1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/module.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 #include <linux/audit.h> 32 #include <linux/khugepaged.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/cacheflush.h> 36 #include <asm/tlb.h> 37 #include <asm/mmu_context.h> 38 39 #include "internal.h" 40 41 #ifndef arch_mmap_check 42 #define arch_mmap_check(addr, len, flags) (0) 43 #endif 44 45 #ifndef arch_rebalance_pgtables 46 #define arch_rebalance_pgtables(addr, len) (addr) 47 #endif 48 49 static void unmap_region(struct mm_struct *mm, 50 struct vm_area_struct *vma, struct vm_area_struct *prev, 51 unsigned long start, unsigned long end); 52 53 /* 54 * WARNING: the debugging will use recursive algorithms so never enable this 55 * unless you know what you are doing. 56 */ 57 #undef DEBUG_MM_RB 58 59 /* description of effects of mapping type and prot in current implementation. 60 * this is due to the limited x86 page protection hardware. The expected 61 * behavior is in parens: 62 * 63 * map_type prot 64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 66 * w: (no) no w: (no) no w: (yes) yes w: (no) no 67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 68 * 69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 70 * w: (no) no w: (no) no w: (copy) copy w: (no) no 71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 72 * 73 */ 74 pgprot_t protection_map[16] = { 75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 77 }; 78 79 pgprot_t vm_get_page_prot(unsigned long vm_flags) 80 { 81 return __pgprot(pgprot_val(protection_map[vm_flags & 82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 83 pgprot_val(arch_vm_get_page_prot(vm_flags))); 84 } 85 EXPORT_SYMBOL(vm_get_page_prot); 86 87 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 88 int sysctl_overcommit_ratio = 50; /* default is 50% */ 89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 90 struct percpu_counter vm_committed_as; 91 92 /* 93 * Check that a process has enough memory to allocate a new virtual 94 * mapping. 0 means there is enough memory for the allocation to 95 * succeed and -ENOMEM implies there is not. 96 * 97 * We currently support three overcommit policies, which are set via the 98 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 99 * 100 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 101 * Additional code 2002 Jul 20 by Robert Love. 102 * 103 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 104 * 105 * Note this is a helper function intended to be used by LSMs which 106 * wish to use this logic. 107 */ 108 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 109 { 110 unsigned long free, allowed; 111 112 vm_acct_memory(pages); 113 114 /* 115 * Sometimes we want to use more memory than we have 116 */ 117 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 118 return 0; 119 120 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 121 unsigned long n; 122 123 free = global_page_state(NR_FILE_PAGES); 124 free += nr_swap_pages; 125 126 /* 127 * Any slabs which are created with the 128 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 129 * which are reclaimable, under pressure. The dentry 130 * cache and most inode caches should fall into this 131 */ 132 free += global_page_state(NR_SLAB_RECLAIMABLE); 133 134 /* 135 * Leave the last 3% for root 136 */ 137 if (!cap_sys_admin) 138 free -= free / 32; 139 140 if (free > pages) 141 return 0; 142 143 /* 144 * nr_free_pages() is very expensive on large systems, 145 * only call if we're about to fail. 146 */ 147 n = nr_free_pages(); 148 149 /* 150 * Leave reserved pages. The pages are not for anonymous pages. 151 */ 152 if (n <= totalreserve_pages) 153 goto error; 154 else 155 n -= totalreserve_pages; 156 157 /* 158 * Leave the last 3% for root 159 */ 160 if (!cap_sys_admin) 161 n -= n / 32; 162 free += n; 163 164 if (free > pages) 165 return 0; 166 167 goto error; 168 } 169 170 allowed = (totalram_pages - hugetlb_total_pages()) 171 * sysctl_overcommit_ratio / 100; 172 /* 173 * Leave the last 3% for root 174 */ 175 if (!cap_sys_admin) 176 allowed -= allowed / 32; 177 allowed += total_swap_pages; 178 179 /* Don't let a single process grow too big: 180 leave 3% of the size of this process for other processes */ 181 if (mm) 182 allowed -= mm->total_vm / 32; 183 184 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 185 return 0; 186 error: 187 vm_unacct_memory(pages); 188 189 return -ENOMEM; 190 } 191 192 /* 193 * Requires inode->i_mapping->i_mmap_lock 194 */ 195 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 196 struct file *file, struct address_space *mapping) 197 { 198 if (vma->vm_flags & VM_DENYWRITE) 199 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 200 if (vma->vm_flags & VM_SHARED) 201 mapping->i_mmap_writable--; 202 203 flush_dcache_mmap_lock(mapping); 204 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 205 list_del_init(&vma->shared.vm_set.list); 206 else 207 vma_prio_tree_remove(vma, &mapping->i_mmap); 208 flush_dcache_mmap_unlock(mapping); 209 } 210 211 /* 212 * Unlink a file-based vm structure from its prio_tree, to hide 213 * vma from rmap and vmtruncate before freeing its page tables. 214 */ 215 void unlink_file_vma(struct vm_area_struct *vma) 216 { 217 struct file *file = vma->vm_file; 218 219 if (file) { 220 struct address_space *mapping = file->f_mapping; 221 spin_lock(&mapping->i_mmap_lock); 222 __remove_shared_vm_struct(vma, file, mapping); 223 spin_unlock(&mapping->i_mmap_lock); 224 } 225 } 226 227 /* 228 * Close a vm structure and free it, returning the next. 229 */ 230 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 231 { 232 struct vm_area_struct *next = vma->vm_next; 233 234 might_sleep(); 235 if (vma->vm_ops && vma->vm_ops->close) 236 vma->vm_ops->close(vma); 237 if (vma->vm_file) { 238 fput(vma->vm_file); 239 if (vma->vm_flags & VM_EXECUTABLE) 240 removed_exe_file_vma(vma->vm_mm); 241 } 242 mpol_put(vma_policy(vma)); 243 kmem_cache_free(vm_area_cachep, vma); 244 return next; 245 } 246 247 SYSCALL_DEFINE1(brk, unsigned long, brk) 248 { 249 unsigned long rlim, retval; 250 unsigned long newbrk, oldbrk; 251 struct mm_struct *mm = current->mm; 252 unsigned long min_brk; 253 254 down_write(&mm->mmap_sem); 255 256 #ifdef CONFIG_COMPAT_BRK 257 /* 258 * CONFIG_COMPAT_BRK can still be overridden by setting 259 * randomize_va_space to 2, which will still cause mm->start_brk 260 * to be arbitrarily shifted 261 */ 262 if (mm->start_brk > PAGE_ALIGN(mm->end_data)) 263 min_brk = mm->start_brk; 264 else 265 min_brk = mm->end_data; 266 #else 267 min_brk = mm->start_brk; 268 #endif 269 if (brk < min_brk) 270 goto out; 271 272 /* 273 * Check against rlimit here. If this check is done later after the test 274 * of oldbrk with newbrk then it can escape the test and let the data 275 * segment grow beyond its set limit the in case where the limit is 276 * not page aligned -Ram Gupta 277 */ 278 rlim = rlimit(RLIMIT_DATA); 279 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 280 (mm->end_data - mm->start_data) > rlim) 281 goto out; 282 283 newbrk = PAGE_ALIGN(brk); 284 oldbrk = PAGE_ALIGN(mm->brk); 285 if (oldbrk == newbrk) 286 goto set_brk; 287 288 /* Always allow shrinking brk. */ 289 if (brk <= mm->brk) { 290 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 291 goto set_brk; 292 goto out; 293 } 294 295 /* Check against existing mmap mappings. */ 296 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 297 goto out; 298 299 /* Ok, looks good - let it rip. */ 300 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 301 goto out; 302 set_brk: 303 mm->brk = brk; 304 out: 305 retval = mm->brk; 306 up_write(&mm->mmap_sem); 307 return retval; 308 } 309 310 #ifdef DEBUG_MM_RB 311 static int browse_rb(struct rb_root *root) 312 { 313 int i = 0, j; 314 struct rb_node *nd, *pn = NULL; 315 unsigned long prev = 0, pend = 0; 316 317 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 318 struct vm_area_struct *vma; 319 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 320 if (vma->vm_start < prev) 321 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 322 if (vma->vm_start < pend) 323 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 324 if (vma->vm_start > vma->vm_end) 325 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 326 i++; 327 pn = nd; 328 prev = vma->vm_start; 329 pend = vma->vm_end; 330 } 331 j = 0; 332 for (nd = pn; nd; nd = rb_prev(nd)) { 333 j++; 334 } 335 if (i != j) 336 printk("backwards %d, forwards %d\n", j, i), i = 0; 337 return i; 338 } 339 340 void validate_mm(struct mm_struct *mm) 341 { 342 int bug = 0; 343 int i = 0; 344 struct vm_area_struct *tmp = mm->mmap; 345 while (tmp) { 346 tmp = tmp->vm_next; 347 i++; 348 } 349 if (i != mm->map_count) 350 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 351 i = browse_rb(&mm->mm_rb); 352 if (i != mm->map_count) 353 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 354 BUG_ON(bug); 355 } 356 #else 357 #define validate_mm(mm) do { } while (0) 358 #endif 359 360 static struct vm_area_struct * 361 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 362 struct vm_area_struct **pprev, struct rb_node ***rb_link, 363 struct rb_node ** rb_parent) 364 { 365 struct vm_area_struct * vma; 366 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 367 368 __rb_link = &mm->mm_rb.rb_node; 369 rb_prev = __rb_parent = NULL; 370 vma = NULL; 371 372 while (*__rb_link) { 373 struct vm_area_struct *vma_tmp; 374 375 __rb_parent = *__rb_link; 376 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 377 378 if (vma_tmp->vm_end > addr) { 379 vma = vma_tmp; 380 if (vma_tmp->vm_start <= addr) 381 break; 382 __rb_link = &__rb_parent->rb_left; 383 } else { 384 rb_prev = __rb_parent; 385 __rb_link = &__rb_parent->rb_right; 386 } 387 } 388 389 *pprev = NULL; 390 if (rb_prev) 391 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 392 *rb_link = __rb_link; 393 *rb_parent = __rb_parent; 394 return vma; 395 } 396 397 static inline void 398 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 399 struct vm_area_struct *prev, struct rb_node *rb_parent) 400 { 401 struct vm_area_struct *next; 402 403 vma->vm_prev = prev; 404 if (prev) { 405 next = prev->vm_next; 406 prev->vm_next = vma; 407 } else { 408 mm->mmap = vma; 409 if (rb_parent) 410 next = rb_entry(rb_parent, 411 struct vm_area_struct, vm_rb); 412 else 413 next = NULL; 414 } 415 vma->vm_next = next; 416 if (next) 417 next->vm_prev = vma; 418 } 419 420 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 421 struct rb_node **rb_link, struct rb_node *rb_parent) 422 { 423 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 424 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 425 } 426 427 static void __vma_link_file(struct vm_area_struct *vma) 428 { 429 struct file *file; 430 431 file = vma->vm_file; 432 if (file) { 433 struct address_space *mapping = file->f_mapping; 434 435 if (vma->vm_flags & VM_DENYWRITE) 436 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 437 if (vma->vm_flags & VM_SHARED) 438 mapping->i_mmap_writable++; 439 440 flush_dcache_mmap_lock(mapping); 441 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 442 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 443 else 444 vma_prio_tree_insert(vma, &mapping->i_mmap); 445 flush_dcache_mmap_unlock(mapping); 446 } 447 } 448 449 static void 450 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 451 struct vm_area_struct *prev, struct rb_node **rb_link, 452 struct rb_node *rb_parent) 453 { 454 __vma_link_list(mm, vma, prev, rb_parent); 455 __vma_link_rb(mm, vma, rb_link, rb_parent); 456 } 457 458 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 459 struct vm_area_struct *prev, struct rb_node **rb_link, 460 struct rb_node *rb_parent) 461 { 462 struct address_space *mapping = NULL; 463 464 if (vma->vm_file) 465 mapping = vma->vm_file->f_mapping; 466 467 if (mapping) { 468 spin_lock(&mapping->i_mmap_lock); 469 vma->vm_truncate_count = mapping->truncate_count; 470 } 471 472 __vma_link(mm, vma, prev, rb_link, rb_parent); 473 __vma_link_file(vma); 474 475 if (mapping) 476 spin_unlock(&mapping->i_mmap_lock); 477 478 mm->map_count++; 479 validate_mm(mm); 480 } 481 482 /* 483 * Helper for vma_adjust in the split_vma insert case: 484 * insert vm structure into list and rbtree and anon_vma, 485 * but it has already been inserted into prio_tree earlier. 486 */ 487 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 488 { 489 struct vm_area_struct *__vma, *prev; 490 struct rb_node **rb_link, *rb_parent; 491 492 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 493 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 494 __vma_link(mm, vma, prev, rb_link, rb_parent); 495 mm->map_count++; 496 } 497 498 static inline void 499 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 500 struct vm_area_struct *prev) 501 { 502 struct vm_area_struct *next = vma->vm_next; 503 504 prev->vm_next = next; 505 if (next) 506 next->vm_prev = prev; 507 rb_erase(&vma->vm_rb, &mm->mm_rb); 508 if (mm->mmap_cache == vma) 509 mm->mmap_cache = prev; 510 } 511 512 /* 513 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 514 * is already present in an i_mmap tree without adjusting the tree. 515 * The following helper function should be used when such adjustments 516 * are necessary. The "insert" vma (if any) is to be inserted 517 * before we drop the necessary locks. 518 */ 519 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 520 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 521 { 522 struct mm_struct *mm = vma->vm_mm; 523 struct vm_area_struct *next = vma->vm_next; 524 struct vm_area_struct *importer = NULL; 525 struct address_space *mapping = NULL; 526 struct prio_tree_root *root = NULL; 527 struct anon_vma *anon_vma = NULL; 528 struct file *file = vma->vm_file; 529 long adjust_next = 0; 530 int remove_next = 0; 531 532 if (next && !insert) { 533 struct vm_area_struct *exporter = NULL; 534 535 if (end >= next->vm_end) { 536 /* 537 * vma expands, overlapping all the next, and 538 * perhaps the one after too (mprotect case 6). 539 */ 540 again: remove_next = 1 + (end > next->vm_end); 541 end = next->vm_end; 542 exporter = next; 543 importer = vma; 544 } else if (end > next->vm_start) { 545 /* 546 * vma expands, overlapping part of the next: 547 * mprotect case 5 shifting the boundary up. 548 */ 549 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 550 exporter = next; 551 importer = vma; 552 } else if (end < vma->vm_end) { 553 /* 554 * vma shrinks, and !insert tells it's not 555 * split_vma inserting another: so it must be 556 * mprotect case 4 shifting the boundary down. 557 */ 558 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 559 exporter = vma; 560 importer = next; 561 } 562 563 /* 564 * Easily overlooked: when mprotect shifts the boundary, 565 * make sure the expanding vma has anon_vma set if the 566 * shrinking vma had, to cover any anon pages imported. 567 */ 568 if (exporter && exporter->anon_vma && !importer->anon_vma) { 569 if (anon_vma_clone(importer, exporter)) 570 return -ENOMEM; 571 importer->anon_vma = exporter->anon_vma; 572 } 573 } 574 575 if (file) { 576 mapping = file->f_mapping; 577 if (!(vma->vm_flags & VM_NONLINEAR)) 578 root = &mapping->i_mmap; 579 spin_lock(&mapping->i_mmap_lock); 580 if (importer && 581 vma->vm_truncate_count != next->vm_truncate_count) { 582 /* 583 * unmap_mapping_range might be in progress: 584 * ensure that the expanding vma is rescanned. 585 */ 586 importer->vm_truncate_count = 0; 587 } 588 if (insert) { 589 insert->vm_truncate_count = vma->vm_truncate_count; 590 /* 591 * Put into prio_tree now, so instantiated pages 592 * are visible to arm/parisc __flush_dcache_page 593 * throughout; but we cannot insert into address 594 * space until vma start or end is updated. 595 */ 596 __vma_link_file(insert); 597 } 598 } 599 600 vma_adjust_trans_huge(vma, start, end, adjust_next); 601 602 /* 603 * When changing only vma->vm_end, we don't really need anon_vma 604 * lock. This is a fairly rare case by itself, but the anon_vma 605 * lock may be shared between many sibling processes. Skipping 606 * the lock for brk adjustments makes a difference sometimes. 607 */ 608 if (vma->anon_vma && (insert || importer || start != vma->vm_start)) { 609 anon_vma = vma->anon_vma; 610 anon_vma_lock(anon_vma); 611 } 612 613 if (root) { 614 flush_dcache_mmap_lock(mapping); 615 vma_prio_tree_remove(vma, root); 616 if (adjust_next) 617 vma_prio_tree_remove(next, root); 618 } 619 620 vma->vm_start = start; 621 vma->vm_end = end; 622 vma->vm_pgoff = pgoff; 623 if (adjust_next) { 624 next->vm_start += adjust_next << PAGE_SHIFT; 625 next->vm_pgoff += adjust_next; 626 } 627 628 if (root) { 629 if (adjust_next) 630 vma_prio_tree_insert(next, root); 631 vma_prio_tree_insert(vma, root); 632 flush_dcache_mmap_unlock(mapping); 633 } 634 635 if (remove_next) { 636 /* 637 * vma_merge has merged next into vma, and needs 638 * us to remove next before dropping the locks. 639 */ 640 __vma_unlink(mm, next, vma); 641 if (file) 642 __remove_shared_vm_struct(next, file, mapping); 643 } else if (insert) { 644 /* 645 * split_vma has split insert from vma, and needs 646 * us to insert it before dropping the locks 647 * (it may either follow vma or precede it). 648 */ 649 __insert_vm_struct(mm, insert); 650 } 651 652 if (anon_vma) 653 anon_vma_unlock(anon_vma); 654 if (mapping) 655 spin_unlock(&mapping->i_mmap_lock); 656 657 if (remove_next) { 658 if (file) { 659 fput(file); 660 if (next->vm_flags & VM_EXECUTABLE) 661 removed_exe_file_vma(mm); 662 } 663 if (next->anon_vma) 664 anon_vma_merge(vma, next); 665 mm->map_count--; 666 mpol_put(vma_policy(next)); 667 kmem_cache_free(vm_area_cachep, next); 668 /* 669 * In mprotect's case 6 (see comments on vma_merge), 670 * we must remove another next too. It would clutter 671 * up the code too much to do both in one go. 672 */ 673 if (remove_next == 2) { 674 next = vma->vm_next; 675 goto again; 676 } 677 } 678 679 validate_mm(mm); 680 681 return 0; 682 } 683 684 /* 685 * If the vma has a ->close operation then the driver probably needs to release 686 * per-vma resources, so we don't attempt to merge those. 687 */ 688 static inline int is_mergeable_vma(struct vm_area_struct *vma, 689 struct file *file, unsigned long vm_flags) 690 { 691 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 692 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 693 return 0; 694 if (vma->vm_file != file) 695 return 0; 696 if (vma->vm_ops && vma->vm_ops->close) 697 return 0; 698 return 1; 699 } 700 701 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 702 struct anon_vma *anon_vma2) 703 { 704 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 705 } 706 707 /* 708 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 709 * in front of (at a lower virtual address and file offset than) the vma. 710 * 711 * We cannot merge two vmas if they have differently assigned (non-NULL) 712 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 713 * 714 * We don't check here for the merged mmap wrapping around the end of pagecache 715 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 716 * wrap, nor mmaps which cover the final page at index -1UL. 717 */ 718 static int 719 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 720 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 721 { 722 if (is_mergeable_vma(vma, file, vm_flags) && 723 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 724 if (vma->vm_pgoff == vm_pgoff) 725 return 1; 726 } 727 return 0; 728 } 729 730 /* 731 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 732 * beyond (at a higher virtual address and file offset than) the vma. 733 * 734 * We cannot merge two vmas if they have differently assigned (non-NULL) 735 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 736 */ 737 static int 738 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 739 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 740 { 741 if (is_mergeable_vma(vma, file, vm_flags) && 742 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 743 pgoff_t vm_pglen; 744 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 745 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 746 return 1; 747 } 748 return 0; 749 } 750 751 /* 752 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 753 * whether that can be merged with its predecessor or its successor. 