xref: /openbmc/linux/mm/mmap.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38 
39 #include "internal.h"
40 
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)	(0)
43 #endif
44 
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)		(addr)
47 #endif
48 
49 static void unmap_region(struct mm_struct *mm,
50 		struct vm_area_struct *vma, struct vm_area_struct *prev,
51 		unsigned long start, unsigned long end);
52 
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58 
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type	prot
64  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
65  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
66  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
67  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
68  *
69  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
70  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
71  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78 
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 	return __pgprot(pgprot_val(protection_map[vm_flags &
82 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86 
87 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio = 50;	/* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 struct percpu_counter vm_committed_as;
91 
92 /*
93  * Check that a process has enough memory to allocate a new virtual
94  * mapping. 0 means there is enough memory for the allocation to
95  * succeed and -ENOMEM implies there is not.
96  *
97  * We currently support three overcommit policies, which are set via the
98  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
99  *
100  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
101  * Additional code 2002 Jul 20 by Robert Love.
102  *
103  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
104  *
105  * Note this is a helper function intended to be used by LSMs which
106  * wish to use this logic.
107  */
108 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
109 {
110 	unsigned long free, allowed;
111 
112 	vm_acct_memory(pages);
113 
114 	/*
115 	 * Sometimes we want to use more memory than we have
116 	 */
117 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
118 		return 0;
119 
120 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
121 		unsigned long n;
122 
123 		free = global_page_state(NR_FILE_PAGES);
124 		free += nr_swap_pages;
125 
126 		/*
127 		 * Any slabs which are created with the
128 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
129 		 * which are reclaimable, under pressure.  The dentry
130 		 * cache and most inode caches should fall into this
131 		 */
132 		free += global_page_state(NR_SLAB_RECLAIMABLE);
133 
134 		/*
135 		 * Leave the last 3% for root
136 		 */
137 		if (!cap_sys_admin)
138 			free -= free / 32;
139 
140 		if (free > pages)
141 			return 0;
142 
143 		/*
144 		 * nr_free_pages() is very expensive on large systems,
145 		 * only call if we're about to fail.
146 		 */
147 		n = nr_free_pages();
148 
149 		/*
150 		 * Leave reserved pages. The pages are not for anonymous pages.
151 		 */
152 		if (n <= totalreserve_pages)
153 			goto error;
154 		else
155 			n -= totalreserve_pages;
156 
157 		/*
158 		 * Leave the last 3% for root
159 		 */
160 		if (!cap_sys_admin)
161 			n -= n / 32;
162 		free += n;
163 
164 		if (free > pages)
165 			return 0;
166 
167 		goto error;
168 	}
169 
170 	allowed = (totalram_pages - hugetlb_total_pages())
171 	       	* sysctl_overcommit_ratio / 100;
172 	/*
173 	 * Leave the last 3% for root
174 	 */
175 	if (!cap_sys_admin)
176 		allowed -= allowed / 32;
177 	allowed += total_swap_pages;
178 
179 	/* Don't let a single process grow too big:
180 	   leave 3% of the size of this process for other processes */
181 	if (mm)
182 		allowed -= mm->total_vm / 32;
183 
184 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
185 		return 0;
186 error:
187 	vm_unacct_memory(pages);
188 
189 	return -ENOMEM;
190 }
191 
192 /*
193  * Requires inode->i_mapping->i_mmap_lock
194  */
195 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
196 		struct file *file, struct address_space *mapping)
197 {
198 	if (vma->vm_flags & VM_DENYWRITE)
199 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
200 	if (vma->vm_flags & VM_SHARED)
201 		mapping->i_mmap_writable--;
202 
203 	flush_dcache_mmap_lock(mapping);
204 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
205 		list_del_init(&vma->shared.vm_set.list);
206 	else
207 		vma_prio_tree_remove(vma, &mapping->i_mmap);
208 	flush_dcache_mmap_unlock(mapping);
209 }
210 
211 /*
212  * Unlink a file-based vm structure from its prio_tree, to hide
213  * vma from rmap and vmtruncate before freeing its page tables.
214  */
215 void unlink_file_vma(struct vm_area_struct *vma)
216 {
217 	struct file *file = vma->vm_file;
218 
219 	if (file) {
220 		struct address_space *mapping = file->f_mapping;
221 		spin_lock(&mapping->i_mmap_lock);
222 		__remove_shared_vm_struct(vma, file, mapping);
223 		spin_unlock(&mapping->i_mmap_lock);
224 	}
225 }
226 
227 /*
228  * Close a vm structure and free it, returning the next.
229  */
230 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
231 {
232 	struct vm_area_struct *next = vma->vm_next;
233 
234 	might_sleep();
235 	if (vma->vm_ops && vma->vm_ops->close)
236 		vma->vm_ops->close(vma);
237 	if (vma->vm_file) {
238 		fput(vma->vm_file);
239 		if (vma->vm_flags & VM_EXECUTABLE)
240 			removed_exe_file_vma(vma->vm_mm);
241 	}
242 	mpol_put(vma_policy(vma));
243 	kmem_cache_free(vm_area_cachep, vma);
244 	return next;
245 }
246 
247 SYSCALL_DEFINE1(brk, unsigned long, brk)
248 {
249 	unsigned long rlim, retval;
250 	unsigned long newbrk, oldbrk;
251 	struct mm_struct *mm = current->mm;
252 	unsigned long min_brk;
253 
254 	down_write(&mm->mmap_sem);
255 
256 #ifdef CONFIG_COMPAT_BRK
257 	/*
258 	 * CONFIG_COMPAT_BRK can still be overridden by setting
259 	 * randomize_va_space to 2, which will still cause mm->start_brk
260 	 * to be arbitrarily shifted
261 	 */
262 	if (mm->start_brk > PAGE_ALIGN(mm->end_data))
263 		min_brk = mm->start_brk;
264 	else
265 		min_brk = mm->end_data;
266 #else
267 	min_brk = mm->start_brk;
268 #endif
269 	if (brk < min_brk)
270 		goto out;
271 
272 	/*
273 	 * Check against rlimit here. If this check is done later after the test
274 	 * of oldbrk with newbrk then it can escape the test and let the data
275 	 * segment grow beyond its set limit the in case where the limit is
276 	 * not page aligned -Ram Gupta
277 	 */
278 	rlim = rlimit(RLIMIT_DATA);
279 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
280 			(mm->end_data - mm->start_data) > rlim)
281 		goto out;
282 
283 	newbrk = PAGE_ALIGN(brk);
284 	oldbrk = PAGE_ALIGN(mm->brk);
285 	if (oldbrk == newbrk)
286 		goto set_brk;
287 
288 	/* Always allow shrinking brk. */
289 	if (brk <= mm->brk) {
290 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
291 			goto set_brk;
292 		goto out;
293 	}
294 
295 	/* Check against existing mmap mappings. */
296 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
297 		goto out;
298 
299 	/* Ok, looks good - let it rip. */
300 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
301 		goto out;
302 set_brk:
303 	mm->brk = brk;
304 out:
305 	retval = mm->brk;
306 	up_write(&mm->mmap_sem);
307 	return retval;
308 }
309 
310 #ifdef DEBUG_MM_RB
311 static int browse_rb(struct rb_root *root)
312 {
313 	int i = 0, j;
314 	struct rb_node *nd, *pn = NULL;
315 	unsigned long prev = 0, pend = 0;
316 
317 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
318 		struct vm_area_struct *vma;
319 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
320 		if (vma->vm_start < prev)
321 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
322 		if (vma->vm_start < pend)
323 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
324 		if (vma->vm_start > vma->vm_end)
325 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
326 		i++;
327 		pn = nd;
328 		prev = vma->vm_start;
329 		pend = vma->vm_end;
330 	}
331 	j = 0;
332 	for (nd = pn; nd; nd = rb_prev(nd)) {
333 		j++;
334 	}
335 	if (i != j)
336 		printk("backwards %d, forwards %d\n", j, i), i = 0;
337 	return i;
338 }
339 
340 void validate_mm(struct mm_struct *mm)
341 {
342 	int bug = 0;
343 	int i = 0;
344 	struct vm_area_struct *tmp = mm->mmap;
345 	while (tmp) {
346 		tmp = tmp->vm_next;
347 		i++;
348 	}
349 	if (i != mm->map_count)
350 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
351 	i = browse_rb(&mm->mm_rb);
352 	if (i != mm->map_count)
353 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
354 	BUG_ON(bug);
355 }
356 #else
357 #define validate_mm(mm) do { } while (0)
358 #endif
359 
360 static struct vm_area_struct *
361 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
362 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
363 		struct rb_node ** rb_parent)
364 {
365 	struct vm_area_struct * vma;
366 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
367 
368 	__rb_link = &mm->mm_rb.rb_node;
369 	rb_prev = __rb_parent = NULL;
370 	vma = NULL;
371 
372 	while (*__rb_link) {
373 		struct vm_area_struct *vma_tmp;
374 
375 		__rb_parent = *__rb_link;
376 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
377 
378 		if (vma_tmp->vm_end > addr) {
379 			vma = vma_tmp;
380 			if (vma_tmp->vm_start <= addr)
381 				break;
382 			__rb_link = &__rb_parent->rb_left;
383 		} else {
384 			rb_prev = __rb_parent;
385 			__rb_link = &__rb_parent->rb_right;
386 		}
387 	}
388 
389 	*pprev = NULL;
390 	if (rb_prev)
391 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
392 	*rb_link = __rb_link;
393 	*rb_parent = __rb_parent;
394 	return vma;
395 }
396 
397 static inline void
398 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
399 		struct vm_area_struct *prev, struct rb_node *rb_parent)
400 {
401 	struct vm_area_struct *next;
402 
403 	vma->vm_prev = prev;
404 	if (prev) {
405 		next = prev->vm_next;
406 		prev->vm_next = vma;
407 	} else {
408 		mm->mmap = vma;
409 		if (rb_parent)
410 			next = rb_entry(rb_parent,
411 					struct vm_area_struct, vm_rb);
412 		else
413 			next = NULL;
414 	}
415 	vma->vm_next = next;
416 	if (next)
417 		next->vm_prev = vma;
418 }
419 
420 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
421 		struct rb_node **rb_link, struct rb_node *rb_parent)
422 {
423 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
424 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
425 }
426 
427 static void __vma_link_file(struct vm_area_struct *vma)
428 {
429 	struct file *file;
430 
431 	file = vma->vm_file;
432 	if (file) {
433 		struct address_space *mapping = file->f_mapping;
434 
435 		if (vma->vm_flags & VM_DENYWRITE)
436 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
437 		if (vma->vm_flags & VM_SHARED)
438 			mapping->i_mmap_writable++;
439 
440 		flush_dcache_mmap_lock(mapping);
441 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
442 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
443 		else
444 			vma_prio_tree_insert(vma, &mapping->i_mmap);
445 		flush_dcache_mmap_unlock(mapping);
446 	}
447 }
448 
449 static void
450 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
451 	struct vm_area_struct *prev, struct rb_node **rb_link,
452 	struct rb_node *rb_parent)
453 {
454 	__vma_link_list(mm, vma, prev, rb_parent);
455 	__vma_link_rb(mm, vma, rb_link, rb_parent);
456 }
457 
458 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
459 			struct vm_area_struct *prev, struct rb_node **rb_link,
460 			struct rb_node *rb_parent)
461 {
462 	struct address_space *mapping = NULL;
463 
464 	if (vma->vm_file)
465 		mapping = vma->vm_file->f_mapping;
466 
467 	if (mapping) {
468 		spin_lock(&mapping->i_mmap_lock);
469 		vma->vm_truncate_count = mapping->truncate_count;
470 	}
471 
472 	__vma_link(mm, vma, prev, rb_link, rb_parent);
473 	__vma_link_file(vma);
474 
475 	if (mapping)
476 		spin_unlock(&mapping->i_mmap_lock);
477 
478 	mm->map_count++;
479 	validate_mm(mm);
480 }
481 
482 /*
483  * Helper for vma_adjust in the split_vma insert case:
484  * insert vm structure into list and rbtree and anon_vma,
485  * but it has already been inserted into prio_tree earlier.
