xref: /openbmc/linux/mm/mmap.c (revision dcabb06bf127b3e0d3fbc94a2b65dd56c2725851)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		unsigned long start, unsigned long end);
82 
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type	prot
88  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
89  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
90  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
91  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
92  *
93  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
94  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
95  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
96  */
97 pgprot_t protection_map[16] __ro_after_init = {
98 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101 
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 {
105 	return prot;
106 }
107 #endif
108 
109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 {
111 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
114 
115 	return arch_filter_pgprot(ret);
116 }
117 EXPORT_SYMBOL(vm_get_page_prot);
118 
119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 {
121 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 }
123 
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 void vma_set_page_prot(struct vm_area_struct *vma)
126 {
127 	unsigned long vm_flags = vma->vm_flags;
128 	pgprot_t vm_page_prot;
129 
130 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131 	if (vma_wants_writenotify(vma, vm_page_prot)) {
132 		vm_flags &= ~VM_SHARED;
133 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134 	}
135 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 }
138 
139 /*
140  * Requires inode->i_mapping->i_mmap_rwsem
141  */
142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143 		struct file *file, struct address_space *mapping)
144 {
145 	if (vma->vm_flags & VM_DENYWRITE)
146 		allow_write_access(file);
147 	if (vma->vm_flags & VM_SHARED)
148 		mapping_unmap_writable(mapping);
149 
150 	flush_dcache_mmap_lock(mapping);
151 	vma_interval_tree_remove(vma, &mapping->i_mmap);
152 	flush_dcache_mmap_unlock(mapping);
153 }
154 
155 /*
156  * Unlink a file-based vm structure from its interval tree, to hide
157  * vma from rmap and vmtruncate before freeing its page tables.
158  */
159 void unlink_file_vma(struct vm_area_struct *vma)
160 {
161 	struct file *file = vma->vm_file;
162 
163 	if (file) {
164 		struct address_space *mapping = file->f_mapping;
165 		i_mmap_lock_write(mapping);
166 		__remove_shared_vm_struct(vma, file, mapping);
167 		i_mmap_unlock_write(mapping);
168 	}
169 }
170 
171 /*
172  * Close a vm structure and free it, returning the next.
173  */
174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 {
176 	struct vm_area_struct *next = vma->vm_next;
177 
178 	might_sleep();
179 	if (vma->vm_ops && vma->vm_ops->close)
180 		vma->vm_ops->close(vma);
181 	if (vma->vm_file)
182 		fput(vma->vm_file);
183 	mpol_put(vma_policy(vma));
184 	vm_area_free(vma);
185 	return next;
186 }
187 
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189 		struct list_head *uf);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192 	unsigned long newbrk, oldbrk, origbrk;
193 	struct mm_struct *mm = current->mm;
194 	struct vm_area_struct *next;
195 	unsigned long min_brk;
196 	bool populate;
197 	bool downgraded = false;
198 	LIST_HEAD(uf);
199 
200 	if (mmap_write_lock_killable(mm))
201 		return -EINTR;
202 
203 	origbrk = mm->brk;
204 
205 #ifdef CONFIG_COMPAT_BRK
206 	/*
207 	 * CONFIG_COMPAT_BRK can still be overridden by setting
208 	 * randomize_va_space to 2, which will still cause mm->start_brk
209 	 * to be arbitrarily shifted
210 	 */
211 	if (current->brk_randomized)
212 		min_brk = mm->start_brk;
213 	else
214 		min_brk = mm->end_data;
215 #else
216 	min_brk = mm->start_brk;
217 #endif
218 	if (brk < min_brk)
219 		goto out;
220 
221 	/*
222 	 * Check against rlimit here. If this check is done later after the test
223 	 * of oldbrk with newbrk then it can escape the test and let the data
224 	 * segment grow beyond its set limit the in case where the limit is
225 	 * not page aligned -Ram Gupta
226 	 */
227 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228 			      mm->end_data, mm->start_data))
229 		goto out;
230 
231 	newbrk = PAGE_ALIGN(brk);
232 	oldbrk = PAGE_ALIGN(mm->brk);
233 	if (oldbrk == newbrk) {
234 		mm->brk = brk;
235 		goto success;
236 	}
237 
238 	/*
239 	 * Always allow shrinking brk.
240 	 * __do_munmap() may downgrade mmap_lock to read.
241 	 */
242 	if (brk <= mm->brk) {
243 		int ret;
244 
245 		/*
246 		 * mm->brk must to be protected by write mmap_lock so update it
247 		 * before downgrading mmap_lock. When __do_munmap() fails,
248 		 * mm->brk will be restored from origbrk.
249 		 */
250 		mm->brk = brk;
251 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
252 		if (ret < 0) {
253 			mm->brk = origbrk;
254 			goto out;
255 		} else if (ret == 1) {
256 			downgraded = true;
257 		}
258 		goto success;
259 	}
260 
261 	/* Check against existing mmap mappings. */
262 	next = find_vma(mm, oldbrk);
263 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
264 		goto out;
265 
266 	/* Ok, looks good - let it rip. */
267 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
268 		goto out;
269 	mm->brk = brk;
270 
271 success:
272 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
273 	if (downgraded)
274 		mmap_read_unlock(mm);
275 	else
276 		mmap_write_unlock(mm);
277 	userfaultfd_unmap_complete(mm, &uf);
278 	if (populate)
279 		mm_populate(oldbrk, newbrk - oldbrk);
280 	return brk;
281 
282 out:
283 	mmap_write_unlock(mm);
284 	return origbrk;
285 }
286 
287 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
288 {
289 	unsigned long gap, prev_end;
290 
291 	/*
292 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
293 	 * allow two stack_guard_gaps between them here, and when choosing
294 	 * an unmapped area; whereas when expanding we only require one.
295 	 * That's a little inconsistent, but keeps the code here simpler.
296 	 */
297 	gap = vm_start_gap(vma);
298 	if (vma->vm_prev) {
299 		prev_end = vm_end_gap(vma->vm_prev);
300 		if (gap > prev_end)
301 			gap -= prev_end;
302 		else
303 			gap = 0;
304 	}
305 	return gap;
306 }
307 
308 #ifdef CONFIG_DEBUG_VM_RB
309 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
310 {
311 	unsigned long max = vma_compute_gap(vma), subtree_gap;
312 	if (vma->vm_rb.rb_left) {
313 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
314 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
315 		if (subtree_gap > max)
316 			max = subtree_gap;
317 	}
318 	if (vma->vm_rb.rb_right) {
319 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
320 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
321 		if (subtree_gap > max)
322 			max = subtree_gap;
323 	}
324 	return max;
325 }
326 
327 static int browse_rb(struct mm_struct *mm)
328 {
329 	struct rb_root *root = &mm->mm_rb;
330 	int i = 0, j, bug = 0;
331 	struct rb_node *nd, *pn = NULL;
332 	unsigned long prev = 0, pend = 0;
333 
334 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
335 		struct vm_area_struct *vma;
336 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
337 		if (vma->vm_start < prev) {
338 			pr_emerg("vm_start %lx < prev %lx\n",
339 				  vma->vm_start, prev);
340 			bug = 1;
341 		}
342 		if (vma->vm_start < pend) {
343 			pr_emerg("vm_start %lx < pend %lx\n",
344 				  vma->vm_start, pend);
345 			bug = 1;
346 		}
347 		if (vma->vm_start > vma->vm_end) {
348 			pr_emerg("vm_start %lx > vm_end %lx\n",
349 				  vma->vm_start, vma->vm_end);
350 			bug = 1;
351 		}
352 		spin_lock(&mm->page_table_lock);
353 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
354 			pr_emerg("free gap %lx, correct %lx\n",
355 			       vma->rb_subtree_gap,
356 			       vma_compute_subtree_gap(vma));
357 			bug = 1;
358 		}
359 		spin_unlock(&mm->page_table_lock);
360 		i++;
361 		pn = nd;
362 		prev = vma->vm_start;
363 		pend = vma->vm_end;
364 	}
365 	j = 0;
366 	for (nd = pn; nd; nd = rb_prev(nd))
367 		j++;
368 	if (i != j) {
369 		pr_emerg("backwards %d, forwards %d\n", j, i);
370 		bug = 1;
371 	}
372 	return bug ? -1 : i;
373 }
374 
375 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
376 {
377 	struct rb_node *nd;
378 
379 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
380 		struct vm_area_struct *vma;
381 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
382 		VM_BUG_ON_VMA(vma != ignore &&
383 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
384 			vma);
385 	}
386 }
387 
388 static void validate_mm(struct mm_struct *mm)
389 {
390 	int bug = 0;
391 	int i = 0;
392 	unsigned long highest_address = 0;
393 	struct vm_area_struct *vma = mm->mmap;
394 
395 	while (vma) {
396 		struct anon_vma *anon_vma = vma->anon_vma;
397 		struct anon_vma_chain *avc;
398 
399 		if (anon_vma) {
400 			anon_vma_lock_read(anon_vma);
401 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
402 				anon_vma_interval_tree_verify(avc);
403 			anon_vma_unlock_read(anon_vma);
404 		}
405 
406 		highest_address = vm_end_gap(vma);
407 		vma = vma->vm_next;
408 		i++;
409 	}
410 	if (i != mm->map_count) {
411 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
412 		bug = 1;
413 	}
414 	if (highest_address != mm->highest_vm_end) {
415 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
416 			  mm->highest_vm_end, highest_address);
417 		bug = 1;
418 	}
419 	i = browse_rb(mm);
420 	if (i != mm->map_count) {
421 		if (i != -1)
422 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
423 		bug = 1;
424 	}
425 	VM_BUG_ON_MM(bug, mm);
426 }
427 #else
428 #define validate_mm_rb(root, ignore) do { } while (0)
429 #define validate_mm(mm) do { } while (0)
430 #endif
431 
432 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
433 			 struct vm_area_struct, vm_rb,
434 			 unsigned long, rb_subtree_gap, vma_compute_gap)
435 
436 /*
437  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
438  * vma->vm_prev->vm_end values changed, without modifying the vma's position
439  * in the rbtree.
440  */
441 static void vma_gap_update(struct vm_area_struct *vma)
442 {
443 	/*
444 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
445 	 * a callback function that does exactly what we want.
446 	 */
447 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
448 }
449 
450 static inline void vma_rb_insert(struct vm_area_struct *vma,
451 				 struct rb_root *root)
452 {
453 	/* All rb_subtree_gap values must be consistent prior to insertion */
454 	validate_mm_rb(root, NULL);
455 
456 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
457 }
458 
459 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
460 {
461 	/*
462 	 * Note rb_erase_augmented is a fairly large inline function,
463 	 * so make sure we instantiate it only once with our desired
464 	 * augmented rbtree callbacks.
465 	 */
466 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
467 }
468 
469 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
470 						struct rb_root *root,
471 						struct vm_area_struct *ignore)
472 {
473 	/*
474 	 * All rb_subtree_gap values must be consistent prior to erase,
475 	 * with the possible exception of
476 	 *
477 	 * a. the "next" vma being erased if next->vm_start was reduced in
478 	 *    __vma_adjust() -> __vma_unlink()
479 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
480 	 *    vma_rb_erase()
481 	 */
482 	validate_mm_rb(root, ignore);
483 
484 	__vma_rb_erase(vma, root);
485 }
486 
487 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
488 					 struct rb_root *root)
489 {
490 	vma_rb_erase_ignore(vma, root, vma);
491 }
492 
493 /*
494  * vma has some anon_vma assigned, and is already inserted on that
495  * anon_vma's interval trees.
496  *
497  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
498  * vma must be removed from the anon_vma's interval trees using
499  * anon_vma_interval_tree_pre_update_vma().
500  *
501  * After the update, the vma will be reinserted using
502  * anon_vma_interval_tree_post_update_vma().
503  *
504  * The entire update must be protected by exclusive mmap_lock and by
505  * the root anon_vma's mutex.
506  */
507 static inline void
508 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
509 {
510 	struct anon_vma_chain *avc;
511 
512 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
513 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
514 }
515 
516 static inline void
517 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
518 {
519 	struct anon_vma_chain *avc;
520 
521 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
522 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
523 }
524 
525 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
526 		unsigned long end, struct vm_area_struct **pprev,
527 		struct rb_node ***rb_link, struct rb_node **rb_parent)
528 {
529 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
530 
531 	__rb_link = &mm->mm_rb.rb_node;
532 	rb_prev = __rb_parent = NULL;
533 
534 	while (*__rb_link) {
535 		struct vm_area_struct *vma_tmp;
536 
537 		__rb_parent = *__rb_link;
538 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
539 
540 		if (vma_tmp->vm_end > addr) {
541 			/* Fail if an existing vma overlaps the area */
542 			if (vma_tmp->vm_start < end)
543 				return -ENOMEM;
544 			__rb_link = &__rb_parent->rb_left;
545 		} else {
546 			rb_prev = __rb_parent;
547 			__rb_link = &__rb_parent->rb_right;
548 		}
549 	}
550 
551 	*pprev = NULL;
552 	if (rb_prev)
553 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
554 	*rb_link = __rb_link;
555 	*rb_parent = __rb_parent;
556 	return 0;
557 }
558 
559 /*
560  * vma_next() - Get the next VMA.
561  * @mm: The mm_struct.
562  * @vma: The current vma.
563  *
564  * If @vma is NULL, return the first vma in the mm.
565  *
566  * Returns: The next VMA after @vma.
567  */
568 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
569 					 struct vm_area_struct *vma)
570 {
571 	if (!vma)
572 		return mm->mmap;
573 
574 	return vma->vm_next;
575 }
576 
577 /*
578  * munmap_vma_range() - munmap VMAs that overlap a range.
579  * @mm: The mm struct
580  * @start: The start of the range.
581  * @len: The length of the range.
582  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
583  * @rb_link: the rb_node
584  * @rb_parent: the parent rb_node
585  *
586  * Find all the vm_area_struct that overlap from @start to
587  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
588  *
589  * Returns: -ENOMEM on munmap failure or 0 on success.
