xref: /openbmc/linux/mm/mmap.c (revision e1f7c9ee)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49 
50 #include "internal.h"
51 
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags)	(0)
54 #endif
55 
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len)		(addr)
58 #endif
59 
60 static void unmap_region(struct mm_struct *mm,
61 		struct vm_area_struct *vma, struct vm_area_struct *prev,
62 		unsigned long start, unsigned long end);
63 
64 /* description of effects of mapping type and prot in current implementation.
65  * this is due to the limited x86 page protection hardware.  The expected
66  * behavior is in parens:
67  *
68  * map_type	prot
69  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
70  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
71  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
72  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
73  *
74  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
75  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
76  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
77  *
78  */
79 pgprot_t protection_map[16] = {
80 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83 
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86 	return __pgprot(pgprot_val(protection_map[vm_flags &
87 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91 
92 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
93 {
94 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
95 }
96 
97 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
98 void vma_set_page_prot(struct vm_area_struct *vma)
99 {
100 	unsigned long vm_flags = vma->vm_flags;
101 
102 	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
103 	if (vma_wants_writenotify(vma)) {
104 		vm_flags &= ~VM_SHARED;
105 		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
106 						     vm_flags);
107 	}
108 }
109 
110 
111 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
112 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
113 unsigned long sysctl_overcommit_kbytes __read_mostly;
114 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
115 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
116 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
117 /*
118  * Make sure vm_committed_as in one cacheline and not cacheline shared with
119  * other variables. It can be updated by several CPUs frequently.
120  */
121 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
122 
123 /*
124  * The global memory commitment made in the system can be a metric
125  * that can be used to drive ballooning decisions when Linux is hosted
126  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
127  * balancing memory across competing virtual machines that are hosted.
128  * Several metrics drive this policy engine including the guest reported
129  * memory commitment.
130  */
131 unsigned long vm_memory_committed(void)
132 {
133 	return percpu_counter_read_positive(&vm_committed_as);
134 }
135 EXPORT_SYMBOL_GPL(vm_memory_committed);
136 
137 /*
138  * Check that a process has enough memory to allocate a new virtual
139  * mapping. 0 means there is enough memory for the allocation to
140  * succeed and -ENOMEM implies there is not.
141  *
142  * We currently support three overcommit policies, which are set via the
143  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
144  *
145  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
146  * Additional code 2002 Jul 20 by Robert Love.
147  *
148  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
149  *
150  * Note this is a helper function intended to be used by LSMs which
151  * wish to use this logic.
152  */
153 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
154 {
155 	unsigned long free, allowed, reserve;
156 
157 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
158 			-(s64)vm_committed_as_batch * num_online_cpus(),
159 			"memory commitment underflow");
160 
161 	vm_acct_memory(pages);
162 
163 	/*
164 	 * Sometimes we want to use more memory than we have
165 	 */
166 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
167 		return 0;
168 
169 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
170 		free = global_page_state(NR_FREE_PAGES);
171 		free += global_page_state(NR_FILE_PAGES);
172 
173 		/*
174 		 * shmem pages shouldn't be counted as free in this
175 		 * case, they can't be purged, only swapped out, and
176 		 * that won't affect the overall amount of available
177 		 * memory in the system.
178 		 */
179 		free -= global_page_state(NR_SHMEM);
180 
181 		free += get_nr_swap_pages();
182 
183 		/*
184 		 * Any slabs which are created with the
185 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
186 		 * which are reclaimable, under pressure.  The dentry
187 		 * cache and most inode caches should fall into this
188 		 */
189 		free += global_page_state(NR_SLAB_RECLAIMABLE);
190 
191 		/*
192 		 * Leave reserved pages. The pages are not for anonymous pages.
193 		 */
194 		if (free <= totalreserve_pages)
195 			goto error;
196 		else
197 			free -= totalreserve_pages;
198 
199 		/*
200 		 * Reserve some for root
201 		 */
202 		if (!cap_sys_admin)
203 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
204 
205 		if (free > pages)
206 			return 0;
207 
208 		goto error;
209 	}
210 
211 	allowed = vm_commit_limit();
212 	/*
213 	 * Reserve some for root
214 	 */
215 	if (!cap_sys_admin)
216 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
217 
218 	/*
219 	 * Don't let a single process grow so big a user can't recover
220 	 */
221 	if (mm) {
222 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
223 		allowed -= min(mm->total_vm / 32, reserve);
224 	}
225 
226 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
227 		return 0;
228 error:
229 	vm_unacct_memory(pages);
230 
231 	return -ENOMEM;
232 }
233 
234 /*
235  * Requires inode->i_mapping->i_mmap_mutex
236  */
237 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
238 		struct file *file, struct address_space *mapping)
239 {
240 	if (vma->vm_flags & VM_DENYWRITE)
241 		atomic_inc(&file_inode(file)->i_writecount);
242 	if (vma->vm_flags & VM_SHARED)
243 		mapping_unmap_writable(mapping);
244 
245 	flush_dcache_mmap_lock(mapping);
246 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
247 		list_del_init(&vma->shared.nonlinear);
248 	else
249 		vma_interval_tree_remove(vma, &mapping->i_mmap);
250 	flush_dcache_mmap_unlock(mapping);
251 }
252 
253 /*
254  * Unlink a file-based vm structure from its interval tree, to hide
255  * vma from rmap and vmtruncate before freeing its page tables.
256  */
257 void unlink_file_vma(struct vm_area_struct *vma)
258 {
259 	struct file *file = vma->vm_file;
260 
261 	if (file) {
262 		struct address_space *mapping = file->f_mapping;
263 		mutex_lock(&mapping->i_mmap_mutex);
264 		__remove_shared_vm_struct(vma, file, mapping);
265 		mutex_unlock(&mapping->i_mmap_mutex);
266 	}
267 }
268 
269 /*
270  * Close a vm structure and free it, returning the next.
271  */
272 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
273 {
274 	struct vm_area_struct *next = vma->vm_next;
275 
276 	might_sleep();
277 	if (vma->vm_ops && vma->vm_ops->close)
278 		vma->vm_ops->close(vma);
279 	if (vma->vm_file)
280 		fput(vma->vm_file);
281 	mpol_put(vma_policy(vma));
282 	kmem_cache_free(vm_area_cachep, vma);
283 	return next;
284 }
285 
286 static unsigned long do_brk(unsigned long addr, unsigned long len);
287 
288 SYSCALL_DEFINE1(brk, unsigned long, brk)
289 {
290 	unsigned long retval;
291 	unsigned long newbrk, oldbrk;
292 	struct mm_struct *mm = current->mm;
293 	unsigned long min_brk;
294 	bool populate;
295 
296 	down_write(&mm->mmap_sem);
297 
298 #ifdef CONFIG_COMPAT_BRK
299 	/*
300 	 * CONFIG_COMPAT_BRK can still be overridden by setting
301 	 * randomize_va_space to 2, which will still cause mm->start_brk
302 	 * to be arbitrarily shifted
303 	 */
304 	if (current->brk_randomized)
305 		min_brk = mm->start_brk;
306 	else
307 		min_brk = mm->end_data;
308 #else
309 	min_brk = mm->start_brk;
310 #endif
311 	if (brk < min_brk)
312 		goto out;
313 
314 	/*
315 	 * Check against rlimit here. If this check is done later after the test
316 	 * of oldbrk with newbrk then it can escape the test and let the data
317 	 * segment grow beyond its set limit the in case where the limit is
318 	 * not page aligned -Ram Gupta
319 	 */
320 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
321 			      mm->end_data, mm->start_data))
322 		goto out;
323 
324 	newbrk = PAGE_ALIGN(brk);
325 	oldbrk = PAGE_ALIGN(mm->brk);
326 	if (oldbrk == newbrk)
327 		goto set_brk;
328 
329 	/* Always allow shrinking brk. */
330 	if (brk <= mm->brk) {
331 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
332 			goto set_brk;
333 		goto out;
334 	}
335 
336 	/* Check against existing mmap mappings. */
337 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
338 		goto out;
339 
340 	/* Ok, looks good - let it rip. */
341 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
342 		goto out;
343 
344 set_brk:
345 	mm->brk = brk;
346 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
347 	up_write(&mm->mmap_sem);
348 	if (populate)
349 		mm_populate(oldbrk, newbrk - oldbrk);
350 	return brk;
351 
352 out:
353 	retval = mm->brk;
354 	up_write(&mm->mmap_sem);
355 	return retval;
356 }
357 
358 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
359 {
360 	unsigned long max, subtree_gap;
361 	max = vma->vm_start;
362 	if (vma->vm_prev)
363 		max -= vma->vm_prev->vm_end;
364 	if (vma->vm_rb.rb_left) {
365 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
366 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
367 		if (subtree_gap > max)
368 			max = subtree_gap;
369 	}
370 	if (vma->vm_rb.rb_right) {
371 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
372 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
373 		if (subtree_gap > max)
374 			max = subtree_gap;
375 	}
376 	return max;
377 }
378 
379 #ifdef CONFIG_DEBUG_VM_RB
380 static int browse_rb(struct rb_root *root)
381 {
382 	int i = 0, j, bug = 0;
383 	struct rb_node *nd, *pn = NULL;
384 	unsigned long prev = 0, pend = 0;
385 
386 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
387 		struct vm_area_struct *vma;
388 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
389 		if (vma->vm_start < prev) {
390 			pr_emerg("vm_start %lx < prev %lx\n",
391 				  vma->vm_start, prev);
392 			bug = 1;
393 		}
394 		if (vma->vm_start < pend) {
395 			pr_emerg("vm_start %lx < pend %lx\n",
396 				  vma->vm_start, pend);
397 			bug = 1;
398 		}
399 		if (vma->vm_start > vma->vm_end) {
400 			pr_emerg("vm_start %lx > vm_end %lx\n",
401 				  vma->vm_start, vma->vm_end);
402 			bug = 1;
403 		}
404 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
405 			pr_emerg("free gap %lx, correct %lx\n",
406 			       vma->rb_subtree_gap,
407 			       vma_compute_subtree_gap(vma));
408 			bug = 1;
409 		}
410 		i++;
411 		pn = nd;
412 		prev = vma->vm_start;
413 		pend = vma->vm_end;
414 	}
415 	j = 0;
416 	for (nd = pn; nd; nd = rb_prev(nd))
417 		j++;
418 	if (i != j) {
419 		pr_emerg("backwards %d, forwards %d\n", j, i);
420 		bug = 1;
421 	}
422 	return bug ? -1 : i;
423 }
424 
425 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
426 {
427 	struct rb_node *nd;
428 
429 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
430 		struct vm_area_struct *vma;
431 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
432 		VM_BUG_ON_VMA(vma != ignore &&
433 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
434 			vma);
435 	}
436 }
437 
438 static void validate_mm(struct mm_struct *mm)
439 {
440 	int bug = 0;
441 	int i = 0;
442 	unsigned long highest_address = 0;
443 	struct vm_area_struct *vma = mm->mmap;
444 
445 	while (vma) {
446 		struct anon_vma_chain *avc;
447 
448 		vma_lock_anon_vma(vma);
449 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
450 			anon_vma_interval_tree_verify(avc);
451 		vma_unlock_anon_vma(vma);
452 		highest_address = vma->vm_end;
453 		vma = vma->vm_next;
454 		i++;
455 	}
456 	if (i != mm->map_count) {
457 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
458 		bug = 1;
459 	}
460 	if (highest_address != mm->highest_vm_end) {
461 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
462 			  mm->highest_vm_end, highest_address);
463 		bug = 1;
464 	}
465 	i = browse_rb(&mm->mm_rb);
466 	if (i != mm->map_count) {
467 		if (i != -1)
468 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
469 		bug = 1;
470 	}
471 	VM_BUG_ON_MM(bug, mm);
472 }
473 #else
474 #define validate_mm_rb(root, ignore) do { } while (0)
475 #define validate_mm(mm) do { } while (0)
476 #endif
477 
478 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
479 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
480 
481 /*
482  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
483  * vma->vm_prev->vm_end values changed, without modifying the vma's position
484  * in the rbtree.
485  */
486 static void vma_gap_update(struct vm_area_struct *vma)
487 {
488 	/*
489 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
490 	 * function that does exacltly what we want.
491 	 */
492 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
493 }
494 
495 static inline void vma_rb_insert(struct vm_area_struct *vma,
496 				 struct rb_root *root)
497 {
498 	/* All rb_subtree_gap values must be consistent prior to insertion */
499 	validate_mm_rb(root, NULL);
500 
501 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
502 }
503 
504 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
505 {
506 	/*
507 	 * All rb_subtree_gap values must be consistent prior to erase,
508 	 * with the possible exception of the vma being erased.