754 * Or both (it neatly fills a hole). 755 * 756 * In most cases - when called for mmap, brk or mremap - [addr,end) is 757 * certain not to be mapped by the time vma_merge is called; but when 758 * called for mprotect, it is certain to be already mapped (either at 759 * an offset within prev, or at the start of next), and the flags of 760 * this area are about to be changed to vm_flags - and the no-change 761 * case has already been eliminated. 762 * 763 * The following mprotect cases have to be considered, where AAAA is 764 * the area passed down from mprotect_fixup, never extending beyond one 765 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 766 * 767 * AAAA AAAA AAAA AAAA 768 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 769 * cannot merge might become might become might become 770 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 771 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 772 * mremap move: PPPPNNNNNNNN 8 773 * AAAA 774 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 775 * might become case 1 below case 2 below case 3 below 776 * 777 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 778 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 779 */ 780 struct vm_area_struct *vma_merge(struct mm_struct *mm, 781 struct vm_area_struct *prev, unsigned long addr, 782 unsigned long end, unsigned long vm_flags, 783 struct anon_vma *anon_vma, struct file *file, 784 pgoff_t pgoff, struct mempolicy *policy) 785 { 786 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 787 struct vm_area_struct *area, *next; 788 int err; 789 790 /* 791 * We later require that vma->vm_flags == vm_flags, 792 * so this tests vma->vm_flags & VM_SPECIAL, too. 793 */ 794 if (vm_flags & VM_SPECIAL) 795 return NULL; 796 797 if (prev) 798 next = prev->vm_next; 799 else 800 next = mm->mmap; 801 area = next; 802 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 803 next = next->vm_next; 804 805 /* 806 * Can it merge with the predecessor? 807 */ 808 if (prev && prev->vm_end == addr && 809 mpol_equal(vma_policy(prev), policy) && 810 can_vma_merge_after(prev, vm_flags, 811 anon_vma, file, pgoff)) { 812 /* 813 * OK, it can. Can we now merge in the successor as well? 814 */ 815 if (next && end == next->vm_start && 816 mpol_equal(policy, vma_policy(next)) && 817 can_vma_merge_before(next, vm_flags, 818 anon_vma, file, pgoff+pglen) && 819 is_mergeable_anon_vma(prev->anon_vma, 820 next->anon_vma)) { 821 /* cases 1, 6 */ 822 err = vma_adjust(prev, prev->vm_start, 823 next->vm_end, prev->vm_pgoff, NULL); 824 } else /* cases 2, 5, 7 */ 825 err = vma_adjust(prev, prev->vm_start, 826 end, prev->vm_pgoff, NULL); 827 if (err) 828 return NULL; 829 khugepaged_enter_vma_merge(prev); 830 return prev; 831 } 832 833 /* 834 * Can this new request be merged in front of next? 835 */ 836 if (next && end == next->vm_start && 837 mpol_equal(policy, vma_policy(next)) && 838 can_vma_merge_before(next, vm_flags, 839 anon_vma, file, pgoff+pglen)) { 840 if (prev && addr < prev->vm_end) /* case 4 */ 841 err = vma_adjust(prev, prev->vm_start, 842 addr, prev->vm_pgoff, NULL); 843 else /* cases 3, 8 */ 844 err = vma_adjust(area, addr, next->vm_end, 845 next->vm_pgoff - pglen, NULL); 846 if (err) 847 return NULL; 848 khugepaged_enter_vma_merge(area); 849 return area; 850 } 851 852 return NULL; 853 } 854 855 /* 856 * Rough compatbility check to quickly see if it's even worth looking 857 * at sharing an anon_vma. 858 * 859 * They need to have the same vm_file, and the flags can only differ 860 * in things that mprotect may change. 861 * 862 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 863 * we can merge the two vma's. For example, we refuse to merge a vma if 864 * there is a vm_ops->close() function, because that indicates that the 865 * driver is doing some kind of reference counting. But that doesn't 866 * really matter for the anon_vma sharing case. 867 */ 868 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 869 { 870 return a->vm_end == b->vm_start && 871 mpol_equal(vma_policy(a), vma_policy(b)) && 872 a->vm_file == b->vm_file && 873 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 874 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 875 } 876 877 /* 878 * Do some basic sanity checking to see if we can re-use the anon_vma 879 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 880 * the same as 'old', the other will be the new one that is trying 881 * to share the anon_vma. 882 * 883 * NOTE! This runs with mm_sem held for reading, so it is possible that 884 * the anon_vma of 'old' is concurrently in the process of being set up 885 * by another page fault trying to merge _that_. But that's ok: if it 886 * is being set up, that automatically means that it will be a singleton 887 * acceptable for merging, so we can do all of this optimistically. But 888 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 889 * 890 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 891 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 892 * is to return an anon_vma that is "complex" due to having gone through 893 * a fork). 894 * 895 * We also make sure that the two vma's are compatible (adjacent, 896 * and with the same memory policies). That's all stable, even with just 897 * a read lock on the mm_sem. 898 */ 899 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 900 { 901 if (anon_vma_compatible(a, b)) { 902 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 903 904 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 905 return anon_vma; 906 } 907 return NULL; 908 } 909 910 /* 911 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 912 * neighbouring vmas for a suitable anon_vma, before it goes off 913 * to allocate a new anon_vma. It checks because a repetitive 914 * sequence of mprotects and faults may otherwise lead to distinct 915 * anon_vmas being allocated, preventing vma merge in subsequent 916 * mprotect. 917 */ 918 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 919 { 920 struct anon_vma *anon_vma; 921 struct vm_area_struct *near; 922 923 near = vma->vm_next; 924 if (!near) 925 goto try_prev; 926 927 anon_vma = reusable_anon_vma(near, vma, near); 928 if (anon_vma) 929 return anon_vma; 930 try_prev: 931 /* 932 * It is potentially slow to have to call find_vma_prev here. 933 * But it's only on the first write fault on the vma, not 934 * every time, and we could devise a way to avoid it later 935 * (e.g. stash info in next's anon_vma_node when assigning 936 * an anon_vma, or when trying vma_merge). Another time. 937 */ 938 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 939 if (!near) 940 goto none; 941 942 anon_vma = reusable_anon_vma(near, near, vma); 943 if (anon_vma) 944 return anon_vma; 945 none: 946 /* 947 * There's no absolute need to look only at touching neighbours: 948 * we could search further afield for "compatible" anon_vmas. 949 * But it would probably just be a waste of time searching, 950 * or lead to too many vmas hanging off the same anon_vma. 951 * We're trying to allow mprotect remerging later on, 952 * not trying to minimize memory used for anon_vmas. 953 */ 954 return NULL; 955 } 956 957 #ifdef CONFIG_PROC_FS 958 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 959 struct file *file, long pages) 960 { 961 const unsigned long stack_flags 962 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 963 964 if (file) { 965 mm->shared_vm += pages; 966 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 967 mm->exec_vm += pages; 968 } else if (flags & stack_flags) 969 mm->stack_vm += pages; 970 if (flags & (VM_RESERVED|VM_IO)) 971 mm->reserved_vm += pages; 972 } 973 #endif /* CONFIG_PROC_FS */ 974 975 /* 976 * The caller must hold down_write(¤t->mm->mmap_sem). 977 */ 978 979 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 980 unsigned long len, unsigned long prot, 981 unsigned long flags, unsigned long pgoff) 982 { 983 struct mm_struct * mm = current->mm; 984 struct inode *inode; 985 unsigned int vm_flags; 986 int error; 987 unsigned long reqprot = prot; 988 989 /* 990 * Does the application expect PROT_READ to imply PROT_EXEC? 991 * 992 * (the exception is when the underlying filesystem is noexec 993 * mounted, in which case we dont add PROT_EXEC.) 994 */ 995 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 996 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 997 prot |= PROT_EXEC; 998 999 if (!len) 1000 return -EINVAL; 1001 1002 if (!