1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 unsigned long start, unsigned long end); 82 83 /* description of effects of mapping type and prot in current implementation. 84 * this is due to the limited x86 page protection hardware. The expected 85 * behavior is in parens: 86 * 87 * map_type prot 88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 90 * w: (no) no w: (no) no w: (yes) yes w: (no) no 91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 92 * 93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 94 * w: (no) no w: (no) no w: (copy) copy w: (no) no 95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 96 */ 97 pgprot_t protection_map[16] __ro_after_init = { 98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 100 }; 101 102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 104 { 105 return prot; 106 } 107 #endif 108 109 pgprot_t vm_get_page_prot(unsigned long vm_flags) 110 { 111 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 112 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 113 pgprot_val(arch_vm_get_page_prot(vm_flags))); 114 115 return arch_filter_pgprot(ret); 116 } 117 EXPORT_SYMBOL(vm_get_page_prot); 118 119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 120 { 121 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 122 } 123 124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 125 void vma_set_page_prot(struct vm_area_struct *vma) 126 { 127 unsigned long vm_flags = vma->vm_flags; 128 pgprot_t vm_page_prot; 129 130 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 131 if (vma_wants_writenotify(vma, vm_page_prot)) { 132 vm_flags &= ~VM_SHARED; 133 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 134 } 135 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 136 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 137 } 138 139 /* 140 * Requires inode->i_mapping->i_mmap_rwsem 141 */ 142 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 143 struct file *file, struct address_space *mapping) 144 { 145 if (vma->vm_flags & VM_DENYWRITE) 146 atomic_inc(&file_inode(file)->i_writecount); 147 if (vma->vm_flags & VM_SHARED) 148 mapping_unmap_writable(mapping); 149 150 flush_dcache_mmap_lock(mapping); 151 vma_interval_tree_remove(vma, &mapping->i_mmap); 152 flush_dcache_mmap_unlock(mapping); 153 } 154 155 /* 156 * Unlink a file-based vm structure from its interval tree, to hide 157 * vma from rmap and vmtruncate before freeing its page tables. 158 */ 159 void unlink_file_vma(struct vm_area_struct *vma) 160 { 161 struct file *file = vma->vm_file; 162 163 if (file) { 164 struct address_space *mapping = file->f_mapping; 165 i_mmap_lock_write(mapping); 166 __remove_shared_vm_struct(vma, file, mapping); 167 i_mmap_unlock_write(mapping); 168 } 169 } 170 171 /* 172 * Close a vm structure and free it, returning the next. 173 */ 174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 175 { 176 struct vm_area_struct *next = vma->vm_next; 177 178 might_sleep(); 179 if (vma->vm_ops && vma->vm_ops->close) 180 vma->vm_ops->close(vma); 181 if (vma->vm_file) 182 fput(vma->vm_file); 183 mpol_put(vma_policy(vma)); 184 vm_area_free(vma); 185 return next; 186 } 187 188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 189 struct list_head *uf); 190 SYSCALL_DEFINE1(brk, unsigned long, brk) 191 { 192 unsigned long retval; 193 unsigned long newbrk, oldbrk, origbrk; 194 struct mm_struct *mm = current->mm; 195 struct vm_area_struct *next; 196 unsigned long min_brk; 197 bool populate; 198 bool downgraded = false; 199 LIST_HEAD(uf); 200 201 if (mmap_write_lock_killable(mm)) 202 return -EINTR; 203 204 origbrk = mm->brk; 205 206 #ifdef CONFIG_COMPAT_BRK 207 /* 208 * CONFIG_COMPAT_BRK can still be overridden by setting 209 * randomize_va_space to 2, which will still cause mm->start_brk 210 * to be arbitrarily shifted 211 */ 212 if (current->brk_randomized) 213 min_brk = mm->start_brk; 214 else 215 min_brk = mm->end_data; 216 #else 217 min_brk = mm->start_brk; 218 #endif 219 if (brk < min_brk) 220 goto out; 221 222 /* 223 * Check against rlimit here. If this check is done later after the test 224 * of oldbrk with newbrk then it can escape the test and let the data 225 * segment grow beyond its set limit the in case where the limit is 226 * not page aligned -Ram Gupta 227 */ 228 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 229 mm->end_data, mm->start_data)) 230 goto out; 231 232 newbrk = PAGE_ALIGN(brk); 233 oldbrk = PAGE_ALIGN(mm->brk); 234 if (oldbrk == newbrk) { 235 mm->brk = brk; 236 goto success; 237 } 238 239 /* 240 * Always allow shrinking brk. 241 * __do_munmap() may downgrade mmap_lock to read. 242 */ 243 if (brk <= mm->brk) { 244 int ret; 245 246 /* 247 * mm->brk must to be protected by write mmap_lock so update it 248 * before downgrading mmap_lock. When __do_munmap() fails, 249 * mm->brk will be restored from origbrk. 250 */ 251 mm->brk = brk; 252 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 253 if (ret < 0) { 254 mm->brk = origbrk; 255 goto out; 256 } else if (ret == 1) { 257 downgraded = true; 258 } 259 goto success; 260 } 261 262 /* Check against existing mmap mappings. */ 263 next = find_vma(mm, oldbrk); 264 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 265 goto out; 266 267 /* Ok, looks good - let it rip. */ 268 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 269 goto out; 270 mm->brk = brk; 271 272 success: 273 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 274 if (downgraded) 275 mmap_read_unlock(mm); 276 else 277 mmap_write_unlock(mm); 278 userfaultfd_unmap_complete(mm, &uf); 279 if (populate) 280 mm_populate(oldbrk, newbrk - oldbrk); 281 return brk; 282 283 out: 284 retval = origbrk; 285 mmap_write_unlock(mm); 286 return retval; 287 } 288 289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 290 { 291 unsigned long gap, prev_end; 292 293 /* 294 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 295 * allow two stack_guard_gaps between them here, and when choosing 296 * an unmapped area; whereas when expanding we only require one. 297 * That's a little inconsistent, but keeps the code here simpler. 298 */ 299 gap = vm_start_gap(vma); 300 if (vma->vm_prev) { 301 prev_end = vm_end_gap(vma->vm_prev); 302 if (gap > prev_end) 303 gap -= prev_end; 304 else 305 gap = 0; 306 } 307 return gap; 308 } 309 310 #ifdef CONFIG_DEBUG_VM_RB 311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 312 { 313 unsigned long max = vma_compute_gap(vma), subtree_gap; 314 if (vma->vm_rb.rb_left) { 315 subtree_gap = rb_entry(vma->vm_rb.rb_left, 316 struct vm_area_struct, vm_rb)->rb_subtree_gap; 317 if (subtree_gap > max) 318 max = subtree_gap; 319 } 320 if (vma->vm_rb.rb_right) { 321 subtree_gap = rb_entry(vma->vm_rb.rb_right, 322 struct vm_area_struct, vm_rb)->rb_subtree_gap; 323 if (subtree_gap > max) 324 max = subtree_gap; 325 } 326 return max; 327 } 328 329 static int browse_rb(struct mm_struct *mm) 330 { 331 struct rb_root *root = &mm->mm_rb; 332 int i = 0, j, bug = 0; 333 struct rb_node *nd, *pn = NULL; 334 unsigned long prev = 0, pend = 0; 335 336 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 337 struct vm_area_struct *vma; 338 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 339 if (vma->vm_start < prev) { 340 pr_emerg("vm_start %lx < prev %lx\n", 341 vma->vm_start, prev); 342 bug = 1; 343 } 344 if (vma->vm_start < pend) { 345 pr_emerg("vm_start %lx < pend %lx\n", 346 vma->vm_start, pend); 347 bug = 1; 348 } 349 if (vma->vm_start > vma->vm_end) { 350 pr_emerg("vm_start %lx > vm_end %lx\n", 351 vma->vm_start, vma->vm_end); 352 bug = 1; 353 } 354 spin_lock(&mm->page_table_lock); 355 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 356 pr_emerg("free gap %lx, correct %lx\n", 357 vma->rb_subtree_gap, 358 vma_compute_subtree_gap(vma)); 359 bug = 1; 360 } 361 spin_unlock(&mm->page_table_lock); 362 i++; 363 pn = nd; 364 prev = vma->vm_start; 365 pend = vma->vm_end; 366 } 367 j = 0; 368 for (nd = pn; nd; nd = rb_prev(nd)) 369 j++; 370 if (i != j) { 371 pr_emerg("backwards %d, forwards %d\n", j, i); 372 bug = 1; 373 } 374 return bug ? -1 : i; 375 } 376 377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 378 { 379 struct rb_node *nd; 380 381 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 382 struct vm_area_struct *vma; 383 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 384 VM_BUG_ON_VMA(vma != ignore && 385 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 386 vma); 387 } 388 } 389 390 static void validate_mm(struct mm_struct *mm) 391 { 392 int bug = 0; 393 int i = 0; 394 unsigned long highest_address = 0; 395 struct vm_area_struct *vma = mm->mmap; 396 397 while (vma) { 398 struct anon_vma *anon_vma = vma->anon_vma; 399 struct anon_vma_chain *avc; 400 401 if (anon_vma) { 402 anon_vma_lock_read(anon_vma); 403 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 404 anon_vma_interval_tree_verify(avc); 405 anon_vma_unlock_read(anon_vma); 406 } 407 408 highest_address = vm_end_gap(vma); 409 vma = vma->vm_next; 410 i++; 411 } 412 if (i != mm->map_count) { 413 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 414 bug = 1; 415 } 416 if (highest_address != mm->highest_vm_end) { 417 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 418 mm->highest_vm_end, highest_address); 419 bug = 1; 420 } 421 i = browse_rb(mm); 422 if (i != mm->map_count) { 423 if (i != -1) 424 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 425 bug = 1; 426 } 427 VM_BUG_ON_MM(bug, mm); 428 } 429 #else 430 #define validate_mm_rb(root, ignore) do { } while (0) 431 #define validate_mm(mm) do { } while (0) 432 #endif 433 434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 435 struct vm_area_struct, vm_rb, 436 unsigned long, rb_subtree_gap, vma_compute_gap) 437 438 /* 439 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 440 * vma->vm_prev->vm_end values changed, without modifying the vma's position 441 * in the rbtree. 442 */ 443 static void vma_gap_update(struct vm_area_struct *vma) 444 { 445 /* 446 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 447 * a callback function that does exactly what we want. 448 */ 449 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 450 } 451 452 static inline void vma_rb_insert(struct vm_area_struct *vma, 453 struct rb_root *root) 454 { 455 /* All rb_subtree_gap values must be consistent prior to insertion */ 456 validate_mm_rb(root, NULL); 457 458 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 459 } 460 461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 462 { 463 /* 464 * Note rb_erase_augmented is a fairly large inline function, 465 * so make sure we instantiate it only once with our desired 466 * augmented rbtree callbacks. 467 */ 468 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 469 } 470 471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 472 struct rb_root *root, 473 struct vm_area_struct *ignore) 474 { 475 /* 476 * All rb_subtree_gap values must be consistent prior to erase, 477 * with the possible exception of the "next" vma being erased if 478 * next->vm_start was reduced. 479 */ 480 validate_mm_rb(root, ignore); 481 482 __vma_rb_erase(vma, root); 483 } 484 485 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 486 struct rb_root *root) 487 { 488 /* 489 * All rb_subtree_gap values must be consistent prior to erase, 490 * with the possible exception of the vma being erased. 491 */ 492 validate_mm_rb(root, vma); 493 494 __vma_rb_erase(vma, root); 495 } 496 497 /* 498 * vma has some anon_vma assigned, and is already inserted on that 499 * anon_vma's interval trees. 500 * 501 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 502 * vma must be removed from the anon_vma's interval trees using 503 * anon_vma_interval_tree_pre_update_vma(). 504 * 505 * After the update, the vma will be reinserted using 506 * anon_vma_interval_tree_post_update_vma(). 507 * 508 * The entire update must be protected by exclusive mmap_lock and by 509 * the root anon_vma's mutex. 