509 	 */
510 	validate_mm_rb(root, vma);
511 
512 	/*
513 	 * Note rb_erase_augmented is a fairly large inline function,
514 	 * so make sure we instantiate it only once with our desired
515 	 * augmented rbtree callbacks.
516 	 */
517 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
518 }
519 
520 /*
521  * vma has some anon_vma assigned, and is already inserted on that
522  * anon_vma's interval trees.
523  *
524  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
525  * vma must be removed from the anon_vma's interval trees using
526  * anon_vma_interval_tree_pre_update_vma().
527  *
528  * After the update, the vma will be reinserted using
529  * anon_vma_interval_tree_post_update_vma().
530  *
531  * The entire update must be protected by exclusive mmap_sem and by
532  * the root anon_vma's mutex.
533  */
534 static inline void
535 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
536 {
537 	struct anon_vma_chain *avc;
538 
539 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
540 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
541 }
542 
543 static inline void
544 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
545 {
546 	struct anon_vma_chain *avc;
547 
548 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
549 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
550 }
551 
552 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
553 		unsigned long end, struct vm_area_struct **pprev,
554 		struct rb_node ***rb_link, struct rb_node **rb_parent)
555 {
556 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
557 
558 	__rb_link = &mm->mm_rb.rb_node;
559 	rb_prev = __rb_parent = NULL;
560 
561 	while (*__rb_link) {
562 		struct vm_area_struct *vma_tmp;
563 
564 		__rb_parent = *__rb_link;
565 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
566 
567 		if (vma_tmp->vm_end > addr) {
568 			/* Fail if an existing vma overlaps the area */
569 			if (vma_tmp->vm_start < end)
570 				return -ENOMEM;
571 			__rb_link = &__rb_parent->rb_left;
572 		} else {
573 			rb_prev = __rb_parent;
574 			__rb_link = &__rb_parent->rb_right;
575 		}
576 	}
577 
578 	*pprev = NULL;
579 	if (rb_prev)
580 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
581 	*rb_link = __rb_link;
582 	*rb_parent = __rb_parent;
583 	return 0;
584 }
585 
586 static unsigned long count_vma_pages_range(struct mm_struct *mm,
587 		unsigned long addr, unsigned long end)
588 {
589 	unsigned long nr_pages = 0;
590 	struct vm_area_struct *vma;
591 
592 	/* Find first overlaping mapping */
593 	vma = find_vma_intersection(mm, addr, end);
594 	if (!vma)
595 		return 0;
596 
597 	nr_pages = (min(end, vma->vm_end) -
598 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
599 
600 	/* Iterate over the rest of the overlaps */
601 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
602 		unsigned long overlap_len;
603 
604 		if (vma->vm_start > end)
605 			break;
606 
607 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
608 		nr_pages += overlap_len >> PAGE_SHIFT;
609 	}
610 
611 	return nr_pages;
612 }
613 
614 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
615 		struct rb_node **rb_link, struct rb_node *rb_parent)
616 {
617 	/* Update tracking information for the gap following the new vma. */
618 	if (vma->vm_next)
619 		vma_gap_update(vma->vm_next);
620 	else
621 		mm->highest_vm_end = vma->vm_end;
622 
623 	/*
624 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
625 	 * correct insertion point for that vma. As a result, we could not
626 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
627 	 * So, we first insert the vma with a zero rb_subtree_gap value
628 	 * (to be consistent with what we did on the way down), and then
629 	 * immediately update the gap to the correct value. Finally we
630 	 * rebalance the rbtree after all augmented values have been set.
631 	 */
632 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
633 	vma->rb_subtree_gap = 0;
634 	vma_gap_update(vma);
635 	vma_rb_insert(vma, &mm->mm_rb);
636 }
637 
638 static void __vma_link_file(struct vm_area_struct *vma)
639 {
640 	struct file *file;
641 
642 	file = vma->vm_file;
643 	if (file) {
644 		struct address_space *mapping = file->f_mapping;
645 
646 		if (vma->vm_flags & VM_DENYWRITE)
647 			atomic_dec(&file_inode(file)->i_writecount);
648 		if (vma->vm_flags & VM_SHARED)
649 			atomic_inc(&mapping->i_mmap_writable);
650 
651 		flush_dcache_mmap_lock(mapping);
652 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
653 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
654 		else
655 			vma_interval_tree_insert(vma, &mapping->i_mmap);
656 		flush_dcache_mmap_unlock(mapping);
657 	}
658 }
659 
660 static void
661 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
662 	struct vm_area_struct *prev, struct rb_node **rb_link,
663 	struct rb_node *rb_parent)
664 {
665 	__vma_link_list(mm, vma, prev, rb_parent);
666 	__vma_link_rb(mm, vma, rb_link, rb_parent);
667 }
668 
669 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
670 			struct vm_area_struct *prev, struct rb_node **rb_link,
671 			struct rb_node *rb_parent)
672 {
673 	struct address_space *mapping = NULL;
674 
675 	if (vma->vm_file) {
676 		mapping = vma->vm_file->f_mapping;
677 		mutex_lock(&mapping->i_mmap_mutex);
678 	}
679 
680 	__vma_link(mm, vma, prev, rb_link, rb_parent);
681 	__vma_link_file(vma);
682 
683 	if (mapping)
684 		mutex_unlock(&mapping->i_mmap_mutex);
685 
686 	mm->map_count++;
687 	validate_mm(mm);
688 }
689 
690 /*
691  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
692  * mm's list and rbtree.  It has already been inserted into the interval tree.
693  */
694 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
695 {
696 	struct vm_area_struct *prev;
697 	struct rb_node **rb_link, *rb_parent;
698 
699 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
700 			   &prev, &rb_link, &rb_parent))
701 		BUG();
702 	__vma_link(mm, vma, prev, rb_link, rb_parent);
703 	mm->map_count++;
704 }
705 
706 static inline void
707 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
708 		struct vm_area_struct *prev)
709 {
710 	struct vm_area_struct *next;
711 
712 	vma_rb_erase(vma, &mm->mm_rb);
713 	prev->vm_next = next = vma->vm_next;
714 	if (next)
715 		next->vm_prev = prev;
716 
717 	/* Kill the cache */
718 	vmacache_invalidate(mm);
719 }
720 
721 /*
722  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
723  * is already present in an i_mmap tree without adjusting the tree.
724  * The following helper function should be used when such adjustments
725  * are necessary.  The "insert" vma (if any) is to be inserted
726  * before we drop the necessary locks.
727  */
728 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
729 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
730 {
731 	struct mm_struct *mm = vma->vm_mm;
732 	struct vm_area_struct *next = vma->vm_next;
733 	struct vm_area_struct *importer = NULL;
734 	struct address_space *mapping = NULL;
735 	struct rb_root *root = NULL;
736 	struct anon_vma *anon_vma = NULL;
737 	struct file *file = vma->vm_file;
738 	bool start_changed = false, end_changed = false;
739 	long adjust_next = 0;
740 	int remove_next = 0;
741 
742 	if (next && !insert) {
743 		struct vm_area_struct *exporter = NULL;
744 
745 		if (end >= next->vm_end) {
746 			/*
747 			 * vma expands, overlapping all the next, and
748 			 * perhaps the one after too (mprotect case 6).
749 			 */
750 again:			remove_next = 1 + (end > next->vm_end);
751 			end = next->vm_end;
752 			exporter = next;
753 			importer = vma;
754 		} else if (end > next->vm_start) {
755 			/*
756 			 * vma expands, overlapping part of the next:
757 			 * mprotect case 5 shifting the boundary up.
758 			 */
759 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
760 			exporter = next;
761 			importer = vma;
762 		} else if (end < vma->vm_end) {
763 			/*
764 			 * vma shrinks, and !insert tells it's not
765 			 * split_vma inserting another: so it must be
766 			 * mprotect case 4 shifting the boundary down.
767 			 */
768 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
769 			exporter = vma;
770 			importer = next;
771 		}
772 
773 		/*
774 		 * Easily overlooked: when mprotect shifts the boundary,
775 		 * make sure the expanding vma has anon_vma set if the
776 		 * shrinking vma had, to cover any anon pages imported.
777 		 */
778 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
779 			if (anon_vma_clone(importer, exporter))
780 				return -ENOMEM;
781 			importer->anon_vma = exporter->anon_vma;
782 		}
783 	}
784 
785 	if (file) {
786 		mapping = file->f_mapping;
787 		if (!(vma->vm_flags & VM_NONLINEAR)) {
788 			root = &mapping->i_mmap;
789 			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
790 
791 			if (adjust_next)
792 				uprobe_munmap(next, next->vm_start,
793 							next->vm_end);
794 		}
795 
796 		mutex_lock(&mapping->i_mmap_mutex);
797 		if (insert) {
798 			/*
799 			 * Put into interval tree now, so instantiated pages
800 			 * are visible to arm/parisc __flush_dcache_page
801 			 * throughout; but we cannot insert into address
802 			 * space until vma start or end is updated.
803 			 */
804 			__vma_link_file(insert);
805 		}
806 	}
807 
808 	vma_adjust_trans_huge(vma, start, end, adjust_next);
809 
810 	anon_vma = vma->anon_vma;
811 	if (!anon_vma && adjust_next)
812 		anon_vma = next->anon_vma;
813 	if (anon_vma) {
814 		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
815 			  anon_vma != next->anon_vma, next);
816 		anon_vma_lock_write(anon_vma);
817 		anon_vma_interval_tree_pre_update_vma(vma);
818 		if (adjust_next)
819 			anon_vma_interval_tree_pre_update_vma(next);
820 	}
821 
822 	if (root) {
823 		flush_dcache_mmap_lock(mapping);
824 		vma_interval_tree_remove(vma, root);
825 		if (adjust_next)
826 			vma_interval_tree_remove(next, root);
827 	}
828 
829 	if (start != vma->vm_start) {
830 		vma->vm_start = start;
831 		start_changed = true;
832 	}
833 	if (end != vma->vm_end) {
834 		vma->vm_end = end;
835 		end_changed = true;
836 	}
837 	vma->vm_pgoff = pgoff;
838 	if (adjust_next) {
839 		next->vm_start += adjust_next << PAGE_SHIFT;
840 		next->vm_pgoff += adjust_next;
841 	}
842 
843 	if (root) {
844 		if (adjust_next)
845 			vma_interval_tree_insert(next, root);
846 		vma_interval_tree_insert(vma, root);
847 		flush_dcache_mmap_unlock(mapping);
848 	}
849 
850 	if (remove_next) {
851 		/*
852 		 * vma_merge has merged next into vma, and needs
853 		 * us to remove next before dropping the locks.
854 		 */
855 		__vma_unlink(mm, next, vma);
856 		if (file)
857 			__remove_shared_vm_struct(next, file, mapping);
858 	} else if (insert) {
859 		/*
860 		 * split_vma has split insert from vma, and needs
861 		 * us to insert it before dropping the locks
862 		 * (it may either follow vma or precede it).
863 		 */
864 		__insert_vm_struct(mm, insert);
865 	} else {
866 		if (start_changed)
867 			vma_gap_update(vma);
868 		if (end_changed) {
869 			if (!next)
870 				mm->highest_vm_end = end;
871 			else if (!adjust_next)
872 				vma_gap_update(next);
873 		}
874 	}
875 
876 	if (anon_vma) {
877 		anon_vma_interval_tree_post_update_vma(vma);
878 		if (adjust_next)
879 			anon_vma_interval_tree_post_update_vma(next);
880 		anon_vma_unlock_write(anon_vma);
881 	}
882 	if (mapping)
883 		mutex_unlock(&mapping->i_mmap_mutex);
884 
885 	if (root) {
886 		uprobe_mmap(vma);
887 
888 		if (adjust_next)
889 			uprobe_mmap(next);
890 	}
891 
892 	if (remove_next) {
893 		if (file) {
894 			uprobe_munmap(next, next->vm_start, next->vm_end);
895 			fput(file);
896 		}
897 		if (next->anon_vma)
898 			anon_vma_merge(vma, next);
899 		mm->map_count--;
900 		mpol_put(vma_policy(next));
901 		kmem_cache_free(vm_area_cachep, next);
902 		/*
903 		 * In mprotect's case 6 (see comments on vma_merge),
904 		 * we must remove another next too. It would clutter
905 		 * up the code too much to do both in one go.
906 		 */
907 		next = vma->vm_next;
908 		if (remove_next == 2)
909 			goto again;
910 		else if (next)
911 			vma_gap_update(next);
912 		else
913 			mm->highest_vm_end = end;
914 	}
915 	if (insert && file)
916 		uprobe_mmap(insert);
917 
918 	validate_mm(mm);
919 
920 	return 0;
921 }
922 
923 /*
924  * If the vma has a ->close operation then the driver probably needs to release
925  * per-vma resources, so we don't attempt to merge those.