(flags & MAP_FIXED)) 1003 addr = round_hint_to_min(addr); 1004 1005 /* Careful about overflows.. */ 1006 len = PAGE_ALIGN(len); 1007 if (!len) 1008 return -ENOMEM; 1009 1010 /* offset overflow? */ 1011 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1012 return -EOVERFLOW; 1013 1014 /* Too many mappings? */ 1015 if (mm->map_count > sysctl_max_map_count) 1016 return -ENOMEM; 1017 1018 /* Obtain the address to map to. we verify (or select) it and ensure 1019 * that it represents a valid section of the address space. 1020 */ 1021 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1022 if (addr & ~PAGE_MASK) 1023 return addr; 1024 1025 /* Do simple checking here so the lower-level routines won't have 1026 * to. we assume access permissions have been handled by the open 1027 * of the memory object, so we don't do any here. 1028 */ 1029 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1030 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1031 1032 if (flags & MAP_LOCKED) 1033 if (!can_do_mlock()) 1034 return -EPERM; 1035 1036 /* mlock MCL_FUTURE? */ 1037 if (vm_flags & VM_LOCKED) { 1038 unsigned long locked, lock_limit; 1039 locked = len >> PAGE_SHIFT; 1040 locked += mm->locked_vm; 1041 lock_limit = rlimit(RLIMIT_MEMLOCK); 1042 lock_limit >>= PAGE_SHIFT; 1043 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1044 return -EAGAIN; 1045 } 1046 1047 inode = file ? file->f_path.dentry->d_inode : NULL; 1048 1049 if (file) { 1050 switch (flags & MAP_TYPE) { 1051 case MAP_SHARED: 1052 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1053 return -EACCES; 1054 1055 /* 1056 * Make sure we don't allow writing to an append-only 1057 * file.. 1058 */ 1059 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1060 return -EACCES; 1061 1062 /* 1063 * Make sure there are no mandatory locks on the file. 1064 */ 1065 if (locks_verify_locked(inode)) 1066 return -EAGAIN; 1067 1068 vm_flags |= VM_SHARED | VM_MAYSHARE; 1069 if (!(file->f_mode & FMODE_WRITE)) 1070 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1071 1072 /* fall through */ 1073 case MAP_PRIVATE: 1074 if (!(file->f_mode & FMODE_READ)) 1075 return -EACCES; 1076 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1077 if (vm_flags & VM_EXEC) 1078 return -EPERM; 1079 vm_flags &= ~VM_MAYEXEC; 1080 } 1081 1082 if (!file->f_op || !file->f_op->mmap) 1083 return -ENODEV; 1084 break; 1085 1086 default: 1087 return -EINVAL; 1088 } 1089 } else { 1090 switch (flags & MAP_TYPE) { 1091 case MAP_SHARED: 1092 /* 1093 * Ignore pgoff. 1094 */ 1095 pgoff = 0; 1096 vm_flags |= VM_SHARED | VM_MAYSHARE; 1097 break; 1098 case MAP_PRIVATE: 1099 /* 1100 * Set pgoff according to addr for anon_vma. 1101 */ 1102 pgoff = addr >> PAGE_SHIFT; 1103 break; 1104 default: 1105 return -EINVAL; 1106 } 1107 } 1108 1109 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1110 if (error) 1111 return error; 1112 1113 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1114 } 1115 EXPORT_SYMBOL(do_mmap_pgoff); 1116 1117 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1118 unsigned long, prot, unsigned long, flags, 1119 unsigned long, fd, unsigned long, pgoff) 1120 { 1121 struct file *file = NULL; 1122 unsigned long retval = -EBADF; 1123 1124 if (!(flags & MAP_ANONYMOUS)) { 1125 audit_mmap_fd(fd, flags); 1126 if (unlikely(flags & MAP_HUGETLB)) 1127 return -EINVAL; 1128 file = fget(fd); 1129 if (!file) 1130 goto out; 1131 } else if (flags & MAP_HUGETLB) { 1132 struct user_struct *user = NULL; 1133 /* 1134 * VM_NORESERVE is used because the reservations will be 1135 * taken when vm_ops->mmap() is called 1136 * A dummy user value is used because we are not locking 1137 * memory so no accounting is necessary 1138 */ 1139 len = ALIGN(len, huge_page_size(&default_hstate)); 1140 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE, 1141 &user, HUGETLB_ANONHUGE_INODE); 1142 if (IS_ERR(file)) 1143 return PTR_ERR(file); 1144 } 1145 1146 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1147 1148 down_write(¤t->mm->mmap_sem); 1149 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1150 up_write(¤t->mm->mmap_sem); 1151 1152 if (file) 1153 fput(file); 1154 out: 1155 return retval; 1156 } 1157 1158 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1159 struct mmap_arg_struct { 1160 unsigned long addr; 1161 unsigned long len; 1162 unsigned long prot; 1163 unsigned long flags; 1164 unsigned long fd; 1165 unsigned long offset; 1166 }; 1167 1168 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1169 { 1170 struct mmap_arg_struct a; 1171 1172 if (copy_from_user(&a, arg, sizeof(a))) 1173 return -EFAULT; 1174 if (a.offset & ~PAGE_MASK) 1175 return -EINVAL; 1176 1177 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1178 a.offset >> PAGE_SHIFT); 1179 } 1180 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1181 1182 /* 1183 * Some shared mappigns will want the pages marked read-only 1184 * to track write events. If so, we'll downgrade vm_page_prot 1185 * to the private version (using protection_map[] without the 1186 * VM_SHARED bit). 1187 */ 1188 int vma_wants_writenotify(struct vm_area_struct *vma) 1189 { 1190 unsigned int vm_flags = vma->vm_flags; 1191 1192 /* If it was private or non-writable, the write bit is already clear */ 1193 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1194 return 0; 1195 1196 /* The backer wishes to know when pages are first written to? */ 1197 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1198 return 1; 1199 1200 /* The open routine did something to the protections already? */ 1201 if (pgprot_val(vma->vm_page_prot) != 1202 pgprot_val(vm_get_page_prot(vm_flags))) 1203 return 0; 1204 1205 /* Specialty mapping? */ 1206 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1207 return 0; 1208 1209 /* Can the mapping track the dirty pages? */ 1210 return vma->vm_file && vma->vm_file->f_mapping && 1211 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1212 } 1213 1214 /* 1215 * We account for memory if it's a private writeable mapping, 1216 * not hugepages and VM_NORESERVE wasn't set. 1217 */ 1218 static inline int accountable_mapping(struct file *file, unsigned int vm_flags) 1219 { 1220 /* 1221 * hugetlb has its own accounting separate from the core VM 1222 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1223 */ 1224 if (file && is_file_hugepages(file)) 1225 return 0; 1226 1227 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1228 } 1229 1230 unsigned long mmap_region(struct file *file, unsigned long addr, 1231 unsigned long len, unsigned long flags, 1232 unsigned int vm_flags, unsigned long pgoff) 1233 { 1234 struct mm_struct *mm = current->mm; 1235 struct vm_area_struct *vma, *prev; 1236 int correct_wcount = 0; 1237 int error; 1238 struct rb_node **rb_link, *rb_parent; 1239 unsigned long charged = 0; 1240 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1241 1242 /* Clear old maps */ 1243 error = -ENOMEM; 1244 munmap_back: 1245 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1246 if (vma && vma->vm_start < addr + len) { 1247 if (do_munmap(mm, addr, len)) 1248 return -ENOMEM; 1249 goto munmap_back; 1250 } 1251 1252 /* Check against address space limit. */ 1253 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1254 return -ENOMEM; 1255 1256 /* 1257 * Set 'VM_NORESERVE' if we should not account for the 1258 * memory use of this mapping. 1259 */ 1260 if ((flags & MAP_NORESERVE)) { 1261 /* We honor MAP_NORESERVE if allowed to overcommit */ 1262 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1263 vm_flags |= VM_NORESERVE; 1264 1265 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1266 if (file && is_file_hugepages(file)) 1267 vm_flags |= VM_NORESERVE; 1268 } 1269 1270 /* 1271 * Private writable mapping: check memory availability 1272 */ 1273 if (accountable_mapping(file, vm_flags)) { 1274 charged = len >> PAGE_SHIFT; 1275 if (security_vm_enough_memory(charged)) 1276 return -ENOMEM; 1277 vm_flags |= VM_ACCOUNT; 1278 } 1279 1280 /* 1281 * Can we just expand an old mapping? 1282 */ 1283 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1284 if (vma) 1285 goto out; 1286 1287 /* 1288 * Determine the object being mapped and call the appropriate 1289 * specific mapper. the address has already been validated, but 1290 * not unmapped, but the maps are removed from the list. 1291 */ 1292 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1293 if (!vma) { 1294 error = -ENOMEM; 1295 goto unacct_error; 1296 } 1297 1298 vma->vm_mm = mm; 1299 vma->vm_start = addr; 1300 vma->vm_end = addr + len; 1301 vma->vm_flags = vm_flags; 1302 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1303 vma->vm_pgoff = pgoff; 1304 INIT_LIST_HEAD(&vma->anon_vma_chain); 1305 1306 if (file) { 1307 error = -EINVAL; 1308 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1309 goto free_vma; 1310 if (vm_flags & VM_DENYWRITE) { 1311 error = deny_write_access(file); 1312 if (error) 1313 goto free_vma; 1314 correct_wcount = 1; 1315 } 1316 vma->vm_file = file; 1317 get_file(file); 1318 error = file->f_op->mmap(file, vma); 1319 if (error) 1320 goto unmap_and_free_vma; 1321 if (vm_flags & VM_EXECUTABLE) 1322 added_exe_file_vma(mm); 1323 1324 /* Can addr have changed?? 1325 * 1326 * Answer: Yes, several device drivers can do it in their 1327 * f_op->mmap method. -DaveM 1328 */ 1329 addr = vma->vm_start; 1330 pgoff = vma->vm_pgoff; 1331 vm_flags = vma->vm_flags; 1332 } else if (vm_flags & VM_SHARED) { 1333 error = shmem_zero_setup(vma); 1334 if (error) 1335 goto free_vma; 1336 } 1337 1338 if (vma_wants_writenotify(vma)) { 1339 pgprot_t pprot = vma->vm_page_prot; 1340 1341 /* Can vma->vm_page_prot have changed?? 1342 * 1343 * Answer: Yes, drivers may have changed it in their 1344 * f_op->mmap method. 