1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 unsigned long start, unsigned long end); 82 83 /* description of effects of mapping type and prot in current implementation. 84 * this is due to the limited x86 page protection hardware. The expected 85 * behavior is in parens: 86 * 87 * map_type prot 88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 90 * w: (no) no w: (no) no w: (yes) yes w: (no) no 91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 92 * 93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 94 * w: (no) no w: (no) no w: (copy) copy w: (no) no 95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 96 * 97 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 98 * MAP_PRIVATE (with Enhanced PAN supported): 99 * r: (no) no 100 * w: (no) no 101 * x: (yes) yes 102 */ 103 pgprot_t protection_map[16] __ro_after_init = { 104 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 105 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 106 }; 107 108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 110 { 111 return prot; 112 } 113 #endif 114 115 pgprot_t vm_get_page_prot(unsigned long vm_flags) 116 { 117 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 118 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 119 pgprot_val(arch_vm_get_page_prot(vm_flags))); 120 121 return arch_filter_pgprot(ret); 122 } 123 EXPORT_SYMBOL(vm_get_page_prot); 124 125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 126 { 127 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 128 } 129 130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 131 void vma_set_page_prot(struct vm_area_struct *vma) 132 { 133 unsigned long vm_flags = vma->vm_flags; 134 pgprot_t vm_page_prot; 135 136 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 137 if (vma_wants_writenotify(vma, vm_page_prot)) { 138 vm_flags &= ~VM_SHARED; 139 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 140 } 141 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 142 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 143 } 144 145 /* 146 * Requires inode->i_mapping->i_mmap_rwsem 147 */ 148 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 149 struct file *file, struct address_space *mapping) 150 { 151 if (vma->vm_flags & VM_SHARED) 152 mapping_unmap_writable(mapping); 153 154 flush_dcache_mmap_lock(mapping); 155 vma_interval_tree_remove(vma, &mapping->i_mmap); 156 flush_dcache_mmap_unlock(mapping); 157 } 158 159 /* 160 * Unlink a file-based vm structure from its interval tree, to hide 161 * vma from rmap and vmtruncate before freeing its page tables. 162 */ 163 void unlink_file_vma(struct vm_area_struct *vma) 164 { 165 struct file *file = vma->vm_file; 166 167 if (file) { 168 struct address_space *mapping = file->f_mapping; 169 i_mmap_lock_write(mapping); 170 __remove_shared_vm_struct(vma, file, mapping); 171 i_mmap_unlock_write(mapping); 172 } 173 } 174 175 /* 176 * Close a vm structure and free it, returning the next. 177 */ 178 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 179 { 180 struct vm_area_struct *next = vma->vm_next; 181 182 might_sleep(); 183 if (vma->vm_ops && vma->vm_ops->close) 184 vma->vm_ops->close(vma); 185 if (vma->vm_file) 186 fput(vma->vm_file); 187 mpol_put(vma_policy(vma)); 188 vm_area_free(vma); 189 return next; 190 } 191 192 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 193 struct list_head *uf); 194 SYSCALL_DEFINE1(brk, unsigned long, brk) 195 { 196 unsigned long newbrk, oldbrk, origbrk; 197 struct mm_struct *mm = current->mm; 198 struct vm_area_struct *next; 199 unsigned long min_brk; 200 bool populate; 201 bool downgraded = false; 202 LIST_HEAD(uf); 203 204 if (mmap_write_lock_killable(mm)) 205 return -EINTR; 206 207 origbrk = mm->brk; 208 209 #ifdef CONFIG_COMPAT_BRK 210 /* 211 * CONFIG_COMPAT_BRK can still be overridden by setting 212 * randomize_va_space to 2, which will still cause mm->start_brk 213 * to be arbitrarily shifted 214 */ 215 if (current->brk_randomized) 216 min_brk = mm->start_brk; 217 else 218 min_brk = mm->end_data; 219 #else 220 min_brk = mm->start_brk; 221 #endif 222 if (brk < min_brk) 223 goto out; 224 225 /* 226 * Check against rlimit here. If this check is done later after the test 227 * of oldbrk with newbrk then it can escape the test and let the data 228 * segment grow beyond its set limit the in case where the limit is 229 * not page aligned -Ram Gupta 230 */ 231 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 232 mm->end_data, mm->start_data)) 233 goto out; 234 235 newbrk = PAGE_ALIGN(brk); 236 oldbrk = PAGE_ALIGN(mm->brk); 237 if (oldbrk == newbrk) { 238 mm->brk = brk; 239 goto success; 240 } 241 242 /* 243 * Always allow shrinking brk. 244 * __do_munmap() may downgrade mmap_lock to read. 245 */ 246 if (brk <= mm->brk) { 247 int ret; 248 249 /* 250 * mm->brk must to be protected by write mmap_lock so update it 251 * before downgrading mmap_lock. When __do_munmap() fails, 252 * mm->brk will be restored from origbrk. 253 */ 254 mm->brk = brk; 255 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 256 if (ret < 0) { 257 mm->brk = origbrk; 258 goto out; 259 } else if (ret == 1) { 260 downgraded = true; 261 } 262 goto success; 263 } 264 265 /* Check against existing mmap mappings. */ 266 next = find_vma(mm, oldbrk); 267 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 268 goto out; 269 270 /* Ok, looks good - let it rip. */ 271 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 272 goto out; 273 mm->brk = brk; 274 275 success: 276 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 277 if (downgraded) 278 mmap_read_unlock(mm); 279 else 280 mmap_write_unlock(mm); 281 userfaultfd_unmap_complete(mm, &uf); 282 if (populate) 283 mm_populate(oldbrk, newbrk - oldbrk); 284 return brk; 285 286 out: 287 mmap_write_unlock(mm); 288 return origbrk; 289 } 290 291 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 292 { 293 unsigned long gap, prev_end; 294 295 /* 296 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 297 * allow two stack_guard_gaps between them here, and when choosing 298 * an unmapped area; whereas when expanding we only require one. 299 * That's a little inconsistent, but keeps the code here simpler. 300 */ 301 gap = vm_start_gap(vma); 302 if (vma->vm_prev) { 303 prev_end = vm_end_gap(vma->vm_prev); 304 if (gap > prev_end) 305 gap -= prev_end; 306 else 307 gap = 0; 308 } 309 return gap; 310 } 311 312 #ifdef CONFIG_DEBUG_VM_RB 313 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 314 { 315 unsigned long max = vma_compute_gap(vma), subtree_gap; 316 if (vma->vm_rb.rb_left) { 317 subtree_gap = rb_entry(vma->vm_rb.rb_left, 318 struct vm_area_struct, vm_rb)->rb_subtree_gap; 319 if (subtree_gap > max) 320 max = subtree_gap; 321 } 322 if (vma->vm_rb.rb_right) { 323 subtree_gap = rb_entry(vma->vm_rb.rb_right, 324 struct vm_area_struct, vm_rb)->rb_subtree_gap; 325 if (subtree_gap > max) 326 max = subtree_gap; 327 } 328 return max; 329 } 330 331 static int browse_rb(struct mm_struct *mm) 332 { 333 struct rb_root *root = &mm->mm_rb; 334 int i = 0, j, bug = 0; 335 struct rb_node *nd, *pn = NULL; 336 unsigned long prev = 0, pend = 0; 337 338 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 339 struct vm_area_struct *vma; 340 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 341 if (vma->vm_start < prev) { 342 pr_emerg("vm_start %lx < prev %lx\n", 343 vma->vm_start, prev); 344 bug = 1; 345 } 346 if (vma->vm_start < pend) { 347 pr_emerg("vm_start %lx < pend %lx\n", 348 vma->vm_start, pend); 349 bug = 1; 350 } 351 if (vma->vm_start > vma->vm_end) { 352 pr_emerg("vm_start %lx > vm_end %lx\n", 353 vma->vm_start, vma->vm_end); 354 bug = 1; 355 } 356 spin_lock(&mm->page_table_lock); 357 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 358 pr_emerg("free gap %lx, correct %lx\n", 359 vma->rb_subtree_gap, 360 vma_compute_subtree_gap(vma)); 361 bug = 1; 362 } 363 spin_unlock(&mm->page_table_lock); 364 i++; 365 pn = nd; 366 prev = vma->vm_start; 367 pend = vma->vm_end; 368 } 369 j = 0; 370 for (nd = pn; nd; nd = rb_prev(nd)) 371 j++; 372 if (i != j) { 373 pr_emerg("backwards %d, forwards %d\n", j, i); 374 bug = 1; 375 } 376 return bug ? -1 : i; 377 } 378 379 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 380 { 381 struct rb_node *nd; 382 383 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 384 struct vm_area_struct *vma; 385 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 386 VM_BUG_ON_VMA(vma != ignore && 387 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 388 vma); 389 } 390 } 391 392 static void validate_mm(struct mm_struct *mm) 393 { 394 int bug = 0; 395 int i = 0; 396 unsigned long highest_address = 0; 397 struct vm_area_struct *vma = mm->mmap; 398 399 while (vma) { 400 struct anon_vma *anon_vma = vma->anon_vma; 401 struct anon_vma_chain *avc; 402 403 if (anon_vma) { 404 anon_vma_lock_read(anon_vma); 405 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 406 anon_vma_interval_tree_verify(avc); 407 anon_vma_unlock_read(anon_vma); 408 } 409 410 highest_address = vm_end_gap(vma); 411 vma = vma->vm_next; 412 i++; 413 } 414 if (i != mm->map_count) { 415 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 416 bug = 1; 417 } 418 if (highest_address != mm->highest_vm_end) { 419 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 420 mm->highest_vm_end, highest_address); 421 bug = 1; 422 } 423 i = browse_rb(mm); 424 if (i != mm->map_count) { 425 if (i != -1) 426 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 427 bug = 1; 428 } 429 VM_BUG_ON_MM(bug, mm); 430 } 431 #else 432 #define validate_mm_rb(root, ignore) do { } while (0) 433 #define validate_mm(mm) do { } while (0) 434 #endif 435 436 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 437 struct vm_area_struct, vm_rb, 438 unsigned long, rb_subtree_gap, vma_compute_gap) 439 440 /* 441 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 442 * vma->vm_prev->vm_end values changed, without modifying the vma's position 443 * in the rbtree. 444 */ 445 static void vma_gap_update(struct vm_area_struct *vma) 446 { 447 /* 448 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 449 * a callback function that does exactly what we want. 450 */ 451 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 452 } 453 454 static inline void vma_rb_insert(struct vm_area_struct *vma, 455 struct rb_root *root) 456 { 457 /* All rb_subtree_gap values must be consistent prior to insertion */ 458 validate_mm_rb(root, NULL); 459 460 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 461 } 462 463 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 464 { 465 /* 466 * Note rb_erase_augmented is a fairly large inline function, 467 * so make sure we instantiate it only once with our desired 468 * augmented rbtree callbacks. 469 */ 470 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 471 } 472 473 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 474 struct rb_root *root, 475 struct vm_area_struct *ignore) 476 { 477 /* 478 * All rb_subtree_gap values must be consistent prior to erase, 479 * with the possible exception of 480 * 481 * a. the "next" vma being erased if next->vm_start was reduced in 482 * __vma_adjust() -> __vma_unlink() 483 * b. the vma being erased in detach_vmas_to_be_unmapped() -> 484 * vma_rb_erase() 485 */ 486 validate_mm_rb(root, ignore); 487 488 __vma_rb_erase(vma, root); 489 } 490 491 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 492 struct rb_root *root) 493 { 494 vma_rb_erase_ignore(vma, root, vma); 495 } 496 497 /* 498 * vma has some anon_vma assigned, and is already inserted on that 499 * anon_vma's interval trees. 500 * 501 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 502 * vma must be removed from the anon_vma's interval trees using 503 * anon_vma_interval_tree_pre_update_vma(). 504 * 505 * After the update, the vma will be reinserted using 506 * anon_vma_interval_tree_post_update_vma(). 507 * 508 * The entire update must be protected by exclusive mmap_lock and by 509 * the root anon_vma's mutex. 510 */ 511 static inline void 512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 513 { 514 struct anon_vma_chain *avc; 515 516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 517 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 518 } 519 520 static inline void 521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 522 { 523 struct anon_vma_chain *avc; 524 525 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 526 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 527 } 528 529 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 530 unsigned long end, struct vm_area_struct **pprev, 531 struct rb_node ***rb_link, struct rb_node **rb_parent) 532 { 533 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 534 535 mmap_assert_locked(mm); 536 __rb_link = &mm->mm_rb.rb_node; 537 rb_prev = __rb_parent = NULL; 538 539 while (*__rb_link) { 540 struct vm_area_struct *vma_tmp; 541 542 __rb_parent = *__rb_link; 543 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 544 545 if (vma_tmp->vm_end > addr) { 546 /* Fail if an existing vma overlaps the area */ 547 if (vma_tmp->vm_start < end) 548 return -ENOMEM; 549 __rb_link = &__rb_parent->rb_left; 550 } else { 551 rb_prev = __rb_parent; 552 __rb_link = &__rb_parent->rb_right; 553 } 554 } 555 556 *pprev = NULL; 557 if (rb_prev) 558 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 559 *rb_link = __rb_link; 560 *rb_parent = __rb_parent; 561 return 0; 562 } 563 564 /* 565 * vma_next() - Get the next VMA. 566 * @mm: The mm_struct. 567 * @vma: The current vma. 568 * 569 * If @vma is NULL, return the first vma in the mm. 570 * 571 * Returns: The next VMA after @vma. 572 */ 573 static inline struct vm_area_struct *vma_next(struct mm_struct *mm, 574 struct vm_area_struct *vma) 575 { 576 if (!vma) 577 return mm->mmap; 578 579 return vma->vm_next; 580 } 581 582 /* 583 * munmap_vma_range() - munmap VMAs that overlap a range. 