926  */
927 static inline int is_mergeable_vma(struct vm_area_struct *vma,
928 			struct file *file, unsigned long vm_flags)
929 {
930 	/*
931 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
932 	 * match the flags but dirty bit -- the caller should mark
933 	 * merged VMA as dirty. If dirty bit won't be excluded from
934 	 * comparison, we increase pressue on the memory system forcing
935 	 * the kernel to generate new VMAs when old one could be
936 	 * extended instead.
937 	 */
938 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
939 		return 0;
940 	if (vma->vm_file != file)
941 		return 0;
942 	if (vma->vm_ops && vma->vm_ops->close)
943 		return 0;
944 	return 1;
945 }
946 
947 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
948 					struct anon_vma *anon_vma2,
949 					struct vm_area_struct *vma)
950 {
951 	/*
952 	 * The list_is_singular() test is to avoid merging VMA cloned from
953 	 * parents. This can improve scalability caused by anon_vma lock.
954 	 */
955 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
956 		list_is_singular(&vma->anon_vma_chain)))
957 		return 1;
958 	return anon_vma1 == anon_vma2;
959 }
960 
961 /*
962  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
963  * in front of (at a lower virtual address and file offset than) the vma.
964  *
965  * We cannot merge two vmas if they have differently assigned (non-NULL)
966  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
967  *
968  * We don't check here for the merged mmap wrapping around the end of pagecache
969  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
970  * wrap, nor mmaps which cover the final page at index -1UL.
971  */
972 static int
973 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
974 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
975 {
976 	if (is_mergeable_vma(vma, file, vm_flags) &&
977 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
978 		if (vma->vm_pgoff == vm_pgoff)
979 			return 1;
980 	}
981 	return 0;
982 }
983 
984 /*
985  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
986  * beyond (at a higher virtual address and file offset than) the vma.
987  *
988  * We cannot merge two vmas if they have differently assigned (non-NULL)
989  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
990  */
991 static int
992 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
993 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
994 {
995 	if (is_mergeable_vma(vma, file, vm_flags) &&
996 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
997 		pgoff_t vm_pglen;
998 		vm_pglen = vma_pages(vma);
999 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1000 			return 1;
1001 	}
1002 	return 0;
1003 }
1004 
1005 /*
1006  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1007  * whether that can be merged with its predecessor or its successor.
1008  * Or both (it neatly fills a hole).
1009  *
1010  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1011  * certain not to be mapped by the time vma_merge is called; but when
1012  * called for mprotect, it is certain to be already mapped (either at
1013  * an offset within prev, or at the start of next), and the flags of
1014  * this area are about to be changed to vm_flags - and the no-change
1015  * case has already been eliminated.
1016  *
1017  * The following mprotect cases have to be considered, where AAAA is
1018  * the area passed down from mprotect_fixup, never extending beyond one
1019  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1020  *
1021  *     AAAA             AAAA                AAAA          AAAA
1022  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1023  *    cannot merge    might become    might become    might become
1024  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1025  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1026  *    mremap move:                                    PPPPNNNNNNNN 8
1027  *        AAAA
1028  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1029  *    might become    case 1 below    case 2 below    case 3 below
1030  *
1031  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1032  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1033  */
1034 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1035 			struct vm_area_struct *prev, unsigned long addr,
1036 			unsigned long end, unsigned long vm_flags,
1037 			struct anon_vma *anon_vma, struct file *file,
1038 			pgoff_t pgoff, struct mempolicy *policy)
1039 {
1040 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1041 	struct vm_area_struct *area, *next;
1042 	int err;
1043 
1044 	/*
1045 	 * We later require that vma->vm_flags == vm_flags,
1046 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1047 	 */
1048 	if (vm_flags & VM_SPECIAL)
1049 		return NULL;
1050 
1051 	if (prev)
1052 		next = prev->vm_next;
1053 	else
1054 		next = mm->mmap;
1055 	area = next;
1056 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1057 		next = next->vm_next;
1058 
1059 	/*
1060 	 * Can it merge with the predecessor?
1061 	 */
1062 	if (prev && prev->vm_end == addr &&
1063 			mpol_equal(vma_policy(prev), policy) &&
1064 			can_vma_merge_after(prev, vm_flags,
1065 						anon_vma, file, pgoff)) {
1066 		/*
1067 		 * OK, it can.  Can we now merge in the successor as well?
1068 		 */
1069 		if (next && end == next->vm_start &&
1070 				mpol_equal(policy, vma_policy(next)) &&
1071 				can_vma_merge_before(next, vm_flags,
1072 					anon_vma, file, pgoff+pglen) &&
1073 				is_mergeable_anon_vma(prev->anon_vma,
1074 						      next->anon_vma, NULL)) {
1075 							/* cases 1, 6 */
1076 			err = vma_adjust(prev, prev->vm_start,
1077 				next->vm_end, prev->vm_pgoff, NULL);
1078 		} else					/* cases 2, 5, 7 */
1079 			err = vma_adjust(prev, prev->vm_start,
1080 				end, prev->vm_pgoff, NULL);
1081 		if (err)
1082 			return NULL;
1083 		khugepaged_enter_vma_merge(prev, vm_flags);
1084 		return prev;
1085 	}
1086 
1087 	/*
1088 	 * Can this new request be merged in front of next?
1089 	 */
1090 	if (next && end == next->vm_start &&
1091 			mpol_equal(policy, vma_policy(next)) &&
1092 			can_vma_merge_before(next, vm_flags,
1093 					anon_vma, file, pgoff+pglen)) {
1094 		if (prev && addr < prev->vm_end)	/* case 4 */
1095 			err = vma_adjust(prev, prev->vm_start,
1096 				addr, prev->vm_pgoff, NULL);
1097 		else					/* cases 3, 8 */
1098 			err = vma_adjust(area, addr, next->vm_end,
1099 				next->vm_pgoff - pglen, NULL);
1100 		if (err)
1101 			return NULL;
1102 		khugepaged_enter_vma_merge(area, vm_flags);
1103 		return area;
1104 	}
1105 
1106 	return NULL;
1107 }
1108 
1109 /*
1110  * Rough compatbility check to quickly see if it's even worth looking
1111  * at sharing an anon_vma.
1112  *
1113  * They need to have the same vm_file, and the flags can only differ
1114  * in things that mprotect may change.
1115  *
1116  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1117  * we can merge the two vma's. For example, we refuse to merge a vma if
1118  * there is a vm_ops->close() function, because that indicates that the
1119  * driver is doing some kind of reference counting. But that doesn't
1120  * really matter for the anon_vma sharing case.
1121  */
1122 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1123 {
1124 	return a->vm_end == b->vm_start &&
1125 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1126 		a->vm_file == b->vm_file &&
1127 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1128 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1129 }
1130 
1131 /*
1132  * Do some basic sanity checking to see if we can re-use the anon_vma
1133  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1134  * the same as 'old', the other will be the new one that is trying
1135  * to share the anon_vma.
1136  *
1137  * NOTE! This runs with mm_sem held for reading, so it is possible that
1138  * the anon_vma of 'old' is concurrently in the process of being set up
1139  * by another page fault trying to merge _that_. But that's ok: if it
1140  * is being set up, that automatically means that it will be a singleton
1141  * acceptable for merging, so we can do all of this optimistically. But
1142  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1143  *
1144  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1145  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1146  * is to return an anon_vma that is "complex" due to having gone through
1147  * a fork).
1148  *
1149  * We also make sure that the two vma's are compatible (adjacent,
1150  * and with the same memory policies). That's all stable, even with just
1151  * a read lock on the mm_sem.
1152  */
1153 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1154 {
1155 	if (anon_vma_compatible(a, b)) {
1156 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1157 
1158 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1159 			return anon_vma;
1160 	}
1161 	return NULL;
1162 }
1163 
1164 /*
1165  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1166  * neighbouring vmas for a suitable anon_vma, before it goes off
1167  * to allocate a new anon_vma.  It checks because a repetitive
1168  * sequence of mprotects and faults may otherwise lead to distinct
1169  * anon_vmas being allocated, preventing vma merge in subsequent
1170  * mprotect.
1171  */
1172 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1173 {
1174 	struct anon_vma *anon_vma;
1175 	struct vm_area_struct *near;
1176 
1177 	near = vma->vm_next;
1178 	if (!near)
1179 		goto try_prev;
1180 
1181 	anon_vma = reusable_anon_vma(near, vma, near);
1182 	if (anon_vma)
1183 		return anon_vma;
1184 try_prev:
1185 	near = vma->vm_prev;
1186 	if (!near)
1187 		goto none;
1188 
1189 	anon_vma = reusable_anon_vma(near, near, vma);
1190 	if (anon_vma)
1191 		return anon_vma;
1192 none:
1193 	/*
1194 	 * There's no absolute need to look only at touching neighbours:
1195 	 * we could search further afield for "compatible" anon_vmas.
1196 	 * But it would probably just be a waste of time searching,
1197 	 * or lead to too many vmas hanging off the same anon_vma.
1198 	 * We're trying to allow mprotect remerging later on,
1199 	 * not trying to minimize memory used for anon_vmas.
1200 	 */
1201 	return NULL;
1202 }
1203 
1204 #ifdef CONFIG_PROC_FS
1205 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1206 						struct file *file, long pages)
1207 {
1208 	const unsigned long stack_flags
1209 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1210 
1211 	mm->total_vm += pages;
1212 
1213 	if (file) {
1214 		mm->shared_vm += pages;
1215 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1216 			mm->exec_vm += pages;
1217 	} else if (flags & stack_flags)
1218 		mm->stack_vm += pages;
1219 }
1220 #endif /* CONFIG_PROC_FS */
1221 
1222 /*
1223  * If a hint addr is less than mmap_min_addr change hint to be as
1224  * low as possible but still greater than mmap_min_addr
1225  */
1226 static inline unsigned long round_hint_to_min(unsigned long hint)
1227 {
1228 	hint &= PAGE_MASK;
1229 	if (((void *)hint != NULL) &&
1230 	    (hint < mmap_min_addr))
1231 		return PAGE_ALIGN(mmap_min_addr);
1232 	return hint;
1233 }
1234 
1235 static inline int mlock_future_check(struct mm_struct *mm,
1236 				     unsigned long flags,
1237 				     unsigned long len)
1238 {
1239 	unsigned long locked, lock_limit;
1240 
1241 	/*  mlock MCL_FUTURE? */
1242 	if (flags & VM_LOCKED) {
1243 		locked = len >> PAGE_SHIFT;
1244 		locked += mm->locked_vm;
1245 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1246 		lock_limit >>= PAGE_SHIFT;
1247 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1248 			return -EAGAIN;
1249 	}
1250 	return 0;
1251 }
1252 
1253 /*
1254  * The caller must hold down_write(&current->mm->mmap_sem).
1255  */
1256 
1257 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1258 			unsigned long len, unsigned long prot,
1259 			unsigned long flags, unsigned long pgoff,
1260 			unsigned long *populate)
1261 {
1262 	struct mm_struct *mm = current->mm;
1263 	vm_flags_t vm_flags;
1264 
1265 	*populate = 0;
1266 
1267 	/*
1268 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1269 	 *
1270 	 * (the exception is when the underlying filesystem is noexec
1271 	 *  mounted, in which case we dont add PROT_EXEC.)
1272 	 */
1273 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1274 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1275 			prot |= PROT_EXEC;
1276 
1277 	if (!len)
1278 		return -EINVAL;
1279 
1280 	if (!(flags & MAP_FIXED))
1281 		addr = round_hint_to_min(addr);
1282 
1283 	/* Careful about overflows.. */
1284 	len = PAGE_ALIGN(len);
1285 	if (!len)
1286 		return -ENOMEM;
1287 
1288 	/* offset overflow? */
1289 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1290 		return -EOVERFLOW;
1291 
1292 	/* Too many mappings? */
1293 	if (mm->map_count > sysctl_max_map_count)
1294 		return -ENOMEM;
1295 
1296 	/* Obtain the address to map to. we verify (or select) it and ensure
1297 	 * that it represents a valid section of the address space.
1298 	 */
1299 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1300 	if (addr & ~PAGE_MASK)
1301 		return addr;
1302 
1303 	/* Do simple checking here so the lower-level routines won't have
1304 	 * to. we assume access permissions have been handled by the open
1305 	 * of the memory object, so we don't do any here.
1306 	 */
1307 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1308 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1309 
1310 	if (flags & MAP_LOCKED)
1311 		if (!can_do_mlock())
1312 			return -EPERM;
1313 
1314 	if (mlock_future_check(mm, vm_flags, len))
1315 		return -EAGAIN;
1316 
1317 	if (file) {
1318 		struct inode *inode = file_inode(file);
1319 
1320 		switch (flags & MAP_TYPE) {
1321 		case MAP_SHARED:
1322 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1323 				return -EACCES;
1324 
1325 			/*
1326 			 * Make sure we don't allow writing to an append-only
1327 			 * file..
