap_write_unlock(mm); 2954 2955 userfaultfd_unmap_complete(mm, &uf); 2956 return ret; 2957 } 2958 2959 int vm_munmap(unsigned long start, size_t len) 2960 { 2961 return __vm_munmap(start, len, false); 2962 } 2963 EXPORT_SYMBOL(vm_munmap); 2964 2965 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2966 { 2967 addr = untagged_addr(addr); 2968 return __vm_munmap(addr, len, true); 2969 } 2970 2971 2972 /* 2973 * Emulation of deprecated remap_file_pages() syscall. 2974 */ 2975 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2976 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2977 { 2978 2979 struct mm_struct *mm = current->mm; 2980 struct vm_area_struct *vma; 2981 unsigned long populate = 0; 2982 unsigned long ret = -EINVAL; 2983 struct file *file; 2984 2985 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 2986 current->comm, current->pid); 2987 2988 if (prot) 2989 return ret; 2990 start = start & PAGE_MASK; 2991 size = size & PAGE_MASK; 2992 2993 if (start + size <= start) 2994 return ret; 2995 2996 /* Does pgoff wrap? */ 2997 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2998 return ret; 2999 3000 if (mmap_write_lock_killable(mm)) 3001 return -EINTR; 3002 3003 vma = vma_lookup(mm, start); 3004 3005 if (!vma || !(vma->vm_flags & VM_SHARED)) 3006 goto out; 3007 3008 if (start + size > vma->vm_end) { 3009 VMA_ITERATOR(vmi, mm, vma->vm_end); 3010 struct vm_area_struct *next, *prev = vma; 3011 3012 for_each_vma_range(vmi, next, start + size) { 3013 /* hole between vmas ? */ 3014 if (next->vm_start != prev->vm_end) 3015 goto out; 3016 3017 if (next->vm_file != vma->vm_file) 3018 goto out; 3019 3020 if (next->vm_flags != vma->vm_flags) 3021 goto out; 3022 3023 if (start + size <= next->vm_end) 3024 break; 3025 3026 prev = next; 3027 } 3028 3029 if (!next) 3030 goto out; 3031 } 3032 3033 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 3034 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 3035 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 3036 3037 flags &= MAP_NONBLOCK; 3038 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 3039 if (vma->vm_flags & VM_LOCKED) 3040 flags |= MAP_LOCKED; 3041 3042 file = get_file(vma->vm_file); 3043 ret = security_mmap_file(vma->vm_file, prot, flags); 3044 if (ret) 3045 goto out_fput; 3046 ret = do_mmap(vma->vm_file, start, size, 3047 prot, flags, 0, pgoff, &populate, NULL); 3048 out_fput: 3049 fput(file); 3050 out: 3051 mmap_write_unlock(mm); 3052 if (populate) 3053 mm_populate(ret, populate); 3054 if (!IS_ERR_VALUE(ret)) 3055 ret = 0; 3056 return ret; 3057 } 3058 3059 /* 3060 * do_vma_munmap() - Unmap a full or partial vma. 3061 * @vmi: The vma iterator pointing at the vma 3062 * @vma: The first vma to be munmapped 3063 * @start: the start of the address to unmap 3064 * @end: The end of the address to unmap 3065 * @uf: The userfaultfd list_head 3066 * @unlock: Drop the lock on success 3067 * 3068 * unmaps a VMA mapping when the vma iterator is already in position. 3069 * Does not handle alignment. 3070 * 3071 * Return: 0 on success drops the lock of so directed, error on failure and will 3072 * still hold the lock. 3073 */ 3074 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3075 unsigned long start, unsigned long end, struct list_head *uf, 3076 bool unlock) 3077 { 3078 struct mm_struct *mm = vma->vm_mm; 3079 3080 arch_unmap(mm, start, end); 3081 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 3082 } 3083 3084 /* 3085 * do_brk_flags() - Increase the brk vma if the flags match. 