1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #include "internal.h" 57 58 #ifndef arch_mmap_check 59 #define arch_mmap_check(addr, len, flags) (0) 60 #endif 61 62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 66 #endif 67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 71 #endif 72 73 static bool ignore_rlimit_data; 74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 75 76 static void unmap_region(struct mm_struct *mm, 77 struct vm_area_struct *vma, struct vm_area_struct *prev, 78 unsigned long start, unsigned long end); 79 80 /* description of effects of mapping type and prot in current implementation. 81 * this is due to the limited x86 page protection hardware. The expected 82 * behavior is in parens: 83 * 84 * map_type prot 85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 87 * w: (no) no w: (no) no w: (yes) yes w: (no) no 88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 89 * 90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 91 * w: (no) no w: (no) no w: (copy) copy w: (no) no 92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 93 */ 94 pgprot_t protection_map[16] __ro_after_init = { 95 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 96 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 97 }; 98 99 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 100 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 101 { 102 return prot; 103 } 104 #endif 105 106 pgprot_t vm_get_page_prot(unsigned long vm_flags) 107 { 108 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 109 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 110 pgprot_val(arch_vm_get_page_prot(vm_flags))); 111 112 return arch_filter_pgprot(ret); 113 } 114 EXPORT_SYMBOL(vm_get_page_prot); 115 116 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 117 { 118 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 119 } 120 121 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 122 void vma_set_page_prot(struct vm_area_struct *vma) 123 { 124 unsigned long vm_flags = vma->vm_flags; 125 pgprot_t vm_page_prot; 126 127 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 128 if (vma_wants_writenotify(vma, vm_page_prot)) { 129 vm_flags &= ~VM_SHARED; 130 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 131 } 132 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 133 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 134 } 135 136 /* 137 * Requires inode->i_mapping->i_mmap_rwsem 138 */ 139 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 140 struct file *file, struct address_space *mapping) 141 { 142 if (vma->vm_flags & VM_DENYWRITE) 143 atomic_inc(&file_inode(file)->i_writecount); 144 if (vma->vm_flags & VM_SHARED) 145 mapping_unmap_writable(mapping); 146 147 flush_dcache_mmap_lock(mapping); 148 vma_interval_tree_remove(vma, &mapping->i_mmap); 149 flush_dcache_mmap_unlock(mapping); 150 } 151 152 /* 153 * Unlink a file-based vm structure from its interval tree, to hide 154 * vma from rmap and vmtruncate before freeing its page tables. 155 */ 156 void unlink_file_vma(struct vm_area_struct *vma) 157 { 158 struct file *file = vma->vm_file; 159 160 if (file) { 161 struct address_space *mapping = file->f_mapping; 162 i_mmap_lock_write(mapping); 163 __remove_shared_vm_struct(vma, file, mapping); 164 i_mmap_unlock_write(mapping); 165 } 166 } 167 168 /* 169 * Close a vm structure and free it, returning the next. 170 */ 171 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 172 { 173 struct vm_area_struct *next = vma->vm_next; 174 175 might_sleep(); 176 if (vma->vm_ops && vma->vm_ops->close) 177 vma->vm_ops->close(vma); 178 if (vma->vm_file) 179 fput(vma->vm_file); 180 mpol_put(vma_policy(vma)); 181 vm_area_free(vma); 182 return next; 183 } 184 185 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 186 struct list_head *uf); 187 SYSCALL_DEFINE1(brk, unsigned long, brk) 188 { 189 unsigned long retval; 190 unsigned long newbrk, oldbrk, origbrk; 191 struct mm_struct *mm = current->mm; 192 struct vm_area_struct *next; 193 unsigned long min_brk; 194 bool populate; 195 bool downgraded = false; 196 LIST_HEAD(uf); 197 198 brk = untagged_addr(brk); 199 200 if (down_write_killable(&mm->mmap_sem)) 201 return -EINTR; 202 203 origbrk = mm->brk; 204 205 #ifdef CONFIG_COMPAT_BRK 206 /* 207 * CONFIG_COMPAT_BRK can still be overridden by setting 208 * randomize_va_space to 2, which will still cause mm->start_brk 209 * to be arbitrarily shifted 210 */ 211 if (current->brk_randomized) 212 min_brk = mm->start_brk; 213 else 214 min_brk = mm->end_data; 215 #else 216 min_brk = mm->start_brk; 217 #endif 218 if (brk < min_brk) 219 goto out; 220 221 /* 222 * Check against rlimit here. If this check is done later after the test 223 * of oldbrk with newbrk then it can escape the test and let the data 224 * segment grow beyond its set limit the in case where the limit is 225 * not page aligned -Ram Gupta 226 */ 227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 228 mm->end_data, mm->start_data)) 229 goto out; 230 231 newbrk = PAGE_ALIGN(brk); 232 oldbrk = PAGE_ALIGN(mm->brk); 233 if (oldbrk == newbrk) { 234 mm->brk = brk; 235 goto success; 236 } 237 238 /* 239 * Always allow shrinking brk. 240 * __do_munmap() may downgrade mmap_sem to read. 241 */ 242 if (brk <= mm->brk) { 243 int ret; 244 245 /* 246 * mm->brk must to be protected by write mmap_sem so update it 247 * before downgrading mmap_sem. When __do_munmap() fails, 248 * mm->brk will be restored from origbrk. 249 */ 250 mm->brk = brk; 251 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 252 if (ret < 0) { 253 mm->brk = origbrk; 254 goto out; 255 } else if (ret == 1) { 256 downgraded = true; 257 } 258 goto success; 259 } 260 261 /* Check against existing mmap mappings. */ 262 next = find_vma(mm, oldbrk); 263 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 264 goto out; 265 266 /* Ok, looks good - let it rip. */ 267 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 268 goto out; 269 mm->brk = brk; 270 271 success: 272 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 273 if (downgraded) 274 up_read(&mm->mmap_sem); 275 else 276 up_write(&mm->mmap_sem); 277 userfaultfd_unmap_complete(mm, &uf); 278 if (populate) 279 mm_populate(oldbrk, newbrk - oldbrk); 280 return brk; 281 282 out: 283 retval = origbrk; 284 up_write(&mm->mmap_sem); 285 return retval; 286 } 287 288 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 289 { 290 unsigned long gap, prev_end; 291 292 /* 293 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 294 * allow two stack_guard_gaps between them here, and when choosing 295 * an unmapped area; whereas when expanding we only require one. 296 * That's a little inconsistent, but keeps the code here simpler. 297 */ 298 gap = vm_start_gap(vma); 299 if (vma->vm_prev) { 300 prev_end = vm_end_gap(vma->vm_prev); 301 if (gap > prev_end) 302 gap -= prev_end; 303 else 304 gap = 0; 305 } 306 return gap; 307 } 308 309 #ifdef CONFIG_DEBUG_VM_RB 310 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 311 { 312 unsigned long max = vma_compute_gap(vma), subtree_gap; 313 if (vma->vm_rb.rb_left) { 314 subtree_gap = rb_entry(vma->vm_rb.rb_left, 315 struct vm_area_struct, vm_rb)->rb_subtree_gap; 316 if (subtree_gap > max) 317 max = subtree_gap; 318 } 319 if (vma->vm_rb.rb_right) { 320 subtree_gap = rb_entry(vma->vm_rb.rb_right, 321 struct vm_area_struct, vm_rb)->rb_subtree_gap; 322 if (subtree_gap > max) 323 max = subtree_gap; 324 } 325 return max; 326 } 327 328 static int browse_rb(struct mm_struct *mm) 329 { 330 struct rb_root *root = &mm->mm_rb; 331 int i = 0, j, bug = 0; 332 struct rb_node *nd, *pn = NULL; 333 unsigned long prev = 0, pend = 0; 334 335 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 336 struct vm_area_struct *vma; 337 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 338 if (vma->vm_start < prev) { 339 pr_emerg("vm_start %lx < prev %lx\n", 340 vma->vm_start, prev); 341 bug = 1; 342 } 343 if (vma->vm_start < pend) { 344 pr_emerg("vm_start %lx < pend %lx\n", 345 vma->vm_start, pend); 346 bug = 1; 347 } 348 if (vma->vm_start > vma->vm_end) { 349 pr_emerg("vm_start %lx > vm_end %lx\n", 350 vma->vm_start, vma->vm_end); 351 bug = 1; 352 } 353 spin_lock(&mm->page_table_lock); 354 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 355 pr_emerg("free gap %lx, correct %lx\n", 356 vma->rb_subtree_gap, 357 vma_compute_subtree_gap(vma)); 358 bug = 1; 359 } 360 spin_unlock(&mm->page_table_lock); 361 i++; 362 pn = nd; 363 prev = vma->vm_start; 364 pend = vma->vm_end; 365 } 366 j = 0; 367 for (nd = pn; nd; nd = rb_prev(nd)) 368 j++; 369 if (i != j) { 370 pr_emerg("backwards %d, forwards %d\n", j, i); 371 bug = 1; 372 } 373 return bug ? -1 : i; 374 } 375 376 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 377 { 378 struct rb_node *nd; 379 380 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 381 struct vm_area_struct *vma; 382 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 383 VM_BUG_ON_VMA(vma != ignore && 384 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 385 vma); 386 } 387 } 388 389 static void validate_mm(struct mm_struct *mm) 390 { 391 int bug = 0; 392 int i = 0; 393 unsigned long highest_address = 0; 394 struct vm_area_struct *vma = mm->mmap; 395 396 while (vma) { 397 struct anon_vma *anon_vma = vma->anon_vma; 398 struct anon_vma_chain *avc; 399 400 if (anon_vma) { 401 anon_vma_lock_read(anon_vma); 402 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 403 anon_vma_interval_tree_verify(avc); 404 anon_vma_unlock_read(anon_vma); 405 } 406 407 highest_address = vm_end_gap(vma); 408 vma = vma->vm_next; 409 i++; 410 } 411 if (i != mm->map_count) { 412 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 413 bug = 1; 414 } 415 if (highest_address != mm->highest_vm_end) { 416 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 417 mm->highest_vm_end, highest_address); 418 bug = 1; 419 } 420 i = browse_rb(mm); 421 if (i != mm->map_count) { 422 if (i != -1) 423 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 424 bug = 1; 425 } 426 VM_BUG_ON_MM(bug, mm); 427 } 428 #else 429 #define validate_mm_rb(root, ignore) do { } while (0) 430 #define validate_mm(mm) do { } while (0) 431 #endif 432 433 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 434 struct vm_area_struct, vm_rb, 435 unsigned long, rb_subtree_gap, vma_compute_gap) 436 437 /* 438 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 439 * vma->vm_prev->vm_end values changed, without modifying the vma's position 440 * in the rbtree. 441 */ 442 static void vma_gap_update(struct vm_area_struct *vma) 443 { 444 /* 445 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 446 * a callback function that does exactly what we want. 447 */ 448 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 449 } 450 451 static inline void vma_rb_insert(struct vm_area_struct *vma, 452 struct rb_root *root) 453 { 454 /* All rb_subtree_gap values must be consistent prior to insertion */ 455 validate_mm_rb(root, NULL); 456 457 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 458 } 459 460 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 461 { 462 /* 463 * Note rb_erase_augmented is a fairly large inline function, 464 * so make sure we instantiate it only once with our desired 465 * augmented rbtree callbacks. 466 */ 467 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 468 } 469 470 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 471 struct rb_root *root, 472 struct vm_area_struct *ignore) 473 { 474 /* 475 * All rb_subtree_gap values must be consistent prior to erase, 476 * with the possible exception of the "next" vma being erased if 477 * next->vm_start was reduced. 478 */ 479 validate_mm_rb(root, ignore); 480 481 __vma_rb_erase(vma, root); 482 } 483 484 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 485 struct rb_root *root) 486 { 487 /* 488 * All rb_subtree_gap values must be consistent prior to erase, 489 * with the possible exception of the vma being erased. 490 */ 491 validate_mm_rb(root, vma); 492 493 __vma_rb_erase(vma, root); 494 } 495 496 /* 497 * vma has some anon_vma assigned, and is already inserted on that 498 * anon_vma's interval trees. 499 * 500 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 501 * vma must be removed from the anon_vma's interval trees using 502 * anon_vma_interval_tree_pre_update_vma(). 503 * 504 * After the update, the vma will be reinserted using 505 * anon_vma_interval_tree_post_update_vma(). 506 * 507 * The entire update must be protected by exclusive mmap_sem and by 508 * the root anon_vma's mutex. 