1328 			 */
1329 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1330 				return -EACCES;
1331 
1332 			/*
1333 			 * Make sure there are no mandatory locks on the file.
1334 			 */
1335 			if (locks_verify_locked(file))
1336 				return -EAGAIN;
1337 
1338 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1339 			if (!(file->f_mode & FMODE_WRITE))
1340 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1341 
1342 			/* fall through */
1343 		case MAP_PRIVATE:
1344 			if (!(file->f_mode & FMODE_READ))
1345 				return -EACCES;
1346 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1347 				if (vm_flags & VM_EXEC)
1348 					return -EPERM;
1349 				vm_flags &= ~VM_MAYEXEC;
1350 			}
1351 
1352 			if (!file->f_op->mmap)
1353 				return -ENODEV;
1354 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355 				return -EINVAL;
1356 			break;
1357 
1358 		default:
1359 			return -EINVAL;
1360 		}
1361 	} else {
1362 		switch (flags & MAP_TYPE) {
1363 		case MAP_SHARED:
1364 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1365 				return -EINVAL;
1366 			/*
1367 			 * Ignore pgoff.
1368 			 */
1369 			pgoff = 0;
1370 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1371 			break;
1372 		case MAP_PRIVATE:
1373 			/*
1374 			 * Set pgoff according to addr for anon_vma.
1375 			 */
1376 			pgoff = addr >> PAGE_SHIFT;
1377 			break;
1378 		default:
1379 			return -EINVAL;
1380 		}
1381 	}
1382 
1383 	/*
1384 	 * Set 'VM_NORESERVE' if we should not account for the
1385 	 * memory use of this mapping.
1386 	 */
1387 	if (flags & MAP_NORESERVE) {
1388 		/* We honor MAP_NORESERVE if allowed to overcommit */
1389 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1390 			vm_flags |= VM_NORESERVE;
1391 
1392 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1393 		if (file && is_file_hugepages(file))
1394 			vm_flags |= VM_NORESERVE;
1395 	}
1396 
1397 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1398 	if (!IS_ERR_VALUE(addr) &&
1399 	    ((vm_flags & VM_LOCKED) ||
1400 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1401 		*populate = len;
1402 	return addr;
1403 }
1404 
1405 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1406 		unsigned long, prot, unsigned long, flags,
1407 		unsigned long, fd, unsigned long, pgoff)
1408 {
1409 	struct file *file = NULL;
1410 	unsigned long retval = -EBADF;
1411 
1412 	if (!(flags & MAP_ANONYMOUS)) {
1413 		audit_mmap_fd(fd, flags);
1414 		file = fget(fd);
1415 		if (!file)
1416 			goto out;
1417 		if (is_file_hugepages(file))
1418 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1419 		retval = -EINVAL;
1420 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1421 			goto out_fput;
1422 	} else if (flags & MAP_HUGETLB) {
1423 		struct user_struct *user = NULL;
1424 		struct hstate *hs;
1425 
1426 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1427 		if (!hs)
1428 			return -EINVAL;
1429 
1430 		len = ALIGN(len, huge_page_size(hs));
1431 		/*
1432 		 * VM_NORESERVE is used because the reservations will be
1433 		 * taken when vm_ops->mmap() is called
1434 		 * A dummy user value is used because we are not locking
1435 		 * memory so no accounting is necessary
1436 		 */
1437 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1438 				VM_NORESERVE,
1439 				&user, HUGETLB_ANONHUGE_INODE,
1440 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1441 		if (IS_ERR(file))
1442 			return PTR_ERR(file);
1443 	}
1444 
1445 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1446 
1447 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1448 out_fput:
1449 	if (file)
1450 		fput(file);
1451 out:
1452 	return retval;
1453 }
1454 
1455 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1456 struct mmap_arg_struct {
1457 	unsigned long addr;
1458 	unsigned long len;
1459 	unsigned long prot;
1460 	unsigned long flags;
1461 	unsigned long fd;
1462 	unsigned long offset;
1463 };
1464 
1465 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1466 {
1467 	struct mmap_arg_struct a;
1468 
1469 	if (copy_from_user(&a, arg, sizeof(a)))
1470 		return -EFAULT;
1471 	if (a.offset & ~PAGE_MASK)
1472 		return -EINVAL;
1473 
1474 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1475 			      a.offset >> PAGE_SHIFT);
1476 }
1477 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1478 
1479 /*
1480  * Some shared mappigns will want the pages marked read-only
1481  * to track write events. If so, we'll downgrade vm_page_prot
1482  * to the private version (using protection_map[] without the
1483  * VM_SHARED bit).
1484  */
1485 int vma_wants_writenotify(struct vm_area_struct *vma)
1486 {
1487 	vm_flags_t vm_flags = vma->vm_flags;
1488 
1489 	/* If it was private or non-writable, the write bit is already clear */
1490 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1491 		return 0;
1492 
1493 	/* The backer wishes to know when pages are first written to? */
1494 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1495 		return 1;
1496 
1497 	/* The open routine did something to the protections that pgprot_modify
1498 	 * won't preserve? */
1499 	if (pgprot_val(vma->vm_page_prot) !=
1500 	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1501 		return 0;
1502 
1503 	/* Do we need to track softdirty? */
1504 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1505 		return 1;
1506 
1507 	/* Specialty mapping? */
1508 	if (vm_flags & VM_PFNMAP)
1509 		return 0;
1510 
1511 	/* Can the mapping track the dirty pages? */
1512 	return vma->vm_file && vma->vm_file->f_mapping &&
1513 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1514 }
1515 
1516 /*
1517  * We account for memory if it's a private writeable mapping,
1518  * not hugepages and VM_NORESERVE wasn't set.
1519  */
1520 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1521 {
1522 	/*
1523 	 * hugetlb has its own accounting separate from the core VM
1524 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1525 	 */
1526 	if (file && is_file_hugepages(file))
1527 		return 0;
1528 
1529 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1530 }
1531 
1532 unsigned long mmap_region(struct file *file, unsigned long addr,
1533 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1534 {
1535 	struct mm_struct *mm = current->mm;
1536 	struct vm_area_struct *vma, *prev;
1537 	int error;
1538 	struct rb_node **rb_link, *rb_parent;
1539 	unsigned long charged = 0;
1540 
1541 	/* Check against address space limit. */
1542 	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1543 		unsigned long nr_pages;
1544 
1545 		/*
1546 		 * MAP_FIXED may remove pages of mappings that intersects with
1547 		 * requested mapping. Account for the pages it would unmap.
1548 		 */
1549 		if (!(vm_flags & MAP_FIXED))
1550 			return -ENOMEM;
1551 
1552 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1553 
1554 		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1555 			return -ENOMEM;
1556 	}
1557 
1558 	/* Clear old maps */
1559 	error = -ENOMEM;
1560 munmap_back:
1561 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1562 		if (do_munmap(mm, addr, len))
1563 			return -ENOMEM;
1564 		goto munmap_back;
1565 	}
1566 
1567 	/*
1568 	 * Private writable mapping: check memory availability
1569 	 */
1570 	if (accountable_mapping(file, vm_flags)) {
1571 		charged = len >> PAGE_SHIFT;
1572 		if (security_vm_enough_memory_mm(mm, charged))
1573 			return -ENOMEM;
1574 		vm_flags |= VM_ACCOUNT;
1575 	}
1576 
1577 	/*
1578 	 * Can we just expand an old mapping?
1579 	 */
1580 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1581 	if (vma)
1582 		goto out;
1583 
1584 	/*
1585 	 * Determine the object being mapped and call the appropriate
1586 	 * specific mapper. the address has already been validated, but
1587 	 * not unmapped, but the maps are removed from the list.
1588 	 */
1589 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1590 	if (!vma) {
1591 		error = -ENOMEM;
1592 		goto unacct_error;
1593 	}
1594 
1595 	vma->vm_mm = mm;
1596 	vma->vm_start = addr;
1597 	vma->vm_end = addr + len;
1598 	vma->vm_flags = vm_flags;
1599 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1600 	vma->vm_pgoff = pgoff;
1601 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1602 
1603 	if (file) {
1604 		if (vm_flags & VM_DENYWRITE) {
1605 			error = deny_write_access(file);
1606 			if (error)
1607 				goto free_vma;
1608 		}
1609 		if (vm_flags & VM_SHARED) {
1610 			error = mapping_map_writable(file->f_mapping);
1611 			if (error)
1612 				goto allow_write_and_free_vma;
1613 		}
1614 
1615 		/* ->mmap() can change vma->vm_file, but must guarantee that
1616 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1617 		 * and map writably if VM_SHARED is set. This usually means the
1618 		 * new file must not have been exposed to user-space, yet.
1619 		 */
1620 		vma->vm_file = get_file(file);
1621 		error = file->f_op->mmap(file, vma);
1622 		if (error)
1623 			goto unmap_and_free_vma;
1624 
1625 		/* Can addr have changed??
1626 		 *
1627 		 * Answer: Yes, several device drivers can do it in their
1628 		 *         f_op->mmap method. -DaveM
1629 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1630 		 *      be updated for vma_link()
1631 		 */
1632 		WARN_ON_ONCE(addr != vma->vm_start);
1633 
1634 		addr = vma->vm_start;
1635 		vm_flags = vma->vm_flags;
1636 	} else if (vm_flags & VM_SHARED) {
1637 		error = shmem_zero_setup(vma);
1638 		if (error)
1639 			goto free_vma;
1640 	}
1641 
1642 	vma_link(mm, vma, prev, rb_link, rb_parent);
1643 	/* Once vma denies write, undo our temporary denial count */
1644 	if (file) {
1645 		if (vm_flags & VM_SHARED)
1646 			mapping_unmap_writable(file->f_mapping);
1647 		if (vm_flags & VM_DENYWRITE)
1648 			allow_write_access(file);
1649 	}
1650 	file = vma->vm_file;
1651 out:
1652 	perf_event_mmap(vma);
1653 
1654 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1655 	if (vm_flags & VM_LOCKED) {
1656 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1657 					vma == get_gate_vma(current->mm)))
1658 			mm->locked_vm += (len >> PAGE_SHIFT);
1659 		else
1660 			vma->vm_flags &= ~VM_LOCKED;
1661 	}
1662 
1663 	if (file)
1664 		uprobe_mmap(vma);
1665 
1666 	/*
1667 	 * New (or expanded) vma always get soft dirty status.
1668 	 * Otherwise user-space soft-dirty page tracker won't
1669 	 * be able to distinguish situation when vma area unmapped,
1670 	 * then new mapped in-place (which must be aimed as
1671 	 * a completely new data area).