510 */ 511 static inline void 512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 513 { 514 struct anon_vma_chain *avc; 515 516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 517 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 518 } 519 520 static inline void 521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 522 { 523 struct anon_vma_chain *avc; 524 525 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 526 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 527 } 528 529 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 530 unsigned long end, struct vm_area_struct **pprev, 531 struct rb_node ***rb_link, struct rb_node **rb_parent) 532 { 533 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 534 535 __rb_link = &mm->mm_rb.rb_node; 536 rb_prev = __rb_parent = NULL; 537 538 while (*__rb_link) { 539 struct vm_area_struct *vma_tmp; 540 541 __rb_parent = *__rb_link; 542 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 543 544 if (vma_tmp->vm_end > addr) { 545 /* Fail if an existing vma overlaps the area */ 546 if (vma_tmp->vm_start < end) 547 return -ENOMEM; 548 __rb_link = &__rb_parent->rb_left; 549 } else { 550 rb_prev = __rb_parent; 551 __rb_link = &__rb_parent->rb_right; 552 } 553 } 554 555 *pprev = NULL; 556 if (rb_prev) 557 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 558 *rb_link = __rb_link; 559 *rb_parent = __rb_parent; 560 return 0; 561 } 562 563 static unsigned long count_vma_pages_range(struct mm_struct *mm, 564 unsigned long addr, unsigned long end) 565 { 566 unsigned long nr_pages = 0; 567 struct vm_area_struct *vma; 568 569 /* Find first overlaping mapping */ 570 vma = find_vma_intersection(mm, addr, end); 571 if (!vma) 572 return 0; 573 574 nr_pages = (min(end, vma->vm_end) - 575 max(addr, vma->vm_start)) >> PAGE_SHIFT; 576 577 /* Iterate over the rest of the overlaps */ 578 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 579 unsigned long overlap_len; 580 581 if (vma->vm_start > end) 582 break; 583 584 overlap_len = min(end, vma->vm_end) - vma->vm_start; 585 nr_pages += overlap_len >> PAGE_SHIFT; 586 } 587 588 return nr_pages; 589 } 590 591 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 592 struct rb_node **rb_link, struct rb_node *rb_parent) 593 { 594 /* Update tracking information for the gap following the new vma. */ 595 if (vma->vm_next) 596 vma_gap_update(vma->vm_next); 597 else 598 mm->highest_vm_end = vm_end_gap(vma); 599 600 /* 601 * vma->vm_prev wasn't known when we followed the rbtree to find the 602 * correct insertion point for that vma. As a result, we could not 603 * update the vma vm_rb parents rb_subtree_gap values on the way down. 604 * So, we first insert the vma with a zero rb_subtree_gap value 605 * (to be consistent with what we did on the way down), and then 606 * immediately update the gap to the correct value. Finally we 607 * rebalance the rbtree after all augmented values have been set. 608 */ 609 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 610 vma->rb_subtree_gap = 0; 611 vma_gap_update(vma); 612 vma_rb_insert(vma, &mm->mm_rb); 613 } 614 615 static void __vma_link_file(struct vm_area_struct *vma) 616 { 617 struct file *file; 618 619 file = vma->vm_file; 620 if (file) { 621 struct address_space *mapping = file->f_mapping; 622 623 if (vma->vm_flags & VM_DENYWRITE) 624 atomic_dec(&file_inode(file)->i_writecount); 625 if (vma->vm_flags & VM_SHARED) 626 atomic_inc(&mapping->i_mmap_writable); 627 628 flush_dcache_mmap_lock(mapping); 629 vma_interval_tree_insert(vma, &mapping->i_mmap); 630 flush_dcache_mmap_unlock(mapping); 631 } 632 } 633 634 static void 635 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 636 struct vm_area_struct *prev, struct rb_node **rb_link, 637 struct rb_node *rb_parent) 638 { 639 __vma_link_list(mm, vma, prev); 640 __vma_link_rb(mm, vma, rb_link, rb_parent); 641 } 642 643 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 644 struct vm_area_struct *prev, struct rb_node **rb_link, 645 struct rb_node *rb_parent) 646 { 647 struct address_space *mapping = NULL; 648 649 if (vma->vm_file) { 650 mapping = vma->vm_file->f_mapping; 651 i_mmap_lock_write(mapping); 652 } 653 654 __vma_link(mm, vma, prev, rb_link, rb_parent); 655 __vma_link_file(vma); 656 657 if (mapping) 658 i_mmap_unlock_write(mapping); 659 660 mm->map_count++; 661 validate_mm(mm); 662 } 663 664 /* 665 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 666 * mm's list and rbtree. It has already been inserted into the interval tree. 667 */ 668 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 669 { 670 struct vm_area_struct *prev; 671 struct rb_node **rb_link, *rb_parent; 672 673 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 674 &prev, &rb_link, &rb_parent)) 675 BUG(); 676 __vma_link(mm, vma, prev, rb_link, rb_parent); 677 mm->map_count++; 678 } 679 680 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 681 struct vm_area_struct *vma, 682 struct vm_area_struct *ignore) 683 { 684 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 685 __vma_unlink_list(mm, vma); 686 /* Kill the cache */ 687 vmacache_invalidate(mm); 688 } 689 690 /* 691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 692 * is already present in an i_mmap tree without adjusting the tree. 693 * The following helper function should be used when such adjustments 694 * are necessary. The "insert" vma (if any) is to be inserted 695 * before we drop the necessary locks. 696 */ 697 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 698 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 699 struct vm_area_struct *expand) 700 { 701 struct mm_struct *mm = vma->vm_mm; 702 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 703 struct address_space *mapping = NULL; 704 struct rb_root_cached *root = NULL; 705 struct anon_vma *anon_vma = NULL; 706 struct file *file = vma->vm_file; 707 bool start_changed = false, end_changed = false; 708 long adjust_next = 0; 709 int remove_next = 0; 710 711 if (next && !insert) { 712 struct vm_area_struct *exporter = NULL, *importer = NULL; 713 714 if (end >= next->vm_end) { 715 /* 716 * vma expands, overlapping all the next, and 717 * perhaps the one after too (mprotect case 6). 718 * The only other cases that gets here are 719 * case 1, case 7 and case 8. 720 */ 721 if (next == expand) { 722 /* 723 * The only case where we don't expand "vma" 724 * and we expand "next" instead is case 8. 725 */ 726 VM_WARN_ON(end != next->vm_end); 727 /* 728 * remove_next == 3 means we're 729 * removing "vma" and that to do so we 730 * swapped "vma" and "next". 731 */ 732 remove_next = 3; 733 VM_WARN_ON(file != next->vm_file); 734 swap(vma, next); 735 } else { 736 VM_WARN_ON(expand != vma); 737 /* 738 * case 1, 6, 7, remove_next == 2 is case 6, 739 * remove_next == 1 is case 1 or 7. 740 */ 741 remove_next = 1 + (end > next->vm_end); 742 VM_WARN_ON(remove_next == 2 && 743 end != next->vm_next->vm_end); 744 /* trim end to next, for case 6 first pass */ 745 end = next->vm_end; 746 } 747 748 exporter = next; 749 importer = vma; 750 751 /* 752 * If next doesn't have anon_vma, import from vma after 753 * next, if the vma overlaps with it. 754 */ 755 if (remove_next == 2 && !next->anon_vma) 756 exporter = next->vm_next; 757 758 } else if (end > next->vm_start) { 759 /* 760 * vma expands, overlapping part of the next: 761 * mprotect case 5 shifting the boundary up. 762 */ 763 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 764 exporter = next; 765 importer = vma; 766 VM_WARN_ON(expand != importer); 767 } else if (end < vma->vm_end) { 768 /* 769 * vma shrinks, and !insert tells it's not 770 * split_vma inserting another: so it must be 771 * mprotect case 4 shifting the boundary down. 772 */ 773 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 774 exporter = vma; 775 importer = next; 776 VM_WARN_ON(expand != importer); 777 } 778 779 /* 780 * Easily overlooked: when mprotect shifts the boundary, 781 * make sure the expanding vma has anon_vma set if the 782 * shrinking vma had, to cover any anon pages imported. 783 */ 784 if (exporter && exporter->anon_vma && !importer->anon_vma) { 785 int error; 786 787 importer->anon_vma = exporter->anon_vma; 788 error = anon_vma_clone(importer, exporter); 789 if (error) 790 return error; 791 } 792 } 793 again: 794 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 795 796 if (file) { 797 mapping = file->f_mapping; 798 root = &mapping->i_mmap; 799 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 800 801 if (adjust_next) 802 uprobe_munmap(next, next->vm_start, next->vm_end); 803 804 i_mmap_lock_write(mapping); 805 if (insert) { 806 /* 807 * Put into interval tree now, so instantiated pages 808 * are visible to arm/parisc __flush_dcache_page 809 * throughout; but we cannot insert into address 810 * space until vma start or end is updated. 811 */ 812 __vma_link_file(insert); 813 } 814 } 815 816 anon_vma = vma->anon_vma; 817 if (!anon_vma && adjust_next) 818 anon_vma = next->anon_vma; 819 if (anon_vma) { 820 VM_WARN_ON(adjust_next && next->anon_vma && 821 anon_vma != next->anon_vma); 822 anon_vma_lock_write(anon_vma); 823 anon_vma_interval_tree_pre_update_vma(vma); 824 if (adjust_next) 825 anon_vma_interval_tree_pre_update_vma(next); 826 } 827 828 if (root) { 829 flush_dcache_mmap_lock(mapping); 830 vma_interval_tree_remove(vma, root); 831 if (adjust_next) 832 vma_interval_tree_remove(next, root); 833 } 834 835 if (start != vma->vm_start) { 836 vma->vm_start = start; 837 start_changed = true; 838 } 839 if (end != vma->vm_end) { 840 vma->vm_end = end; 841 end_changed = true; 842 } 843 vma->vm_pgoff = pgoff; 844 if (adjust_next) { 845 next->vm_start += adjust_next << PAGE_SHIFT; 846 next->vm_pgoff += adjust_next; 847 } 848 849 if (root) { 850 if (adjust_next) 851 vma_interval_tree_insert(next, root); 852 vma_interval_tree_insert(vma, root); 853 flush_dcache_mmap_unlock(mapping); 854 } 855 856 if (remove_next) { 857 /* 858 * vma_merge has merged next into vma, and needs 859 * us to remove next before dropping the locks. 860 */ 861 if (remove_next != 3) 862 __vma_unlink_common(mm, next, next); 863 else 864 /* 865 * vma is not before next if they've been 866 * swapped. 867 * 868 * pre-swap() next->vm_start was reduced so 869 * tell validate_mm_rb to ignore pre-swap() 870 * "next" (which is stored in post-swap() 871 * "vma"). 872 */ 873 __vma_unlink_common(mm, next, vma); 874 if (file) 875 __remove_shared_vm_struct(next, file, mapping); 876 } else if (insert) { 877 /* 878 * split_vma has split insert from vma, and needs 879 * us to insert it before dropping the locks 880 * (it may either follow vma or precede it). 881 */ 882 __insert_vm_struct(mm, insert); 883 } else { 884 if (start_changed) 885 vma_gap_update(vma); 886 if (end_changed) { 887 if (!next) 888 mm->highest_vm_end = vm_end_gap(vma); 889 else if (!adjust_next) 890 vma_gap_update(next); 891 } 892 } 893 894 if (anon_vma) { 895 anon_vma_interval_tree_post_update_vma(vma); 896 if (adjust_next) 897 anon_vma_interval_tree_post_update_vma(next); 898 anon_vma_unlock_write(anon_vma); 899 } 900 if (mapping) 901 i_mmap_unlock_write(mapping); 902 903 if (root) { 904 uprobe_mmap(vma); 905 906 if (adjust_next) 907 uprobe_mmap(next); 908 } 909 910 if (remove_next) { 911 if (file) { 912 uprobe_munmap(next, next->vm_start, next->vm_end); 913 fput(file); 914 } 915 if (next->anon_vma) 916 anon_vma_merge(vma, next); 917 mm->map_count--; 918 mpol_put(vma_policy(next)); 919 vm_area_free(next); 920 /* 921 * In mprotect's case 6 (see comments on vma_merge), 922 * we must remove another next too. It would clutter 923 * up the code too much to do both in one go. 924 */ 925 if (remove_next != 3) { 926 /* 927 * If "next" was removed and vma->vm_end was 928 * expanded (up) over it, in turn 929 * "next->vm_prev->vm_end" changed and the 930 * "vma->vm_next" gap must be updated. 931 */ 932 next = vma->vm_next; 933 } else { 934 /* 935 * For the scope of the comment "next" and 936 * "vma" considered pre-swap(): if "vma" was 937 * removed, next->vm_start was expanded (down) 938 * over it and the "next" gap must be updated. 939 * Because of the swap() the post-swap() "vma" 940 * actually points to pre-swap() "next" 941 * (post-swap() "next" as opposed is now a 942 * dangling pointer). 943 */ 944 next = vma; 945 } 946 if (remove_next == 2) { 947 remove_next = 1; 948 end = next->vm_end; 949 goto again; 950 } 951 else if (next) 952 vma_gap_update(next); 953 else { 954 /* 955 * If remove_next == 2 we obviously can't 956 * reach this path. 957 * 958 * If remove_next == 3 we can't reach this 959 * path because pre-swap() next is always not 960 * NULL. pre-swap() "next" is not being 961 * removed and its next->vm_end is not altered 962 * (and furthermore "end" already matches 963 * next->vm_end in remove_next == 3). 964 * 965 * We reach this only in the remove_next == 1 966 * case if the "next" vma that was removed was 967 * the highest vma of the mm. However in such 968 * case next->vm_end == "end" and the extended 969 * "vma" has vma->vm_end == next->vm_end so 970 * mm->highest_vm_end doesn't need any update 971 * in remove_next == 1 case. 972 */ 973 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 974 } 975 } 976 if (insert && file) 977 uprobe_mmap(insert); 978 979 validate_mm(mm); 980 981 return 0; 982 } 983 984 /* 985 * If the vma has a ->close operation then the driver probably needs to release 986 * per-vma resources, so we don't attempt to merge those. 987 */ 988 static inline int is_mergeable_vma(struct vm_area_struct *vma, 989 struct file *file, unsigned long vm_flags, 990 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 991 { 992 /* 993 * VM_SOFTDIRTY should not prevent from VMA merging, if we 994 * match the flags but dirty bit -- the caller should mark 995 * merged VMA as dirty. If dirty bit won't be excluded from 996 * comparison, we increase pressure on the memory system forcing 997 * the kernel to generate new VMAs when old one could be 998 * extended instead. 999 */ 1000 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1001 return 0; 1002 if (vma->vm_file != file) 1003 return 0; 1004 if (vma->vm_ops && vma->vm_ops->close) 1005 return 0; 1006 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1007 return 0; 1008 return 1; 1009 } 1010 1011 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1012 struct anon_vma *anon_vma2, 1013 struct vm_area_struct *vma) 1014 { 1015 /* 1016 * The list_is_singular() test is to avoid merging VMA cloned from 1017 * parents. This can improve scalability caused by anon_vma lock. 1018 */ 1019 if ((!anon_vma1 || !anon_vma2) && (!vma || 1020 list_is_singular(&vma->anon_vma_chain))) 1021 return 1; 1022 return anon_vma1 == anon_vma2; 1023 } 1024 1025 /* 1026 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1027 * in front of (at a lower virtual address and file offset than) the vma. 1028 * 1029 * We cannot merge two vmas if they have differently assigned (non-NULL) 1030 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1031 * 1032 * We don't check here for the merged mmap wrapping around the end of pagecache 1033 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 1034 * wrap, nor mmaps which cover the final page at index -1UL. 1035 */ 1036 static int 1037 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1038 struct anon_vma *anon_vma, struct file *file, 1039 pgoff_t vm_pgoff, 1040 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1041 { 1042 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1043 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1044 if (vma->vm_pgoff == vm_pgoff) 1045 return 1; 1046 } 1047 return 0; 1048 } 1049 1050 /* 1051 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1052 * beyond (at a higher virtual address and file offset than) the vma. 1053 * 1054 * We cannot merge two vmas if they have differently assigned (non-NULL) 1055 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1056 */ 1057 static int 1058 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1059 struct anon_vma *anon_vma, struct file *file, 1060 pgoff_t vm_pgoff, 1061 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1062 { 1063 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1064 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1065 pgoff_t vm_pglen; 1066 vm_pglen = vma_pages(vma); 1067 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1068 return 1; 1069 } 1070 return 0; 1071 } 1072 1073 /* 1074 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1075 * whether that can be merged with its predecessor or its successor. 