3086 * @vmi: The vma iterator 3087 * @addr: The start address 3088 * @len: The length of the increase 3089 * @vma: The vma, 3090 * @flags: The VMA Flags 3091 * 3092 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 3093 * do not match then create a new anonymous VMA. Eventually we may be able to 3094 * do some brk-specific accounting here. 3095 */ 3096 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 3097 unsigned long addr, unsigned long len, unsigned long flags) 3098 { 3099 struct mm_struct *mm = current->mm; 3100 struct vma_prepare vp; 3101 3102 /* 3103 * Check against address space limits by the changed size 3104 * Note: This happens *after* clearing old mappings in some code paths. 3105 */ 3106 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3107 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3108 return -ENOMEM; 3109 3110 if (mm->map_count > sysctl_max_map_count) 3111 return -ENOMEM; 3112 3113 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3114 return -ENOMEM; 3115 3116 /* 3117 * Expand the existing vma if possible; Note that singular lists do not 3118 * occur after forking, so the expand will only happen on new VMAs. 3119 */ 3120 if (vma && vma->vm_end == addr && !vma_policy(vma) && 3121 can_vma_merge_after(vma, flags, NULL, NULL, 3122 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { 3123 vma_iter_config(vmi, vma->vm_start, addr + len); 3124 if (vma_iter_prealloc(vmi, vma)) 3125 goto unacct_fail; 3126 3127 vma_start_write(vma); 3128 3129 init_vma_prep(&vp, vma); 3130 vma_prepare(&vp); 3131 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 3132 vma->vm_end = addr + len; 3133 vm_flags_set(vma, VM_SOFTDIRTY); 3134 vma_iter_store(vmi, vma); 3135 3136 vma_complete(&vp, vmi, mm); 3137 khugepaged_enter_vma(vma, flags); 3138 goto out; 3139 } 3140 3141 if (vma) 3142 vma_iter_next_range(vmi); 3143 /* create a vma struct for an anonymous mapping */ 3144 vma = vm_area_alloc(mm); 3145 if (!vma) 3146 goto unacct_fail; 3147 3148 vma_set_anonymous(vma); 3149 vma->vm_start = addr; 3150 vma->vm_end = addr + len; 3151 vma->vm_pgoff = addr >> PAGE_SHIFT; 3152 vm_flags_init(vma, flags); 3153 vma->vm_page_prot = vm_get_page_prot(flags); 3154 vma_start_write(vma); 3155 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 3156 goto mas_store_fail; 3157 3158 mm->map_count++; 3159 validate_mm(mm); 3160 ksm_add_vma(vma); 3161 out: 3162 perf_event_mmap(vma); 3163 mm->total_vm += len >> PAGE_SHIFT; 3164 mm->data_vm += len >> PAGE_SHIFT; 3165 if (flags & VM_LOCKED) 3166 mm->locked_vm += (len >> PAGE_SHIFT); 3167 vm_flags_set(vma, VM_SOFTDIRTY); 3168 return 0; 3169 3170 mas_store_fail: 3171 vm_area_free(vma); 3172 unacct_fail: 3173 vm_unacct_memory(len >> PAGE_SHIFT); 3174 return -ENOMEM; 3175 } 3176 3177 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3178 { 3179 struct mm_struct *mm = current->mm; 3180 struct vm_area_struct *vma = NULL; 3181 unsigned long len; 3182 int ret; 3183 bool populate; 3184 LIST_HEAD(uf); 3185 VMA_ITERATOR(vmi, mm, addr); 3186 3187 len = PAGE_ALIGN(request); 3188 if (len < request) 3189 return -ENOMEM; 3190 if (!len) 3191 return 0; 3192 3193 /* Until we need other flags, refuse anything except VM_EXEC. */ 3194 if ((flags & (~VM_EXEC)) != 0) 3195 return -EINVAL; 3196 3197 if (mmap_write_lock_killable(mm)) 3198 return -EINTR; 3199 3200 ret = check_brk_limits(addr, len); 3201 if (ret) 3202 goto limits_failed; 3203 3204 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 3205 if (ret) 3206 goto munmap_failed; 3207 3208 vma = vma_prev(&vmi); 3209 ret = do_brk_flags(&vmi, vma, addr, len, flags); 3210 populate = ((mm->def_flags & VM_LOCKED) != 0); 3211 mmap_write_unlock(mm); 3212 userfaultfd_unmap_complete(mm, &uf); 3213 if (populate && !ret) 3214 mm_populate(addr, len); 3215 return ret; 3216 3217 munmap_failed: 3218 limits_failed: 