1672 	 */
1673 	vma->vm_flags |= VM_SOFTDIRTY;
1674 
1675 	vma_set_page_prot(vma);
1676 
1677 	return addr;
1678 
1679 unmap_and_free_vma:
1680 	vma->vm_file = NULL;
1681 	fput(file);
1682 
1683 	/* Undo any partial mapping done by a device driver. */
1684 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1685 	charged = 0;
1686 	if (vm_flags & VM_SHARED)
1687 		mapping_unmap_writable(file->f_mapping);
1688 allow_write_and_free_vma:
1689 	if (vm_flags & VM_DENYWRITE)
1690 		allow_write_access(file);
1691 free_vma:
1692 	kmem_cache_free(vm_area_cachep, vma);
1693 unacct_error:
1694 	if (charged)
1695 		vm_unacct_memory(charged);
1696 	return error;
1697 }
1698 
1699 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1700 {
1701 	/*
1702 	 * We implement the search by looking for an rbtree node that
1703 	 * immediately follows a suitable gap. That is,
1704 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1705 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1706 	 * - gap_end - gap_start >= length
1707 	 */
1708 
1709 	struct mm_struct *mm = current->mm;
1710 	struct vm_area_struct *vma;
1711 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1712 
1713 	/* Adjust search length to account for worst case alignment overhead */
1714 	length = info->length + info->align_mask;
1715 	if (length < info->length)
1716 		return -ENOMEM;
1717 
1718 	/* Adjust search limits by the desired length */
1719 	if (info->high_limit < length)
1720 		return -ENOMEM;
1721 	high_limit = info->high_limit - length;
1722 
1723 	if (info->low_limit > high_limit)
1724 		return -ENOMEM;
1725 	low_limit = info->low_limit + length;
1726 
1727 	/* Check if rbtree root looks promising */
1728 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1729 		goto check_highest;
1730 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1731 	if (vma->rb_subtree_gap < length)
1732 		goto check_highest;
1733 
1734 	while (true) {
1735 		/* Visit left subtree if it looks promising */
1736 		gap_end = vma->vm_start;
1737 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1738 			struct vm_area_struct *left =
1739 				rb_entry(vma->vm_rb.rb_left,
1740 					 struct vm_area_struct, vm_rb);
1741 			if (left->rb_subtree_gap >= length) {
1742 				vma = left;
1743 				continue;
1744 			}
1745 		}
1746 
1747 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1748 check_current:
1749 		/* Check if current node has a suitable gap */
1750 		if (gap_start > high_limit)
1751 			return -ENOMEM;
1752 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1753 			goto found;
1754 
1755 		/* Visit right subtree if it looks promising */
1756 		if (vma->vm_rb.rb_right) {
1757 			struct vm_area_struct *right =
1758 				rb_entry(vma->vm_rb.rb_right,
1759 					 struct vm_area_struct, vm_rb);
1760 			if (right->rb_subtree_gap >= length) {
1761 				vma = right;
1762 				continue;
1763 			}
1764 		}
1765 
1766 		/* Go back up the rbtree to find next candidate node */
1767 		while (true) {
1768 			struct rb_node *prev = &vma->vm_rb;
1769 			if (!rb_parent(prev))
1770 				goto check_highest;
1771 			vma = rb_entry(rb_parent(prev),
1772 				       struct vm_area_struct, vm_rb);
1773 			if (prev == vma->vm_rb.rb_left) {
1774 				gap_start = vma->vm_prev->vm_end;
1775 				gap_end = vma->vm_start;
1776 				goto check_current;
1777 			}
1778 		}
1779 	}
1780 
1781 check_highest:
1782 	/* Check highest gap, which does not precede any rbtree node */
1783 	gap_start = mm->highest_vm_end;
1784 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1785 	if (gap_start > high_limit)
1786 		return -ENOMEM;
1787 
1788 found:
1789 	/* We found a suitable gap. Clip it with the original low_limit. */
1790 	if (gap_start < info->low_limit)
1791 		gap_start = info->low_limit;
1792 
1793 	/* Adjust gap address to the desired alignment */
1794 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1795 
1796 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1797 	VM_BUG_ON(gap_start + info->length > gap_end);
1798 	return gap_start;
1799 }
1800 
1801 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1802 {
1803 	struct mm_struct *mm = current->mm;
1804 	struct vm_area_struct *vma;
1805 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1806 
1807 	/* Adjust search length to account for worst case alignment overhead */
1808 	length = info->length + info->align_mask;
1809 	if (length < info->length)
1810 		return -ENOMEM;
1811 
1812 	/*
1813 	 * Adjust search limits by the desired length.
1814 	 * See implementation comment at top of unmapped_area().
1815 	 */
1816 	gap_end = info->high_limit;
1817 	if (gap_end < length)
1818 		return -ENOMEM;
1819 	high_limit = gap_end - length;
1820 
1821 	if (info->low_limit > high_limit)
1822 		return -ENOMEM;
1823 	low_limit = info->low_limit + length;
1824 
1825 	/* Check highest gap, which does not precede any rbtree node */
1826 	gap_start = mm->highest_vm_end;
1827 	if (gap_start <= high_limit)
1828 		goto found_highest;
1829 
1830 	/* Check if rbtree root looks promising */
1831 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1832 		return -ENOMEM;
1833 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1834 	if (vma->rb_subtree_gap < length)
1835 		return -ENOMEM;
1836 
1837 	while (true) {
1838 		/* Visit right subtree if it looks promising */
1839 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1840 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1841 			struct vm_area_struct *right =
1842 				rb_entry(vma->vm_rb.rb_right,
1843 					 struct vm_area_struct, vm_rb);
1844 			if (right->rb_subtree_gap >= length) {
1845 				vma = right;
1846 				continue;
1847 			}
1848 		}
1849 
1850 check_current:
1851 		/* Check if current node has a suitable gap */
1852 		gap_end = vma->vm_start;
1853 		if (gap_end < low_limit)
1854 			return -ENOMEM;
1855 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1856 			goto found;
1857 
1858 		/* Visit left subtree if it looks promising */
1859 		if (vma->vm_rb.rb_left) {
1860 			struct vm_area_struct *left =
1861 				rb_entry(vma->vm_rb.rb_left,
1862 					 struct vm_area_struct, vm_rb);
1863 			if (left->rb_subtree_gap >= length) {
1864 				vma = left;
1865 				continue;
1866 			}
1867 		}
1868 
1869 		/* Go back up the rbtree to find next candidate node */
1870 		while (true) {
1871 			struct rb_node *prev = &vma->vm_rb;
1872 			if (!rb_parent(prev))
1873 				return -ENOMEM;
1874 			vma = rb_entry(rb_parent(prev),
1875 				       struct vm_area_struct, vm_rb);
1876 			if (prev == vma->vm_rb.rb_right) {
1877 				gap_start = vma->vm_prev ?
1878 					vma->vm_prev->vm_end : 0;
1879 				goto check_current;
1880 			}
1881 		}
1882 	}
1883 
1884 found:
1885 	/* We found a suitable gap. Clip it with the original high_limit. */
1886 	if (gap_end > info->high_limit)
1887 		gap_end = info->high_limit;
1888 
1889 found_highest:
1890 	/* Compute highest gap address at the desired alignment */
1891 	gap_end -= info->length;
1892 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1893 
1894 	VM_BUG_ON(gap_end < info->low_limit);
1895 	VM_BUG_ON(gap_end < gap_start);
1896 	return gap_end;
1897 }
1898 
1899 /* Get an address range which is currently unmapped.
1900  * For shmat() with addr=0.
1901  *
1902  * Ugly calling convention alert:
1903  * Return value with the low bits set means error value,
1904  * ie
1905  *	if (ret & ~PAGE_MASK)
1906  *		error = ret;
1907  *
1908  * This function "knows" that -ENOMEM has the bits set.
1909  */
1910 #ifndef HAVE_ARCH_UNMAPPED_AREA
1911 unsigned long
1912 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1913 		unsigned long len, unsigned long pgoff, unsigned long flags)
1914 {
1915 	struct mm_struct *mm = current->mm;
1916 	struct vm_area_struct *vma;
1917 	struct vm_unmapped_area_info info;
1918 
1919 	if (len > TASK_SIZE - mmap_min_addr)
1920 		return -ENOMEM;
1921 
1922 	if (flags & MAP_FIXED)
1923 		return addr;
1924 
1925 	if (addr) {
1926 		addr = PAGE_ALIGN(addr);
1927 		vma = find_vma(mm, addr);
1928 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1929 		    (!vma || addr + len <= vma->vm_start))
1930 			return addr;
1931 	}
1932 
1933 	info.flags = 0;
1934 	info.length = len;
1935 	info.low_limit = mm->mmap_base;
1936 	info.high_limit = TASK_SIZE;
1937 	info.align_mask = 0;
1938 	return vm_unmapped_area(&info);
1939 }
1940 #endif
1941 
1942 /*
1943  * This mmap-allocator allocates new areas top-down from below the
1944  * stack's low limit (the base):
1945  */
1946 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1947 unsigned long
1948 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1949 			  const unsigned long len, const unsigned long pgoff,
1950 			  const unsigned long flags)
1951 {
1952 	struct vm_area_struct *vma;
1953 	struct mm_struct *mm = current->mm;
1954 	unsigned long addr = addr0;
1955 	struct vm_unmapped_area_info info;
1956 
1957 	/* requested length too big for entire address space */
1958 	if (len > TASK_SIZE - mmap_min_addr)
1959 		return -ENOMEM;
1960 
1961 	if (flags & MAP_FIXED)
1962 		return addr;
1963 
1964 	/* requesting a specific address */
1965 	if (addr) {
1966 		addr = PAGE_ALIGN(addr);
1967 		vma = find_vma(mm, addr);
1968 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1969 				(!vma || addr + len <= vma->vm_start))
1970 			return addr;
1971 	}
1972 
1973 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1974 	info.length = len;
1975 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1976 	info.high_limit = mm->mmap_base;
1977 	info.align_mask = 0;
1978 	addr = vm_unmapped_area(&info);
1979 
1980 	/*
1981 	 * A failed mmap() very likely causes application failure,
1982 	 * so fall back to the bottom-up function here. This scenario
1983 	 * can happen with large stack limits and large mmap()
1984 	 * allocations.
1985 	 */
1986 	if (addr & ~PAGE_MASK) {
1987 		VM_BUG_ON(addr != -ENOMEM);
1988 		info.flags = 0;
1989 		info.low_limit = TASK_UNMAPPED_BASE;
1990 		info.high_limit = TASK_SIZE;
1991 		addr = vm_unmapped_area(&info);
1992 	}
1993 
1994 	return addr;
1995 }
1996 #endif
1997 
1998 unsigned long
1999 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2000 		unsigned long pgoff, unsigned long flags)
2001 {
2002 	unsigned long (*get_area)(struct file *, unsigned long,
2003 				  unsigned long, unsigned long, unsigned long);
2004 
2005 	unsigned long error = arch_mmap_check(addr, len, flags);
2006 	if (error)
2007 		return error;
2008 
2009 	/* Careful about overflows.. */
2010 	if (len > TASK_SIZE)
2011 		return -ENOMEM;
2012 
2013 	get_area = current->mm->get_unmapped_area;
2014 	if (file && file->f_op->get_unmapped_area)
2015 		get_area = file->f_op->get_unmapped_area;
2016 	addr = get_area(file, addr, len, pgoff, flags);
2017 	if (IS_ERR_VALUE(addr))
2018 		return addr;
2019 
2020 	if (addr > TASK_SIZE - len)
2021 		return -ENOMEM;
2022 	if (addr & ~PAGE_MASK)
2023 		return -EINVAL;
2024 
2025 	addr = arch_rebalance_pgtables(addr, len);
2026 	error = security_mmap_addr(addr);
2027 	return error ? error : addr;
2028 }
2029 
2030 EXPORT_SYMBOL(get_unmapped_area);
2031 
2032 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2033 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2034 {
2035 	struct rb_node *rb_node;
2036 	struct vm_area_struct *vma;
2037 
2038 	/* Check the cache first. */
2039 	vma = vmacache_find(mm, addr);
2040 	if (likely(vma))
2041 		return vma;
2042 
2043 	rb_node = mm->mm_rb.rb_node;
2044 	vma = NULL;
2045 
2046 	while (rb_node) {
2047 		struct vm_area_struct *tmp;
2048 
2049 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2050 
2051 		if (tmp->vm_end > addr) {
2052 			vma = tmp;
2053 			if (tmp->vm_start <= addr)
2054 				break;
2055 			rb_node = rb_node->rb_left;
2056 		} else
2057 			rb_node = rb_node->rb_right;
2058 	}
2059 
2060 	if (vma)
2061 		vmacache_update(addr, vma);
2062 	return vma;
2063 }
2064 
2065 EXPORT_SYMBOL(find_vma);
2066 
2067 /*
2068  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2069  */
2070 struct vm_area_struct *
2071 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2072 			struct vm_area_struct **pprev)
2073 {
2074 	struct vm_area_struct *vma;
2075 
2076 	vma = find_vma(mm, addr);
2077 	if (vma) {
2078 		*pprev = vma->vm_prev;
2079 	} else {
2080 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2081 		*pprev = NULL;
2082 		while (rb_node) {
2083 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2084 			rb_node = rb_node->rb_right;
2085 		}
2086 	}
2087 	return vma;
2088 }
2089 
2090 /*
2091  * Verify that the stack growth is acceptable and
2092  * update accounting. This is shared with both the
2093  * grow-up and grow-down cases.
2094  */
2095 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2096 {
2097 	struct mm_struct *mm = vma->vm_mm;
2098 	struct rlimit *rlim = current->signal->rlim;
2099 	unsigned long new_start;
2100 
2101 	/* address space limit tests */
2102 	if (!may_expand_vm(mm, grow))
2103 		return -ENOMEM;
2104 
2105 	/* Stack limit test */
2106 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2107 		return -ENOMEM;
2108 
2109 	/* mlock limit tests */
2110 	if (vma->vm_flags & VM_LOCKED) {
2111 		unsigned long locked;
2112 		unsigned long limit;
2113 		locked = mm->locked_vm + grow;
2114 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2115 		limit >>= PAGE_SHIFT;
2116 		if (locked > limit && !capable(CAP_IPC_LOCK))
2117 			return -ENOMEM;
2118 	}
2119 
2120 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2121 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2122 			vma->vm_end - size;
2123 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2124 		return -EFAULT;
2125 
2126 	/*
2127 	 * Overcommit..  This must be the final test, as it will
2128 	 * update security statistics.