509 */ 510 static inline void 511 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 512 { 513 struct anon_vma_chain *avc; 514 515 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 516 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 517 } 518 519 static inline void 520 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 521 { 522 struct anon_vma_chain *avc; 523 524 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 525 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 526 } 527 528 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 529 unsigned long end, struct vm_area_struct **pprev, 530 struct rb_node ***rb_link, struct rb_node **rb_parent) 531 { 532 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 533 534 __rb_link = &mm->mm_rb.rb_node; 535 rb_prev = __rb_parent = NULL; 536 537 while (*__rb_link) { 538 struct vm_area_struct *vma_tmp; 539 540 __rb_parent = *__rb_link; 541 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 542 543 if (vma_tmp->vm_end > addr) { 544 /* Fail if an existing vma overlaps the area */ 545 if (vma_tmp->vm_start < end) 546 return -ENOMEM; 547 __rb_link = &__rb_parent->rb_left; 548 } else { 549 rb_prev = __rb_parent; 550 __rb_link = &__rb_parent->rb_right; 551 } 552 } 553 554 *pprev = NULL; 555 if (rb_prev) 556 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 557 *rb_link = __rb_link; 558 *rb_parent = __rb_parent; 559 return 0; 560 } 561 562 static unsigned long count_vma_pages_range(struct mm_struct *mm, 563 unsigned long addr, unsigned long end) 564 { 565 unsigned long nr_pages = 0; 566 struct vm_area_struct *vma; 567 568 /* Find first overlaping mapping */ 569 vma = find_vma_intersection(mm, addr, end); 570 if (!vma) 571 return 0; 572 573 nr_pages = (min(end, vma->vm_end) - 574 max(addr, vma->vm_start)) >> PAGE_SHIFT; 575 576 /* Iterate over the rest of the overlaps */ 577 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 578 unsigned long overlap_len; 579 580 if (vma->vm_start > end) 581 break; 582 583 overlap_len = min(end, vma->vm_end) - vma->vm_start; 584 nr_pages += overlap_len >> PAGE_SHIFT; 585 } 586 587 return nr_pages; 588 } 589 590 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 591 struct rb_node **rb_link, struct rb_node *rb_parent) 592 { 593 /* Update tracking information for the gap following the new vma. */ 594 if (vma->vm_next) 595 vma_gap_update(vma->vm_next); 596 else 597 mm->highest_vm_end = vm_end_gap(vma); 598 599 /* 600 * vma->vm_prev wasn't known when we followed the rbtree to find the 601 * correct insertion point for that vma. As a result, we could not 602 * update the vma vm_rb parents rb_subtree_gap values on the way down. 603 * So, we first insert the vma with a zero rb_subtree_gap value 604 * (to be consistent with what we did on the way down), and then 605 * immediately update the gap to the correct value. Finally we 606 * rebalance the rbtree after all augmented values have been set. 607 */ 608 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 609 vma->rb_subtree_gap = 0; 610 vma_gap_update(vma); 611 vma_rb_insert(vma, &mm->mm_rb); 612 } 613 614 static void __vma_link_file(struct vm_area_struct *vma) 615 { 616 struct file *file; 617 618 file = vma->vm_file; 619 if (file) { 620 struct address_space *mapping = file->f_mapping; 621 622 if (vma->vm_flags & VM_DENYWRITE) 623 atomic_dec(&file_inode(file)->i_writecount); 624 if (vma->vm_flags & VM_SHARED) 625 atomic_inc(&mapping->i_mmap_writable); 626 627 flush_dcache_mmap_lock(mapping); 628 vma_interval_tree_insert(vma, &mapping->i_mmap); 629 flush_dcache_mmap_unlock(mapping); 630 } 631 } 632 633 static void 634 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 635 struct vm_area_struct *prev, struct rb_node **rb_link, 636 struct rb_node *rb_parent) 637 { 638 __vma_link_list(mm, vma, prev); 639 __vma_link_rb(mm, vma, rb_link, rb_parent); 640 } 641 642 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 643 struct vm_area_struct *prev, struct rb_node **rb_link, 644 struct rb_node *rb_parent) 645 { 646 struct address_space *mapping = NULL; 647 648 if (vma->vm_file) { 649 mapping = vma->vm_file->f_mapping; 650 i_mmap_lock_write(mapping); 651 } 652 653 __vma_link(mm, vma, prev, rb_link, rb_parent); 654 __vma_link_file(vma); 655 656 if (mapping) 657 i_mmap_unlock_write(mapping); 658 659 mm->map_count++; 660 validate_mm(mm); 661 } 662 663 /* 664 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 665 * mm's list and rbtree. It has already been inserted into the interval tree. 666 */ 667 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 668 { 669 struct vm_area_struct *prev; 670 struct rb_node **rb_link, *rb_parent; 671 672 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 673 &prev, &rb_link, &rb_parent)) 674 BUG(); 675 __vma_link(mm, vma, prev, rb_link, rb_parent); 676 mm->map_count++; 677 } 678 679 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 680 struct vm_area_struct *vma, 681 struct vm_area_struct *ignore) 682 { 683 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 684 __vma_unlink_list(mm, vma); 685 /* Kill the cache */ 686 vmacache_invalidate(mm); 687 } 688 689 /* 690 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 691 * is already present in an i_mmap tree without adjusting the tree. 692 * The following helper function should be used when such adjustments 693 * are necessary. The "insert" vma (if any) is to be inserted 694 * before we drop the necessary locks. 695 */ 696 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 697 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 698 struct vm_area_struct *expand) 699 { 700 struct mm_struct *mm = vma->vm_mm; 701 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 702 struct address_space *mapping = NULL; 703 struct rb_root_cached *root = NULL; 704 struct anon_vma *anon_vma = NULL; 705 struct file *file = vma->vm_file; 706 bool start_changed = false, end_changed = false; 707 long adjust_next = 0; 708 int remove_next = 0; 709 710 if (next && !insert) { 711 struct vm_area_struct *exporter = NULL, *importer = NULL; 712 713 if (end >= next->vm_end) { 714 /* 715 * vma expands, overlapping all the next, and 716 * perhaps the one after too (mprotect case 6). 717 * The only other cases that gets here are 718 * case 1, case 7 and case 8. 719 */ 720 if (next == expand) { 721 /* 722 * The only case where we don't expand "vma" 723 * and we expand "next" instead is case 8. 724 */ 725 VM_WARN_ON(end != next->vm_end); 726 /* 727 * remove_next == 3 means we're 728 * removing "vma" and that to do so we 729 * swapped "vma" and "next". 730 */ 731 remove_next = 3; 732 VM_WARN_ON(file != next->vm_file); 733 swap(vma, next); 734 } else { 735 VM_WARN_ON(expand != vma); 736 /* 737 * case 1, 6, 7, remove_next == 2 is case 6, 738 * remove_next == 1 is case 1 or 7. 739 */ 740 remove_next = 1 + (end > next->vm_end); 741 VM_WARN_ON(remove_next == 2 && 742 end != next->vm_next->vm_end); 743 /* trim end to next, for case 6 first pass */ 744 end = next->vm_end; 745 } 746 747 exporter = next; 748 importer = vma; 749 750 /* 751 * If next doesn't have anon_vma, import from vma after 752 * next, if the vma overlaps with it. 753 */ 754 if (remove_next == 2 && !next->anon_vma) 755 exporter = next->vm_next; 756 757 } else if (end > next->vm_start) { 758 /* 759 * vma expands, overlapping part of the next: 760 * mprotect case 5 shifting the boundary up. 761 */ 762 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 763 exporter = next; 764 importer = vma; 765 VM_WARN_ON(expand != importer); 766 } else if (end < vma->vm_end) { 767 /* 768 * vma shrinks, and !insert tells it's not 769 * split_vma inserting another: so it must be 770 * mprotect case 4 shifting the boundary down. 771 */ 772 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 773 exporter = vma; 774 importer = next; 775 VM_WARN_ON(expand != importer); 776 } 777 778 /* 779 * Easily overlooked: when mprotect shifts the boundary, 780 * make sure the expanding vma has anon_vma set if the 781 * shrinking vma had, to cover any anon pages imported. 782 */ 783 if (exporter && exporter->anon_vma && !importer->anon_vma) { 784 int error; 785 786 importer->anon_vma = exporter->anon_vma; 787 error = anon_vma_clone(importer, exporter); 788 if (error) 789 return error; 790 } 791 } 792 again: 793 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 794 795 if (file) { 796 mapping = file->f_mapping; 797 root = &mapping->i_mmap; 798 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 799 800 if (adjust_next) 801 uprobe_munmap(next, next->vm_start, next->vm_end); 802 803 i_mmap_lock_write(mapping); 804 if (insert) { 805 /* 806 * Put into interval tree now, so instantiated pages 807 * are visible to arm/parisc __flush_dcache_page 808 * throughout; but we cannot insert into address 809 * space until vma start or end is updated. 810 */ 811 __vma_link_file(insert); 812 } 813 } 814 815 anon_vma = vma->anon_vma; 816 if (!anon_vma && adjust_next) 817 anon_vma = next->anon_vma; 818 if (anon_vma) { 819 VM_WARN_ON(adjust_next && next->anon_vma && 820 anon_vma != next->anon_vma); 821 anon_vma_lock_write(anon_vma); 822 anon_vma_interval_tree_pre_update_vma(vma); 823 if (adjust_next) 824 anon_vma_interval_tree_pre_update_vma(next); 825 } 826 827 if (root) { 828 flush_dcache_mmap_lock(mapping); 829 vma_interval_tree_remove(vma, root); 830 if (adjust_next) 831 vma_interval_tree_remove(next, root); 832 } 833 834 if (start != vma->vm_start) { 835 vma->vm_start = start; 836 start_changed = true; 837 } 838 if (end != vma->vm_end) { 839 vma->vm_end = end; 840 end_changed = true; 841 } 842 vma->vm_pgoff = pgoff; 843 if (adjust_next) { 844 next->vm_start += adjust_next << PAGE_SHIFT; 845 next->vm_pgoff += adjust_next; 846 } 847 848 if (root) { 849 if (adjust_next) 850 vma_interval_tree_insert(next, root); 851 vma_interval_tree_insert(vma, root); 852 flush_dcache_mmap_unlock(mapping); 853 } 854 855 if (remove_next) { 856 /* 857 * vma_merge has merged next into vma, and needs 858 * us to remove next before dropping the locks. 859 */ 860 if (remove_next != 3) 861 __vma_unlink_common(mm, next, next); 862 else 863 /* 864 * vma is not before next if they've been 865 * swapped. 866 * 867 * pre-swap() next->vm_start was reduced so 868 * tell validate_mm_rb to ignore pre-swap() 869 * "next" (which is stored in post-swap() 870 * "vma"). 871 */ 872 __vma_unlink_common(mm, next, vma); 873 if (file) 874 __remove_shared_vm_struct(next, file, mapping); 875 } else if (insert) { 876 /* 877 * split_vma has split insert from vma, and needs 878 * us to insert it before dropping the locks 879 * (it may either follow vma or precede it). 880 */ 881 __insert_vm_struct(mm, insert); 882 } else { 883 if (start_changed) 884 vma_gap_update(vma); 885 if (end_changed) { 886 if (!next) 887 mm->highest_vm_end = vm_end_gap(vma); 888 else if (!adjust_next) 889 vma_gap_update(next); 890 } 891 } 892 893 if (anon_vma) { 894 anon_vma_interval_tree_post_update_vma(vma); 895 if (adjust_next) 896 anon_vma_interval_tree_post_update_vma(next); 897 anon_vma_unlock_write(anon_vma); 898 } 899 if (mapping) 900 i_mmap_unlock_write(mapping); 901 902 if (root) { 903 uprobe_mmap(vma); 904 905 if (adjust_next) 906 uprobe_mmap(next); 907 } 908 909 if (remove_next) { 910 if (file) { 911 uprobe_munmap(next, next->vm_start, next->vm_end); 912 fput(file); 913 } 914 if (next->anon_vma) 915 anon_vma_merge(vma, next); 916 mm->map_count--; 917 mpol_put(vma_policy(next)); 918 vm_area_free(next); 919 /* 920 * In mprotect's case 6 (see comments on vma_merge), 921 * we must remove another next too. It would clutter 922 * up the code too much to do both in one go. 923 */ 924 if (remove_next != 3) { 925 /* 926 * If "next" was removed and vma->vm_end was 927 * expanded (up) over it, in turn 928 * "next->vm_prev->vm_end" changed and the 929 * "vma->vm_next" gap must be updated. 930 */ 931 next = vma->vm_next; 932 } else { 933 /* 934 * For the scope of the comment "next" and 935 * "vma" considered pre-swap(): if "vma" was 936 * removed, next->vm_start was expanded (down) 937 * over it and the "next" gap must be updated. 938 * Because of the swap() the post-swap() "vma" 939 * actually points to pre-swap() "next" 940 * (post-swap() "next" as opposed is now a 941 * dangling pointer). 942 */ 943 next = vma; 944 } 945 if (remove_next == 2) { 946 remove_next = 1; 947 end = next->vm_end; 948 goto again; 949 } 950 else if (next) 951 vma_gap_update(next); 952 else { 953 /* 954 * If remove_next == 2 we obviously can't 955 * reach this path. 956 * 957 * If remove_next == 3 we can't reach this 958 * path because pre-swap() next is always not 959 * NULL. pre-swap() "next" is not being 960 * removed and its next->vm_end is not altered 961 * (and furthermore "end" already matches 962 * next->vm_end in remove_next == 3). 963 * 964 * We reach this only in the remove_next == 1 965 * case if the "next" vma that was removed was 966 * the highest vma of the mm. However in such 967 * case next->vm_end == "end" and the extended 968 * "vma" has vma->vm_end == next->vm_end so 969 * mm->highest_vm_end doesn't need any update 970 * in remove_next == 1 case. 971 */ 972 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 973 } 974 } 975 if (insert && file) 976 uprobe_mmap(insert); 977 978 validate_mm(mm); 979 980 return 0; 981 } 982 983 /* 984 * If the vma has a ->close operation then the driver probably needs to release 985 * per-vma resources, so we don't attempt to merge those. 986 */ 987 static inline int is_mergeable_vma(struct vm_area_struct *vma, 988 struct file *file, unsigned long vm_flags, 989 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 990 { 991 /* 992 * VM_SOFTDIRTY should not prevent from VMA merging, if we 993 * match the flags but dirty bit -- the caller should mark 994 * merged VMA as dirty. If dirty bit won't be excluded from 995 * comparison, we increase pressure on the memory system forcing 996 * the kernel to generate new VMAs when old one could be 997 * extended instead. 