486  */
487 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
488 {
489 	struct vm_area_struct *__vma, *prev;
490 	struct rb_node **rb_link, *rb_parent;
491 
492 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
493 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
494 	__vma_link(mm, vma, prev, rb_link, rb_parent);
495 	mm->map_count++;
496 }
497 
498 static inline void
499 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
500 		struct vm_area_struct *prev)
501 {
502 	struct vm_area_struct *next = vma->vm_next;
503 
504 	prev->vm_next = next;
505 	if (next)
506 		next->vm_prev = prev;
507 	rb_erase(&vma->vm_rb, &mm->mm_rb);
508 	if (mm->mmap_cache == vma)
509 		mm->mmap_cache = prev;
510 }
511 
512 /*
513  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
514  * is already present in an i_mmap tree without adjusting the tree.
515  * The following helper function should be used when such adjustments
516  * are necessary.  The "insert" vma (if any) is to be inserted
517  * before we drop the necessary locks.
518  */
519 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
520 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
521 {
522 	struct mm_struct *mm = vma->vm_mm;
523 	struct vm_area_struct *next = vma->vm_next;
524 	struct vm_area_struct *importer = NULL;
525 	struct address_space *mapping = NULL;
526 	struct prio_tree_root *root = NULL;
527 	struct anon_vma *anon_vma = NULL;
528 	struct file *file = vma->vm_file;
529 	long adjust_next = 0;
530 	int remove_next = 0;
531 
532 	if (next && !insert) {
533 		struct vm_area_struct *exporter = NULL;
534 
535 		if (end >= next->vm_end) {
536 			/*
537 			 * vma expands, overlapping all the next, and
538 			 * perhaps the one after too (mprotect case 6).
539 			 */
540 again:			remove_next = 1 + (end > next->vm_end);
541 			end = next->vm_end;
542 			exporter = next;
543 			importer = vma;
544 		} else if (end > next->vm_start) {
545 			/*
546 			 * vma expands, overlapping part of the next:
547 			 * mprotect case 5 shifting the boundary up.
548 			 */
549 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
550 			exporter = next;
551 			importer = vma;
552 		} else if (end < vma->vm_end) {
553 			/*
554 			 * vma shrinks, and !insert tells it's not
555 			 * split_vma inserting another: so it must be
556 			 * mprotect case 4 shifting the boundary down.
557 			 */
558 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
559 			exporter = vma;
560 			importer = next;
561 		}
562 
563 		/*
564 		 * Easily overlooked: when mprotect shifts the boundary,
565 		 * make sure the expanding vma has anon_vma set if the
566 		 * shrinking vma had, to cover any anon pages imported.
567 		 */
568 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
569 			if (anon_vma_clone(importer, exporter))
570 				return -ENOMEM;
571 			importer->anon_vma = exporter->anon_vma;
572 		}
573 	}
574 
575 	if (file) {
576 		mapping = file->f_mapping;
577 		if (!(vma->vm_flags & VM_NONLINEAR))
578 			root = &mapping->i_mmap;
579 		spin_lock(&mapping->i_mmap_lock);
580 		if (importer &&
581 		    vma->vm_truncate_count != next->vm_truncate_count) {
582 			/*
583 			 * unmap_mapping_range might be in progress:
584 			 * ensure that the expanding vma is rescanned.
585 			 */
586 			importer->vm_truncate_count = 0;
587 		}
588 		if (insert) {
589 			insert->vm_truncate_count = vma->vm_truncate_count;
590 			/*
591 			 * Put into prio_tree now, so instantiated pages
592 			 * are visible to arm/parisc __flush_dcache_page
593 			 * throughout; but we cannot insert into address
594 			 * space until vma start or end is updated.
595 			 */
596 			__vma_link_file(insert);
597 		}
598 	}
599 
600 	vma_adjust_trans_huge(vma, start, end, adjust_next);
601 
602 	/*
603 	 * When changing only vma->vm_end, we don't really need anon_vma
604 	 * lock. This is a fairly rare case by itself, but the anon_vma
605 	 * lock may be shared between many sibling processes.  Skipping
606 	 * the lock for brk adjustments makes a difference sometimes.
607 	 */
608 	if (vma->anon_vma && (insert || importer || start != vma->vm_start)) {
609 		anon_vma = vma->anon_vma;
610 		anon_vma_lock(anon_vma);
611 	}
612 
613 	if (root) {
614 		flush_dcache_mmap_lock(mapping);
615 		vma_prio_tree_remove(vma, root);
616 		if (adjust_next)
617 			vma_prio_tree_remove(next, root);
618 	}
619 
620 	vma->vm_start = start;
621 	vma->vm_end = end;
622 	vma->vm_pgoff = pgoff;
623 	if (adjust_next) {
624 		next->vm_start += adjust_next << PAGE_SHIFT;
625 		next->vm_pgoff += adjust_next;
626 	}
627 
628 	if (root) {
629 		if (adjust_next)
630 			vma_prio_tree_insert(next, root);
631 		vma_prio_tree_insert(vma, root);
632 		flush_dcache_mmap_unlock(mapping);
633 	}
634 
635 	if (remove_next) {
636 		/*
637 		 * vma_merge has merged next into vma, and needs
638 		 * us to remove next before dropping the locks.
639 		 */
640 		__vma_unlink(mm, next, vma);
641 		if (file)
642 			__remove_shared_vm_struct(next, file, mapping);
643 	} else if (insert) {
644 		/*
645 		 * split_vma has split insert from vma, and needs
646 		 * us to insert it before dropping the locks
647 		 * (it may either follow vma or precede it).
648 		 */
649 		__insert_vm_struct(mm, insert);
650 	}
651 
652 	if (anon_vma)
653 		anon_vma_unlock(anon_vma);
654 	if (mapping)
655 		spin_unlock(&mapping->i_mmap_lock);
656 
657 	if (remove_next) {
658 		if (file) {
659 			fput(file);
660 			if (next->vm_flags & VM_EXECUTABLE)
661 				removed_exe_file_vma(mm);
662 		}
663 		if (next->anon_vma)
664 			anon_vma_merge(vma, next);
665 		mm->map_count--;
666 		mpol_put(vma_policy(next));
667 		kmem_cache_free(vm_area_cachep, next);
668 		/*
669 		 * In mprotect's case 6 (see comments on vma_merge),
670 		 * we must remove another next too. It would clutter
671 		 * up the code too much to do both in one go.
672 		 */
673 		if (remove_next == 2) {
674 			next = vma->vm_next;
675 			goto again;
676 		}
677 	}
678 
679 	validate_mm(mm);
680 
681 	return 0;
682 }
683 
684 /*
685  * If the vma has a ->close operation then the driver probably needs to release
686  * per-vma resources, so we don't attempt to merge those.
687  */
688 static inline int is_mergeable_vma(struct vm_area_struct *vma,
689 			struct file *file, unsigned long vm_flags)
690 {
691 	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
692 	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
693 		return 0;
694 	if (vma->vm_file != file)
695 		return 0;
696 	if (vma->vm_ops && vma->vm_ops->close)
697 		return 0;
698 	return 1;
699 }
700 
701 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
702 					struct anon_vma *anon_vma2)
703 {
704 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
705 }
706 
707 /*
708  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
709  * in front of (at a lower virtual address and file offset than) the vma.
710  *
711  * We cannot merge two vmas if they have differently assigned (non-NULL)
712  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
713  *
714  * We don't check here for the merged mmap wrapping around the end of pagecache
715  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
716  * wrap, nor mmaps which cover the final page at index -1UL.
717  */
718 static int
719 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
720 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
721 {
722 	if (is_mergeable_vma(vma, file, vm_flags) &&
723 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
724 		if (vma->vm_pgoff == vm_pgoff)
725 			return 1;
726 	}
727 	return 0;
728 }
729 
730 /*
731  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
732  * beyond (at a higher virtual address and file offset than) the vma.
733  *
734  * We cannot merge two vmas if they have differently assigned (non-NULL)
735  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
736  */
737 static int
738 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
739 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
740 {
741 	if (is_mergeable_vma(vma, file, vm_flags) &&
742 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
743 		pgoff_t vm_pglen;
744 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
745 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
746 			return 1;
747 	}
748 	return 0;
749 }
750 
751 /*
752  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
753  * whether that can be merged with its predecessor or its successor.
754  * Or both (it neatly fills a hole).