590  */
591 static inline int
592 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
593 		 struct vm_area_struct **pprev, struct rb_node ***link,
594 		 struct rb_node **parent, struct list_head *uf)
595 {
596 
597 	while (find_vma_links(mm, start, start + len, pprev, link, parent))
598 		if (do_munmap(mm, start, len, uf))
599 			return -ENOMEM;
600 
601 	return 0;
602 }
603 static unsigned long count_vma_pages_range(struct mm_struct *mm,
604 		unsigned long addr, unsigned long end)
605 {
606 	unsigned long nr_pages = 0;
607 	struct vm_area_struct *vma;
608 
609 	/* Find first overlaping mapping */
610 	vma = find_vma_intersection(mm, addr, end);
611 	if (!vma)
612 		return 0;
613 
614 	nr_pages = (min(end, vma->vm_end) -
615 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
616 
617 	/* Iterate over the rest of the overlaps */
618 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
619 		unsigned long overlap_len;
620 
621 		if (vma->vm_start > end)
622 			break;
623 
624 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
625 		nr_pages += overlap_len >> PAGE_SHIFT;
626 	}
627 
628 	return nr_pages;
629 }
630 
631 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
632 		struct rb_node **rb_link, struct rb_node *rb_parent)
633 {
634 	/* Update tracking information for the gap following the new vma. */
635 	if (vma->vm_next)
636 		vma_gap_update(vma->vm_next);
637 	else
638 		mm->highest_vm_end = vm_end_gap(vma);
639 
640 	/*
641 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
642 	 * correct insertion point for that vma. As a result, we could not
643 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
644 	 * So, we first insert the vma with a zero rb_subtree_gap value
645 	 * (to be consistent with what we did on the way down), and then
646 	 * immediately update the gap to the correct value. Finally we
647 	 * rebalance the rbtree after all augmented values have been set.
648 	 */
649 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
650 	vma->rb_subtree_gap = 0;
651 	vma_gap_update(vma);
652 	vma_rb_insert(vma, &mm->mm_rb);
653 }
654 
655 static void __vma_link_file(struct vm_area_struct *vma)
656 {
657 	struct file *file;
658 
659 	file = vma->vm_file;
660 	if (file) {
661 		struct address_space *mapping = file->f_mapping;
662 
663 		if (vma->vm_flags & VM_DENYWRITE)
664 			put_write_access(file_inode(file));
665 		if (vma->vm_flags & VM_SHARED)
666 			mapping_allow_writable(mapping);
667 
668 		flush_dcache_mmap_lock(mapping);
669 		vma_interval_tree_insert(vma, &mapping->i_mmap);
670 		flush_dcache_mmap_unlock(mapping);
671 	}
672 }
673 
674 static void
675 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
676 	struct vm_area_struct *prev, struct rb_node **rb_link,
677 	struct rb_node *rb_parent)
678 {
679 	__vma_link_list(mm, vma, prev);
680 	__vma_link_rb(mm, vma, rb_link, rb_parent);
681 }
682 
683 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
684 			struct vm_area_struct *prev, struct rb_node **rb_link,
685 			struct rb_node *rb_parent)
686 {
687 	struct address_space *mapping = NULL;
688 
689 	if (vma->vm_file) {
690 		mapping = vma->vm_file->f_mapping;
691 		i_mmap_lock_write(mapping);
692 	}
693 
694 	__vma_link(mm, vma, prev, rb_link, rb_parent);
695 	__vma_link_file(vma);
696 
697 	if (mapping)
698 		i_mmap_unlock_write(mapping);
699 
700 	mm->map_count++;
701 	validate_mm(mm);
702 }
703 
704 /*
705  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
706  * mm's list and rbtree.  It has already been inserted into the interval tree.
707  */
708 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
709 {
710 	struct vm_area_struct *prev;
711 	struct rb_node **rb_link, *rb_parent;
712 
713 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
714 			   &prev, &rb_link, &rb_parent))
715 		BUG();
716 	__vma_link(mm, vma, prev, rb_link, rb_parent);
717 	mm->map_count++;
718 }
719 
720 static __always_inline void __vma_unlink(struct mm_struct *mm,
721 						struct vm_area_struct *vma,
722 						struct vm_area_struct *ignore)
723 {
724 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
725 	__vma_unlink_list(mm, vma);
726 	/* Kill the cache */
727 	vmacache_invalidate(mm);
728 }
729 
730 /*
731  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
732  * is already present in an i_mmap tree without adjusting the tree.
733  * The following helper function should be used when such adjustments
734  * are necessary.  The "insert" vma (if any) is to be inserted
735  * before we drop the necessary locks.
736  */
737 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
738 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
739 	struct vm_area_struct *expand)
740 {
741 	struct mm_struct *mm = vma->vm_mm;
742 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
743 	struct address_space *mapping = NULL;
744 	struct rb_root_cached *root = NULL;
745 	struct anon_vma *anon_vma = NULL;
746 	struct file *file = vma->vm_file;
747 	bool start_changed = false, end_changed = false;
748 	long adjust_next = 0;
749 	int remove_next = 0;
750 
751 	if (next && !insert) {
752 		struct vm_area_struct *exporter = NULL, *importer = NULL;
753 
754 		if (end >= next->vm_end) {
755 			/*
756 			 * vma expands, overlapping all the next, and
757 			 * perhaps the one after too (mprotect case 6).
758 			 * The only other cases that gets here are
759 			 * case 1, case 7 and case 8.
760 			 */
761 			if (next == expand) {
762 				/*
763 				 * The only case where we don't expand "vma"
764 				 * and we expand "next" instead is case 8.
765 				 */
766 				VM_WARN_ON(end != next->vm_end);
767 				/*
768 				 * remove_next == 3 means we're
769 				 * removing "vma" and that to do so we
770 				 * swapped "vma" and "next".
771 				 */
772 				remove_next = 3;
773 				VM_WARN_ON(file != next->vm_file);
774 				swap(vma, next);
775 			} else {
776 				VM_WARN_ON(expand != vma);
777 				/*
778 				 * case 1, 6, 7, remove_next == 2 is case 6,
779 				 * remove_next == 1 is case 1 or 7.
780 				 */
781 				remove_next = 1 + (end > next->vm_end);
782 				VM_WARN_ON(remove_next == 2 &&
783 					   end != next->vm_next->vm_end);
784 				/* trim end to next, for case 6 first pass */
785 				end = next->vm_end;
786 			}
787 
788 			exporter = next;
789 			importer = vma;
790 
791 			/*
792 			 * If next doesn't have anon_vma, import from vma after
793 			 * next, if the vma overlaps with it.
794 			 */
795 			if (remove_next == 2 && !next->anon_vma)
796 				exporter = next->vm_next;
797 
798 		} else if (end > next->vm_start) {
799 			/*
800 			 * vma expands, overlapping part of the next:
801 			 * mprotect case 5 shifting the boundary up.
802 			 */
803 			adjust_next = (end - next->vm_start);
804 			exporter = next;
805 			importer = vma;
806 			VM_WARN_ON(expand != importer);
807 		} else if (end < vma->vm_end) {
808 			/*
809 			 * vma shrinks, and !insert tells it's not
810 			 * split_vma inserting another: so it must be
811 			 * mprotect case 4 shifting the boundary down.
812 			 */
813 			adjust_next = -(vma->vm_end - end);
814 			exporter = vma;
815 			importer = next;
816 			VM_WARN_ON(expand != importer);
817 		}
818 
819 		/*
820 		 * Easily overlooked: when mprotect shifts the boundary,
821 		 * make sure the expanding vma has anon_vma set if the
822 		 * shrinking vma had, to cover any anon pages imported.
823 		 */
824 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
825 			int error;
826 
827 			importer->anon_vma = exporter->anon_vma;
828 			error = anon_vma_clone(importer, exporter);
829 			if (error)
830 				return error;
831 		}
832 	}
833 again:
834 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
835 
836 	if (file) {
837 		mapping = file->f_mapping;
838 		root = &mapping->i_mmap;
839 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
840 
841 		if (adjust_next)
842 			uprobe_munmap(next, next->vm_start, next->vm_end);
843 
844 		i_mmap_lock_write(mapping);
845 		if (insert) {
846 			/*
847 			 * Put into interval tree now, so instantiated pages
848 			 * are visible to arm/parisc __flush_dcache_page
849 			 * throughout; but we cannot insert into address
850 			 * space until vma start or end is updated.
851 			 */
852 			__vma_link_file(insert);
853 		}
854 	}
855 
856 	anon_vma = vma->anon_vma;
857 	if (!anon_vma && adjust_next)
858 		anon_vma = next->anon_vma;
859 	if (anon_vma) {
860 		VM_WARN_ON(adjust_next && next->anon_vma &&
861 			   anon_vma != next->anon_vma);
862 		anon_vma_lock_write(anon_vma);
863 		anon_vma_interval_tree_pre_update_vma(vma);
864 		if (adjust_next)
865 			anon_vma_interval_tree_pre_update_vma(next);
866 	}
867 
868 	if (file) {
869 		flush_dcache_mmap_lock(mapping);
870 		vma_interval_tree_remove(vma, root);
871 		if (adjust_next)
872 			vma_interval_tree_remove(next, root);
873 	}
874 
875 	if (start != vma->vm_start) {
876 		vma->vm_start = start;
877 		start_changed = true;
878 	}
879 	if (end != vma->vm_end) {
880 		vma->vm_end = end;
881 		end_changed = true;
882 	}
883 	vma->vm_pgoff = pgoff;
884 	if (adjust_next) {
885 		next->vm_start += adjust_next;
886 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
887 	}
888 
889 	if (file) {
890 		if (adjust_next)
891 			vma_interval_tree_insert(next, root);
892 		vma_interval_tree_insert(vma, root);
893 		flush_dcache_mmap_unlock(mapping);
894 	}
895 
896 	if (remove_next) {
897 		/*
898 		 * vma_merge has merged next into vma, and needs
899 		 * us to remove next before dropping the locks.
900 		 */
901 		if (remove_next != 3)
902 			__vma_unlink(mm, next, next);
903 		else
904 			/*
905 			 * vma is not before next if they've been
906 			 * swapped.
907 			 *
908 			 * pre-swap() next->vm_start was reduced so
909 			 * tell validate_mm_rb to ignore pre-swap()
910 			 * "next" (which is stored in post-swap()
911 			 * "vma").
912 			 */
913 			__vma_unlink(mm, next, vma);
914 		if (file)
915 			__remove_shared_vm_struct(next, file, mapping);
916 	} else if (insert) {
917 		/*
918 		 * split_vma has split insert from vma, and needs
919 		 * us to insert it before dropping the locks
920 		 * (it may either follow vma or precede it).
921 		 */
922 		__insert_vm_struct(mm, insert);
923 	} else {
924 		if (start_changed)
925 			vma_gap_update(vma);
926 		if (end_changed) {
927 			if (!next)
928 				mm->highest_vm_end = vm_end_gap(vma);
929 			else if (!adjust_next)
930 				vma_gap_update(next);
931 		}
932 	}
933 
934 	if (anon_vma) {
935 		anon_vma_interval_tree_post_update_vma(vma);
936 		if (adjust_next)
937 			anon_vma_interval_tree_post_update_vma(next);
938 		anon_vma_unlock_write(anon_vma);
939 	}
940 
941 	if (file) {
942 		i_mmap_unlock_write(mapping);
943 		uprobe_mmap(vma);
944 
945 		if (adjust_next)
946 			uprobe_mmap(next);
947 	}
948 
949 	if (remove_next) {
950 		if (file) {
951 			uprobe_munmap(next, next->vm_start, next->vm_end);
952 			fput(file);
953 		}
954 		if (next->anon_vma)
955 			anon_vma_merge(vma, next);
956 		mm->map_count--;
957 		mpol_put(vma_policy(next));
958 		vm_area_free(next);
959 		/*
960 		 * In mprotect's case 6 (see comments on vma_merge),
961 		 * we must remove another next too. It would clutter
962 		 * up the code too much to do both in one go.
963 		 */
964 		if (remove_next != 3) {
965 			/*
966 			 * If "next" was removed and vma->vm_end was
967 			 * expanded (up) over it, in turn
968 			 * "next->vm_prev->vm_end" changed and the
969 			 * "vma->vm_next" gap must be updated.
970 			 */
971 			next = vma->vm_next;
972 		} else {
973 			/*
974 			 * For the scope of the comment "next" and
975 			 * "vma" considered pre-swap(): if "vma" was
976 			 * removed, next->vm_start was expanded (down)
977 			 * over it and the "next" gap must be updated.
978 			 * Because of the swap() the post-swap() "vma"
979 			 * actually points to pre-swap() "next"
980 			 * (post-swap() "next" as opposed is now a
981 			 * dangling pointer).
982 			 */
983 			next = vma;
984 		}
985 		if (remove_next == 2) {
986 			remove_next = 1;
987 			end = next->vm_end;
988 			goto again;
989 		}
990 		else if (next)
991 			vma_gap_update(next);
992 		else {
993 			/*
994 			 * If remove_next == 2 we obviously can't
995 			 * reach this path.
996 			 *
997 			 * If remove_next == 3 we can't reach this
998 			 * path because pre-swap() next is always not
999 			 * NULL. pre-swap() "next" is not being
1000 			 * removed and its next->vm_end is not altered
1001 			 * (and furthermore "end" already matches
1002 			 * next->vm_end in remove_next == 3).
1003 			 *
1004 			 * We reach this only in the remove_next == 1
1005 			 * case if the "next" vma that was removed was
1006 			 * the highest vma of the mm. However in such
1007 			 * case next->vm_end == "end" and the extended
1008 			 * "vma" has vma->vm_end == next->vm_end so
1009 			 * mm->highest_vm_end doesn't need any update
1010 			 * in remove_next == 1 case.
1011 			 */
1012 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1013 		}
1014 	}
1015 	if (insert && file)
1016 		uprobe_mmap(insert);
1017 
1018 	validate_mm(mm);
1019 
1020 	return 0;
1021 }
1022 
1023 /*
1024  * If the vma has a ->close operation then the driver probably needs to release
1025  * per-vma resources, so we don't attempt to merge those.
1026  */
1027 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1028 				struct file *file, unsigned long vm_flags,
1029 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1030 {
1031 	/*
1032 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1033 	 * match the flags but dirty bit -- the caller should mark
1034 	 * merged VMA as dirty. If dirty bit won't be excluded from
1035 	 * comparison, we increase pressure on the memory system forcing
1036 	 * the kernel to generate new VMAs when old one could be
1037 	 * extended instead.
1038 	 */
1039 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1040 		return 0;
1041 	if (vma->vm_file != file)
1042 		return 0;
1043 	if (vma->vm_ops && vma->vm_ops->close)
1044 		return 0;
1045 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1046 		return 0;
1047 	return 1;
1048 }
1049 
1050 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1051 					struct anon_vma *anon_vma2,
1052 					struct vm_area_struct *vma)
1053 {
1054 	/*
1055 	 * The list_is_singular() test is to avoid merging VMA cloned from
1056 	 * parents. This can improve scalability caused by anon_vma lock.
1057 	 */
1058 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1059 		list_is_singular(&vma->anon_vma_chain)))
1060 		return 1;
1061 	return anon_vma1 == anon_vma2;
1062 }
1063 
1064 /*
1065  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1066  * in front of (at a lower virtual address and file offset than) the vma.
1067  *
1068  * We cannot merge two vmas if they have differently assigned (non-NULL)
1069  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1070  *
1071  * We don't check here for the merged mmap wrapping around the end of pagecache
1072  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1073  * wrap, nor mmaps which cover the final page at index -1UL.