1076 * Or both (it neatly fills a hole). 1077 * 1078 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1079 * certain not to be mapped by the time vma_merge is called; but when 1080 * called for mprotect, it is certain to be already mapped (either at 1081 * an offset within prev, or at the start of next), and the flags of 1082 * this area are about to be changed to vm_flags - and the no-change 1083 * case has already been eliminated. 1084 * 1085 * The following mprotect cases have to be considered, where AAAA is 1086 * the area passed down from mprotect_fixup, never extending beyond one 1087 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1088 * 1089 * AAAA AAAA AAAA 1090 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1091 * cannot merge might become might become 1092 * PPNNNNNNNNNN PPPPPPPPPPNN 1093 * mmap, brk or case 4 below case 5 below 1094 * mremap move: 1095 * AAAA AAAA 1096 * PPPP NNNN PPPPNNNNXXXX 1097 * might become might become 1098 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1099 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1100 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1101 * 1102 * It is important for case 8 that the vma NNNN overlapping the 1103 * region AAAA is never going to extended over XXXX. Instead XXXX must 1104 * be extended in region AAAA and NNNN must be removed. This way in 1105 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1106 * rmap_locks, the properties of the merged vma will be already 1107 * correct for the whole merged range. Some of those properties like 1108 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1109 * be correct for the whole merged range immediately after the 1110 * rmap_locks are released. Otherwise if XXXX would be removed and 1111 * NNNN would be extended over the XXXX range, remove_migration_ptes 1112 * or other rmap walkers (if working on addresses beyond the "end" 1113 * parameter) may establish ptes with the wrong permissions of NNNN 1114 * instead of the right permissions of XXXX. 1115 */ 1116 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1117 struct vm_area_struct *prev, unsigned long addr, 1118 unsigned long end, unsigned long vm_flags, 1119 struct anon_vma *anon_vma, struct file *file, 1120 pgoff_t pgoff, struct mempolicy *policy, 1121 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1122 { 1123 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1124 struct vm_area_struct *area, *next; 1125 int err; 1126 1127 /* 1128 * We later require that vma->vm_flags == vm_flags, 1129 * so this tests vma->vm_flags & VM_SPECIAL, too. 1130 */ 1131 if (vm_flags & VM_SPECIAL) 1132 return NULL; 1133 1134 if (prev) 1135 next = prev->vm_next; 1136 else 1137 next = mm->mmap; 1138 area = next; 1139 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1140 next = next->vm_next; 1141 1142 /* verify some invariant that must be enforced by the caller */ 1143 VM_WARN_ON(prev && addr <= prev->vm_start); 1144 VM_WARN_ON(area && end > area->vm_end); 1145 VM_WARN_ON(addr >= end); 1146 1147 /* 1148 * Can it merge with the predecessor? 1149 */ 1150 if (prev && prev->vm_end == addr && 1151 mpol_equal(vma_policy(prev), policy) && 1152 can_vma_merge_after(prev, vm_flags, 1153 anon_vma, file, pgoff, 1154 vm_userfaultfd_ctx)) { 1155 /* 1156 * OK, it can. Can we now merge in the successor as well? 1157 */ 1158 if (next && end == next->vm_start && 1159 mpol_equal(policy, vma_policy(next)) && 1160 can_vma_merge_before(next, vm_flags, 1161 anon_vma, file, 1162 pgoff+pglen, 1163 vm_userfaultfd_ctx) && 1164 is_mergeable_anon_vma(prev->anon_vma, 1165 next->anon_vma, NULL)) { 1166 /* cases 1, 6 */ 1167 err = __vma_adjust(prev, prev->vm_start, 1168 next->vm_end, prev->vm_pgoff, NULL, 1169 prev); 1170 } else /* cases 2, 5, 7 */ 1171 err = __vma_adjust(prev, prev->vm_start, 1172 end, prev->vm_pgoff, NULL, prev); 1173 if (err) 1174 return NULL; 1175 khugepaged_enter_vma_merge(prev, vm_flags); 1176 return prev; 1177 } 1178 1179 /* 1180 * Can this new request be merged in front of next? 1181 */ 1182 if (next && end == next->vm_start && 1183 mpol_equal(policy, vma_policy(next)) && 1184 can_vma_merge_before(next, vm_flags, 1185 anon_vma, file, pgoff+pglen, 1186 vm_userfaultfd_ctx)) { 1187 if (prev && addr < prev->vm_end) /* case 4 */ 1188 err = __vma_adjust(prev, prev->vm_start, 1189 addr, prev->vm_pgoff, NULL, next); 1190 else { /* cases 3, 8 */ 1191 err = __vma_adjust(area, addr, next->vm_end, 1192 next->vm_pgoff - pglen, NULL, next); 1193 /* 1194 * In case 3 area is already equal to next and 1195 * this is a noop, but in case 8 "area" has 1196 * been removed and next was expanded over it. 1197 */ 1198 area = next; 1199 } 1200 if (err) 1201 return NULL; 1202 khugepaged_enter_vma_merge(area, vm_flags); 1203 return area; 1204 } 1205 1206 return NULL; 1207 } 1208 1209 /* 1210 * Rough compatibility check to quickly see if it's even worth looking 1211 * at sharing an anon_vma. 1212 * 1213 * They need to have the same vm_file, and the flags can only differ 1214 * in things that mprotect may change. 1215 * 1216 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1217 * we can merge the two vma's. For example, we refuse to merge a vma if 1218 * there is a vm_ops->close() function, because that indicates that the 1219 * driver is doing some kind of reference counting. But that doesn't 1220 * really matter for the anon_vma sharing case. 1221 */ 1222 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1223 { 1224 return a->vm_end == b->vm_start && 1225 mpol_equal(vma_policy(a), vma_policy(b)) && 1226 a->vm_file == b->vm_file && 1227 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1228 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1229 } 1230 1231 /* 1232 * Do some basic sanity checking to see if we can re-use the anon_vma 1233 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1234 * the same as 'old', the other will be the new one that is trying 1235 * to share the anon_vma. 1236 * 1237 * NOTE! This runs with mm_sem held for reading, so it is possible that 1238 * the anon_vma of 'old' is concurrently in the process of being set up 1239 * by another page fault trying to merge _that_. But that's ok: if it 1240 * is being set up, that automatically means that it will be a singleton 1241 * acceptable for merging, so we can do all of this optimistically. But 1242 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1243 * 1244 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1245 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1246 * is to return an anon_vma that is "complex" due to having gone through 1247 * a fork). 1248 * 1249 * We also make sure that the two vma's are compatible (adjacent, 1250 * and with the same memory policies). That's all stable, even with just 1251 * a read lock on the mm_sem. 1252 */ 1253 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1254 { 1255 if (anon_vma_compatible(a, b)) { 1256 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1257 1258 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1259 return anon_vma; 1260 } 1261 return NULL; 1262 } 1263 1264 /* 1265 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1266 * neighbouring vmas for a suitable anon_vma, before it goes off 1267 * to allocate a new anon_vma. It checks because a repetitive 1268 * sequence of mprotects and faults may otherwise lead to distinct 1269 * anon_vmas being allocated, preventing vma merge in subsequent 1270 * mprotect. 1271 */ 1272 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1273 { 1274 struct anon_vma *anon_vma = NULL; 1275 1276 /* Try next first. */ 1277 if (vma->vm_next) { 1278 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next); 1279 if (anon_vma) 1280 return anon_vma; 1281 } 1282 1283 /* Try prev next. */ 1284 if (vma->vm_prev) 1285 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma); 1286 1287 /* 1288 * We might reach here with anon_vma == NULL if we can't find 1289 * any reusable anon_vma. 1290 * There's no absolute need to look only at touching neighbours: 1291 * we could search further afield for "compatible" anon_vmas. 1292 * But it would probably just be a waste of time searching, 1293 * or lead to too many vmas hanging off the same anon_vma. 1294 * We're trying to allow mprotect remerging later on, 1295 * not trying to minimize memory used for anon_vmas. 1296 */ 1297 return anon_vma; 1298 } 1299 1300 /* 1301 * If a hint addr is less than mmap_min_addr change hint to be as 1302 * low as possible but still greater than mmap_min_addr 1303 */ 1304 static inline unsigned long round_hint_to_min(unsigned long hint) 1305 { 1306 hint &= PAGE_MASK; 1307 if (((void *)hint != NULL) && 1308 (hint < mmap_min_addr)) 1309 return PAGE_ALIGN(mmap_min_addr); 1310 return hint; 1311 } 1312 1313 static inline int mlock_future_check(struct mm_struct *mm, 1314 unsigned long flags, 1315 unsigned long len) 1316 { 1317 unsigned long locked, lock_limit; 1318 1319 /* mlock MCL_FUTURE? */ 1320 if (flags & VM_LOCKED) { 1321 locked = len >> PAGE_SHIFT; 1322 locked += mm->locked_vm; 1323 lock_limit = rlimit(RLIMIT_MEMLOCK); 1324 lock_limit >>= PAGE_SHIFT; 1325 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1326 return -EAGAIN; 1327 } 1328 return 0; 1329 } 1330 1331 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1332 { 1333 if (S_ISREG(inode->i_mode)) 1334 return MAX_LFS_FILESIZE; 1335 1336 if (S_ISBLK(inode->i_mode)) 1337 return MAX_LFS_FILESIZE; 1338 1339 if (S_ISSOCK(inode->i_mode)) 1340 return MAX_LFS_FILESIZE; 1341 1342 /* Special "we do even unsigned file positions" case */ 1343 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1344 return 0; 1345 1346 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1347 return ULONG_MAX; 1348 } 1349 1350 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1351 unsigned long pgoff, unsigned long len) 1352 { 1353 u64 maxsize = file_mmap_size_max(file, inode); 1354 1355 if (maxsize && len > maxsize) 1356 return false; 1357 maxsize -= len; 1358 if (pgoff > maxsize >> PAGE_SHIFT) 1359 return false; 1360 return true; 1361 } 1362 1363 /* 1364 * The caller must write-lock current->mm->mmap_lock. 1365 */ 1366 unsigned long do_mmap(struct file *file, unsigned long addr, 1367 unsigned long len, unsigned long prot, 1368 unsigned long flags, unsigned long pgoff, 1369 unsigned long *populate, struct list_head *uf) 1370 { 1371 struct mm_struct *mm = current->mm; 1372 vm_flags_t vm_flags; 1373 int pkey = 0; 1374 1375 *populate = 0; 1376 1377 if (!len) 1378 return -EINVAL; 1379 1380 /* 1381 * Does the application expect PROT_READ to imply PROT_EXEC? 1382 * 1383 * (the exception is when the underlying filesystem is noexec 1384 * mounted, in which case we dont add PROT_EXEC.) 1385 */ 1386 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1387 if (!(file && path_noexec(&file->f_path))) 1388 prot |= PROT_EXEC; 1389 1390 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1391 if (flags & MAP_FIXED_NOREPLACE) 1392 flags |= MAP_FIXED; 1393 1394 if (!(flags & MAP_FIXED)) 1395 addr = round_hint_to_min(addr); 1396 1397 /* Careful about overflows.. */ 1398 len = PAGE_ALIGN(len); 1399 if (!len) 1400 return -ENOMEM; 1401 1402 /* offset overflow? */ 1403 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1404 return -EOVERFLOW; 1405 1406 /* Too many mappings? */ 1407 if (mm->map_count > sysctl_max_map_count) 1408 return -ENOMEM; 1409 1410 /* Obtain the address to map to. we verify (or select) it and ensure 1411 * that it represents a valid section of the address space. 1412 */ 1413 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1414 if (IS_ERR_VALUE(addr)) 1415 return addr; 1416 1417 if (flags & MAP_FIXED_NOREPLACE) { 1418 struct vm_area_struct *vma = find_vma(mm, addr); 1419 1420 if (vma && vma->vm_start < addr + len) 1421 return -EEXIST; 1422 } 1423 1424 if (prot == PROT_EXEC) { 1425 pkey = execute_only_pkey(mm); 1426 if (pkey < 0) 1427 pkey = 0; 1428 } 1429 1430 /* Do simple checking here so the lower-level routines won't have 1431 * to. we assume access permissions have been handled by the open 1432 * of the memory object, so we don't do any here. 1433 */ 1434 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1435 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1436 1437 if (flags & MAP_LOCKED) 1438 if (!can_do_mlock()) 1439 return -EPERM; 1440 1441 if (mlock_future_check(mm, vm_flags, len)) 1442 return -EAGAIN; 1443 1444 if (file) { 1445 struct inode *inode = file_inode(file); 1446 unsigned long flags_mask; 1447 1448 if (!file_mmap_ok(file, inode, pgoff, len)) 1449 return -EOVERFLOW; 1450 1451 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1452 1453 switch (flags & MAP_TYPE) { 1454 case MAP_SHARED: 1455 /* 1456 * Force use of MAP_SHARED_VALIDATE with non-legacy 1457 * flags. E.g. MAP_SYNC is dangerous to use with 1458 * MAP_SHARED as you don't know which consistency model 1459 * you will get. We silently ignore unsupported flags 1460 * with MAP_SHARED to preserve backward compatibility. 