755  *
756  * In most cases - when called for mmap, brk or mremap - [addr,end) is
757  * certain not to be mapped by the time vma_merge is called; but when
758  * called for mprotect, it is certain to be already mapped (either at
759  * an offset within prev, or at the start of next), and the flags of
760  * this area are about to be changed to vm_flags - and the no-change
761  * case has already been eliminated.
762  *
763  * The following mprotect cases have to be considered, where AAAA is
764  * the area passed down from mprotect_fixup, never extending beyond one
765  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
766  *
767  *     AAAA             AAAA                AAAA          AAAA
768  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
769  *    cannot merge    might become    might become    might become
770  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
771  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
772  *    mremap move:                                    PPPPNNNNNNNN 8
773  *        AAAA
774  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
775  *    might become    case 1 below    case 2 below    case 3 below
776  *
777  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
778  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
779  */
780 struct vm_area_struct *vma_merge(struct mm_struct *mm,
781 			struct vm_area_struct *prev, unsigned long addr,
782 			unsigned long end, unsigned long vm_flags,
783 		     	struct anon_vma *anon_vma, struct file *file,
784 			pgoff_t pgoff, struct mempolicy *policy)
785 {
786 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
787 	struct vm_area_struct *area, *next;
788 	int err;
789 
790 	/*
791 	 * We later require that vma->vm_flags == vm_flags,
792 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
793 	 */
794 	if (vm_flags & VM_SPECIAL)
795 		return NULL;
796 
797 	if (prev)
798 		next = prev->vm_next;
799 	else
800 		next = mm->mmap;
801 	area = next;
802 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
803 		next = next->vm_next;
804 
805 	/*
806 	 * Can it merge with the predecessor?
807 	 */
808 	if (prev && prev->vm_end == addr &&
809   			mpol_equal(vma_policy(prev), policy) &&
810 			can_vma_merge_after(prev, vm_flags,
811 						anon_vma, file, pgoff)) {
812 		/*
813 		 * OK, it can.  Can we now merge in the successor as well?
814 		 */
815 		if (next && end == next->vm_start &&
816 				mpol_equal(policy, vma_policy(next)) &&
817 				can_vma_merge_before(next, vm_flags,
818 					anon_vma, file, pgoff+pglen) &&
819 				is_mergeable_anon_vma(prev->anon_vma,
820 						      next->anon_vma)) {
821 							/* cases 1, 6 */
822 			err = vma_adjust(prev, prev->vm_start,
823 				next->vm_end, prev->vm_pgoff, NULL);
824 		} else					/* cases 2, 5, 7 */
825 			err = vma_adjust(prev, prev->vm_start,
826 				end, prev->vm_pgoff, NULL);
827 		if (err)
828 			return NULL;
829 		khugepaged_enter_vma_merge(prev);
830 		return prev;
831 	}
832 
833 	/*
834 	 * Can this new request be merged in front of next?
835 	 */
836 	if (next && end == next->vm_start &&
837  			mpol_equal(policy, vma_policy(next)) &&
838 			can_vma_merge_before(next, vm_flags,
839 					anon_vma, file, pgoff+pglen)) {
840 		if (prev && addr < prev->vm_end)	/* case 4 */
841 			err = vma_adjust(prev, prev->vm_start,
842 				addr, prev->vm_pgoff, NULL);
843 		else					/* cases 3, 8 */
844 			err = vma_adjust(area, addr, next->vm_end,
845 				next->vm_pgoff - pglen, NULL);
846 		if (err)
847 			return NULL;
848 		khugepaged_enter_vma_merge(area);
849 		return area;
850 	}
851 
852 	return NULL;
853 }
854 
855 /*
856  * Rough compatbility check to quickly see if it's even worth looking
857  * at sharing an anon_vma.
858  *
859  * They need to have the same vm_file, and the flags can only differ
860  * in things that mprotect may change.
861  *
862  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
863  * we can merge the two vma's. For example, we refuse to merge a vma if
864  * there is a vm_ops->close() function, because that indicates that the
865  * driver is doing some kind of reference counting. But that doesn't
866  * really matter for the anon_vma sharing case.
867  */
868 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
869 {
870 	return a->vm_end == b->vm_start &&
871 		mpol_equal(vma_policy(a), vma_policy(b)) &&
872 		a->vm_file == b->vm_file &&
873 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
874 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
875 }
876 
877 /*
878  * Do some basic sanity checking to see if we can re-use the anon_vma
879  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
880  * the same as 'old', the other will be the new one that is trying
881  * to share the anon_vma.
882  *
883  * NOTE! This runs with mm_sem held for reading, so it is possible that
884  * the anon_vma of 'old' is concurrently in the process of being set up
885  * by another page fault trying to merge _that_. But that's ok: if it
886  * is being set up, that automatically means that it will be a singleton
887  * acceptable for merging, so we can do all of this optimistically. But
888  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
889  *
890  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
891  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
892  * is to return an anon_vma that is "complex" due to having gone through
893  * a fork).
894  *
895  * We also make sure that the two vma's are compatible (adjacent,
896  * and with the same memory policies). That's all stable, even with just
897  * a read lock on the mm_sem.
898  */
899 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
900 {
901 	if (anon_vma_compatible(a, b)) {
902 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
903 
904 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
905 			return anon_vma;
906 	}
907 	return NULL;
908 }
909 
910 /*
911  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
912  * neighbouring vmas for a suitable anon_vma, before it goes off
913  * to allocate a new anon_vma.  It checks because a repetitive
914  * sequence of mprotects and faults may otherwise lead to distinct
915  * anon_vmas being allocated, preventing vma merge in subsequent
916  * mprotect.
917  */
918 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
919 {
920 	struct anon_vma *anon_vma;
921 	struct vm_area_struct *near;
922 
923 	near = vma->vm_next;
924 	if (!near)
925 		goto try_prev;
926 
927 	anon_vma = reusable_anon_vma(near, vma, near);
928 	if (anon_vma)
929 		return anon_vma;
930 try_prev:
931 	/*
932 	 * It is potentially slow to have to call find_vma_prev here.
933 	 * But it's only on the first write fault on the vma, not
934 	 * every time, and we could devise a way to avoid it later
935 	 * (e.g. stash info in next's anon_vma_node when assigning
936 	 * an anon_vma, or when trying vma_merge).  Another time.
937 	 */
938 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
939 	if (!near)
940 		goto none;
941 
942 	anon_vma = reusable_anon_vma(near, near, vma);
943 	if (anon_vma)
944 		return anon_vma;
945 none:
946 	/*
947 	 * There's no absolute need to look only at touching neighbours:
948 	 * we could search further afield for "compatible" anon_vmas.
949 	 * But it would probably just be a waste of time searching,
950 	 * or lead to too many vmas hanging off the same anon_vma.
951 	 * We're trying to allow mprotect remerging later on,
952 	 * not trying to minimize memory used for anon_vmas.
953 	 */
954 	return NULL;
955 }
956 
957 #ifdef CONFIG_PROC_FS
958 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
959 						struct file *file, long pages)
960 {
961 	const unsigned long stack_flags
962 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
963 
964 	if (file) {
965 		mm->shared_vm += pages;
966 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
967 			mm->exec_vm += pages;
968 	} else if (flags & stack_flags)
969 		mm->stack_vm += pages;
970 	if (flags & (VM_RESERVED|VM_IO))
971 		mm->reserved_vm += pages;
972 }
973 #endif /* CONFIG_PROC_FS */
974 
975 /*
976  * The caller must hold down_write(&current->mm->mmap_sem).
977  */
978 
979 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
980 			unsigned long len, unsigned long prot,
981 			unsigned long flags, unsigned long pgoff)
982 {
983 	struct mm_struct * mm = current->mm;
984 	struct inode *inode;
985 	unsigned int vm_flags;
986 	int error;
987 	unsigned long reqprot = prot;
988 
989 	/*
990 	 * Does the application expect PROT_READ to imply PROT_EXEC?
991 	 *
992 	 * (the exception is when the underlying filesystem is noexec
993 	 *  mounted, in which case we dont add PROT_EXEC.)
994 	 */
995 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
996 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
997 			prot |= PROT_EXEC;
998 
999 	if (!len)
1000 		return -EINVAL;
1001 
1002 	if (!(flags & MAP_FIXED))
1003 		addr = round_hint_to_min(addr);
1004 
1005 	/* Careful about overflows.. */
1006 	len = PAGE_ALIGN(len);
1007 	if (!len)
1008 		return -ENOMEM;
1009 
1010 	/* offset overflow? */
1011 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1012                return -EOVERFLOW;
1013 
1014 	/* Too many mappings? */
1015 	if (mm->map_count > sysctl_max_map_count)
1016 		return -ENOMEM;
1017 
1018 	/* Obtain the address to map to. we verify (or select) it and ensure
1019 	 * that it represents a valid section of the address space.
1020 	 */
1021 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1022 	if (addr & ~PAGE_MASK)
1023 		return addr;
1024 
1025 	/* Do simple checking here so the lower-level routines won't have
1026 	 * to. we assume access permissions have been handled by the open
1027 	 * of the memory object, so we don't do any here.
1028 	 */
1029 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1030 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1031 
1032 	if (flags & MAP_LOCKED)
1033 		if (!can_do_mlock())
1034 			return -EPERM;
1035 
1036 	/* mlock MCL_FUTURE? */
1037 	if (vm_flags & VM_LOCKED) {
1038 		unsigned long locked, lock_limit;
1039 		locked = len >> PAGE_SHIFT;
1040 		locked += mm->locked_vm;
1041 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1042 		lock_limit >>= PAGE_SHIFT;
1043 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1044 			return -EAGAIN;
1045 	}
1046 
1047 	inode = file ? file->f_path.dentry->d_inode : NULL;
1048 
1049 	if (file) {
1050 		switch (flags & MAP_TYPE) {
1051 		case MAP_SHARED:
1052 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1053 				return -EACCES;
1054 
1055 			/*
1056 			 * Make sure we don't allow writing to an append-only
1057 			 * file..
1058 			 */
1059 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1060 				return -EACCES;
1061 
1062 			/*
1063 			 * Make sure there are no mandatory locks on the file.