998 */ 999 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1000 return 0; 1001 if (vma->vm_file != file) 1002 return 0; 1003 if (vma->vm_ops && vma->vm_ops->close) 1004 return 0; 1005 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1006 return 0; 1007 return 1; 1008 } 1009 1010 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1011 struct anon_vma *anon_vma2, 1012 struct vm_area_struct *vma) 1013 { 1014 /* 1015 * The list_is_singular() test is to avoid merging VMA cloned from 1016 * parents. This can improve scalability caused by anon_vma lock. 1017 */ 1018 if ((!anon_vma1 || !anon_vma2) && (!vma || 1019 list_is_singular(&vma->anon_vma_chain))) 1020 return 1; 1021 return anon_vma1 == anon_vma2; 1022 } 1023 1024 /* 1025 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1026 * in front of (at a lower virtual address and file offset than) the vma. 1027 * 1028 * We cannot merge two vmas if they have differently assigned (non-NULL) 1029 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1030 * 1031 * We don't check here for the merged mmap wrapping around the end of pagecache 1032 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1033 * wrap, nor mmaps which cover the final page at index -1UL. 1034 */ 1035 static int 1036 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1037 struct anon_vma *anon_vma, struct file *file, 1038 pgoff_t vm_pgoff, 1039 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1040 { 1041 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1042 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1043 if (vma->vm_pgoff == vm_pgoff) 1044 return 1; 1045 } 1046 return 0; 1047 } 1048 1049 /* 1050 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1051 * beyond (at a higher virtual address and file offset than) the vma. 1052 * 1053 * We cannot merge two vmas if they have differently assigned (non-NULL) 1054 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1055 */ 1056 static int 1057 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1058 struct anon_vma *anon_vma, struct file *file, 1059 pgoff_t vm_pgoff, 1060 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1061 { 1062 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1063 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1064 pgoff_t vm_pglen; 1065 vm_pglen = vma_pages(vma); 1066 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1067 return 1; 1068 } 1069 return 0; 1070 } 1071 1072 /* 1073 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1074 * whether that can be merged with its predecessor or its successor. 1075 * Or both (it neatly fills a hole). 1076 * 1077 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1078 * certain not to be mapped by the time vma_merge is called; but when 1079 * called for mprotect, it is certain to be already mapped (either at 1080 * an offset within prev, or at the start of next), and the flags of 1081 * this area are about to be changed to vm_flags - and the no-change 1082 * case has already been eliminated. 1083 * 1084 * The following mprotect cases have to be considered, where AAAA is 1085 * the area passed down from mprotect_fixup, never extending beyond one 1086 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1087 * 1088 * AAAA AAAA AAAA 1089 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1090 * cannot merge might become might become 1091 * PPNNNNNNNNNN PPPPPPPPPPNN 1092 * mmap, brk or case 4 below case 5 below 1093 * mremap move: 1094 * AAAA AAAA 1095 * PPPP NNNN PPPPNNNNXXXX 1096 * might become might become 1097 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1098 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1099 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1100 * 1101 * It is important for case 8 that the vma NNNN overlapping the 1102 * region AAAA is never going to extended over XXXX. Instead XXXX must 1103 * be extended in region AAAA and NNNN must be removed. This way in 1104 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1105 * rmap_locks, the properties of the merged vma will be already 1106 * correct for the whole merged range. Some of those properties like 1107 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1108 * be correct for the whole merged range immediately after the 1109 * rmap_locks are released. Otherwise if XXXX would be removed and 1110 * NNNN would be extended over the XXXX range, remove_migration_ptes 1111 * or other rmap walkers (if working on addresses beyond the "end" 1112 * parameter) may establish ptes with the wrong permissions of NNNN 1113 * instead of the right permissions of XXXX. 1114 */ 1115 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1116 struct vm_area_struct *prev, unsigned long addr, 1117 unsigned long end, unsigned long vm_flags, 1118 struct anon_vma *anon_vma, struct file *file, 1119 pgoff_t pgoff, struct mempolicy *policy, 1120 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1121 { 1122 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1123 struct vm_area_struct *area, *next; 1124 int err; 1125 1126 /* 1127 * We later require that vma->vm_flags == vm_flags, 1128 * so this tests vma->vm_flags & VM_SPECIAL, too. 1129 */ 1130 if (vm_flags & VM_SPECIAL) 1131 return NULL; 1132 1133 if (prev) 1134 next = prev->vm_next; 1135 else 1136 next = mm->mmap; 1137 area = next; 1138 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1139 next = next->vm_next; 1140 1141 /* verify some invariant that must be enforced by the caller */ 1142 VM_WARN_ON(prev && addr <= prev->vm_start); 1143 VM_WARN_ON(area && end > area->vm_end); 1144 VM_WARN_ON(addr >= end); 1145 1146 /* 1147 * Can it merge with the predecessor? 1148 */ 1149 if (prev && prev->vm_end == addr && 1150 mpol_equal(vma_policy(prev), policy) && 1151 can_vma_merge_after(prev, vm_flags, 1152 anon_vma, file, pgoff, 1153 vm_userfaultfd_ctx)) { 1154 /* 1155 * OK, it can. Can we now merge in the successor as well? 1156 */ 1157 if (next && end == next->vm_start && 1158 mpol_equal(policy, vma_policy(next)) && 1159 can_vma_merge_before(next, vm_flags, 1160 anon_vma, file, 1161 pgoff+pglen, 1162 vm_userfaultfd_ctx) && 1163 is_mergeable_anon_vma(prev->anon_vma, 1164 next->anon_vma, NULL)) { 1165 /* cases 1, 6 */ 1166 err = __vma_adjust(prev, prev->vm_start, 1167 next->vm_end, prev->vm_pgoff, NULL, 1168 prev); 1169 } else /* cases 2, 5, 7 */ 1170 err = __vma_adjust(prev, prev->vm_start, 1171 end, prev->vm_pgoff, NULL, prev); 1172 if (err) 1173 return NULL; 1174 khugepaged_enter_vma_merge(prev, vm_flags); 1175 return prev; 1176 } 1177 1178 /* 1179 * Can this new request be merged in front of next? 1180 */ 1181 if (next && end == next->vm_start && 1182 mpol_equal(policy, vma_policy(next)) && 1183 can_vma_merge_before(next, vm_flags, 1184 anon_vma, file, pgoff+pglen, 1185 vm_userfaultfd_ctx)) { 1186 if (prev && addr < prev->vm_end) /* case 4 */ 1187 err = __vma_adjust(prev, prev->vm_start, 1188 addr, prev->vm_pgoff, NULL, next); 1189 else { /* cases 3, 8 */ 1190 err = __vma_adjust(area, addr, next->vm_end, 1191 next->vm_pgoff - pglen, NULL, next); 1192 /* 1193 * In case 3 area is already equal to next and 1194 * this is a noop, but in case 8 "area" has 1195 * been removed and next was expanded over it. 1196 */ 1197 area = next; 1198 } 1199 if (err) 1200 return NULL; 1201 khugepaged_enter_vma_merge(area, vm_flags); 1202 return area; 1203 } 1204 1205 return NULL; 1206 } 1207 1208 /* 1209 * Rough compatbility check to quickly see if it's even worth looking 1210 * at sharing an anon_vma. 1211 * 1212 * They need to have the same vm_file, and the flags can only differ 1213 * in things that mprotect may change. 1214 * 1215 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1216 * we can merge the two vma's. For example, we refuse to merge a vma if 1217 * there is a vm_ops->close() function, because that indicates that the 1218 * driver is doing some kind of reference counting. But that doesn't 1219 * really matter for the anon_vma sharing case. 1220 */ 1221 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1222 { 1223 return a->vm_end == b->vm_start && 1224 mpol_equal(vma_policy(a), vma_policy(b)) && 1225 a->vm_file == b->vm_file && 1226 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1227 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1228 } 1229 1230 /* 1231 * Do some basic sanity checking to see if we can re-use the anon_vma 1232 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1233 * the same as 'old', the other will be the new one that is trying 1234 * to share the anon_vma. 1235 * 1236 * NOTE! This runs with mm_sem held for reading, so it is possible that 1237 * the anon_vma of 'old' is concurrently in the process of being set up 1238 * by another page fault trying to merge _that_. But that's ok: if it 1239 * is being set up, that automatically means that it will be a singleton 1240 * acceptable for merging, so we can do all of this optimistically. But 1241 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1242 * 1243 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1244 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1245 * is to return an anon_vma that is "complex" due to having gone through 1246 * a fork). 1247 * 1248 * We also make sure that the two vma's are compatible (adjacent, 1249 * and with the same memory policies). That's all stable, even with just 1250 * a read lock on the mm_sem. 1251 */ 1252 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1253 { 1254 if (anon_vma_compatible(a, b)) { 1255 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1256 1257 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1258 return anon_vma; 1259 } 1260 return NULL; 1261 } 1262 1263 /* 1264 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1265 * neighbouring vmas for a suitable anon_vma, before it goes off 1266 * to allocate a new anon_vma. It checks because a repetitive 1267 * sequence of mprotects and faults may otherwise lead to distinct 1268 * anon_vmas being allocated, preventing vma merge in subsequent 1269 * mprotect. 1270 */ 1271 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1272 { 1273 struct anon_vma *anon_vma = NULL; 1274 1275 /* Try next first. */ 1276 if (vma->vm_next) { 1277 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next); 1278 if (anon_vma) 1279 return anon_vma; 1280 } 1281 1282 /* Try prev next. */ 1283 if (vma->vm_prev) 1284 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma); 1285 1286 /* 1287 * We might reach here with anon_vma == NULL if we can't find 1288 * any reusable anon_vma. 1289 * There's no absolute need to look only at touching neighbours: 1290 * we could search further afield for "compatible" anon_vmas. 1291 * But it would probably just be a waste of time searching, 1292 * or lead to too many vmas hanging off the same anon_vma. 1293 * We're trying to allow mprotect remerging later on, 1294 * not trying to minimize memory used for anon_vmas. 1295 */ 1296 return anon_vma; 1297 } 1298 1299 /* 1300 * If a hint addr is less than mmap_min_addr change hint to be as 1301 * low as possible but still greater than mmap_min_addr 1302 */ 1303 static inline unsigned long round_hint_to_min(unsigned long hint) 1304 { 1305 hint &= PAGE_MASK; 1306 if (((void *)hint != NULL) && 1307 (hint < mmap_min_addr)) 1308 return PAGE_ALIGN(mmap_min_addr); 1309 return hint; 1310 } 1311 1312 static inline int mlock_future_check(struct mm_struct *mm, 1313 unsigned long flags, 1314 unsigned long len) 1315 { 1316 unsigned long locked, lock_limit; 1317 1318 /* mlock MCL_FUTURE? */ 1319 if (flags & VM_LOCKED) { 1320 locked = len >> PAGE_SHIFT; 1321 locked += mm->locked_vm; 1322 lock_limit = rlimit(RLIMIT_MEMLOCK); 1323 lock_limit >>= PAGE_SHIFT; 1324 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1325 return -EAGAIN; 1326 } 1327 return 0; 1328 } 1329 1330 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1331 { 1332 if (S_ISREG(inode->i_mode)) 1333 return MAX_LFS_FILESIZE; 1334 1335 if (S_ISBLK(inode->i_mode)) 1336 return MAX_LFS_FILESIZE; 1337 1338 if (S_ISSOCK(inode->i_mode)) 1339 return MAX_LFS_FILESIZE; 1340 1341 /* Special "we do even unsigned file positions" case */ 1342 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1343 return 0; 1344 1345 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1346 return ULONG_MAX; 1347 } 1348 1349 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1350 unsigned long pgoff, unsigned long len) 1351 { 1352 u64 maxsize = file_mmap_size_max(file, inode); 1353 1354 if (maxsize && len > maxsize) 1355 return false; 1356 maxsize -= len; 1357 if (pgoff > maxsize >> PAGE_SHIFT) 1358 return false; 1359 return true; 1360 } 1361 1362 /* 1363 * The caller must hold down_write(¤t->mm->mmap_sem). 1364 */ 1365 unsigned long do_mmap(struct file *file, unsigned long addr, 1366 unsigned long len, unsigned long prot, 1367 unsigned long flags, vm_flags_t vm_flags, 1368 unsigned long pgoff, unsigned long *populate, 1369 struct list_head *uf) 1370 { 1371 struct mm_struct *mm = current->mm; 1372 int pkey = 0; 1373 1374 *populate = 0; 1375 1376 if (!len) 1377 return -EINVAL; 1378 1379 /* 1380 * Does the application expect PROT_READ to imply PROT_EXEC? 1381 * 1382 * (the exception is when the underlying filesystem is noexec 1383 * mounted, in which case we dont add PROT_EXEC.) 1384 */ 1385 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1386 if (!(file && path_noexec(&file->f_path))) 1387 prot |= PROT_EXEC; 1388 1389 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1390 if (flags & MAP_FIXED_NOREPLACE) 1391 flags |= MAP_FIXED; 1392 1393 if (!(flags & MAP_FIXED)) 1394 addr = round_hint_to_min(addr); 1395 1396 /* Careful about overflows.. */ 1397 len = PAGE_ALIGN(len); 1398 if (!len) 1399 return -ENOMEM; 1400 1401 /* offset overflow? */ 1402 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1403 return -EOVERFLOW; 1404 1405 /* Too many mappings? */ 1406 if (mm->map_count > sysctl_max_map_count) 1407 return -ENOMEM; 1408 1409 /* Obtain the address to map to. we verify (or select) it and ensure 1410 * that it represents a valid section of the address space. 