1345 * 1346 * Ensures that vmas marked as uncached stay that way. 1347 */ 1348 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1349 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1350 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1351 } 1352 1353 vma_link(mm, vma, prev, rb_link, rb_parent); 1354 file = vma->vm_file; 1355 1356 /* Once vma denies write, undo our temporary denial count */ 1357 if (correct_wcount) 1358 atomic_inc(&inode->i_writecount); 1359 out: 1360 perf_event_mmap(vma); 1361 1362 mm->total_vm += len >> PAGE_SHIFT; 1363 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1364 if (vm_flags & VM_LOCKED) { 1365 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1366 mm->locked_vm += (len >> PAGE_SHIFT); 1367 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1368 make_pages_present(addr, addr + len); 1369 return addr; 1370 1371 unmap_and_free_vma: 1372 if (correct_wcount) 1373 atomic_inc(&inode->i_writecount); 1374 vma->vm_file = NULL; 1375 fput(file); 1376 1377 /* Undo any partial mapping done by a device driver. */ 1378 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1379 charged = 0; 1380 free_vma: 1381 kmem_cache_free(vm_area_cachep, vma); 1382 unacct_error: 1383 if (charged) 1384 vm_unacct_memory(charged); 1385 return error; 1386 } 1387 1388 /* Get an address range which is currently unmapped. 1389 * For shmat() with addr=0. 1390 * 1391 * Ugly calling convention alert: 1392 * Return value with the low bits set means error value, 1393 * ie 1394 * if (ret & ~PAGE_MASK) 1395 * error = ret; 1396 * 1397 * This function "knows" that -ENOMEM has the bits set. 1398 */ 1399 #ifndef HAVE_ARCH_UNMAPPED_AREA 1400 unsigned long 1401 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1402 unsigned long len, unsigned long pgoff, unsigned long flags) 1403 { 1404 struct mm_struct *mm = current->mm; 1405 struct vm_area_struct *vma; 1406 unsigned long start_addr; 1407 1408 if (len > TASK_SIZE) 1409 return -ENOMEM; 1410 1411 if (flags & MAP_FIXED) 1412 return addr; 1413 1414 if (addr) { 1415 addr = PAGE_ALIGN(addr); 1416 vma = find_vma(mm, addr); 1417 if (TASK_SIZE - len >= addr && 1418 (!vma || addr + len <= vma->vm_start)) 1419 return addr; 1420 } 1421 if (len > mm->cached_hole_size) { 1422 start_addr = addr = mm->free_area_cache; 1423 } else { 1424 start_addr = addr = TASK_UNMAPPED_BASE; 1425 mm->cached_hole_size = 0; 1426 } 1427 1428 full_search: 1429 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1430 /* At this point: (!vma || addr < vma->vm_end). */ 1431 if (TASK_SIZE - len < addr) { 1432 /* 1433 * Start a new search - just in case we missed 1434 * some holes. 1435 */ 1436 if (start_addr != TASK_UNMAPPED_BASE) { 1437 addr = TASK_UNMAPPED_BASE; 1438 start_addr = addr; 1439 mm->cached_hole_size = 0; 1440 goto full_search; 1441 } 1442 return -ENOMEM; 1443 } 1444 if (!vma || addr + len <= vma->vm_start) { 1445 /* 1446 * Remember the place where we stopped the search: 1447 */ 1448 mm->free_area_cache = addr + len; 1449 return addr; 1450 } 1451 if (addr + mm->cached_hole_size < vma->vm_start) 1452 mm->cached_hole_size = vma->vm_start - addr; 1453 addr = vma->vm_end; 1454 } 1455 } 1456 #endif 1457 1458 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1459 { 1460 /* 1461 * Is this a new hole at the lowest possible address? 1462 */ 1463 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1464 mm->free_area_cache = addr; 1465 mm->cached_hole_size = ~0UL; 1466 } 1467 } 1468 1469 /* 1470 * This mmap-allocator allocates new areas top-down from below the 1471 * stack's low limit (the base): 1472 */ 1473 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1474 unsigned long 1475 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1476 const unsigned long len, const unsigned long pgoff, 1477 const unsigned long flags) 1478 { 1479 struct vm_area_struct *vma; 1480 struct mm_struct *mm = current->mm; 1481 unsigned long addr = addr0; 1482 1483 /* requested length too big for entire address space */ 1484 if (len > TASK_SIZE) 1485 return -ENOMEM; 1486 1487 if (flags & MAP_FIXED) 1488 return addr; 1489 1490 /* requesting a specific address */ 1491 if (addr) { 1492 addr = PAGE_ALIGN(addr); 1493 vma = find_vma(mm, addr); 1494 if (TASK_SIZE - len >= addr && 1495 (!vma || addr + len <= vma->vm_start)) 1496 return addr; 1497 } 1498 1499 /* check if free_area_cache is useful for us */ 1500 if (len <= mm->cached_hole_size) { 1501 mm->cached_hole_size = 0; 1502 mm->free_area_cache = mm->mmap_base; 1503 } 1504 1505 /* either no address requested or can't fit in requested address hole */ 1506 addr = mm->free_area_cache; 1507 1508 /* make sure it can fit in the remaining address space */ 1509 if (addr > len) { 1510 vma = find_vma(mm, addr-len); 1511 if (!vma || addr <= vma->vm_start) 1512 /* remember the address as a hint for next time */ 1513 return (mm->free_area_cache = addr-len); 1514 } 1515 1516 if (mm->mmap_base < len) 1517 goto bottomup; 1518 1519 addr = mm->mmap_base-len; 1520 1521 do { 1522 /* 1523 * Lookup failure means no vma is above this address, 1524 * else if new region fits below vma->vm_start, 1525 * return with success: 1526 */ 1527 vma = find_vma(mm, addr); 1528 if (!vma || addr+len <= vma->vm_start) 1529 /* remember the address as a hint for next time */ 1530 return (mm->free_area_cache = addr); 1531 1532 /* remember the largest hole we saw so far */ 1533 if (addr + mm->cached_hole_size < vma->vm_start) 1534 mm->cached_hole_size = vma->vm_start - addr; 1535 1536 /* try just below the current vma->vm_start */ 1537 addr = vma->vm_start-len; 1538 } while (len < vma->vm_start); 1539 1540 bottomup: 1541 /* 1542 * A failed mmap() very likely causes application failure, 1543 * so fall back to the bottom-up function here. This scenario 1544 * can happen with large stack limits and large mmap() 1545 * allocations. 1546 */ 1547 mm->cached_hole_size = ~0UL; 1548 mm->free_area_cache = TASK_UNMAPPED_BASE; 1549 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1550 /* 1551 * Restore the topdown base: 1552 */ 1553 mm->free_area_cache = mm->mmap_base; 1554 mm->cached_hole_size = ~0UL; 1555 1556 return addr; 1557 } 1558 #endif 1559 1560 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1561 { 1562 /* 1563 * Is this a new hole at the highest possible address? 1564 */ 1565 if (addr > mm->free_area_cache) 1566 mm->free_area_cache = addr; 1567 1568 /* dont allow allocations above current base */ 1569 if (mm->free_area_cache > mm->mmap_base) 1570 mm->free_area_cache = mm->mmap_base; 1571 } 1572 1573 unsigned long 1574 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1575 unsigned long pgoff, unsigned long flags) 1576 { 1577 unsigned long (*get_area)(struct file *, unsigned long, 1578 unsigned long, unsigned long, unsigned long); 1579 1580 unsigned long error = arch_mmap_check(addr, len, flags); 1581 if (error) 1582 return error; 1583 1584 /* Careful about overflows.. */ 1585 if (len > TASK_SIZE) 1586 return -ENOMEM; 1587 1588 get_area = current->mm->get_unmapped_area; 1589 if (file && file->f_op && file->f_op->get_unmapped_area) 1590 get_area = file->f_op->get_unmapped_area; 1591 addr = get_area(file, addr, len, pgoff, flags); 1592 if (IS_ERR_VALUE(addr)) 1593 return addr; 1594 1595 if (addr > TASK_SIZE - len) 1596 return -ENOMEM; 1597 if (addr & ~PAGE_MASK) 1598 return -EINVAL; 1599 1600 return arch_rebalance_pgtables(addr, len); 1601 } 1602 1603 EXPORT_SYMBOL(get_unmapped_area); 1604 1605 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1606 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1607 { 1608 struct vm_area_struct *vma = NULL; 1609 1610 if (mm) { 1611 /* Check the cache first. */ 1612 /* (Cache hit rate is typically around 35%.) */ 1613 vma = mm->mmap_cache; 1614 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1615 struct rb_node * rb_node; 1616 1617 rb_node = mm->mm_rb.rb_node; 1618 vma = NULL; 1619 1620 while (rb_node) { 1621 struct vm_area_struct * vma_tmp; 1622 1623 vma_tmp = rb_entry(rb_node, 1624 struct vm_area_struct, vm_rb); 1625 1626 if (vma_tmp->vm_end > addr) { 1627 vma = vma_tmp; 1628 if (vma_tmp->vm_start <= addr) 1629 break; 1630 rb_node = rb_node->rb_left; 1631 } else 1632 rb_node = rb_node->rb_right; 1633 } 1634 if (vma) 1635 mm->mmap_cache = vma; 1636 } 1637 } 1638 return vma; 1639 } 1640 1641 EXPORT_SYMBOL(find_vma); 1642 1643 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1644 struct vm_area_struct * 1645 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1646 struct vm_area_struct **pprev) 1647 { 1648 struct vm_area_struct *vma = NULL, *prev = NULL; 1649 struct rb_node *rb_node; 1650 if (!mm) 1651 goto out; 1652 1653 /* Guard against addr being lower than the first VMA */ 1654 vma = mm->mmap; 1655 1656 /* Go through the RB tree quickly. */ 1657 rb_node = mm->mm_rb.rb_node; 1658 1659 while (rb_node) { 1660 struct vm_area_struct *vma_tmp; 1661 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1662 1663 if (addr < vma_tmp->vm_end) { 1664 rb_node = rb_node->rb_left; 1665 } else { 1666 prev = vma_tmp; 1667 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1668 break; 1669 rb_node = rb_node->rb_right; 1670 } 1671 } 1672 1673 out: 1674 *pprev = prev; 1675 return prev ? prev->vm_next : vma; 1676 } 1677 1678 /* 1679 * Verify that the stack growth is acceptable and 1680 * update accounting. This is shared with both the 1681 * grow-up and grow-down cases. 