1064 			 */
1065 			if (locks_verify_locked(inode))
1066 				return -EAGAIN;
1067 
1068 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1069 			if (!(file->f_mode & FMODE_WRITE))
1070 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1071 
1072 			/* fall through */
1073 		case MAP_PRIVATE:
1074 			if (!(file->f_mode & FMODE_READ))
1075 				return -EACCES;
1076 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1077 				if (vm_flags & VM_EXEC)
1078 					return -EPERM;
1079 				vm_flags &= ~VM_MAYEXEC;
1080 			}
1081 
1082 			if (!file->f_op || !file->f_op->mmap)
1083 				return -ENODEV;
1084 			break;
1085 
1086 		default:
1087 			return -EINVAL;
1088 		}
1089 	} else {
1090 		switch (flags & MAP_TYPE) {
1091 		case MAP_SHARED:
1092 			/*
1093 			 * Ignore pgoff.
1094 			 */
1095 			pgoff = 0;
1096 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1097 			break;
1098 		case MAP_PRIVATE:
1099 			/*
1100 			 * Set pgoff according to addr for anon_vma.
1101 			 */
1102 			pgoff = addr >> PAGE_SHIFT;
1103 			break;
1104 		default:
1105 			return -EINVAL;
1106 		}
1107 	}
1108 
1109 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1110 	if (error)
1111 		return error;
1112 
1113 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1114 }
1115 EXPORT_SYMBOL(do_mmap_pgoff);
1116 
1117 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1118 		unsigned long, prot, unsigned long, flags,
1119 		unsigned long, fd, unsigned long, pgoff)
1120 {
1121 	struct file *file = NULL;
1122 	unsigned long retval = -EBADF;
1123 
1124 	if (!(flags & MAP_ANONYMOUS)) {
1125 		audit_mmap_fd(fd, flags);
1126 		if (unlikely(flags & MAP_HUGETLB))
1127 			return -EINVAL;
1128 		file = fget(fd);
1129 		if (!file)
1130 			goto out;
1131 	} else if (flags & MAP_HUGETLB) {
1132 		struct user_struct *user = NULL;
1133 		/*
1134 		 * VM_NORESERVE is used because the reservations will be
1135 		 * taken when vm_ops->mmap() is called
1136 		 * A dummy user value is used because we are not locking
1137 		 * memory so no accounting is necessary
1138 		 */
1139 		len = ALIGN(len, huge_page_size(&default_hstate));
1140 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1141 						&user, HUGETLB_ANONHUGE_INODE);
1142 		if (IS_ERR(file))
1143 			return PTR_ERR(file);
1144 	}
1145 
1146 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1147 
1148 	down_write(&current->mm->mmap_sem);
1149 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1150 	up_write(&current->mm->mmap_sem);
1151 
1152 	if (file)
1153 		fput(file);
1154 out:
1155 	return retval;
1156 }
1157 
1158 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1159 struct mmap_arg_struct {
1160 	unsigned long addr;
1161 	unsigned long len;
1162 	unsigned long prot;
1163 	unsigned long flags;
1164 	unsigned long fd;
1165 	unsigned long offset;
1166 };
1167 
1168 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1169 {
1170 	struct mmap_arg_struct a;
1171 
1172 	if (copy_from_user(&a, arg, sizeof(a)))
1173 		return -EFAULT;
1174 	if (a.offset & ~PAGE_MASK)
1175 		return -EINVAL;
1176 
1177 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1178 			      a.offset >> PAGE_SHIFT);
1179 }
1180 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1181 
1182 /*
1183  * Some shared mappigns will want the pages marked read-only
1184  * to track write events. If so, we'll downgrade vm_page_prot
1185  * to the private version (using protection_map[] without the
1186  * VM_SHARED bit).
1187  */
1188 int vma_wants_writenotify(struct vm_area_struct *vma)
1189 {
1190 	unsigned int vm_flags = vma->vm_flags;
1191 
1192 	/* If it was private or non-writable, the write bit is already clear */
1193 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1194 		return 0;
1195 
1196 	/* The backer wishes to know when pages are first written to? */
1197 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1198 		return 1;
1199 
1200 	/* The open routine did something to the protections already? */
1201 	if (pgprot_val(vma->vm_page_prot) !=
1202 	    pgprot_val(vm_get_page_prot(vm_flags)))
1203 		return 0;
1204 
1205 	/* Specialty mapping? */
1206 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1207 		return 0;
1208 
1209 	/* Can the mapping track the dirty pages? */
1210 	return vma->vm_file && vma->vm_file->f_mapping &&
1211 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1212 }
1213 
1214 /*
1215  * We account for memory if it's a private writeable mapping,
1216  * not hugepages and VM_NORESERVE wasn't set.
1217  */
1218 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1219 {
1220 	/*
1221 	 * hugetlb has its own accounting separate from the core VM
1222 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1223 	 */
1224 	if (file && is_file_hugepages(file))
1225 		return 0;
1226 
1227 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1228 }
1229 
1230 unsigned long mmap_region(struct file *file, unsigned long addr,
1231 			  unsigned long len, unsigned long flags,
1232 			  unsigned int vm_flags, unsigned long pgoff)
1233 {
1234 	struct mm_struct *mm = current->mm;
1235 	struct vm_area_struct *vma, *prev;
1236 	int correct_wcount = 0;
1237 	int error;
1238 	struct rb_node **rb_link, *rb_parent;
1239 	unsigned long charged = 0;
1240 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1241 
1242 	/* Clear old maps */
1243 	error = -ENOMEM;
1244 munmap_back:
1245 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1246 	if (vma && vma->vm_start < addr + len) {
1247 		if (do_munmap(mm, addr, len))
1248 			return -ENOMEM;
1249 		goto munmap_back;
1250 	}
1251 
1252 	/* Check against address space limit. */
1253 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1254 		return -ENOMEM;
1255 
1256 	/*
1257 	 * Set 'VM_NORESERVE' if we should not account for the
1258 	 * memory use of this mapping.
1259 	 */
1260 	if ((flags & MAP_NORESERVE)) {
1261 		/* We honor MAP_NORESERVE if allowed to overcommit */
1262 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1263 			vm_flags |= VM_NORESERVE;
1264 
1265 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1266 		if (file && is_file_hugepages(file))
1267 			vm_flags |= VM_NORESERVE;
1268 	}
1269 
1270 	/*
1271 	 * Private writable mapping: check memory availability
1272 	 */
1273 	if (accountable_mapping(file, vm_flags)) {
1274 		charged = len >> PAGE_SHIFT;
1275 		if (security_vm_enough_memory(charged))
1276 			return -ENOMEM;
1277 		vm_flags |= VM_ACCOUNT;
1278 	}
1279 
1280 	/*
1281 	 * Can we just expand an old mapping?
1282 	 */
1283 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1284 	if (vma)
1285 		goto out;
1286 
1287 	/*
1288 	 * Determine the object being mapped and call the appropriate
1289 	 * specific mapper. the address has already been validated, but
1290 	 * not unmapped, but the maps are removed from the list.
1291 	 */
1292 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1293 	if (!vma) {
1294 		error = -ENOMEM;
1295 		goto unacct_error;
1296 	}
1297 
1298 	vma->vm_mm = mm;
1299 	vma->vm_start = addr;
1300 	vma->vm_end = addr + len;
1301 	vma->vm_flags = vm_flags;
1302 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1303 	vma->vm_pgoff = pgoff;
1304 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1305 
1306 	if (file) {
1307 		error = -EINVAL;
1308 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1309 			goto free_vma;
1310 		if (vm_flags & VM_DENYWRITE) {
1311 			error = deny_write_access(file);
1312 			if (error)
1313 				goto free_vma;
1314 			correct_wcount = 1;
1315 		}
1316 		vma->vm_file = file;
1317 		get_file(file);
1318 		error = file->f_op->mmap(file, vma);
1319 		if (error)
1320 			goto unmap_and_free_vma;
1321 		if (vm_flags & VM_EXECUTABLE)
1322 			added_exe_file_vma(mm);
1323 
1324 		/* Can addr have changed??
1325 		 *
1326 		 * Answer: Yes, several device drivers can do it in their
1327 		 *         f_op->mmap method. -DaveM
1328 		 */
1329 		addr = vma->vm_start;
1330 		pgoff = vma->vm_pgoff;
1331 		vm_flags = vma->vm_flags;
1332 	} else if (vm_flags & VM_SHARED) {
1333 		error = shmem_zero_setup(vma);
1334 		if (error)
1335 			goto free_vma;
1336 	}
1337 
1338 	if (vma_wants_writenotify(vma)) {
1339 		pgprot_t pprot = vma->vm_page_prot;
1340 
1341 		/* Can vma->vm_page_prot have changed??
1342 		 *
1343 		 * Answer: Yes, drivers may have changed it in their
1344 		 *         f_op->mmap method.
1345 		 *
1346 		 * Ensures that vmas marked as uncached stay that way.
1347 		 */
1348 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1349 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1350 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1351 	}
1352 
1353 	vma_link(mm, vma, prev, rb_link, rb_parent);
1354 	file = vma->vm_file;
1355 
1356 	/* Once vma denies write, undo our temporary denial count */
1357 	if (correct_wcount)
1358 		atomic_inc(&inode->i_writecount);
1359 out:
1360 	perf_event_mmap(vma);
1361 
1362 	mm->total_vm += len >> PAGE_SHIFT;
1363 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1364 	if (vm_flags & VM_LOCKED) {
1365 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1366 			mm->locked_vm += (len >> PAGE_SHIFT);
1367 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1368 		make_pages_present(addr, addr + len);
1369 	return addr;
1370 
1371 unmap_and_free_vma:
1372 	if (correct_wcount)
1373 		atomic_inc(&inode->i_writecount);
1374 	vma->vm_file = NULL;
1375 	fput(file);
1376 
1377 	/* Undo any partial mapping done by a device driver. */
1378 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1379 	charged = 0;
1380 free_vma:
1381 	kmem_cache_free(vm_area_cachep, vma);
1382 unacct_error:
1383 	if (charged)
1384 		vm_unacct_memory(charged);
1385 	return error;
1386 }
1387 
1388 /* Get an address range which is currently unmapped.
1389  * For shmat() with addr=0.
1390  *
1391  * Ugly calling convention alert:
1392  * Return value with the low bits set means error value,
1393  * ie
1394  *	if (ret & ~PAGE_MASK)
1395  *		error = ret;
1396  *
1397  * This function "knows" that -ENOMEM has the bits set.