1461 */ 1462 flags &= LEGACY_MAP_MASK; 1463 fallthrough; 1464 case MAP_SHARED_VALIDATE: 1465 if (flags & ~flags_mask) 1466 return -EOPNOTSUPP; 1467 if (prot & PROT_WRITE) { 1468 if (!(file->f_mode & FMODE_WRITE)) 1469 return -EACCES; 1470 if (IS_SWAPFILE(file->f_mapping->host)) 1471 return -ETXTBSY; 1472 } 1473 1474 /* 1475 * Make sure we don't allow writing to an append-only 1476 * file.. 1477 */ 1478 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1479 return -EACCES; 1480 1481 /* 1482 * Make sure there are no mandatory locks on the file. 1483 */ 1484 if (locks_verify_locked(file)) 1485 return -EAGAIN; 1486 1487 vm_flags |= VM_SHARED | VM_MAYSHARE; 1488 if (!(file->f_mode & FMODE_WRITE)) 1489 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1490 fallthrough; 1491 case MAP_PRIVATE: 1492 if (!(file->f_mode & FMODE_READ)) 1493 return -EACCES; 1494 if (path_noexec(&file->f_path)) { 1495 if (vm_flags & VM_EXEC) 1496 return -EPERM; 1497 vm_flags &= ~VM_MAYEXEC; 1498 } 1499 1500 if (!file->f_op->mmap) 1501 return -ENODEV; 1502 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1503 return -EINVAL; 1504 break; 1505 1506 default: 1507 return -EINVAL; 1508 } 1509 } else { 1510 switch (flags & MAP_TYPE) { 1511 case MAP_SHARED: 1512 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1513 return -EINVAL; 1514 /* 1515 * Ignore pgoff. 1516 */ 1517 pgoff = 0; 1518 vm_flags |= VM_SHARED | VM_MAYSHARE; 1519 break; 1520 case MAP_PRIVATE: 1521 /* 1522 * Set pgoff according to addr for anon_vma. 1523 */ 1524 pgoff = addr >> PAGE_SHIFT; 1525 break; 1526 default: 1527 return -EINVAL; 1528 } 1529 } 1530 1531 /* 1532 * Set 'VM_NORESERVE' if we should not account for the 1533 * memory use of this mapping. 1534 */ 1535 if (flags & MAP_NORESERVE) { 1536 /* We honor MAP_NORESERVE if allowed to overcommit */ 1537 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1538 vm_flags |= VM_NORESERVE; 1539 1540 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1541 if (file && is_file_hugepages(file)) 1542 vm_flags |= VM_NORESERVE; 1543 } 1544 1545 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1546 if (!IS_ERR_VALUE(addr) && 1547 ((vm_flags & VM_LOCKED) || 1548 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1549 *populate = len; 1550 return addr; 1551 } 1552 1553 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1554 unsigned long prot, unsigned long flags, 1555 unsigned long fd, unsigned long pgoff) 1556 { 1557 struct file *file = NULL; 1558 unsigned long retval; 1559 1560 if (!(flags & MAP_ANONYMOUS)) { 1561 audit_mmap_fd(fd, flags); 1562 file = fget(fd); 1563 if (!file) 1564 return -EBADF; 1565 if (is_file_hugepages(file)) { 1566 len = ALIGN(len, huge_page_size(hstate_file(file))); 1567 } else if (unlikely(flags & MAP_HUGETLB)) { 1568 retval = -EINVAL; 1569 goto out_fput; 1570 } 1571 } else if (flags & MAP_HUGETLB) { 1572 struct user_struct *user = NULL; 1573 struct hstate *hs; 1574 1575 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1576 if (!hs) 1577 return -EINVAL; 1578 1579 len = ALIGN(len, huge_page_size(hs)); 1580 /* 1581 * VM_NORESERVE is used because the reservations will be 1582 * taken when vm_ops->mmap() is called 1583 * A dummy user value is used because we are not locking 1584 * memory so no accounting is necessary 1585 */ 1586 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1587 VM_NORESERVE, 1588 &user, HUGETLB_ANONHUGE_INODE, 1589 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1590 if (IS_ERR(file)) 1591 return PTR_ERR(file); 1592 } 1593 1594 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1595 1596 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1597 out_fput: 1598 if (file) 1599 fput(file); 1600 return retval; 1601 } 1602 1603 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1604 unsigned long, prot, unsigned long, flags, 1605 unsigned long, fd, unsigned long, pgoff) 1606 { 1607 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1608 } 1609 1610 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1611 struct mmap_arg_struct { 1612 unsigned long addr; 1613 unsigned long len; 1614 unsigned long prot; 1615 unsigned long flags; 1616 unsigned long fd; 1617 unsigned long offset; 1618 }; 1619 1620 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1621 { 1622 struct mmap_arg_struct a; 1623 1624 if (copy_from_user(&a, arg, sizeof(a))) 1625 return -EFAULT; 1626 if (offset_in_page(a.offset)) 1627 return -EINVAL; 1628 1629 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1630 a.offset >> PAGE_SHIFT); 1631 } 1632 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1633 1634 /* 1635 * Some shared mappings will want the pages marked read-only 1636 * to track write events. If so, we'll downgrade vm_page_prot 1637 * to the private version (using protection_map[] without the 1638 * VM_SHARED bit). 1639 */ 1640 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1641 { 1642 vm_flags_t vm_flags = vma->vm_flags; 1643 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1644 1645 /* If it was private or non-writable, the write bit is already clear */ 1646 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1647 return 0; 1648 1649 /* The backer wishes to know when pages are first written to? */ 1650 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1651 return 1; 1652 1653 /* The open routine did something to the protections that pgprot_modify 1654 * won't preserve? */ 1655 if (pgprot_val(vm_page_prot) != 1656 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1657 return 0; 1658 1659 /* Do we need to track softdirty? */ 1660 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1661 return 1; 1662 1663 /* Specialty mapping? */ 1664 if (vm_flags & VM_PFNMAP) 1665 return 0; 1666 1667 /* Can the mapping track the dirty pages? */ 1668 return vma->vm_file && vma->vm_file->f_mapping && 1669 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1670 } 1671 1672 /* 1673 * We account for memory if it's a private writeable mapping, 1674 * not hugepages and VM_NORESERVE wasn't set. 1675 */ 1676 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1677 { 1678 /* 1679 * hugetlb has its own accounting separate from the core VM 1680 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1681 */ 1682 if (file && is_file_hugepages(file)) 1683 return 0; 1684 1685 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1686 } 1687 1688 unsigned long mmap_region(struct file *file, unsigned long addr, 1689 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1690 struct list_head *uf) 1691 { 1692 struct mm_struct *mm = current->mm; 1693 struct vm_area_struct *vma, *prev, *merge; 1694 int error; 1695 struct rb_node **rb_link, *rb_parent; 1696 unsigned long charged = 0; 1697 1698 /* Check against address space limit. */ 1699 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1700 unsigned long nr_pages; 1701 1702 /* 1703 * MAP_FIXED may remove pages of mappings that intersects with 1704 * requested mapping. Account for the pages it would unmap. 1705 */ 1706 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1707 1708 if (!may_expand_vm(mm, vm_flags, 1709 (len >> PAGE_SHIFT) - nr_pages)) 1710 return -ENOMEM; 1711 } 1712 1713 /* Clear old maps */ 1714 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1715 &rb_parent)) { 1716 if (do_munmap(mm, addr, len, uf)) 1717 return -ENOMEM; 1718 } 1719 1720 /* 1721 * Private writable mapping: check memory availability 1722 */ 1723 if (accountable_mapping(file, vm_flags)) { 1724 charged = len >> PAGE_SHIFT; 1725 if (security_vm_enough_memory_mm(mm, charged)) 1726 return -ENOMEM; 1727 vm_flags |= VM_ACCOUNT; 1728 } 1729 1730 /* 1731 * Can we just expand an old mapping? 1732 */ 1733 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1734 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1735 if (vma) 1736 goto out; 1737 1738 /* 1739 * Determine the object being mapped and call the appropriate 1740 * specific mapper. the address has already been validated, but 1741 * not unmapped, but the maps are removed from the list. 1742 */ 1743 vma = vm_area_alloc(mm); 1744 if (!vma) { 1745 error = -ENOMEM; 1746 goto unacct_error; 1747 } 1748 1749 vma->vm_start = addr; 1750 vma->vm_end = addr + len; 1751 vma->vm_flags = vm_flags; 1752 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1753 vma->vm_pgoff = pgoff; 1754 1755 if (file) { 1756 if (vm_flags & VM_DENYWRITE) { 1757 error = deny_write_access(file); 1758 if (error) 1759 goto free_vma; 1760 } 1761 if (vm_flags & VM_SHARED) { 1762 error = mapping_map_writable(file->f_mapping); 1763 if (error) 1764 goto allow_write_and_free_vma; 1765 } 1766 1767 /* ->mmap() can change vma->vm_file, but must guarantee that 1768 * vma_link() below can deny write-access if VM_DENYWRITE is set 1769 * and map writably if VM_SHARED is set. This usually means the 1770 * new file must not have been exposed to user-space, yet. 1771 */ 1772 vma->vm_file = get_file(file); 1773 error = call_mmap(file, vma); 1774 if (error) 1775 goto unmap_and_free_vma; 1776 1777 /* If vm_flags changed after call_mmap(), we should try merge vma again 1778 * as we may succeed this time. 1779 */ 1780 if (unlikely(vm_flags != vma->vm_flags && prev)) { 1781 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, 1782 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX); 1783 if (merge) { 1784 fput(file); 1785 vm_area_free(vma); 1786 vma = merge; 1787 /* Update vm_flags and possible addr to pick up the change. We don't 1788 * warn here if addr changed as the vma is not linked by vma_link(). 1789 */ 1790 addr = vma->vm_start; 1791 vm_flags = vma->vm_flags; 1792 goto unmap_writable; 1793 } 1794 } 1795 1796 /* Can addr have changed?? 1797 * 1798 * Answer: Yes, several device drivers can do it in their 1799 * f_op->mmap method. -DaveM 1800 * Bug: If addr is changed, prev, rb_link, rb_parent should 1801 * be updated for vma_link() 1802 */ 1803 WARN_ON_ONCE(addr != vma->vm_start); 1804 1805 addr = vma->vm_start; 1806 vm_flags = vma->vm_flags; 1807 } else if (vm_flags & VM_SHARED) { 1808 error = shmem_zero_setup(vma); 1809 if (error) 1810 goto free_vma; 1811 } else { 1812 vma_set_anonymous(vma); 1813 } 1814 1815 vma_link(mm, vma, prev, rb_link, rb_parent); 1816 /* Once vma denies write, undo our temporary denial count */ 1817 if (file) { 1818 unmap_writable: 1819 if (vm_flags & VM_SHARED) 1820 mapping_unmap_writable(file->f_mapping); 1821 if (vm_flags & VM_DENYWRITE) 1822 allow_write_access(file); 1823 } 1824 file = vma->vm_file; 1825 out: 1826 perf_event_mmap(vma); 1827 1828 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1829 if (vm_flags & VM_LOCKED) { 1830 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1831 is_vm_hugetlb_page(vma) || 1832 vma == get_gate_vma(current->mm)) 1833 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1834 else 1835 mm->locked_vm += (len >> PAGE_SHIFT); 1836 } 1837 1838 if (file) 1839 uprobe_mmap(vma); 1840 1841 /* 1842 * New (or expanded) vma always get soft dirty status. 1843 * Otherwise user-space soft-dirty page tracker won't 1844 * be able to distinguish situation when vma area unmapped, 1845 * then new mapped in-place (which must be aimed as 1846 * a completely new data area). 1847 */ 1848 vma->vm_flags |= VM_SOFTDIRTY; 1849 1850 vma_set_page_prot(vma); 1851 1852 return addr; 1853 1854 unmap_and_free_vma: 1855 vma->vm_file = NULL; 1856 fput(file); 1857 1858 /* Undo any partial mapping done by a device driver. */ 1859 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1860 charged = 0; 1861 if (vm_flags & VM_SHARED) 1862 mapping_unmap_writable(file->f_mapping); 1863 allow_write_and_free_vma: 1864 if (vm_flags & VM_DENYWRITE) 1865 allow_write_access(file); 1866 free_vma: 1867 vm_area_free(vma); 1868 unacct_error: 1869 if (charged) 1870 vm_unacct_memory(charged); 1871 return error; 1872 } 1873 1874 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1875 { 1876 /* 1877 * We implement the search by looking for an rbtree node that 1878 * immediately follows a suitable gap. That is, 1879 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1880 * - gap_end = vma->vm_start >= info->low_limit + length; 1881 * - gap_end - gap_start >= length 1882 */ 1883 1884 struct mm_struct *mm = current->mm; 1885 struct vm_area_struct *vma; 1886 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1887 1888 /* Adjust search length to account for worst case alignment overhead */ 1889 length = info->length + info->align_mask; 1890 if (length < info->length) 1891 return -ENOMEM; 1892 1893 /* Adjust search limits by the desired length */ 1894 if (info->high_limit < length) 1895 return -ENOMEM; 1896 high_limit = info->high_limit - length; 1897 1898 if (info->low_limit > high_limit) 1899 return -ENOMEM; 1900 low_limit = info->low_limit + length; 1901 1902 /* Check if rbtree root looks promising */ 1903 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1904 goto check_highest; 1905 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1906 if (vma->rb_subtree_gap < length) 1907 goto check_highest; 1908 1909 while (true) { 1910 /* Visit left subtree if it looks promising */ 1911 gap_end = vm_start_gap(vma); 1912 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1913 struct vm_area_struct *left = 1914 rb_entry(vma->vm_rb.rb_left, 1915 struct vm_area_struct, vm_rb); 1916 if (left->rb_subtree_gap >= length) { 1917 vma = left; 1918 continue; 1919 } 1920 } 1921 1922 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1923 check_current: 1924 /* Check if current node has a suitable gap */ 1925 if (gap_start > high_limit) 1926 return -ENOMEM; 1927 if (gap_end >= low_limit && 1928 gap_end > gap_start && gap_end - gap_start >= length) 1929 goto found; 1930 1931 /* Visit right subtree if it looks promising */ 1932 if (vma->vm_rb.rb_right) { 1933 struct vm_area_struct *right = 1934 rb_entry(vma->vm_rb.rb_right, 1935 struct vm_area_struct, vm_rb); 1936 if (right->rb_subtree_gap >= length) { 1937 vma = right; 1938 continue; 1939 } 1940 } 1941 1942 /* Go back up the rbtree to find next candidate node */ 1943 while (true) { 1944 struct rb_node *prev = &vma->vm_rb; 1945 if (!rb_parent(prev)) 1946 goto check_highest; 1947 vma = rb_entry(rb_parent(prev), 1948 struct vm_area_struct, vm_rb); 1949 if (prev == vma->vm_rb.rb_left) { 1950 gap_start = vm_end_gap(vma->vm_prev); 1951 gap_end = vm_start_gap(vma); 1952 goto check_current; 1953 } 1954 } 1955 } 1956 1957 check_highest: 1958 /* Check highest gap, which does not precede any rbtree node */ 1959 gap_start = mm->highest_vm_end; 1960 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1961 if (gap_start > high_limit) 1962 return -ENOMEM; 1963 1964 found: 1965 /* We found a suitable gap. Clip it with the original low_limit. */ 1966 if (gap_start < info->low_limit) 1967 gap_start = info->low_limit; 1968 1969 /* Adjust gap address to the desired alignment */ 1970 gap_start += (info->align_offset - gap_start) & info->align_mask; 1971 1972 VM_BUG_ON(gap_start + info->length > info->high_limit); 1973 VM_BUG_ON(gap_start + info->length > gap_end); 1974 return gap_start; 1975 } 1976 1977 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1978 { 1979 struct mm_struct *mm = current->mm; 1980 struct vm_area_struct *vma; 1981 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1982 1983 /* Adjust search length to account for worst case alignment overhead */ 1984 length = info->length + info->align_mask; 1985 if (length < info->length) 1986 return -ENOMEM; 1987 1988 /* 1989 * Adjust search limits by the desired length. 