3219 mmap_write_unlock(mm); 3220 return ret; 3221 } 3222 EXPORT_SYMBOL(vm_brk_flags); 3223 3224 int vm_brk(unsigned long addr, unsigned long len) 3225 { 3226 return vm_brk_flags(addr, len, 0); 3227 } 3228 EXPORT_SYMBOL(vm_brk); 3229 3230 /* Release all mmaps. */ 3231 void exit_mmap(struct mm_struct *mm) 3232 { 3233 struct mmu_gather tlb; 3234 struct vm_area_struct *vma; 3235 unsigned long nr_accounted = 0; 3236 MA_STATE(mas, &mm->mm_mt, 0, 0); 3237 int count = 0; 3238 3239 /* mm's last user has gone, and its about to be pulled down */ 3240 mmu_notifier_release(mm); 3241 3242 mmap_read_lock(mm); 3243 arch_exit_mmap(mm); 3244 3245 vma = mas_find(&mas, ULONG_MAX); 3246 if (!vma) { 3247 /* Can happen if dup_mmap() received an OOM */ 3248 mmap_read_unlock(mm); 3249 return; 3250 } 3251 3252 lru_add_drain(); 3253 flush_cache_mm(mm); 3254 tlb_gather_mmu_fullmm(&tlb, mm); 3255 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3256 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3257 unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false); 3258 mmap_read_unlock(mm); 3259 3260 /* 3261 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3262 * because the memory has been already freed. 3263 */ 3264 set_bit(MMF_OOM_SKIP, &mm->flags); 3265 mmap_write_lock(mm); 3266 mt_clear_in_rcu(&mm->mm_mt); 3267 mas_set(&mas, vma->vm_end); 3268 free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS, 3269 USER_PGTABLES_CEILING, true); 3270 tlb_finish_mmu(&tlb); 3271 3272 /* 3273 * Walk the list again, actually closing and freeing it, with preemption 3274 * enabled, without holding any MM locks besides the unreachable 3275 * mmap_write_lock. 3276 */ 3277 mas_set(&mas, vma->vm_end); 3278 do { 3279 if (vma->vm_flags & VM_ACCOUNT) 3280 nr_accounted += vma_pages(vma); 3281 remove_vma(vma, true); 3282 count++; 3283 cond_resched(); 3284 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL); 3285 3286 BUG_ON(count != mm->map_count); 3287 3288 trace_exit_mmap(mm); 3289 __mt_destroy(&mm->mm_mt); 3290 mmap_write_unlock(mm); 3291 vm_unacct_memory(nr_accounted); 3292 } 3293 3294 /* Insert vm structure into process list sorted by address 3295 * and into the inode's i_mmap tree. If vm_file is non-NULL 3296 * then i_mmap_rwsem is taken here. 3297 */ 3298 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3299 { 3300 unsigned long charged = vma_pages(vma); 3301 3302 3303 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3304 return -ENOMEM; 3305 3306 if ((vma->vm_flags & VM_ACCOUNT) && 3307 security_vm_enough_memory_mm(mm, charged)) 3308 return -ENOMEM; 3309 3310 /* 3311 * The vm_pgoff of a purely anonymous vma should be irrelevant 3312 * until its first write fault, when page's anon_vma and index 3313 * are set. But now set the vm_pgoff it will almost certainly 3314 * end up with (unless mremap moves it elsewhere before that 3315 * first wfault), so /proc/pid/maps tells a consistent story. 3316 * 3317 * By setting it to reflect the virtual start address of the 3318 * vma, merges and splits can happen in a seamless way, just 3319 * using the existing file pgoff checks and manipulations. 3320 * Similarly in do_mmap and in do_brk_flags. 3321 */ 3322 if (vma_is_anonymous(vma)) { 3323 BUG_ON(vma->anon_vma); 3324 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3325 } 3326 3327 if (vma_link(mm, vma)) { 3328 vm_unacct_memory(charged); 3329 return -ENOMEM; 3330 } 3331 3332 return 0; 3333 } 3334 3335 /* 3336 * Copy the vma structure to a new location in the same mm, 3337 * prior to moving page table entries, to effect an mremap move. 3338 */ 3339 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3340 unsigned long addr, unsigned long len, pgoff_t pgoff, 3341 bool *need_rmap_locks) 3342 { 3343 struct vm_area_struct *vma = *vmap; 3344 unsigned long vma_start = vma->vm_start; 3345 struct mm_struct *mm = vma->vm_mm; 3346 struct vm_area_struct *new_vma, *prev; 3347 bool faulted_in_anon_vma = true; 3348 VMA_ITERATOR(vmi, mm, addr); 3349 3350 /* 3351 * If anonymous vma has not yet been faulted, update new pgoff 3352 * to match new location, to increase its chance of merging. 