1398  */
1399 #ifndef HAVE_ARCH_UNMAPPED_AREA
1400 unsigned long
1401 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1402 		unsigned long len, unsigned long pgoff, unsigned long flags)
1403 {
1404 	struct mm_struct *mm = current->mm;
1405 	struct vm_area_struct *vma;
1406 	unsigned long start_addr;
1407 
1408 	if (len > TASK_SIZE)
1409 		return -ENOMEM;
1410 
1411 	if (flags & MAP_FIXED)
1412 		return addr;
1413 
1414 	if (addr) {
1415 		addr = PAGE_ALIGN(addr);
1416 		vma = find_vma(mm, addr);
1417 		if (TASK_SIZE - len >= addr &&
1418 		    (!vma || addr + len <= vma->vm_start))
1419 			return addr;
1420 	}
1421 	if (len > mm->cached_hole_size) {
1422 	        start_addr = addr = mm->free_area_cache;
1423 	} else {
1424 	        start_addr = addr = TASK_UNMAPPED_BASE;
1425 	        mm->cached_hole_size = 0;
1426 	}
1427 
1428 full_search:
1429 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1430 		/* At this point:  (!vma || addr < vma->vm_end). */
1431 		if (TASK_SIZE - len < addr) {
1432 			/*
1433 			 * Start a new search - just in case we missed
1434 			 * some holes.
1435 			 */
1436 			if (start_addr != TASK_UNMAPPED_BASE) {
1437 				addr = TASK_UNMAPPED_BASE;
1438 			        start_addr = addr;
1439 				mm->cached_hole_size = 0;
1440 				goto full_search;
1441 			}
1442 			return -ENOMEM;
1443 		}
1444 		if (!vma || addr + len <= vma->vm_start) {
1445 			/*
1446 			 * Remember the place where we stopped the search:
1447 			 */
1448 			mm->free_area_cache = addr + len;
1449 			return addr;
1450 		}
1451 		if (addr + mm->cached_hole_size < vma->vm_start)
1452 		        mm->cached_hole_size = vma->vm_start - addr;
1453 		addr = vma->vm_end;
1454 	}
1455 }
1456 #endif
1457 
1458 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1459 {
1460 	/*
1461 	 * Is this a new hole at the lowest possible address?
1462 	 */
1463 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1464 		mm->free_area_cache = addr;
1465 		mm->cached_hole_size = ~0UL;
1466 	}
1467 }
1468 
1469 /*
1470  * This mmap-allocator allocates new areas top-down from below the
1471  * stack's low limit (the base):
1472  */
1473 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1474 unsigned long
1475 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1476 			  const unsigned long len, const unsigned long pgoff,
1477 			  const unsigned long flags)
1478 {
1479 	struct vm_area_struct *vma;
1480 	struct mm_struct *mm = current->mm;
1481 	unsigned long addr = addr0;
1482 
1483 	/* requested length too big for entire address space */
1484 	if (len > TASK_SIZE)
1485 		return -ENOMEM;
1486 
1487 	if (flags & MAP_FIXED)
1488 		return addr;
1489 
1490 	/* requesting a specific address */
1491 	if (addr) {
1492 		addr = PAGE_ALIGN(addr);
1493 		vma = find_vma(mm, addr);
1494 		if (TASK_SIZE - len >= addr &&
1495 				(!vma || addr + len <= vma->vm_start))
1496 			return addr;
1497 	}
1498 
1499 	/* check if free_area_cache is useful for us */
1500 	if (len <= mm->cached_hole_size) {
1501  	        mm->cached_hole_size = 0;
1502  		mm->free_area_cache = mm->mmap_base;
1503  	}
1504 
1505 	/* either no address requested or can't fit in requested address hole */
1506 	addr = mm->free_area_cache;
1507 
1508 	/* make sure it can fit in the remaining address space */
1509 	if (addr > len) {
1510 		vma = find_vma(mm, addr-len);
1511 		if (!vma || addr <= vma->vm_start)
1512 			/* remember the address as a hint for next time */
1513 			return (mm->free_area_cache = addr-len);
1514 	}
1515 
1516 	if (mm->mmap_base < len)
1517 		goto bottomup;
1518 
1519 	addr = mm->mmap_base-len;
1520 
1521 	do {
1522 		/*
1523 		 * Lookup failure means no vma is above this address,
1524 		 * else if new region fits below vma->vm_start,
1525 		 * return with success:
1526 		 */
1527 		vma = find_vma(mm, addr);
1528 		if (!vma || addr+len <= vma->vm_start)
1529 			/* remember the address as a hint for next time */
1530 			return (mm->free_area_cache = addr);
1531 
1532  		/* remember the largest hole we saw so far */
1533  		if (addr + mm->cached_hole_size < vma->vm_start)
1534  		        mm->cached_hole_size = vma->vm_start - addr;
1535 
1536 		/* try just below the current vma->vm_start */
1537 		addr = vma->vm_start-len;
1538 	} while (len < vma->vm_start);
1539 
1540 bottomup:
1541 	/*
1542 	 * A failed mmap() very likely causes application failure,
1543 	 * so fall back to the bottom-up function here. This scenario
1544 	 * can happen with large stack limits and large mmap()
1545 	 * allocations.
1546 	 */
1547 	mm->cached_hole_size = ~0UL;
1548   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1549 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1550 	/*
1551 	 * Restore the topdown base:
1552 	 */
1553 	mm->free_area_cache = mm->mmap_base;
1554 	mm->cached_hole_size = ~0UL;
1555 
1556 	return addr;
1557 }
1558 #endif
1559 
1560 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1561 {
1562 	/*
1563 	 * Is this a new hole at the highest possible address?
1564 	 */
1565 	if (addr > mm->free_area_cache)
1566 		mm->free_area_cache = addr;
1567 
1568 	/* dont allow allocations above current base */
1569 	if (mm->free_area_cache > mm->mmap_base)
1570 		mm->free_area_cache = mm->mmap_base;
1571 }
1572 
1573 unsigned long
1574 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1575 		unsigned long pgoff, unsigned long flags)
1576 {
1577 	unsigned long (*get_area)(struct file *, unsigned long,
1578 				  unsigned long, unsigned long, unsigned long);
1579 
1580 	unsigned long error = arch_mmap_check(addr, len, flags);
1581 	if (error)
1582 		return error;
1583 
1584 	/* Careful about overflows.. */
1585 	if (len > TASK_SIZE)
1586 		return -ENOMEM;
1587 
1588 	get_area = current->mm->get_unmapped_area;
1589 	if (file && file->f_op && file->f_op->get_unmapped_area)
1590 		get_area = file->f_op->get_unmapped_area;
1591 	addr = get_area(file, addr, len, pgoff, flags);
1592 	if (IS_ERR_VALUE(addr))
1593 		return addr;
1594 
1595 	if (addr > TASK_SIZE - len)
1596 		return -ENOMEM;
1597 	if (addr & ~PAGE_MASK)
1598 		return -EINVAL;
1599 
1600 	return arch_rebalance_pgtables(addr, len);
1601 }
1602 
1603 EXPORT_SYMBOL(get_unmapped_area);
1604 
1605 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1606 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1607 {
1608 	struct vm_area_struct *vma = NULL;
1609 
1610 	if (mm) {
1611 		/* Check the cache first. */
1612 		/* (Cache hit rate is typically around 35%.) */
1613 		vma = mm->mmap_cache;
1614 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1615 			struct rb_node * rb_node;
1616 
1617 			rb_node = mm->mm_rb.rb_node;
1618 			vma = NULL;
1619 
1620 			while (rb_node) {
1621 				struct vm_area_struct * vma_tmp;
1622 
1623 				vma_tmp = rb_entry(rb_node,
1624 						struct vm_area_struct, vm_rb);
1625 
1626 				if (vma_tmp->vm_end > addr) {
1627 					vma = vma_tmp;
1628 					if (vma_tmp->vm_start <= addr)
1629 						break;
1630 					rb_node = rb_node->rb_left;
1631 				} else
1632 					rb_node = rb_node->rb_right;
1633 			}
1634 			if (vma)
1635 				mm->mmap_cache = vma;
1636 		}
1637 	}
1638 	return vma;
1639 }
1640 
1641 EXPORT_SYMBOL(find_vma);
1642 
1643 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1644 struct vm_area_struct *
1645 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1646 			struct vm_area_struct **pprev)
1647 {
1648 	struct vm_area_struct *vma = NULL, *prev = NULL;
1649 	struct rb_node *rb_node;
1650 	if (!mm)
1651 		goto out;
1652 
1653 	/* Guard against addr being lower than the first VMA */
1654 	vma = mm->mmap;
1655 
1656 	/* Go through the RB tree quickly. */
1657 	rb_node = mm->mm_rb.rb_node;
1658 
1659 	while (rb_node) {
1660 		struct vm_area_struct *vma_tmp;
1661 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1662 
1663 		if (addr < vma_tmp->vm_end) {
1664 			rb_node = rb_node->rb_left;
1665 		} else {
1666 			prev = vma_tmp;
1667 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1668 				break;
1669 			rb_node = rb_node->rb_right;
1670 		}
1671 	}
1672 
1673 out:
1674 	*pprev = prev;
1675 	return prev ? prev->vm_next : vma;
1676 }
1677 
1678 /*
1679  * Verify that the stack growth is acceptable and
1680  * update accounting. This is shared with both the
1681  * grow-up and grow-down cases.
1682  */
1683 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1684 {
1685 	struct mm_struct *mm = vma->vm_mm;
1686 	struct rlimit *rlim = current->signal->rlim;
1687 	unsigned long new_start;
1688 
1689 	/* address space limit tests */
1690 	if (!may_expand_vm(mm, grow))
1691 		return -ENOMEM;
1692 
1693 	/* Stack limit test */
1694 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1695 		return -ENOMEM;
1696 
1697 	/* mlock limit tests */
1698 	if (vma->vm_flags & VM_LOCKED) {
1699 		unsigned long locked;
1700 		unsigned long limit;
1701 		locked = mm->locked_vm + grow;
1702 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1703 		limit >>= PAGE_SHIFT;
1704 		if (locked > limit && !capable(CAP_IPC_LOCK))
1705 			return -ENOMEM;
1706 	}
1707 
1708 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1709 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1710 			vma->vm_end - size;
1711 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1712 		return -EFAULT;
1713 
1714 	/*
1715 	 * Overcommit..  This must be the final test, as it will
1716 	 * update security statistics.