1411 */ 1412 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1413 if (IS_ERR_VALUE(addr)) 1414 return addr; 1415 1416 if (flags & MAP_FIXED_NOREPLACE) { 1417 struct vm_area_struct *vma = find_vma(mm, addr); 1418 1419 if (vma && vma->vm_start < addr + len) 1420 return -EEXIST; 1421 } 1422 1423 if (prot == PROT_EXEC) { 1424 pkey = execute_only_pkey(mm); 1425 if (pkey < 0) 1426 pkey = 0; 1427 } 1428 1429 /* Do simple checking here so the lower-level routines won't have 1430 * to. we assume access permissions have been handled by the open 1431 * of the memory object, so we don't do any here. 1432 */ 1433 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1434 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1435 1436 if (flags & MAP_LOCKED) 1437 if (!can_do_mlock()) 1438 return -EPERM; 1439 1440 if (mlock_future_check(mm, vm_flags, len)) 1441 return -EAGAIN; 1442 1443 if (file) { 1444 struct inode *inode = file_inode(file); 1445 unsigned long flags_mask; 1446 1447 if (!file_mmap_ok(file, inode, pgoff, len)) 1448 return -EOVERFLOW; 1449 1450 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1451 1452 switch (flags & MAP_TYPE) { 1453 case MAP_SHARED: 1454 /* 1455 * Force use of MAP_SHARED_VALIDATE with non-legacy 1456 * flags. E.g. MAP_SYNC is dangerous to use with 1457 * MAP_SHARED as you don't know which consistency model 1458 * you will get. We silently ignore unsupported flags 1459 * with MAP_SHARED to preserve backward compatibility. 1460 */ 1461 flags &= LEGACY_MAP_MASK; 1462 /* fall through */ 1463 case MAP_SHARED_VALIDATE: 1464 if (flags & ~flags_mask) 1465 return -EOPNOTSUPP; 1466 if (prot & PROT_WRITE) { 1467 if (!(file->f_mode & FMODE_WRITE)) 1468 return -EACCES; 1469 if (IS_SWAPFILE(file->f_mapping->host)) 1470 return -ETXTBSY; 1471 } 1472 1473 /* 1474 * Make sure we don't allow writing to an append-only 1475 * file.. 1476 */ 1477 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1478 return -EACCES; 1479 1480 /* 1481 * Make sure there are no mandatory locks on the file. 1482 */ 1483 if (locks_verify_locked(file)) 1484 return -EAGAIN; 1485 1486 vm_flags |= VM_SHARED | VM_MAYSHARE; 1487 if (!(file->f_mode & FMODE_WRITE)) 1488 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1489 1490 /* fall through */ 1491 case MAP_PRIVATE: 1492 if (!(file->f_mode & FMODE_READ)) 1493 return -EACCES; 1494 if (path_noexec(&file->f_path)) { 1495 if (vm_flags & VM_EXEC) 1496 return -EPERM; 1497 vm_flags &= ~VM_MAYEXEC; 1498 } 1499 1500 if (!file->f_op->mmap) 1501 return -ENODEV; 1502 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1503 return -EINVAL; 1504 break; 1505 1506 default: 1507 return -EINVAL; 1508 } 1509 } else { 1510 switch (flags & MAP_TYPE) { 1511 case MAP_SHARED: 1512 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1513 return -EINVAL; 1514 /* 1515 * Ignore pgoff. 1516 */ 1517 pgoff = 0; 1518 vm_flags |= VM_SHARED | VM_MAYSHARE; 1519 break; 1520 case MAP_PRIVATE: 1521 /* 1522 * Set pgoff according to addr for anon_vma. 1523 */ 1524 pgoff = addr >> PAGE_SHIFT; 1525 break; 1526 default: 1527 return -EINVAL; 1528 } 1529 } 1530 1531 /* 1532 * Set 'VM_NORESERVE' if we should not account for the 1533 * memory use of this mapping. 1534 */ 1535 if (flags & MAP_NORESERVE) { 1536 /* We honor MAP_NORESERVE if allowed to overcommit */ 1537 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1538 vm_flags |= VM_NORESERVE; 1539 1540 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1541 if (file && is_file_hugepages(file)) 1542 vm_flags |= VM_NORESERVE; 1543 } 1544 1545 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1546 if (!IS_ERR_VALUE(addr) && 1547 ((vm_flags & VM_LOCKED) || 1548 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1549 *populate = len; 1550 return addr; 1551 } 1552 1553 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1554 unsigned long prot, unsigned long flags, 1555 unsigned long fd, unsigned long pgoff) 1556 { 1557 struct file *file = NULL; 1558 unsigned long retval; 1559 1560 addr = untagged_addr(addr); 1561 1562 if (!(flags & MAP_ANONYMOUS)) { 1563 audit_mmap_fd(fd, flags); 1564 file = fget(fd); 1565 if (!file) 1566 return -EBADF; 1567 if (is_file_hugepages(file)) 1568 len = ALIGN(len, huge_page_size(hstate_file(file))); 1569 retval = -EINVAL; 1570 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1571 goto out_fput; 1572 } else if (flags & MAP_HUGETLB) { 1573 struct user_struct *user = NULL; 1574 struct hstate *hs; 1575 1576 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1577 if (!hs) 1578 return -EINVAL; 1579 1580 len = ALIGN(len, huge_page_size(hs)); 1581 /* 1582 * VM_NORESERVE is used because the reservations will be 1583 * taken when vm_ops->mmap() is called 1584 * A dummy user value is used because we are not locking 1585 * memory so no accounting is necessary 1586 */ 1587 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1588 VM_NORESERVE, 1589 &user, HUGETLB_ANONHUGE_INODE, 1590 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1591 if (IS_ERR(file)) 1592 return PTR_ERR(file); 1593 } 1594 1595 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1596 1597 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1598 out_fput: 1599 if (file) 1600 fput(file); 1601 return retval; 1602 } 1603 1604 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1605 unsigned long, prot, unsigned long, flags, 1606 unsigned long, fd, unsigned long, pgoff) 1607 { 1608 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1609 } 1610 1611 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1612 struct mmap_arg_struct { 1613 unsigned long addr; 1614 unsigned long len; 1615 unsigned long prot; 1616 unsigned long flags; 1617 unsigned long fd; 1618 unsigned long offset; 1619 }; 1620 1621 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1622 { 1623 struct mmap_arg_struct a; 1624 1625 if (copy_from_user(&a, arg, sizeof(a))) 1626 return -EFAULT; 1627 if (offset_in_page(a.offset)) 1628 return -EINVAL; 1629 1630 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1631 a.offset >> PAGE_SHIFT); 1632 } 1633 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1634 1635 /* 1636 * Some shared mappings will want the pages marked read-only 1637 * to track write events. If so, we'll downgrade vm_page_prot 1638 * to the private version (using protection_map[] without the 1639 * VM_SHARED bit). 1640 */ 1641 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1642 { 1643 vm_flags_t vm_flags = vma->vm_flags; 1644 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1645 1646 /* If it was private or non-writable, the write bit is already clear */ 1647 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1648 return 0; 1649 1650 /* The backer wishes to know when pages are first written to? */ 1651 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1652 return 1; 1653 1654 /* The open routine did something to the protections that pgprot_modify 1655 * won't preserve? */ 1656 if (pgprot_val(vm_page_prot) != 1657 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1658 return 0; 1659 1660 /* Do we need to track softdirty? */ 1661 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1662 return 1; 1663 1664 /* Specialty mapping? */ 1665 if (vm_flags & VM_PFNMAP) 1666 return 0; 1667 1668 /* Can the mapping track the dirty pages? */ 1669 return vma->vm_file && vma->vm_file->f_mapping && 1670 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1671 } 1672 1673 /* 1674 * We account for memory if it's a private writeable mapping, 1675 * not hugepages and VM_NORESERVE wasn't set. 1676 */ 1677 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1678 { 1679 /* 1680 * hugetlb has its own accounting separate from the core VM 1681 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1682 */ 1683 if (file && is_file_hugepages(file)) 1684 return 0; 1685 1686 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1687 } 1688 1689 unsigned long mmap_region(struct file *file, unsigned long addr, 1690 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1691 struct list_head *uf) 1692 { 1693 struct mm_struct *mm = current->mm; 1694 struct vm_area_struct *vma, *prev; 1695 int error; 1696 struct rb_node **rb_link, *rb_parent; 1697 unsigned long charged = 0; 1698 1699 /* Check against address space limit. */ 1700 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1701 unsigned long nr_pages; 1702 1703 /* 1704 * MAP_FIXED may remove pages of mappings that intersects with 1705 * requested mapping. Account for the pages it would unmap. 1706 */ 1707 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1708 1709 if (!may_expand_vm(mm, vm_flags, 1710 (len >> PAGE_SHIFT) - nr_pages)) 1711 return -ENOMEM; 1712 } 1713 1714 /* Clear old maps */ 1715 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1716 &rb_parent)) { 1717 if (do_munmap(mm, addr, len, uf)) 1718 return -ENOMEM; 1719 } 1720 1721 /* 1722 * Private writable mapping: check memory availability 1723 */ 1724 if (accountable_mapping(file, vm_flags)) { 1725 charged = len >> PAGE_SHIFT; 1726 if (security_vm_enough_memory_mm(mm, charged)) 1727 return -ENOMEM; 1728 vm_flags |= VM_ACCOUNT; 1729 } 1730 1731 /* 1732 * Can we just expand an old mapping? 1733 */ 1734 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1735 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1736 if (vma) 1737 goto out; 1738 1739 /* 1740 * Determine the object being mapped and call the appropriate 1741 * specific mapper. the address has already been validated, but 1742 * not unmapped, but the maps are removed from the list. 1743 */ 1744 vma = vm_area_alloc(mm); 1745 if (!vma) { 1746 error = -ENOMEM; 1747 goto unacct_error; 1748 } 1749 1750 vma->vm_start = addr; 1751 vma->vm_end = addr + len; 1752 vma->vm_flags = vm_flags; 1753 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1754 vma->vm_pgoff = pgoff; 1755 1756 if (file) { 1757 if (vm_flags & VM_DENYWRITE) { 1758 error = deny_write_access(file); 1759 if (error) 1760 goto free_vma; 1761 } 1762 if (vm_flags & VM_SHARED) { 1763 error = mapping_map_writable(file->f_mapping); 1764 if (error) 1765 goto allow_write_and_free_vma; 1766 } 1767 1768 /* ->mmap() can change vma->vm_file, but must guarantee that 1769 * vma_link() below can deny write-access if VM_DENYWRITE is set 1770 * and map writably if VM_SHARED is set. This usually means the 1771 * new file must not have been exposed to user-space, yet. 1772 */ 1773 vma->vm_file = get_file(file); 1774 error = call_mmap(file, vma); 1775 if (error) 1776 goto unmap_and_free_vma; 1777 1778 /* Can addr have changed?? 1779 * 1780 * Answer: Yes, several device drivers can do it in their 1781 * f_op->mmap method. -DaveM 1782 * Bug: If addr is changed, prev, rb_link, rb_parent should 1783 * be updated for vma_link() 1784 */ 1785 WARN_ON_ONCE(addr != vma->vm_start); 1786 1787 addr = vma->vm_start; 1788 vm_flags = vma->vm_flags; 1789 } else if (vm_flags & VM_SHARED) { 1790 error = shmem_zero_setup(vma); 1791 if (error) 1792 goto free_vma; 1793 } else { 1794 vma_set_anonymous(vma); 1795 } 1796 1797 vma_link(mm, vma, prev, rb_link, rb_parent); 1798 /* Once vma denies write, undo our temporary denial count */ 1799 if (file) { 1800 if (vm_flags & VM_SHARED) 1801 mapping_unmap_writable(file->f_mapping); 1802 if (vm_flags & VM_DENYWRITE) 1803 allow_write_access(file); 1804 } 1805 file = vma->vm_file; 1806 out: 1807 perf_event_mmap(vma); 1808 1809 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1810 if (vm_flags & VM_LOCKED) { 1811 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1812 is_vm_hugetlb_page(vma) || 1813 vma == get_gate_vma(current->mm)) 1814 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1815 else 1816 mm->locked_vm += (len >> PAGE_SHIFT); 1817 } 1818 1819 if (file) 1820 uprobe_mmap(vma); 1821 1822 /* 1823 * New (or expanded) vma always get soft dirty status. 1824 * Otherwise user-space soft-dirty page tracker won't 1825 * be able to distinguish situation when vma area unmapped, 1826 * then new mapped in-place (which must be aimed as 1827 * a completely new data area). 