584 * @mm: The mm struct 585 * @start: The start of the range. 586 * @len: The length of the range. 587 * @pprev: pointer to the pointer that will be set to previous vm_area_struct 588 * @rb_link: the rb_node 589 * @rb_parent: the parent rb_node 590 * 591 * Find all the vm_area_struct that overlap from @start to 592 * @end and munmap them. Set @pprev to the previous vm_area_struct. 593 * 594 * Returns: -ENOMEM on munmap failure or 0 on success. 595 */ 596 static inline int 597 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len, 598 struct vm_area_struct **pprev, struct rb_node ***link, 599 struct rb_node **parent, struct list_head *uf) 600 { 601 602 while (find_vma_links(mm, start, start + len, pprev, link, parent)) 603 if (do_munmap(mm, start, len, uf)) 604 return -ENOMEM; 605 606 return 0; 607 } 608 static unsigned long count_vma_pages_range(struct mm_struct *mm, 609 unsigned long addr, unsigned long end) 610 { 611 unsigned long nr_pages = 0; 612 struct vm_area_struct *vma; 613 614 /* Find first overlapping mapping */ 615 vma = find_vma_intersection(mm, addr, end); 616 if (!vma) 617 return 0; 618 619 nr_pages = (min(end, vma->vm_end) - 620 max(addr, vma->vm_start)) >> PAGE_SHIFT; 621 622 /* Iterate over the rest of the overlaps */ 623 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 624 unsigned long overlap_len; 625 626 if (vma->vm_start > end) 627 break; 628 629 overlap_len = min(end, vma->vm_end) - vma->vm_start; 630 nr_pages += overlap_len >> PAGE_SHIFT; 631 } 632 633 return nr_pages; 634 } 635 636 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 637 struct rb_node **rb_link, struct rb_node *rb_parent) 638 { 639 /* Update tracking information for the gap following the new vma. */ 640 if (vma->vm_next) 641 vma_gap_update(vma->vm_next); 642 else 643 mm->highest_vm_end = vm_end_gap(vma); 644 645 /* 646 * vma->vm_prev wasn't known when we followed the rbtree to find the 647 * correct insertion point for that vma. As a result, we could not 648 * update the vma vm_rb parents rb_subtree_gap values on the way down. 649 * So, we first insert the vma with a zero rb_subtree_gap value 650 * (to be consistent with what we did on the way down), and then 651 * immediately update the gap to the correct value. Finally we 652 * rebalance the rbtree after all augmented values have been set. 653 */ 654 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 655 vma->rb_subtree_gap = 0; 656 vma_gap_update(vma); 657 vma_rb_insert(vma, &mm->mm_rb); 658 } 659 660 static void __vma_link_file(struct vm_area_struct *vma) 661 { 662 struct file *file; 663 664 file = vma->vm_file; 665 if (file) { 666 struct address_space *mapping = file->f_mapping; 667 668 if (vma->vm_flags & VM_SHARED) 669 mapping_allow_writable(mapping); 670 671 flush_dcache_mmap_lock(mapping); 672 vma_interval_tree_insert(vma, &mapping->i_mmap); 673 flush_dcache_mmap_unlock(mapping); 674 } 675 } 676 677 static void 678 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 679 struct vm_area_struct *prev, struct rb_node **rb_link, 680 struct rb_node *rb_parent) 681 { 682 __vma_link_list(mm, vma, prev); 683 __vma_link_rb(mm, vma, rb_link, rb_parent); 684 } 685 686 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 687 struct vm_area_struct *prev, struct rb_node **rb_link, 688 struct rb_node *rb_parent) 689 { 690 struct address_space *mapping = NULL; 691 692 if (vma->vm_file) { 693 mapping = vma->vm_file->f_mapping; 694 i_mmap_lock_write(mapping); 695 } 696 697 __vma_link(mm, vma, prev, rb_link, rb_parent); 698 __vma_link_file(vma); 699 700 if (mapping) 701 i_mmap_unlock_write(mapping); 702 703 mm->map_count++; 704 validate_mm(mm); 705 } 706 707 /* 708 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 709 * mm's list and rbtree. It has already been inserted into the interval tree. 710 */ 711 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 712 { 713 struct vm_area_struct *prev; 714 struct rb_node **rb_link, *rb_parent; 715 716 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 717 &prev, &rb_link, &rb_parent)) 718 BUG(); 719 __vma_link(mm, vma, prev, rb_link, rb_parent); 720 mm->map_count++; 721 } 722 723 static __always_inline void __vma_unlink(struct mm_struct *mm, 724 struct vm_area_struct *vma, 725 struct vm_area_struct *ignore) 726 { 727 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 728 __vma_unlink_list(mm, vma); 729 /* Kill the cache */ 730 vmacache_invalidate(mm); 731 } 732 733 /* 734 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 735 * is already present in an i_mmap tree without adjusting the tree. 736 * The following helper function should be used when such adjustments 737 * are necessary. The "insert" vma (if any) is to be inserted 738 * before we drop the necessary locks. 739 */ 740 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 741 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 742 struct vm_area_struct *expand) 743 { 744 struct mm_struct *mm = vma->vm_mm; 745 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 746 struct address_space *mapping = NULL; 747 struct rb_root_cached *root = NULL; 748 struct anon_vma *anon_vma = NULL; 749 struct file *file = vma->vm_file; 750 bool start_changed = false, end_changed = false; 751 long adjust_next = 0; 752 int remove_next = 0; 753 754 if (next && !insert) { 755 struct vm_area_struct *exporter = NULL, *importer = NULL; 756 757 if (end >= next->vm_end) { 758 /* 759 * vma expands, overlapping all the next, and 760 * perhaps the one after too (mprotect case 6). 761 * The only other cases that gets here are 762 * case 1, case 7 and case 8. 763 */ 764 if (next == expand) { 765 /* 766 * The only case where we don't expand "vma" 767 * and we expand "next" instead is case 8. 768 */ 769 VM_WARN_ON(end != next->vm_end); 770 /* 771 * remove_next == 3 means we're 772 * removing "vma" and that to do so we 773 * swapped "vma" and "next". 774 */ 775 remove_next = 3; 776 VM_WARN_ON(file != next->vm_file); 777 swap(vma, next); 778 } else { 779 VM_WARN_ON(expand != vma); 780 /* 781 * case 1, 6, 7, remove_next == 2 is case 6, 782 * remove_next == 1 is case 1 or 7. 783 */ 784 remove_next = 1 + (end > next->vm_end); 785 VM_WARN_ON(remove_next == 2 && 786 end != next->vm_next->vm_end); 787 /* trim end to next, for case 6 first pass */ 788 end = next->vm_end; 789 } 790 791 exporter = next; 792 importer = vma; 793 794 /* 795 * If next doesn't have anon_vma, import from vma after 796 * next, if the vma overlaps with it. 797 */ 798 if (remove_next == 2 && !next->anon_vma) 799 exporter = next->vm_next; 800 801 } else if (end > next->vm_start) { 802 /* 803 * vma expands, overlapping part of the next: 804 * mprotect case 5 shifting the boundary up. 805 */ 806 adjust_next = (end - next->vm_start); 807 exporter = next; 808 importer = vma; 809 VM_WARN_ON(expand != importer); 810 } else if (end < vma->vm_end) { 811 /* 812 * vma shrinks, and !insert tells it's not 813 * split_vma inserting another: so it must be 814 * mprotect case 4 shifting the boundary down. 815 */ 816 adjust_next = -(vma->vm_end - end); 817 exporter = vma; 818 importer = next; 819 VM_WARN_ON(expand != importer); 820 } 821 822 /* 823 * Easily overlooked: when mprotect shifts the boundary, 824 * make sure the expanding vma has anon_vma set if the 825 * shrinking vma had, to cover any anon pages imported. 826 */ 827 if (exporter && exporter->anon_vma && !importer->anon_vma) { 828 int error; 829 830 importer->anon_vma = exporter->anon_vma; 831 error = anon_vma_clone(importer, exporter); 832 if (error) 833 return error; 834 } 835 } 836 again: 837 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 838 839 if (file) { 840 mapping = file->f_mapping; 841 root = &mapping->i_mmap; 842 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 843 844 if (adjust_next) 845 uprobe_munmap(next, next->vm_start, next->vm_end); 846 847 i_mmap_lock_write(mapping); 848 if (insert) { 849 /* 850 * Put into interval tree now, so instantiated pages 851 * are visible to arm/parisc __flush_dcache_page 852 * throughout; but we cannot insert into address 853 * space until vma start or end is updated. 854 */ 855 __vma_link_file(insert); 856 } 857 } 858 859 anon_vma = vma->anon_vma; 860 if (!anon_vma && adjust_next) 861 anon_vma = next->anon_vma; 862 if (anon_vma) { 863 VM_WARN_ON(adjust_next && next->anon_vma && 864 anon_vma != next->anon_vma); 865 anon_vma_lock_write(anon_vma); 866 anon_vma_interval_tree_pre_update_vma(vma); 867 if (adjust_next) 868 anon_vma_interval_tree_pre_update_vma(next); 869 } 870 871 if (file) { 872 flush_dcache_mmap_lock(mapping); 873 vma_interval_tree_remove(vma, root); 874 if (adjust_next) 875 vma_interval_tree_remove(next, root); 876 } 877 878 if (start != vma->vm_start) { 879 vma->vm_start = start; 880 start_changed = true; 881 } 882 if (end != vma->vm_end) { 883 vma->vm_end = end; 884 end_changed = true; 885 } 886 vma->vm_pgoff = pgoff; 887 if (adjust_next) { 888 next->vm_start += adjust_next; 889 next->vm_pgoff += adjust_next >> PAGE_SHIFT; 890 } 891 892 if (file) { 893 if (adjust_next) 894 vma_interval_tree_insert(next, root); 895 vma_interval_tree_insert(vma, root); 896 flush_dcache_mmap_unlock(mapping); 897 } 898 899 if (remove_next) { 900 /* 901 * vma_merge has merged next into vma, and needs 902 * us to remove next before dropping the locks. 903 */ 904 if (remove_next != 3) 905 __vma_unlink(mm, next, next); 906 else 907 /* 908 * vma is not before next if they've been 909 * swapped. 910 * 911 * pre-swap() next->vm_start was reduced so 912 * tell validate_mm_rb to ignore pre-swap() 913 * "next" (which is stored in post-swap() 914 * "vma"). 915 */ 916 __vma_unlink(mm, next, vma); 917 if (file) 918 __remove_shared_vm_struct(next, file, mapping); 919 } else if (insert) { 920 /* 921 * split_vma has split insert from vma, and needs 922 * us to insert it before dropping the locks 923 * (it may either follow vma or precede it). 924 */ 925 __insert_vm_struct(mm, insert); 926 } else { 927 if (start_changed) 928 vma_gap_update(vma); 929 if (end_changed) { 930 if (!next) 931 mm->highest_vm_end = vm_end_gap(vma); 932 else if (!adjust_next) 933 vma_gap_update(next); 934 } 935 } 936 937 if (anon_vma) { 938 anon_vma_interval_tree_post_update_vma(vma); 939 if (adjust_next) 940 anon_vma_interval_tree_post_update_vma(next); 941 anon_vma_unlock_write(anon_vma); 942 } 943 944 if (file) { 945 i_mmap_unlock_write(mapping); 946 uprobe_mmap(vma); 947 948 if (adjust_next) 949 uprobe_mmap(next); 950 } 951 952 if (remove_next) { 953 if (file) { 954 uprobe_munmap(next, next->vm_start, next->vm_end); 955 fput(file); 956 } 957 if (next->anon_vma) 958 anon_vma_merge(vma, next); 959 mm->map_count--; 960 mpol_put(vma_policy(next)); 961 vm_area_free(next); 962 /* 963 * In mprotect's case 6 (see comments on vma_merge), 964 * we must remove another next too. It would clutter 965 * up the code too much to do both in one go. 966 */ 967 if (remove_next != 3) { 968 /* 969 * If "next" was removed and vma->vm_end was 970 * expanded (up) over it, in turn 971 * "next->vm_prev->vm_end" changed and the 972 * "vma->vm_next" gap must be updated. 973 */ 974 next = vma->vm_next; 975 } else { 976 /* 977 * For the scope of the comment "next" and 978 * "vma" considered pre-swap(): if "vma" was 979 * removed, next->vm_start was expanded (down) 980 * over it and the "next" gap must be updated. 981 * Because of the swap() the post-swap() "vma" 982 * actually points to pre-swap() "next" 983 * (post-swap() "next" as opposed is now a 984 * dangling pointer). 985 */ 986 next = vma; 987 } 988 if (remove_next == 2) { 989 remove_next = 1; 990 end = next->vm_end; 991 goto again; 992 } 993 else if (next) 994 vma_gap_update(next); 995 else { 996 /* 997 * If remove_next == 2 we obviously can't 998 * reach this path. 999 * 1000 * If remove_next == 3 we can't reach this 1001 * path because pre-swap() next is always not 1002 * NULL. pre-swap() "next" is not being 1003 * removed and its next->vm_end is not altered 1004 * (and furthermore "end" already matches 1005 * next->vm_end in remove_next == 3). 1006 * 1007 * We reach this only in the remove_next == 1 1008 * case if the "next" vma that was removed was 1009 * the highest vma of the mm. However in such 1010 * case next->vm_end == "end" and the extended 1011 * "vma" has vma->vm_end == next->vm_end so 1012 * mm->highest_vm_end doesn't need any update 1013 * in remove_next == 1 case. 1014 */ 1015 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 1016 } 1017 } 1018 if (insert && file) 1019 uprobe_mmap(insert); 1020 1021 validate_mm(mm); 1022 1023 return 0; 1024 } 1025 1026 /* 1027 * If the vma has a ->close operation then the driver probably needs to release 1028 * per-vma resources, so we don't attempt to merge those. 1029 */ 1030 static inline int is_mergeable_vma(struct vm_area_struct *vma, 1031 struct file *file, unsigned long vm_flags, 1032 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1033 { 1034 /* 1035 * VM_SOFTDIRTY should not prevent from VMA merging, if we 1036 * match the flags but dirty bit -- the caller should mark 1037 * merged VMA as dirty. If dirty bit won't be excluded from 1038 * comparison, we increase pressure on the memory system forcing 1039 * the kernel to generate new VMAs when old one could be 1040 * extended instead. 