1717 	 */
1718 	if (security_vm_enough_memory_mm(mm, grow))
1719 		return -ENOMEM;
1720 
1721 	/* Ok, everything looks good - let it rip */
1722 	mm->total_vm += grow;
1723 	if (vma->vm_flags & VM_LOCKED)
1724 		mm->locked_vm += grow;
1725 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1726 	return 0;
1727 }
1728 
1729 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1730 /*
1731  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1732  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1733  */
1734 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1735 {
1736 	int error;
1737 
1738 	if (!(vma->vm_flags & VM_GROWSUP))
1739 		return -EFAULT;
1740 
1741 	/*
1742 	 * We must make sure the anon_vma is allocated
1743 	 * so that the anon_vma locking is not a noop.
1744 	 */
1745 	if (unlikely(anon_vma_prepare(vma)))
1746 		return -ENOMEM;
1747 	vma_lock_anon_vma(vma);
1748 
1749 	/*
1750 	 * vma->vm_start/vm_end cannot change under us because the caller
1751 	 * is required to hold the mmap_sem in read mode.  We need the
1752 	 * anon_vma lock to serialize against concurrent expand_stacks.
1753 	 * Also guard against wrapping around to address 0.
1754 	 */
1755 	if (address < PAGE_ALIGN(address+4))
1756 		address = PAGE_ALIGN(address+4);
1757 	else {
1758 		vma_unlock_anon_vma(vma);
1759 		return -ENOMEM;
1760 	}
1761 	error = 0;
1762 
1763 	/* Somebody else might have raced and expanded it already */
1764 	if (address > vma->vm_end) {
1765 		unsigned long size, grow;
1766 
1767 		size = address - vma->vm_start;
1768 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1769 
1770 		error = acct_stack_growth(vma, size, grow);
1771 		if (!error) {
1772 			vma->vm_end = address;
1773 			perf_event_mmap(vma);
1774 		}
1775 	}
1776 	vma_unlock_anon_vma(vma);
1777 	khugepaged_enter_vma_merge(vma);
1778 	return error;
1779 }
1780 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1781 
1782 /*
1783  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1784  */
1785 static int expand_downwards(struct vm_area_struct *vma,
1786 				   unsigned long address)
1787 {
1788 	int error;
1789 
1790 	/*
1791 	 * We must make sure the anon_vma is allocated
1792 	 * so that the anon_vma locking is not a noop.
1793 	 */
1794 	if (unlikely(anon_vma_prepare(vma)))
1795 		return -ENOMEM;
1796 
1797 	address &= PAGE_MASK;
1798 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1799 	if (error)
1800 		return error;
1801 
1802 	vma_lock_anon_vma(vma);
1803 
1804 	/*
1805 	 * vma->vm_start/vm_end cannot change under us because the caller
1806 	 * is required to hold the mmap_sem in read mode.  We need the
1807 	 * anon_vma lock to serialize against concurrent expand_stacks.
1808 	 */
1809 
1810 	/* Somebody else might have raced and expanded it already */
1811 	if (address < vma->vm_start) {
1812 		unsigned long size, grow;
1813 
1814 		size = vma->vm_end - address;
1815 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1816 
1817 		error = acct_stack_growth(vma, size, grow);
1818 		if (!error) {
1819 			vma->vm_start = address;
1820 			vma->vm_pgoff -= grow;
1821 			perf_event_mmap(vma);
1822 		}
1823 	}
1824 	vma_unlock_anon_vma(vma);
1825 	khugepaged_enter_vma_merge(vma);
1826 	return error;
1827 }
1828 
1829 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1830 {
1831 	return expand_downwards(vma, address);
1832 }
1833 
1834 #ifdef CONFIG_STACK_GROWSUP
1835 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1836 {
1837 	return expand_upwards(vma, address);
1838 }
1839 
1840 struct vm_area_struct *
1841 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1842 {
1843 	struct vm_area_struct *vma, *prev;
1844 
1845 	addr &= PAGE_MASK;
1846 	vma = find_vma_prev(mm, addr, &prev);
1847 	if (vma && (vma->vm_start <= addr))
1848 		return vma;
1849 	if (!prev || expand_stack(prev, addr))
1850 		return NULL;
1851 	if (prev->vm_flags & VM_LOCKED) {
1852 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1853 	}
1854 	return prev;
1855 }
1856 #else
1857 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1858 {
1859 	return expand_downwards(vma, address);
1860 }
1861 
1862 struct vm_area_struct *
1863 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1864 {
1865 	struct vm_area_struct * vma;
1866 	unsigned long start;
1867 
1868 	addr &= PAGE_MASK;
1869 	vma = find_vma(mm,addr);
1870 	if (!vma)
1871 		return NULL;
1872 	if (vma->vm_start <= addr)
1873 		return vma;
1874 	if (!(vma->vm_flags & VM_GROWSDOWN))
1875 		return NULL;
1876 	start = vma->vm_start;
1877 	if (expand_stack(vma, addr))
1878 		return NULL;
1879 	if (vma->vm_flags & VM_LOCKED) {
1880 		mlock_vma_pages_range(vma, addr, start);
1881 	}
1882 	return vma;
1883 }
1884 #endif
1885 
1886 /*
1887  * Ok - we have the memory areas we should free on the vma list,
1888  * so release them, and do the vma updates.
1889  *
1890  * Called with the mm semaphore held.
1891  */
1892 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1893 {
1894 	/* Update high watermark before we lower total_vm */
1895 	update_hiwater_vm(mm);
1896 	do {
1897 		long nrpages = vma_pages(vma);
1898 
1899 		mm->total_vm -= nrpages;
1900 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1901 		vma = remove_vma(vma);
1902 	} while (vma);
1903 	validate_mm(mm);
1904 }
1905 
1906 /*
1907  * Get rid of page table information in the indicated region.
1908  *
1909  * Called with the mm semaphore held.
1910  */
1911 static void unmap_region(struct mm_struct *mm,
1912 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1913 		unsigned long start, unsigned long end)
1914 {
1915 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1916 	struct mmu_gather *tlb;
1917 	unsigned long nr_accounted = 0;
1918 
1919 	lru_add_drain();
1920 	tlb = tlb_gather_mmu(mm, 0);
1921 	update_hiwater_rss(mm);
1922 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1923 	vm_unacct_memory(nr_accounted);
1924 	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1925 				 next? next->vm_start: 0);
1926 	tlb_finish_mmu(tlb, start, end);
1927 }
1928 
1929 /*
1930  * Create a list of vma's touched by the unmap, removing them from the mm's
1931  * vma list as we go..
1932  */
1933 static void
1934 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1935 	struct vm_area_struct *prev, unsigned long end)
1936 {
1937 	struct vm_area_struct **insertion_point;
1938 	struct vm_area_struct *tail_vma = NULL;
1939 	unsigned long addr;
1940 
1941 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1942 	vma->vm_prev = NULL;
1943 	do {
1944 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1945 		mm->map_count--;
1946 		tail_vma = vma;
1947 		vma = vma->vm_next;
1948 	} while (vma && vma->vm_start < end);
1949 	*insertion_point = vma;
1950 	if (vma)
1951 		vma->vm_prev = prev;
1952 	tail_vma->vm_next = NULL;
1953 	if (mm->unmap_area == arch_unmap_area)
1954 		addr = prev ? prev->vm_end : mm->mmap_base;
1955 	else
1956 		addr = vma ?  vma->vm_start : mm->mmap_base;
1957 	mm->unmap_area(mm, addr);
1958 	mm->mmap_cache = NULL;		/* Kill the cache. */
1959 }
1960 
1961 /*
1962  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1963  * munmap path where it doesn't make sense to fail.
1964  */
1965 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1966 	      unsigned long addr, int new_below)
1967 {
1968 	struct mempolicy *pol;
1969 	struct vm_area_struct *new;
1970 	int err = -ENOMEM;
1971 
1972 	if (is_vm_hugetlb_page(vma) && (addr &
1973 					~(huge_page_mask(hstate_vma(vma)))))
1974 		return -EINVAL;
1975 
1976 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1977 	if (!new)
1978 		goto out_err;
1979 
1980 	/* most fields are the same, copy all, and then fixup */
1981 	*new = *vma;
1982 
1983 	INIT_LIST_HEAD(&new->anon_vma_chain);
1984 
1985 	if (new_below)
1986 		new->vm_end = addr;
1987 	else {
1988 		new->vm_start = addr;
1989 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1990 	}
1991 
1992 	pol = mpol_dup(vma_policy(vma));
1993 	if (IS_ERR(pol)) {
1994 		err = PTR_ERR(pol);
1995 		goto out_free_vma;
1996 	}
1997 	vma_set_policy(new, pol);
1998 
1999 	if (anon_vma_clone(new, vma))
2000 		goto out_free_mpol;
2001 
2002 	if (new->vm_file) {
2003 		get_file(new->vm_file);
2004 		if (vma->vm_flags & VM_EXECUTABLE)
2005 			added_exe_file_vma(mm);
2006 	}
2007 
2008 	if (new->vm_ops && new->vm_ops->open)
2009 		new->vm_ops->open(new);
2010 
2011 	if (new_below)
2012 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2013 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2014 	else
2015 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2016 
2017 	/* Success. */
2018 	if (!err)
2019 		return 0;
2020 
2021 	/* Clean everything up if vma_adjust failed. */
2022 	if (new->vm_ops && new->vm_ops->close)
2023 		new->vm_ops->close(new);
2024 	if (new->vm_file) {
2025 		if (vma->vm_flags & VM_EXECUTABLE)
2026 			removed_exe_file_vma(mm);
2027 		fput(new->vm_file);
2028 	}
2029 	unlink_anon_vmas(new);
2030  out_free_mpol:
2031 	mpol_put(pol);
2032  out_free_vma:
2033 	kmem_cache_free(vm_area_cachep, new);
2034  out_err:
2035 	return err;
2036 }
2037 
2038 /*
2039  * Split a vma into two pieces at address 'addr', a new vma is allocated
2040  * either for the first part or the tail.