2129 	 */
2130 	if (security_vm_enough_memory_mm(mm, grow))
2131 		return -ENOMEM;
2132 
2133 	/* Ok, everything looks good - let it rip */
2134 	if (vma->vm_flags & VM_LOCKED)
2135 		mm->locked_vm += grow;
2136 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2137 	return 0;
2138 }
2139 
2140 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2141 /*
2142  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2143  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2144  */
2145 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2146 {
2147 	int error;
2148 
2149 	if (!(vma->vm_flags & VM_GROWSUP))
2150 		return -EFAULT;
2151 
2152 	/*
2153 	 * We must make sure the anon_vma is allocated
2154 	 * so that the anon_vma locking is not a noop.
2155 	 */
2156 	if (unlikely(anon_vma_prepare(vma)))
2157 		return -ENOMEM;
2158 	vma_lock_anon_vma(vma);
2159 
2160 	/*
2161 	 * vma->vm_start/vm_end cannot change under us because the caller
2162 	 * is required to hold the mmap_sem in read mode.  We need the
2163 	 * anon_vma lock to serialize against concurrent expand_stacks.
2164 	 * Also guard against wrapping around to address 0.
2165 	 */
2166 	if (address < PAGE_ALIGN(address+4))
2167 		address = PAGE_ALIGN(address+4);
2168 	else {
2169 		vma_unlock_anon_vma(vma);
2170 		return -ENOMEM;
2171 	}
2172 	error = 0;
2173 
2174 	/* Somebody else might have raced and expanded it already */
2175 	if (address > vma->vm_end) {
2176 		unsigned long size, grow;
2177 
2178 		size = address - vma->vm_start;
2179 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2180 
2181 		error = -ENOMEM;
2182 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2183 			error = acct_stack_growth(vma, size, grow);
2184 			if (!error) {
2185 				/*
2186 				 * vma_gap_update() doesn't support concurrent
2187 				 * updates, but we only hold a shared mmap_sem
2188 				 * lock here, so we need to protect against
2189 				 * concurrent vma expansions.
2190 				 * vma_lock_anon_vma() doesn't help here, as
2191 				 * we don't guarantee that all growable vmas
2192 				 * in a mm share the same root anon vma.
2193 				 * So, we reuse mm->page_table_lock to guard
2194 				 * against concurrent vma expansions.
2195 				 */
2196 				spin_lock(&vma->vm_mm->page_table_lock);
2197 				anon_vma_interval_tree_pre_update_vma(vma);
2198 				vma->vm_end = address;
2199 				anon_vma_interval_tree_post_update_vma(vma);
2200 				if (vma->vm_next)
2201 					vma_gap_update(vma->vm_next);
2202 				else
2203 					vma->vm_mm->highest_vm_end = address;
2204 				spin_unlock(&vma->vm_mm->page_table_lock);
2205 
2206 				perf_event_mmap(vma);
2207 			}
2208 		}
2209 	}
2210 	vma_unlock_anon_vma(vma);
2211 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2212 	validate_mm(vma->vm_mm);
2213 	return error;
2214 }
2215 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2216 
2217 /*
2218  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2219  */
2220 int expand_downwards(struct vm_area_struct *vma,
2221 				   unsigned long address)
2222 {
2223 	int error;
2224 
2225 	/*
2226 	 * We must make sure the anon_vma is allocated
2227 	 * so that the anon_vma locking is not a noop.
2228 	 */
2229 	if (unlikely(anon_vma_prepare(vma)))
2230 		return -ENOMEM;
2231 
2232 	address &= PAGE_MASK;
2233 	error = security_mmap_addr(address);
2234 	if (error)
2235 		return error;
2236 
2237 	vma_lock_anon_vma(vma);
2238 
2239 	/*
2240 	 * vma->vm_start/vm_end cannot change under us because the caller
2241 	 * is required to hold the mmap_sem in read mode.  We need the
2242 	 * anon_vma lock to serialize against concurrent expand_stacks.
2243 	 */
2244 
2245 	/* Somebody else might have raced and expanded it already */
2246 	if (address < vma->vm_start) {
2247 		unsigned long size, grow;
2248 
2249 		size = vma->vm_end - address;
2250 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2251 
2252 		error = -ENOMEM;
2253 		if (grow <= vma->vm_pgoff) {
2254 			error = acct_stack_growth(vma, size, grow);
2255 			if (!error) {
2256 				/*
2257 				 * vma_gap_update() doesn't support concurrent
2258 				 * updates, but we only hold a shared mmap_sem
2259 				 * lock here, so we need to protect against
2260 				 * concurrent vma expansions.
2261 				 * vma_lock_anon_vma() doesn't help here, as
2262 				 * we don't guarantee that all growable vmas
2263 				 * in a mm share the same root anon vma.
2264 				 * So, we reuse mm->page_table_lock to guard
2265 				 * against concurrent vma expansions.
2266 				 */
2267 				spin_lock(&vma->vm_mm->page_table_lock);
2268 				anon_vma_interval_tree_pre_update_vma(vma);
2269 				vma->vm_start = address;
2270 				vma->vm_pgoff -= grow;
2271 				anon_vma_interval_tree_post_update_vma(vma);
2272 				vma_gap_update(vma);
2273 				spin_unlock(&vma->vm_mm->page_table_lock);
2274 
2275 				perf_event_mmap(vma);
2276 			}
2277 		}
2278 	}
2279 	vma_unlock_anon_vma(vma);
2280 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2281 	validate_mm(vma->vm_mm);
2282 	return error;
2283 }
2284 
2285 /*
2286  * Note how expand_stack() refuses to expand the stack all the way to
2287  * abut the next virtual mapping, *unless* that mapping itself is also
2288  * a stack mapping. We want to leave room for a guard page, after all
2289  * (the guard page itself is not added here, that is done by the
2290  * actual page faulting logic)
2291  *
2292  * This matches the behavior of the guard page logic (see mm/memory.c:
2293  * check_stack_guard_page()), which only allows the guard page to be
2294  * removed under these circumstances.
2295  */
2296 #ifdef CONFIG_STACK_GROWSUP
2297 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2298 {
2299 	struct vm_area_struct *next;
2300 
2301 	address &= PAGE_MASK;
2302 	next = vma->vm_next;
2303 	if (next && next->vm_start == address + PAGE_SIZE) {
2304 		if (!(next->vm_flags & VM_GROWSUP))
2305 			return -ENOMEM;
2306 	}
2307 	return expand_upwards(vma, address);
2308 }
2309 
2310 struct vm_area_struct *
2311 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2312 {
2313 	struct vm_area_struct *vma, *prev;
2314 
2315 	addr &= PAGE_MASK;
2316 	vma = find_vma_prev(mm, addr, &prev);
2317 	if (vma && (vma->vm_start <= addr))
2318 		return vma;
2319 	if (!prev || expand_stack(prev, addr))
2320 		return NULL;
2321 	if (prev->vm_flags & VM_LOCKED)
2322 		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2323 	return prev;
2324 }
2325 #else
2326 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2327 {
2328 	struct vm_area_struct *prev;
2329 
2330 	address &= PAGE_MASK;
2331 	prev = vma->vm_prev;
2332 	if (prev && prev->vm_end == address) {
2333 		if (!(prev->vm_flags & VM_GROWSDOWN))
2334 			return -ENOMEM;
2335 	}
2336 	return expand_downwards(vma, address);
2337 }
2338 
2339 struct vm_area_struct *
2340 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2341 {
2342 	struct vm_area_struct *vma;
2343 	unsigned long start;
2344 
2345 	addr &= PAGE_MASK;
2346 	vma = find_vma(mm, addr);
2347 	if (!vma)
2348 		return NULL;
2349 	if (vma->vm_start <= addr)
2350 		return vma;
2351 	if (!(vma->vm_flags & VM_GROWSDOWN))
2352 		return NULL;
2353 	start = vma->vm_start;
2354 	if (expand_stack(vma, addr))
2355 		return NULL;
2356 	if (vma->vm_flags & VM_LOCKED)
2357 		__mlock_vma_pages_range(vma, addr, start, NULL);
2358 	return vma;
2359 }
2360 #endif
2361 
2362 /*
2363  * Ok - we have the memory areas we should free on the vma list,
2364  * so release them, and do the vma updates.
2365  *
2366  * Called with the mm semaphore held.
2367  */
2368 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2369 {
2370 	unsigned long nr_accounted = 0;
2371 
2372 	/* Update high watermark before we lower total_vm */
2373 	update_hiwater_vm(mm);
2374 	do {
2375 		long nrpages = vma_pages(vma);
2376 
2377 		if (vma->vm_flags & VM_ACCOUNT)
2378 			nr_accounted += nrpages;
2379 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2380 		vma = remove_vma(vma);
2381 	} while (vma);
2382 	vm_unacct_memory(nr_accounted);
2383 	validate_mm(mm);
2384 }
2385 
2386 /*
2387  * Get rid of page table information in the indicated region.
2388  *
2389  * Called with the mm semaphore held.
2390  */
2391 static void unmap_region(struct mm_struct *mm,
2392 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2393 		unsigned long start, unsigned long end)
2394 {
2395 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2396 	struct mmu_gather tlb;
2397 
2398 	lru_add_drain();
2399 	tlb_gather_mmu(&tlb, mm, start, end);
2400 	update_hiwater_rss(mm);
2401 	unmap_vmas(&tlb, vma, start, end);
2402 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2403 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2404 	tlb_finish_mmu(&tlb, start, end);
2405 }
2406 
2407 /*
2408  * Create a list of vma's touched by the unmap, removing them from the mm's
2409  * vma list as we go..
2410  */
2411 static void
2412 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2413 	struct vm_area_struct *prev, unsigned long end)
2414 {
2415 	struct vm_area_struct **insertion_point;
2416 	struct vm_area_struct *tail_vma = NULL;
2417 
2418 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2419 	vma->vm_prev = NULL;
2420 	do {
2421 		vma_rb_erase(vma, &mm->mm_rb);
2422 		mm->map_count--;
2423 		tail_vma = vma;
2424 		vma = vma->vm_next;
2425 	} while (vma && vma->vm_start < end);
2426 	*insertion_point = vma;
2427 	if (vma) {
2428 		vma->vm_prev = prev;
2429 		vma_gap_update(vma);
2430 	} else
2431 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2432 	tail_vma->vm_next = NULL;
2433 
2434 	/* Kill the cache */
2435 	vmacache_invalidate(mm);
2436 }
2437 
2438 /*
2439  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2440  * munmap path where it doesn't make sense to fail.
2441  */
2442 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2443 	      unsigned long addr, int new_below)
2444 {
2445 	struct vm_area_struct *new;
2446 	int err = -ENOMEM;
2447 
2448 	if (is_vm_hugetlb_page(vma) && (addr &
2449 					~(huge_page_mask(hstate_vma(vma)))))
2450 		return -EINVAL;
2451 
2452 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2453 	if (!new)
2454 		goto out_err;
2455 
2456 	/* most fields are the same, copy all, and then fixup */
2457 	*new = *vma;
2458 
2459 	INIT_LIST_HEAD(&new->anon_vma_chain);
2460 
2461 	if (new_below)
2462 		new->vm_end = addr;
2463 	else {
2464 		new->vm_start = addr;
2465 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2466 	}
2467 
2468 	err = vma_dup_policy(vma, new);
2469 	if (err)
2470 		goto out_free_vma;
2471 
2472 	if (anon_vma_clone(new, vma))
2473 		goto out_free_mpol;
2474 
2475 	if (new->vm_file)
2476 		get_file(new->vm_file);
2477 
2478 	if (new->vm_ops && new->vm_ops->open)
2479 		new->vm_ops->open(new);
2480 
2481 	if (new_below)
2482 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2483 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2484 	else
2485 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2486 
2487 	/* Success. */
2488 	if (!err)
2489 		return 0;
2490 
2491 	/* Clean everything up if vma_adjust failed. */
2492 	if (new->vm_ops && new->vm_ops->close)
2493 		new->vm_ops->close(new);
2494 	if (new->vm_file)
2495 		fput(new->vm_file);
2496 	unlink_anon_vmas(new);
2497  out_free_mpol:
2498 	mpol_put(vma_policy(new));
2499  out_free_vma:
2500 	kmem_cache_free(vm_area_cachep, new);
2501  out_err:
2502 	return err;
2503 }
2504 
2505 /*
2506  * Split a vma into two pieces at address 'addr', a new vma is allocated
2507  * either for the first part or the tail.
2508  */
2509 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2510 	      unsigned long addr, int new_below)
2511 {
2512 	if (mm->map_count >= sysctl_max_map_count)
2513 		return -ENOMEM;
2514 
2515 	return __split_vma(mm, vma, addr, new_below);
2516 }
2517 
2518 /* Munmap is split into 2 main parts -- this part which finds
2519  * what needs doing, and the areas themselves, which do the
2520  * work.  This now handles partial unmappings.