1074  */
1075 static int
1076 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1077 		     struct anon_vma *anon_vma, struct file *file,
1078 		     pgoff_t vm_pgoff,
1079 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1080 {
1081 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1082 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1083 		if (vma->vm_pgoff == vm_pgoff)
1084 			return 1;
1085 	}
1086 	return 0;
1087 }
1088 
1089 /*
1090  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1091  * beyond (at a higher virtual address and file offset than) the vma.
1092  *
1093  * We cannot merge two vmas if they have differently assigned (non-NULL)
1094  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1095  */
1096 static int
1097 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1098 		    struct anon_vma *anon_vma, struct file *file,
1099 		    pgoff_t vm_pgoff,
1100 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1101 {
1102 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1103 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1104 		pgoff_t vm_pglen;
1105 		vm_pglen = vma_pages(vma);
1106 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1107 			return 1;
1108 	}
1109 	return 0;
1110 }
1111 
1112 /*
1113  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1114  * whether that can be merged with its predecessor or its successor.
1115  * Or both (it neatly fills a hole).
1116  *
1117  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1118  * certain not to be mapped by the time vma_merge is called; but when
1119  * called for mprotect, it is certain to be already mapped (either at
1120  * an offset within prev, or at the start of next), and the flags of
1121  * this area are about to be changed to vm_flags - and the no-change
1122  * case has already been eliminated.
1123  *
1124  * The following mprotect cases have to be considered, where AAAA is
1125  * the area passed down from mprotect_fixup, never extending beyond one
1126  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1127  *
1128  *     AAAA             AAAA                   AAAA
1129  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1130  *    cannot merge    might become       might become
1131  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1132  *    mmap, brk or    case 4 below       case 5 below
1133  *    mremap move:
1134  *                        AAAA               AAAA
1135  *                    PPPP    NNNN       PPPPNNNNXXXX
1136  *                    might become       might become
1137  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1138  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1139  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1140  *
1141  * It is important for case 8 that the vma NNNN overlapping the
1142  * region AAAA is never going to extended over XXXX. Instead XXXX must
1143  * be extended in region AAAA and NNNN must be removed. This way in
1144  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1145  * rmap_locks, the properties of the merged vma will be already
1146  * correct for the whole merged range. Some of those properties like
1147  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1148  * be correct for the whole merged range immediately after the
1149  * rmap_locks are released. Otherwise if XXXX would be removed and
1150  * NNNN would be extended over the XXXX range, remove_migration_ptes
1151  * or other rmap walkers (if working on addresses beyond the "end"
1152  * parameter) may establish ptes with the wrong permissions of NNNN
1153  * instead of the right permissions of XXXX.
1154  */
1155 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1156 			struct vm_area_struct *prev, unsigned long addr,
1157 			unsigned long end, unsigned long vm_flags,
1158 			struct anon_vma *anon_vma, struct file *file,
1159 			pgoff_t pgoff, struct mempolicy *policy,
1160 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1161 {
1162 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1163 	struct vm_area_struct *area, *next;
1164 	int err;
1165 
1166 	/*
1167 	 * We later require that vma->vm_flags == vm_flags,
1168 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1169 	 */
1170 	if (vm_flags & VM_SPECIAL)
1171 		return NULL;
1172 
1173 	next = vma_next(mm, prev);
1174 	area = next;
1175 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1176 		next = next->vm_next;
1177 
1178 	/* verify some invariant that must be enforced by the caller */
1179 	VM_WARN_ON(prev && addr <= prev->vm_start);
1180 	VM_WARN_ON(area && end > area->vm_end);
1181 	VM_WARN_ON(addr >= end);
1182 
1183 	/*
1184 	 * Can it merge with the predecessor?
1185 	 */
1186 	if (prev && prev->vm_end == addr &&
1187 			mpol_equal(vma_policy(prev), policy) &&
1188 			can_vma_merge_after(prev, vm_flags,
1189 					    anon_vma, file, pgoff,
1190 					    vm_userfaultfd_ctx)) {
1191 		/*
1192 		 * OK, it can.  Can we now merge in the successor as well?
1193 		 */
1194 		if (next && end == next->vm_start &&
1195 				mpol_equal(policy, vma_policy(next)) &&
1196 				can_vma_merge_before(next, vm_flags,
1197 						     anon_vma, file,
1198 						     pgoff+pglen,
1199 						     vm_userfaultfd_ctx) &&
1200 				is_mergeable_anon_vma(prev->anon_vma,
1201 						      next->anon_vma, NULL)) {
1202 							/* cases 1, 6 */
1203 			err = __vma_adjust(prev, prev->vm_start,
1204 					 next->vm_end, prev->vm_pgoff, NULL,
1205 					 prev);
1206 		} else					/* cases 2, 5, 7 */
1207 			err = __vma_adjust(prev, prev->vm_start,
1208 					 end, prev->vm_pgoff, NULL, prev);
1209 		if (err)
1210 			return NULL;
1211 		khugepaged_enter_vma_merge(prev, vm_flags);
1212 		return prev;
1213 	}
1214 
1215 	/*
1216 	 * Can this new request be merged in front of next?
1217 	 */
1218 	if (next && end == next->vm_start &&
1219 			mpol_equal(policy, vma_policy(next)) &&
1220 			can_vma_merge_before(next, vm_flags,
1221 					     anon_vma, file, pgoff+pglen,
1222 					     vm_userfaultfd_ctx)) {
1223 		if (prev && addr < prev->vm_end)	/* case 4 */
1224 			err = __vma_adjust(prev, prev->vm_start,
1225 					 addr, prev->vm_pgoff, NULL, next);
1226 		else {					/* cases 3, 8 */
1227 			err = __vma_adjust(area, addr, next->vm_end,
1228 					 next->vm_pgoff - pglen, NULL, next);
1229 			/*
1230 			 * In case 3 area is already equal to next and
1231 			 * this is a noop, but in case 8 "area" has
1232 			 * been removed and next was expanded over it.
1233 			 */
1234 			area = next;
1235 		}
1236 		if (err)
1237 			return NULL;
1238 		khugepaged_enter_vma_merge(area, vm_flags);
1239 		return area;
1240 	}
1241 
1242 	return NULL;
1243 }
1244 
1245 /*
1246  * Rough compatibility check to quickly see if it's even worth looking
1247  * at sharing an anon_vma.
1248  *
1249  * They need to have the same vm_file, and the flags can only differ
1250  * in things that mprotect may change.
1251  *
1252  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1253  * we can merge the two vma's. For example, we refuse to merge a vma if
1254  * there is a vm_ops->close() function, because that indicates that the
1255  * driver is doing some kind of reference counting. But that doesn't
1256  * really matter for the anon_vma sharing case.
1257  */
1258 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1259 {
1260 	return a->vm_end == b->vm_start &&
1261 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1262 		a->vm_file == b->vm_file &&
1263 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1264 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1265 }
1266 
1267 /*
1268  * Do some basic sanity checking to see if we can re-use the anon_vma
1269  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1270  * the same as 'old', the other will be the new one that is trying
1271  * to share the anon_vma.
1272  *
1273  * NOTE! This runs with mm_sem held for reading, so it is possible that
1274  * the anon_vma of 'old' is concurrently in the process of being set up
1275  * by another page fault trying to merge _that_. But that's ok: if it
1276  * is being set up, that automatically means that it will be a singleton
1277  * acceptable for merging, so we can do all of this optimistically. But
1278  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1279  *
1280  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1281  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1282  * is to return an anon_vma that is "complex" due to having gone through
1283  * a fork).
1284  *
1285  * We also make sure that the two vma's are compatible (adjacent,
1286  * and with the same memory policies). That's all stable, even with just
1287  * a read lock on the mm_sem.
1288  */
1289 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1290 {
1291 	if (anon_vma_compatible(a, b)) {
1292 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1293 
1294 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1295 			return anon_vma;
1296 	}
1297 	return NULL;
1298 }
1299 
1300 /*
1301  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1302  * neighbouring vmas for a suitable anon_vma, before it goes off
1303  * to allocate a new anon_vma.  It checks because a repetitive
1304  * sequence of mprotects and faults may otherwise lead to distinct
1305  * anon_vmas being allocated, preventing vma merge in subsequent
1306  * mprotect.
1307  */
1308 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1309 {
1310 	struct anon_vma *anon_vma = NULL;
1311 
1312 	/* Try next first. */
1313 	if (vma->vm_next) {
1314 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1315 		if (anon_vma)
1316 			return anon_vma;
1317 	}
1318 
1319 	/* Try prev next. */
1320 	if (vma->vm_prev)
1321 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1322 
1323 	/*
1324 	 * We might reach here with anon_vma == NULL if we can't find
1325 	 * any reusable anon_vma.
1326 	 * There's no absolute need to look only at touching neighbours:
1327 	 * we could search further afield for "compatible" anon_vmas.
1328 	 * But it would probably just be a waste of time searching,
1329 	 * or lead to too many vmas hanging off the same anon_vma.
1330 	 * We're trying to allow mprotect remerging later on,
1331 	 * not trying to minimize memory used for anon_vmas.
1332 	 */
1333 	return anon_vma;
1334 }
1335 
1336 /*
1337  * If a hint addr is less than mmap_min_addr change hint to be as
1338  * low as possible but still greater than mmap_min_addr
1339  */
1340 static inline unsigned long round_hint_to_min(unsigned long hint)
1341 {
1342 	hint &= PAGE_MASK;
1343 	if (((void *)hint != NULL) &&
1344 	    (hint < mmap_min_addr))
1345 		return PAGE_ALIGN(mmap_min_addr);
1346 	return hint;
1347 }
1348 
1349 static inline int mlock_future_check(struct mm_struct *mm,
1350 				     unsigned long flags,
1351 				     unsigned long len)
1352 {
1353 	unsigned long locked, lock_limit;
1354 
1355 	/*  mlock MCL_FUTURE? */
1356 	if (flags & VM_LOCKED) {
1357 		locked = len >> PAGE_SHIFT;
1358 		locked += mm->locked_vm;
1359 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1360 		lock_limit >>= PAGE_SHIFT;
1361 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1362 			return -EAGAIN;
1363 	}
1364 	return 0;
1365 }
1366 
1367 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1368 {
1369 	if (S_ISREG(inode->i_mode))
1370 		return MAX_LFS_FILESIZE;
1371 
1372 	if (S_ISBLK(inode->i_mode))
1373 		return MAX_LFS_FILESIZE;
1374 
1375 	if (S_ISSOCK(inode->i_mode))
1376 		return MAX_LFS_FILESIZE;
1377 
1378 	/* Special "we do even unsigned file positions" case */
1379 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1380 		return 0;
1381 
1382 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1383 	return ULONG_MAX;
1384 }
1385 
1386 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1387 				unsigned long pgoff, unsigned long len)
1388 {
1389 	u64 maxsize = file_mmap_size_max(file, inode);
1390 
1391 	if (maxsize && len > maxsize)
1392 		return false;
1393 	maxsize -= len;
1394 	if (pgoff > maxsize >> PAGE_SHIFT)
1395 		return false;
1396 	return true;
1397 }
1398 
1399 /*
1400  * The caller must write-lock current->mm->mmap_lock.
1401  */
1402 unsigned long do_mmap(struct file *file, unsigned long addr,
1403 			unsigned long len, unsigned long prot,
1404 			unsigned long flags, unsigned long pgoff,
1405 			unsigned long *populate, struct list_head *uf)
1406 {
1407 	struct mm_struct *mm = current->mm;
1408 	vm_flags_t vm_flags;
1409 	int pkey = 0;
1410 
1411 	*populate = 0;
1412 
1413 	if (!len)
1414 		return -EINVAL;
1415 
1416 	/*
1417 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1418 	 *
1419 	 * (the exception is when the underlying filesystem is noexec
1420 	 *  mounted, in which case we dont add PROT_EXEC.)
1421 	 */
1422 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1423 		if (!(file && path_noexec(&file->f_path)))
1424 			prot |= PROT_EXEC;
1425 
1426 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1427 	if (flags & MAP_FIXED_NOREPLACE)
1428 		flags |= MAP_FIXED;
1429 
1430 	if (!(flags & MAP_FIXED))
1431 		addr = round_hint_to_min(addr);
1432 
1433 	/* Careful about overflows.. */
1434 	len = PAGE_ALIGN(len);
1435 	if (!len)
1436 		return -ENOMEM;
1437 
1438 	/* offset overflow? */
1439 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1440 		return -EOVERFLOW;
1441 
1442 	/* Too many mappings? */
1443 	if (mm->map_count > sysctl_max_map_count)
1444 		return -ENOMEM;
1445 
1446 	/* Obtain the address to map to. we verify (or select) it and ensure
1447 	 * that it represents a valid section of the address space.
1448 	 */
1449 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1450 	if (IS_ERR_VALUE(addr))
1451 		return addr;
1452 
1453 	if (flags & MAP_FIXED_NOREPLACE) {
1454 		struct vm_area_struct *vma = find_vma(mm, addr);
1455 
1456 		if (vma && vma->vm_start < addr + len)
1457 			return -EEXIST;
1458 	}
1459 
1460 	if (prot == PROT_EXEC) {
1461 		pkey = execute_only_pkey(mm);
1462 		if (pkey < 0)
1463 			pkey = 0;
1464 	}
1465 
1466 	/* Do simple checking here so the lower-level routines won't have
1467 	 * to. we assume access permissions have been handled by the open
1468 	 * of the memory object, so we don't do any here.
1469 	 */
1470 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1471 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1472 
1473 	if (flags & MAP_LOCKED)
1474 		if (!can_do_mlock())
1475 			return -EPERM;
1476 
1477 	if (mlock_future_check(mm, vm_flags, len))
1478 		return -EAGAIN;
1479 
1480 	if (file) {
1481 		struct inode *inode = file_inode(file);
1482 		unsigned long flags_mask;
1483 
1484 		if (!file_mmap_ok(file, inode, pgoff, len))
1485 			return -EOVERFLOW;
1486 
1487 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1488 
1489 		switch (flags & MAP_TYPE) {
1490 		case MAP_SHARED:
1491 			/*
1492 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1493 			 * flags. E.g. MAP_SYNC is dangerous to use with
1494 			 * MAP_SHARED as you don't know which consistency model
1495 			 * you will get. We silently ignore unsupported flags
1496 			 * with MAP_SHARED to preserve backward compatibility.
1497 			 */
1498 			flags &= LEGACY_MAP_MASK;
1499 			fallthrough;
1500 		case MAP_SHARED_VALIDATE:
1501 			if (flags & ~flags_mask)
1502 				return -EOPNOTSUPP;
1503 			if (prot & PROT_WRITE) {
1504 				if (!(file->f_mode & FMODE_WRITE))
1505 					return -EACCES;
1506 				if (IS_SWAPFILE(file->f_mapping->host))
1507 					return -ETXTBSY;
1508 			}
1509 
1510 			/*
1511 			 * Make sure we don't allow writing to an append-only
1512 			 * file..