1828 */ 1829 vma->vm_flags |= VM_SOFTDIRTY; 1830 1831 vma_set_page_prot(vma); 1832 1833 return addr; 1834 1835 unmap_and_free_vma: 1836 vma->vm_file = NULL; 1837 fput(file); 1838 1839 /* Undo any partial mapping done by a device driver. */ 1840 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1841 charged = 0; 1842 if (vm_flags & VM_SHARED) 1843 mapping_unmap_writable(file->f_mapping); 1844 allow_write_and_free_vma: 1845 if (vm_flags & VM_DENYWRITE) 1846 allow_write_access(file); 1847 free_vma: 1848 vm_area_free(vma); 1849 unacct_error: 1850 if (charged) 1851 vm_unacct_memory(charged); 1852 return error; 1853 } 1854 1855 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1856 { 1857 /* 1858 * We implement the search by looking for an rbtree node that 1859 * immediately follows a suitable gap. That is, 1860 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1861 * - gap_end = vma->vm_start >= info->low_limit + length; 1862 * - gap_end - gap_start >= length 1863 */ 1864 1865 struct mm_struct *mm = current->mm; 1866 struct vm_area_struct *vma; 1867 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1868 1869 /* Adjust search length to account for worst case alignment overhead */ 1870 length = info->length + info->align_mask; 1871 if (length < info->length) 1872 return -ENOMEM; 1873 1874 /* Adjust search limits by the desired length */ 1875 if (info->high_limit < length) 1876 return -ENOMEM; 1877 high_limit = info->high_limit - length; 1878 1879 if (info->low_limit > high_limit) 1880 return -ENOMEM; 1881 low_limit = info->low_limit + length; 1882 1883 /* Check if rbtree root looks promising */ 1884 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1885 goto check_highest; 1886 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1887 if (vma->rb_subtree_gap < length) 1888 goto check_highest; 1889 1890 while (true) { 1891 /* Visit left subtree if it looks promising */ 1892 gap_end = vm_start_gap(vma); 1893 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1894 struct vm_area_struct *left = 1895 rb_entry(vma->vm_rb.rb_left, 1896 struct vm_area_struct, vm_rb); 1897 if (left->rb_subtree_gap >= length) { 1898 vma = left; 1899 continue; 1900 } 1901 } 1902 1903 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1904 check_current: 1905 /* Check if current node has a suitable gap */ 1906 if (gap_start > high_limit) 1907 return -ENOMEM; 1908 if (gap_end >= low_limit && 1909 gap_end > gap_start && gap_end - gap_start >= length) 1910 goto found; 1911 1912 /* Visit right subtree if it looks promising */ 1913 if (vma->vm_rb.rb_right) { 1914 struct vm_area_struct *right = 1915 rb_entry(vma->vm_rb.rb_right, 1916 struct vm_area_struct, vm_rb); 1917 if (right->rb_subtree_gap >= length) { 1918 vma = right; 1919 continue; 1920 } 1921 } 1922 1923 /* Go back up the rbtree to find next candidate node */ 1924 while (true) { 1925 struct rb_node *prev = &vma->vm_rb; 1926 if (!rb_parent(prev)) 1927 goto check_highest; 1928 vma = rb_entry(rb_parent(prev), 1929 struct vm_area_struct, vm_rb); 1930 if (prev == vma->vm_rb.rb_left) { 1931 gap_start = vm_end_gap(vma->vm_prev); 1932 gap_end = vm_start_gap(vma); 1933 goto check_current; 1934 } 1935 } 1936 } 1937 1938 check_highest: 1939 /* Check highest gap, which does not precede any rbtree node */ 1940 gap_start = mm->highest_vm_end; 1941 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1942 if (gap_start > high_limit) 1943 return -ENOMEM; 1944 1945 found: 1946 /* We found a suitable gap. Clip it with the original low_limit. */ 1947 if (gap_start < info->low_limit) 1948 gap_start = info->low_limit; 1949 1950 /* Adjust gap address to the desired alignment */ 1951 gap_start += (info->align_offset - gap_start) & info->align_mask; 1952 1953 VM_BUG_ON(gap_start + info->length > info->high_limit); 1954 VM_BUG_ON(gap_start + info->length > gap_end); 1955 return gap_start; 1956 } 1957 1958 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1959 { 1960 struct mm_struct *mm = current->mm; 1961 struct vm_area_struct *vma; 1962 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1963 1964 /* Adjust search length to account for worst case alignment overhead */ 1965 length = info->length + info->align_mask; 1966 if (length < info->length) 1967 return -ENOMEM; 1968 1969 /* 1970 * Adjust search limits by the desired length. 1971 * See implementation comment at top of unmapped_area(). 1972 */ 1973 gap_end = info->high_limit; 1974 if (gap_end < length) 1975 return -ENOMEM; 1976 high_limit = gap_end - length; 1977 1978 if (info->low_limit > high_limit) 1979 return -ENOMEM; 1980 low_limit = info->low_limit + length; 1981 1982 /* Check highest gap, which does not precede any rbtree node */ 1983 gap_start = mm->highest_vm_end; 1984 if (gap_start <= high_limit) 1985 goto found_highest; 1986 1987 /* Check if rbtree root looks promising */ 1988 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1989 return -ENOMEM; 1990 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1991 if (vma->rb_subtree_gap < length) 1992 return -ENOMEM; 1993 1994 while (true) { 1995 /* Visit right subtree if it looks promising */ 1996 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1997 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1998 struct vm_area_struct *right = 1999 rb_entry(vma->vm_rb.rb_right, 2000 struct vm_area_struct, vm_rb); 2001 if (right->rb_subtree_gap >= length) { 2002 vma = right; 2003 continue; 2004 } 2005 } 2006 2007 check_current: 2008 /* Check if current node has a suitable gap */ 2009 gap_end = vm_start_gap(vma); 2010 if (gap_end < low_limit) 2011 return -ENOMEM; 2012 if (gap_start <= high_limit && 2013 gap_end > gap_start && gap_end - gap_start >= length) 2014 goto found; 2015 2016 /* Visit left subtree if it looks promising */ 2017 if (vma->vm_rb.rb_left) { 2018 struct vm_area_struct *left = 2019 rb_entry(vma->vm_rb.rb_left, 2020 struct vm_area_struct, vm_rb); 2021 if (left->rb_subtree_gap >= length) { 2022 vma = left; 2023 continue; 2024 } 2025 } 2026 2027 /* Go back up the rbtree to find next candidate node */ 2028 while (true) { 2029 struct rb_node *prev = &vma->vm_rb; 2030 if (!rb_parent(prev)) 2031 return -ENOMEM; 2032 vma = rb_entry(rb_parent(prev), 2033 struct vm_area_struct, vm_rb); 2034 if (prev == vma->vm_rb.rb_right) { 2035 gap_start = vma->vm_prev ? 2036 vm_end_gap(vma->vm_prev) : 0; 2037 goto check_current; 2038 } 2039 } 2040 } 2041 2042 found: 2043 /* We found a suitable gap. Clip it with the original high_limit. */ 2044 if (gap_end > info->high_limit) 2045 gap_end = info->high_limit; 2046 2047 found_highest: 2048 /* Compute highest gap address at the desired alignment */ 2049 gap_end -= info->length; 2050 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2051 2052 VM_BUG_ON(gap_end < info->low_limit); 2053 VM_BUG_ON(gap_end < gap_start); 2054 return gap_end; 2055 } 2056 2057 2058 #ifndef arch_get_mmap_end 2059 #define arch_get_mmap_end(addr) (TASK_SIZE) 2060 #endif 2061 2062 #ifndef arch_get_mmap_base 2063 #define arch_get_mmap_base(addr, base) (base) 2064 #endif 2065 2066 /* Get an address range which is currently unmapped. 2067 * For shmat() with addr=0. 2068 * 2069 * Ugly calling convention alert: 2070 * Return value with the low bits set means error value, 2071 * ie 2072 * if (ret & ~PAGE_MASK) 2073 * error = ret; 2074 * 2075 * This function "knows" that -ENOMEM has the bits set. 2076 */ 2077 #ifndef HAVE_ARCH_UNMAPPED_AREA 2078 unsigned long 2079 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2080 unsigned long len, unsigned long pgoff, unsigned long flags) 2081 { 2082 struct mm_struct *mm = current->mm; 2083 struct vm_area_struct *vma, *prev; 2084 struct vm_unmapped_area_info info; 2085 const unsigned long mmap_end = arch_get_mmap_end(addr); 2086 2087 if (len > mmap_end - mmap_min_addr) 2088 return -ENOMEM; 2089 2090 if (flags & MAP_FIXED) 2091 return addr; 2092 2093 if (addr) { 2094 addr = PAGE_ALIGN(addr); 2095 vma = find_vma_prev(mm, addr, &prev); 2096 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2097 (!vma || addr + len <= vm_start_gap(vma)) && 2098 (!prev || addr >= vm_end_gap(prev))) 2099 return addr; 2100 } 2101 2102 info.flags = 0; 2103 info.length = len; 2104 info.low_limit = mm->mmap_base; 2105 info.high_limit = mmap_end; 2106 info.align_mask = 0; 2107 return vm_unmapped_area(&info); 2108 } 2109 #endif 2110 2111 /* 2112 * This mmap-allocator allocates new areas top-down from below the 2113 * stack's low limit (the base): 2114 */ 2115 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2116 unsigned long 2117 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2118 unsigned long len, unsigned long pgoff, 2119 unsigned long flags) 2120 { 2121 struct vm_area_struct *vma, *prev; 2122 struct mm_struct *mm = current->mm; 2123 struct vm_unmapped_area_info info; 2124 const unsigned long mmap_end = arch_get_mmap_end(addr); 2125 2126 /* requested length too big for entire address space */ 2127 if (len > mmap_end - mmap_min_addr) 2128 return -ENOMEM; 2129 2130 if (flags & MAP_FIXED) 2131 return addr; 2132 2133 /* requesting a specific address */ 2134 if (addr) { 2135 addr = PAGE_ALIGN(addr); 2136 vma = find_vma_prev(mm, addr, &prev); 2137 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2138 (!vma || addr + len <= vm_start_gap(vma)) && 2139 (!prev || addr >= vm_end_gap(prev))) 2140 return addr; 2141 } 2142 2143 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2144 info.length = len; 2145 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2146 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2147 info.align_mask = 0; 2148 addr = vm_unmapped_area(&info); 2149 2150 /* 2151 * A failed mmap() very likely causes application failure, 2152 * so fall back to the bottom-up function here. This scenario 2153 * can happen with large stack limits and large mmap() 2154 * allocations. 2155 */ 2156 if (offset_in_page(addr)) { 2157 VM_BUG_ON(addr != -ENOMEM); 2158 info.flags = 0; 2159 info.low_limit = TASK_UNMAPPED_BASE; 2160 info.high_limit = mmap_end; 2161 addr = vm_unmapped_area(&info); 2162 } 2163 2164 return addr; 2165 } 2166 #endif 2167 2168 unsigned long 2169 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2170 unsigned long pgoff, unsigned long flags) 2171 { 2172 unsigned long (*get_area)(struct file *, unsigned long, 2173 unsigned long, unsigned long, unsigned long); 2174 2175 unsigned long error = arch_mmap_check(addr, len, flags); 2176 if (error) 2177 return error; 2178 2179 /* Careful about overflows.. */ 2180 if (len > TASK_SIZE) 2181 return -ENOMEM; 2182 2183 get_area = current->mm->get_unmapped_area; 2184 if (file) { 2185 if (file->f_op->get_unmapped_area) 2186 get_area = file->f_op->get_unmapped_area; 2187 } else if (flags & MAP_SHARED) { 2188 /* 2189 * mmap_region() will call shmem_zero_setup() to create a file, 2190 * so use shmem's get_unmapped_area in case it can be huge. 2191 * do_mmap_pgoff() will clear pgoff, so match alignment. 2192 */ 2193 pgoff = 0; 2194 get_area = shmem_get_unmapped_area; 2195 } 2196 2197 addr = get_area(file, addr, len, pgoff, flags); 2198 if (IS_ERR_VALUE(addr)) 2199 return addr; 2200 2201 if (addr > TASK_SIZE - len) 2202 return -ENOMEM; 2203 if (offset_in_page(addr)) 2204 return -EINVAL; 2205 2206 error = security_mmap_addr(addr); 2207 return error ? error : addr; 2208 } 2209 2210 EXPORT_SYMBOL(get_unmapped_area); 2211 2212 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2213 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2214 { 2215 struct rb_node *rb_node; 2216 struct vm_area_struct *vma; 2217 2218 /* Check the cache first. */ 2219 vma = vmacache_find(mm, addr); 2220 if (likely(vma)) 2221 return vma; 2222 2223 rb_node = mm->mm_rb.rb_node; 2224 2225 while (rb_node) { 2226 struct vm_area_struct *tmp; 2227 2228 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2229 2230 if (tmp->vm_end > addr) { 2231 vma = tmp; 2232 if (tmp->vm_start <= addr) 2233 break; 2234 rb_node = rb_node->rb_left; 2235 } else 2236 rb_node = rb_node->rb_right; 2237 } 2238 2239 if (vma) 2240 vmacache_update(addr, vma); 2241 return vma; 2242 } 2243 2244 EXPORT_SYMBOL(find_vma); 2245 2246 /* 2247 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2248 */ 2249 struct vm_area_struct * 2250 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2251 struct vm_area_struct **pprev) 2252 { 2253 struct vm_area_struct *vma; 2254 2255 vma = find_vma(mm, addr); 2256 if (vma) { 2257 *pprev = vma->vm_prev; 2258 } else { 2259 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2260 2261 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2262 } 2263 return vma; 2264 } 2265 2266 /* 2267 * Verify that the stack growth is acceptable and 2268 * update accounting. This is shared with both the 2269 * grow-up and grow-down cases. 2270 */ 2271 static int acct_stack_growth(struct vm_area_struct *vma, 2272 unsigned long size, unsigned long grow) 2273 { 2274 struct mm_struct *mm = vma->vm_mm; 2275 unsigned long new_start; 2276 2277 /* address space limit tests */ 2278 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2279 return -ENOMEM; 2280 2281 /* Stack limit test */ 2282 if (size > rlimit(RLIMIT_STACK)) 2283 return -ENOMEM; 2284 2285 /* mlock limit tests */ 2286 if (vma->vm_flags & VM_LOCKED) { 2287 unsigned long locked; 2288 unsigned long limit; 2289 locked = mm->locked_vm + grow; 2290 limit = rlimit(RLIMIT_MEMLOCK); 2291 limit >>= PAGE_SHIFT; 2292 if (locked > limit && !capable(CAP_IPC_LOCK)) 2293 return -ENOMEM; 2294 } 2295 2296 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2297 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2298 vma->vm_end - size; 2299 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2300 return -EFAULT; 2301 2302 /* 2303 * Overcommit.. This must be the final test, as it will 2304 * update security statistics. 2305 */ 2306 if (security_vm_enough_memory_mm(mm, grow)) 2307 return -ENOMEM; 2308 2309 return 0; 2310 } 2311 2312 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2313 /* 2314 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2315 * vma is the last one with address > vma->vm_end. Have to extend vma. 2316 */ 2317 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2318 { 2319 struct mm_struct *mm = vma->vm_mm; 2320 struct vm_area_struct *next; 2321 unsigned long gap_addr; 2322 int error = 0; 2323 2324 if (!(vma->vm_flags & VM_GROWSUP)) 2325 return -EFAULT; 2326 2327 /* Guard against exceeding limits of the address space. */ 2328 address &= PAGE_MASK; 2329 if (address >= (TASK_SIZE & PAGE_MASK)) 2330 return -ENOMEM; 2331 address += PAGE_SIZE; 2332 2333 /* Enforce stack_guard_gap */ 2334 gap_addr = address + stack_guard_gap; 2335 2336 /* Guard against overflow */ 2337 if (gap_addr < address || gap_addr > TASK_SIZE) 2338 gap_addr = TASK_SIZE; 2339 2340 next = vma->vm_next; 2341 if (next && next->vm_start < gap_addr && 2342 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2343 if (!(next->vm_flags & VM_GROWSUP)) 2344 return -ENOMEM; 2345 /* Check that both stack segments have the same anon_vma? */ 2346 } 2347 2348 /* We must make sure the anon_vma is allocated. */ 2349 if (unlikely(anon_vma_prepare(vma))) 2350 return -ENOMEM; 2351 2352 /* 2353 * vma->vm_start/vm_end cannot change under us because the caller 2354 * is required to hold the mmap_sem in read mode. We need the 2355 * anon_vma lock to serialize against concurrent expand_stacks. 