3353 */ 3354 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3355 pgoff = addr >> PAGE_SHIFT; 3356 faulted_in_anon_vma = false; 3357 } 3358 3359 new_vma = find_vma_prev(mm, addr, &prev); 3360 if (new_vma && new_vma->vm_start < addr + len) 3361 return NULL; /* should never get here */ 3362 3363 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags, 3364 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3365 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3366 if (new_vma) { 3367 /* 3368 * Source vma may have been merged into new_vma 3369 */ 3370 if (unlikely(vma_start >= new_vma->vm_start && 3371 vma_start < new_vma->vm_end)) { 3372 /* 3373 * The only way we can get a vma_merge with 3374 * self during an mremap is if the vma hasn't 3375 * been faulted in yet and we were allowed to 3376 * reset the dst vma->vm_pgoff to the 3377 * destination address of the mremap to allow 3378 * the merge to happen. mremap must change the 3379 * vm_pgoff linearity between src and dst vmas 3380 * (in turn preventing a vma_merge) to be 3381 * safe. It is only safe to keep the vm_pgoff 3382 * linear if there are no pages mapped yet. 3383 */ 3384 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3385 *vmap = vma = new_vma; 3386 } 3387 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3388 } else { 3389 new_vma = vm_area_dup(vma); 3390 if (!new_vma) 3391 goto out; 3392 new_vma->vm_start = addr; 3393 new_vma->vm_end = addr + len; 3394 new_vma->vm_pgoff = pgoff; 3395 if (vma_dup_policy(vma, new_vma)) 3396 goto out_free_vma; 3397 if (anon_vma_clone(new_vma, vma)) 3398 goto out_free_mempol; 3399 if (new_vma->vm_file) 3400 get_file(new_vma->vm_file); 3401 if (new_vma->vm_ops && new_vma->vm_ops->open) 3402 new_vma->vm_ops->open(new_vma); 3403 if (vma_link(mm, new_vma)) 3404 goto out_vma_link; 3405 *need_rmap_locks = false; 3406 } 3407 return new_vma; 3408 3409 out_vma_link: 3410 vma_close(new_vma); 3411 3412 if (new_vma->vm_file) 3413 fput(new_vma->vm_file); 3414 3415 unlink_anon_vmas(new_vma); 3416 out_free_mempol: 3417 mpol_put(vma_policy(new_vma)); 3418 out_free_vma: 3419 vm_area_free(new_vma); 3420 out: 3421 return NULL; 3422 } 3423 3424 /* 3425 * Return true if the calling process may expand its vm space by the passed 3426 * number of pages 3427 */ 3428 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3429 { 3430 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3431 return false; 3432 3433 if (is_data_mapping(flags) && 3434 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3435 /* Workaround for Valgrind */ 3436 if (rlimit(RLIMIT_DATA) == 0 && 3437 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3438 return true; 3439 3440 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3441 current->comm, current->pid, 3442 (mm->data_vm + npages) << PAGE_SHIFT, 3443 rlimit(RLIMIT_DATA), 3444 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3445 3446 if (!ignore_rlimit_data) 3447 return false; 3448 } 3449 3450 return true; 3451 } 3452 3453 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3454 { 3455 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3456 3457 if (is_exec_mapping(flags)) 3458 mm->exec_vm += npages; 3459 else if (is_stack_mapping(flags)) 3460 mm->stack_vm += npages; 3461 else if (is_data_mapping(flags)) 3462 mm->data_vm += npages; 3463 } 3464 3465 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3466 3467 /* 3468 * Having a close hook prevents vma merging regardless of flags. 