1990 * See implementation comment at top of unmapped_area(). 1991 */ 1992 gap_end = info->high_limit; 1993 if (gap_end < length) 1994 return -ENOMEM; 1995 high_limit = gap_end - length; 1996 1997 if (info->low_limit > high_limit) 1998 return -ENOMEM; 1999 low_limit = info->low_limit + length; 2000 2001 /* Check highest gap, which does not precede any rbtree node */ 2002 gap_start = mm->highest_vm_end; 2003 if (gap_start <= high_limit) 2004 goto found_highest; 2005 2006 /* Check if rbtree root looks promising */ 2007 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2008 return -ENOMEM; 2009 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2010 if (vma->rb_subtree_gap < length) 2011 return -ENOMEM; 2012 2013 while (true) { 2014 /* Visit right subtree if it looks promising */ 2015 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2016 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2017 struct vm_area_struct *right = 2018 rb_entry(vma->vm_rb.rb_right, 2019 struct vm_area_struct, vm_rb); 2020 if (right->rb_subtree_gap >= length) { 2021 vma = right; 2022 continue; 2023 } 2024 } 2025 2026 check_current: 2027 /* Check if current node has a suitable gap */ 2028 gap_end = vm_start_gap(vma); 2029 if (gap_end < low_limit) 2030 return -ENOMEM; 2031 if (gap_start <= high_limit && 2032 gap_end > gap_start && gap_end - gap_start >= length) 2033 goto found; 2034 2035 /* Visit left subtree if it looks promising */ 2036 if (vma->vm_rb.rb_left) { 2037 struct vm_area_struct *left = 2038 rb_entry(vma->vm_rb.rb_left, 2039 struct vm_area_struct, vm_rb); 2040 if (left->rb_subtree_gap >= length) { 2041 vma = left; 2042 continue; 2043 } 2044 } 2045 2046 /* Go back up the rbtree to find next candidate node */ 2047 while (true) { 2048 struct rb_node *prev = &vma->vm_rb; 2049 if (!rb_parent(prev)) 2050 return -ENOMEM; 2051 vma = rb_entry(rb_parent(prev), 2052 struct vm_area_struct, vm_rb); 2053 if (prev == vma->vm_rb.rb_right) { 2054 gap_start = vma->vm_prev ? 2055 vm_end_gap(vma->vm_prev) : 0; 2056 goto check_current; 2057 } 2058 } 2059 } 2060 2061 found: 2062 /* We found a suitable gap. Clip it with the original high_limit. */ 2063 if (gap_end > info->high_limit) 2064 gap_end = info->high_limit; 2065 2066 found_highest: 2067 /* Compute highest gap address at the desired alignment */ 2068 gap_end -= info->length; 2069 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2070 2071 VM_BUG_ON(gap_end < info->low_limit); 2072 VM_BUG_ON(gap_end < gap_start); 2073 return gap_end; 2074 } 2075 2076 /* 2077 * Search for an unmapped address range. 2078 * 2079 * We are looking for a range that: 2080 * - does not intersect with any VMA; 2081 * - is contained within the [low_limit, high_limit) interval; 2082 * - is at least the desired size. 2083 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2084 */ 2085 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 2086 { 2087 unsigned long addr; 2088 2089 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2090 addr = unmapped_area_topdown(info); 2091 else 2092 addr = unmapped_area(info); 2093 2094 trace_vm_unmapped_area(addr, info); 2095 return addr; 2096 } 2097 2098 #ifndef arch_get_mmap_end 2099 #define arch_get_mmap_end(addr) (TASK_SIZE) 2100 #endif 2101 2102 #ifndef arch_get_mmap_base 2103 #define arch_get_mmap_base(addr, base) (base) 2104 #endif 2105 2106 /* Get an address range which is currently unmapped. 2107 * For shmat() with addr=0. 2108 * 2109 * Ugly calling convention alert: 2110 * Return value with the low bits set means error value, 2111 * ie 2112 * if (ret & ~PAGE_MASK) 2113 * error = ret; 2114 * 2115 * This function "knows" that -ENOMEM has the bits set. 2116 */ 2117 #ifndef HAVE_ARCH_UNMAPPED_AREA 2118 unsigned long 2119 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2120 unsigned long len, unsigned long pgoff, unsigned long flags) 2121 { 2122 struct mm_struct *mm = current->mm; 2123 struct vm_area_struct *vma, *prev; 2124 struct vm_unmapped_area_info info; 2125 const unsigned long mmap_end = arch_get_mmap_end(addr); 2126 2127 if (len > mmap_end - mmap_min_addr) 2128 return -ENOMEM; 2129 2130 if (flags & MAP_FIXED) 2131 return addr; 2132 2133 if (addr) { 2134 addr = PAGE_ALIGN(addr); 2135 vma = find_vma_prev(mm, addr, &prev); 2136 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2137 (!vma || addr + len <= vm_start_gap(vma)) && 2138 (!prev || addr >= vm_end_gap(prev))) 2139 return addr; 2140 } 2141 2142 info.flags = 0; 2143 info.length = len; 2144 info.low_limit = mm->mmap_base; 2145 info.high_limit = mmap_end; 2146 info.align_mask = 0; 2147 info.align_offset = 0; 2148 return vm_unmapped_area(&info); 2149 } 2150 #endif 2151 2152 /* 2153 * This mmap-allocator allocates new areas top-down from below the 2154 * stack's low limit (the base): 2155 */ 2156 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2157 unsigned long 2158 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2159 unsigned long len, unsigned long pgoff, 2160 unsigned long flags) 2161 { 2162 struct vm_area_struct *vma, *prev; 2163 struct mm_struct *mm = current->mm; 2164 struct vm_unmapped_area_info info; 2165 const unsigned long mmap_end = arch_get_mmap_end(addr); 2166 2167 /* requested length too big for entire address space */ 2168 if (len > mmap_end - mmap_min_addr) 2169 return -ENOMEM; 2170 2171 if (flags & MAP_FIXED) 2172 return addr; 2173 2174 /* requesting a specific address */ 2175 if (addr) { 2176 addr = PAGE_ALIGN(addr); 2177 vma = find_vma_prev(mm, addr, &prev); 2178 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2179 (!vma || addr + len <= vm_start_gap(vma)) && 2180 (!prev || addr >= vm_end_gap(prev))) 2181 return addr; 2182 } 2183 2184 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2185 info.length = len; 2186 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2187 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2188 info.align_mask = 0; 2189 info.align_offset = 0; 2190 addr = vm_unmapped_area(&info); 2191 2192 /* 2193 * A failed mmap() very likely causes application failure, 2194 * so fall back to the bottom-up function here. This scenario 2195 * can happen with large stack limits and large mmap() 2196 * allocations. 2197 */ 2198 if (offset_in_page(addr)) { 2199 VM_BUG_ON(addr != -ENOMEM); 2200 info.flags = 0; 2201 info.low_limit = TASK_UNMAPPED_BASE; 2202 info.high_limit = mmap_end; 2203 addr = vm_unmapped_area(&info); 2204 } 2205 2206 return addr; 2207 } 2208 #endif 2209 2210 unsigned long 2211 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2212 unsigned long pgoff, unsigned long flags) 2213 { 2214 unsigned long (*get_area)(struct file *, unsigned long, 2215 unsigned long, unsigned long, unsigned long); 2216 2217 unsigned long error = arch_mmap_check(addr, len, flags); 2218 if (error) 2219 return error; 2220 2221 /* Careful about overflows.. */ 2222 if (len > TASK_SIZE) 2223 return -ENOMEM; 2224 2225 get_area = current->mm->get_unmapped_area; 2226 if (file) { 2227 if (file->f_op->get_unmapped_area) 2228 get_area = file->f_op->get_unmapped_area; 2229 } else if (flags & MAP_SHARED) { 2230 /* 2231 * mmap_region() will call shmem_zero_setup() to create a file, 2232 * so use shmem's get_unmapped_area in case it can be huge. 2233 * do_mmap() will clear pgoff, so match alignment. 2234 */ 2235 pgoff = 0; 2236 get_area = shmem_get_unmapped_area; 2237 } 2238 2239 addr = get_area(file, addr, len, pgoff, flags); 2240 if (IS_ERR_VALUE(addr)) 2241 return addr; 2242 2243 if (addr > TASK_SIZE - len) 2244 return -ENOMEM; 2245 if (offset_in_page(addr)) 2246 return -EINVAL; 2247 2248 error = security_mmap_addr(addr); 2249 return error ? error : addr; 2250 } 2251 2252 EXPORT_SYMBOL(get_unmapped_area); 2253 2254 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2255 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2256 { 2257 struct rb_node *rb_node; 2258 struct vm_area_struct *vma; 2259 2260 /* Check the cache first. */ 2261 vma = vmacache_find(mm, addr); 2262 if (likely(vma)) 2263 return vma; 2264 2265 rb_node = mm->mm_rb.rb_node; 2266 2267 while (rb_node) { 2268 struct vm_area_struct *tmp; 2269 2270 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2271 2272 if (tmp->vm_end > addr) { 2273 vma = tmp; 2274 if (tmp->vm_start <= addr) 2275 break; 2276 rb_node = rb_node->rb_left; 2277 } else 2278 rb_node = rb_node->rb_right; 2279 } 2280 2281 if (vma) 2282 vmacache_update(addr, vma); 2283 return vma; 2284 } 2285 2286 EXPORT_SYMBOL(find_vma); 2287 2288 /* 2289 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2290 */ 2291 struct vm_area_struct * 2292 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2293 struct vm_area_struct **pprev) 2294 { 2295 struct vm_area_struct *vma; 2296 2297 vma = find_vma(mm, addr); 2298 if (vma) { 2299 *pprev = vma->vm_prev; 2300 } else { 2301 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2302 2303 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2304 } 2305 return vma; 2306 } 2307 2308 /* 2309 * Verify that the stack growth is acceptable and 2310 * update accounting. This is shared with both the 2311 * grow-up and grow-down cases. 2312 */ 2313 static int acct_stack_growth(struct vm_area_struct *vma, 2314 unsigned long size, unsigned long grow) 2315 { 2316 struct mm_struct *mm = vma->vm_mm; 2317 unsigned long new_start; 2318 2319 /* address space limit tests */ 2320 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2321 return -ENOMEM; 2322 2323 /* Stack limit test */ 2324 if (size > rlimit(RLIMIT_STACK)) 2325 return -ENOMEM; 2326 2327 /* mlock limit tests */ 2328 if (vma->vm_flags & VM_LOCKED) { 2329 unsigned long locked; 2330 unsigned long limit; 2331 locked = mm->locked_vm + grow; 2332 limit = rlimit(RLIMIT_MEMLOCK); 2333 limit >>= PAGE_SHIFT; 2334 if (locked > limit && !capable(CAP_IPC_LOCK)) 2335 return -ENOMEM; 2336 } 2337 2338 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2339 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2340 vma->vm_end - size; 2341 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2342 return -EFAULT; 2343 2344 /* 2345 * Overcommit.. This must be the final test, as it will 2346 * update security statistics. 2347 */ 2348 if (security_vm_enough_memory_mm(mm, grow)) 2349 return -ENOMEM; 2350 2351 return 0; 2352 } 2353 2354 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2355 /* 2356 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2357 * vma is the last one with address > vma->vm_end. Have to extend vma. 2358 */ 2359 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2360 { 2361 struct mm_struct *mm = vma->vm_mm; 2362 struct vm_area_struct *next; 2363 unsigned long gap_addr; 2364 int error = 0; 2365 2366 if (!(vma->vm_flags & VM_GROWSUP)) 2367 return -EFAULT; 2368 2369 /* Guard against exceeding limits of the address space. */ 2370 address &= PAGE_MASK; 2371 if (address >= (TASK_SIZE & PAGE_MASK)) 2372 return -ENOMEM; 2373 address += PAGE_SIZE; 2374 2375 /* Enforce stack_guard_gap */ 2376 gap_addr = address + stack_guard_gap; 2377 2378 /* Guard against overflow */ 2379 if (gap_addr < address || gap_addr > TASK_SIZE) 2380 gap_addr = TASK_SIZE; 2381 2382 next = vma->vm_next; 2383 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) { 2384 if (!(next->vm_flags & VM_GROWSUP)) 2385 return -ENOMEM; 2386 /* Check that both stack segments have the same anon_vma? */ 2387 } 2388 2389 /* We must make sure the anon_vma is allocated. */ 2390 if (unlikely(anon_vma_prepare(vma))) 2391 return -ENOMEM; 2392 2393 /* 2394 * vma->vm_start/vm_end cannot change under us because the caller 2395 * is required to hold the mmap_lock in read mode. We need the 2396 * anon_vma lock to serialize against concurrent expand_stacks. 