2356 */ 2357 anon_vma_lock_write(vma->anon_vma); 2358 2359 /* Somebody else might have raced and expanded it already */ 2360 if (address > vma->vm_end) { 2361 unsigned long size, grow; 2362 2363 size = address - vma->vm_start; 2364 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2365 2366 error = -ENOMEM; 2367 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2368 error = acct_stack_growth(vma, size, grow); 2369 if (!error) { 2370 /* 2371 * vma_gap_update() doesn't support concurrent 2372 * updates, but we only hold a shared mmap_sem 2373 * lock here, so we need to protect against 2374 * concurrent vma expansions. 2375 * anon_vma_lock_write() doesn't help here, as 2376 * we don't guarantee that all growable vmas 2377 * in a mm share the same root anon vma. 2378 * So, we reuse mm->page_table_lock to guard 2379 * against concurrent vma expansions. 2380 */ 2381 spin_lock(&mm->page_table_lock); 2382 if (vma->vm_flags & VM_LOCKED) 2383 mm->locked_vm += grow; 2384 vm_stat_account(mm, vma->vm_flags, grow); 2385 anon_vma_interval_tree_pre_update_vma(vma); 2386 vma->vm_end = address; 2387 anon_vma_interval_tree_post_update_vma(vma); 2388 if (vma->vm_next) 2389 vma_gap_update(vma->vm_next); 2390 else 2391 mm->highest_vm_end = vm_end_gap(vma); 2392 spin_unlock(&mm->page_table_lock); 2393 2394 perf_event_mmap(vma); 2395 } 2396 } 2397 } 2398 anon_vma_unlock_write(vma->anon_vma); 2399 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2400 validate_mm(mm); 2401 return error; 2402 } 2403 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2404 2405 /* 2406 * vma is the first one with address < vma->vm_start. Have to extend vma. 2407 */ 2408 int expand_downwards(struct vm_area_struct *vma, 2409 unsigned long address) 2410 { 2411 struct mm_struct *mm = vma->vm_mm; 2412 struct vm_area_struct *prev; 2413 int error = 0; 2414 2415 address &= PAGE_MASK; 2416 if (address < mmap_min_addr) 2417 return -EPERM; 2418 2419 /* Enforce stack_guard_gap */ 2420 prev = vma->vm_prev; 2421 /* Check that both stack segments have the same anon_vma? */ 2422 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2423 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2424 if (address - prev->vm_end < stack_guard_gap) 2425 return -ENOMEM; 2426 } 2427 2428 /* We must make sure the anon_vma is allocated. */ 2429 if (unlikely(anon_vma_prepare(vma))) 2430 return -ENOMEM; 2431 2432 /* 2433 * vma->vm_start/vm_end cannot change under us because the caller 2434 * is required to hold the mmap_sem in read mode. We need the 2435 * anon_vma lock to serialize against concurrent expand_stacks. 2436 */ 2437 anon_vma_lock_write(vma->anon_vma); 2438 2439 /* Somebody else might have raced and expanded it already */ 2440 if (address < vma->vm_start) { 2441 unsigned long size, grow; 2442 2443 size = vma->vm_end - address; 2444 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2445 2446 error = -ENOMEM; 2447 if (grow <= vma->vm_pgoff) { 2448 error = acct_stack_growth(vma, size, grow); 2449 if (!error) { 2450 /* 2451 * vma_gap_update() doesn't support concurrent 2452 * updates, but we only hold a shared mmap_sem 2453 * lock here, so we need to protect against 2454 * concurrent vma expansions. 2455 * anon_vma_lock_write() doesn't help here, as 2456 * we don't guarantee that all growable vmas 2457 * in a mm share the same root anon vma. 2458 * So, we reuse mm->page_table_lock to guard 2459 * against concurrent vma expansions. 2460 */ 2461 spin_lock(&mm->page_table_lock); 2462 if (vma->vm_flags & VM_LOCKED) 2463 mm->locked_vm += grow; 2464 vm_stat_account(mm, vma->vm_flags, grow); 2465 anon_vma_interval_tree_pre_update_vma(vma); 2466 vma->vm_start = address; 2467 vma->vm_pgoff -= grow; 2468 anon_vma_interval_tree_post_update_vma(vma); 2469 vma_gap_update(vma); 2470 spin_unlock(&mm->page_table_lock); 2471 2472 perf_event_mmap(vma); 2473 } 2474 } 2475 } 2476 anon_vma_unlock_write(vma->anon_vma); 2477 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2478 validate_mm(mm); 2479 return error; 2480 } 2481 2482 /* enforced gap between the expanding stack and other mappings. */ 2483 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2484 2485 static int __init cmdline_parse_stack_guard_gap(char *p) 2486 { 2487 unsigned long val; 2488 char *endptr; 2489 2490 val = simple_strtoul(p, &endptr, 10); 2491 if (!*endptr) 2492 stack_guard_gap = val << PAGE_SHIFT; 2493 2494 return 0; 2495 } 2496 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2497 2498 #ifdef CONFIG_STACK_GROWSUP 2499 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2500 { 2501 return expand_upwards(vma, address); 2502 } 2503 2504 struct vm_area_struct * 2505 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2506 { 2507 struct vm_area_struct *vma, *prev; 2508 2509 addr &= PAGE_MASK; 2510 vma = find_vma_prev(mm, addr, &prev); 2511 if (vma && (vma->vm_start <= addr)) 2512 return vma; 2513 /* don't alter vm_end if the coredump is running */ 2514 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr)) 2515 return NULL; 2516 if (prev->vm_flags & VM_LOCKED) 2517 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2518 return prev; 2519 } 2520 #else 2521 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2522 { 2523 return expand_downwards(vma, address); 2524 } 2525 2526 struct vm_area_struct * 2527 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2528 { 2529 struct vm_area_struct *vma; 2530 unsigned long start; 2531 2532 addr &= PAGE_MASK; 2533 vma = find_vma(mm, addr); 2534 if (!vma) 2535 return NULL; 2536 if (vma->vm_start <= addr) 2537 return vma; 2538 if (!(vma->vm_flags & VM_GROWSDOWN)) 2539 return NULL; 2540 /* don't alter vm_start if the coredump is running */ 2541 if (!mmget_still_valid(mm)) 2542 return NULL; 2543 start = vma->vm_start; 2544 if (expand_stack(vma, addr)) 2545 return NULL; 2546 if (vma->vm_flags & VM_LOCKED) 2547 populate_vma_page_range(vma, addr, start, NULL); 2548 return vma; 2549 } 2550 #endif 2551 2552 EXPORT_SYMBOL_GPL(find_extend_vma); 2553 2554 /* 2555 * Ok - we have the memory areas we should free on the vma list, 2556 * so release them, and do the vma updates. 2557 * 2558 * Called with the mm semaphore held. 2559 */ 2560 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2561 { 2562 unsigned long nr_accounted = 0; 2563 2564 /* Update high watermark before we lower total_vm */ 2565 update_hiwater_vm(mm); 2566 do { 2567 long nrpages = vma_pages(vma); 2568 2569 if (vma->vm_flags & VM_ACCOUNT) 2570 nr_accounted += nrpages; 2571 vm_stat_account(mm, vma->vm_flags, -nrpages); 2572 vma = remove_vma(vma); 2573 } while (vma); 2574 vm_unacct_memory(nr_accounted); 2575 validate_mm(mm); 2576 } 2577 2578 /* 2579 * Get rid of page table information in the indicated region. 2580 * 2581 * Called with the mm semaphore held. 2582 */ 2583 static void unmap_region(struct mm_struct *mm, 2584 struct vm_area_struct *vma, struct vm_area_struct *prev, 2585 unsigned long start, unsigned long end) 2586 { 2587 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2588 struct mmu_gather tlb; 2589 2590 lru_add_drain(); 2591 tlb_gather_mmu(&tlb, mm, start, end); 2592 update_hiwater_rss(mm); 2593 unmap_vmas(&tlb, vma, start, end); 2594 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2595 next ? next->vm_start : USER_PGTABLES_CEILING); 2596 tlb_finish_mmu(&tlb, start, end); 2597 } 2598 2599 /* 2600 * Create a list of vma's touched by the unmap, removing them from the mm's 2601 * vma list as we go.. 2602 */ 2603 static void 2604 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2605 struct vm_area_struct *prev, unsigned long end) 2606 { 2607 struct vm_area_struct **insertion_point; 2608 struct vm_area_struct *tail_vma = NULL; 2609 2610 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2611 vma->vm_prev = NULL; 2612 do { 2613 vma_rb_erase(vma, &mm->mm_rb); 2614 mm->map_count--; 2615 tail_vma = vma; 2616 vma = vma->vm_next; 2617 } while (vma && vma->vm_start < end); 2618 *insertion_point = vma; 2619 if (vma) { 2620 vma->vm_prev = prev; 2621 vma_gap_update(vma); 2622 } else 2623 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2624 tail_vma->vm_next = NULL; 2625 2626 /* Kill the cache */ 2627 vmacache_invalidate(mm); 2628 } 2629 2630 /* 2631 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2632 * has already been checked or doesn't make sense to fail. 2633 */ 2634 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2635 unsigned long addr, int new_below) 2636 { 2637 struct vm_area_struct *new; 2638 int err; 2639 2640 if (vma->vm_ops && vma->vm_ops->split) { 2641 err = vma->vm_ops->split(vma, addr); 2642 if (err) 2643 return err; 2644 } 2645 2646 new = vm_area_dup(vma); 2647 if (!new) 2648 return -ENOMEM; 2649 2650 if (new_below) 2651 new->vm_end = addr; 2652 else { 2653 new->vm_start = addr; 2654 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2655 } 2656 2657 err = vma_dup_policy(vma, new); 2658 if (err) 2659 goto out_free_vma; 2660 2661 err = anon_vma_clone(new, vma); 2662 if (err) 2663 goto out_free_mpol; 2664 2665 if (new->vm_file) 2666 get_file(new->vm_file); 2667 2668 if (new->vm_ops && new->vm_ops->open) 2669 new->vm_ops->open(new); 2670 2671 if (new_below) 2672 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2673 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2674 else 2675 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2676 2677 /* Success. */ 2678 if (!err) 2679 return 0; 2680 2681 /* Clean everything up if vma_adjust failed. */ 2682 if (new->vm_ops && new->vm_ops->close) 2683 new->vm_ops->close(new); 2684 if (new->vm_file) 2685 fput(new->vm_file); 2686 unlink_anon_vmas(new); 2687 out_free_mpol: 2688 mpol_put(vma_policy(new)); 2689 out_free_vma: 2690 vm_area_free(new); 2691 return err; 2692 } 2693 2694 /* 2695 * Split a vma into two pieces at address 'addr', a new vma is allocated 2696 * either for the first part or the tail. 2697 */ 2698 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2699 unsigned long addr, int new_below) 2700 { 2701 if (mm->map_count >= sysctl_max_map_count) 2702 return -ENOMEM; 2703 2704 return __split_vma(mm, vma, addr, new_below); 2705 } 2706 2707 /* Munmap is split into 2 main parts -- this part which finds 2708 * what needs doing, and the areas themselves, which do the 2709 * work. This now handles partial unmappings. 2710 * Jeremy Fitzhardinge <jeremy@goop.org> 2711 */ 2712 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2713 struct list_head *uf, bool downgrade) 2714 { 2715 unsigned long end; 2716 struct vm_area_struct *vma, *prev, *last; 2717 2718 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2719 return -EINVAL; 2720 2721 len = PAGE_ALIGN(len); 2722 end = start + len; 2723 if (len == 0) 2724 return -EINVAL; 2725 2726 /* 2727 * arch_unmap() might do unmaps itself. It must be called 2728 * and finish any rbtree manipulation before this code 2729 * runs and also starts to manipulate the rbtree. 2730 */ 2731 arch_unmap(mm, start, end); 2732 2733 /* Find the first overlapping VMA */ 2734 vma = find_vma(mm, start); 2735 if (!vma) 2736 return 0; 2737 prev = vma->vm_prev; 2738 /* we have start < vma->vm_end */ 2739 2740 /* if it doesn't overlap, we have nothing.. */ 2741 if (vma->vm_start >= end) 2742 return 0; 2743 2744 /* 2745 * If we need to split any vma, do it now to save pain later. 2746 * 2747 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2748 * unmapped vm_area_struct will remain in use: so lower split_vma 2749 * places tmp vma above, and higher split_vma places tmp vma below. 2750 */ 2751 if (start > vma->vm_start) { 2752 int error; 2753 2754 /* 2755 * Make sure that map_count on return from munmap() will 2756 * not exceed its limit; but let map_count go just above 2757 * its limit temporarily, to help free resources as expected. 2758 */ 2759 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2760 return -ENOMEM; 2761 2762 error = __split_vma(mm, vma, start, 0); 2763 if (error) 2764 return error; 2765 prev = vma; 2766 } 2767 2768 /* Does it split the last one? */ 2769 last = find_vma(mm, end); 2770 if (last && end > last->vm_start) { 2771 int error = __split_vma(mm, last, end, 1); 2772 if (error) 2773 return error; 2774 } 2775 vma = prev ? prev->vm_next : mm->mmap; 2776 2777 if (unlikely(uf)) { 2778 /* 2779 * If userfaultfd_unmap_prep returns an error the vmas 2780 * will remain splitted, but userland will get a 2781 * highly unexpected error anyway. This is no 2782 * different than the case where the first of the two 2783 * __split_vma fails, but we don't undo the first 2784 * split, despite we could. This is unlikely enough 2785 * failure that it's not worth optimizing it for. 2786 */ 2787 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2788 if (error) 2789 return error; 2790 } 2791 2792 /* 2793 * unlock any mlock()ed ranges before detaching vmas 2794 */ 2795 if (mm->locked_vm) { 2796 struct vm_area_struct *tmp = vma; 2797 while (tmp && tmp->vm_start < end) { 2798 if (tmp->vm_flags & VM_LOCKED) { 2799 mm->locked_vm -= vma_pages(tmp); 2800 munlock_vma_pages_all(tmp); 2801 } 2802 2803 tmp = tmp->vm_next; 2804 } 2805 } 2806 2807 /* Detach vmas from rbtree */ 2808 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2809 2810 if (downgrade) 2811 downgrade_write(&mm->mmap_sem); 2812 2813 unmap_region(mm, vma, prev, start, end); 2814 2815 /* Fix up all other VM information */ 2816 remove_vma_list(mm, vma); 2817 2818 return downgrade ? 1 : 0; 2819 } 2820 2821 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2822 struct list_head *uf) 2823 { 2824 return __do_munmap(mm, start, len, uf, false); 2825 } 2826 2827 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2828 { 2829 int ret; 2830 struct mm_struct *mm = current->mm; 2831 LIST_HEAD(uf); 2832 2833 if (down_write_killable(&mm->mmap_sem)) 2834 return -EINTR; 2835 2836 ret = __do_munmap(mm, start, len, &uf, downgrade); 2837 /* 2838 * Returning 1 indicates mmap_sem is downgraded. 