1041 */ 1042 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1043 return 0; 1044 if (vma->vm_file != file) 1045 return 0; 1046 if (vma->vm_ops && vma->vm_ops->close) 1047 return 0; 1048 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1049 return 0; 1050 return 1; 1051 } 1052 1053 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1054 struct anon_vma *anon_vma2, 1055 struct vm_area_struct *vma) 1056 { 1057 /* 1058 * The list_is_singular() test is to avoid merging VMA cloned from 1059 * parents. This can improve scalability caused by anon_vma lock. 1060 */ 1061 if ((!anon_vma1 || !anon_vma2) && (!vma || 1062 list_is_singular(&vma->anon_vma_chain))) 1063 return 1; 1064 return anon_vma1 == anon_vma2; 1065 } 1066 1067 /* 1068 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1069 * in front of (at a lower virtual address and file offset than) the vma. 1070 * 1071 * We cannot merge two vmas if they have differently assigned (non-NULL) 1072 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1073 * 1074 * We don't check here for the merged mmap wrapping around the end of pagecache 1075 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 1076 * wrap, nor mmaps which cover the final page at index -1UL. 1077 */ 1078 static int 1079 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1080 struct anon_vma *anon_vma, struct file *file, 1081 pgoff_t vm_pgoff, 1082 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1083 { 1084 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1085 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1086 if (vma->vm_pgoff == vm_pgoff) 1087 return 1; 1088 } 1089 return 0; 1090 } 1091 1092 /* 1093 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1094 * beyond (at a higher virtual address and file offset than) the vma. 1095 * 1096 * We cannot merge two vmas if they have differently assigned (non-NULL) 1097 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1098 */ 1099 static int 1100 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1101 struct anon_vma *anon_vma, struct file *file, 1102 pgoff_t vm_pgoff, 1103 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1104 { 1105 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1106 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1107 pgoff_t vm_pglen; 1108 vm_pglen = vma_pages(vma); 1109 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1110 return 1; 1111 } 1112 return 0; 1113 } 1114 1115 /* 1116 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1117 * whether that can be merged with its predecessor or its successor. 1118 * Or both (it neatly fills a hole). 1119 * 1120 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1121 * certain not to be mapped by the time vma_merge is called; but when 1122 * called for mprotect, it is certain to be already mapped (either at 1123 * an offset within prev, or at the start of next), and the flags of 1124 * this area are about to be changed to vm_flags - and the no-change 1125 * case has already been eliminated. 1126 * 1127 * The following mprotect cases have to be considered, where AAAA is 1128 * the area passed down from mprotect_fixup, never extending beyond one 1129 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1130 * 1131 * AAAA AAAA AAAA 1132 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1133 * cannot merge might become might become 1134 * PPNNNNNNNNNN PPPPPPPPPPNN 1135 * mmap, brk or case 4 below case 5 below 1136 * mremap move: 1137 * AAAA AAAA 1138 * PPPP NNNN PPPPNNNNXXXX 1139 * might become might become 1140 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1141 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1142 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1143 * 1144 * It is important for case 8 that the vma NNNN overlapping the 1145 * region AAAA is never going to extended over XXXX. Instead XXXX must 1146 * be extended in region AAAA and NNNN must be removed. This way in 1147 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1148 * rmap_locks, the properties of the merged vma will be already 1149 * correct for the whole merged range. Some of those properties like 1150 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1151 * be correct for the whole merged range immediately after the 1152 * rmap_locks are released. Otherwise if XXXX would be removed and 1153 * NNNN would be extended over the XXXX range, remove_migration_ptes 1154 * or other rmap walkers (if working on addresses beyond the "end" 1155 * parameter) may establish ptes with the wrong permissions of NNNN 1156 * instead of the right permissions of XXXX. 1157 */ 1158 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1159 struct vm_area_struct *prev, unsigned long addr, 1160 unsigned long end, unsigned long vm_flags, 1161 struct anon_vma *anon_vma, struct file *file, 1162 pgoff_t pgoff, struct mempolicy *policy, 1163 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1164 { 1165 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1166 struct vm_area_struct *area, *next; 1167 int err; 1168 1169 /* 1170 * We later require that vma->vm_flags == vm_flags, 1171 * so this tests vma->vm_flags & VM_SPECIAL, too. 1172 */ 1173 if (vm_flags & VM_SPECIAL) 1174 return NULL; 1175 1176 next = vma_next(mm, prev); 1177 area = next; 1178 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1179 next = next->vm_next; 1180 1181 /* verify some invariant that must be enforced by the caller */ 1182 VM_WARN_ON(prev && addr <= prev->vm_start); 1183 VM_WARN_ON(area && end > area->vm_end); 1184 VM_WARN_ON(addr >= end); 1185 1186 /* 1187 * Can it merge with the predecessor? 1188 */ 1189 if (prev && prev->vm_end == addr && 1190 mpol_equal(vma_policy(prev), policy) && 1191 can_vma_merge_after(prev, vm_flags, 1192 anon_vma, file, pgoff, 1193 vm_userfaultfd_ctx)) { 1194 /* 1195 * OK, it can. Can we now merge in the successor as well? 1196 */ 1197 if (next && end == next->vm_start && 1198 mpol_equal(policy, vma_policy(next)) && 1199 can_vma_merge_before(next, vm_flags, 1200 anon_vma, file, 1201 pgoff+pglen, 1202 vm_userfaultfd_ctx) && 1203 is_mergeable_anon_vma(prev->anon_vma, 1204 next->anon_vma, NULL)) { 1205 /* cases 1, 6 */ 1206 err = __vma_adjust(prev, prev->vm_start, 1207 next->vm_end, prev->vm_pgoff, NULL, 1208 prev); 1209 } else /* cases 2, 5, 7 */ 1210 err = __vma_adjust(prev, prev->vm_start, 1211 end, prev->vm_pgoff, NULL, prev); 1212 if (err) 1213 return NULL; 1214 khugepaged_enter_vma_merge(prev, vm_flags); 1215 return prev; 1216 } 1217 1218 /* 1219 * Can this new request be merged in front of next? 1220 */ 1221 if (next && end == next->vm_start && 1222 mpol_equal(policy, vma_policy(next)) && 1223 can_vma_merge_before(next, vm_flags, 1224 anon_vma, file, pgoff+pglen, 1225 vm_userfaultfd_ctx)) { 1226 if (prev && addr < prev->vm_end) /* case 4 */ 1227 err = __vma_adjust(prev, prev->vm_start, 1228 addr, prev->vm_pgoff, NULL, next); 1229 else { /* cases 3, 8 */ 1230 err = __vma_adjust(area, addr, next->vm_end, 1231 next->vm_pgoff - pglen, NULL, next); 1232 /* 1233 * In case 3 area is already equal to next and 1234 * this is a noop, but in case 8 "area" has 1235 * been removed and next was expanded over it. 1236 */ 1237 area = next; 1238 } 1239 if (err) 1240 return NULL; 1241 khugepaged_enter_vma_merge(area, vm_flags); 1242 return area; 1243 } 1244 1245 return NULL; 1246 } 1247 1248 /* 1249 * Rough compatibility check to quickly see if it's even worth looking 1250 * at sharing an anon_vma. 1251 * 1252 * They need to have the same vm_file, and the flags can only differ 1253 * in things that mprotect may change. 1254 * 1255 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1256 * we can merge the two vma's. For example, we refuse to merge a vma if 1257 * there is a vm_ops->close() function, because that indicates that the 1258 * driver is doing some kind of reference counting. But that doesn't 1259 * really matter for the anon_vma sharing case. 1260 */ 1261 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1262 { 1263 return a->vm_end == b->vm_start && 1264 mpol_equal(vma_policy(a), vma_policy(b)) && 1265 a->vm_file == b->vm_file && 1266 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1267 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1268 } 1269 1270 /* 1271 * Do some basic sanity checking to see if we can re-use the anon_vma 1272 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1273 * the same as 'old', the other will be the new one that is trying 1274 * to share the anon_vma. 1275 * 1276 * NOTE! This runs with mm_sem held for reading, so it is possible that 1277 * the anon_vma of 'old' is concurrently in the process of being set up 1278 * by another page fault trying to merge _that_. But that's ok: if it 1279 * is being set up, that automatically means that it will be a singleton 1280 * acceptable for merging, so we can do all of this optimistically. But 1281 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1282 * 1283 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1284 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1285 * is to return an anon_vma that is "complex" due to having gone through 1286 * a fork). 1287 * 1288 * We also make sure that the two vma's are compatible (adjacent, 1289 * and with the same memory policies). That's all stable, even with just 1290 * a read lock on the mm_sem. 1291 */ 1292 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1293 { 1294 if (anon_vma_compatible(a, b)) { 1295 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1296 1297 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1298 return anon_vma; 1299 } 1300 return NULL; 1301 } 1302 1303 /* 1304 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1305 * neighbouring vmas for a suitable anon_vma, before it goes off 1306 * to allocate a new anon_vma. It checks because a repetitive 1307 * sequence of mprotects and faults may otherwise lead to distinct 1308 * anon_vmas being allocated, preventing vma merge in subsequent 1309 * mprotect. 1310 */ 1311 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1312 { 1313 struct anon_vma *anon_vma = NULL; 1314 1315 /* Try next first. */ 1316 if (vma->vm_next) { 1317 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next); 1318 if (anon_vma) 1319 return anon_vma; 1320 } 1321 1322 /* Try prev next. */ 1323 if (vma->vm_prev) 1324 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma); 1325 1326 /* 1327 * We might reach here with anon_vma == NULL if we can't find 1328 * any reusable anon_vma. 1329 * There's no absolute need to look only at touching neighbours: 1330 * we could search further afield for "compatible" anon_vmas. 1331 * But it would probably just be a waste of time searching, 1332 * or lead to too many vmas hanging off the same anon_vma. 1333 * We're trying to allow mprotect remerging later on, 1334 * not trying to minimize memory used for anon_vmas. 1335 */ 1336 return anon_vma; 1337 } 1338 1339 /* 1340 * If a hint addr is less than mmap_min_addr change hint to be as 1341 * low as possible but still greater than mmap_min_addr 1342 */ 1343 static inline unsigned long round_hint_to_min(unsigned long hint) 1344 { 1345 hint &= PAGE_MASK; 1346 if (((void *)hint != NULL) && 1347 (hint < mmap_min_addr)) 1348 return PAGE_ALIGN(mmap_min_addr); 1349 return hint; 1350 } 1351 1352 int mlock_future_check(struct mm_struct *mm, unsigned long flags, 1353 unsigned long len) 1354 { 1355 unsigned long locked, lock_limit; 1356 1357 /* mlock MCL_FUTURE? */ 1358 if (flags & VM_LOCKED) { 1359 locked = len >> PAGE_SHIFT; 1360 locked += mm->locked_vm; 1361 lock_limit = rlimit(RLIMIT_MEMLOCK); 1362 lock_limit >>= PAGE_SHIFT; 1363 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1364 return -EAGAIN; 1365 } 1366 return 0; 1367 } 1368 1369 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1370 { 1371 if (S_ISREG(inode->i_mode)) 1372 return MAX_LFS_FILESIZE; 1373 1374 if (S_ISBLK(inode->i_mode)) 1375 return MAX_LFS_FILESIZE; 1376 1377 if (S_ISSOCK(inode->i_mode)) 1378 return MAX_LFS_FILESIZE; 1379 1380 /* Special "we do even unsigned file positions" case */ 1381 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1382 return 0; 1383 1384 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1385 return ULONG_MAX; 1386 } 1387 1388 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1389 unsigned long pgoff, unsigned long len) 1390 { 1391 u64 maxsize = file_mmap_size_max(file, inode); 1392 1393 if (maxsize && len > maxsize) 1394 return false; 1395 maxsize -= len; 1396 if (pgoff > maxsize >> PAGE_SHIFT) 1397 return false; 1398 return true; 1399 } 1400 1401 /* 1402 * The caller must write-lock current->mm->mmap_lock. 1403 */ 1404 unsigned long do_mmap(struct file *file, unsigned long addr, 1405 unsigned long len, unsigned long prot, 1406 unsigned long flags, unsigned long pgoff, 1407 unsigned long *populate, struct list_head *uf) 1408 { 1409 struct mm_struct *mm = current->mm; 1410 vm_flags_t vm_flags; 1411 int pkey = 0; 1412 1413 *populate = 0; 1414 1415 if (!len) 1416 return -EINVAL; 1417 1418 /* 1419 * Does the application expect PROT_READ to imply PROT_EXEC? 1420 * 1421 * (the exception is when the underlying filesystem is noexec 1422 * mounted, in which case we dont add PROT_EXEC.) 1423 */ 1424 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1425 if (!(file && path_noexec(&file->f_path))) 1426 prot |= PROT_EXEC; 1427 1428 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1429 if (flags & MAP_FIXED_NOREPLACE) 1430 flags |= MAP_FIXED; 1431 1432 if (!(flags & MAP_FIXED)) 1433 addr = round_hint_to_min(addr); 1434 1435 /* Careful about overflows.. */ 1436 len = PAGE_ALIGN(len); 1437 if (!len) 1438 return -ENOMEM; 1439 1440 /* offset overflow? */ 1441 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1442 return -EOVERFLOW; 1443 1444 /* Too many mappings? */ 1445 if (mm->map_count > sysctl_max_map_count) 1446 return -ENOMEM; 1447 1448 /* Obtain the address to map to. we verify (or select) it and ensure 1449 * that it represents a valid section of the address space. 