3469 */ 3470 static void special_mapping_close(struct vm_area_struct *vma) 3471 { 3472 } 3473 3474 static const char *special_mapping_name(struct vm_area_struct *vma) 3475 { 3476 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3477 } 3478 3479 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3480 { 3481 struct vm_special_mapping *sm = new_vma->vm_private_data; 3482 3483 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3484 return -EFAULT; 3485 3486 if (sm->mremap) 3487 return sm->mremap(sm, new_vma); 3488 3489 return 0; 3490 } 3491 3492 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3493 { 3494 /* 3495 * Forbid splitting special mappings - kernel has expectations over 3496 * the number of pages in mapping. Together with VM_DONTEXPAND 3497 * the size of vma should stay the same over the special mapping's 3498 * lifetime. 3499 */ 3500 return -EINVAL; 3501 } 3502 3503 static const struct vm_operations_struct special_mapping_vmops = { 3504 .close = special_mapping_close, 3505 .fault = special_mapping_fault, 3506 .mremap = special_mapping_mremap, 3507 .name = special_mapping_name, 3508 /* vDSO code relies that VVAR can't be accessed remotely */ 3509 .access = NULL, 3510 .may_split = special_mapping_split, 3511 }; 3512 3513 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3514 .close = special_mapping_close, 3515 .fault = special_mapping_fault, 3516 }; 3517 3518 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3519 { 3520 struct vm_area_struct *vma = vmf->vma; 3521 pgoff_t pgoff; 3522 struct page **pages; 3523 3524 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3525 pages = vma->vm_private_data; 3526 } else { 3527 struct vm_special_mapping *sm = vma->vm_private_data; 3528 3529 if (sm->fault) 3530 return sm->fault(sm, vmf->vma, vmf); 3531 3532 pages = sm->pages; 3533 } 3534 3535 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3536 pgoff--; 3537 3538 if (*pages) { 3539 struct page *page = *pages; 3540 get_page(page); 3541 vmf->page = page; 3542 return 0; 3543 } 3544 3545 return VM_FAULT_SIGBUS; 3546 } 3547 3548 static struct vm_area_struct *__install_special_mapping( 3549 struct mm_struct *mm, 3550 unsigned long addr, unsigned long len, 3551 unsigned long vm_flags, void *priv, 3552 const struct vm_operations_struct *ops) 3553 { 3554 int ret; 3555 struct vm_area_struct *vma; 3556 3557 vma = vm_area_alloc(mm); 3558 if (unlikely(vma == NULL)) 3559 return ERR_PTR(-ENOMEM); 3560 3561 vma->vm_start = addr; 3562 vma->vm_end = addr + len; 3563 3564 vm_flags_init(vma, (vm_flags | mm->def_flags | 3565 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 3566 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3567 3568 vma->vm_ops = ops; 3569 vma->vm_private_data = priv; 3570 3571 ret = insert_vm_struct(mm, vma); 3572 if (ret) 3573 goto out; 3574 3575 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3576 3577 perf_event_mmap(vma); 3578 3579 return vma; 3580 3581 out: 3582 vm_area_free(vma); 3583 return ERR_PTR(ret); 3584 } 3585 3586 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3587 const struct vm_special_mapping *sm) 3588 { 3589 return vma->vm_private_data == sm && 3590 (vma->vm_ops == &special_mapping_vmops || 3591 vma->vm_ops == &legacy_special_mapping_vmops); 3592 } 3593 3594 /* 3595 * Called with mm->mmap_lock held for writing. 3596 * Insert a new vma covering the given region, with the given flags. 3597 * Its pages are supplied by the given array of struct page *. 