2839 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2840 * it to 0 before return. 2841 */ 2842 if (ret == 1) { 2843 up_read(&mm->mmap_sem); 2844 ret = 0; 2845 } else 2846 up_write(&mm->mmap_sem); 2847 2848 userfaultfd_unmap_complete(mm, &uf); 2849 return ret; 2850 } 2851 2852 int vm_munmap(unsigned long start, size_t len) 2853 { 2854 return __vm_munmap(start, len, false); 2855 } 2856 EXPORT_SYMBOL(vm_munmap); 2857 2858 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2859 { 2860 addr = untagged_addr(addr); 2861 profile_munmap(addr); 2862 return __vm_munmap(addr, len, true); 2863 } 2864 2865 2866 /* 2867 * Emulation of deprecated remap_file_pages() syscall. 2868 */ 2869 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2870 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2871 { 2872 2873 struct mm_struct *mm = current->mm; 2874 struct vm_area_struct *vma; 2875 unsigned long populate = 0; 2876 unsigned long ret = -EINVAL; 2877 struct file *file; 2878 2879 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2880 current->comm, current->pid); 2881 2882 if (prot) 2883 return ret; 2884 start = start & PAGE_MASK; 2885 size = size & PAGE_MASK; 2886 2887 if (start + size <= start) 2888 return ret; 2889 2890 /* Does pgoff wrap? */ 2891 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2892 return ret; 2893 2894 if (down_write_killable(&mm->mmap_sem)) 2895 return -EINTR; 2896 2897 vma = find_vma(mm, start); 2898 2899 if (!vma || !(vma->vm_flags & VM_SHARED)) 2900 goto out; 2901 2902 if (start < vma->vm_start) 2903 goto out; 2904 2905 if (start + size > vma->vm_end) { 2906 struct vm_area_struct *next; 2907 2908 for (next = vma->vm_next; next; next = next->vm_next) { 2909 /* hole between vmas ? */ 2910 if (next->vm_start != next->vm_prev->vm_end) 2911 goto out; 2912 2913 if (next->vm_file != vma->vm_file) 2914 goto out; 2915 2916 if (next->vm_flags != vma->vm_flags) 2917 goto out; 2918 2919 if (start + size <= next->vm_end) 2920 break; 2921 } 2922 2923 if (!next) 2924 goto out; 2925 } 2926 2927 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2928 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2929 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2930 2931 flags &= MAP_NONBLOCK; 2932 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2933 if (vma->vm_flags & VM_LOCKED) { 2934 struct vm_area_struct *tmp; 2935 flags |= MAP_LOCKED; 2936 2937 /* drop PG_Mlocked flag for over-mapped range */ 2938 for (tmp = vma; tmp->vm_start >= start + size; 2939 tmp = tmp->vm_next) { 2940 /* 2941 * Split pmd and munlock page on the border 2942 * of the range. 2943 */ 2944 vma_adjust_trans_huge(tmp, start, start + size, 0); 2945 2946 munlock_vma_pages_range(tmp, 2947 max(tmp->vm_start, start), 2948 min(tmp->vm_end, start + size)); 2949 } 2950 } 2951 2952 file = get_file(vma->vm_file); 2953 ret = do_mmap_pgoff(vma->vm_file, start, size, 2954 prot, flags, pgoff, &populate, NULL); 2955 fput(file); 2956 out: 2957 up_write(&mm->mmap_sem); 2958 if (populate) 2959 mm_populate(ret, populate); 2960 if (!IS_ERR_VALUE(ret)) 2961 ret = 0; 2962 return ret; 2963 } 2964 2965 /* 2966 * this is really a simplified "do_mmap". it only handles 2967 * anonymous maps. eventually we may be able to do some 2968 * brk-specific accounting here. 2969 */ 2970 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 2971 { 2972 struct mm_struct *mm = current->mm; 2973 struct vm_area_struct *vma, *prev; 2974 struct rb_node **rb_link, *rb_parent; 2975 pgoff_t pgoff = addr >> PAGE_SHIFT; 2976 int error; 2977 unsigned long mapped_addr; 2978 2979 /* Until we need other flags, refuse anything except VM_EXEC. */ 2980 if ((flags & (~VM_EXEC)) != 0) 2981 return -EINVAL; 2982 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2983 2984 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2985 if (IS_ERR_VALUE(mapped_addr)) 2986 return mapped_addr; 2987 2988 error = mlock_future_check(mm, mm->def_flags, len); 2989 if (error) 2990 return error; 2991 2992 /* 2993 * Clear old maps. this also does some error checking for us 2994 */ 2995 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2996 &rb_parent)) { 2997 if (do_munmap(mm, addr, len, uf)) 2998 return -ENOMEM; 2999 } 3000 3001 /* Check against address space limits *after* clearing old maps... */ 3002 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3003 return -ENOMEM; 3004 3005 if (mm->map_count > sysctl_max_map_count) 3006 return -ENOMEM; 3007 3008 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3009 return -ENOMEM; 3010 3011 /* Can we just expand an old private anonymous mapping? */ 3012 vma = vma_merge(mm, prev, addr, addr + len, flags, 3013 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3014 if (vma) 3015 goto out; 3016 3017 /* 3018 * create a vma struct for an anonymous mapping 3019 */ 3020 vma = vm_area_alloc(mm); 3021 if (!vma) { 3022 vm_unacct_memory(len >> PAGE_SHIFT); 3023 return -ENOMEM; 3024 } 3025 3026 vma_set_anonymous(vma); 3027 vma->vm_start = addr; 3028 vma->vm_end = addr + len; 3029 vma->vm_pgoff = pgoff; 3030 vma->vm_flags = flags; 3031 vma->vm_page_prot = vm_get_page_prot(flags); 3032 vma_link(mm, vma, prev, rb_link, rb_parent); 3033 out: 3034 perf_event_mmap(vma); 3035 mm->total_vm += len >> PAGE_SHIFT; 3036 mm->data_vm += len >> PAGE_SHIFT; 3037 if (flags & VM_LOCKED) 3038 mm->locked_vm += (len >> PAGE_SHIFT); 3039 vma->vm_flags |= VM_SOFTDIRTY; 3040 return 0; 3041 } 3042 3043 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3044 { 3045 struct mm_struct *mm = current->mm; 3046 unsigned long len; 3047 int ret; 3048 bool populate; 3049 LIST_HEAD(uf); 3050 3051 len = PAGE_ALIGN(request); 3052 if (len < request) 3053 return -ENOMEM; 3054 if (!len) 3055 return 0; 3056 3057 if (down_write_killable(&mm->mmap_sem)) 3058 return -EINTR; 3059 3060 ret = do_brk_flags(addr, len, flags, &uf); 3061 populate = ((mm->def_flags & VM_LOCKED) != 0); 3062 up_write(&mm->mmap_sem); 3063 userfaultfd_unmap_complete(mm, &uf); 3064 if (populate && !ret) 3065 mm_populate(addr, len); 3066 return ret; 3067 } 3068 EXPORT_SYMBOL(vm_brk_flags); 3069 3070 int vm_brk(unsigned long addr, unsigned long len) 3071 { 3072 return vm_brk_flags(addr, len, 0); 3073 } 3074 EXPORT_SYMBOL(vm_brk); 3075 3076 /* Release all mmaps. */ 3077 void exit_mmap(struct mm_struct *mm) 3078 { 3079 struct mmu_gather tlb; 3080 struct vm_area_struct *vma; 3081 unsigned long nr_accounted = 0; 3082 3083 /* mm's last user has gone, and its about to be pulled down */ 3084 mmu_notifier_release(mm); 3085 3086 if (unlikely(mm_is_oom_victim(mm))) { 3087 /* 3088 * Manually reap the mm to free as much memory as possible. 3089 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3090 * this mm from further consideration. Taking mm->mmap_sem for 3091 * write after setting MMF_OOM_SKIP will guarantee that the oom 3092 * reaper will not run on this mm again after mmap_sem is 3093 * dropped. 3094 * 3095 * Nothing can be holding mm->mmap_sem here and the above call 3096 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3097 * __oom_reap_task_mm() will not block. 3098 * 3099 * This needs to be done before calling munlock_vma_pages_all(), 3100 * which clears VM_LOCKED, otherwise the oom reaper cannot 3101 * reliably test it. 3102 */ 3103 (void)__oom_reap_task_mm(mm); 3104 3105 set_bit(MMF_OOM_SKIP, &mm->flags); 3106 down_write(&mm->mmap_sem); 3107 up_write(&mm->mmap_sem); 3108 } 3109 3110 if (mm->locked_vm) { 3111 vma = mm->mmap; 3112 while (vma) { 3113 if (vma->vm_flags & VM_LOCKED) 3114 munlock_vma_pages_all(vma); 3115 vma = vma->vm_next; 3116 } 3117 } 3118 3119 arch_exit_mmap(mm); 3120 3121 vma = mm->mmap; 3122 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3123 return; 3124 3125 lru_add_drain(); 3126 flush_cache_mm(mm); 3127 tlb_gather_mmu(&tlb, mm, 0, -1); 3128 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3129 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3130 unmap_vmas(&tlb, vma, 0, -1); 3131 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3132 tlb_finish_mmu(&tlb, 0, -1); 3133 3134 /* 3135 * Walk the list again, actually closing and freeing it, 3136 * with preemption enabled, without holding any MM locks. 3137 */ 3138 while (vma) { 3139 if (vma->vm_flags & VM_ACCOUNT) 3140 nr_accounted += vma_pages(vma); 3141 vma = remove_vma(vma); 3142 } 3143 vm_unacct_memory(nr_accounted); 3144 } 3145 3146 /* Insert vm structure into process list sorted by address 3147 * and into the inode's i_mmap tree. If vm_file is non-NULL 3148 * then i_mmap_rwsem is taken here. 3149 */ 3150 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3151 { 3152 struct vm_area_struct *prev; 3153 struct rb_node **rb_link, *rb_parent; 3154 3155 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3156 &prev, &rb_link, &rb_parent)) 3157 return -ENOMEM; 3158 if ((vma->vm_flags & VM_ACCOUNT) && 3159 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3160 return -ENOMEM; 3161 3162 /* 3163 * The vm_pgoff of a purely anonymous vma should be irrelevant 3164 * until its first write fault, when page's anon_vma and index 3165 * are set. But now set the vm_pgoff it will almost certainly 3166 * end up with (unless mremap moves it elsewhere before that 3167 * first wfault), so /proc/pid/maps tells a consistent story. 3168 * 3169 * By setting it to reflect the virtual start address of the 3170 * vma, merges and splits can happen in a seamless way, just 3171 * using the existing file pgoff checks and manipulations. 3172 * Similarly in do_mmap_pgoff and in do_brk. 3173 */ 3174 if (vma_is_anonymous(vma)) { 3175 BUG_ON(vma->anon_vma); 3176 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3177 } 3178 3179 vma_link(mm, vma, prev, rb_link, rb_parent); 3180 return 0; 3181 } 3182 3183 /* 3184 * Copy the vma structure to a new location in the same mm, 3185 * prior to moving page table entries, to effect an mremap move. 3186 */ 3187 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3188 unsigned long addr, unsigned long len, pgoff_t pgoff, 3189 bool *need_rmap_locks) 3190 { 3191 struct vm_area_struct *vma = *vmap; 3192 unsigned long vma_start = vma->vm_start; 3193 struct mm_struct *mm = vma->vm_mm; 3194 struct vm_area_struct *new_vma, *prev; 3195 struct rb_node **rb_link, *rb_parent; 3196 bool faulted_in_anon_vma = true; 3197 3198 /* 3199 * If anonymous vma has not yet been faulted, update new pgoff 3200 * to match new location, to increase its chance of merging. 3201 */ 3202 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3203 pgoff = addr >> PAGE_SHIFT; 3204 faulted_in_anon_vma = false; 3205 } 3206 3207 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3208 return NULL; /* should never get here */ 3209 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3210 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3211 vma->vm_userfaultfd_ctx); 3212 if (new_vma) { 3213 /* 3214 * Source vma may have been merged into new_vma 3215 */ 3216 if (unlikely(vma_start >= new_vma->vm_start && 3217 vma_start < new_vma->vm_end)) { 3218 /* 3219 * The only way we can get a vma_merge with 3220 * self during an mremap is if the vma hasn't 3221 * been faulted in yet and we were allowed to 3222 * reset the dst vma->vm_pgoff to the 3223 * destination address of the mremap to allow 3224 * the merge to happen. mremap must change the 3225 * vm_pgoff linearity between src and dst vmas 3226 * (in turn preventing a vma_merge) to be 3227 * safe. It is only safe to keep the vm_pgoff 3228 * linear if there are no pages mapped yet. 3229 */ 3230 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3231 *vmap = vma = new_vma; 3232 } 3233 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3234 } else { 3235 new_vma = vm_area_dup(vma); 3236 if (!new_vma) 3237 goto out; 3238 new_vma->vm_start = addr; 3239 new_vma->vm_end = addr + len; 3240 new_vma->vm_pgoff = pgoff; 3241 if (vma_dup_policy(vma, new_vma)) 3242 goto out_free_vma; 3243 if (anon_vma_clone(new_vma, vma)) 3244 goto out_free_mempol; 3245 if (new_vma->vm_file) 3246 get_file(new_vma->vm_file); 3247 if (new_vma->vm_ops && new_vma->vm_ops->open) 3248 new_vma->vm_ops->open(new_vma); 3249 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3250 *need_rmap_locks = false; 3251 } 3252 return new_vma; 3253 3254 out_free_mempol: 3255 mpol_put(vma_policy(new_vma)); 3256 out_free_vma: 3257 vm_area_free(new_vma); 3258 out: 3259 return NULL; 3260 } 3261 3262 /* 3263 * Return true if the calling process may expand its vm space by the passed 3264 * number of pages 3265 */ 3266 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3267 { 3268 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3269 return false; 3270 3271 if (is_data_mapping(flags) && 3272 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3273 /* Workaround for Valgrind */ 3274 if (rlimit(RLIMIT_DATA) == 0 && 3275 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3276 return true; 3277 3278 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3279 current->comm, current->pid, 3280 (mm->data_vm + npages) << PAGE_SHIFT, 3281 rlimit(RLIMIT_DATA), 3282 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3283 3284 if (!ignore_rlimit_data) 3285 return false; 3286 } 3287 3288 return true; 3289 } 3290 3291 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3292 { 3293 mm->total_vm += npages; 3294 3295 if (is_exec_mapping(flags)) 3296 mm->exec_vm += npages; 3297 else if (is_stack_mapping(flags)) 3298 mm->stack_vm += npages; 3299 else if (is_data_mapping(flags)) 3300 mm->data_vm += npages; 3301 } 3302 3303 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3304 3305 /* 3306 * Having a close hook prevents vma merging regardless of flags. 