1513 			 */
1514 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1515 				return -EACCES;
1516 
1517 			/*
1518 			 * Make sure there are no mandatory locks on the file.
1519 			 */
1520 			if (locks_verify_locked(file))
1521 				return -EAGAIN;
1522 
1523 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1524 			if (!(file->f_mode & FMODE_WRITE))
1525 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1526 			fallthrough;
1527 		case MAP_PRIVATE:
1528 			if (!(file->f_mode & FMODE_READ))
1529 				return -EACCES;
1530 			if (path_noexec(&file->f_path)) {
1531 				if (vm_flags & VM_EXEC)
1532 					return -EPERM;
1533 				vm_flags &= ~VM_MAYEXEC;
1534 			}
1535 
1536 			if (!file->f_op->mmap)
1537 				return -ENODEV;
1538 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1539 				return -EINVAL;
1540 			break;
1541 
1542 		default:
1543 			return -EINVAL;
1544 		}
1545 	} else {
1546 		switch (flags & MAP_TYPE) {
1547 		case MAP_SHARED:
1548 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1549 				return -EINVAL;
1550 			/*
1551 			 * Ignore pgoff.
1552 			 */
1553 			pgoff = 0;
1554 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1555 			break;
1556 		case MAP_PRIVATE:
1557 			/*
1558 			 * Set pgoff according to addr for anon_vma.
1559 			 */
1560 			pgoff = addr >> PAGE_SHIFT;
1561 			break;
1562 		default:
1563 			return -EINVAL;
1564 		}
1565 	}
1566 
1567 	/*
1568 	 * Set 'VM_NORESERVE' if we should not account for the
1569 	 * memory use of this mapping.
1570 	 */
1571 	if (flags & MAP_NORESERVE) {
1572 		/* We honor MAP_NORESERVE if allowed to overcommit */
1573 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1574 			vm_flags |= VM_NORESERVE;
1575 
1576 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1577 		if (file && is_file_hugepages(file))
1578 			vm_flags |= VM_NORESERVE;
1579 	}
1580 
1581 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1582 	if (!IS_ERR_VALUE(addr) &&
1583 	    ((vm_flags & VM_LOCKED) ||
1584 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1585 		*populate = len;
1586 	return addr;
1587 }
1588 
1589 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1590 			      unsigned long prot, unsigned long flags,
1591 			      unsigned long fd, unsigned long pgoff)
1592 {
1593 	struct file *file = NULL;
1594 	unsigned long retval;
1595 
1596 	if (!(flags & MAP_ANONYMOUS)) {
1597 		audit_mmap_fd(fd, flags);
1598 		file = fget(fd);
1599 		if (!file)
1600 			return -EBADF;
1601 		if (is_file_hugepages(file)) {
1602 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1603 		} else if (unlikely(flags & MAP_HUGETLB)) {
1604 			retval = -EINVAL;
1605 			goto out_fput;
1606 		}
1607 	} else if (flags & MAP_HUGETLB) {
1608 		struct user_struct *user = NULL;
1609 		struct hstate *hs;
1610 
1611 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1612 		if (!hs)
1613 			return -EINVAL;
1614 
1615 		len = ALIGN(len, huge_page_size(hs));
1616 		/*
1617 		 * VM_NORESERVE is used because the reservations will be
1618 		 * taken when vm_ops->mmap() is called
1619 		 * A dummy user value is used because we are not locking
1620 		 * memory so no accounting is necessary
1621 		 */
1622 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1623 				VM_NORESERVE,
1624 				&user, HUGETLB_ANONHUGE_INODE,
1625 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1626 		if (IS_ERR(file))
1627 			return PTR_ERR(file);
1628 	}
1629 
1630 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1631 
1632 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1633 out_fput:
1634 	if (file)
1635 		fput(file);
1636 	return retval;
1637 }
1638 
1639 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1640 		unsigned long, prot, unsigned long, flags,
1641 		unsigned long, fd, unsigned long, pgoff)
1642 {
1643 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1644 }
1645 
1646 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1647 struct mmap_arg_struct {
1648 	unsigned long addr;
1649 	unsigned long len;
1650 	unsigned long prot;
1651 	unsigned long flags;
1652 	unsigned long fd;
1653 	unsigned long offset;
1654 };
1655 
1656 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1657 {
1658 	struct mmap_arg_struct a;
1659 
1660 	if (copy_from_user(&a, arg, sizeof(a)))
1661 		return -EFAULT;
1662 	if (offset_in_page(a.offset))
1663 		return -EINVAL;
1664 
1665 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1666 			       a.offset >> PAGE_SHIFT);
1667 }
1668 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1669 
1670 /*
1671  * Some shared mappings will want the pages marked read-only
1672  * to track write events. If so, we'll downgrade vm_page_prot
1673  * to the private version (using protection_map[] without the
1674  * VM_SHARED bit).
1675  */
1676 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1677 {
1678 	vm_flags_t vm_flags = vma->vm_flags;
1679 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1680 
1681 	/* If it was private or non-writable, the write bit is already clear */
1682 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1683 		return 0;
1684 
1685 	/* The backer wishes to know when pages are first written to? */
1686 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1687 		return 1;
1688 
1689 	/* The open routine did something to the protections that pgprot_modify
1690 	 * won't preserve? */
1691 	if (pgprot_val(vm_page_prot) !=
1692 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1693 		return 0;
1694 
1695 	/* Do we need to track softdirty? */
1696 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1697 		return 1;
1698 
1699 	/* Specialty mapping? */
1700 	if (vm_flags & VM_PFNMAP)
1701 		return 0;
1702 
1703 	/* Can the mapping track the dirty pages? */
1704 	return vma->vm_file && vma->vm_file->f_mapping &&
1705 		mapping_can_writeback(vma->vm_file->f_mapping);
1706 }
1707 
1708 /*
1709  * We account for memory if it's a private writeable mapping,
1710  * not hugepages and VM_NORESERVE wasn't set.
1711  */
1712 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1713 {
1714 	/*
1715 	 * hugetlb has its own accounting separate from the core VM
1716 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1717 	 */
1718 	if (file && is_file_hugepages(file))
1719 		return 0;
1720 
1721 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1722 }
1723 
1724 unsigned long mmap_region(struct file *file, unsigned long addr,
1725 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1726 		struct list_head *uf)
1727 {
1728 	struct mm_struct *mm = current->mm;
1729 	struct vm_area_struct *vma, *prev, *merge;
1730 	int error;
1731 	struct rb_node **rb_link, *rb_parent;
1732 	unsigned long charged = 0;
1733 
1734 	/* Check against address space limit. */
1735 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1736 		unsigned long nr_pages;
1737 
1738 		/*
1739 		 * MAP_FIXED may remove pages of mappings that intersects with
1740 		 * requested mapping. Account for the pages it would unmap.
1741 		 */
1742 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1743 
1744 		if (!may_expand_vm(mm, vm_flags,
1745 					(len >> PAGE_SHIFT) - nr_pages))
1746 			return -ENOMEM;
1747 	}
1748 
1749 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1750 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1751 		return -ENOMEM;
1752 	/*
1753 	 * Private writable mapping: check memory availability
1754 	 */
1755 	if (accountable_mapping(file, vm_flags)) {
1756 		charged = len >> PAGE_SHIFT;
1757 		if (security_vm_enough_memory_mm(mm, charged))
1758 			return -ENOMEM;
1759 		vm_flags |= VM_ACCOUNT;
1760 	}
1761 
1762 	/*
1763 	 * Can we just expand an old mapping?
1764 	 */
1765 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1766 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1767 	if (vma)
1768 		goto out;
1769 
1770 	/*
1771 	 * Determine the object being mapped and call the appropriate
1772 	 * specific mapper. the address has already been validated, but
1773 	 * not unmapped, but the maps are removed from the list.
1774 	 */
1775 	vma = vm_area_alloc(mm);
1776 	if (!vma) {
1777 		error = -ENOMEM;
1778 		goto unacct_error;
1779 	}
1780 
1781 	vma->vm_start = addr;
1782 	vma->vm_end = addr + len;
1783 	vma->vm_flags = vm_flags;
1784 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1785 	vma->vm_pgoff = pgoff;
1786 
1787 	if (file) {
1788 		if (vm_flags & VM_DENYWRITE) {
1789 			error = deny_write_access(file);
1790 			if (error)
1791 				goto free_vma;
1792 		}
1793 		if (vm_flags & VM_SHARED) {
1794 			error = mapping_map_writable(file->f_mapping);
1795 			if (error)
1796 				goto allow_write_and_free_vma;
1797 		}
1798 
1799 		/* ->mmap() can change vma->vm_file, but must guarantee that
1800 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1801 		 * and map writably if VM_SHARED is set. This usually means the
1802 		 * new file must not have been exposed to user-space, yet.
1803 		 */
1804 		vma->vm_file = get_file(file);
1805 		error = call_mmap(file, vma);
1806 		if (error)
1807 			goto unmap_and_free_vma;
1808 
1809 		/* Can addr have changed??
1810 		 *
1811 		 * Answer: Yes, several device drivers can do it in their
1812 		 *         f_op->mmap method. -DaveM
1813 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1814 		 *      be updated for vma_link()
1815 		 */
1816 		WARN_ON_ONCE(addr != vma->vm_start);
1817 
1818 		addr = vma->vm_start;
1819 
1820 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1821 		 * as we may succeed this time.
1822 		 */
1823 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1824 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1825 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1826 			if (merge) {
1827 				/* ->mmap() can change vma->vm_file and fput the original file. So
1828 				 * fput the vma->vm_file here or we would add an extra fput for file
1829 				 * and cause general protection fault ultimately.
1830 				 */
1831 				fput(vma->vm_file);
1832 				vm_area_free(vma);
1833 				vma = merge;
1834 				/* Update vm_flags to pick up the change. */
1835 				vm_flags = vma->vm_flags;
1836 				goto unmap_writable;
1837 			}
1838 		}
1839 
1840 		vm_flags = vma->vm_flags;
1841 	} else if (vm_flags & VM_SHARED) {
1842 		error = shmem_zero_setup(vma);
1843 		if (error)
1844 			goto free_vma;
1845 	} else {
1846 		vma_set_anonymous(vma);
1847 	}
1848 
1849 	/* Allow architectures to sanity-check the vm_flags */
1850 	if (!arch_validate_flags(vma->vm_flags)) {
1851 		error = -EINVAL;
1852 		if (file)
1853 			goto unmap_and_free_vma;
1854 		else
1855 			goto free_vma;
1856 	}
1857 
1858 	vma_link(mm, vma, prev, rb_link, rb_parent);
1859 	/* Once vma denies write, undo our temporary denial count */
1860 	if (file) {
1861 unmap_writable:
1862 		if (vm_flags & VM_SHARED)
1863 			mapping_unmap_writable(file->f_mapping);
1864 		if (vm_flags & VM_DENYWRITE)
1865 			allow_write_access(file);
1866 	}
1867 	file = vma->vm_file;
1868 out:
1869 	perf_event_mmap(vma);
1870 
1871 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1872 	if (vm_flags & VM_LOCKED) {
1873 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1874 					is_vm_hugetlb_page(vma) ||
1875 					vma == get_gate_vma(current->mm))
1876 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1877 		else
1878 			mm->locked_vm += (len >> PAGE_SHIFT);
1879 	}
1880 
1881 	if (file)
1882 		uprobe_mmap(vma);
1883 
1884 	/*
1885 	 * New (or expanded) vma always get soft dirty status.
1886 	 * Otherwise user-space soft-dirty page tracker won't
1887 	 * be able to distinguish situation when vma area unmapped,
1888 	 * then new mapped in-place (which must be aimed as
1889 	 * a completely new data area).
1890 	 */
1891 	vma->vm_flags |= VM_SOFTDIRTY;
1892 
1893 	vma_set_page_prot(vma);
1894 
1895 	return addr;
1896 
1897 unmap_and_free_vma:
1898 	fput(vma->vm_file);
1899 	vma->vm_file = NULL;
1900 
1901 	/* Undo any partial mapping done by a device driver. */
1902 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1903 	charged = 0;
1904 	if (vm_flags & VM_SHARED)
1905 		mapping_unmap_writable(file->f_mapping);
1906 allow_write_and_free_vma:
1907 	if (vm_flags & VM_DENYWRITE)
1908 		allow_write_access(file);
1909 free_vma:
1910 	vm_area_free(vma);
1911 unacct_error:
1912 	if (charged)
1913 		vm_unacct_memory(charged);
1914 	return error;
1915 }
1916 
1917 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1918 {
1919 	/*
1920 	 * We implement the search by looking for an rbtree node that
1921 	 * immediately follows a suitable gap. That is,
1922 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1923 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1924 	 * - gap_end - gap_start >= length
1925 	 */
1926 
1927 	struct mm_struct *mm = current->mm;
1928 	struct vm_area_struct *vma;
1929 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1930 
1931 	/* Adjust search length to account for worst case alignment overhead */
1932 	length = info->length + info->align_mask;
1933 	if (length < info->length)
1934 		return -ENOMEM;
1935 
1936 	/* Adjust search limits by the desired length */
1937 	if (info->high_limit < length)
1938 		return -ENOMEM;
1939 	high_limit = info->high_limit - length;
1940 
1941 	if (info->low_limit > high_limit)
1942 		return -ENOMEM;
1943 	low_limit = info->low_limit + length;
1944 
1945 	/* Check if rbtree root looks promising */
1946 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1947 		goto check_highest;
1948 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1949 	if (vma->rb_subtree_gap < length)
1950 		goto check_highest;
1951 
1952 	while (true) {
1953 		/* Visit left subtree if it looks promising */
1954 		gap_end = vm_start_gap(vma);
1955 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1956 			struct vm_area_struct *left =
1957 				rb_entry(vma->vm_rb.rb_left,
1958 					 struct vm_area_struct, vm_rb);
1959 			if (left->rb_subtree_gap >= length) {
1960 				vma = left;
1961 				continue;
1962 			}
1963 		}
1964 
1965 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1966 check_current:
1967 		/* Check if current node has a suitable gap */
1968 		if (gap_start > high_limit)
1969 			return -ENOMEM;
1970 		if (gap_end >= low_limit &&
1971 		    gap_end > gap_start && gap_end - gap_start >= length)
1972 			goto found;
1973 
1974 		/* Visit right subtree if it looks promising */
1975 		if (vma->vm_rb.rb_right) {
1976 			struct vm_area_struct *right =
1977 				rb_entry(vma->vm_rb.rb_right,
1978 					 struct vm_area_struct, vm_rb);
1979 			if (right->rb_subtree_gap >= length) {
1980 				vma = right;
1981 				continue;
1982 			}
1983 		}
1984 
1985 		/* Go back up the rbtree to find next candidate node */
1986 		while (true) {
1987 			struct rb_node *prev = &vma->vm_rb;
1988 			if (!rb_parent(prev))
1989 				goto check_highest;
1990 			vma = rb_entry(rb_parent(prev),
1991 				       struct vm_area_struct, vm_rb);
1992 			if (prev == vma->vm_rb.rb_left) {
1993 				gap_start = vm_end_gap(vma->vm_prev);
1994 				gap_end = vm_start_gap(vma);
1995 				goto check_current;
1996 			}
1997 		}
1998 	}
1999 
2000 check_highest:
2001 	/* Check highest gap, which does not precede any rbtree node */
2002 	gap_start = mm->highest_vm_end;
2003 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2004 	if (gap_start > high_limit)
2005 		return -ENOMEM;
2006 
2007 found:
2008 	/* We found a suitable gap. Clip it with the original low_limit. */
2009 	if (gap_start < info->low_limit)
2010 		gap_start = info->low_limit;
2011 
2012 	/* Adjust gap address to the desired alignment */
2013 	gap_start += (info->align_offset - gap_start) & info->align_mask;
2014 
2015 	VM_BUG_ON(gap_start + info->length > info->high_limit);
2016 	VM_BUG_ON(gap_start + info->length > gap_end);
2017 	return gap_start;
2018 }
2019 
2020 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2021 {
2022 	struct mm_struct *mm = current->mm;
2023 	struct vm_area_struct *vma;
2024 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2025 
2026 	/* Adjust search length to account for worst case alignment overhead */
2027 	length = info->length + info->align_mask;
2028 	if (length < info->length)
2029 		return -ENOMEM;
2030 
2031 	/*
2032 	 * Adjust search limits by the desired length.