1450 */ 1451 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1452 if (IS_ERR_VALUE(addr)) 1453 return addr; 1454 1455 if (flags & MAP_FIXED_NOREPLACE) { 1456 if (find_vma_intersection(mm, addr, addr + len)) 1457 return -EEXIST; 1458 } 1459 1460 if (prot == PROT_EXEC) { 1461 pkey = execute_only_pkey(mm); 1462 if (pkey < 0) 1463 pkey = 0; 1464 } 1465 1466 /* Do simple checking here so the lower-level routines won't have 1467 * to. we assume access permissions have been handled by the open 1468 * of the memory object, so we don't do any here. 1469 */ 1470 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1471 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1472 1473 if (flags & MAP_LOCKED) 1474 if (!can_do_mlock()) 1475 return -EPERM; 1476 1477 if (mlock_future_check(mm, vm_flags, len)) 1478 return -EAGAIN; 1479 1480 if (file) { 1481 struct inode *inode = file_inode(file); 1482 unsigned long flags_mask; 1483 1484 if (!file_mmap_ok(file, inode, pgoff, len)) 1485 return -EOVERFLOW; 1486 1487 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1488 1489 switch (flags & MAP_TYPE) { 1490 case MAP_SHARED: 1491 /* 1492 * Force use of MAP_SHARED_VALIDATE with non-legacy 1493 * flags. E.g. MAP_SYNC is dangerous to use with 1494 * MAP_SHARED as you don't know which consistency model 1495 * you will get. We silently ignore unsupported flags 1496 * with MAP_SHARED to preserve backward compatibility. 1497 */ 1498 flags &= LEGACY_MAP_MASK; 1499 fallthrough; 1500 case MAP_SHARED_VALIDATE: 1501 if (flags & ~flags_mask) 1502 return -EOPNOTSUPP; 1503 if (prot & PROT_WRITE) { 1504 if (!(file->f_mode & FMODE_WRITE)) 1505 return -EACCES; 1506 if (IS_SWAPFILE(file->f_mapping->host)) 1507 return -ETXTBSY; 1508 } 1509 1510 /* 1511 * Make sure we don't allow writing to an append-only 1512 * file.. 1513 */ 1514 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1515 return -EACCES; 1516 1517 vm_flags |= VM_SHARED | VM_MAYSHARE; 1518 if (!(file->f_mode & FMODE_WRITE)) 1519 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1520 fallthrough; 1521 case MAP_PRIVATE: 1522 if (!(file->f_mode & FMODE_READ)) 1523 return -EACCES; 1524 if (path_noexec(&file->f_path)) { 1525 if (vm_flags & VM_EXEC) 1526 return -EPERM; 1527 vm_flags &= ~VM_MAYEXEC; 1528 } 1529 1530 if (!file->f_op->mmap) 1531 return -ENODEV; 1532 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1533 return -EINVAL; 1534 break; 1535 1536 default: 1537 return -EINVAL; 1538 } 1539 } else { 1540 switch (flags & MAP_TYPE) { 1541 case MAP_SHARED: 1542 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1543 return -EINVAL; 1544 /* 1545 * Ignore pgoff. 1546 */ 1547 pgoff = 0; 1548 vm_flags |= VM_SHARED | VM_MAYSHARE; 1549 break; 1550 case MAP_PRIVATE: 1551 /* 1552 * Set pgoff according to addr for anon_vma. 1553 */ 1554 pgoff = addr >> PAGE_SHIFT; 1555 break; 1556 default: 1557 return -EINVAL; 1558 } 1559 } 1560 1561 /* 1562 * Set 'VM_NORESERVE' if we should not account for the 1563 * memory use of this mapping. 1564 */ 1565 if (flags & MAP_NORESERVE) { 1566 /* We honor MAP_NORESERVE if allowed to overcommit */ 1567 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1568 vm_flags |= VM_NORESERVE; 1569 1570 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1571 if (file && is_file_hugepages(file)) 1572 vm_flags |= VM_NORESERVE; 1573 } 1574 1575 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1576 if (!IS_ERR_VALUE(addr) && 1577 ((vm_flags & VM_LOCKED) || 1578 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1579 *populate = len; 1580 return addr; 1581 } 1582 1583 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1584 unsigned long prot, unsigned long flags, 1585 unsigned long fd, unsigned long pgoff) 1586 { 1587 struct file *file = NULL; 1588 unsigned long retval; 1589 1590 if (!(flags & MAP_ANONYMOUS)) { 1591 audit_mmap_fd(fd, flags); 1592 file = fget(fd); 1593 if (!file) 1594 return -EBADF; 1595 if (is_file_hugepages(file)) { 1596 len = ALIGN(len, huge_page_size(hstate_file(file))); 1597 } else if (unlikely(flags & MAP_HUGETLB)) { 1598 retval = -EINVAL; 1599 goto out_fput; 1600 } 1601 } else if (flags & MAP_HUGETLB) { 1602 struct ucounts *ucounts = NULL; 1603 struct hstate *hs; 1604 1605 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1606 if (!hs) 1607 return -EINVAL; 1608 1609 len = ALIGN(len, huge_page_size(hs)); 1610 /* 1611 * VM_NORESERVE is used because the reservations will be 1612 * taken when vm_ops->mmap() is called 1613 * A dummy user value is used because we are not locking 1614 * memory so no accounting is necessary 1615 */ 1616 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1617 VM_NORESERVE, 1618 &ucounts, HUGETLB_ANONHUGE_INODE, 1619 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1620 if (IS_ERR(file)) 1621 return PTR_ERR(file); 1622 } 1623 1624 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1625 out_fput: 1626 if (file) 1627 fput(file); 1628 return retval; 1629 } 1630 1631 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1632 unsigned long, prot, unsigned long, flags, 1633 unsigned long, fd, unsigned long, pgoff) 1634 { 1635 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1636 } 1637 1638 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1639 struct mmap_arg_struct { 1640 unsigned long addr; 1641 unsigned long len; 1642 unsigned long prot; 1643 unsigned long flags; 1644 unsigned long fd; 1645 unsigned long offset; 1646 }; 1647 1648 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1649 { 1650 struct mmap_arg_struct a; 1651 1652 if (copy_from_user(&a, arg, sizeof(a))) 1653 return -EFAULT; 1654 if (offset_in_page(a.offset)) 1655 return -EINVAL; 1656 1657 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1658 a.offset >> PAGE_SHIFT); 1659 } 1660 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1661 1662 /* 1663 * Some shared mappings will want the pages marked read-only 1664 * to track write events. If so, we'll downgrade vm_page_prot 1665 * to the private version (using protection_map[] without the 1666 * VM_SHARED bit). 1667 */ 1668 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1669 { 1670 vm_flags_t vm_flags = vma->vm_flags; 1671 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1672 1673 /* If it was private or non-writable, the write bit is already clear */ 1674 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1675 return 0; 1676 1677 /* The backer wishes to know when pages are first written to? */ 1678 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1679 return 1; 1680 1681 /* The open routine did something to the protections that pgprot_modify 1682 * won't preserve? */ 1683 if (pgprot_val(vm_page_prot) != 1684 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1685 return 0; 1686 1687 /* Do we need to track softdirty? */ 1688 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1689 return 1; 1690 1691 /* Specialty mapping? */ 1692 if (vm_flags & VM_PFNMAP) 1693 return 0; 1694 1695 /* Can the mapping track the dirty pages? */ 1696 return vma->vm_file && vma->vm_file->f_mapping && 1697 mapping_can_writeback(vma->vm_file->f_mapping); 1698 } 1699 1700 /* 1701 * We account for memory if it's a private writeable mapping, 1702 * not hugepages and VM_NORESERVE wasn't set. 1703 */ 1704 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1705 { 1706 /* 1707 * hugetlb has its own accounting separate from the core VM 1708 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1709 */ 1710 if (file && is_file_hugepages(file)) 1711 return 0; 1712 1713 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1714 } 1715 1716 unsigned long mmap_region(struct file *file, unsigned long addr, 1717 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1718 struct list_head *uf) 1719 { 1720 struct mm_struct *mm = current->mm; 1721 struct vm_area_struct *vma, *prev, *merge; 1722 int error; 1723 struct rb_node **rb_link, *rb_parent; 1724 unsigned long charged = 0; 1725 1726 /* Check against address space limit. */ 1727 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1728 unsigned long nr_pages; 1729 1730 /* 1731 * MAP_FIXED may remove pages of mappings that intersects with 1732 * requested mapping. Account for the pages it would unmap. 1733 */ 1734 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1735 1736 if (!may_expand_vm(mm, vm_flags, 1737 (len >> PAGE_SHIFT) - nr_pages)) 1738 return -ENOMEM; 1739 } 1740 1741 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 1742 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 1743 return -ENOMEM; 1744 /* 1745 * Private writable mapping: check memory availability 1746 */ 1747 if (accountable_mapping(file, vm_flags)) { 1748 charged = len >> PAGE_SHIFT; 1749 if (security_vm_enough_memory_mm(mm, charged)) 1750 return -ENOMEM; 1751 vm_flags |= VM_ACCOUNT; 1752 } 1753 1754 /* 1755 * Can we just expand an old mapping? 1756 */ 1757 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1758 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1759 if (vma) 1760 goto out; 1761 1762 /* 1763 * Determine the object being mapped and call the appropriate 1764 * specific mapper. the address has already been validated, but 1765 * not unmapped, but the maps are removed from the list. 1766 */ 1767 vma = vm_area_alloc(mm); 1768 if (!vma) { 1769 error = -ENOMEM; 1770 goto unacct_error; 1771 } 1772 1773 vma->vm_start = addr; 1774 vma->vm_end = addr + len; 1775 vma->vm_flags = vm_flags; 1776 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1777 vma->vm_pgoff = pgoff; 1778 1779 if (file) { 1780 if (vm_flags & VM_SHARED) { 1781 error = mapping_map_writable(file->f_mapping); 1782 if (error) 1783 goto free_vma; 1784 } 1785 1786 vma->vm_file = get_file(file); 1787 error = call_mmap(file, vma); 1788 if (error) 1789 goto unmap_and_free_vma; 1790 1791 /* Can addr have changed?? 1792 * 1793 * Answer: Yes, several device drivers can do it in their 1794 * f_op->mmap method. -DaveM 1795 * Bug: If addr is changed, prev, rb_link, rb_parent should 1796 * be updated for vma_link() 1797 */ 1798 WARN_ON_ONCE(addr != vma->vm_start); 1799 1800 addr = vma->vm_start; 1801 1802 /* If vm_flags changed after call_mmap(), we should try merge vma again 1803 * as we may succeed this time. 1804 */ 1805 if (unlikely(vm_flags != vma->vm_flags && prev)) { 1806 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, 1807 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX); 1808 if (merge) { 1809 /* ->mmap() can change vma->vm_file and fput the original file. So 1810 * fput the vma->vm_file here or we would add an extra fput for file 1811 * and cause general protection fault ultimately. 1812 */ 1813 fput(vma->vm_file); 1814 vm_area_free(vma); 1815 vma = merge; 1816 /* Update vm_flags to pick up the change. */ 1817 vm_flags = vma->vm_flags; 1818 goto unmap_writable; 1819 } 1820 } 1821 1822 vm_flags = vma->vm_flags; 1823 } else if (vm_flags & VM_SHARED) { 1824 error = shmem_zero_setup(vma); 1825 if (error) 1826 goto free_vma; 1827 } else { 1828 vma_set_anonymous(vma); 1829 } 1830 1831 /* Allow architectures to sanity-check the vm_flags */ 1832 if (!arch_validate_flags(vma->vm_flags)) { 1833 error = -EINVAL; 1834 if (file) 1835 goto unmap_and_free_vma; 1836 else 1837 goto free_vma; 1838 } 1839 1840 vma_link(mm, vma, prev, rb_link, rb_parent); 1841 /* Once vma denies write, undo our temporary denial count */ 1842 unmap_writable: 1843 if (file && vm_flags & VM_SHARED) 1844 mapping_unmap_writable(file->f_mapping); 1845 file = vma->vm_file; 1846 out: 1847 perf_event_mmap(vma); 1848 1849 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1850 if (vm_flags & VM_LOCKED) { 1851 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1852 is_vm_hugetlb_page(vma) || 1853 vma == get_gate_vma(current->mm)) 1854 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1855 else 1856 mm->locked_vm += (len >> PAGE_SHIFT); 1857 } 1858 1859 if (file) 1860 uprobe_mmap(vma); 1861 1862 /* 1863 * New (or expanded) vma always get soft dirty status. 1864 * Otherwise user-space soft-dirty page tracker won't 1865 * be able to distinguish situation when vma area unmapped, 1866 * then new mapped in-place (which must be aimed as 1867 * a completely new data area). 