1682 */ 1683 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1684 { 1685 struct mm_struct *mm = vma->vm_mm; 1686 struct rlimit *rlim = current->signal->rlim; 1687 unsigned long new_start; 1688 1689 /* address space limit tests */ 1690 if (!may_expand_vm(mm, grow)) 1691 return -ENOMEM; 1692 1693 /* Stack limit test */ 1694 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1695 return -ENOMEM; 1696 1697 /* mlock limit tests */ 1698 if (vma->vm_flags & VM_LOCKED) { 1699 unsigned long locked; 1700 unsigned long limit; 1701 locked = mm->locked_vm + grow; 1702 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1703 limit >>= PAGE_SHIFT; 1704 if (locked > limit && !capable(CAP_IPC_LOCK)) 1705 return -ENOMEM; 1706 } 1707 1708 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1709 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1710 vma->vm_end - size; 1711 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1712 return -EFAULT; 1713 1714 /* 1715 * Overcommit.. This must be the final test, as it will 1716 * update security statistics. 1717 */ 1718 if (security_vm_enough_memory_mm(mm, grow)) 1719 return -ENOMEM; 1720 1721 /* Ok, everything looks good - let it rip */ 1722 mm->total_vm += grow; 1723 if (vma->vm_flags & VM_LOCKED) 1724 mm->locked_vm += grow; 1725 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1726 return 0; 1727 } 1728 1729 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1730 /* 1731 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1732 * vma is the last one with address > vma->vm_end. Have to extend vma. 1733 */ 1734 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1735 { 1736 int error; 1737 1738 if (!(vma->vm_flags & VM_GROWSUP)) 1739 return -EFAULT; 1740 1741 /* 1742 * We must make sure the anon_vma is allocated 1743 * so that the anon_vma locking is not a noop. 1744 */ 1745 if (unlikely(anon_vma_prepare(vma))) 1746 return -ENOMEM; 1747 vma_lock_anon_vma(vma); 1748 1749 /* 1750 * vma->vm_start/vm_end cannot change under us because the caller 1751 * is required to hold the mmap_sem in read mode. We need the 1752 * anon_vma lock to serialize against concurrent expand_stacks. 1753 * Also guard against wrapping around to address 0. 1754 */ 1755 if (address < PAGE_ALIGN(address+4)) 1756 address = PAGE_ALIGN(address+4); 1757 else { 1758 vma_unlock_anon_vma(vma); 1759 return -ENOMEM; 1760 } 1761 error = 0; 1762 1763 /* Somebody else might have raced and expanded it already */ 1764 if (address > vma->vm_end) { 1765 unsigned long size, grow; 1766 1767 size = address - vma->vm_start; 1768 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1769 1770 error = acct_stack_growth(vma, size, grow); 1771 if (!error) { 1772 vma->vm_end = address; 1773 perf_event_mmap(vma); 1774 } 1775 } 1776 vma_unlock_anon_vma(vma); 1777 khugepaged_enter_vma_merge(vma); 1778 return error; 1779 } 1780 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1781 1782 /* 1783 * vma is the first one with address < vma->vm_start. Have to extend vma. 1784 */ 1785 static int expand_downwards(struct vm_area_struct *vma, 1786 unsigned long address) 1787 { 1788 int error; 1789 1790 /* 1791 * We must make sure the anon_vma is allocated 1792 * so that the anon_vma locking is not a noop. 1793 */ 1794 if (unlikely(anon_vma_prepare(vma))) 1795 return -ENOMEM; 1796 1797 address &= PAGE_MASK; 1798 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1799 if (error) 1800 return error; 1801 1802 vma_lock_anon_vma(vma); 1803 1804 /* 1805 * vma->vm_start/vm_end cannot change under us because the caller 1806 * is required to hold the mmap_sem in read mode. We need the 1807 * anon_vma lock to serialize against concurrent expand_stacks. 1808 */ 1809 1810 /* Somebody else might have raced and expanded it already */ 1811 if (address < vma->vm_start) { 1812 unsigned long size, grow; 1813 1814 size = vma->vm_end - address; 1815 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1816 1817 error = acct_stack_growth(vma, size, grow); 1818 if (!error) { 1819 vma->vm_start = address; 1820 vma->vm_pgoff -= grow; 1821 perf_event_mmap(vma); 1822 } 1823 } 1824 vma_unlock_anon_vma(vma); 1825 khugepaged_enter_vma_merge(vma); 1826 return error; 1827 } 1828 1829 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address) 1830 { 1831 return expand_downwards(vma, address); 1832 } 1833 1834 #ifdef CONFIG_STACK_GROWSUP 1835 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1836 { 1837 return expand_upwards(vma, address); 1838 } 1839 1840 struct vm_area_struct * 1841 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1842 { 1843 struct vm_area_struct *vma, *prev; 1844 1845 addr &= PAGE_MASK; 1846 vma = find_vma_prev(mm, addr, &prev); 1847 if (vma && (vma->vm_start <= addr)) 1848 return vma; 1849 if (!prev || expand_stack(prev, addr)) 1850 return NULL; 1851 if (prev->vm_flags & VM_LOCKED) { 1852 mlock_vma_pages_range(prev, addr, prev->vm_end); 1853 } 1854 return prev; 1855 } 1856 #else 1857 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1858 { 1859 return expand_downwards(vma, address); 1860 } 1861 1862 struct vm_area_struct * 1863 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1864 { 1865 struct vm_area_struct * vma; 1866 unsigned long start; 1867 1868 addr &= PAGE_MASK; 1869 vma = find_vma(mm,addr); 1870 if (!vma) 1871 return NULL; 1872 if (vma->vm_start <= addr) 1873 return vma; 1874 if (!(vma->vm_flags & VM_GROWSDOWN)) 1875 return NULL; 1876 start = vma->vm_start; 1877 if (expand_stack(vma, addr)) 1878 return NULL; 1879 if (vma->vm_flags & VM_LOCKED) { 1880 mlock_vma_pages_range(vma, addr, start); 1881 } 1882 return vma; 1883 } 1884 #endif 1885 1886 /* 1887 * Ok - we have the memory areas we should free on the vma list, 1888 * so release them, and do the vma updates. 1889 * 1890 * Called with the mm semaphore held. 1891 */ 1892 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1893 { 1894 /* Update high watermark before we lower total_vm */ 1895 update_hiwater_vm(mm); 1896 do { 1897 long nrpages = vma_pages(vma); 1898 1899 mm->total_vm -= nrpages; 1900 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1901 vma = remove_vma(vma); 1902 } while (vma); 1903 validate_mm(mm); 1904 } 1905 1906 /* 1907 * Get rid of page table information in the indicated region. 1908 * 1909 * Called with the mm semaphore held. 1910 */ 1911 static void unmap_region(struct mm_struct *mm, 1912 struct vm_area_struct *vma, struct vm_area_struct *prev, 1913 unsigned long start, unsigned long end) 1914 { 1915 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1916 struct mmu_gather *tlb; 1917 unsigned long nr_accounted = 0; 1918 1919 lru_add_drain(); 1920 tlb = tlb_gather_mmu(mm, 0); 1921 update_hiwater_rss(mm); 1922 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1923 vm_unacct_memory(nr_accounted); 1924 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1925 next? next->vm_start: 0); 1926 tlb_finish_mmu(tlb, start, end); 1927 } 1928 1929 /* 1930 * Create a list of vma's touched by the unmap, removing them from the mm's 1931 * vma list as we go.. 1932 */ 1933 static void 1934 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1935 struct vm_area_struct *prev, unsigned long end) 1936 { 1937 struct vm_area_struct **insertion_point; 1938 struct vm_area_struct *tail_vma = NULL; 1939 unsigned long addr; 1940 1941 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1942 vma->vm_prev = NULL; 1943 do { 1944 rb_erase(&vma->vm_rb, &mm->mm_rb); 1945 mm->map_count--; 1946 tail_vma = vma; 1947 vma = vma->vm_next; 1948 } while (vma && vma->vm_start < end); 1949 *insertion_point = vma; 1950 if (vma) 1951 vma->vm_prev = prev; 1952 tail_vma->vm_next = NULL; 1953 if (mm->unmap_area == arch_unmap_area) 1954 addr = prev ? prev->vm_end : mm->mmap_base; 1955 else 1956 addr = vma ? vma->vm_start : mm->mmap_base; 1957 mm->unmap_area(mm, addr); 1958 mm->mmap_cache = NULL; /* Kill the cache. */ 1959 } 1960 1961 /* 1962 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1963 * munmap path where it doesn't make sense to fail. 1964 */ 1965 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1966 unsigned long addr, int new_below) 1967 { 1968 struct mempolicy *pol; 1969 struct vm_area_struct *new; 1970 int err = -ENOMEM; 1971 1972 if (is_vm_hugetlb_page(vma) && (addr & 1973 ~(huge_page_mask(hstate_vma(vma))))) 1974 return -EINVAL; 1975 1976 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1977 if (!new) 1978 goto out_err; 1979 1980 /* most fields are the same, copy all, and then fixup */ 1981 *new = *vma; 1982 1983 INIT_LIST_HEAD(&new->anon_vma_chain); 1984 1985 if (new_below) 1986 new->vm_end = addr; 1987 else { 1988 new->vm_start = addr; 1989 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1990 } 1991 1992 pol = mpol_dup(vma_policy(vma)); 1993 if (IS_ERR(pol)) { 1994 err = PTR_ERR(pol); 1995 goto out_free_vma; 1996 } 1997 vma_set_policy(new, pol); 1998 1999 if (anon_vma_clone(new, vma)) 2000 goto out_free_mpol; 2001 2002 if (new->vm_file) { 2003 get_file(new->vm_file); 2004 if (vma->vm_flags & VM_EXECUTABLE) 2005 added_exe_file_vma(mm); 2006 } 2007 2008 if (new->vm_ops && new->vm_ops->open) 2009 new->vm_ops->open(new); 2010 2011 if (new_below) 2012 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2013 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2014 else 2015 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2016 2017 /* Success. */ 2018 if (!err) 2019 return 0; 2020 2021 /* Clean everything up if vma_adjust failed. */ 2022 if (new->vm_ops && new->vm_ops->close) 2023 new->vm_ops->close(new); 2024 if (new->vm_file) { 2025 if (vma->vm_flags & VM_EXECUTABLE) 2026 removed_exe_file_vma(mm); 2027 fput(new->vm_file); 2028 } 2029 unlink_anon_vmas(new); 2030 out_free_mpol: 2031 mpol_put(pol); 2032 out_free_vma: 2033 kmem_cache_free(vm_area_cachep, new); 2034 out_err: 2035 return err; 2036 } 2037 2038 /* 2039 * Split a vma into two pieces at address 'addr', a new vma is allocated 2040 * either for the first part or the tail. 2041 */ 2042 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2043 unsigned long addr, int new_below) 2044 { 2045 if (mm->map_count >= sysctl_max_map_count) 2046 return -ENOMEM; 2047 2048 return __split_vma(mm, vma, addr, new_below); 2049 } 2050 2051 /* Munmap is split into 2 main parts -- this part which finds 2052 * what needs doing, and the areas themselves, which do the 2053 * work. This now handles partial unmappings. 