2033 	 * See implementation comment at top of unmapped_area().
2034 	 */
2035 	gap_end = info->high_limit;
2036 	if (gap_end < length)
2037 		return -ENOMEM;
2038 	high_limit = gap_end - length;
2039 
2040 	if (info->low_limit > high_limit)
2041 		return -ENOMEM;
2042 	low_limit = info->low_limit + length;
2043 
2044 	/* Check highest gap, which does not precede any rbtree node */
2045 	gap_start = mm->highest_vm_end;
2046 	if (gap_start <= high_limit)
2047 		goto found_highest;
2048 
2049 	/* Check if rbtree root looks promising */
2050 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2051 		return -ENOMEM;
2052 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2053 	if (vma->rb_subtree_gap < length)
2054 		return -ENOMEM;
2055 
2056 	while (true) {
2057 		/* Visit right subtree if it looks promising */
2058 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2059 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2060 			struct vm_area_struct *right =
2061 				rb_entry(vma->vm_rb.rb_right,
2062 					 struct vm_area_struct, vm_rb);
2063 			if (right->rb_subtree_gap >= length) {
2064 				vma = right;
2065 				continue;
2066 			}
2067 		}
2068 
2069 check_current:
2070 		/* Check if current node has a suitable gap */
2071 		gap_end = vm_start_gap(vma);
2072 		if (gap_end < low_limit)
2073 			return -ENOMEM;
2074 		if (gap_start <= high_limit &&
2075 		    gap_end > gap_start && gap_end - gap_start >= length)
2076 			goto found;
2077 
2078 		/* Visit left subtree if it looks promising */
2079 		if (vma->vm_rb.rb_left) {
2080 			struct vm_area_struct *left =
2081 				rb_entry(vma->vm_rb.rb_left,
2082 					 struct vm_area_struct, vm_rb);
2083 			if (left->rb_subtree_gap >= length) {
2084 				vma = left;
2085 				continue;
2086 			}
2087 		}
2088 
2089 		/* Go back up the rbtree to find next candidate node */
2090 		while (true) {
2091 			struct rb_node *prev = &vma->vm_rb;
2092 			if (!rb_parent(prev))
2093 				return -ENOMEM;
2094 			vma = rb_entry(rb_parent(prev),
2095 				       struct vm_area_struct, vm_rb);
2096 			if (prev == vma->vm_rb.rb_right) {
2097 				gap_start = vma->vm_prev ?
2098 					vm_end_gap(vma->vm_prev) : 0;
2099 				goto check_current;
2100 			}
2101 		}
2102 	}
2103 
2104 found:
2105 	/* We found a suitable gap. Clip it with the original high_limit. */
2106 	if (gap_end > info->high_limit)
2107 		gap_end = info->high_limit;
2108 
2109 found_highest:
2110 	/* Compute highest gap address at the desired alignment */
2111 	gap_end -= info->length;
2112 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2113 
2114 	VM_BUG_ON(gap_end < info->low_limit);
2115 	VM_BUG_ON(gap_end < gap_start);
2116 	return gap_end;
2117 }
2118 
2119 /*
2120  * Search for an unmapped address range.
2121  *
2122  * We are looking for a range that:
2123  * - does not intersect with any VMA;
2124  * - is contained within the [low_limit, high_limit) interval;
2125  * - is at least the desired size.
2126  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2127  */
2128 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2129 {
2130 	unsigned long addr;
2131 
2132 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2133 		addr = unmapped_area_topdown(info);
2134 	else
2135 		addr = unmapped_area(info);
2136 
2137 	trace_vm_unmapped_area(addr, info);
2138 	return addr;
2139 }
2140 
2141 #ifndef arch_get_mmap_end
2142 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2143 #endif
2144 
2145 #ifndef arch_get_mmap_base
2146 #define arch_get_mmap_base(addr, base) (base)
2147 #endif
2148 
2149 /* Get an address range which is currently unmapped.
2150  * For shmat() with addr=0.
2151  *
2152  * Ugly calling convention alert:
2153  * Return value with the low bits set means error value,
2154  * ie
2155  *	if (ret & ~PAGE_MASK)
2156  *		error = ret;
2157  *
2158  * This function "knows" that -ENOMEM has the bits set.
2159  */
2160 #ifndef HAVE_ARCH_UNMAPPED_AREA
2161 unsigned long
2162 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2163 		unsigned long len, unsigned long pgoff, unsigned long flags)
2164 {
2165 	struct mm_struct *mm = current->mm;
2166 	struct vm_area_struct *vma, *prev;
2167 	struct vm_unmapped_area_info info;
2168 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2169 
2170 	if (len > mmap_end - mmap_min_addr)
2171 		return -ENOMEM;
2172 
2173 	if (flags & MAP_FIXED)
2174 		return addr;
2175 
2176 	if (addr) {
2177 		addr = PAGE_ALIGN(addr);
2178 		vma = find_vma_prev(mm, addr, &prev);
2179 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2180 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2181 		    (!prev || addr >= vm_end_gap(prev)))
2182 			return addr;
2183 	}
2184 
2185 	info.flags = 0;
2186 	info.length = len;
2187 	info.low_limit = mm->mmap_base;
2188 	info.high_limit = mmap_end;
2189 	info.align_mask = 0;
2190 	info.align_offset = 0;
2191 	return vm_unmapped_area(&info);
2192 }
2193 #endif
2194 
2195 /*
2196  * This mmap-allocator allocates new areas top-down from below the
2197  * stack's low limit (the base):
2198  */
2199 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2200 unsigned long
2201 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2202 			  unsigned long len, unsigned long pgoff,
2203 			  unsigned long flags)
2204 {
2205 	struct vm_area_struct *vma, *prev;
2206 	struct mm_struct *mm = current->mm;
2207 	struct vm_unmapped_area_info info;
2208 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2209 
2210 	/* requested length too big for entire address space */
2211 	if (len > mmap_end - mmap_min_addr)
2212 		return -ENOMEM;
2213 
2214 	if (flags & MAP_FIXED)
2215 		return addr;
2216 
2217 	/* requesting a specific address */
2218 	if (addr) {
2219 		addr = PAGE_ALIGN(addr);
2220 		vma = find_vma_prev(mm, addr, &prev);
2221 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2222 				(!vma || addr + len <= vm_start_gap(vma)) &&
2223 				(!prev || addr >= vm_end_gap(prev)))
2224 			return addr;
2225 	}
2226 
2227 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2228 	info.length = len;
2229 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2230 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2231 	info.align_mask = 0;
2232 	info.align_offset = 0;
2233 	addr = vm_unmapped_area(&info);
2234 
2235 	/*
2236 	 * A failed mmap() very likely causes application failure,
2237 	 * so fall back to the bottom-up function here. This scenario
2238 	 * can happen with large stack limits and large mmap()
2239 	 * allocations.
2240 	 */
2241 	if (offset_in_page(addr)) {
2242 		VM_BUG_ON(addr != -ENOMEM);
2243 		info.flags = 0;
2244 		info.low_limit = TASK_UNMAPPED_BASE;
2245 		info.high_limit = mmap_end;
2246 		addr = vm_unmapped_area(&info);
2247 	}
2248 
2249 	return addr;
2250 }
2251 #endif
2252 
2253 unsigned long
2254 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2255 		unsigned long pgoff, unsigned long flags)
2256 {
2257 	unsigned long (*get_area)(struct file *, unsigned long,
2258 				  unsigned long, unsigned long, unsigned long);
2259 
2260 	unsigned long error = arch_mmap_check(addr, len, flags);
2261 	if (error)
2262 		return error;
2263 
2264 	/* Careful about overflows.. */
2265 	if (len > TASK_SIZE)
2266 		return -ENOMEM;
2267 
2268 	get_area = current->mm->get_unmapped_area;
2269 	if (file) {
2270 		if (file->f_op->get_unmapped_area)
2271 			get_area = file->f_op->get_unmapped_area;
2272 	} else if (flags & MAP_SHARED) {
2273 		/*
2274 		 * mmap_region() will call shmem_zero_setup() to create a file,
2275 		 * so use shmem's get_unmapped_area in case it can be huge.
2276 		 * do_mmap() will clear pgoff, so match alignment.
2277 		 */
2278 		pgoff = 0;
2279 		get_area = shmem_get_unmapped_area;
2280 	}
2281 
2282 	addr = get_area(file, addr, len, pgoff, flags);
2283 	if (IS_ERR_VALUE(addr))
2284 		return addr;
2285 
2286 	if (addr > TASK_SIZE - len)
2287 		return -ENOMEM;
2288 	if (offset_in_page(addr))
2289 		return -EINVAL;
2290 
2291 	error = security_mmap_addr(addr);
2292 	return error ? error : addr;
2293 }
2294 
2295 EXPORT_SYMBOL(get_unmapped_area);
2296 
2297 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2298 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2299 {
2300 	struct rb_node *rb_node;
2301 	struct vm_area_struct *vma;
2302 
2303 	/* Check the cache first. */
2304 	vma = vmacache_find(mm, addr);
2305 	if (likely(vma))
2306 		return vma;
2307 
2308 	rb_node = mm->mm_rb.rb_node;
2309 
2310 	while (rb_node) {
2311 		struct vm_area_struct *tmp;
2312 
2313 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2314 
2315 		if (tmp->vm_end > addr) {
2316 			vma = tmp;
2317 			if (tmp->vm_start <= addr)
2318 				break;
2319 			rb_node = rb_node->rb_left;
2320 		} else
2321 			rb_node = rb_node->rb_right;
2322 	}
2323 
2324 	if (vma)
2325 		vmacache_update(addr, vma);
2326 	return vma;
2327 }
2328 
2329 EXPORT_SYMBOL(find_vma);
2330 
2331 /*
2332  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2333  */
2334 struct vm_area_struct *
2335 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2336 			struct vm_area_struct **pprev)
2337 {
2338 	struct vm_area_struct *vma;
2339 
2340 	vma = find_vma(mm, addr);
2341 	if (vma) {
2342 		*pprev = vma->vm_prev;
2343 	} else {
2344 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2345 
2346 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2347 	}
2348 	return vma;
2349 }
2350 
2351 /*
2352  * Verify that the stack growth is acceptable and
2353  * update accounting. This is shared with both the
2354  * grow-up and grow-down cases.
2355  */
2356 static int acct_stack_growth(struct vm_area_struct *vma,
2357 			     unsigned long size, unsigned long grow)
2358 {
2359 	struct mm_struct *mm = vma->vm_mm;
2360 	unsigned long new_start;
2361 
2362 	/* address space limit tests */
2363 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2364 		return -ENOMEM;
2365 
2366 	/* Stack limit test */
2367 	if (size > rlimit(RLIMIT_STACK))
2368 		return -ENOMEM;
2369 
2370 	/* mlock limit tests */
2371 	if (vma->vm_flags & VM_LOCKED) {
2372 		unsigned long locked;
2373 		unsigned long limit;
2374 		locked = mm->locked_vm + grow;
2375 		limit = rlimit(RLIMIT_MEMLOCK);
2376 		limit >>= PAGE_SHIFT;
2377 		if (locked > limit && !capable(CAP_IPC_LOCK))
2378 			return -ENOMEM;
2379 	}
2380 
2381 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2382 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2383 			vma->vm_end - size;
2384 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2385 		return -EFAULT;
2386 
2387 	/*
2388 	 * Overcommit..  This must be the final test, as it will
2389 	 * update security statistics.
2390 	 */
2391 	if (security_vm_enough_memory_mm(mm, grow))
2392 		return -ENOMEM;
2393 
2394 	return 0;
2395 }
2396 
2397 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2398 /*
2399  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2400  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2401  */
2402 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2403 {
2404 	struct mm_struct *mm = vma->vm_mm;
2405 	struct vm_area_struct *next;
2406 	unsigned long gap_addr;
2407 	int error = 0;
2408 
2409 	if (!(vma->vm_flags & VM_GROWSUP))
2410 		return -EFAULT;
2411 
2412 	/* Guard against exceeding limits of the address space. */
2413 	address &= PAGE_MASK;
2414 	if (address >= (TASK_SIZE & PAGE_MASK))
2415 		return -ENOMEM;
2416 	address += PAGE_SIZE;
2417 
2418 	/* Enforce stack_guard_gap */
2419 	gap_addr = address + stack_guard_gap;
2420 
2421 	/* Guard against overflow */
2422 	if (gap_addr < address || gap_addr > TASK_SIZE)
2423 		gap_addr = TASK_SIZE;
2424 
2425 	next = vma->vm_next;
2426 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2427 		if (!(next->vm_flags & VM_GROWSUP))
2428 			return -ENOMEM;
2429 		/* Check that both stack segments have the same anon_vma? */
2430 	}
2431 
2432 	/* We must make sure the anon_vma is allocated. */
2433 	if (unlikely(anon_vma_prepare(vma)))
2434 		return -ENOMEM;
2435 
2436 	/*
2437 	 * vma->vm_start/vm_end cannot change under us because the caller
2438 	 * is required to hold the mmap_lock in read mode.  We need the
2439 	 * anon_vma lock to serialize against concurrent expand_stacks.