2521  * Jeremy Fitzhardinge <jeremy@goop.org>
2522  */
2523 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2524 {
2525 	unsigned long end;
2526 	struct vm_area_struct *vma, *prev, *last;
2527 
2528 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2529 		return -EINVAL;
2530 
2531 	len = PAGE_ALIGN(len);
2532 	if (len == 0)
2533 		return -EINVAL;
2534 
2535 	/* Find the first overlapping VMA */
2536 	vma = find_vma(mm, start);
2537 	if (!vma)
2538 		return 0;
2539 	prev = vma->vm_prev;
2540 	/* we have  start < vma->vm_end  */
2541 
2542 	/* if it doesn't overlap, we have nothing.. */
2543 	end = start + len;
2544 	if (vma->vm_start >= end)
2545 		return 0;
2546 
2547 	/*
2548 	 * If we need to split any vma, do it now to save pain later.
2549 	 *
2550 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2551 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2552 	 * places tmp vma above, and higher split_vma places tmp vma below.
2553 	 */
2554 	if (start > vma->vm_start) {
2555 		int error;
2556 
2557 		/*
2558 		 * Make sure that map_count on return from munmap() will
2559 		 * not exceed its limit; but let map_count go just above
2560 		 * its limit temporarily, to help free resources as expected.
2561 		 */
2562 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2563 			return -ENOMEM;
2564 
2565 		error = __split_vma(mm, vma, start, 0);
2566 		if (error)
2567 			return error;
2568 		prev = vma;
2569 	}
2570 
2571 	/* Does it split the last one? */
2572 	last = find_vma(mm, end);
2573 	if (last && end > last->vm_start) {
2574 		int error = __split_vma(mm, last, end, 1);
2575 		if (error)
2576 			return error;
2577 	}
2578 	vma = prev ? prev->vm_next : mm->mmap;
2579 
2580 	/*
2581 	 * unlock any mlock()ed ranges before detaching vmas
2582 	 */
2583 	if (mm->locked_vm) {
2584 		struct vm_area_struct *tmp = vma;
2585 		while (tmp && tmp->vm_start < end) {
2586 			if (tmp->vm_flags & VM_LOCKED) {
2587 				mm->locked_vm -= vma_pages(tmp);
2588 				munlock_vma_pages_all(tmp);
2589 			}
2590 			tmp = tmp->vm_next;
2591 		}
2592 	}
2593 
2594 	/*
2595 	 * Remove the vma's, and unmap the actual pages
2596 	 */
2597 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2598 	unmap_region(mm, vma, prev, start, end);
2599 
2600 	/* Fix up all other VM information */
2601 	remove_vma_list(mm, vma);
2602 
2603 	return 0;
2604 }
2605 
2606 int vm_munmap(unsigned long start, size_t len)
2607 {
2608 	int ret;
2609 	struct mm_struct *mm = current->mm;
2610 
2611 	down_write(&mm->mmap_sem);
2612 	ret = do_munmap(mm, start, len);
2613 	up_write(&mm->mmap_sem);
2614 	return ret;
2615 }
2616 EXPORT_SYMBOL(vm_munmap);
2617 
2618 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2619 {
2620 	profile_munmap(addr);
2621 	return vm_munmap(addr, len);
2622 }
2623 
2624 static inline void verify_mm_writelocked(struct mm_struct *mm)
2625 {
2626 #ifdef CONFIG_DEBUG_VM
2627 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2628 		WARN_ON(1);
2629 		up_read(&mm->mmap_sem);
2630 	}
2631 #endif
2632 }
2633 
2634 /*
2635  *  this is really a simplified "do_mmap".  it only handles
2636  *  anonymous maps.  eventually we may be able to do some
2637  *  brk-specific accounting here.
2638  */
2639 static unsigned long do_brk(unsigned long addr, unsigned long len)
2640 {
2641 	struct mm_struct *mm = current->mm;
2642 	struct vm_area_struct *vma, *prev;
2643 	unsigned long flags;
2644 	struct rb_node **rb_link, *rb_parent;
2645 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2646 	int error;
2647 
2648 	len = PAGE_ALIGN(len);
2649 	if (!len)
2650 		return addr;
2651 
2652 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2653 
2654 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2655 	if (error & ~PAGE_MASK)
2656 		return error;
2657 
2658 	error = mlock_future_check(mm, mm->def_flags, len);
2659 	if (error)
2660 		return error;
2661 
2662 	/*
2663 	 * mm->mmap_sem is required to protect against another thread
2664 	 * changing the mappings in case we sleep.
2665 	 */
2666 	verify_mm_writelocked(mm);
2667 
2668 	/*
2669 	 * Clear old maps.  this also does some error checking for us
2670 	 */
2671  munmap_back:
2672 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2673 		if (do_munmap(mm, addr, len))
2674 			return -ENOMEM;
2675 		goto munmap_back;
2676 	}
2677 
2678 	/* Check against address space limits *after* clearing old maps... */
2679 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2680 		return -ENOMEM;
2681 
2682 	if (mm->map_count > sysctl_max_map_count)
2683 		return -ENOMEM;
2684 
2685 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2686 		return -ENOMEM;
2687 
2688 	/* Can we just expand an old private anonymous mapping? */
2689 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2690 					NULL, NULL, pgoff, NULL);
2691 	if (vma)
2692 		goto out;
2693 
2694 	/*
2695 	 * create a vma struct for an anonymous mapping
2696 	 */
2697 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2698 	if (!vma) {
2699 		vm_unacct_memory(len >> PAGE_SHIFT);
2700 		return -ENOMEM;
2701 	}
2702 
2703 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2704 	vma->vm_mm = mm;
2705 	vma->vm_start = addr;
2706 	vma->vm_end = addr + len;
2707 	vma->vm_pgoff = pgoff;
2708 	vma->vm_flags = flags;
2709 	vma->vm_page_prot = vm_get_page_prot(flags);
2710 	vma_link(mm, vma, prev, rb_link, rb_parent);
2711 out:
2712 	perf_event_mmap(vma);
2713 	mm->total_vm += len >> PAGE_SHIFT;
2714 	if (flags & VM_LOCKED)
2715 		mm->locked_vm += (len >> PAGE_SHIFT);
2716 	vma->vm_flags |= VM_SOFTDIRTY;
2717 	return addr;
2718 }
2719 
2720 unsigned long vm_brk(unsigned long addr, unsigned long len)
2721 {
2722 	struct mm_struct *mm = current->mm;
2723 	unsigned long ret;
2724 	bool populate;
2725 
2726 	down_write(&mm->mmap_sem);
2727 	ret = do_brk(addr, len);
2728 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2729 	up_write(&mm->mmap_sem);
2730 	if (populate)
2731 		mm_populate(addr, len);
2732 	return ret;
2733 }
2734 EXPORT_SYMBOL(vm_brk);
2735 
2736 /* Release all mmaps. */
2737 void exit_mmap(struct mm_struct *mm)
2738 {
2739 	struct mmu_gather tlb;
2740 	struct vm_area_struct *vma;
2741 	unsigned long nr_accounted = 0;
2742 
2743 	/* mm's last user has gone, and its about to be pulled down */
2744 	mmu_notifier_release(mm);
2745 
2746 	if (mm->locked_vm) {
2747 		vma = mm->mmap;
2748 		while (vma) {
2749 			if (vma->vm_flags & VM_LOCKED)
2750 				munlock_vma_pages_all(vma);
2751 			vma = vma->vm_next;
2752 		}
2753 	}
2754 
2755 	arch_exit_mmap(mm);
2756 
2757 	vma = mm->mmap;
2758 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2759 		return;
2760 
2761 	lru_add_drain();
2762 	flush_cache_mm(mm);
2763 	tlb_gather_mmu(&tlb, mm, 0, -1);
2764 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2765 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2766 	unmap_vmas(&tlb, vma, 0, -1);
2767 
2768 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2769 	tlb_finish_mmu(&tlb, 0, -1);
2770 
2771 	/*
2772 	 * Walk the list again, actually closing and freeing it,
2773 	 * with preemption enabled, without holding any MM locks.
2774 	 */
2775 	while (vma) {
2776 		if (vma->vm_flags & VM_ACCOUNT)
2777 			nr_accounted += vma_pages(vma);
2778 		vma = remove_vma(vma);
2779 	}
2780 	vm_unacct_memory(nr_accounted);
2781 
2782 	WARN_ON(atomic_long_read(&mm->nr_ptes) >
2783 			(FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2784 }
2785 
2786 /* Insert vm structure into process list sorted by address
2787  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2788  * then i_mmap_mutex is taken here.
2789  */
2790 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2791 {
2792 	struct vm_area_struct *prev;
2793 	struct rb_node **rb_link, *rb_parent;
2794 
2795 	/*
2796 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2797 	 * until its first write fault, when page's anon_vma and index
2798 	 * are set.  But now set the vm_pgoff it will almost certainly
2799 	 * end up with (unless mremap moves it elsewhere before that
2800 	 * first wfault), so /proc/pid/maps tells a consistent story.
2801 	 *
2802 	 * By setting it to reflect the virtual start address of the
2803 	 * vma, merges and splits can happen in a seamless way, just
2804 	 * using the existing file pgoff checks and manipulations.
2805 	 * Similarly in do_mmap_pgoff and in do_brk.
2806 	 */
2807 	if (!vma->vm_file) {
2808 		BUG_ON(vma->anon_vma);
2809 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2810 	}
2811 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2812 			   &prev, &rb_link, &rb_parent))
2813 		return -ENOMEM;
2814 	if ((vma->vm_flags & VM_ACCOUNT) &&
2815 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2816 		return -ENOMEM;
2817 
2818 	vma_link(mm, vma, prev, rb_link, rb_parent);
2819 	return 0;
2820 }
2821 
2822 /*
2823  * Copy the vma structure to a new location in the same mm,
2824  * prior to moving page table entries, to effect an mremap move.
2825  */
2826 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2827 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2828 	bool *need_rmap_locks)
2829 {
2830 	struct vm_area_struct *vma = *vmap;
2831 	unsigned long vma_start = vma->vm_start;
2832 	struct mm_struct *mm = vma->vm_mm;
2833 	struct vm_area_struct *new_vma, *prev;
2834 	struct rb_node **rb_link, *rb_parent;
2835 	bool faulted_in_anon_vma = true;
2836 
2837 	/*
2838 	 * If anonymous vma has not yet been faulted, update new pgoff
2839 	 * to match new location, to increase its chance of merging.
2840 	 */
2841 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2842 		pgoff = addr >> PAGE_SHIFT;
2843 		faulted_in_anon_vma = false;
2844 	}
2845 
2846 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2847 		return NULL;	/* should never get here */
2848 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2849 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2850 	if (new_vma) {
2851 		/*
2852 		 * Source vma may have been merged into new_vma
2853 		 */
2854 		if (unlikely(vma_start >= new_vma->vm_start &&
2855 			     vma_start < new_vma->vm_end)) {
2856 			/*
2857 			 * The only way we can get a vma_merge with
2858 			 * self during an mremap is if the vma hasn't
2859 			 * been faulted in yet and we were allowed to
2860 			 * reset the dst vma->vm_pgoff to the
2861 			 * destination address of the mremap to allow
2862 			 * the merge to happen. mremap must change the
2863 			 * vm_pgoff linearity between src and dst vmas
2864 			 * (in turn preventing a vma_merge) to be
2865 			 * safe. It is only safe to keep the vm_pgoff
2866 			 * linear if there are no pages mapped yet.
2867 			 */
2868 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2869 			*vmap = vma = new_vma;
2870 		}
2871 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2872 	} else {
2873 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2874 		if (new_vma) {
2875 			*new_vma = *vma;
2876 			new_vma->vm_start = addr;
2877 			new_vma->vm_end = addr + len;
2878 			new_vma->vm_pgoff = pgoff;
2879 			if (vma_dup_policy(vma, new_vma))
2880 				goto out_free_vma;
2881 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2882 			if (anon_vma_clone(new_vma, vma))
2883 				goto out_free_mempol;
2884 			if (new_vma->vm_file)
2885 				get_file(new_vma->vm_file);
2886 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2887 				new_vma->vm_ops->open(new_vma);
2888 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2889 			*need_rmap_locks = false;
2890 		}
2891 	}
2892 	return new_vma;
2893 
2894  out_free_mempol:
2895 	mpol_put(vma_policy(new_vma));
2896  out_free_vma:
2897 	kmem_cache_free(vm_area_cachep, new_vma);
2898 	return NULL;
2899 }
2900 
2901 /*
2902  * Return true if the calling process may expand its vm space by the passed
2903  * number of pages
2904  */
2905 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2906 {
2907 	unsigned long cur = mm->total_vm;	/* pages */
2908 	unsigned long lim;
2909 
2910 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2911 
2912 	if (cur + npages > lim)
2913 		return 0;
2914 	return 1;
2915 }
2916 
2917 static int special_mapping_fault(struct vm_area_struct *vma,
2918 				 struct vm_fault *vmf);
2919 
2920 /*
2921  * Having a close hook prevents vma merging regardless of flags.