2054 * Jeremy Fitzhardinge <jeremy@goop.org> 2055 */ 2056 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2057 { 2058 unsigned long end; 2059 struct vm_area_struct *vma, *prev, *last; 2060 2061 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2062 return -EINVAL; 2063 2064 if ((len = PAGE_ALIGN(len)) == 0) 2065 return -EINVAL; 2066 2067 /* Find the first overlapping VMA */ 2068 vma = find_vma_prev(mm, start, &prev); 2069 if (!vma) 2070 return 0; 2071 /* we have start < vma->vm_end */ 2072 2073 /* if it doesn't overlap, we have nothing.. */ 2074 end = start + len; 2075 if (vma->vm_start >= end) 2076 return 0; 2077 2078 /* 2079 * If we need to split any vma, do it now to save pain later. 2080 * 2081 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2082 * unmapped vm_area_struct will remain in use: so lower split_vma 2083 * places tmp vma above, and higher split_vma places tmp vma below. 2084 */ 2085 if (start > vma->vm_start) { 2086 int error; 2087 2088 /* 2089 * Make sure that map_count on return from munmap() will 2090 * not exceed its limit; but let map_count go just above 2091 * its limit temporarily, to help free resources as expected. 2092 */ 2093 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2094 return -ENOMEM; 2095 2096 error = __split_vma(mm, vma, start, 0); 2097 if (error) 2098 return error; 2099 prev = vma; 2100 } 2101 2102 /* Does it split the last one? */ 2103 last = find_vma(mm, end); 2104 if (last && end > last->vm_start) { 2105 int error = __split_vma(mm, last, end, 1); 2106 if (error) 2107 return error; 2108 } 2109 vma = prev? prev->vm_next: mm->mmap; 2110 2111 /* 2112 * unlock any mlock()ed ranges before detaching vmas 2113 */ 2114 if (mm->locked_vm) { 2115 struct vm_area_struct *tmp = vma; 2116 while (tmp && tmp->vm_start < end) { 2117 if (tmp->vm_flags & VM_LOCKED) { 2118 mm->locked_vm -= vma_pages(tmp); 2119 munlock_vma_pages_all(tmp); 2120 } 2121 tmp = tmp->vm_next; 2122 } 2123 } 2124 2125 /* 2126 * Remove the vma's, and unmap the actual pages 2127 */ 2128 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2129 unmap_region(mm, vma, prev, start, end); 2130 2131 /* Fix up all other VM information */ 2132 remove_vma_list(mm, vma); 2133 2134 return 0; 2135 } 2136 2137 EXPORT_SYMBOL(do_munmap); 2138 2139 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2140 { 2141 int ret; 2142 struct mm_struct *mm = current->mm; 2143 2144 profile_munmap(addr); 2145 2146 down_write(&mm->mmap_sem); 2147 ret = do_munmap(mm, addr, len); 2148 up_write(&mm->mmap_sem); 2149 return ret; 2150 } 2151 2152 static inline void verify_mm_writelocked(struct mm_struct *mm) 2153 { 2154 #ifdef CONFIG_DEBUG_VM 2155 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2156 WARN_ON(1); 2157 up_read(&mm->mmap_sem); 2158 } 2159 #endif 2160 } 2161 2162 /* 2163 * this is really a simplified "do_mmap". it only handles 2164 * anonymous maps. eventually we may be able to do some 2165 * brk-specific accounting here. 2166 */ 2167 unsigned long do_brk(unsigned long addr, unsigned long len) 2168 { 2169 struct mm_struct * mm = current->mm; 2170 struct vm_area_struct * vma, * prev; 2171 unsigned long flags; 2172 struct rb_node ** rb_link, * rb_parent; 2173 pgoff_t pgoff = addr >> PAGE_SHIFT; 2174 int error; 2175 2176 len = PAGE_ALIGN(len); 2177 if (!len) 2178 return addr; 2179 2180 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2181 if (error) 2182 return error; 2183 2184 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2185 2186 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2187 if (error & ~PAGE_MASK) 2188 return error; 2189 2190 /* 2191 * mlock MCL_FUTURE? 2192 */ 2193 if (mm->def_flags & VM_LOCKED) { 2194 unsigned long locked, lock_limit; 2195 locked = len >> PAGE_SHIFT; 2196 locked += mm->locked_vm; 2197 lock_limit = rlimit(RLIMIT_MEMLOCK); 2198 lock_limit >>= PAGE_SHIFT; 2199 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2200 return -EAGAIN; 2201 } 2202 2203 /* 2204 * mm->mmap_sem is required to protect against another thread 2205 * changing the mappings in case we sleep. 2206 */ 2207 verify_mm_writelocked(mm); 2208 2209 /* 2210 * Clear old maps. this also does some error checking for us 2211 */ 2212 munmap_back: 2213 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2214 if (vma && vma->vm_start < addr + len) { 2215 if (do_munmap(mm, addr, len)) 2216 return -ENOMEM; 2217 goto munmap_back; 2218 } 2219 2220 /* Check against address space limits *after* clearing old maps... */ 2221 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2222 return -ENOMEM; 2223 2224 if (mm->map_count > sysctl_max_map_count) 2225 return -ENOMEM; 2226 2227 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2228 return -ENOMEM; 2229 2230 /* Can we just expand an old private anonymous mapping? */ 2231 vma = vma_merge(mm, prev, addr, addr + len, flags, 2232 NULL, NULL, pgoff, NULL); 2233 if (vma) 2234 goto out; 2235 2236 /* 2237 * create a vma struct for an anonymous mapping 2238 */ 2239 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2240 if (!vma) { 2241 vm_unacct_memory(len >> PAGE_SHIFT); 2242 return -ENOMEM; 2243 } 2244 2245 INIT_LIST_HEAD(&vma->anon_vma_chain); 2246 vma->vm_mm = mm; 2247 vma->vm_start = addr; 2248 vma->vm_end = addr + len; 2249 vma->vm_pgoff = pgoff; 2250 vma->vm_flags = flags; 2251 vma->vm_page_prot = vm_get_page_prot(flags); 2252 vma_link(mm, vma, prev, rb_link, rb_parent); 2253 out: 2254 perf_event_mmap(vma); 2255 mm->total_vm += len >> PAGE_SHIFT; 2256 if (flags & VM_LOCKED) { 2257 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2258 mm->locked_vm += (len >> PAGE_SHIFT); 2259 } 2260 return addr; 2261 } 2262 2263 EXPORT_SYMBOL(do_brk); 2264 2265 /* Release all mmaps. */ 2266 void exit_mmap(struct mm_struct *mm) 2267 { 2268 struct mmu_gather *tlb; 2269 struct vm_area_struct *vma; 2270 unsigned long nr_accounted = 0; 2271 unsigned long end; 2272 2273 /* mm's last user has gone, and its about to be pulled down */ 2274 mmu_notifier_release(mm); 2275 2276 if (mm->locked_vm) { 2277 vma = mm->mmap; 2278 while (vma) { 2279 if (vma->vm_flags & VM_LOCKED) 2280 munlock_vma_pages_all(vma); 2281 vma = vma->vm_next; 2282 } 2283 } 2284 2285 arch_exit_mmap(mm); 2286 2287 vma = mm->mmap; 2288 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2289 return; 2290 2291 lru_add_drain(); 2292 flush_cache_mm(mm); 2293 tlb = tlb_gather_mmu(mm, 1); 2294 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2295 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2296 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2297 vm_unacct_memory(nr_accounted); 2298 2299 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); 2300 tlb_finish_mmu(tlb, 0, end); 2301 2302 /* 2303 * Walk the list again, actually closing and freeing it, 2304 * with preemption enabled, without holding any MM locks. 2305 */ 2306 while (vma) 2307 vma = remove_vma(vma); 2308 2309 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2310 } 2311 2312 /* Insert vm structure into process list sorted by address 2313 * and into the inode's i_mmap tree. If vm_file is non-NULL 2314 * then i_mmap_lock is taken here. 2315 */ 2316 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2317 { 2318 struct vm_area_struct * __vma, * prev; 2319 struct rb_node ** rb_link, * rb_parent; 2320 2321 /* 2322 * The vm_pgoff of a purely anonymous vma should be irrelevant 2323 * until its first write fault, when page's anon_vma and index 2324 * are set. But now set the vm_pgoff it will almost certainly 2325 * end up with (unless mremap moves it elsewhere before that 2326 * first wfault), so /proc/pid/maps tells a consistent story. 2327 * 2328 * By setting it to reflect the virtual start address of the 2329 * vma, merges and splits can happen in a seamless way, just 2330 * using the existing file pgoff checks and manipulations. 2331 * Similarly in do_mmap_pgoff and in do_brk. 2332 */ 2333 if (!vma->vm_file) { 2334 BUG_ON(vma->anon_vma); 2335 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2336 } 2337 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2338 if (__vma && __vma->vm_start < vma->vm_end) 2339 return -ENOMEM; 2340 if ((vma->vm_flags & VM_ACCOUNT) && 2341 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2342 return -ENOMEM; 2343 vma_link(mm, vma, prev, rb_link, rb_parent); 2344 return 0; 2345 } 2346 2347 /* 2348 * Copy the vma structure to a new location in the same mm, 2349 * prior to moving page table entries, to effect an mremap move. 2350 */ 2351 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2352 unsigned long addr, unsigned long len, pgoff_t pgoff) 2353 { 2354 struct vm_area_struct *vma = *vmap; 2355 unsigned long vma_start = vma->vm_start; 2356 struct mm_struct *mm = vma->vm_mm; 2357 struct vm_area_struct *new_vma, *prev; 2358 struct rb_node **rb_link, *rb_parent; 2359 struct mempolicy *pol; 2360 2361 /* 2362 * If anonymous vma has not yet been faulted, update new pgoff 2363 * to match new location, to increase its chance of merging. 