2041  */
2042 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2043 	      unsigned long addr, int new_below)
2044 {
2045 	if (mm->map_count >= sysctl_max_map_count)
2046 		return -ENOMEM;
2047 
2048 	return __split_vma(mm, vma, addr, new_below);
2049 }
2050 
2051 /* Munmap is split into 2 main parts -- this part which finds
2052  * what needs doing, and the areas themselves, which do the
2053  * work.  This now handles partial unmappings.
2054  * Jeremy Fitzhardinge <jeremy@goop.org>
2055  */
2056 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2057 {
2058 	unsigned long end;
2059 	struct vm_area_struct *vma, *prev, *last;
2060 
2061 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2062 		return -EINVAL;
2063 
2064 	if ((len = PAGE_ALIGN(len)) == 0)
2065 		return -EINVAL;
2066 
2067 	/* Find the first overlapping VMA */
2068 	vma = find_vma_prev(mm, start, &prev);
2069 	if (!vma)
2070 		return 0;
2071 	/* we have  start < vma->vm_end  */
2072 
2073 	/* if it doesn't overlap, we have nothing.. */
2074 	end = start + len;
2075 	if (vma->vm_start >= end)
2076 		return 0;
2077 
2078 	/*
2079 	 * If we need to split any vma, do it now to save pain later.
2080 	 *
2081 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2082 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2083 	 * places tmp vma above, and higher split_vma places tmp vma below.
2084 	 */
2085 	if (start > vma->vm_start) {
2086 		int error;
2087 
2088 		/*
2089 		 * Make sure that map_count on return from munmap() will
2090 		 * not exceed its limit; but let map_count go just above
2091 		 * its limit temporarily, to help free resources as expected.
2092 		 */
2093 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2094 			return -ENOMEM;
2095 
2096 		error = __split_vma(mm, vma, start, 0);
2097 		if (error)
2098 			return error;
2099 		prev = vma;
2100 	}
2101 
2102 	/* Does it split the last one? */
2103 	last = find_vma(mm, end);
2104 	if (last && end > last->vm_start) {
2105 		int error = __split_vma(mm, last, end, 1);
2106 		if (error)
2107 			return error;
2108 	}
2109 	vma = prev? prev->vm_next: mm->mmap;
2110 
2111 	/*
2112 	 * unlock any mlock()ed ranges before detaching vmas
2113 	 */
2114 	if (mm->locked_vm) {
2115 		struct vm_area_struct *tmp = vma;
2116 		while (tmp && tmp->vm_start < end) {
2117 			if (tmp->vm_flags & VM_LOCKED) {
2118 				mm->locked_vm -= vma_pages(tmp);
2119 				munlock_vma_pages_all(tmp);
2120 			}
2121 			tmp = tmp->vm_next;
2122 		}
2123 	}
2124 
2125 	/*
2126 	 * Remove the vma's, and unmap the actual pages
2127 	 */
2128 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2129 	unmap_region(mm, vma, prev, start, end);
2130 
2131 	/* Fix up all other VM information */
2132 	remove_vma_list(mm, vma);
2133 
2134 	return 0;
2135 }
2136 
2137 EXPORT_SYMBOL(do_munmap);
2138 
2139 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2140 {
2141 	int ret;
2142 	struct mm_struct *mm = current->mm;
2143 
2144 	profile_munmap(addr);
2145 
2146 	down_write(&mm->mmap_sem);
2147 	ret = do_munmap(mm, addr, len);
2148 	up_write(&mm->mmap_sem);
2149 	return ret;
2150 }
2151 
2152 static inline void verify_mm_writelocked(struct mm_struct *mm)
2153 {
2154 #ifdef CONFIG_DEBUG_VM
2155 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2156 		WARN_ON(1);
2157 		up_read(&mm->mmap_sem);
2158 	}
2159 #endif
2160 }
2161 
2162 /*
2163  *  this is really a simplified "do_mmap".  it only handles
2164  *  anonymous maps.  eventually we may be able to do some
2165  *  brk-specific accounting here.
2166  */
2167 unsigned long do_brk(unsigned long addr, unsigned long len)
2168 {
2169 	struct mm_struct * mm = current->mm;
2170 	struct vm_area_struct * vma, * prev;
2171 	unsigned long flags;
2172 	struct rb_node ** rb_link, * rb_parent;
2173 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2174 	int error;
2175 
2176 	len = PAGE_ALIGN(len);
2177 	if (!len)
2178 		return addr;
2179 
2180 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2181 	if (error)
2182 		return error;
2183 
2184 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2185 
2186 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2187 	if (error & ~PAGE_MASK)
2188 		return error;
2189 
2190 	/*
2191 	 * mlock MCL_FUTURE?
2192 	 */
2193 	if (mm->def_flags & VM_LOCKED) {
2194 		unsigned long locked, lock_limit;
2195 		locked = len >> PAGE_SHIFT;
2196 		locked += mm->locked_vm;
2197 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2198 		lock_limit >>= PAGE_SHIFT;
2199 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2200 			return -EAGAIN;
2201 	}
2202 
2203 	/*
2204 	 * mm->mmap_sem is required to protect against another thread
2205 	 * changing the mappings in case we sleep.
2206 	 */
2207 	verify_mm_writelocked(mm);
2208 
2209 	/*
2210 	 * Clear old maps.  this also does some error checking for us
2211 	 */
2212  munmap_back:
2213 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2214 	if (vma && vma->vm_start < addr + len) {
2215 		if (do_munmap(mm, addr, len))
2216 			return -ENOMEM;
2217 		goto munmap_back;
2218 	}
2219 
2220 	/* Check against address space limits *after* clearing old maps... */
2221 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2222 		return -ENOMEM;
2223 
2224 	if (mm->map_count > sysctl_max_map_count)
2225 		return -ENOMEM;
2226 
2227 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2228 		return -ENOMEM;
2229 
2230 	/* Can we just expand an old private anonymous mapping? */
2231 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2232 					NULL, NULL, pgoff, NULL);
2233 	if (vma)
2234 		goto out;
2235 
2236 	/*
2237 	 * create a vma struct for an anonymous mapping
2238 	 */
2239 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2240 	if (!vma) {
2241 		vm_unacct_memory(len >> PAGE_SHIFT);
2242 		return -ENOMEM;
2243 	}
2244 
2245 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2246 	vma->vm_mm = mm;
2247 	vma->vm_start = addr;
2248 	vma->vm_end = addr + len;
2249 	vma->vm_pgoff = pgoff;
2250 	vma->vm_flags = flags;
2251 	vma->vm_page_prot = vm_get_page_prot(flags);
2252 	vma_link(mm, vma, prev, rb_link, rb_parent);
2253 out:
2254 	perf_event_mmap(vma);
2255 	mm->total_vm += len >> PAGE_SHIFT;
2256 	if (flags & VM_LOCKED) {
2257 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2258 			mm->locked_vm += (len >> PAGE_SHIFT);
2259 	}
2260 	return addr;
2261 }
2262 
2263 EXPORT_SYMBOL(do_brk);
2264 
2265 /* Release all mmaps. */
2266 void exit_mmap(struct mm_struct *mm)
2267 {
2268 	struct mmu_gather *tlb;
2269 	struct vm_area_struct *vma;
2270 	unsigned long nr_accounted = 0;
2271 	unsigned long end;
2272 
2273 	/* mm's last user has gone, and its about to be pulled down */
2274 	mmu_notifier_release(mm);
2275 
2276 	if (mm->locked_vm) {
2277 		vma = mm->mmap;
2278 		while (vma) {
2279 			if (vma->vm_flags & VM_LOCKED)
2280 				munlock_vma_pages_all(vma);
2281 			vma = vma->vm_next;
2282 		}
2283 	}
2284 
2285 	arch_exit_mmap(mm);
2286 
2287 	vma = mm->mmap;
2288 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2289 		return;
2290 
2291 	lru_add_drain();
2292 	flush_cache_mm(mm);
2293 	tlb = tlb_gather_mmu(mm, 1);
2294 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2295 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2296 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2297 	vm_unacct_memory(nr_accounted);
2298 
2299 	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2300 	tlb_finish_mmu(tlb, 0, end);
2301 
2302 	/*
2303 	 * Walk the list again, actually closing and freeing it,
2304 	 * with preemption enabled, without holding any MM locks.
2305 	 */
2306 	while (vma)
2307 		vma = remove_vma(vma);
2308 
2309 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2310 }
2311 
2312 /* Insert vm structure into process list sorted by address
2313  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2314  * then i_mmap_lock is taken here.
2315  */
2316 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2317 {
2318 	struct vm_area_struct * __vma, * prev;
2319 	struct rb_node ** rb_link, * rb_parent;
2320 
2321 	/*
2322 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2323 	 * until its first write fault, when page's anon_vma and index
2324 	 * are set.  But now set the vm_pgoff it will almost certainly
2325 	 * end up with (unless mremap moves it elsewhere before that
2326 	 * first wfault), so /proc/pid/maps tells a consistent story.
2327 	 *
2328 	 * By setting it to reflect the virtual start address of the
2329 	 * vma, merges and splits can happen in a seamless way, just
2330 	 * using the existing file pgoff checks and manipulations.
2331 	 * Similarly in do_mmap_pgoff and in do_brk.
2332 	 */
2333 	if (!vma->vm_file) {
2334 		BUG_ON(vma->anon_vma);
2335 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2336 	}
2337 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2338 	if (__vma && __vma->vm_start < vma->vm_end)
2339 		return -ENOMEM;
2340 	if ((vma->vm_flags & VM_ACCOUNT) &&
2341 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2342 		return -ENOMEM;
2343 	vma_link(mm, vma, prev, rb_link, rb_parent);
2344 	return 0;
2345 }
2346 
2347 /*
2348  * Copy the vma structure to a new location in the same mm,
2349  * prior to moving page table entries, to effect an mremap move.
2350  */
2351 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2352 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2353 {
2354 	struct vm_area_struct *vma = *vmap;
2355 	unsigned long vma_start = vma->vm_start;
2356 	struct mm_struct *mm = vma->vm_mm;
2357 	struct vm_area_struct *new_vma, *prev;
2358 	struct rb_node **rb_link, *rb_parent;
2359 	struct mempolicy *pol;
2360 
2361 	/*
2362 	 * If anonymous vma has not yet been faulted, update new pgoff
2363 	 * to match new location, to increase its chance of merging.