1868 */ 1869 vma->vm_flags |= VM_SOFTDIRTY; 1870 1871 vma_set_page_prot(vma); 1872 1873 return addr; 1874 1875 unmap_and_free_vma: 1876 fput(vma->vm_file); 1877 vma->vm_file = NULL; 1878 1879 /* Undo any partial mapping done by a device driver. */ 1880 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1881 charged = 0; 1882 if (vm_flags & VM_SHARED) 1883 mapping_unmap_writable(file->f_mapping); 1884 free_vma: 1885 vm_area_free(vma); 1886 unacct_error: 1887 if (charged) 1888 vm_unacct_memory(charged); 1889 return error; 1890 } 1891 1892 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1893 { 1894 /* 1895 * We implement the search by looking for an rbtree node that 1896 * immediately follows a suitable gap. That is, 1897 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1898 * - gap_end = vma->vm_start >= info->low_limit + length; 1899 * - gap_end - gap_start >= length 1900 */ 1901 1902 struct mm_struct *mm = current->mm; 1903 struct vm_area_struct *vma; 1904 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1905 1906 /* Adjust search length to account for worst case alignment overhead */ 1907 length = info->length + info->align_mask; 1908 if (length < info->length) 1909 return -ENOMEM; 1910 1911 /* Adjust search limits by the desired length */ 1912 if (info->high_limit < length) 1913 return -ENOMEM; 1914 high_limit = info->high_limit - length; 1915 1916 if (info->low_limit > high_limit) 1917 return -ENOMEM; 1918 low_limit = info->low_limit + length; 1919 1920 /* Check if rbtree root looks promising */ 1921 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1922 goto check_highest; 1923 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1924 if (vma->rb_subtree_gap < length) 1925 goto check_highest; 1926 1927 while (true) { 1928 /* Visit left subtree if it looks promising */ 1929 gap_end = vm_start_gap(vma); 1930 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1931 struct vm_area_struct *left = 1932 rb_entry(vma->vm_rb.rb_left, 1933 struct vm_area_struct, vm_rb); 1934 if (left->rb_subtree_gap >= length) { 1935 vma = left; 1936 continue; 1937 } 1938 } 1939 1940 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1941 check_current: 1942 /* Check if current node has a suitable gap */ 1943 if (gap_start > high_limit) 1944 return -ENOMEM; 1945 if (gap_end >= low_limit && 1946 gap_end > gap_start && gap_end - gap_start >= length) 1947 goto found; 1948 1949 /* Visit right subtree if it looks promising */ 1950 if (vma->vm_rb.rb_right) { 1951 struct vm_area_struct *right = 1952 rb_entry(vma->vm_rb.rb_right, 1953 struct vm_area_struct, vm_rb); 1954 if (right->rb_subtree_gap >= length) { 1955 vma = right; 1956 continue; 1957 } 1958 } 1959 1960 /* Go back up the rbtree to find next candidate node */ 1961 while (true) { 1962 struct rb_node *prev = &vma->vm_rb; 1963 if (!rb_parent(prev)) 1964 goto check_highest; 1965 vma = rb_entry(rb_parent(prev), 1966 struct vm_area_struct, vm_rb); 1967 if (prev == vma->vm_rb.rb_left) { 1968 gap_start = vm_end_gap(vma->vm_prev); 1969 gap_end = vm_start_gap(vma); 1970 goto check_current; 1971 } 1972 } 1973 } 1974 1975 check_highest: 1976 /* Check highest gap, which does not precede any rbtree node */ 1977 gap_start = mm->highest_vm_end; 1978 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1979 if (gap_start > high_limit) 1980 return -ENOMEM; 1981 1982 found: 1983 /* We found a suitable gap. Clip it with the original low_limit. */ 1984 if (gap_start < info->low_limit) 1985 gap_start = info->low_limit; 1986 1987 /* Adjust gap address to the desired alignment */ 1988 gap_start += (info->align_offset - gap_start) & info->align_mask; 1989 1990 VM_BUG_ON(gap_start + info->length > info->high_limit); 1991 VM_BUG_ON(gap_start + info->length > gap_end); 1992 return gap_start; 1993 } 1994 1995 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1996 { 1997 struct mm_struct *mm = current->mm; 1998 struct vm_area_struct *vma; 1999 unsigned long length, low_limit, high_limit, gap_start, gap_end; 2000 2001 /* Adjust search length to account for worst case alignment overhead */ 2002 length = info->length + info->align_mask; 2003 if (length < info->length) 2004 return -ENOMEM; 2005 2006 /* 2007 * Adjust search limits by the desired length. 2008 * See implementation comment at top of unmapped_area(). 2009 */ 2010 gap_end = info->high_limit; 2011 if (gap_end < length) 2012 return -ENOMEM; 2013 high_limit = gap_end - length; 2014 2015 if (info->low_limit > high_limit) 2016 return -ENOMEM; 2017 low_limit = info->low_limit + length; 2018 2019 /* Check highest gap, which does not precede any rbtree node */ 2020 gap_start = mm->highest_vm_end; 2021 if (gap_start <= high_limit) 2022 goto found_highest; 2023 2024 /* Check if rbtree root looks promising */ 2025 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2026 return -ENOMEM; 2027 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2028 if (vma->rb_subtree_gap < length) 2029 return -ENOMEM; 2030 2031 while (true) { 2032 /* Visit right subtree if it looks promising */ 2033 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2034 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2035 struct vm_area_struct *right = 2036 rb_entry(vma->vm_rb.rb_right, 2037 struct vm_area_struct, vm_rb); 2038 if (right->rb_subtree_gap >= length) { 2039 vma = right; 2040 continue; 2041 } 2042 } 2043 2044 check_current: 2045 /* Check if current node has a suitable gap */ 2046 gap_end = vm_start_gap(vma); 2047 if (gap_end < low_limit) 2048 return -ENOMEM; 2049 if (gap_start <= high_limit && 2050 gap_end > gap_start && gap_end - gap_start >= length) 2051 goto found; 2052 2053 /* Visit left subtree if it looks promising */ 2054 if (vma->vm_rb.rb_left) { 2055 struct vm_area_struct *left = 2056 rb_entry(vma->vm_rb.rb_left, 2057 struct vm_area_struct, vm_rb); 2058 if (left->rb_subtree_gap >= length) { 2059 vma = left; 2060 continue; 2061 } 2062 } 2063 2064 /* Go back up the rbtree to find next candidate node */ 2065 while (true) { 2066 struct rb_node *prev = &vma->vm_rb; 2067 if (!rb_parent(prev)) 2068 return -ENOMEM; 2069 vma = rb_entry(rb_parent(prev), 2070 struct vm_area_struct, vm_rb); 2071 if (prev == vma->vm_rb.rb_right) { 2072 gap_start = vma->vm_prev ? 2073 vm_end_gap(vma->vm_prev) : 0; 2074 goto check_current; 2075 } 2076 } 2077 } 2078 2079 found: 2080 /* We found a suitable gap. Clip it with the original high_limit. */ 2081 if (gap_end > info->high_limit) 2082 gap_end = info->high_limit; 2083 2084 found_highest: 2085 /* Compute highest gap address at the desired alignment */ 2086 gap_end -= info->length; 2087 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2088 2089 VM_BUG_ON(gap_end < info->low_limit); 2090 VM_BUG_ON(gap_end < gap_start); 2091 return gap_end; 2092 } 2093 2094 /* 2095 * Search for an unmapped address range. 2096 * 2097 * We are looking for a range that: 2098 * - does not intersect with any VMA; 2099 * - is contained within the [low_limit, high_limit) interval; 2100 * - is at least the desired size. 2101 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2102 */ 2103 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 2104 { 2105 unsigned long addr; 2106 2107 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2108 addr = unmapped_area_topdown(info); 2109 else 2110 addr = unmapped_area(info); 2111 2112 trace_vm_unmapped_area(addr, info); 2113 return addr; 2114 } 2115 2116 #ifndef arch_get_mmap_end 2117 #define arch_get_mmap_end(addr) (TASK_SIZE) 2118 #endif 2119 2120 #ifndef arch_get_mmap_base 2121 #define arch_get_mmap_base(addr, base) (base) 2122 #endif 2123 2124 /* Get an address range which is currently unmapped. 2125 * For shmat() with addr=0. 2126 * 2127 * Ugly calling convention alert: 2128 * Return value with the low bits set means error value, 2129 * ie 2130 * if (ret & ~PAGE_MASK) 2131 * error = ret; 2132 * 2133 * This function "knows" that -ENOMEM has the bits set. 2134 */ 2135 #ifndef HAVE_ARCH_UNMAPPED_AREA 2136 unsigned long 2137 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2138 unsigned long len, unsigned long pgoff, unsigned long flags) 2139 { 2140 struct mm_struct *mm = current->mm; 2141 struct vm_area_struct *vma, *prev; 2142 struct vm_unmapped_area_info info; 2143 const unsigned long mmap_end = arch_get_mmap_end(addr); 2144 2145 if (len > mmap_end - mmap_min_addr) 2146 return -ENOMEM; 2147 2148 if (flags & MAP_FIXED) 2149 return addr; 2150 2151 if (addr) { 2152 addr = PAGE_ALIGN(addr); 2153 vma = find_vma_prev(mm, addr, &prev); 2154 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2155 (!vma || addr + len <= vm_start_gap(vma)) && 2156 (!prev || addr >= vm_end_gap(prev))) 2157 return addr; 2158 } 2159 2160 info.flags = 0; 2161 info.length = len; 2162 info.low_limit = mm->mmap_base; 2163 info.high_limit = mmap_end; 2164 info.align_mask = 0; 2165 info.align_offset = 0; 2166 return vm_unmapped_area(&info); 2167 } 2168 #endif 2169 2170 /* 2171 * This mmap-allocator allocates new areas top-down from below the 2172 * stack's low limit (the base): 2173 */ 2174 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2175 unsigned long 2176 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2177 unsigned long len, unsigned long pgoff, 2178 unsigned long flags) 2179 { 2180 struct vm_area_struct *vma, *prev; 2181 struct mm_struct *mm = current->mm; 2182 struct vm_unmapped_area_info info; 2183 const unsigned long mmap_end = arch_get_mmap_end(addr); 2184 2185 /* requested length too big for entire address space */ 2186 if (len > mmap_end - mmap_min_addr) 2187 return -ENOMEM; 2188 2189 if (flags & MAP_FIXED) 2190 return addr; 2191 2192 /* requesting a specific address */ 2193 if (addr) { 2194 addr = PAGE_ALIGN(addr); 2195 vma = find_vma_prev(mm, addr, &prev); 2196 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2197 (!vma || addr + len <= vm_start_gap(vma)) && 2198 (!prev || addr >= vm_end_gap(prev))) 2199 return addr; 2200 } 2201 2202 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2203 info.length = len; 2204 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2205 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2206 info.align_mask = 0; 2207 info.align_offset = 0; 2208 addr = vm_unmapped_area(&info); 2209 2210 /* 2211 * A failed mmap() very likely causes application failure, 2212 * so fall back to the bottom-up function here. This scenario 2213 * can happen with large stack limits and large mmap() 2214 * allocations. 2215 */ 2216 if (offset_in_page(addr)) { 2217 VM_BUG_ON(addr != -ENOMEM); 2218 info.flags = 0; 2219 info.low_limit = TASK_UNMAPPED_BASE; 2220 info.high_limit = mmap_end; 2221 addr = vm_unmapped_area(&info); 2222 } 2223 2224 return addr; 2225 } 2226 #endif 2227 2228 unsigned long 2229 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2230 unsigned long pgoff, unsigned long flags) 2231 { 2232 unsigned long (*get_area)(struct file *, unsigned long, 2233 unsigned long, unsigned long, unsigned long); 2234 2235 unsigned long error = arch_mmap_check(addr, len, flags); 2236 if (error) 2237 return error; 2238 2239 /* Careful about overflows.. */ 2240 if (len > TASK_SIZE) 2241 return -ENOMEM; 2242 2243 get_area = current->mm->get_unmapped_area; 2244 if (file) { 2245 if (file->f_op->get_unmapped_area) 2246 get_area = file->f_op->get_unmapped_area; 2247 } else if (flags & MAP_SHARED) { 2248 /* 2249 * mmap_region() will call shmem_zero_setup() to create a file, 2250 * so use shmem's get_unmapped_area in case it can be huge. 2251 * do_mmap() will clear pgoff, so match alignment. 2252 */ 2253 pgoff = 0; 2254 get_area = shmem_get_unmapped_area; 2255 } 2256 2257 addr = get_area(file, addr, len, pgoff, flags); 2258 if (IS_ERR_VALUE(addr)) 2259 return addr; 2260 2261 if (addr > TASK_SIZE - len) 2262 return -ENOMEM; 2263 if (offset_in_page(addr)) 2264 return -EINVAL; 2265 2266 error = security_mmap_addr(addr); 2267 return error ? error : addr; 2268 } 2269 2270 EXPORT_SYMBOL(get_unmapped_area); 2271 2272 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2273 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2274 { 2275 struct rb_node *rb_node; 2276 struct vm_area_struct *vma; 2277 2278 mmap_assert_locked(mm); 2279 /* Check the cache first. */ 2280 vma = vmacache_find(mm, addr); 2281 if (likely(vma)) 2282 return vma; 2283 2284 rb_node = mm->mm_rb.rb_node; 2285 2286 while (rb_node) { 2287 struct vm_area_struct *tmp; 2288 2289 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2290 2291 if (tmp->vm_end > addr) { 2292 vma = tmp; 2293 if (tmp->vm_start <= addr) 2294 break; 2295 rb_node = rb_node->rb_left; 2296 } else 2297 rb_node = rb_node->rb_right; 2298 } 2299 2300 if (vma) 2301 vmacache_update(addr, vma); 2302 return vma; 2303 } 2304 2305 EXPORT_SYMBOL(find_vma); 2306 2307 /* 2308 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2309 */ 2310 struct vm_area_struct * 2311 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2312 struct vm_area_struct **pprev) 2313 { 2314 struct vm_area_struct *vma; 2315 2316 vma = find_vma(mm, addr); 2317 if (vma) { 2318 *pprev = vma->vm_prev; 2319 } else { 2320 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2321 2322 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2323 } 2324 return vma; 2325 } 2326 2327 /* 2328 * Verify that the stack growth is acceptable and 2329 * update accounting. This is shared with both the 2330 * grow-up and grow-down cases. 2331 */ 2332 static int acct_stack_growth(struct vm_area_struct *vma, 2333 unsigned long size, unsigned long grow) 2334 { 2335 struct mm_struct *mm = vma->vm_mm; 2336 unsigned long new_start; 2337 2338 /* address space limit tests */ 2339 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2340 return -ENOMEM; 2341 2342 /* Stack limit test */ 2343 if (size > rlimit(RLIMIT_STACK)) 2344 return -ENOMEM; 2345 2346 /* mlock limit tests */ 2347 if (vma->vm_flags & VM_LOCKED) { 2348 unsigned long locked; 2349 unsigned long limit; 2350 locked = mm->locked_vm + grow; 2351 limit = rlimit(RLIMIT_MEMLOCK); 2352 limit >>= PAGE_SHIFT; 2353 if (locked > limit && !capable(CAP_IPC_LOCK)) 2354 return -ENOMEM; 2355 } 2356 2357 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2358 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2359 vma->vm_end - size; 2360 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2361 return -EFAULT; 2362 2363 /* 2364 * Overcommit.. This must be the final test, as it will 2365 * update security statistics. 2366 */ 2367 if (security_vm_enough_memory_mm(mm, grow)) 2368 return -ENOMEM; 2369 2370 return 0; 2371 } 2372 2373 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2374 /* 2375 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2376 * vma is the last one with address > vma->vm_end. Have to extend vma. 2377 */ 2378 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2379 { 2380 struct mm_struct *mm = vma->vm_mm; 2381 struct vm_area_struct *next; 2382 unsigned long gap_addr; 2383 int error = 0; 2384 2385 if (!(vma->vm_flags & VM_GROWSUP)) 2386 return -EFAULT; 2387 2388 /* Guard against exceeding limits of the address space. */ 2389 address &= PAGE_MASK; 2390 if (address >= (TASK_SIZE & PAGE_MASK)) 2391 return -ENOMEM; 2392 address += PAGE_SIZE; 2393 2394 /* Enforce stack_guard_gap */ 2395 gap_addr = address + stack_guard_gap; 2396 2397 /* Guard against overflow */ 2398 if (gap_addr < address || gap_addr > TASK_SIZE) 2399 gap_addr = TASK_SIZE; 2400 2401 next = vma->vm_next; 2402 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) { 2403 if (!