2440 	 */
2441 	anon_vma_lock_write(vma->anon_vma);
2442 
2443 	/* Somebody else might have raced and expanded it already */
2444 	if (address > vma->vm_end) {
2445 		unsigned long size, grow;
2446 
2447 		size = address - vma->vm_start;
2448 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2449 
2450 		error = -ENOMEM;
2451 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2452 			error = acct_stack_growth(vma, size, grow);
2453 			if (!error) {
2454 				/*
2455 				 * vma_gap_update() doesn't support concurrent
2456 				 * updates, but we only hold a shared mmap_lock
2457 				 * lock here, so we need to protect against
2458 				 * concurrent vma expansions.
2459 				 * anon_vma_lock_write() doesn't help here, as
2460 				 * we don't guarantee that all growable vmas
2461 				 * in a mm share the same root anon vma.
2462 				 * So, we reuse mm->page_table_lock to guard
2463 				 * against concurrent vma expansions.
2464 				 */
2465 				spin_lock(&mm->page_table_lock);
2466 				if (vma->vm_flags & VM_LOCKED)
2467 					mm->locked_vm += grow;
2468 				vm_stat_account(mm, vma->vm_flags, grow);
2469 				anon_vma_interval_tree_pre_update_vma(vma);
2470 				vma->vm_end = address;
2471 				anon_vma_interval_tree_post_update_vma(vma);
2472 				if (vma->vm_next)
2473 					vma_gap_update(vma->vm_next);
2474 				else
2475 					mm->highest_vm_end = vm_end_gap(vma);
2476 				spin_unlock(&mm->page_table_lock);
2477 
2478 				perf_event_mmap(vma);
2479 			}
2480 		}
2481 	}
2482 	anon_vma_unlock_write(vma->anon_vma);
2483 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2484 	validate_mm(mm);
2485 	return error;
2486 }
2487 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2488 
2489 /*
2490  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2491  */
2492 int expand_downwards(struct vm_area_struct *vma,
2493 				   unsigned long address)
2494 {
2495 	struct mm_struct *mm = vma->vm_mm;
2496 	struct vm_area_struct *prev;
2497 	int error = 0;
2498 
2499 	address &= PAGE_MASK;
2500 	if (address < mmap_min_addr)
2501 		return -EPERM;
2502 
2503 	/* Enforce stack_guard_gap */
2504 	prev = vma->vm_prev;
2505 	/* Check that both stack segments have the same anon_vma? */
2506 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2507 			vma_is_accessible(prev)) {
2508 		if (address - prev->vm_end < stack_guard_gap)
2509 			return -ENOMEM;
2510 	}
2511 
2512 	/* We must make sure the anon_vma is allocated. */
2513 	if (unlikely(anon_vma_prepare(vma)))
2514 		return -ENOMEM;
2515 
2516 	/*
2517 	 * vma->vm_start/vm_end cannot change under us because the caller
2518 	 * is required to hold the mmap_lock in read mode.  We need the
2519 	 * anon_vma lock to serialize against concurrent expand_stacks.
2520 	 */
2521 	anon_vma_lock_write(vma->anon_vma);
2522 
2523 	/* Somebody else might have raced and expanded it already */
2524 	if (address < vma->vm_start) {
2525 		unsigned long size, grow;
2526 
2527 		size = vma->vm_end - address;
2528 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2529 
2530 		error = -ENOMEM;
2531 		if (grow <= vma->vm_pgoff) {
2532 			error = acct_stack_growth(vma, size, grow);
2533 			if (!error) {
2534 				/*
2535 				 * vma_gap_update() doesn't support concurrent
2536 				 * updates, but we only hold a shared mmap_lock
2537 				 * lock here, so we need to protect against
2538 				 * concurrent vma expansions.
2539 				 * anon_vma_lock_write() doesn't help here, as
2540 				 * we don't guarantee that all growable vmas
2541 				 * in a mm share the same root anon vma.
2542 				 * So, we reuse mm->page_table_lock to guard
2543 				 * against concurrent vma expansions.
2544 				 */
2545 				spin_lock(&mm->page_table_lock);
2546 				if (vma->vm_flags & VM_LOCKED)
2547 					mm->locked_vm += grow;
2548 				vm_stat_account(mm, vma->vm_flags, grow);
2549 				anon_vma_interval_tree_pre_update_vma(vma);
2550 				vma->vm_start = address;
2551 				vma->vm_pgoff -= grow;
2552 				anon_vma_interval_tree_post_update_vma(vma);
2553 				vma_gap_update(vma);
2554 				spin_unlock(&mm->page_table_lock);
2555 
2556 				perf_event_mmap(vma);
2557 			}
2558 		}
2559 	}
2560 	anon_vma_unlock_write(vma->anon_vma);
2561 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2562 	validate_mm(mm);
2563 	return error;
2564 }
2565 
2566 /* enforced gap between the expanding stack and other mappings. */
2567 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2568 
2569 static int __init cmdline_parse_stack_guard_gap(char *p)
2570 {
2571 	unsigned long val;
2572 	char *endptr;
2573 
2574 	val = simple_strtoul(p, &endptr, 10);
2575 	if (!*endptr)
2576 		stack_guard_gap = val << PAGE_SHIFT;
2577 
2578 	return 0;
2579 }
2580 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2581 
2582 #ifdef CONFIG_STACK_GROWSUP
2583 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2584 {
2585 	return expand_upwards(vma, address);
2586 }
2587 
2588 struct vm_area_struct *
2589 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2590 {
2591 	struct vm_area_struct *vma, *prev;
2592 
2593 	addr &= PAGE_MASK;
2594 	vma = find_vma_prev(mm, addr, &prev);
2595 	if (vma && (vma->vm_start <= addr))
2596 		return vma;
2597 	/* don't alter vm_end if the coredump is running */
2598 	if (!prev || expand_stack(prev, addr))
2599 		return NULL;
2600 	if (prev->vm_flags & VM_LOCKED)
2601 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2602 	return prev;
2603 }
2604 #else
2605 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2606 {
2607 	return expand_downwards(vma, address);
2608 }
2609 
2610 struct vm_area_struct *
2611 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2612 {
2613 	struct vm_area_struct *vma;
2614 	unsigned long start;
2615 
2616 	addr &= PAGE_MASK;
2617 	vma = find_vma(mm, addr);
2618 	if (!vma)
2619 		return NULL;
2620 	if (vma->vm_start <= addr)
2621 		return vma;
2622 	if (!(vma->vm_flags & VM_GROWSDOWN))
2623 		return NULL;
2624 	start = vma->vm_start;
2625 	if (expand_stack(vma, addr))
2626 		return NULL;
2627 	if (vma->vm_flags & VM_LOCKED)
2628 		populate_vma_page_range(vma, addr, start, NULL);
2629 	return vma;
2630 }
2631 #endif
2632 
2633 EXPORT_SYMBOL_GPL(find_extend_vma);
2634 
2635 /*
2636  * Ok - we have the memory areas we should free on the vma list,
2637  * so release them, and do the vma updates.
2638  *
2639  * Called with the mm semaphore held.
2640  */
2641 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2642 {
2643 	unsigned long nr_accounted = 0;
2644 
2645 	/* Update high watermark before we lower total_vm */
2646 	update_hiwater_vm(mm);
2647 	do {
2648 		long nrpages = vma_pages(vma);
2649 
2650 		if (vma->vm_flags & VM_ACCOUNT)
2651 			nr_accounted += nrpages;
2652 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2653 		vma = remove_vma(vma);
2654 	} while (vma);
2655 	vm_unacct_memory(nr_accounted);
2656 	validate_mm(mm);
2657 }
2658 
2659 /*
2660  * Get rid of page table information in the indicated region.
2661  *
2662  * Called with the mm semaphore held.
2663  */
2664 static void unmap_region(struct mm_struct *mm,
2665 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2666 		unsigned long start, unsigned long end)
2667 {
2668 	struct vm_area_struct *next = vma_next(mm, prev);
2669 	struct mmu_gather tlb;
2670 
2671 	lru_add_drain();
2672 	tlb_gather_mmu(&tlb, mm);
2673 	update_hiwater_rss(mm);
2674 	unmap_vmas(&tlb, vma, start, end);
2675 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2676 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2677 	tlb_finish_mmu(&tlb);
2678 }
2679 
2680 /*
2681  * Create a list of vma's touched by the unmap, removing them from the mm's
2682  * vma list as we go..
2683  */
2684 static bool
2685 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2686 	struct vm_area_struct *prev, unsigned long end)
2687 {
2688 	struct vm_area_struct **insertion_point;
2689 	struct vm_area_struct *tail_vma = NULL;
2690 
2691 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2692 	vma->vm_prev = NULL;
2693 	do {
2694 		vma_rb_erase(vma, &mm->mm_rb);
2695 		mm->map_count--;
2696 		tail_vma = vma;
2697 		vma = vma->vm_next;
2698 	} while (vma && vma->vm_start < end);
2699 	*insertion_point = vma;
2700 	if (vma) {
2701 		vma->vm_prev = prev;
2702 		vma_gap_update(vma);
2703 	} else
2704 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2705 	tail_vma->vm_next = NULL;
2706 
2707 	/* Kill the cache */
2708 	vmacache_invalidate(mm);
2709 
2710 	/*
2711 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2712 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2713 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2714 	 */
2715 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2716 		return false;
2717 	if (prev && (prev->vm_flags & VM_GROWSUP))
2718 		return false;
2719 	return true;
2720 }
2721 
2722 /*
2723  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2724  * has already been checked or doesn't make sense to fail.
2725  */
2726 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2727 		unsigned long addr, int new_below)
2728 {
2729 	struct vm_area_struct *new;
2730 	int err;
2731 
2732 	if (vma->vm_ops && vma->vm_ops->may_split) {
2733 		err = vma->vm_ops->may_split(vma, addr);
2734 		if (err)
2735 			return err;
2736 	}
2737 
2738 	new = vm_area_dup(vma);
2739 	if (!new)
2740 		return -ENOMEM;
2741 
2742 	if (new_below)
2743 		new->vm_end = addr;
2744 	else {
2745 		new->vm_start = addr;
2746 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2747 	}
2748 
2749 	err = vma_dup_policy(vma, new);
2750 	if (err)
2751 		goto out_free_vma;
2752 
2753 	err = anon_vma_clone(new, vma);
2754 	if (err)
2755 		goto out_free_mpol;
2756 
2757 	if (new->vm_file)
2758 		get_file(new->vm_file);
2759 
2760 	if (new->vm_ops && new->vm_ops->open)
2761 		new->vm_ops->open(new);
2762 
2763 	if (new_below)
2764 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2765 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2766 	else
2767 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2768 
2769 	/* Success. */
2770 	if (!err)
2771 		return 0;
2772 
2773 	/* Clean everything up if vma_adjust failed. */
2774 	if (new->vm_ops && new->vm_ops->close)
2775 		new->vm_ops->close(new);
2776 	if (new->vm_file)
2777 		fput(new->vm_file);
2778 	unlink_anon_vmas(new);
2779  out_free_mpol:
2780 	mpol_put(vma_policy(new));
2781  out_free_vma:
2782 	vm_area_free(new);
2783 	return err;
2784 }
2785 
2786 /*
2787  * Split a vma into two pieces at address 'addr', a new vma is allocated
2788  * either for the first part or the tail.
2789  */
2790 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2791 	      unsigned long addr, int new_below)
2792 {
2793 	if (mm->map_count >= sysctl_max_map_count)
2794 		return -ENOMEM;
2795 
2796 	return __split_vma(mm, vma, addr, new_below);
2797 }
2798 
2799 /* Munmap is split into 2 main parts -- this part which finds
2800  * what needs doing, and the areas themselves, which do the
2801  * work.  This now handles partial unmappings.
2802  * Jeremy Fitzhardinge <jeremy@goop.org>
2803  */
2804 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2805 		struct list_head *uf, bool downgrade)
2806 {
2807 	unsigned long end;
2808 	struct vm_area_struct *vma, *prev, *last;
2809 
2810 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2811 		return -EINVAL;
2812 
2813 	len = PAGE_ALIGN(len);
2814 	end = start + len;
2815 	if (len == 0)
2816 		return -EINVAL;
2817 
2818 	/*
2819 	 * arch_unmap() might do unmaps itself.  It must be called
2820 	 * and finish any rbtree manipulation before this code
2821 	 * runs and also starts to manipulate the rbtree.
2822 	 */
2823 	arch_unmap(mm, start, end);
2824 
2825 	/* Find the first overlapping VMA */
2826 	vma = find_vma(mm, start);
2827 	if (!vma)
2828 		return 0;
2829 	prev = vma->vm_prev;
2830 	/* we have  start < vma->vm_end  */
2831 
2832 	/* if it doesn't overlap, we have nothing.. */
2833 	if (vma->vm_start >= end)
2834 		return 0;
2835 
2836 	/*
2837 	 * If we need to split any vma, do it now to save pain later.
2838 	 *
2839 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2840 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2841 	 * places tmp vma above, and higher split_vma places tmp vma below.
2842 	 */
2843 	if (start > vma->vm_start) {
2844 		int error;
2845 
2846 		/*
2847 		 * Make sure that map_count on return from munmap() will
2848 		 * not exceed its limit; but let map_count go just above
2849 		 * its limit temporarily, to help free resources as expected.
2850 		 */
2851 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2852 			return -ENOMEM;
2853 
2854 		error = __split_vma(mm, vma, start, 0);
2855 		if (error)
2856 			return error;
2857 		prev = vma;
2858 	}
2859 
2860 	/* Does it split the last one? */
2861 	last = find_vma(mm, end);
2862 	if (last && end > last->vm_start) {
2863 		int error = __split_vma(mm, last, end, 1);
2864 		if (error)
2865 			return error;
2866 	}
2867 	vma = vma_next(mm, prev);
2868 
2869 	if (unlikely(uf)) {
2870 		/*
2871 		 * If userfaultfd_unmap_prep returns an error the vmas
2872 		 * will remain splitted, but userland will get a
2873 		 * highly unexpected error anyway. This is no
2874 		 * different than the case where the first of the two
2875 		 * __split_vma fails, but we don't undo the first
2876 		 * split, despite we could. This is unlikely enough
2877 		 * failure that it's not worth optimizing it for.