3307 */ 3308 static void special_mapping_close(struct vm_area_struct *vma) 3309 { 3310 } 3311 3312 static const char *special_mapping_name(struct vm_area_struct *vma) 3313 { 3314 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3315 } 3316 3317 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3318 { 3319 struct vm_special_mapping *sm = new_vma->vm_private_data; 3320 3321 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3322 return -EFAULT; 3323 3324 if (sm->mremap) 3325 return sm->mremap(sm, new_vma); 3326 3327 return 0; 3328 } 3329 3330 static const struct vm_operations_struct special_mapping_vmops = { 3331 .close = special_mapping_close, 3332 .fault = special_mapping_fault, 3333 .mremap = special_mapping_mremap, 3334 .name = special_mapping_name, 3335 /* vDSO code relies that VVAR can't be accessed remotely */ 3336 .access = NULL, 3337 }; 3338 3339 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3340 .close = special_mapping_close, 3341 .fault = special_mapping_fault, 3342 }; 3343 3344 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3345 { 3346 struct vm_area_struct *vma = vmf->vma; 3347 pgoff_t pgoff; 3348 struct page **pages; 3349 3350 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3351 pages = vma->vm_private_data; 3352 } else { 3353 struct vm_special_mapping *sm = vma->vm_private_data; 3354 3355 if (sm->fault) 3356 return sm->fault(sm, vmf->vma, vmf); 3357 3358 pages = sm->pages; 3359 } 3360 3361 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3362 pgoff--; 3363 3364 if (*pages) { 3365 struct page *page = *pages; 3366 get_page(page); 3367 vmf->page = page; 3368 return 0; 3369 } 3370 3371 return VM_FAULT_SIGBUS; 3372 } 3373 3374 static struct vm_area_struct *__install_special_mapping( 3375 struct mm_struct *mm, 3376 unsigned long addr, unsigned long len, 3377 unsigned long vm_flags, void *priv, 3378 const struct vm_operations_struct *ops) 3379 { 3380 int ret; 3381 struct vm_area_struct *vma; 3382 3383 vma = vm_area_alloc(mm); 3384 if (unlikely(vma == NULL)) 3385 return ERR_PTR(-ENOMEM); 3386 3387 vma->vm_start = addr; 3388 vma->vm_end = addr + len; 3389 3390 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3391 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3392 3393 vma->vm_ops = ops; 3394 vma->vm_private_data = priv; 3395 3396 ret = insert_vm_struct(mm, vma); 3397 if (ret) 3398 goto out; 3399 3400 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3401 3402 perf_event_mmap(vma); 3403 3404 return vma; 3405 3406 out: 3407 vm_area_free(vma); 3408 return ERR_PTR(ret); 3409 } 3410 3411 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3412 const struct vm_special_mapping *sm) 3413 { 3414 return vma->vm_private_data == sm && 3415 (vma->vm_ops == &special_mapping_vmops || 3416 vma->vm_ops == &legacy_special_mapping_vmops); 3417 } 3418 3419 /* 3420 * Called with mm->mmap_sem held for writing. 3421 * Insert a new vma covering the given region, with the given flags. 3422 * Its pages are supplied by the given array of struct page *. 3423 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3424 * The region past the last page supplied will always produce SIGBUS. 3425 * The array pointer and the pages it points to are assumed to stay alive 3426 * for as long as this mapping might exist. 3427 */ 3428 struct vm_area_struct *_install_special_mapping( 3429 struct mm_struct *mm, 3430 unsigned long addr, unsigned long len, 3431 unsigned long vm_flags, const struct vm_special_mapping *spec) 3432 { 3433 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3434 &special_mapping_vmops); 3435 } 3436 3437 int install_special_mapping(struct mm_struct *mm, 3438 unsigned long addr, unsigned long len, 3439 unsigned long vm_flags, struct page **pages) 3440 { 3441 struct vm_area_struct *vma = __install_special_mapping( 3442 mm, addr, len, vm_flags, (void *)pages, 3443 &legacy_special_mapping_vmops); 3444 3445 return PTR_ERR_OR_ZERO(vma); 3446 } 3447 3448 static DEFINE_MUTEX(mm_all_locks_mutex); 3449 3450 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3451 { 3452 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3453 /* 3454 * The LSB of head.next can't change from under us 3455 * because we hold the mm_all_locks_mutex. 3456 */ 3457 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3458 /* 3459 * We can safely modify head.next after taking the 3460 * anon_vma->root->rwsem. If some other vma in this mm shares 3461 * the same anon_vma we won't take it again. 3462 * 3463 * No need of atomic instructions here, head.next 3464 * can't change from under us thanks to the 3465 * anon_vma->root->rwsem. 3466 */ 3467 if (__test_and_set_bit(0, (unsigned long *) 3468 &anon_vma->root->rb_root.rb_root.rb_node)) 3469 BUG(); 3470 } 3471 } 3472 3473 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3474 { 3475 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3476 /* 3477 * AS_MM_ALL_LOCKS can't change from under us because 3478 * we hold the mm_all_locks_mutex. 3479 * 3480 * Operations on ->flags have to be atomic because 3481 * even if AS_MM_ALL_LOCKS is stable thanks to the 3482 * mm_all_locks_mutex, there may be other cpus 3483 * changing other bitflags in parallel to us. 3484 */ 3485 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3486 BUG(); 3487 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3488 } 3489 } 3490 3491 /* 3492 * This operation locks against the VM for all pte/vma/mm related 3493 * operations that could ever happen on a certain mm. This includes 3494 * vmtruncate, try_to_unmap, and all page faults. 3495 * 3496 * The caller must take the mmap_sem in write mode before calling 3497 * mm_take_all_locks(). The caller isn't allowed to release the 3498 * mmap_sem until mm_drop_all_locks() returns. 3499 * 3500 * mmap_sem in write mode is required in order to block all operations 3501 * that could modify pagetables and free pages without need of 3502 * altering the vma layout. It's also needed in write mode to avoid new 3503 * anon_vmas to be associated with existing vmas. 3504 * 3505 * A single task can't take more than one mm_take_all_locks() in a row 3506 * or it would deadlock. 3507 * 3508 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3509 * mapping->flags avoid to take the same lock twice, if more than one 3510 * vma in this mm is backed by the same anon_vma or address_space. 3511 * 3512 * We take locks in following order, accordingly to comment at beginning 3513 * of mm/rmap.c: 3514 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3515 * hugetlb mapping); 3516 * - all i_mmap_rwsem locks; 3517 * - all anon_vma->rwseml 3518 * 3519 * We can take all locks within these types randomly because the VM code 3520 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3521 * mm_all_locks_mutex. 3522 * 3523 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3524 * that may have to take thousand of locks. 3525 * 3526 * mm_take_all_locks() can fail if it's interrupted by signals. 3527 */ 3528 int mm_take_all_locks(struct mm_struct *mm) 3529 { 3530 struct vm_area_struct *vma; 3531 struct anon_vma_chain *avc; 3532 3533 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3534 3535 mutex_lock(&mm_all_locks_mutex); 3536 3537 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3538 if (signal_pending(current)) 3539 goto out_unlock; 3540 if (vma->vm_file && vma->vm_file->f_mapping && 3541 is_vm_hugetlb_page(vma)) 3542 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3543 } 3544 3545 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3546 if (signal_pending(current)) 3547 goto out_unlock; 3548 if (vma->vm_file && vma->vm_file->f_mapping && 3549 !is_vm_hugetlb_page(vma)) 3550 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3551 } 3552 3553 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3554 if (signal_pending(current)) 3555 goto out_unlock; 3556 if (vma->anon_vma) 3557 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3558 vm_lock_anon_vma(mm, avc->anon_vma); 3559 } 3560 3561 return 0; 3562 3563 out_unlock: 3564 mm_drop_all_locks(mm); 3565 return -EINTR; 3566 } 3567 3568 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3569 { 3570 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3571 /* 3572 * The LSB of head.next can't change to 0 from under 3573 * us because we hold the mm_all_locks_mutex. 3574 * 3575 * We must however clear the bitflag before unlocking 3576 * the vma so the users using the anon_vma->rb_root will 3577 * never see our bitflag. 3578 * 3579 * No need of atomic instructions here, head.next 3580 * can't change from under us until we release the 3581 * anon_vma->root->rwsem. 3582 */ 3583 if (!__test_and_clear_bit(0, (unsigned long *) 3584 &anon_vma->root->rb_root.rb_root.rb_node)) 3585 BUG(); 3586 anon_vma_unlock_write(anon_vma); 3587 } 3588 } 3589 3590 static void vm_unlock_mapping(struct address_space *mapping) 3591 { 3592 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3593 /* 3594 * AS_MM_ALL_LOCKS can't change to 0 from under us 3595 * because we hold the mm_all_locks_mutex. 3596 */ 3597 i_mmap_unlock_write(mapping); 3598 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3599 &mapping->flags)) 3600 BUG(); 3601 } 3602 } 3603 3604 /* 3605 * The mmap_sem cannot be released by the caller until 3606 * mm_drop_all_locks() returns. 3607 */ 3608 void mm_drop_all_locks(struct mm_struct *mm) 3609 { 3610 struct vm_area_struct *vma; 3611 struct anon_vma_chain *avc; 3612 3613 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3614 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3615 3616 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3617 if (vma->anon_vma) 3618 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3619 vm_unlock_anon_vma(avc->anon_vma); 3620 if (vma->vm_file && vma->vm_file->f_mapping) 3621 vm_unlock_mapping(vma->vm_file->f_mapping); 3622 } 3623 3624 mutex_unlock(&mm_all_locks_mutex); 3625 } 3626 3627 /* 3628 * initialise the percpu counter for VM 3629 */ 3630 void __init mmap_init(void) 3631 { 3632 int ret; 3633 3634 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3635 VM_BUG_ON(ret); 3636 } 3637 3638 /* 3639 * Initialise sysctl_user_reserve_kbytes. 3640 * 3641 * This is intended to prevent a user from starting a single memory hogging 3642 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3643 * mode. 3644 * 3645 * The default value is min(3% of free memory, 128MB) 3646 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3647 */ 3648 static int init_user_reserve(void) 3649 { 3650 unsigned long free_kbytes; 3651 3652 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3653 3654 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3655 return 0; 3656 } 3657 subsys_initcall(init_user_reserve); 3658 3659 /* 3660 * Initialise sysctl_admin_reserve_kbytes. 3661 * 3662 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3663 * to log in and kill a memory hogging process. 3664 * 3665 * Systems with more than 256MB will reserve 8MB, enough to recover 3666 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3667 * only reserve 3% of free pages by default. 3668 */ 3669 static int init_admin_reserve(void) 3670 { 3671 unsigned long free_kbytes; 3672 3673 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3674 3675 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3676 return 0; 3677 } 3678 subsys_initcall(init_admin_reserve); 3679 3680 /* 3681 * Reinititalise user and admin reserves if memory is added or removed. 3682 * 3683 * The default user reserve max is 128MB, and the default max for the 3684 * admin reserve is 8MB. These are usually, but not always, enough to 3685 * enable recovery from a memory hogging process using login/sshd, a shell, 3686 * and tools like top. It may make sense to increase or even disable the 3687 * reserve depending on the existence of swap or variations in the recovery 3688 * tools. So, the admin may have changed them. 3689 * 3690 * If memory is added and the reserves have been eliminated or increased above 3691 * the default max, then we'll trust the admin. 3692 * 3693 * If memory is removed and there isn't enough free memory, then we 3694 * need to reset the reserves. 3695 * 3696 * Otherwise keep the reserve set by the admin. 3697 */ 3698 static int reserve_mem_notifier(struct notifier_block *nb, 3699 unsigned long action, void *data) 3700 { 3701 unsigned long tmp, free_kbytes; 3702 3703 switch (action) { 3704 case MEM_ONLINE: 3705 /* Default max is 128MB. Leave alone if modified by operator. */ 3706 tmp = sysctl_user_reserve_kbytes; 3707 if (0 < tmp && tmp < (1UL << 17)) 3708 init_user_reserve(); 3709 3710 /* Default max is 8MB. Leave alone if modified by operator. */ 3711 tmp = sysctl_admin_reserve_kbytes; 3712 if (0 < tmp && tmp < (1UL << 13)) 3713 init_admin_reserve(); 3714 3715 break; 3716 case MEM_OFFLINE: 3717 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3718 3719 if (sysctl_user_reserve_kbytes > free_kbytes) { 3720 init_user_reserve(); 3721 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3722 sysctl_user_reserve_kbytes); 3723 } 3724 3725 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3726 init_admin_reserve(); 3727 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3728 sysctl_admin_reserve_kbytes); 3729 } 3730 break; 3731 default: 3732 break; 3733 } 3734 return NOTIFY_OK; 3735 } 3736 3737 static struct notifier_block reserve_mem_nb = { 3738 .notifier_call = reserve_mem_notifier, 3739 }; 3740 3741 static int __meminit init_reserve_notifier(void) 3742 { 3743 if (register_hotmemory_notifier(&reserve_mem_nb)) 3744 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3745 3746 return 0; 3747 } 3748 subsys_initcall(init_reserve_notifier); 3749