2397 */ 2398 anon_vma_lock_write(vma->anon_vma); 2399 2400 /* Somebody else might have raced and expanded it already */ 2401 if (address > vma->vm_end) { 2402 unsigned long size, grow; 2403 2404 size = address - vma->vm_start; 2405 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2406 2407 error = -ENOMEM; 2408 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2409 error = acct_stack_growth(vma, size, grow); 2410 if (!error) { 2411 /* 2412 * vma_gap_update() doesn't support concurrent 2413 * updates, but we only hold a shared mmap_lock 2414 * lock here, so we need to protect against 2415 * concurrent vma expansions. 2416 * anon_vma_lock_write() doesn't help here, as 2417 * we don't guarantee that all growable vmas 2418 * in a mm share the same root anon vma. 2419 * So, we reuse mm->page_table_lock to guard 2420 * against concurrent vma expansions. 2421 */ 2422 spin_lock(&mm->page_table_lock); 2423 if (vma->vm_flags & VM_LOCKED) 2424 mm->locked_vm += grow; 2425 vm_stat_account(mm, vma->vm_flags, grow); 2426 anon_vma_interval_tree_pre_update_vma(vma); 2427 vma->vm_end = address; 2428 anon_vma_interval_tree_post_update_vma(vma); 2429 if (vma->vm_next) 2430 vma_gap_update(vma->vm_next); 2431 else 2432 mm->highest_vm_end = vm_end_gap(vma); 2433 spin_unlock(&mm->page_table_lock); 2434 2435 perf_event_mmap(vma); 2436 } 2437 } 2438 } 2439 anon_vma_unlock_write(vma->anon_vma); 2440 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2441 validate_mm(mm); 2442 return error; 2443 } 2444 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2445 2446 /* 2447 * vma is the first one with address < vma->vm_start. Have to extend vma. 2448 */ 2449 int expand_downwards(struct vm_area_struct *vma, 2450 unsigned long address) 2451 { 2452 struct mm_struct *mm = vma->vm_mm; 2453 struct vm_area_struct *prev; 2454 int error = 0; 2455 2456 address &= PAGE_MASK; 2457 if (address < mmap_min_addr) 2458 return -EPERM; 2459 2460 /* Enforce stack_guard_gap */ 2461 prev = vma->vm_prev; 2462 /* Check that both stack segments have the same anon_vma? */ 2463 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2464 vma_is_accessible(prev)) { 2465 if (address - prev->vm_end < stack_guard_gap) 2466 return -ENOMEM; 2467 } 2468 2469 /* We must make sure the anon_vma is allocated. */ 2470 if (unlikely(anon_vma_prepare(vma))) 2471 return -ENOMEM; 2472 2473 /* 2474 * vma->vm_start/vm_end cannot change under us because the caller 2475 * is required to hold the mmap_lock in read mode. We need the 2476 * anon_vma lock to serialize against concurrent expand_stacks. 2477 */ 2478 anon_vma_lock_write(vma->anon_vma); 2479 2480 /* Somebody else might have raced and expanded it already */ 2481 if (address < vma->vm_start) { 2482 unsigned long size, grow; 2483 2484 size = vma->vm_end - address; 2485 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2486 2487 error = -ENOMEM; 2488 if (grow <= vma->vm_pgoff) { 2489 error = acct_stack_growth(vma, size, grow); 2490 if (!error) { 2491 /* 2492 * vma_gap_update() doesn't support concurrent 2493 * updates, but we only hold a shared mmap_lock 2494 * lock here, so we need to protect against 2495 * concurrent vma expansions. 2496 * anon_vma_lock_write() doesn't help here, as 2497 * we don't guarantee that all growable vmas 2498 * in a mm share the same root anon vma. 2499 * So, we reuse mm->page_table_lock to guard 2500 * against concurrent vma expansions. 2501 */ 2502 spin_lock(&mm->page_table_lock); 2503 if (vma->vm_flags & VM_LOCKED) 2504 mm->locked_vm += grow; 2505 vm_stat_account(mm, vma->vm_flags, grow); 2506 anon_vma_interval_tree_pre_update_vma(vma); 2507 vma->vm_start = address; 2508 vma->vm_pgoff -= grow; 2509 anon_vma_interval_tree_post_update_vma(vma); 2510 vma_gap_update(vma); 2511 spin_unlock(&mm->page_table_lock); 2512 2513 perf_event_mmap(vma); 2514 } 2515 } 2516 } 2517 anon_vma_unlock_write(vma->anon_vma); 2518 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2519 validate_mm(mm); 2520 return error; 2521 } 2522 2523 /* enforced gap between the expanding stack and other mappings. */ 2524 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2525 2526 static int __init cmdline_parse_stack_guard_gap(char *p) 2527 { 2528 unsigned long val; 2529 char *endptr; 2530 2531 val = simple_strtoul(p, &endptr, 10); 2532 if (!*endptr) 2533 stack_guard_gap = val << PAGE_SHIFT; 2534 2535 return 0; 2536 } 2537 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2538 2539 #ifdef CONFIG_STACK_GROWSUP 2540 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2541 { 2542 return expand_upwards(vma, address); 2543 } 2544 2545 struct vm_area_struct * 2546 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2547 { 2548 struct vm_area_struct *vma, *prev; 2549 2550 addr &= PAGE_MASK; 2551 vma = find_vma_prev(mm, addr, &prev); 2552 if (vma && (vma->vm_start <= addr)) 2553 return vma; 2554 /* don't alter vm_end if the coredump is running */ 2555 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr)) 2556 return NULL; 2557 if (prev->vm_flags & VM_LOCKED) 2558 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2559 return prev; 2560 } 2561 #else 2562 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2563 { 2564 return expand_downwards(vma, address); 2565 } 2566 2567 struct vm_area_struct * 2568 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2569 { 2570 struct vm_area_struct *vma; 2571 unsigned long start; 2572 2573 addr &= PAGE_MASK; 2574 vma = find_vma(mm, addr); 2575 if (!vma) 2576 return NULL; 2577 if (vma->vm_start <= addr) 2578 return vma; 2579 if (!(vma->vm_flags & VM_GROWSDOWN)) 2580 return NULL; 2581 /* don't alter vm_start if the coredump is running */ 2582 if (!mmget_still_valid(mm)) 2583 return NULL; 2584 start = vma->vm_start; 2585 if (expand_stack(vma, addr)) 2586 return NULL; 2587 if (vma->vm_flags & VM_LOCKED) 2588 populate_vma_page_range(vma, addr, start, NULL); 2589 return vma; 2590 } 2591 #endif 2592 2593 EXPORT_SYMBOL_GPL(find_extend_vma); 2594 2595 /* 2596 * Ok - we have the memory areas we should free on the vma list, 2597 * so release them, and do the vma updates. 2598 * 2599 * Called with the mm semaphore held. 2600 */ 2601 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2602 { 2603 unsigned long nr_accounted = 0; 2604 2605 /* Update high watermark before we lower total_vm */ 2606 update_hiwater_vm(mm); 2607 do { 2608 long nrpages = vma_pages(vma); 2609 2610 if (vma->vm_flags & VM_ACCOUNT) 2611 nr_accounted += nrpages; 2612 vm_stat_account(mm, vma->vm_flags, -nrpages); 2613 vma = remove_vma(vma); 2614 } while (vma); 2615 vm_unacct_memory(nr_accounted); 2616 validate_mm(mm); 2617 } 2618 2619 /* 2620 * Get rid of page table information in the indicated region. 2621 * 2622 * Called with the mm semaphore held. 2623 */ 2624 static void unmap_region(struct mm_struct *mm, 2625 struct vm_area_struct *vma, struct vm_area_struct *prev, 2626 unsigned long start, unsigned long end) 2627 { 2628 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2629 struct mmu_gather tlb; 2630 2631 lru_add_drain(); 2632 tlb_gather_mmu(&tlb, mm, start, end); 2633 update_hiwater_rss(mm); 2634 unmap_vmas(&tlb, vma, start, end); 2635 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2636 next ? next->vm_start : USER_PGTABLES_CEILING); 2637 tlb_finish_mmu(&tlb, start, end); 2638 } 2639 2640 /* 2641 * Create a list of vma's touched by the unmap, removing them from the mm's 2642 * vma list as we go.. 2643 */ 2644 static bool 2645 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2646 struct vm_area_struct *prev, unsigned long end) 2647 { 2648 struct vm_area_struct **insertion_point; 2649 struct vm_area_struct *tail_vma = NULL; 2650 2651 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2652 vma->vm_prev = NULL; 2653 do { 2654 vma_rb_erase(vma, &mm->mm_rb); 2655 mm->map_count--; 2656 tail_vma = vma; 2657 vma = vma->vm_next; 2658 } while (vma && vma->vm_start < end); 2659 *insertion_point = vma; 2660 if (vma) { 2661 vma->vm_prev = prev; 2662 vma_gap_update(vma); 2663 } else 2664 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2665 tail_vma->vm_next = NULL; 2666 2667 /* Kill the cache */ 2668 vmacache_invalidate(mm); 2669 2670 /* 2671 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2672 * VM_GROWSUP VMA. Such VMAs can change their size under 2673 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2674 */ 2675 if (vma && (vma->vm_flags & VM_GROWSDOWN)) 2676 return false; 2677 if (prev && (prev->vm_flags & VM_GROWSUP)) 2678 return false; 2679 return true; 2680 } 2681 2682 /* 2683 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2684 * has already been checked or doesn't make sense to fail. 2685 */ 2686 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2687 unsigned long addr, int new_below) 2688 { 2689 struct vm_area_struct *new; 2690 int err; 2691 2692 if (vma->vm_ops && vma->vm_ops->split) { 2693 err = vma->vm_ops->split(vma, addr); 2694 if (err) 2695 return err; 2696 } 2697 2698 new = vm_area_dup(vma); 2699 if (!new) 2700 return -ENOMEM; 2701 2702 if (new_below) 2703 new->vm_end = addr; 2704 else { 2705 new->vm_start = addr; 2706 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2707 } 2708 2709 err = vma_dup_policy(vma, new); 2710 if (err) 2711 goto out_free_vma; 2712 2713 err = anon_vma_clone(new, vma); 2714 if (err) 2715 goto out_free_mpol; 2716 2717 if (new->vm_file) 2718 get_file(new->vm_file); 2719 2720 if (new->vm_ops && new->vm_ops->open) 2721 new->vm_ops->open(new); 2722 2723 if (new_below) 2724 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2725 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2726 else 2727 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2728 2729 /* Success. */ 2730 if (!err) 2731 return 0; 2732 2733 /* Clean everything up if vma_adjust failed. */ 2734 if (new->vm_ops && new->vm_ops->close) 2735 new->vm_ops->close(new); 2736 if (new->vm_file) 2737 fput(new->vm_file); 2738 unlink_anon_vmas(new); 2739 out_free_mpol: 2740 mpol_put(vma_policy(new)); 2741 out_free_vma: 2742 vm_area_free(new); 2743 return err; 2744 } 2745 2746 /* 2747 * Split a vma into two pieces at address 'addr', a new vma is allocated 2748 * either for the first part or the tail. 2749 */ 2750 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2751 unsigned long addr, int new_below) 2752 { 2753 if (mm->map_count >= sysctl_max_map_count) 2754 return -ENOMEM; 2755 2756 return __split_vma(mm, vma, addr, new_below); 2757 } 2758 2759 /* Munmap is split into 2 main parts -- this part which finds 2760 * what needs doing, and the areas themselves, which do the 2761 * work. This now handles partial unmappings. 2762 * Jeremy Fitzhardinge <jeremy@goop.org> 2763 */ 2764 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2765 struct list_head *uf, bool downgrade) 2766 { 2767 unsigned long end; 2768 struct vm_area_struct *vma, *prev, *last; 2769 2770 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2771 return -EINVAL; 2772 2773 len = PAGE_ALIGN(len); 2774 end = start + len; 2775 if (len == 0) 2776 return -EINVAL; 2777 2778 /* 2779 * arch_unmap() might do unmaps itself. It must be called 2780 * and finish any rbtree manipulation before this code 2781 * runs and also starts to manipulate the rbtree. 2782 */ 2783 arch_unmap(mm, start, end); 2784 2785 /* Find the first overlapping VMA */ 2786 vma = find_vma(mm, start); 2787 if (!vma) 2788 return 0; 2789 prev = vma->vm_prev; 2790 /* we have start < vma->vm_end */ 2791 2792 /* if it doesn't overlap, we have nothing.. */ 2793 if (vma->vm_start >= end) 2794 return 0; 2795 2796 /* 2797 * If we need to split any vma, do it now to save pain later. 2798 * 2799 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2800 * unmapped vm_area_struct will remain in use: so lower split_vma 2801 * places tmp vma above, and higher split_vma places tmp vma below. 2802 */ 2803 if (start > vma->vm_start) { 2804 int error; 2805 2806 /* 2807 * Make sure that map_count on return from munmap() will 2808 * not exceed its limit; but let map_count go just above 2809 * its limit temporarily, to help free resources as expected. 2810 */ 2811 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2812 return -ENOMEM; 2813 2814 error = __split_vma(mm, vma, start, 0); 2815 if (error) 2816 return error; 2817 prev = vma; 2818 } 2819 2820 /* Does it split the last one? */ 2821 last = find_vma(mm, end); 2822 if (last && end > last->vm_start) { 2823 int error = __split_vma(mm, last, end, 1); 2824 if (error) 2825 return error; 2826 } 2827 vma = prev ? prev->vm_next : mm->mmap; 2828 2829 if (unlikely(uf)) { 2830 /* 2831 * If userfaultfd_unmap_prep returns an error the vmas 2832 * will remain splitted, but userland will get a 2833 * highly unexpected error anyway. This is no 2834 * different than the case where the first of the two 2835 * __split_vma fails, but we don't undo the first 2836 * split, despite we could. This is unlikely enough 2837 * failure that it's not worth optimizing it for. 2838 */ 2839 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2840 if (error) 2841 return error; 2842 } 2843 2844 /* 2845 * unlock any mlock()ed ranges before detaching vmas 2846 */ 2847 if (mm->locked_vm) { 2848 struct vm_area_struct *tmp = vma; 2849 while (tmp && tmp->vm_start < end) { 2850 if (tmp->vm_flags & VM_LOCKED) { 2851 mm->locked_vm -= vma_pages(tmp); 2852 munlock_vma_pages_all(tmp); 2853 } 2854 2855 tmp = tmp->vm_next; 2856 } 2857 } 2858 2859 /* Detach vmas from rbtree */ 2860 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end)) 2861 downgrade = false; 2862 2863 if (downgrade) 2864 mmap_write_downgrade(mm); 2865 2866 unmap_region(mm, vma, prev, start, end); 2867 2868 /* Fix up all other VM information */ 2869 remove_vma_list(mm, vma); 2870 2871 return downgrade ? 