2364 	 */
2365 	if (!vma->vm_file && !vma->anon_vma)
2366 		pgoff = addr >> PAGE_SHIFT;
2367 
2368 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2369 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2370 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2371 	if (new_vma) {
2372 		/*
2373 		 * Source vma may have been merged into new_vma
2374 		 */
2375 		if (vma_start >= new_vma->vm_start &&
2376 		    vma_start < new_vma->vm_end)
2377 			*vmap = new_vma;
2378 	} else {
2379 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2380 		if (new_vma) {
2381 			*new_vma = *vma;
2382 			pol = mpol_dup(vma_policy(vma));
2383 			if (IS_ERR(pol))
2384 				goto out_free_vma;
2385 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2386 			if (anon_vma_clone(new_vma, vma))
2387 				goto out_free_mempol;
2388 			vma_set_policy(new_vma, pol);
2389 			new_vma->vm_start = addr;
2390 			new_vma->vm_end = addr + len;
2391 			new_vma->vm_pgoff = pgoff;
2392 			if (new_vma->vm_file) {
2393 				get_file(new_vma->vm_file);
2394 				if (vma->vm_flags & VM_EXECUTABLE)
2395 					added_exe_file_vma(mm);
2396 			}
2397 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2398 				new_vma->vm_ops->open(new_vma);
2399 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2400 		}
2401 	}
2402 	return new_vma;
2403 
2404  out_free_mempol:
2405 	mpol_put(pol);
2406  out_free_vma:
2407 	kmem_cache_free(vm_area_cachep, new_vma);
2408 	return NULL;
2409 }
2410 
2411 /*
2412  * Return true if the calling process may expand its vm space by the passed
2413  * number of pages
2414  */
2415 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2416 {
2417 	unsigned long cur = mm->total_vm;	/* pages */
2418 	unsigned long lim;
2419 
2420 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2421 
2422 	if (cur + npages > lim)
2423 		return 0;
2424 	return 1;
2425 }
2426 
2427 
2428 static int special_mapping_fault(struct vm_area_struct *vma,
2429 				struct vm_fault *vmf)
2430 {
2431 	pgoff_t pgoff;
2432 	struct page **pages;
2433 
2434 	/*
2435 	 * special mappings have no vm_file, and in that case, the mm
2436 	 * uses vm_pgoff internally. So we have to subtract it from here.
2437 	 * We are allowed to do this because we are the mm; do not copy
2438 	 * this code into drivers!
2439 	 */
2440 	pgoff = vmf->pgoff - vma->vm_pgoff;
2441 
2442 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2443 		pgoff--;
2444 
2445 	if (*pages) {
2446 		struct page *page = *pages;
2447 		get_page(page);
2448 		vmf->page = page;
2449 		return 0;
2450 	}
2451 
2452 	return VM_FAULT_SIGBUS;
2453 }
2454 
2455 /*
2456  * Having a close hook prevents vma merging regardless of flags.
2457  */
2458 static void special_mapping_close(struct vm_area_struct *vma)
2459 {
2460 }
2461 
2462 static const struct vm_operations_struct special_mapping_vmops = {
2463 	.close = special_mapping_close,
2464 	.fault = special_mapping_fault,
2465 };
2466 
2467 /*
2468  * Called with mm->mmap_sem held for writing.
2469  * Insert a new vma covering the given region, with the given flags.
2470  * Its pages are supplied by the given array of struct page *.
2471  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2472  * The region past the last page supplied will always produce SIGBUS.
2473  * The array pointer and the pages it points to are assumed to stay alive
2474  * for as long as this mapping might exist.
2475  */
2476 int install_special_mapping(struct mm_struct *mm,
2477 			    unsigned long addr, unsigned long len,
2478 			    unsigned long vm_flags, struct page **pages)
2479 {
2480 	int ret;
2481 	struct vm_area_struct *vma;
2482 
2483 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2484 	if (unlikely(vma == NULL))
2485 		return -ENOMEM;
2486 
2487 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2488 	vma->vm_mm = mm;
2489 	vma->vm_start = addr;
2490 	vma->vm_end = addr + len;
2491 
2492 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2493 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2494 
2495 	vma->vm_ops = &special_mapping_vmops;
2496 	vma->vm_private_data = pages;
2497 
2498 	ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2499 	if (ret)
2500 		goto out;
2501 
2502 	ret = insert_vm_struct(mm, vma);
2503 	if (ret)
2504 		goto out;
2505 
2506 	mm->total_vm += len >> PAGE_SHIFT;
2507 
2508 	perf_event_mmap(vma);
2509 
2510 	return 0;
2511 
2512 out:
2513 	kmem_cache_free(vm_area_cachep, vma);
2514 	return ret;
2515 }
2516 
2517 static DEFINE_MUTEX(mm_all_locks_mutex);
2518 
2519 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2520 {
2521 	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2522 		/*
2523 		 * The LSB of head.next can't change from under us
2524 		 * because we hold the mm_all_locks_mutex.
2525 		 */
2526 		spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem);
2527 		/*
2528 		 * We can safely modify head.next after taking the
2529 		 * anon_vma->root->lock. If some other vma in this mm shares
2530 		 * the same anon_vma we won't take it again.
2531 		 *
2532 		 * No need of atomic instructions here, head.next
2533 		 * can't change from under us thanks to the
2534 		 * anon_vma->root->lock.
2535 		 */
2536 		if (__test_and_set_bit(0, (unsigned long *)
2537 				       &anon_vma->root->head.next))
2538 			BUG();
2539 	}
2540 }
2541 
2542 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2543 {
2544 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2545 		/*
2546 		 * AS_MM_ALL_LOCKS can't change from under us because
2547 		 * we hold the mm_all_locks_mutex.
2548 		 *
2549 		 * Operations on ->flags have to be atomic because
2550 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2551 		 * mm_all_locks_mutex, there may be other cpus
2552 		 * changing other bitflags in parallel to us.
2553 		 */
2554 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2555 			BUG();
2556 		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2557 	}
2558 }
2559 
2560 /*
2561  * This operation locks against the VM for all pte/vma/mm related
2562  * operations that could ever happen on a certain mm. This includes
2563  * vmtruncate, try_to_unmap, and all page faults.
2564  *
2565  * The caller must take the mmap_sem in write mode before calling
2566  * mm_take_all_locks(). The caller isn't allowed to release the
2567  * mmap_sem until mm_drop_all_locks() returns.
2568  *
2569  * mmap_sem in write mode is required in order to block all operations
2570  * that could modify pagetables and free pages without need of
2571  * altering the vma layout (for example populate_range() with
2572  * nonlinear vmas). It's also needed in write mode to avoid new
2573  * anon_vmas to be associated with existing vmas.
2574  *
2575  * A single task can't take more than one mm_take_all_locks() in a row
2576  * or it would deadlock.
2577  *
2578  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2579  * mapping->flags avoid to take the same lock twice, if more than one
2580  * vma in this mm is backed by the same anon_vma or address_space.
2581  *
2582  * We can take all the locks in random order because the VM code
2583  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2584  * takes more than one of them in a row. Secondly we're protected
2585  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2586  *
2587  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2588  * that may have to take thousand of locks.
2589  *
2590  * mm_take_all_locks() can fail if it's interrupted by signals.
2591  */
2592 int mm_take_all_locks(struct mm_struct *mm)
2593 {
2594 	struct vm_area_struct *vma;
2595 	struct anon_vma_chain *avc;
2596 	int ret = -EINTR;
2597 
2598 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2599 
2600 	mutex_lock(&mm_all_locks_mutex);
2601 
2602 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2603 		if (signal_pending(current))
2604 			goto out_unlock;
2605 		if (vma->vm_file && vma->vm_file->f_mapping)
2606 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2607 	}
2608 
2609 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2610 		if (signal_pending(current))
2611 			goto out_unlock;
2612 		if (vma->anon_vma)
2613 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2614 				vm_lock_anon_vma(mm, avc->anon_vma);
2615 	}
2616 
2617 	ret = 0;
2618 
2619 out_unlock:
2620 	if (ret)
2621 		mm_drop_all_locks(mm);
2622 
2623 	return ret;
2624 }
2625 
2626 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2627 {
2628 	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2629 		/*
2630 		 * The LSB of head.next can't change to 0 from under
2631 		 * us because we hold the mm_all_locks_mutex.
2632 		 *
2633 		 * We must however clear the bitflag before unlocking
2634 		 * the vma so the users using the anon_vma->head will
2635 		 * never see our bitflag.
2636 		 *
2637 		 * No need of atomic instructions here, head.next
2638 		 * can't change from under us until we release the
2639 		 * anon_vma->root->lock.
2640 		 */
2641 		if (!__test_and_clear_bit(0, (unsigned long *)
2642 					  &anon_vma->root->head.next))
2643 			BUG();
2644 		anon_vma_unlock(anon_vma);
2645 	}
2646 }
2647 
2648 static void vm_unlock_mapping(struct address_space *mapping)
2649 {
2650 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2651 		/*
2652 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2653 		 * because we hold the mm_all_locks_mutex.
2654 		 */
2655 		spin_unlock(&mapping->i_mmap_lock);
2656 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2657 					&mapping->flags))
2658 			BUG();
2659 	}
2660 }
2661 
2662 /*
2663  * The mmap_sem cannot be released by the caller until
2664  * mm_drop_all_locks() returns.
2665  */
2666 void mm_drop_all_locks(struct mm_struct *mm)
2667 {
2668 	struct vm_area_struct *vma;
2669 	struct anon_vma_chain *avc;
2670 
2671 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2672 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2673 
2674 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2675 		if (vma->anon_vma)
2676 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2677 				vm_unlock_anon_vma(avc->anon_vma);
2678 		if (vma->vm_file && vma->vm_file->f_mapping)
2679 			vm_unlock_mapping(vma->vm_file->f_mapping);
2680 	}
2681 
2682 	mutex_unlock(&mm_all_locks_mutex);
2683 }
2684 
2685 /*
2686  * initialise the VMA slab
2687  */
2688 void __init mmap_init(void)
2689 {
2690 	int ret;
2691 
2692 	ret = percpu_counter_init(&vm_committed_as, 0);
2693 	VM_BUG_ON(ret);
2694 }
2695