3598 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3599 * The region past the last page supplied will always produce SIGBUS. 3600 * The array pointer and the pages it points to are assumed to stay alive 3601 * for as long as this mapping might exist. 3602 */ 3603 struct vm_area_struct *_install_special_mapping( 3604 struct mm_struct *mm, 3605 unsigned long addr, unsigned long len, 3606 unsigned long vm_flags, const struct vm_special_mapping *spec) 3607 { 3608 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3609 &special_mapping_vmops); 3610 } 3611 3612 int install_special_mapping(struct mm_struct *mm, 3613 unsigned long addr, unsigned long len, 3614 unsigned long vm_flags, struct page **pages) 3615 { 3616 struct vm_area_struct *vma = __install_special_mapping( 3617 mm, addr, len, vm_flags, (void *)pages, 3618 &legacy_special_mapping_vmops); 3619 3620 return PTR_ERR_OR_ZERO(vma); 3621 } 3622 3623 static DEFINE_MUTEX(mm_all_locks_mutex); 3624 3625 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3626 { 3627 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3628 /* 3629 * The LSB of head.next can't change from under us 3630 * because we hold the mm_all_locks_mutex. 3631 */ 3632 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3633 /* 3634 * We can safely modify head.next after taking the 3635 * anon_vma->root->rwsem. If some other vma in this mm shares 3636 * the same anon_vma we won't take it again. 3637 * 3638 * No need of atomic instructions here, head.next 3639 * can't change from under us thanks to the 3640 * anon_vma->root->rwsem. 3641 */ 3642 if (__test_and_set_bit(0, (unsigned long *) 3643 &anon_vma->root->rb_root.rb_root.rb_node)) 3644 BUG(); 3645 } 3646 } 3647 3648 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3649 { 3650 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3651 /* 3652 * AS_MM_ALL_LOCKS can't change from under us because 3653 * we hold the mm_all_locks_mutex. 3654 * 3655 * Operations on ->flags have to be atomic because 3656 * even if AS_MM_ALL_LOCKS is stable thanks to the 3657 * mm_all_locks_mutex, there may be other cpus 3658 * changing other bitflags in parallel to us. 3659 */ 3660 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3661 BUG(); 3662 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3663 } 3664 } 3665 3666 /* 3667 * This operation locks against the VM for all pte/vma/mm related 3668 * operations that could ever happen on a certain mm. This includes 3669 * vmtruncate, try_to_unmap, and all page faults. 3670 * 3671 * The caller must take the mmap_lock in write mode before calling 3672 * mm_take_all_locks(). The caller isn't allowed to release the 3673 * mmap_lock until mm_drop_all_locks() returns. 3674 * 3675 * mmap_lock in write mode is required in order to block all operations 3676 * that could modify pagetables and free pages without need of 3677 * altering the vma layout. It's also needed in write mode to avoid new 3678 * anon_vmas to be associated with existing vmas. 3679 * 3680 * A single task can't take more than one mm_take_all_locks() in a row 3681 * or it would deadlock. 3682 * 3683 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3684 * mapping->flags avoid to take the same lock twice, if more than one 3685 * vma in this mm is backed by the same anon_vma or address_space. 3686 * 3687 * We take locks in following order, accordingly to comment at beginning 3688 * of mm/rmap.c: 3689 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3690 * hugetlb mapping); 3691 * - all vmas marked locked 3692 * - all i_mmap_rwsem locks; 3693 * - all anon_vma->rwseml 3694 * 3695 * We can take all locks within these types randomly because the VM code 3696 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3697 * mm_all_locks_mutex. 