2878 		 */
2879 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2880 		if (error)
2881 			return error;
2882 	}
2883 
2884 	/*
2885 	 * unlock any mlock()ed ranges before detaching vmas
2886 	 */
2887 	if (mm->locked_vm) {
2888 		struct vm_area_struct *tmp = vma;
2889 		while (tmp && tmp->vm_start < end) {
2890 			if (tmp->vm_flags & VM_LOCKED) {
2891 				mm->locked_vm -= vma_pages(tmp);
2892 				munlock_vma_pages_all(tmp);
2893 			}
2894 
2895 			tmp = tmp->vm_next;
2896 		}
2897 	}
2898 
2899 	/* Detach vmas from rbtree */
2900 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2901 		downgrade = false;
2902 
2903 	if (downgrade)
2904 		mmap_write_downgrade(mm);
2905 
2906 	unmap_region(mm, vma, prev, start, end);
2907 
2908 	/* Fix up all other VM information */
2909 	remove_vma_list(mm, vma);
2910 
2911 	return downgrade ? 1 : 0;
2912 }
2913 
2914 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2915 	      struct list_head *uf)
2916 {
2917 	return __do_munmap(mm, start, len, uf, false);
2918 }
2919 
2920 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2921 {
2922 	int ret;
2923 	struct mm_struct *mm = current->mm;
2924 	LIST_HEAD(uf);
2925 
2926 	if (mmap_write_lock_killable(mm))
2927 		return -EINTR;
2928 
2929 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2930 	/*
2931 	 * Returning 1 indicates mmap_lock is downgraded.
2932 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2933 	 * it to 0 before return.
2934 	 */
2935 	if (ret == 1) {
2936 		mmap_read_unlock(mm);
2937 		ret = 0;
2938 	} else
2939 		mmap_write_unlock(mm);
2940 
2941 	userfaultfd_unmap_complete(mm, &uf);
2942 	return ret;
2943 }
2944 
2945 int vm_munmap(unsigned long start, size_t len)
2946 {
2947 	return __vm_munmap(start, len, false);
2948 }
2949 EXPORT_SYMBOL(vm_munmap);
2950 
2951 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2952 {
2953 	addr = untagged_addr(addr);
2954 	profile_munmap(addr);
2955 	return __vm_munmap(addr, len, true);
2956 }
2957 
2958 
2959 /*
2960  * Emulation of deprecated remap_file_pages() syscall.
2961  */
2962 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2963 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2964 {
2965 
2966 	struct mm_struct *mm = current->mm;
2967 	struct vm_area_struct *vma;
2968 	unsigned long populate = 0;
2969 	unsigned long ret = -EINVAL;
2970 	struct file *file;
2971 
2972 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2973 		     current->comm, current->pid);
2974 
2975 	if (prot)
2976 		return ret;
2977 	start = start & PAGE_MASK;
2978 	size = size & PAGE_MASK;
2979 
2980 	if (start + size <= start)
2981 		return ret;
2982 
2983 	/* Does pgoff wrap? */
2984 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2985 		return ret;
2986 
2987 	if (mmap_write_lock_killable(mm))
2988 		return -EINTR;
2989 
2990 	vma = find_vma(mm, start);
2991 
2992 	if (!vma || !(vma->vm_flags & VM_SHARED))
2993 		goto out;
2994 
2995 	if (start < vma->vm_start)
2996 		goto out;
2997 
2998 	if (start + size > vma->vm_end) {
2999 		struct vm_area_struct *next;
3000 
3001 		for (next = vma->vm_next; next; next = next->vm_next) {
3002 			/* hole between vmas ? */
3003 			if (next->vm_start != next->vm_prev->vm_end)
3004 				goto out;
3005 
3006 			if (next->vm_file != vma->vm_file)
3007 				goto out;
3008 
3009 			if (next->vm_flags != vma->vm_flags)
3010 				goto out;
3011 
3012 			if (start + size <= next->vm_end)
3013 				break;
3014 		}
3015 
3016 		if (!next)
3017 			goto out;
3018 	}
3019 
3020 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3021 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3022 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3023 
3024 	flags &= MAP_NONBLOCK;
3025 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3026 	if (vma->vm_flags & VM_LOCKED) {
3027 		struct vm_area_struct *tmp;
3028 		flags |= MAP_LOCKED;
3029 
3030 		/* drop PG_Mlocked flag for over-mapped range */
3031 		for (tmp = vma; tmp->vm_start >= start + size;
3032 				tmp = tmp->vm_next) {
3033 			/*
3034 			 * Split pmd and munlock page on the border
3035 			 * of the range.
3036 			 */
3037 			vma_adjust_trans_huge(tmp, start, start + size, 0);
3038 
3039 			munlock_vma_pages_range(tmp,
3040 					max(tmp->vm_start, start),
3041 					min(tmp->vm_end, start + size));
3042 		}
3043 	}
3044 
3045 	file = get_file(vma->vm_file);
3046 	ret = do_mmap(vma->vm_file, start, size,
3047 			prot, flags, pgoff, &populate, NULL);
3048 	fput(file);
3049 out:
3050 	mmap_write_unlock(mm);
3051 	if (populate)
3052 		mm_populate(ret, populate);
3053 	if (!IS_ERR_VALUE(ret))
3054 		ret = 0;
3055 	return ret;
3056 }
3057 
3058 /*
3059  *  this is really a simplified "do_mmap".  it only handles
3060  *  anonymous maps.  eventually we may be able to do some
3061  *  brk-specific accounting here.
3062  */
3063 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3064 {
3065 	struct mm_struct *mm = current->mm;
3066 	struct vm_area_struct *vma, *prev;
3067 	struct rb_node **rb_link, *rb_parent;
3068 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3069 	int error;
3070 	unsigned long mapped_addr;
3071 
3072 	/* Until we need other flags, refuse anything except VM_EXEC. */
3073 	if ((flags & (~VM_EXEC)) != 0)
3074 		return -EINVAL;
3075 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3076 
3077 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3078 	if (IS_ERR_VALUE(mapped_addr))
3079 		return mapped_addr;
3080 
3081 	error = mlock_future_check(mm, mm->def_flags, len);
3082 	if (error)
3083 		return error;
3084 
3085 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3086 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3087 		return -ENOMEM;
3088 
3089 	/* Check against address space limits *after* clearing old maps... */
3090 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3091 		return -ENOMEM;
3092 
3093 	if (mm->map_count > sysctl_max_map_count)
3094 		return -ENOMEM;
3095 
3096 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3097 		return -ENOMEM;
3098 
3099 	/* Can we just expand an old private anonymous mapping? */
3100 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3101 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3102 	if (vma)
3103 		goto out;
3104 
3105 	/*
3106 	 * create a vma struct for an anonymous mapping
3107 	 */
3108 	vma = vm_area_alloc(mm);
3109 	if (!vma) {
3110 		vm_unacct_memory(len >> PAGE_SHIFT);
3111 		return -ENOMEM;
3112 	}
3113 
3114 	vma_set_anonymous(vma);
3115 	vma->vm_start = addr;
3116 	vma->vm_end = addr + len;
3117 	vma->vm_pgoff = pgoff;
3118 	vma->vm_flags = flags;
3119 	vma->vm_page_prot = vm_get_page_prot(flags);
3120 	vma_link(mm, vma, prev, rb_link, rb_parent);
3121 out:
3122 	perf_event_mmap(vma);
3123 	mm->total_vm += len >> PAGE_SHIFT;
3124 	mm->data_vm += len >> PAGE_SHIFT;
3125 	if (flags & VM_LOCKED)
3126 		mm->locked_vm += (len >> PAGE_SHIFT);
3127 	vma->vm_flags |= VM_SOFTDIRTY;
3128 	return 0;
3129 }
3130 
3131 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3132 {
3133 	struct mm_struct *mm = current->mm;
3134 	unsigned long len;
3135 	int ret;
3136 	bool populate;
3137 	LIST_HEAD(uf);
3138 
3139 	len = PAGE_ALIGN(request);
3140 	if (len < request)
3141 		return -ENOMEM;
3142 	if (!len)
3143 		return 0;
3144 
3145 	if (mmap_write_lock_killable(mm))
3146 		return -EINTR;
3147 
3148 	ret = do_brk_flags(addr, len, flags, &uf);
3149 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3150 	mmap_write_unlock(mm);
3151 	userfaultfd_unmap_complete(mm, &uf);
3152 	if (populate && !ret)
3153 		mm_populate(addr, len);
3154 	return ret;
3155 }
3156 EXPORT_SYMBOL(vm_brk_flags);
3157 
3158 int vm_brk(unsigned long addr, unsigned long len)
3159 {
3160 	return vm_brk_flags(addr, len, 0);
3161 }
3162 EXPORT_SYMBOL(vm_brk);
3163 
3164 /* Release all mmaps. */
3165 void exit_mmap(struct mm_struct *mm)
3166 {
3167 	struct mmu_gather tlb;
3168 	struct vm_area_struct *vma;
3169 	unsigned long nr_accounted = 0;
3170 
3171 	/* mm's last user has gone, and its about to be pulled down */
3172 	mmu_notifier_release(mm);
3173 
3174 	if (unlikely(mm_is_oom_victim(mm))) {
3175 		/*
3176 		 * Manually reap the mm to free as much memory as possible.
3177 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3178 		 * this mm from further consideration.  Taking mm->mmap_lock for
3179 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3180 		 * reaper will not run on this mm again after mmap_lock is
3181 		 * dropped.
3182 		 *
3183 		 * Nothing can be holding mm->mmap_lock here and the above call
3184 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3185 		 * __oom_reap_task_mm() will not block.
3186 		 *
3187 		 * This needs to be done before calling munlock_vma_pages_all(),
3188 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3189 		 * reliably test it.
3190 		 */
3191 		(void)__oom_reap_task_mm(mm);
3192 
3193 		set_bit(MMF_OOM_SKIP, &mm->flags);
3194 		mmap_write_lock(mm);
3195 		mmap_write_unlock(mm);
3196 	}
3197 
3198 	if (mm->locked_vm) {
3199 		vma = mm->mmap;
3200 		while (vma) {
3201 			if (vma->vm_flags & VM_LOCKED)
3202 				munlock_vma_pages_all(vma);
3203 			vma = vma->vm_next;
3204 		}
3205 	}
3206 
3207 	arch_exit_mmap(mm);
3208 
3209 	vma = mm->mmap;
3210 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3211 		return;
3212 
3213 	lru_add_drain();
3214 	flush_cache_mm(mm);
3215 	tlb_gather_mmu_fullmm(&tlb, mm);
3216 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3217 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3218 	unmap_vmas(&tlb, vma, 0, -1);
3219 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3220 	tlb_finish_mmu(&tlb);
3221 
3222 	/*
3223 	 * Walk the list again, actually closing and freeing it,
3224 	 * with preemption enabled, without holding any MM locks.
3225 	 */
3226 	while (vma) {
3227 		if (vma->vm_flags & VM_ACCOUNT)
3228 			nr_accounted += vma_pages(vma);
3229 		vma = remove_vma(vma);
3230 		cond_resched();
3231 	}
3232 	vm_unacct_memory(nr_accounted);
3233 }
3234 
3235 /* Insert vm structure into process list sorted by address
3236  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3237  * then i_mmap_rwsem is taken here.
3238  */
3239 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3240 {
3241 	struct vm_area_struct *prev;
3242 	struct rb_node **rb_link, *rb_parent;
3243 
3244 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3245 			   &prev, &rb_link, &rb_parent))
3246 		return -ENOMEM;
3247 	if ((vma->vm_flags & VM_ACCOUNT) &&
3248 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3249 		return -ENOMEM;
3250 
3251 	/*
3252 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3253 	 * until its first write fault, when page's anon_vma and index
3254 	 * are set.  But now set the vm_pgoff it will almost certainly
3255 	 * end up with (unless mremap moves it elsewhere before that
3256 	 * first wfault), so /proc/pid/maps tells a consistent story.
3257 	 *
3258 	 * By setting it to reflect the virtual start address of the
3259 	 * vma, merges and splits can happen in a seamless way, just
3260 	 * using the existing file pgoff checks and manipulations.
3261 	 * Similarly in do_mmap and in do_brk_flags.
3262 	 */
3263 	if (vma_is_anonymous(vma)) {
3264 		BUG_ON(vma->anon_vma);
3265 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3266 	}
3267 
3268 	vma_link(mm, vma, prev, rb_link, rb_parent);
3269 	return 0;
3270 }
3271 
3272 /*
3273  * Copy the vma structure to a new location in the same mm,
3274  * prior to moving page table entries, to effect an mremap move.
3275  */
3276 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3277 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3278 	bool *need_rmap_locks)
3279 {
3280 	struct vm_area_struct *vma = *vmap;
3281 	unsigned long vma_start = vma->vm_start;
3282 	struct mm_struct *mm = vma->vm_mm;
3283 	struct vm_area_struct *new_vma, *prev;
3284 	struct rb_node **rb_link, *rb_parent;
3285 	bool faulted_in_anon_vma = true;
3286 
3287 	/*
3288 	 * If anonymous vma has not yet been faulted, update new pgoff
3289 	 * to match new location, to increase its chance of merging.
3290 	 */
3291 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3292 		pgoff = addr >> PAGE_SHIFT;
3293 		faulted_in_anon_vma = false;
3294 	}
3295 
3296 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3297 		return NULL;	/* should never get here */
3298 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3299 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3300 			    vma->vm_userfaultfd_ctx);
3301 	if (new_vma) {
3302 		/*
3303 		 * Source vma may have been merged into new_vma
3304 		 */
3305 		if (unlikely(vma_start >= new_vma->vm_start &&
3306 			     vma_start < new_vma->vm_end)) {
3307 			/*
3308 			 * The only way we can get a vma_merge with
3309 			 * self during an mremap is if the vma hasn't
3310 			 * been faulted in yet and we were allowed to
3311 			 * reset the dst vma->vm_pgoff to the
3312 			 * destination address of the mremap to allow
3313 			 * the merge to happen. mremap must change the
3314 			 * vm_pgoff linearity between src and dst vmas
3315 			 * (in turn preventing a vma_merge) to be
3316 			 * safe. It is only safe to keep the vm_pgoff
3317 			 * linear if there are no pages mapped yet.
3318 			 */
3319 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3320 			*vmap = vma = new_vma;
3321 		}
3322 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3323 	} else {
3324 		new_vma = vm_area_dup(vma);
3325 		if (!new_vma)
3326 			goto out;
3327 		new_vma->vm_start = addr;
3328 		new_vma->vm_end = addr + len;
3329 		new_vma->vm_pgoff = pgoff;
3330 		if (vma_dup_policy(vma, new_vma))
3331 			goto out_free_vma;
3332 		if (anon_vma_clone(new_vma, vma))
3333 			goto out_free_mempol;
3334 		if (new_vma->vm_file)
3335 			get_file(new_vma->vm_file);
3336 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3337 			new_vma->vm_ops->open(new_vma);
3338 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3339 		*need_rmap_locks = false;
3340 	}
3341 	return new_vma;
3342 
3343 out_free_mempol:
3344 	mpol_put(vma_policy(new_vma));
3345 out_free_vma:
3346 	vm_area_free(new_vma);
3347 out:
3348 	return NULL;
3349 }
3350 
3351 /*
3352  * Return true if the calling process may expand its vm space by the passed
3353  * number of pages
3354  */
3355 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3356 {
3357 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3358 		return false;
3359 
3360 	if (is_data_mapping(flags) &&
3361 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3362 		/* Workaround for Valgrind */
3363 		if (rlimit(RLIMIT_DATA) == 0 &&
3364 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3365 			return true;
3366 
3367 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3368 			     current->comm, current->pid,
3369 			     (mm->data_vm + npages) << PAGE_SHIFT,
3370 			     rlimit(RLIMIT_DATA),
3371 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3372 
3373 		if (!ignore_rlimit_data)
3374 			return false;
3375 	}
3376 
3377 	return true;
3378 }
3379 
3380 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3381 {
3382 	mm->total_vm += npages;
3383 
3384 	if (is_exec_mapping(flags))
3385 		mm->exec_vm += npages;
3386 	else if (is_stack_mapping(flags))
3387 		mm->stack_vm += npages;
3388 	else if (is_data_mapping(flags))
3389 		mm->data_vm += npages;
3390 }
3391 
3392 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3393 
3394 /*
3395  * Having a close hook prevents vma merging regardless of flags.