(next->vm_flags & VM_GROWSUP)) 2404 return -ENOMEM; 2405 /* Check that both stack segments have the same anon_vma? */ 2406 } 2407 2408 /* We must make sure the anon_vma is allocated. */ 2409 if (unlikely(anon_vma_prepare(vma))) 2410 return -ENOMEM; 2411 2412 /* 2413 * vma->vm_start/vm_end cannot change under us because the caller 2414 * is required to hold the mmap_lock in read mode. We need the 2415 * anon_vma lock to serialize against concurrent expand_stacks. 2416 */ 2417 anon_vma_lock_write(vma->anon_vma); 2418 2419 /* Somebody else might have raced and expanded it already */ 2420 if (address > vma->vm_end) { 2421 unsigned long size, grow; 2422 2423 size = address - vma->vm_start; 2424 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2425 2426 error = -ENOMEM; 2427 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2428 error = acct_stack_growth(vma, size, grow); 2429 if (!error) { 2430 /* 2431 * vma_gap_update() doesn't support concurrent 2432 * updates, but we only hold a shared mmap_lock 2433 * lock here, so we need to protect against 2434 * concurrent vma expansions. 2435 * anon_vma_lock_write() doesn't help here, as 2436 * we don't guarantee that all growable vmas 2437 * in a mm share the same root anon vma. 2438 * So, we reuse mm->page_table_lock to guard 2439 * against concurrent vma expansions. 2440 */ 2441 spin_lock(&mm->page_table_lock); 2442 if (vma->vm_flags & VM_LOCKED) 2443 mm->locked_vm += grow; 2444 vm_stat_account(mm, vma->vm_flags, grow); 2445 anon_vma_interval_tree_pre_update_vma(vma); 2446 vma->vm_end = address; 2447 anon_vma_interval_tree_post_update_vma(vma); 2448 if (vma->vm_next) 2449 vma_gap_update(vma->vm_next); 2450 else 2451 mm->highest_vm_end = vm_end_gap(vma); 2452 spin_unlock(&mm->page_table_lock); 2453 2454 perf_event_mmap(vma); 2455 } 2456 } 2457 } 2458 anon_vma_unlock_write(vma->anon_vma); 2459 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2460 validate_mm(mm); 2461 return error; 2462 } 2463 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2464 2465 /* 2466 * vma is the first one with address < vma->vm_start. Have to extend vma. 2467 */ 2468 int expand_downwards(struct vm_area_struct *vma, 2469 unsigned long address) 2470 { 2471 struct mm_struct *mm = vma->vm_mm; 2472 struct vm_area_struct *prev; 2473 int error = 0; 2474 2475 address &= PAGE_MASK; 2476 if (address < mmap_min_addr) 2477 return -EPERM; 2478 2479 /* Enforce stack_guard_gap */ 2480 prev = vma->vm_prev; 2481 /* Check that both stack segments have the same anon_vma? */ 2482 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2483 vma_is_accessible(prev)) { 2484 if (address - prev->vm_end < stack_guard_gap) 2485 return -ENOMEM; 2486 } 2487 2488 /* We must make sure the anon_vma is allocated. */ 2489 if (unlikely(anon_vma_prepare(vma))) 2490 return -ENOMEM; 2491 2492 /* 2493 * vma->vm_start/vm_end cannot change under us because the caller 2494 * is required to hold the mmap_lock in read mode. We need the 2495 * anon_vma lock to serialize against concurrent expand_stacks. 2496 */ 2497 anon_vma_lock_write(vma->anon_vma); 2498 2499 /* Somebody else might have raced and expanded it already */ 2500 if (address < vma->vm_start) { 2501 unsigned long size, grow; 2502 2503 size = vma->vm_end - address; 2504 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2505 2506 error = -ENOMEM; 2507 if (grow <= vma->vm_pgoff) { 2508 error = acct_stack_growth(vma, size, grow); 2509 if (!error) { 2510 /* 2511 * vma_gap_update() doesn't support concurrent 2512 * updates, but we only hold a shared mmap_lock 2513 * lock here, so we need to protect against 2514 * concurrent vma expansions. 2515 * anon_vma_lock_write() doesn't help here, as 2516 * we don't guarantee that all growable vmas 2517 * in a mm share the same root anon vma. 2518 * So, we reuse mm->page_table_lock to guard 2519 * against concurrent vma expansions. 2520 */ 2521 spin_lock(&mm->page_table_lock); 2522 if (vma->vm_flags & VM_LOCKED) 2523 mm->locked_vm += grow; 2524 vm_stat_account(mm, vma->vm_flags, grow); 2525 anon_vma_interval_tree_pre_update_vma(vma); 2526 vma->vm_start = address; 2527 vma->vm_pgoff -= grow; 2528 anon_vma_interval_tree_post_update_vma(vma); 2529 vma_gap_update(vma); 2530 spin_unlock(&mm->page_table_lock); 2531 2532 perf_event_mmap(vma); 2533 } 2534 } 2535 } 2536 anon_vma_unlock_write(vma->anon_vma); 2537 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2538 validate_mm(mm); 2539 return error; 2540 } 2541 2542 /* enforced gap between the expanding stack and other mappings. */ 2543 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2544 2545 static int __init cmdline_parse_stack_guard_gap(char *p) 2546 { 2547 unsigned long val; 2548 char *endptr; 2549 2550 val = simple_strtoul(p, &endptr, 10); 2551 if (!*endptr) 2552 stack_guard_gap = val << PAGE_SHIFT; 2553 2554 return 0; 2555 } 2556 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2557 2558 #ifdef CONFIG_STACK_GROWSUP 2559 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2560 { 2561 return expand_upwards(vma, address); 2562 } 2563 2564 struct vm_area_struct * 2565 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2566 { 2567 struct vm_area_struct *vma, *prev; 2568 2569 addr &= PAGE_MASK; 2570 vma = find_vma_prev(mm, addr, &prev); 2571 if (vma && (vma->vm_start <= addr)) 2572 return vma; 2573 /* don't alter vm_end if the coredump is running */ 2574 if (!prev || expand_stack(prev, addr)) 2575 return NULL; 2576 if (prev->vm_flags & VM_LOCKED) 2577 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2578 return prev; 2579 } 2580 #else 2581 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2582 { 2583 return expand_downwards(vma, address); 2584 } 2585 2586 struct vm_area_struct * 2587 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2588 { 2589 struct vm_area_struct *vma; 2590 unsigned long start; 2591 2592 addr &= PAGE_MASK; 2593 vma = find_vma(mm, addr); 2594 if (!vma) 2595 return NULL; 2596 if (vma->vm_start <= addr) 2597 return vma; 2598 if (!(vma->vm_flags & VM_GROWSDOWN)) 2599 return NULL; 2600 start = vma->vm_start; 2601 if (expand_stack(vma, addr)) 2602 return NULL; 2603 if (vma->vm_flags & VM_LOCKED) 2604 populate_vma_page_range(vma, addr, start, NULL); 2605 return vma; 2606 } 2607 #endif 2608 2609 EXPORT_SYMBOL_GPL(find_extend_vma); 2610 2611 /* 2612 * Ok - we have the memory areas we should free on the vma list, 2613 * so release them, and do the vma updates. 2614 * 2615 * Called with the mm semaphore held. 2616 */ 2617 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2618 { 2619 unsigned long nr_accounted = 0; 2620 2621 /* Update high watermark before we lower total_vm */ 2622 update_hiwater_vm(mm); 2623 do { 2624 long nrpages = vma_pages(vma); 2625 2626 if (vma->vm_flags & VM_ACCOUNT) 2627 nr_accounted += nrpages; 2628 vm_stat_account(mm, vma->vm_flags, -nrpages); 2629 vma = remove_vma(vma); 2630 } while (vma); 2631 vm_unacct_memory(nr_accounted); 2632 validate_mm(mm); 2633 } 2634 2635 /* 2636 * Get rid of page table information in the indicated region. 2637 * 2638 * Called with the mm semaphore held. 2639 */ 2640 static void unmap_region(struct mm_struct *mm, 2641 struct vm_area_struct *vma, struct vm_area_struct *prev, 2642 unsigned long start, unsigned long end) 2643 { 2644 struct vm_area_struct *next = vma_next(mm, prev); 2645 struct mmu_gather tlb; 2646 2647 lru_add_drain(); 2648 tlb_gather_mmu(&tlb, mm); 2649 update_hiwater_rss(mm); 2650 unmap_vmas(&tlb, vma, start, end); 2651 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2652 next ? next->vm_start : USER_PGTABLES_CEILING); 2653 tlb_finish_mmu(&tlb); 2654 } 2655 2656 /* 2657 * Create a list of vma's touched by the unmap, removing them from the mm's 2658 * vma list as we go.. 2659 */ 2660 static bool 2661 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2662 struct vm_area_struct *prev, unsigned long end) 2663 { 2664 struct vm_area_struct **insertion_point; 2665 struct vm_area_struct *tail_vma = NULL; 2666 2667 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2668 vma->vm_prev = NULL; 2669 do { 2670 vma_rb_erase(vma, &mm->mm_rb); 2671 mm->map_count--; 2672 tail_vma = vma; 2673 vma = vma->vm_next; 2674 } while (vma && vma->vm_start < end); 2675 *insertion_point = vma; 2676 if (vma) { 2677 vma->vm_prev = prev; 2678 vma_gap_update(vma); 2679 } else 2680 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2681 tail_vma->vm_next = NULL; 2682 2683 /* Kill the cache */ 2684 vmacache_invalidate(mm); 2685 2686 /* 2687 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2688 * VM_GROWSUP VMA. Such VMAs can change their size under 2689 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2690 */ 2691 if (vma && (vma->vm_flags & VM_GROWSDOWN)) 2692 return false; 2693 if (prev && (prev->vm_flags & VM_GROWSUP)) 2694 return false; 2695 return true; 2696 } 2697 2698 /* 2699 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2700 * has already been checked or doesn't make sense to fail. 2701 */ 2702 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2703 unsigned long addr, int new_below) 2704 { 2705 struct vm_area_struct *new; 2706 int err; 2707 2708 if (vma->vm_ops && vma->vm_ops->may_split) { 2709 err = vma->vm_ops->may_split(vma, addr); 2710 if (err) 2711 return err; 2712 } 2713 2714 new = vm_area_dup(vma); 2715 if (!new) 2716 return -ENOMEM; 2717 2718 if (new_below) 2719 new->vm_end = addr; 2720 else { 2721 new->vm_start = addr; 2722 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2723 } 2724 2725 err = vma_dup_policy(vma, new); 2726 if (err) 2727 goto out_free_vma; 2728 2729 err = anon_vma_clone(new, vma); 2730 if (err) 2731 goto out_free_mpol; 2732 2733 if (new->vm_file) 2734 get_file(new->vm_file); 2735 2736 if (new->vm_ops && new->vm_ops->open) 2737 new->vm_ops->open(new); 2738 2739 if (new_below) 2740 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2741 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2742 else 2743 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2744 2745 /* Success. */ 2746 if (!err) 2747 return 0; 2748 2749 /* Clean everything up if vma_adjust failed. */ 2750 if (new->vm_ops && new->vm_ops->close) 2751 new->vm_ops->close(new); 2752 if (new->vm_file) 2753 fput(new->vm_file); 2754 unlink_anon_vmas(new); 2755 out_free_mpol: 2756 mpol_put(vma_policy(new)); 2757 out_free_vma: 2758 vm_area_free(new); 2759 return err; 2760 } 2761 2762 /* 2763 * Split a vma into two pieces at address 'addr', a new vma is allocated 2764 * either for the first part or the tail. 2765 */ 2766 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2767 unsigned long addr, int new_below) 2768 { 2769 if (mm->map_count >= sysctl_max_map_count) 2770 return -ENOMEM; 2771 2772 return __split_vma(mm, vma, addr, new_below); 2773 } 2774 2775 static inline void 2776 unlock_range(struct vm_area_struct *start, unsigned long limit) 2777 { 2778 struct mm_struct *mm = start->vm_mm; 2779 struct vm_area_struct *tmp = start; 2780 2781 while (tmp && tmp->vm_start < limit) { 2782 if (tmp->vm_flags & VM_LOCKED) { 2783 mm->locked_vm -= vma_pages(tmp); 2784 munlock_vma_pages_all(tmp); 2785 } 2786 2787 tmp = tmp->vm_next; 2788 } 2789 } 2790 2791 /* Munmap is split into 2 main parts -- this part which finds 2792 * what needs doing, and the areas themselves, which do the 2793 * work. This now handles partial unmappings. 2794 * Jeremy Fitzhardinge <jeremy@goop.org> 2795 */ 2796 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2797 struct list_head *uf, bool downgrade) 2798 { 2799 unsigned long end; 2800 struct vm_area_struct *vma, *prev, *last; 2801 2802 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2803 return -EINVAL; 2804 2805 len = PAGE_ALIGN(len); 2806 end = start + len; 2807 if (len == 0) 2808 return -EINVAL; 2809 2810 /* 2811 * arch_unmap() might do unmaps itself. It must be called 2812 * and finish any rbtree manipulation before this code 2813 * runs and also starts to manipulate the rbtree. 2814 */ 2815 arch_unmap(mm, start, end); 2816 2817 /* Find the first overlapping VMA where start < vma->vm_end */ 2818 vma = find_vma_intersection(mm, start, end); 2819 if (!vma) 2820 return 0; 2821 prev = vma->vm_prev; 2822 2823 /* 2824 * If we need to split any vma, do it now to save pain later. 2825 * 2826 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2827 * unmapped vm_area_struct will remain in use: so lower split_vma 2828 * places tmp vma above, and higher split_vma places tmp vma below. 2829 */ 2830 if (start > vma->vm_start) { 2831 int error; 2832 2833 /* 2834 * Make sure that map_count on return from munmap() will 2835 * not exceed its limit; but let map_count go just above 2836 * its limit temporarily, to help free resources as expected. 2837 */ 2838 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2839 return -ENOMEM; 2840 2841 error = __split_vma(mm, vma, start, 0); 2842 if (error) 2843 return error; 2844 prev = vma; 2845 } 2846 2847 /* Does it split the last one? */ 2848 last = find_vma(mm, end); 2849 if (last && end > last->vm_start) { 2850 int error = __split_vma(mm, last, end, 1); 2851 if (error) 2852 return error; 2853 } 2854 vma = vma_next(mm, prev); 2855 2856 if (unlikely(uf)) { 2857 /* 2858 * If userfaultfd_unmap_prep returns an error the vmas 2859 * will remain split, but userland will get a 2860 * highly unexpected error anyway. This is no 2861 * different than the case where the first of the two 2862 * __split_vma fails, but we don't undo the first 2863 * split, despite we could. This is unlikely enough 2864 * failure that it's not worth optimizing it for. 2865 */ 2866 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2867 if (error) 2868 return error; 2869 } 2870 2871 /* 2872 * unlock any mlock()ed ranges before detaching vmas 2873 */ 2874 if (mm->locked_vm) 2875 unlock_range(vma, end); 2876 2877 /* Detach vmas from rbtree */ 2878 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end)) 2879 downgrade = false; 2880 2881 if (downgrade) 2882 mmap_write_downgrade(mm); 2883 2884 unmap_region(mm, vma, prev, start, end); 2885 2886 /* Fix up all other VM information */ 2887 remove_vma_list(mm, vma); 2888 2889 return downgrade ? 