2364 */ 2365 if (!vma->vm_file && !vma->anon_vma) 2366 pgoff = addr >> PAGE_SHIFT; 2367 2368 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2369 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2370 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2371 if (new_vma) { 2372 /* 2373 * Source vma may have been merged into new_vma 2374 */ 2375 if (vma_start >= new_vma->vm_start && 2376 vma_start < new_vma->vm_end) 2377 *vmap = new_vma; 2378 } else { 2379 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2380 if (new_vma) { 2381 *new_vma = *vma; 2382 pol = mpol_dup(vma_policy(vma)); 2383 if (IS_ERR(pol)) 2384 goto out_free_vma; 2385 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2386 if (anon_vma_clone(new_vma, vma)) 2387 goto out_free_mempol; 2388 vma_set_policy(new_vma, pol); 2389 new_vma->vm_start = addr; 2390 new_vma->vm_end = addr + len; 2391 new_vma->vm_pgoff = pgoff; 2392 if (new_vma->vm_file) { 2393 get_file(new_vma->vm_file); 2394 if (vma->vm_flags & VM_EXECUTABLE) 2395 added_exe_file_vma(mm); 2396 } 2397 if (new_vma->vm_ops && new_vma->vm_ops->open) 2398 new_vma->vm_ops->open(new_vma); 2399 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2400 } 2401 } 2402 return new_vma; 2403 2404 out_free_mempol: 2405 mpol_put(pol); 2406 out_free_vma: 2407 kmem_cache_free(vm_area_cachep, new_vma); 2408 return NULL; 2409 } 2410 2411 /* 2412 * Return true if the calling process may expand its vm space by the passed 2413 * number of pages 2414 */ 2415 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2416 { 2417 unsigned long cur = mm->total_vm; /* pages */ 2418 unsigned long lim; 2419 2420 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2421 2422 if (cur + npages > lim) 2423 return 0; 2424 return 1; 2425 } 2426 2427 2428 static int special_mapping_fault(struct vm_area_struct *vma, 2429 struct vm_fault *vmf) 2430 { 2431 pgoff_t pgoff; 2432 struct page **pages; 2433 2434 /* 2435 * special mappings have no vm_file, and in that case, the mm 2436 * uses vm_pgoff internally. So we have to subtract it from here. 2437 * We are allowed to do this because we are the mm; do not copy 2438 * this code into drivers! 2439 */ 2440 pgoff = vmf->pgoff - vma->vm_pgoff; 2441 2442 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2443 pgoff--; 2444 2445 if (*pages) { 2446 struct page *page = *pages; 2447 get_page(page); 2448 vmf->page = page; 2449 return 0; 2450 } 2451 2452 return VM_FAULT_SIGBUS; 2453 } 2454 2455 /* 2456 * Having a close hook prevents vma merging regardless of flags. 2457 */ 2458 static void special_mapping_close(struct vm_area_struct *vma) 2459 { 2460 } 2461 2462 static const struct vm_operations_struct special_mapping_vmops = { 2463 .close = special_mapping_close, 2464 .fault = special_mapping_fault, 2465 }; 2466 2467 /* 2468 * Called with mm->mmap_sem held for writing. 2469 * Insert a new vma covering the given region, with the given flags. 2470 * Its pages are supplied by the given array of struct page *. 2471 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2472 * The region past the last page supplied will always produce SIGBUS. 2473 * The array pointer and the pages it points to are assumed to stay alive 2474 * for as long as this mapping might exist. 2475 */ 2476 int install_special_mapping(struct mm_struct *mm, 2477 unsigned long addr, unsigned long len, 2478 unsigned long vm_flags, struct page **pages) 2479 { 2480 int ret; 2481 struct vm_area_struct *vma; 2482 2483 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2484 if (unlikely(vma == NULL)) 2485 return -ENOMEM; 2486 2487 INIT_LIST_HEAD(&vma->anon_vma_chain); 2488 vma->vm_mm = mm; 2489 vma->vm_start = addr; 2490 vma->vm_end = addr + len; 2491 2492 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2493 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2494 2495 vma->vm_ops = &special_mapping_vmops; 2496 vma->vm_private_data = pages; 2497 2498 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 2499 if (ret) 2500 goto out; 2501 2502 ret = insert_vm_struct(mm, vma); 2503 if (ret) 2504 goto out; 2505 2506 mm->total_vm += len >> PAGE_SHIFT; 2507 2508 perf_event_mmap(vma); 2509 2510 return 0; 2511 2512 out: 2513 kmem_cache_free(vm_area_cachep, vma); 2514 return ret; 2515 } 2516 2517 static DEFINE_MUTEX(mm_all_locks_mutex); 2518 2519 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2520 { 2521 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2522 /* 2523 * The LSB of head.next can't change from under us 2524 * because we hold the mm_all_locks_mutex. 2525 */ 2526 spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem); 2527 /* 2528 * We can safely modify head.next after taking the 2529 * anon_vma->root->lock. If some other vma in this mm shares 2530 * the same anon_vma we won't take it again. 2531 * 2532 * No need of atomic instructions here, head.next 2533 * can't change from under us thanks to the 2534 * anon_vma->root->lock. 2535 */ 2536 if (__test_and_set_bit(0, (unsigned long *) 2537 &anon_vma->root->head.next)) 2538 BUG(); 2539 } 2540 } 2541 2542 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2543 { 2544 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2545 /* 2546 * AS_MM_ALL_LOCKS can't change from under us because 2547 * we hold the mm_all_locks_mutex. 2548 * 2549 * Operations on ->flags have to be atomic because 2550 * even if AS_MM_ALL_LOCKS is stable thanks to the 2551 * mm_all_locks_mutex, there may be other cpus 2552 * changing other bitflags in parallel to us. 2553 */ 2554 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2555 BUG(); 2556 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem); 2557 } 2558 } 2559 2560 /* 2561 * This operation locks against the VM for all pte/vma/mm related 2562 * operations that could ever happen on a certain mm. This includes 2563 * vmtruncate, try_to_unmap, and all page faults. 2564 * 2565 * The caller must take the mmap_sem in write mode before calling 2566 * mm_take_all_locks(). The caller isn't allowed to release the 2567 * mmap_sem until mm_drop_all_locks() returns. 2568 * 2569 * mmap_sem in write mode is required in order to block all operations 2570 * that could modify pagetables and free pages without need of 2571 * altering the vma layout (for example populate_range() with 2572 * nonlinear vmas). It's also needed in write mode to avoid new 2573 * anon_vmas to be associated with existing vmas. 2574 * 2575 * A single task can't take more than one mm_take_all_locks() in a row 2576 * or it would deadlock. 2577 * 2578 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2579 * mapping->flags avoid to take the same lock twice, if more than one 2580 * vma in this mm is backed by the same anon_vma or address_space. 2581 * 2582 * We can take all the locks in random order because the VM code 2583 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never 2584 * takes more than one of them in a row. Secondly we're protected 2585 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2586 * 2587 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2588 * that may have to take thousand of locks. 2589 * 2590 * mm_take_all_locks() can fail if it's interrupted by signals. 2591 */ 2592 int mm_take_all_locks(struct mm_struct *mm) 2593 { 2594 struct vm_area_struct *vma; 2595 struct anon_vma_chain *avc; 2596 int ret = -EINTR; 2597 2598 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2599 2600 mutex_lock(&mm_all_locks_mutex); 2601 2602 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2603 if (signal_pending(current)) 2604 goto out_unlock; 2605 if (vma->vm_file && vma->vm_file->f_mapping) 2606 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2607 } 2608 2609 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2610 if (signal_pending(current)) 2611 goto out_unlock; 2612 if (vma->anon_vma) 2613 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2614 vm_lock_anon_vma(mm, avc->anon_vma); 2615 } 2616 2617 ret = 0; 2618 2619 out_unlock: 2620 if (ret) 2621 mm_drop_all_locks(mm); 2622 2623 return ret; 2624 } 2625 2626 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2627 { 2628 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2629 /* 2630 * The LSB of head.next can't change to 0 from under 2631 * us because we hold the mm_all_locks_mutex. 2632 * 2633 * We must however clear the bitflag before unlocking 2634 * the vma so the users using the anon_vma->head will 2635 * never see our bitflag. 2636 * 2637 * No need of atomic instructions here, head.next 2638 * can't change from under us until we release the 2639 * anon_vma->root->lock. 2640 */ 2641 if (!__test_and_clear_bit(0, (unsigned long *) 2642 &anon_vma->root->head.next)) 2643 BUG(); 2644 anon_vma_unlock(anon_vma); 2645 } 2646 } 2647 2648 static void vm_unlock_mapping(struct address_space *mapping) 2649 { 2650 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2651 /* 2652 * AS_MM_ALL_LOCKS can't change to 0 from under us 2653 * because we hold the mm_all_locks_mutex. 2654 */ 2655 spin_unlock(&mapping->i_mmap_lock); 2656 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2657 &mapping->flags)) 2658 BUG(); 2659 } 2660 } 2661 2662 /* 2663 * The mmap_sem cannot be released by the caller until 2664 * mm_drop_all_locks() returns. 2665 */ 2666 void mm_drop_all_locks(struct mm_struct *mm) 2667 { 2668 struct vm_area_struct *vma; 2669 struct anon_vma_chain *avc; 2670 2671 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2672 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2673 2674 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2675 if (vma->anon_vma) 2676 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2677 vm_unlock_anon_vma(avc->anon_vma); 2678 if (vma->vm_file && vma->vm_file->f_mapping) 2679 vm_unlock_mapping(vma->vm_file->f_mapping); 2680 } 2681 2682 mutex_unlock(&mm_all_locks_mutex); 2683 } 2684 2685 /* 2686 * initialise the VMA slab 2687 */ 2688 void __init mmap_init(void) 2689 { 2690 int ret; 2691 2692 ret = percpu_counter_init(&vm_committed_as, 0); 2693 VM_BUG_ON(ret); 2694 } 2695