3396  */
3397 static void special_mapping_close(struct vm_area_struct *vma)
3398 {
3399 }
3400 
3401 static const char *special_mapping_name(struct vm_area_struct *vma)
3402 {
3403 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3404 }
3405 
3406 static int special_mapping_mremap(struct vm_area_struct *new_vma,
3407 				  unsigned long flags)
3408 {
3409 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3410 
3411 	if (flags & MREMAP_DONTUNMAP)
3412 		return -EINVAL;
3413 
3414 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3415 		return -EFAULT;
3416 
3417 	if (sm->mremap)
3418 		return sm->mremap(sm, new_vma);
3419 
3420 	return 0;
3421 }
3422 
3423 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3424 {
3425 	/*
3426 	 * Forbid splitting special mappings - kernel has expectations over
3427 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3428 	 * the size of vma should stay the same over the special mapping's
3429 	 * lifetime.
3430 	 */
3431 	return -EINVAL;
3432 }
3433 
3434 static const struct vm_operations_struct special_mapping_vmops = {
3435 	.close = special_mapping_close,
3436 	.fault = special_mapping_fault,
3437 	.mremap = special_mapping_mremap,
3438 	.name = special_mapping_name,
3439 	/* vDSO code relies that VVAR can't be accessed remotely */
3440 	.access = NULL,
3441 	.may_split = special_mapping_split,
3442 };
3443 
3444 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3445 	.close = special_mapping_close,
3446 	.fault = special_mapping_fault,
3447 };
3448 
3449 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3450 {
3451 	struct vm_area_struct *vma = vmf->vma;
3452 	pgoff_t pgoff;
3453 	struct page **pages;
3454 
3455 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3456 		pages = vma->vm_private_data;
3457 	} else {
3458 		struct vm_special_mapping *sm = vma->vm_private_data;
3459 
3460 		if (sm->fault)
3461 			return sm->fault(sm, vmf->vma, vmf);
3462 
3463 		pages = sm->pages;
3464 	}
3465 
3466 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3467 		pgoff--;
3468 
3469 	if (*pages) {
3470 		struct page *page = *pages;
3471 		get_page(page);
3472 		vmf->page = page;
3473 		return 0;
3474 	}
3475 
3476 	return VM_FAULT_SIGBUS;
3477 }
3478 
3479 static struct vm_area_struct *__install_special_mapping(
3480 	struct mm_struct *mm,
3481 	unsigned long addr, unsigned long len,
3482 	unsigned long vm_flags, void *priv,
3483 	const struct vm_operations_struct *ops)
3484 {
3485 	int ret;
3486 	struct vm_area_struct *vma;
3487 
3488 	vma = vm_area_alloc(mm);
3489 	if (unlikely(vma == NULL))
3490 		return ERR_PTR(-ENOMEM);
3491 
3492 	vma->vm_start = addr;
3493 	vma->vm_end = addr + len;
3494 
3495 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3496 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3497 
3498 	vma->vm_ops = ops;
3499 	vma->vm_private_data = priv;
3500 
3501 	ret = insert_vm_struct(mm, vma);
3502 	if (ret)
3503 		goto out;
3504 
3505 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3506 
3507 	perf_event_mmap(vma);
3508 
3509 	return vma;
3510 
3511 out:
3512 	vm_area_free(vma);
3513 	return ERR_PTR(ret);
3514 }
3515 
3516 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3517 	const struct vm_special_mapping *sm)
3518 {
3519 	return vma->vm_private_data == sm &&
3520 		(vma->vm_ops == &special_mapping_vmops ||
3521 		 vma->vm_ops == &legacy_special_mapping_vmops);
3522 }
3523 
3524 /*
3525  * Called with mm->mmap_lock held for writing.
3526  * Insert a new vma covering the given region, with the given flags.
3527  * Its pages are supplied by the given array of struct page *.
3528  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3529  * The region past the last page supplied will always produce SIGBUS.
3530  * The array pointer and the pages it points to are assumed to stay alive
3531  * for as long as this mapping might exist.
3532  */
3533 struct vm_area_struct *_install_special_mapping(
3534 	struct mm_struct *mm,
3535 	unsigned long addr, unsigned long len,
3536 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3537 {
3538 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3539 					&special_mapping_vmops);
3540 }
3541 
3542 int install_special_mapping(struct mm_struct *mm,
3543 			    unsigned long addr, unsigned long len,
3544 			    unsigned long vm_flags, struct page **pages)
3545 {
3546 	struct vm_area_struct *vma = __install_special_mapping(
3547 		mm, addr, len, vm_flags, (void *)pages,
3548 		&legacy_special_mapping_vmops);
3549 
3550 	return PTR_ERR_OR_ZERO(vma);
3551 }
3552 
3553 static DEFINE_MUTEX(mm_all_locks_mutex);
3554 
3555 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3556 {
3557 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3558 		/*
3559 		 * The LSB of head.next can't change from under us
3560 		 * because we hold the mm_all_locks_mutex.
3561 		 */
3562 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3563 		/*
3564 		 * We can safely modify head.next after taking the
3565 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3566 		 * the same anon_vma we won't take it again.
3567 		 *
3568 		 * No need of atomic instructions here, head.next
3569 		 * can't change from under us thanks to the
3570 		 * anon_vma->root->rwsem.
3571 		 */
3572 		if (__test_and_set_bit(0, (unsigned long *)
3573 				       &anon_vma->root->rb_root.rb_root.rb_node))
3574 			BUG();
3575 	}
3576 }
3577 
3578 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3579 {
3580 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3581 		/*
3582 		 * AS_MM_ALL_LOCKS can't change from under us because
3583 		 * we hold the mm_all_locks_mutex.
3584 		 *
3585 		 * Operations on ->flags have to be atomic because
3586 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3587 		 * mm_all_locks_mutex, there may be other cpus
3588 		 * changing other bitflags in parallel to us.
3589 		 */
3590 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3591 			BUG();
3592 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3593 	}
3594 }
3595 
3596 /*
3597  * This operation locks against the VM for all pte/vma/mm related
3598  * operations that could ever happen on a certain mm. This includes
3599  * vmtruncate, try_to_unmap, and all page faults.
3600  *
3601  * The caller must take the mmap_lock in write mode before calling
3602  * mm_take_all_locks(). The caller isn't allowed to release the
3603  * mmap_lock until mm_drop_all_locks() returns.
3604  *
3605  * mmap_lock in write mode is required in order to block all operations
3606  * that could modify pagetables and free pages without need of
3607  * altering the vma layout. It's also needed in write mode to avoid new
3608  * anon_vmas to be associated with existing vmas.
3609  *
3610  * A single task can't take more than one mm_take_all_locks() in a row
3611  * or it would deadlock.
3612  *
3613  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3614  * mapping->flags avoid to take the same lock twice, if more than one
3615  * vma in this mm is backed by the same anon_vma or address_space.
3616  *
3617  * We take locks in following order, accordingly to comment at beginning
3618  * of mm/rmap.c:
3619  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3620  *     hugetlb mapping);
3621  *   - all i_mmap_rwsem locks;
3622  *   - all anon_vma->rwseml
3623  *
3624  * We can take all locks within these types randomly because the VM code
3625  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3626  * mm_all_locks_mutex.
3627  *
3628  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3629  * that may have to take thousand of locks.
3630  *
3631  * mm_take_all_locks() can fail if it's interrupted by signals.
3632  */
3633 int mm_take_all_locks(struct mm_struct *mm)
3634 {
3635 	struct vm_area_struct *vma;
3636 	struct anon_vma_chain *avc;
3637 
3638 	BUG_ON(mmap_read_trylock(mm));
3639 
3640 	mutex_lock(&mm_all_locks_mutex);
3641 
3642 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3643 		if (signal_pending(current))
3644 			goto out_unlock;
3645 		if (vma->vm_file && vma->vm_file->f_mapping &&
3646 				is_vm_hugetlb_page(vma))
3647 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3648 	}
3649 
3650 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3651 		if (signal_pending(current))
3652 			goto out_unlock;
3653 		if (vma->vm_file && vma->vm_file->f_mapping &&
3654 				!is_vm_hugetlb_page(vma))
3655 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3656 	}
3657 
3658 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3659 		if (signal_pending(current))
3660 			goto out_unlock;
3661 		if (vma->anon_vma)
3662 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3663 				vm_lock_anon_vma(mm, avc->anon_vma);
3664 	}
3665 
3666 	return 0;
3667 
3668 out_unlock:
3669 	mm_drop_all_locks(mm);
3670 	return -EINTR;
3671 }
3672 
3673 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3674 {
3675 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3676 		/*
3677 		 * The LSB of head.next can't change to 0 from under
3678 		 * us because we hold the mm_all_locks_mutex.
3679 		 *
3680 		 * We must however clear the bitflag before unlocking
3681 		 * the vma so the users using the anon_vma->rb_root will
3682 		 * never see our bitflag.
3683 		 *
3684 		 * No need of atomic instructions here, head.next
3685 		 * can't change from under us until we release the
3686 		 * anon_vma->root->rwsem.
3687 		 */
3688 		if (!__test_and_clear_bit(0, (unsigned long *)
3689 					  &anon_vma->root->rb_root.rb_root.rb_node))
3690 			BUG();
3691 		anon_vma_unlock_write(anon_vma);
3692 	}
3693 }
3694 
3695 static void vm_unlock_mapping(struct address_space *mapping)
3696 {
3697 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3698 		/*
3699 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3700 		 * because we hold the mm_all_locks_mutex.
3701 		 */
3702 		i_mmap_unlock_write(mapping);
3703 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3704 					&mapping->flags))
3705 			BUG();
3706 	}
3707 }
3708 
3709 /*
3710  * The mmap_lock cannot be released by the caller until
3711  * mm_drop_all_locks() returns.
3712  */
3713 void mm_drop_all_locks(struct mm_struct *mm)
3714 {
3715 	struct vm_area_struct *vma;
3716 	struct anon_vma_chain *avc;
3717 
3718 	BUG_ON(mmap_read_trylock(mm));
3719 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3720 
3721 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3722 		if (vma->anon_vma)
3723 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3724 				vm_unlock_anon_vma(avc->anon_vma);
3725 		if (vma->vm_file && vma->vm_file->f_mapping)
3726 			vm_unlock_mapping(vma->vm_file->f_mapping);
3727 	}
3728 
3729 	mutex_unlock(&mm_all_locks_mutex);
3730 }
3731 
3732 /*
3733  * initialise the percpu counter for VM
3734  */
3735 void __init mmap_init(void)
3736 {
3737 	int ret;
3738 
3739 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3740 	VM_BUG_ON(ret);
3741 }
3742 
3743 /*
3744  * Initialise sysctl_user_reserve_kbytes.
3745  *
3746  * This is intended to prevent a user from starting a single memory hogging
3747  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3748  * mode.
3749  *
3750  * The default value is min(3% of free memory, 128MB)
3751  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3752  */
3753 static int init_user_reserve(void)
3754 {
3755 	unsigned long free_kbytes;
3756 
3757 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3758 
3759 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3760 	return 0;
3761 }
3762 subsys_initcall(init_user_reserve);
3763 
3764 /*
3765  * Initialise sysctl_admin_reserve_kbytes.
3766  *
3767  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3768  * to log in and kill a memory hogging process.
3769  *
3770  * Systems with more than 256MB will reserve 8MB, enough to recover
3771  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3772  * only reserve 3% of free pages by default.
3773  */
3774 static int init_admin_reserve(void)
3775 {
3776 	unsigned long free_kbytes;
3777 
3778 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3779 
3780 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3781 	return 0;
3782 }
3783 subsys_initcall(init_admin_reserve);
3784 
3785 /*
3786  * Reinititalise user and admin reserves if memory is added or removed.
3787  *
3788  * The default user reserve max is 128MB, and the default max for the
3789  * admin reserve is 8MB. These are usually, but not always, enough to
3790  * enable recovery from a memory hogging process using login/sshd, a shell,
3791  * and tools like top. It may make sense to increase or even disable the
3792  * reserve depending on the existence of swap or variations in the recovery
3793  * tools. So, the admin may have changed them.
3794  *
3795  * If memory is added and the reserves have been eliminated or increased above
3796  * the default max, then we'll trust the admin.
3797  *
3798  * If memory is removed and there isn't enough free memory, then we
3799  * need to reset the reserves.
3800  *
3801  * Otherwise keep the reserve set by the admin.
3802  */
3803 static int reserve_mem_notifier(struct notifier_block *nb,
3804 			     unsigned long action, void *data)
3805 {
3806 	unsigned long tmp, free_kbytes;
3807 
3808 	switch (action) {
3809 	case MEM_ONLINE:
3810 		/* Default max is 128MB. Leave alone if modified by operator. */
3811 		tmp = sysctl_user_reserve_kbytes;
3812 		if (0 < tmp && tmp < (1UL << 17))
3813 			init_user_reserve();
3814 
3815 		/* Default max is 8MB.  Leave alone if modified by operator. */
3816 		tmp = sysctl_admin_reserve_kbytes;
3817 		if (0 < tmp && tmp < (1UL << 13))
3818 			init_admin_reserve();
3819 
3820 		break;
3821 	case MEM_OFFLINE:
3822 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3823 
3824 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3825 			init_user_reserve();
3826 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3827 				sysctl_user_reserve_kbytes);
3828 		}
3829 
3830 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3831 			init_admin_reserve();
3832 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3833 				sysctl_admin_reserve_kbytes);
3834 		}
3835 		break;
3836 	default:
3837 		break;
3838 	}
3839 	return NOTIFY_OK;
3840 }
3841 
3842 static struct notifier_block reserve_mem_nb = {
3843 	.notifier_call = reserve_mem_notifier,
3844 };
3845 
3846 static int __meminit init_reserve_notifier(void)
3847 {
3848 	if (register_hotmemory_notifier(&reserve_mem_nb))
3849 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3850 
3851 	return 0;
3852 }
3853 subsys_initcall(init_reserve_notifier);
3854