1 : 0; 2872 } 2873 2874 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2875 struct list_head *uf) 2876 { 2877 return __do_munmap(mm, start, len, uf, false); 2878 } 2879 2880 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2881 { 2882 int ret; 2883 struct mm_struct *mm = current->mm; 2884 LIST_HEAD(uf); 2885 2886 if (mmap_write_lock_killable(mm)) 2887 return -EINTR; 2888 2889 ret = __do_munmap(mm, start, len, &uf, downgrade); 2890 /* 2891 * Returning 1 indicates mmap_lock is downgraded. 2892 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2893 * it to 0 before return. 2894 */ 2895 if (ret == 1) { 2896 mmap_read_unlock(mm); 2897 ret = 0; 2898 } else 2899 mmap_write_unlock(mm); 2900 2901 userfaultfd_unmap_complete(mm, &uf); 2902 return ret; 2903 } 2904 2905 int vm_munmap(unsigned long start, size_t len) 2906 { 2907 return __vm_munmap(start, len, false); 2908 } 2909 EXPORT_SYMBOL(vm_munmap); 2910 2911 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2912 { 2913 addr = untagged_addr(addr); 2914 profile_munmap(addr); 2915 return __vm_munmap(addr, len, true); 2916 } 2917 2918 2919 /* 2920 * Emulation of deprecated remap_file_pages() syscall. 2921 */ 2922 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2923 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2924 { 2925 2926 struct mm_struct *mm = current->mm; 2927 struct vm_area_struct *vma; 2928 unsigned long populate = 0; 2929 unsigned long ret = -EINVAL; 2930 struct file *file; 2931 2932 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2933 current->comm, current->pid); 2934 2935 if (prot) 2936 return ret; 2937 start = start & PAGE_MASK; 2938 size = size & PAGE_MASK; 2939 2940 if (start + size <= start) 2941 return ret; 2942 2943 /* Does pgoff wrap? */ 2944 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2945 return ret; 2946 2947 if (mmap_write_lock_killable(mm)) 2948 return -EINTR; 2949 2950 vma = find_vma(mm, start); 2951 2952 if (!vma || !(vma->vm_flags & VM_SHARED)) 2953 goto out; 2954 2955 if (start < vma->vm_start) 2956 goto out; 2957 2958 if (start + size > vma->vm_end) { 2959 struct vm_area_struct *next; 2960 2961 for (next = vma->vm_next; next; next = next->vm_next) { 2962 /* hole between vmas ? */ 2963 if (next->vm_start != next->vm_prev->vm_end) 2964 goto out; 2965 2966 if (next->vm_file != vma->vm_file) 2967 goto out; 2968 2969 if (next->vm_flags != vma->vm_flags) 2970 goto out; 2971 2972 if (start + size <= next->vm_end) 2973 break; 2974 } 2975 2976 if (!next) 2977 goto out; 2978 } 2979 2980 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2981 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2982 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2983 2984 flags &= MAP_NONBLOCK; 2985 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2986 if (vma->vm_flags & VM_LOCKED) { 2987 struct vm_area_struct *tmp; 2988 flags |= MAP_LOCKED; 2989 2990 /* drop PG_Mlocked flag for over-mapped range */ 2991 for (tmp = vma; tmp->vm_start >= start + size; 2992 tmp = tmp->vm_next) { 2993 /* 2994 * Split pmd and munlock page on the border 2995 * of the range. 2996 */ 2997 vma_adjust_trans_huge(tmp, start, start + size, 0); 2998 2999 munlock_vma_pages_range(tmp, 3000 max(tmp->vm_start, start), 3001 min(tmp->vm_end, start + size)); 3002 } 3003 } 3004 3005 file = get_file(vma->vm_file); 3006 ret = do_mmap(vma->vm_file, start, size, 3007 prot, flags, pgoff, &populate, NULL); 3008 fput(file); 3009 out: 3010 mmap_write_unlock(mm); 3011 if (populate) 3012 mm_populate(ret, populate); 3013 if (!IS_ERR_VALUE(ret)) 3014 ret = 0; 3015 return ret; 3016 } 3017 3018 /* 3019 * this is really a simplified "do_mmap". it only handles 3020 * anonymous maps. eventually we may be able to do some 3021 * brk-specific accounting here. 3022 */ 3023 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 3024 { 3025 struct mm_struct *mm = current->mm; 3026 struct vm_area_struct *vma, *prev; 3027 struct rb_node **rb_link, *rb_parent; 3028 pgoff_t pgoff = addr >> PAGE_SHIFT; 3029 int error; 3030 unsigned long mapped_addr; 3031 3032 /* Until we need other flags, refuse anything except VM_EXEC. */ 3033 if ((flags & (~VM_EXEC)) != 0) 3034 return -EINVAL; 3035 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3036 3037 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3038 if (IS_ERR_VALUE(mapped_addr)) 3039 return mapped_addr; 3040 3041 error = mlock_future_check(mm, mm->def_flags, len); 3042 if (error) 3043 return error; 3044 3045 /* 3046 * Clear old maps. this also does some error checking for us 3047 */ 3048 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 3049 &rb_parent)) { 3050 if (do_munmap(mm, addr, len, uf)) 3051 return -ENOMEM; 3052 } 3053 3054 /* Check against address space limits *after* clearing old maps... */ 3055 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3056 return -ENOMEM; 3057 3058 if (mm->map_count > sysctl_max_map_count) 3059 return -ENOMEM; 3060 3061 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3062 return -ENOMEM; 3063 3064 /* Can we just expand an old private anonymous mapping? */ 3065 vma = vma_merge(mm, prev, addr, addr + len, flags, 3066 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3067 if (vma) 3068 goto out; 3069 3070 /* 3071 * create a vma struct for an anonymous mapping 3072 */ 3073 vma = vm_area_alloc(mm); 3074 if (!vma) { 3075 vm_unacct_memory(len >> PAGE_SHIFT); 3076 return -ENOMEM; 3077 } 3078 3079 vma_set_anonymous(vma); 3080 vma->vm_start = addr; 3081 vma->vm_end = addr + len; 3082 vma->vm_pgoff = pgoff; 3083 vma->vm_flags = flags; 3084 vma->vm_page_prot = vm_get_page_prot(flags); 3085 vma_link(mm, vma, prev, rb_link, rb_parent); 3086 out: 3087 perf_event_mmap(vma); 3088 mm->total_vm += len >> PAGE_SHIFT; 3089 mm->data_vm += len >> PAGE_SHIFT; 3090 if (flags & VM_LOCKED) 3091 mm->locked_vm += (len >> PAGE_SHIFT); 3092 vma->vm_flags |= VM_SOFTDIRTY; 3093 return 0; 3094 } 3095 3096 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3097 { 3098 struct mm_struct *mm = current->mm; 3099 unsigned long len; 3100 int ret; 3101 bool populate; 3102 LIST_HEAD(uf); 3103 3104 len = PAGE_ALIGN(request); 3105 if (len < request) 3106 return -ENOMEM; 3107 if (!len) 3108 return 0; 3109 3110 if (mmap_write_lock_killable(mm)) 3111 return -EINTR; 3112 3113 ret = do_brk_flags(addr, len, flags, &uf); 3114 populate = ((mm->def_flags & VM_LOCKED) != 0); 3115 mmap_write_unlock(mm); 3116 userfaultfd_unmap_complete(mm, &uf); 3117 if (populate && !ret) 3118 mm_populate(addr, len); 3119 return ret; 3120 } 3121 EXPORT_SYMBOL(vm_brk_flags); 3122 3123 int vm_brk(unsigned long addr, unsigned long len) 3124 { 3125 return vm_brk_flags(addr, len, 0); 3126 } 3127 EXPORT_SYMBOL(vm_brk); 3128 3129 /* Release all mmaps. */ 3130 void exit_mmap(struct mm_struct *mm) 3131 { 3132 struct mmu_gather tlb; 3133 struct vm_area_struct *vma; 3134 unsigned long nr_accounted = 0; 3135 3136 /* mm's last user has gone, and its about to be pulled down */ 3137 mmu_notifier_release(mm); 3138 3139 if (unlikely(mm_is_oom_victim(mm))) { 3140 /* 3141 * Manually reap the mm to free as much memory as possible. 3142 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3143 * this mm from further consideration. Taking mm->mmap_lock for 3144 * write after setting MMF_OOM_SKIP will guarantee that the oom 3145 * reaper will not run on this mm again after mmap_lock is 3146 * dropped. 3147 * 3148 * Nothing can be holding mm->mmap_lock here and the above call 3149 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3150 * __oom_reap_task_mm() will not block. 3151 * 3152 * This needs to be done before calling munlock_vma_pages_all(), 3153 * which clears VM_LOCKED, otherwise the oom reaper cannot 3154 * reliably test it. 3155 */ 3156 (void)__oom_reap_task_mm(mm); 3157 3158 set_bit(MMF_OOM_SKIP, &mm->flags); 3159 mmap_write_lock(mm); 3160 mmap_write_unlock(mm); 3161 } 3162 3163 if (mm->locked_vm) { 3164 vma = mm->mmap; 3165 while (vma) { 3166 if (vma->vm_flags & VM_LOCKED) 3167 munlock_vma_pages_all(vma); 3168 vma = vma->vm_next; 3169 } 3170 } 3171 3172 arch_exit_mmap(mm); 3173 3174 vma = mm->mmap; 3175 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3176 return; 3177 3178 lru_add_drain(); 3179 flush_cache_mm(mm); 3180 tlb_gather_mmu(&tlb, mm, 0, -1); 3181 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3182 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3183 unmap_vmas(&tlb, vma, 0, -1); 3184 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3185 tlb_finish_mmu(&tlb, 0, -1); 3186 3187 /* 3188 * Walk the list again, actually closing and freeing it, 3189 * with preemption enabled, without holding any MM locks. 3190 */ 3191 while (vma) { 3192 if (vma->vm_flags & VM_ACCOUNT) 3193 nr_accounted += vma_pages(vma); 3194 vma = remove_vma(vma); 3195 cond_resched(); 3196 } 3197 vm_unacct_memory(nr_accounted); 3198 } 3199 3200 /* Insert vm structure into process list sorted by address 3201 * and into the inode's i_mmap tree. If vm_file is non-NULL 3202 * then i_mmap_rwsem is taken here. 3203 */ 3204 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3205 { 3206 struct vm_area_struct *prev; 3207 struct rb_node **rb_link, *rb_parent; 3208 3209 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3210 &prev, &rb_link, &rb_parent)) 3211 return -ENOMEM; 3212 if ((vma->vm_flags & VM_ACCOUNT) && 3213 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3214 return -ENOMEM; 3215 3216 /* 3217 * The vm_pgoff of a purely anonymous vma should be irrelevant 3218 * until its first write fault, when page's anon_vma and index 3219 * are set. But now set the vm_pgoff it will almost certainly 3220 * end up with (unless mremap moves it elsewhere before that 3221 * first wfault), so /proc/pid/maps tells a consistent story. 3222 * 3223 * By setting it to reflect the virtual start address of the 3224 * vma, merges and splits can happen in a seamless way, just 3225 * using the existing file pgoff checks and manipulations. 3226 * Similarly in do_mmap and in do_brk. 3227 */ 3228 if (vma_is_anonymous(vma)) { 3229 BUG_ON(vma->anon_vma); 3230 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3231 } 3232 3233 vma_link(mm, vma, prev, rb_link, rb_parent); 3234 return 0; 3235 } 3236 3237 /* 3238 * Copy the vma structure to a new location in the same mm, 3239 * prior to moving page table entries, to effect an mremap move. 3240 */ 3241 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3242 unsigned long addr, unsigned long len, pgoff_t pgoff, 3243 bool *need_rmap_locks) 3244 { 3245 struct vm_area_struct *vma = *vmap; 3246 unsigned long vma_start = vma->vm_start; 3247 struct mm_struct *mm = vma->vm_mm; 3248 struct vm_area_struct *new_vma, *prev; 3249 struct rb_node **rb_link, *rb_parent; 3250 bool faulted_in_anon_vma = true; 3251 3252 /* 3253 * If anonymous vma has not yet been faulted, update new pgoff 3254 * to match new location, to increase its chance of merging. 3255 */ 3256 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3257 pgoff = addr >> PAGE_SHIFT; 3258 faulted_in_anon_vma = false; 3259 } 3260 3261 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3262 return NULL; /* should never get here */ 3263 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3264 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3265 vma->vm_userfaultfd_ctx); 3266 if (new_vma) { 3267 /* 3268 * Source vma may have been merged into new_vma 3269 */ 3270 if (unlikely(vma_start >= new_vma->vm_start && 3271 vma_start < new_vma->vm_end)) { 3272 /* 3273 * The only way we can get a vma_merge with 3274 * self during an mremap is if the vma hasn't 3275 * been faulted in yet and we were allowed to 3276 * reset the dst vma->vm_pgoff to the 3277 * destination address of the mremap to allow 3278 * the merge to happen. mremap must change the 3279 * vm_pgoff linearity between src and dst vmas 3280 * (in turn preventing a vma_merge) to be 3281 * safe. It is only safe to keep the vm_pgoff 3282 * linear if there are no pages mapped yet. 3283 */ 3284 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3285 *vmap = vma = new_vma; 3286 } 3287 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3288 } else { 3289 new_vma = vm_area_dup(vma); 3290 if (!new_vma) 3291 goto out; 3292 new_vma->vm_start = addr; 3293 new_vma->vm_end = addr + len; 3294 new_vma->vm_pgoff = pgoff; 3295 if (vma_dup_policy(vma, new_vma)) 3296 goto out_free_vma; 3297 if (anon_vma_clone(new_vma, vma)) 3298 goto out_free_mempol; 3299 if (new_vma->vm_file) 3300 get_file(new_vma->vm_file); 3301 if (new_vma->vm_ops && new_vma->vm_ops->open) 3302 new_vma->vm_ops->open(new_vma); 3303 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3304 *need_rmap_locks = false; 3305 } 3306 return new_vma; 3307 3308 out_free_mempol: 3309 mpol_put(vma_policy(new_vma)); 3310 out_free_vma: 3311 vm_area_free(new_vma); 3312 out: 3313 return NULL; 3314 } 3315 3316 /* 3317 * Return true if the calling process may expand its vm space by the passed 3318 * number of pages 3319 */ 3320 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3321 { 3322 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3323 return false; 3324 3325 if (is_data_mapping(flags) && 3326 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3327 /* Workaround for Valgrind */ 3328 if (rlimit(RLIMIT_DATA) == 0 && 3329 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3330 return true; 3331 3332 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3333 current->comm, current->pid, 3334 (mm->data_vm + npages) << PAGE_SHIFT, 3335 rlimit(RLIMIT_DATA), 3336 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3337 3338 if (!ignore_rlimit_data) 3339 return false; 3340 } 3341 3342 return true; 3343 } 3344 3345 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3346 { 3347 mm->total_vm += npages; 3348 3349 if (is_exec_mapping(flags)) 3350 mm->exec_vm += npages; 3351 else if (is_stack_mapping(flags)) 3352 mm->stack_vm += npages; 3353 else if (is_data_mapping(flags)) 3354 mm->data_vm += npages; 3355 } 3356 3357 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3358 3359 /* 3360 * Having a close hook prevents vma merging regardless of flags. 