3698 * 3699 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3700 * that may have to take thousand of locks. 3701 * 3702 * mm_take_all_locks() can fail if it's interrupted by signals. 3703 */ 3704 int mm_take_all_locks(struct mm_struct *mm) 3705 { 3706 struct vm_area_struct *vma; 3707 struct anon_vma_chain *avc; 3708 MA_STATE(mas, &mm->mm_mt, 0, 0); 3709 3710 mmap_assert_write_locked(mm); 3711 3712 mutex_lock(&mm_all_locks_mutex); 3713 3714 /* 3715 * vma_start_write() does not have a complement in mm_drop_all_locks() 3716 * because vma_start_write() is always asymmetrical; it marks a VMA as 3717 * being written to until mmap_write_unlock() or mmap_write_downgrade() 3718 * is reached. 3719 */ 3720 mas_for_each(&mas, vma, ULONG_MAX) { 3721 if (signal_pending(current)) 3722 goto out_unlock; 3723 vma_start_write(vma); 3724 } 3725 3726 mas_set(&mas, 0); 3727 mas_for_each(&mas, vma, ULONG_MAX) { 3728 if (signal_pending(current)) 3729 goto out_unlock; 3730 if (vma->vm_file && vma->vm_file->f_mapping && 3731 is_vm_hugetlb_page(vma)) 3732 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3733 } 3734 3735 mas_set(&mas, 0); 3736 mas_for_each(&mas, vma, ULONG_MAX) { 3737 if (signal_pending(current)) 3738 goto out_unlock; 3739 if (vma->vm_file && vma->vm_file->f_mapping && 3740 !is_vm_hugetlb_page(vma)) 3741 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3742 } 3743 3744 mas_set(&mas, 0); 3745 mas_for_each(&mas, vma, ULONG_MAX) { 3746 if (signal_pending(current)) 3747 goto out_unlock; 3748 if (vma->anon_vma) 3749 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3750 vm_lock_anon_vma(mm, avc->anon_vma); 3751 } 3752 3753 return 0; 3754 3755 out_unlock: 3756 mm_drop_all_locks(mm); 3757 return -EINTR; 3758 } 3759 3760 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3761 { 3762 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3763 /* 3764 * The LSB of head.next can't change to 0 from under 3765 * us because we hold the mm_all_locks_mutex. 3766 * 3767 * We must however clear the bitflag before unlocking 3768 * the vma so the users using the anon_vma->rb_root will 3769 * never see our bitflag. 3770 * 3771 * No need of atomic instructions here, head.next 3772 * can't change from under us until we release the 3773 * anon_vma->root->rwsem. 3774 */ 3775 if (!__test_and_clear_bit(0, (unsigned long *) 3776 &anon_vma->root->rb_root.rb_root.rb_node)) 3777 BUG(); 3778 anon_vma_unlock_write(anon_vma); 3779 } 3780 } 3781 3782 static void vm_unlock_mapping(struct address_space *mapping) 3783 { 3784 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3785 /* 3786 * AS_MM_ALL_LOCKS can't change to 0 from under us 3787 * because we hold the mm_all_locks_mutex. 3788 */ 3789 i_mmap_unlock_write(mapping); 3790 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3791 &mapping->flags)) 3792 BUG(); 3793 } 3794 } 3795 3796 /* 3797 * The mmap_lock cannot be released by the caller until 3798 * mm_drop_all_locks() returns. 3799 */ 3800 void mm_drop_all_locks(struct mm_struct *mm) 3801 { 3802 struct vm_area_struct *vma; 3803 struct anon_vma_chain *avc; 3804 MA_STATE(mas, &mm->mm_mt, 0, 0); 3805 3806 mmap_assert_write_locked(mm); 3807 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3808 3809 mas_for_each(&mas, vma, ULONG_MAX) { 3810 if (vma->anon_vma) 3811 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3812 vm_unlock_anon_vma(avc->anon_vma); 3813 if (vma->vm_file && vma->vm_file->f_mapping) 3814 vm_unlock_mapping(vma->vm_file->f_mapping); 3815 } 3816 3817 mutex_unlock(&mm_all_locks_mutex); 3818 } 3819 3820 /* 3821 * initialise the percpu counter for VM 3822 */ 3823 void __init mmap_init(void) 3824 { 3825 int ret; 3826 3827 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3828 VM_BUG_ON(ret); 3829 } 3830 3831 /* 3832 * Initialise sysctl_user_reserve_kbytes. 