1 : 0; 2890 } 2891 2892 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2893 struct list_head *uf) 2894 { 2895 return __do_munmap(mm, start, len, uf, false); 2896 } 2897 2898 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2899 { 2900 int ret; 2901 struct mm_struct *mm = current->mm; 2902 LIST_HEAD(uf); 2903 2904 if (mmap_write_lock_killable(mm)) 2905 return -EINTR; 2906 2907 ret = __do_munmap(mm, start, len, &uf, downgrade); 2908 /* 2909 * Returning 1 indicates mmap_lock is downgraded. 2910 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2911 * it to 0 before return. 2912 */ 2913 if (ret == 1) { 2914 mmap_read_unlock(mm); 2915 ret = 0; 2916 } else 2917 mmap_write_unlock(mm); 2918 2919 userfaultfd_unmap_complete(mm, &uf); 2920 return ret; 2921 } 2922 2923 int vm_munmap(unsigned long start, size_t len) 2924 { 2925 return __vm_munmap(start, len, false); 2926 } 2927 EXPORT_SYMBOL(vm_munmap); 2928 2929 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2930 { 2931 addr = untagged_addr(addr); 2932 profile_munmap(addr); 2933 return __vm_munmap(addr, len, true); 2934 } 2935 2936 2937 /* 2938 * Emulation of deprecated remap_file_pages() syscall. 2939 */ 2940 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2941 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2942 { 2943 2944 struct mm_struct *mm = current->mm; 2945 struct vm_area_struct *vma; 2946 unsigned long populate = 0; 2947 unsigned long ret = -EINVAL; 2948 struct file *file; 2949 2950 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2951 current->comm, current->pid); 2952 2953 if (prot) 2954 return ret; 2955 start = start & PAGE_MASK; 2956 size = size & PAGE_MASK; 2957 2958 if (start + size <= start) 2959 return ret; 2960 2961 /* Does pgoff wrap? */ 2962 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2963 return ret; 2964 2965 if (mmap_write_lock_killable(mm)) 2966 return -EINTR; 2967 2968 vma = vma_lookup(mm, start); 2969 2970 if (!vma || !(vma->vm_flags & VM_SHARED)) 2971 goto out; 2972 2973 if (start + size > vma->vm_end) { 2974 struct vm_area_struct *next; 2975 2976 for (next = vma->vm_next; next; next = next->vm_next) { 2977 /* hole between vmas ? */ 2978 if (next->vm_start != next->vm_prev->vm_end) 2979 goto out; 2980 2981 if (next->vm_file != vma->vm_file) 2982 goto out; 2983 2984 if (next->vm_flags != vma->vm_flags) 2985 goto out; 2986 2987 if (start + size <= next->vm_end) 2988 break; 2989 } 2990 2991 if (!next) 2992 goto out; 2993 } 2994 2995 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2996 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2997 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2998 2999 flags &= MAP_NONBLOCK; 3000 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 3001 if (vma->vm_flags & VM_LOCKED) 3002 flags |= MAP_LOCKED; 3003 3004 file = get_file(vma->vm_file); 3005 ret = do_mmap(vma->vm_file, start, size, 3006 prot, flags, pgoff, &populate, NULL); 3007 fput(file); 3008 out: 3009 mmap_write_unlock(mm); 3010 if (populate) 3011 mm_populate(ret, populate); 3012 if (!IS_ERR_VALUE(ret)) 3013 ret = 0; 3014 return ret; 3015 } 3016 3017 /* 3018 * this is really a simplified "do_mmap". it only handles 3019 * anonymous maps. eventually we may be able to do some 3020 * brk-specific accounting here. 3021 */ 3022 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 3023 { 3024 struct mm_struct *mm = current->mm; 3025 struct vm_area_struct *vma, *prev; 3026 struct rb_node **rb_link, *rb_parent; 3027 pgoff_t pgoff = addr >> PAGE_SHIFT; 3028 int error; 3029 unsigned long mapped_addr; 3030 3031 /* Until we need other flags, refuse anything except VM_EXEC. */ 3032 if ((flags & (~VM_EXEC)) != 0) 3033 return -EINVAL; 3034 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3035 3036 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3037 if (IS_ERR_VALUE(mapped_addr)) 3038 return mapped_addr; 3039 3040 error = mlock_future_check(mm, mm->def_flags, len); 3041 if (error) 3042 return error; 3043 3044 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 3045 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 3046 return -ENOMEM; 3047 3048 /* Check against address space limits *after* clearing old maps... */ 3049 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3050 return -ENOMEM; 3051 3052 if (mm->map_count > sysctl_max_map_count) 3053 return -ENOMEM; 3054 3055 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3056 return -ENOMEM; 3057 3058 /* Can we just expand an old private anonymous mapping? */ 3059 vma = vma_merge(mm, prev, addr, addr + len, flags, 3060 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3061 if (vma) 3062 goto out; 3063 3064 /* 3065 * create a vma struct for an anonymous mapping 3066 */ 3067 vma = vm_area_alloc(mm); 3068 if (!vma) { 3069 vm_unacct_memory(len >> PAGE_SHIFT); 3070 return -ENOMEM; 3071 } 3072 3073 vma_set_anonymous(vma); 3074 vma->vm_start = addr; 3075 vma->vm_end = addr + len; 3076 vma->vm_pgoff = pgoff; 3077 vma->vm_flags = flags; 3078 vma->vm_page_prot = vm_get_page_prot(flags); 3079 vma_link(mm, vma, prev, rb_link, rb_parent); 3080 out: 3081 perf_event_mmap(vma); 3082 mm->total_vm += len >> PAGE_SHIFT; 3083 mm->data_vm += len >> PAGE_SHIFT; 3084 if (flags & VM_LOCKED) 3085 mm->locked_vm += (len >> PAGE_SHIFT); 3086 vma->vm_flags |= VM_SOFTDIRTY; 3087 return 0; 3088 } 3089 3090 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3091 { 3092 struct mm_struct *mm = current->mm; 3093 unsigned long len; 3094 int ret; 3095 bool populate; 3096 LIST_HEAD(uf); 3097 3098 len = PAGE_ALIGN(request); 3099 if (len < request) 3100 return -ENOMEM; 3101 if (!len) 3102 return 0; 3103 3104 if (mmap_write_lock_killable(mm)) 3105 return -EINTR; 3106 3107 ret = do_brk_flags(addr, len, flags, &uf); 3108 populate = ((mm->def_flags & VM_LOCKED) != 0); 3109 mmap_write_unlock(mm); 3110 userfaultfd_unmap_complete(mm, &uf); 3111 if (populate && !ret) 3112 mm_populate(addr, len); 3113 return ret; 3114 } 3115 EXPORT_SYMBOL(vm_brk_flags); 3116 3117 int vm_brk(unsigned long addr, unsigned long len) 3118 { 3119 return vm_brk_flags(addr, len, 0); 3120 } 3121 EXPORT_SYMBOL(vm_brk); 3122 3123 /* Release all mmaps. */ 3124 void exit_mmap(struct mm_struct *mm) 3125 { 3126 struct mmu_gather tlb; 3127 struct vm_area_struct *vma; 3128 unsigned long nr_accounted = 0; 3129 3130 /* mm's last user has gone, and its about to be pulled down */ 3131 mmu_notifier_release(mm); 3132 3133 if (unlikely(mm_is_oom_victim(mm))) { 3134 /* 3135 * Manually reap the mm to free as much memory as possible. 3136 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3137 * this mm from further consideration. Taking mm->mmap_lock for 3138 * write after setting MMF_OOM_SKIP will guarantee that the oom 3139 * reaper will not run on this mm again after mmap_lock is 3140 * dropped. 3141 * 3142 * Nothing can be holding mm->mmap_lock here and the above call 3143 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3144 * __oom_reap_task_mm() will not block. 3145 * 3146 * This needs to be done before calling munlock_vma_pages_all(), 3147 * which clears VM_LOCKED, otherwise the oom reaper cannot 3148 * reliably test it. 3149 */ 3150 (void)__oom_reap_task_mm(mm); 3151 3152 set_bit(MMF_OOM_SKIP, &mm->flags); 3153 mmap_write_lock(mm); 3154 mmap_write_unlock(mm); 3155 } 3156 3157 if (mm->locked_vm) 3158 unlock_range(mm->mmap, ULONG_MAX); 3159 3160 arch_exit_mmap(mm); 3161 3162 vma = mm->mmap; 3163 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3164 return; 3165 3166 lru_add_drain(); 3167 flush_cache_mm(mm); 3168 tlb_gather_mmu_fullmm(&tlb, mm); 3169 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3170 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3171 unmap_vmas(&tlb, vma, 0, -1); 3172 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3173 tlb_finish_mmu(&tlb); 3174 3175 /* 3176 * Walk the list again, actually closing and freeing it, 3177 * with preemption enabled, without holding any MM locks. 3178 */ 3179 while (vma) { 3180 if (vma->vm_flags & VM_ACCOUNT) 3181 nr_accounted += vma_pages(vma); 3182 vma = remove_vma(vma); 3183 cond_resched(); 3184 } 3185 vm_unacct_memory(nr_accounted); 3186 } 3187 3188 /* Insert vm structure into process list sorted by address 3189 * and into the inode's i_mmap tree. If vm_file is non-NULL 3190 * then i_mmap_rwsem is taken here. 3191 */ 3192 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3193 { 3194 struct vm_area_struct *prev; 3195 struct rb_node **rb_link, *rb_parent; 3196 3197 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3198 &prev, &rb_link, &rb_parent)) 3199 return -ENOMEM; 3200 if ((vma->vm_flags & VM_ACCOUNT) && 3201 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3202 return -ENOMEM; 3203 3204 /* 3205 * The vm_pgoff of a purely anonymous vma should be irrelevant 3206 * until its first write fault, when page's anon_vma and index 3207 * are set. But now set the vm_pgoff it will almost certainly 3208 * end up with (unless mremap moves it elsewhere before that 3209 * first wfault), so /proc/pid/maps tells a consistent story. 3210 * 3211 * By setting it to reflect the virtual start address of the 3212 * vma, merges and splits can happen in a seamless way, just 3213 * using the existing file pgoff checks and manipulations. 3214 * Similarly in do_mmap and in do_brk_flags. 3215 */ 3216 if (vma_is_anonymous(vma)) { 3217 BUG_ON(vma->anon_vma); 3218 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3219 } 3220 3221 vma_link(mm, vma, prev, rb_link, rb_parent); 3222 return 0; 3223 } 3224 3225 /* 3226 * Copy the vma structure to a new location in the same mm, 3227 * prior to moving page table entries, to effect an mremap move. 3228 */ 3229 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3230 unsigned long addr, unsigned long len, pgoff_t pgoff, 3231 bool *need_rmap_locks) 3232 { 3233 struct vm_area_struct *vma = *vmap; 3234 unsigned long vma_start = vma->vm_start; 3235 struct mm_struct *mm = vma->vm_mm; 3236 struct vm_area_struct *new_vma, *prev; 3237 struct rb_node **rb_link, *rb_parent; 3238 bool faulted_in_anon_vma = true; 3239 3240 /* 3241 * If anonymous vma has not yet been faulted, update new pgoff 3242 * to match new location, to increase its chance of merging. 3243 */ 3244 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3245 pgoff = addr >> PAGE_SHIFT; 3246 faulted_in_anon_vma = false; 3247 } 3248 3249 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3250 return NULL; /* should never get here */ 3251 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3252 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3253 vma->vm_userfaultfd_ctx); 3254 if (new_vma) { 3255 /* 3256 * Source vma may have been merged into new_vma 3257 */ 3258 if (unlikely(vma_start >= new_vma->vm_start && 3259 vma_start < new_vma->vm_end)) { 3260 /* 3261 * The only way we can get a vma_merge with 3262 * self during an mremap is if the vma hasn't 3263 * been faulted in yet and we were allowed to 3264 * reset the dst vma->vm_pgoff to the 3265 * destination address of the mremap to allow 3266 * the merge to happen. mremap must change the 3267 * vm_pgoff linearity between src and dst vmas 3268 * (in turn preventing a vma_merge) to be 3269 * safe. It is only safe to keep the vm_pgoff 3270 * linear if there are no pages mapped yet. 3271 */ 3272 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3273 *vmap = vma = new_vma; 3274 } 3275 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3276 } else { 3277 new_vma = vm_area_dup(vma); 3278 if (!new_vma) 3279 goto out; 3280 new_vma->vm_start = addr; 3281 new_vma->vm_end = addr + len; 3282 new_vma->vm_pgoff = pgoff; 3283 if (vma_dup_policy(vma, new_vma)) 3284 goto out_free_vma; 3285 if (anon_vma_clone(new_vma, vma)) 3286 goto out_free_mempol; 3287 if (new_vma->vm_file) 3288 get_file(new_vma->vm_file); 3289 if (new_vma->vm_ops && new_vma->vm_ops->open) 3290 new_vma->vm_ops->open(new_vma); 3291 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3292 *need_rmap_locks = false; 3293 } 3294 return new_vma; 3295 3296 out_free_mempol: 3297 mpol_put(vma_policy(new_vma)); 3298 out_free_vma: 3299 vm_area_free(new_vma); 3300 out: 3301 return NULL; 3302 } 3303 3304 /* 3305 * Return true if the calling process may expand its vm space by the passed 3306 * number of pages 3307 */ 3308 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3309 { 3310 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3311 return false; 3312 3313 if (is_data_mapping(flags) && 3314 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3315 /* Workaround for Valgrind */ 3316 if (rlimit(RLIMIT_DATA) == 0 && 3317 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3318 return true; 3319 3320 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3321 current->comm, current->pid, 3322 (mm->data_vm + npages) << PAGE_SHIFT, 3323 rlimit(RLIMIT_DATA), 3324 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3325 3326 if (!ignore_rlimit_data) 3327 return false; 3328 } 3329 3330 return true; 3331 } 3332 3333 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3334 { 3335 mm->total_vm += npages; 3336 3337 if (is_exec_mapping(flags)) 3338 mm->exec_vm += npages; 3339 else if (is_stack_mapping(flags)) 3340 mm->stack_vm += npages; 3341 else if (is_data_mapping(flags)) 3342 mm->data_vm += npages; 3343 } 3344 3345 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3346 3347 /* 3348 * Having a close hook prevents vma merging regardless of flags. 