2922  */
2923 static void special_mapping_close(struct vm_area_struct *vma)
2924 {
2925 }
2926 
2927 static const char *special_mapping_name(struct vm_area_struct *vma)
2928 {
2929 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2930 }
2931 
2932 static const struct vm_operations_struct special_mapping_vmops = {
2933 	.close = special_mapping_close,
2934 	.fault = special_mapping_fault,
2935 	.name = special_mapping_name,
2936 };
2937 
2938 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2939 	.close = special_mapping_close,
2940 	.fault = special_mapping_fault,
2941 };
2942 
2943 static int special_mapping_fault(struct vm_area_struct *vma,
2944 				struct vm_fault *vmf)
2945 {
2946 	pgoff_t pgoff;
2947 	struct page **pages;
2948 
2949 	/*
2950 	 * special mappings have no vm_file, and in that case, the mm
2951 	 * uses vm_pgoff internally. So we have to subtract it from here.
2952 	 * We are allowed to do this because we are the mm; do not copy
2953 	 * this code into drivers!
2954 	 */
2955 	pgoff = vmf->pgoff - vma->vm_pgoff;
2956 
2957 	if (vma->vm_ops == &legacy_special_mapping_vmops)
2958 		pages = vma->vm_private_data;
2959 	else
2960 		pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2961 			pages;
2962 
2963 	for (; pgoff && *pages; ++pages)
2964 		pgoff--;
2965 
2966 	if (*pages) {
2967 		struct page *page = *pages;
2968 		get_page(page);
2969 		vmf->page = page;
2970 		return 0;
2971 	}
2972 
2973 	return VM_FAULT_SIGBUS;
2974 }
2975 
2976 static struct vm_area_struct *__install_special_mapping(
2977 	struct mm_struct *mm,
2978 	unsigned long addr, unsigned long len,
2979 	unsigned long vm_flags, const struct vm_operations_struct *ops,
2980 	void *priv)
2981 {
2982 	int ret;
2983 	struct vm_area_struct *vma;
2984 
2985 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2986 	if (unlikely(vma == NULL))
2987 		return ERR_PTR(-ENOMEM);
2988 
2989 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2990 	vma->vm_mm = mm;
2991 	vma->vm_start = addr;
2992 	vma->vm_end = addr + len;
2993 
2994 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2995 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2996 
2997 	vma->vm_ops = ops;
2998 	vma->vm_private_data = priv;
2999 
3000 	ret = insert_vm_struct(mm, vma);
3001 	if (ret)
3002 		goto out;
3003 
3004 	mm->total_vm += len >> PAGE_SHIFT;
3005 
3006 	perf_event_mmap(vma);
3007 
3008 	return vma;
3009 
3010 out:
3011 	kmem_cache_free(vm_area_cachep, vma);
3012 	return ERR_PTR(ret);
3013 }
3014 
3015 /*
3016  * Called with mm->mmap_sem held for writing.
3017  * Insert a new vma covering the given region, with the given flags.
3018  * Its pages are supplied by the given array of struct page *.
3019  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3020  * The region past the last page supplied will always produce SIGBUS.
3021  * The array pointer and the pages it points to are assumed to stay alive
3022  * for as long as this mapping might exist.
3023  */
3024 struct vm_area_struct *_install_special_mapping(
3025 	struct mm_struct *mm,
3026 	unsigned long addr, unsigned long len,
3027 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3028 {
3029 	return __install_special_mapping(mm, addr, len, vm_flags,
3030 					 &special_mapping_vmops, (void *)spec);
3031 }
3032 
3033 int install_special_mapping(struct mm_struct *mm,
3034 			    unsigned long addr, unsigned long len,
3035 			    unsigned long vm_flags, struct page **pages)
3036 {
3037 	struct vm_area_struct *vma = __install_special_mapping(
3038 		mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3039 		(void *)pages);
3040 
3041 	return PTR_ERR_OR_ZERO(vma);
3042 }
3043 
3044 static DEFINE_MUTEX(mm_all_locks_mutex);
3045 
3046 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3047 {
3048 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3049 		/*
3050 		 * The LSB of head.next can't change from under us
3051 		 * because we hold the mm_all_locks_mutex.
3052 		 */
3053 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3054 		/*
3055 		 * We can safely modify head.next after taking the
3056 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3057 		 * the same anon_vma we won't take it again.
3058 		 *
3059 		 * No need of atomic instructions here, head.next
3060 		 * can't change from under us thanks to the
3061 		 * anon_vma->root->rwsem.
3062 		 */
3063 		if (__test_and_set_bit(0, (unsigned long *)
3064 				       &anon_vma->root->rb_root.rb_node))
3065 			BUG();
3066 	}
3067 }
3068 
3069 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3070 {
3071 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3072 		/*
3073 		 * AS_MM_ALL_LOCKS can't change from under us because
3074 		 * we hold the mm_all_locks_mutex.
3075 		 *
3076 		 * Operations on ->flags have to be atomic because
3077 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3078 		 * mm_all_locks_mutex, there may be other cpus
3079 		 * changing other bitflags in parallel to us.
3080 		 */
3081 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3082 			BUG();
3083 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3084 	}
3085 }
3086 
3087 /*
3088  * This operation locks against the VM for all pte/vma/mm related
3089  * operations that could ever happen on a certain mm. This includes
3090  * vmtruncate, try_to_unmap, and all page faults.
3091  *
3092  * The caller must take the mmap_sem in write mode before calling
3093  * mm_take_all_locks(). The caller isn't allowed to release the
3094  * mmap_sem until mm_drop_all_locks() returns.
3095  *
3096  * mmap_sem in write mode is required in order to block all operations
3097  * that could modify pagetables and free pages without need of
3098  * altering the vma layout (for example populate_range() with
3099  * nonlinear vmas). It's also needed in write mode to avoid new
3100  * anon_vmas to be associated with existing vmas.
3101  *
3102  * A single task can't take more than one mm_take_all_locks() in a row
3103  * or it would deadlock.
3104  *
3105  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3106  * mapping->flags avoid to take the same lock twice, if more than one
3107  * vma in this mm is backed by the same anon_vma or address_space.
3108  *
3109  * We can take all the locks in random order because the VM code
3110  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3111  * takes more than one of them in a row. Secondly we're protected
3112  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3113  *
3114  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3115  * that may have to take thousand of locks.
3116  *
3117  * mm_take_all_locks() can fail if it's interrupted by signals.
3118  */
3119 int mm_take_all_locks(struct mm_struct *mm)
3120 {
3121 	struct vm_area_struct *vma;
3122 	struct anon_vma_chain *avc;
3123 
3124 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3125 
3126 	mutex_lock(&mm_all_locks_mutex);
3127 
3128 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3129 		if (signal_pending(current))
3130 			goto out_unlock;
3131 		if (vma->vm_file && vma->vm_file->f_mapping)
3132 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3133 	}
3134 
3135 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3136 		if (signal_pending(current))
3137 			goto out_unlock;
3138 		if (vma->anon_vma)
3139 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3140 				vm_lock_anon_vma(mm, avc->anon_vma);
3141 	}
3142 
3143 	return 0;
3144 
3145 out_unlock:
3146 	mm_drop_all_locks(mm);
3147 	return -EINTR;
3148 }
3149 
3150 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3151 {
3152 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3153 		/*
3154 		 * The LSB of head.next can't change to 0 from under
3155 		 * us because we hold the mm_all_locks_mutex.
3156 		 *
3157 		 * We must however clear the bitflag before unlocking
3158 		 * the vma so the users using the anon_vma->rb_root will
3159 		 * never see our bitflag.
3160 		 *
3161 		 * No need of atomic instructions here, head.next
3162 		 * can't change from under us until we release the
3163 		 * anon_vma->root->rwsem.
3164 		 */
3165 		if (!__test_and_clear_bit(0, (unsigned long *)
3166 					  &anon_vma->root->rb_root.rb_node))
3167 			BUG();
3168 		anon_vma_unlock_write(anon_vma);
3169 	}
3170 }
3171 
3172 static void vm_unlock_mapping(struct address_space *mapping)
3173 {
3174 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3175 		/*
3176 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3177 		 * because we hold the mm_all_locks_mutex.
3178 		 */
3179 		mutex_unlock(&mapping->i_mmap_mutex);
3180 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3181 					&mapping->flags))
3182 			BUG();
3183 	}
3184 }
3185 
3186 /*
3187  * The mmap_sem cannot be released by the caller until
3188  * mm_drop_all_locks() returns.
3189  */
3190 void mm_drop_all_locks(struct mm_struct *mm)
3191 {
3192 	struct vm_area_struct *vma;
3193 	struct anon_vma_chain *avc;
3194 
3195 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3196 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3197 
3198 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3199 		if (vma->anon_vma)
3200 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3201 				vm_unlock_anon_vma(avc->anon_vma);
3202 		if (vma->vm_file && vma->vm_file->f_mapping)
3203 			vm_unlock_mapping(vma->vm_file->f_mapping);
3204 	}
3205 
3206 	mutex_unlock(&mm_all_locks_mutex);
3207 }
3208 
3209 /*
3210  * initialise the VMA slab
3211  */
3212 void __init mmap_init(void)
3213 {
3214 	int ret;
3215 
3216 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3217 	VM_BUG_ON(ret);
3218 }
3219 
3220 /*
3221  * Initialise sysctl_user_reserve_kbytes.
3222  *
3223  * This is intended to prevent a user from starting a single memory hogging
3224  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3225  * mode.
3226  *
3227  * The default value is min(3% of free memory, 128MB)
3228  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3229  */
3230 static int init_user_reserve(void)
3231 {
3232 	unsigned long free_kbytes;
3233 
3234 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3235 
3236 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3237 	return 0;
3238 }
3239 subsys_initcall(init_user_reserve);
3240 
3241 /*
3242  * Initialise sysctl_admin_reserve_kbytes.
3243  *
3244  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3245  * to log in and kill a memory hogging process.
3246  *
3247  * Systems with more than 256MB will reserve 8MB, enough to recover
3248  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3249  * only reserve 3% of free pages by default.
3250  */
3251 static int init_admin_reserve(void)
3252 {
3253 	unsigned long free_kbytes;
3254 
3255 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3256 
3257 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3258 	return 0;
3259 }
3260 subsys_initcall(init_admin_reserve);
3261 
3262 /*
3263  * Reinititalise user and admin reserves if memory is added or removed.
3264  *
3265  * The default user reserve max is 128MB, and the default max for the
3266  * admin reserve is 8MB. These are usually, but not always, enough to
3267  * enable recovery from a memory hogging process using login/sshd, a shell,
3268  * and tools like top. It may make sense to increase or even disable the
3269  * reserve depending on the existence of swap or variations in the recovery
3270  * tools. So, the admin may have changed them.
3271  *
3272  * If memory is added and the reserves have been eliminated or increased above
3273  * the default max, then we'll trust the admin.
3274  *
3275  * If memory is removed and there isn't enough free memory, then we
3276  * need to reset the reserves.
3277  *
3278  * Otherwise keep the reserve set by the admin.
3279  */
3280 static int reserve_mem_notifier(struct notifier_block *nb,
3281 			     unsigned long action, void *data)
3282 {
3283 	unsigned long tmp, free_kbytes;
3284 
3285 	switch (action) {
3286 	case MEM_ONLINE:
3287 		/* Default max is 128MB. Leave alone if modified by operator. */
3288 		tmp = sysctl_user_reserve_kbytes;
3289 		if (0 < tmp && tmp < (1UL << 17))
3290 			init_user_reserve();
3291 
3292 		/* Default max is 8MB.  Leave alone if modified by operator. */
3293 		tmp = sysctl_admin_reserve_kbytes;
3294 		if (0 < tmp && tmp < (1UL << 13))
3295 			init_admin_reserve();
3296 
3297 		break;
3298 	case MEM_OFFLINE:
3299 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3300 
3301 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3302 			init_user_reserve();
3303 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3304 				sysctl_user_reserve_kbytes);
3305 		}
3306 
3307 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3308 			init_admin_reserve();
3309 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3310 				sysctl_admin_reserve_kbytes);
3311 		}
3312 		break;
3313 	default:
3314 		break;
3315 	}
3316 	return NOTIFY_OK;
3317 }
3318 
3319 static struct notifier_block reserve_mem_nb = {
3320 	.notifier_call = reserve_mem_notifier,
3321 };
3322 
3323 static int __meminit init_reserve_notifier(void)
3324 {
3325 	if (register_hotmemory_notifier(&reserve_mem_nb))
3326 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3327 
3328 	return 0;
3329 }
3330 subsys_initcall(init_reserve_notifier);
3331