3833 * 3834 * This is intended to prevent a user from starting a single memory hogging 3835 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3836 * mode. 3837 * 3838 * The default value is min(3% of free memory, 128MB) 3839 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3840 */ 3841 static int init_user_reserve(void) 3842 { 3843 unsigned long free_kbytes; 3844 3845 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3846 3847 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3848 return 0; 3849 } 3850 subsys_initcall(init_user_reserve); 3851 3852 /* 3853 * Initialise sysctl_admin_reserve_kbytes. 3854 * 3855 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3856 * to log in and kill a memory hogging process. 3857 * 3858 * Systems with more than 256MB will reserve 8MB, enough to recover 3859 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3860 * only reserve 3% of free pages by default. 3861 */ 3862 static int init_admin_reserve(void) 3863 { 3864 unsigned long free_kbytes; 3865 3866 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3867 3868 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3869 return 0; 3870 } 3871 subsys_initcall(init_admin_reserve); 3872 3873 /* 3874 * Reinititalise user and admin reserves if memory is added or removed. 3875 * 3876 * The default user reserve max is 128MB, and the default max for the 3877 * admin reserve is 8MB. These are usually, but not always, enough to 3878 * enable recovery from a memory hogging process using login/sshd, a shell, 3879 * and tools like top. It may make sense to increase or even disable the 3880 * reserve depending on the existence of swap or variations in the recovery 3881 * tools. So, the admin may have changed them. 3882 * 3883 * If memory is added and the reserves have been eliminated or increased above 3884 * the default max, then we'll trust the admin. 3885 * 3886 * If memory is removed and there isn't enough free memory, then we 3887 * need to reset the reserves. 3888 * 3889 * Otherwise keep the reserve set by the admin. 3890 */ 3891 static int reserve_mem_notifier(struct notifier_block *nb, 3892 unsigned long action, void *data) 3893 { 3894 unsigned long tmp, free_kbytes; 3895 3896 switch (action) { 3897 case MEM_ONLINE: 3898 /* Default max is 128MB. Leave alone if modified by operator. */ 3899 tmp = sysctl_user_reserve_kbytes; 3900 if (0 < tmp && tmp < (1UL << 17)) 3901 init_user_reserve(); 3902 3903 /* Default max is 8MB. Leave alone if modified by operator. */ 3904 tmp = sysctl_admin_reserve_kbytes; 3905 if (0 < tmp && tmp < (1UL << 13)) 3906 init_admin_reserve(); 3907 3908 break; 3909 case MEM_OFFLINE: 3910 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3911 3912 if (sysctl_user_reserve_kbytes > free_kbytes) { 3913 init_user_reserve(); 3914 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3915 sysctl_user_reserve_kbytes); 3916 } 3917 3918 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3919 init_admin_reserve(); 3920 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3921 sysctl_admin_reserve_kbytes); 3922 } 3923 break; 3924 default: 3925 break; 3926 } 3927 return NOTIFY_OK; 3928 } 3929 3930 static int __meminit init_reserve_notifier(void) 3931 { 3932 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 3933 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3934 3935 return 0; 3936 } 3937 subsys_initcall(init_reserve_notifier); 3938