3361 */ 3362 static void special_mapping_close(struct vm_area_struct *vma) 3363 { 3364 } 3365 3366 static const char *special_mapping_name(struct vm_area_struct *vma) 3367 { 3368 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3369 } 3370 3371 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3372 { 3373 struct vm_special_mapping *sm = new_vma->vm_private_data; 3374 3375 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3376 return -EFAULT; 3377 3378 if (sm->mremap) 3379 return sm->mremap(sm, new_vma); 3380 3381 return 0; 3382 } 3383 3384 static const struct vm_operations_struct special_mapping_vmops = { 3385 .close = special_mapping_close, 3386 .fault = special_mapping_fault, 3387 .mremap = special_mapping_mremap, 3388 .name = special_mapping_name, 3389 /* vDSO code relies that VVAR can't be accessed remotely */ 3390 .access = NULL, 3391 }; 3392 3393 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3394 .close = special_mapping_close, 3395 .fault = special_mapping_fault, 3396 }; 3397 3398 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3399 { 3400 struct vm_area_struct *vma = vmf->vma; 3401 pgoff_t pgoff; 3402 struct page **pages; 3403 3404 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3405 pages = vma->vm_private_data; 3406 } else { 3407 struct vm_special_mapping *sm = vma->vm_private_data; 3408 3409 if (sm->fault) 3410 return sm->fault(sm, vmf->vma, vmf); 3411 3412 pages = sm->pages; 3413 } 3414 3415 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3416 pgoff--; 3417 3418 if (*pages) { 3419 struct page *page = *pages; 3420 get_page(page); 3421 vmf->page = page; 3422 return 0; 3423 } 3424 3425 return VM_FAULT_SIGBUS; 3426 } 3427 3428 static struct vm_area_struct *__install_special_mapping( 3429 struct mm_struct *mm, 3430 unsigned long addr, unsigned long len, 3431 unsigned long vm_flags, void *priv, 3432 const struct vm_operations_struct *ops) 3433 { 3434 int ret; 3435 struct vm_area_struct *vma; 3436 3437 vma = vm_area_alloc(mm); 3438 if (unlikely(vma == NULL)) 3439 return ERR_PTR(-ENOMEM); 3440 3441 vma->vm_start = addr; 3442 vma->vm_end = addr + len; 3443 3444 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3445 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3446 3447 vma->vm_ops = ops; 3448 vma->vm_private_data = priv; 3449 3450 ret = insert_vm_struct(mm, vma); 3451 if (ret) 3452 goto out; 3453 3454 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3455 3456 perf_event_mmap(vma); 3457 3458 return vma; 3459 3460 out: 3461 vm_area_free(vma); 3462 return ERR_PTR(ret); 3463 } 3464 3465 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3466 const struct vm_special_mapping *sm) 3467 { 3468 return vma->vm_private_data == sm && 3469 (vma->vm_ops == &special_mapping_vmops || 3470 vma->vm_ops == &legacy_special_mapping_vmops); 3471 } 3472 3473 /* 3474 * Called with mm->mmap_lock held for writing. 3475 * Insert a new vma covering the given region, with the given flags. 3476 * Its pages are supplied by the given array of struct page *. 3477 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3478 * The region past the last page supplied will always produce SIGBUS. 3479 * The array pointer and the pages it points to are assumed to stay alive 3480 * for as long as this mapping might exist. 3481 */ 3482 struct vm_area_struct *_install_special_mapping( 3483 struct mm_struct *mm, 3484 unsigned long addr, unsigned long len, 3485 unsigned long vm_flags, const struct vm_special_mapping *spec) 3486 { 3487 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3488 &special_mapping_vmops); 3489 } 3490 3491 int install_special_mapping(struct mm_struct *mm, 3492 unsigned long addr, unsigned long len, 3493 unsigned long vm_flags, struct page **pages) 3494 { 3495 struct vm_area_struct *vma = __install_special_mapping( 3496 mm, addr, len, vm_flags, (void *)pages, 3497 &legacy_special_mapping_vmops); 3498 3499 return PTR_ERR_OR_ZERO(vma); 3500 } 3501 3502 static DEFINE_MUTEX(mm_all_locks_mutex); 3503 3504 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3505 { 3506 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3507 /* 3508 * The LSB of head.next can't change from under us 3509 * because we hold the mm_all_locks_mutex. 3510 */ 3511 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3512 /* 3513 * We can safely modify head.next after taking the 3514 * anon_vma->root->rwsem. If some other vma in this mm shares 3515 * the same anon_vma we won't take it again. 3516 * 3517 * No need of atomic instructions here, head.next 3518 * can't change from under us thanks to the 3519 * anon_vma->root->rwsem. 3520 */ 3521 if (__test_and_set_bit(0, (unsigned long *) 3522 &anon_vma->root->rb_root.rb_root.rb_node)) 3523 BUG(); 3524 } 3525 } 3526 3527 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3528 { 3529 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3530 /* 3531 * AS_MM_ALL_LOCKS can't change from under us because 3532 * we hold the mm_all_locks_mutex. 3533 * 3534 * Operations on ->flags have to be atomic because 3535 * even if AS_MM_ALL_LOCKS is stable thanks to the 3536 * mm_all_locks_mutex, there may be other cpus 3537 * changing other bitflags in parallel to us. 3538 */ 3539 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3540 BUG(); 3541 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3542 } 3543 } 3544 3545 /* 3546 * This operation locks against the VM for all pte/vma/mm related 3547 * operations that could ever happen on a certain mm. This includes 3548 * vmtruncate, try_to_unmap, and all page faults. 3549 * 3550 * The caller must take the mmap_lock in write mode before calling 3551 * mm_take_all_locks(). The caller isn't allowed to release the 3552 * mmap_lock until mm_drop_all_locks() returns. 3553 * 3554 * mmap_lock in write mode is required in order to block all operations 3555 * that could modify pagetables and free pages without need of 3556 * altering the vma layout. It's also needed in write mode to avoid new 3557 * anon_vmas to be associated with existing vmas. 3558 * 3559 * A single task can't take more than one mm_take_all_locks() in a row 3560 * or it would deadlock. 3561 * 3562 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3563 * mapping->flags avoid to take the same lock twice, if more than one 3564 * vma in this mm is backed by the same anon_vma or address_space. 3565 * 3566 * We take locks in following order, accordingly to comment at beginning 3567 * of mm/rmap.c: 3568 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3569 * hugetlb mapping); 3570 * - all i_mmap_rwsem locks; 3571 * - all anon_vma->rwseml 3572 * 3573 * We can take all locks within these types randomly because the VM code 3574 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3575 * mm_all_locks_mutex. 3576 * 3577 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3578 * that may have to take thousand of locks. 3579 * 3580 * mm_take_all_locks() can fail if it's interrupted by signals. 3581 */ 3582 int mm_take_all_locks(struct mm_struct *mm) 3583 { 3584 struct vm_area_struct *vma; 3585 struct anon_vma_chain *avc; 3586 3587 BUG_ON(mmap_read_trylock(mm)); 3588 3589 mutex_lock(&mm_all_locks_mutex); 3590 3591 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3592 if (signal_pending(current)) 3593 goto out_unlock; 3594 if (vma->vm_file && vma->vm_file->f_mapping && 3595 is_vm_hugetlb_page(vma)) 3596 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3597 } 3598 3599 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3600 if (signal_pending(current)) 3601 goto out_unlock; 3602 if (vma->vm_file && vma->vm_file->f_mapping && 3603 !is_vm_hugetlb_page(vma)) 3604 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3605 } 3606 3607 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3608 if (signal_pending(current)) 3609 goto out_unlock; 3610 if (vma->anon_vma) 3611 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3612 vm_lock_anon_vma(mm, avc->anon_vma); 3613 } 3614 3615 return 0; 3616 3617 out_unlock: 3618 mm_drop_all_locks(mm); 3619 return -EINTR; 3620 } 3621 3622 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3623 { 3624 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3625 /* 3626 * The LSB of head.next can't change to 0 from under 3627 * us because we hold the mm_all_locks_mutex. 3628 * 3629 * We must however clear the bitflag before unlocking 3630 * the vma so the users using the anon_vma->rb_root will 3631 * never see our bitflag. 3632 * 3633 * No need of atomic instructions here, head.next 3634 * can't change from under us until we release the 3635 * anon_vma->root->rwsem. 3636 */ 3637 if (!__test_and_clear_bit(0, (unsigned long *) 3638 &anon_vma->root->rb_root.rb_root.rb_node)) 3639 BUG(); 3640 anon_vma_unlock_write(anon_vma); 3641 } 3642 } 3643 3644 static void vm_unlock_mapping(struct address_space *mapping) 3645 { 3646 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3647 /* 3648 * AS_MM_ALL_LOCKS can't change to 0 from under us 3649 * because we hold the mm_all_locks_mutex. 3650 */ 3651 i_mmap_unlock_write(mapping); 3652 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3653 &mapping->flags)) 3654 BUG(); 3655 } 3656 } 3657 3658 /* 3659 * The mmap_lock cannot be released by the caller until 3660 * mm_drop_all_locks() returns. 3661 */ 3662 void mm_drop_all_locks(struct mm_struct *mm) 3663 { 3664 struct vm_area_struct *vma; 3665 struct anon_vma_chain *avc; 3666 3667 BUG_ON(mmap_read_trylock(mm)); 3668 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3669 3670 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3671 if (vma->anon_vma) 3672 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3673 vm_unlock_anon_vma(avc->anon_vma); 3674 if (vma->vm_file && vma->vm_file->f_mapping) 3675 vm_unlock_mapping(vma->vm_file->f_mapping); 3676 } 3677 3678 mutex_unlock(&mm_all_locks_mutex); 3679 } 3680 3681 /* 3682 * initialise the percpu counter for VM 3683 */ 3684 void __init mmap_init(void) 3685 { 3686 int ret; 3687 3688 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3689 VM_BUG_ON(ret); 3690 } 3691 3692 /* 3693 * Initialise sysctl_user_reserve_kbytes. 3694 * 3695 * This is intended to prevent a user from starting a single memory hogging 3696 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3697 * mode. 3698 * 3699 * The default value is min(3% of free memory, 128MB) 3700 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3701 */ 3702 static int init_user_reserve(void) 3703 { 3704 unsigned long free_kbytes; 3705 3706 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3707 3708 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3709 return 0; 3710 } 3711 subsys_initcall(init_user_reserve); 3712 3713 /* 3714 * Initialise sysctl_admin_reserve_kbytes. 3715 * 3716 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3717 * to log in and kill a memory hogging process. 3718 * 3719 * Systems with more than 256MB will reserve 8MB, enough to recover 3720 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3721 * only reserve 3% of free pages by default. 3722 */ 3723 static int init_admin_reserve(void) 3724 { 3725 unsigned long free_kbytes; 3726 3727 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3728 3729 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3730 return 0; 3731 } 3732 subsys_initcall(init_admin_reserve); 3733 3734 /* 3735 * Reinititalise user and admin reserves if memory is added or removed. 3736 * 3737 * The default user reserve max is 128MB, and the default max for the 3738 * admin reserve is 8MB. These are usually, but not always, enough to 3739 * enable recovery from a memory hogging process using login/sshd, a shell, 3740 * and tools like top. It may make sense to increase or even disable the 3741 * reserve depending on the existence of swap or variations in the recovery 3742 * tools. So, the admin may have changed them. 3743 * 3744 * If memory is added and the reserves have been eliminated or increased above 3745 * the default max, then we'll trust the admin. 3746 * 3747 * If memory is removed and there isn't enough free memory, then we 3748 * need to reset the reserves. 3749 * 3750 * Otherwise keep the reserve set by the admin. 3751 */ 3752 static int reserve_mem_notifier(struct notifier_block *nb, 3753 unsigned long action, void *data) 3754 { 3755 unsigned long tmp, free_kbytes; 3756 3757 switch (action) { 3758 case MEM_ONLINE: 3759 /* Default max is 128MB. Leave alone if modified by operator. */ 3760 tmp = sysctl_user_reserve_kbytes; 3761 if (0 < tmp && tmp < (1UL << 17)) 3762 init_user_reserve(); 3763 3764 /* Default max is 8MB. Leave alone if modified by operator. */ 3765 tmp = sysctl_admin_reserve_kbytes; 3766 if (0 < tmp && tmp < (1UL << 13)) 3767 init_admin_reserve(); 3768 3769 break; 3770 case MEM_OFFLINE: 3771 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3772 3773 if (sysctl_user_reserve_kbytes > free_kbytes) { 3774 init_user_reserve(); 3775 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3776 sysctl_user_reserve_kbytes); 3777 } 3778 3779 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3780 init_admin_reserve(); 3781 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3782 sysctl_admin_reserve_kbytes); 3783 } 3784 break; 3785 default: 3786 break; 3787 } 3788 return NOTIFY_OK; 3789 } 3790 3791 static struct notifier_block reserve_mem_nb = { 3792 .notifier_call = reserve_mem_notifier, 3793 }; 3794 3795 static int __meminit init_reserve_notifier(void) 3796 { 3797 if (register_hotmemory_notifier(&reserve_mem_nb)) 3798 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3799 3800 return 0; 3801 } 3802 subsys_initcall(init_reserve_notifier); 3803