3349 */ 3350 static void special_mapping_close(struct vm_area_struct *vma) 3351 { 3352 } 3353 3354 static const char *special_mapping_name(struct vm_area_struct *vma) 3355 { 3356 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3357 } 3358 3359 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3360 { 3361 struct vm_special_mapping *sm = new_vma->vm_private_data; 3362 3363 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3364 return -EFAULT; 3365 3366 if (sm->mremap) 3367 return sm->mremap(sm, new_vma); 3368 3369 return 0; 3370 } 3371 3372 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3373 { 3374 /* 3375 * Forbid splitting special mappings - kernel has expectations over 3376 * the number of pages in mapping. Together with VM_DONTEXPAND 3377 * the size of vma should stay the same over the special mapping's 3378 * lifetime. 3379 */ 3380 return -EINVAL; 3381 } 3382 3383 static const struct vm_operations_struct special_mapping_vmops = { 3384 .close = special_mapping_close, 3385 .fault = special_mapping_fault, 3386 .mremap = special_mapping_mremap, 3387 .name = special_mapping_name, 3388 /* vDSO code relies that VVAR can't be accessed remotely */ 3389 .access = NULL, 3390 .may_split = special_mapping_split, 3391 }; 3392 3393 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3394 .close = special_mapping_close, 3395 .fault = special_mapping_fault, 3396 }; 3397 3398 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3399 { 3400 struct vm_area_struct *vma = vmf->vma; 3401 pgoff_t pgoff; 3402 struct page **pages; 3403 3404 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3405 pages = vma->vm_private_data; 3406 } else { 3407 struct vm_special_mapping *sm = vma->vm_private_data; 3408 3409 if (sm->fault) 3410 return sm->fault(sm, vmf->vma, vmf); 3411 3412 pages = sm->pages; 3413 } 3414 3415 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3416 pgoff--; 3417 3418 if (*pages) { 3419 struct page *page = *pages; 3420 get_page(page); 3421 vmf->page = page; 3422 return 0; 3423 } 3424 3425 return VM_FAULT_SIGBUS; 3426 } 3427 3428 static struct vm_area_struct *__install_special_mapping( 3429 struct mm_struct *mm, 3430 unsigned long addr, unsigned long len, 3431 unsigned long vm_flags, void *priv, 3432 const struct vm_operations_struct *ops) 3433 { 3434 int ret; 3435 struct vm_area_struct *vma; 3436 3437 vma = vm_area_alloc(mm); 3438 if (unlikely(vma == NULL)) 3439 return ERR_PTR(-ENOMEM); 3440 3441 vma->vm_start = addr; 3442 vma->vm_end = addr + len; 3443 3444 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3445 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3446 3447 vma->vm_ops = ops; 3448 vma->vm_private_data = priv; 3449 3450 ret = insert_vm_struct(mm, vma); 3451 if (ret) 3452 goto out; 3453 3454 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3455 3456 perf_event_mmap(vma); 3457 3458 return vma; 3459 3460 out: 3461 vm_area_free(vma); 3462 return ERR_PTR(ret); 3463 } 3464 3465 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3466 const struct vm_special_mapping *sm) 3467 { 3468 return vma->vm_private_data == sm && 3469 (vma->vm_ops == &special_mapping_vmops || 3470 vma->vm_ops == &legacy_special_mapping_vmops); 3471 } 3472 3473 /* 3474 * Called with mm->mmap_lock held for writing. 3475 * Insert a new vma covering the given region, with the given flags. 3476 * Its pages are supplied by the given array of struct page *. 3477 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3478 * The region past the last page supplied will always produce SIGBUS. 3479 * The array pointer and the pages it points to are assumed to stay alive 3480 * for as long as this mapping might exist. 3481 */ 3482 struct vm_area_struct *_install_special_mapping( 3483 struct mm_struct *mm, 3484 unsigned long addr, unsigned long len, 3485 unsigned long vm_flags, const struct vm_special_mapping *spec) 3486 { 3487 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3488 &special_mapping_vmops); 3489 } 3490 3491 int install_special_mapping(struct mm_struct *mm, 3492 unsigned long addr, unsigned long len, 3493 unsigned long vm_flags, struct page **pages) 3494 { 3495 struct vm_area_struct *vma = __install_special_mapping( 3496 mm, addr, len, vm_flags, (void *)pages, 3497 &legacy_special_mapping_vmops); 3498 3499 return PTR_ERR_OR_ZERO(vma); 3500 } 3501 3502 static DEFINE_MUTEX(mm_all_locks_mutex); 3503 3504 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3505 { 3506 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3507 /* 3508 * The LSB of head.next can't change from under us 3509 * because we hold the mm_all_locks_mutex. 3510 */ 3511 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3512 /* 3513 * We can safely modify head.next after taking the 3514 * anon_vma->root->rwsem. If some other vma in this mm shares 3515 * the same anon_vma we won't take it again. 3516 * 3517 * No need of atomic instructions here, head.next 3518 * can't change from under us thanks to the 3519 * anon_vma->root->rwsem. 3520 */ 3521 if (__test_and_set_bit(0, (unsigned long *) 3522 &anon_vma->root->rb_root.rb_root.rb_node)) 3523 BUG(); 3524 } 3525 } 3526 3527 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3528 { 3529 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3530 /* 3531 * AS_MM_ALL_LOCKS can't change from under us because 3532 * we hold the mm_all_locks_mutex. 3533 * 3534 * Operations on ->flags have to be atomic because 3535 * even if AS_MM_ALL_LOCKS is stable thanks to the 3536 * mm_all_locks_mutex, there may be other cpus 3537 * changing other bitflags in parallel to us. 3538 */ 3539 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3540 BUG(); 3541 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3542 } 3543 } 3544 3545 /* 3546 * This operation locks against the VM for all pte/vma/mm related 3547 * operations that could ever happen on a certain mm. This includes 3548 * vmtruncate, try_to_unmap, and all page faults. 3549 * 3550 * The caller must take the mmap_lock in write mode before calling 3551 * mm_take_all_locks(). The caller isn't allowed to release the 3552 * mmap_lock until mm_drop_all_locks() returns. 3553 * 3554 * mmap_lock in write mode is required in order to block all operations 3555 * that could modify pagetables and free pages without need of 3556 * altering the vma layout. It's also needed in write mode to avoid new 3557 * anon_vmas to be associated with existing vmas. 3558 * 3559 * A single task can't take more than one mm_take_all_locks() in a row 3560 * or it would deadlock. 3561 * 3562 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3563 * mapping->flags avoid to take the same lock twice, if more than one 3564 * vma in this mm is backed by the same anon_vma or address_space. 3565 * 3566 * We take locks in following order, accordingly to comment at beginning 3567 * of mm/rmap.c: 3568 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3569 * hugetlb mapping); 3570 * - all i_mmap_rwsem locks; 3571 * - all anon_vma->rwseml 3572 * 3573 * We can take all locks within these types randomly because the VM code 3574 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3575 * mm_all_locks_mutex. 3576 * 3577 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3578 * that may have to take thousand of locks. 3579 * 3580 * mm_take_all_locks() can fail if it's interrupted by signals. 3581 */ 3582 int mm_take_all_locks(struct mm_struct *mm) 3583 { 3584 struct vm_area_struct *vma; 3585 struct anon_vma_chain *avc; 3586 3587 BUG_ON(mmap_read_trylock(mm)); 3588 3589 mutex_lock(&mm_all_locks_mutex); 3590 3591 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3592 if (signal_pending(current)) 3593 goto out_unlock; 3594 if (vma->vm_file && vma->vm_file->f_mapping && 3595 is_vm_hugetlb_page(vma)) 3596 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3597 } 3598 3599 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3600 if (signal_pending(current)) 3601 goto out_unlock; 3602 if (vma->vm_file && vma->vm_file->f_mapping && 3603 !is_vm_hugetlb_page(vma)) 3604 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3605 } 3606 3607 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3608 if (signal_pending(current)) 3609 goto out_unlock; 3610 if (vma->anon_vma) 3611 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3612 vm_lock_anon_vma(mm, avc->anon_vma); 3613 } 3614 3615 return 0; 3616 3617 out_unlock: 3618 mm_drop_all_locks(mm); 3619 return -EINTR; 3620 } 3621 3622 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3623 { 3624 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3625 /* 3626 * The LSB of head.next can't change to 0 from under 3627 * us because we hold the mm_all_locks_mutex. 3628 * 3629 * We must however clear the bitflag before unlocking 3630 * the vma so the users using the anon_vma->rb_root will 3631 * never see our bitflag. 3632 * 3633 * No need of atomic instructions here, head.next 3634 * can't change from under us until we release the 3635 * anon_vma->root->rwsem. 3636 */ 3637 if (!__test_and_clear_bit(0, (unsigned long *) 3638 &anon_vma->root->rb_root.rb_root.rb_node)) 3639 BUG(); 3640 anon_vma_unlock_write(anon_vma); 3641 } 3642 } 3643 3644 static void vm_unlock_mapping(struct address_space *mapping) 3645 { 3646 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3647 /* 3648 * AS_MM_ALL_LOCKS can't change to 0 from under us 3649 * because we hold the mm_all_locks_mutex. 3650 */ 3651 i_mmap_unlock_write(mapping); 3652 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3653 &mapping->flags)) 3654 BUG(); 3655 } 3656 } 3657 3658 /* 3659 * The mmap_lock cannot be released by the caller until 3660 * mm_drop_all_locks() returns. 3661 */ 3662 void mm_drop_all_locks(struct mm_struct *mm) 3663 { 3664 struct vm_area_struct *vma; 3665 struct anon_vma_chain *avc; 3666 3667 BUG_ON(mmap_read_trylock(mm)); 3668 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3669 3670 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3671 if (vma->anon_vma) 3672 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3673 vm_unlock_anon_vma(avc->anon_vma); 3674 if (vma->vm_file && vma->vm_file->f_mapping) 3675 vm_unlock_mapping(vma->vm_file->f_mapping); 3676 } 3677 3678 mutex_unlock(&mm_all_locks_mutex); 3679 } 3680 3681 /* 3682 * initialise the percpu counter for VM 3683 */ 3684 void __init mmap_init(void) 3685 { 3686 int ret; 3687 3688 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3689 VM_BUG_ON(ret); 3690 } 3691 3692 /* 3693 * Initialise sysctl_user_reserve_kbytes. 3694 * 3695 * This is intended to prevent a user from starting a single memory hogging 3696 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3697 * mode. 3698 * 3699 * The default value is min(3% of free memory, 128MB) 3700 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3701 */ 3702 static int init_user_reserve(void) 3703 { 3704 unsigned long free_kbytes; 3705 3706 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3707 3708 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3709 return 0; 3710 } 3711 subsys_initcall(init_user_reserve); 3712 3713 /* 3714 * Initialise sysctl_admin_reserve_kbytes. 3715 * 3716 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3717 * to log in and kill a memory hogging process. 3718 * 3719 * Systems with more than 256MB will reserve 8MB, enough to recover 3720 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3721 * only reserve 3% of free pages by default. 3722 */ 3723 static int init_admin_reserve(void) 3724 { 3725 unsigned long free_kbytes; 3726 3727 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3728 3729 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3730 return 0; 3731 } 3732 subsys_initcall(init_admin_reserve); 3733 3734 /* 3735 * Reinititalise user and admin reserves if memory is added or removed. 3736 * 3737 * The default user reserve max is 128MB, and the default max for the 3738 * admin reserve is 8MB. These are usually, but not always, enough to 3739 * enable recovery from a memory hogging process using login/sshd, a shell, 3740 * and tools like top. It may make sense to increase or even disable the 3741 * reserve depending on the existence of swap or variations in the recovery 3742 * tools. So, the admin may have changed them. 3743 * 3744 * If memory is added and the reserves have been eliminated or increased above 3745 * the default max, then we'll trust the admin. 3746 * 3747 * If memory is removed and there isn't enough free memory, then we 3748 * need to reset the reserves. 3749 * 3750 * Otherwise keep the reserve set by the admin. 3751 */ 3752 static int reserve_mem_notifier(struct notifier_block *nb, 3753 unsigned long action, void *data) 3754 { 3755 unsigned long tmp, free_kbytes; 3756 3757 switch (action) { 3758 case MEM_ONLINE: 3759 /* Default max is 128MB. Leave alone if modified by operator. */ 3760 tmp = sysctl_user_reserve_kbytes; 3761 if (0 < tmp && tmp < (1UL << 17)) 3762 init_user_reserve(); 3763 3764 /* Default max is 8MB. Leave alone if modified by operator. */ 3765 tmp = sysctl_admin_reserve_kbytes; 3766 if (0 < tmp && tmp < (1UL << 13)) 3767 init_admin_reserve(); 3768 3769 break; 3770 case MEM_OFFLINE: 3771 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3772 3773 if (sysctl_user_reserve_kbytes > free_kbytes) { 3774 init_user_reserve(); 3775 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3776 sysctl_user_reserve_kbytes); 3777 } 3778 3779 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3780 init_admin_reserve(); 3781 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3782 sysctl_admin_reserve_kbytes); 3783 } 3784 break; 3785 default: 3786 break; 3787 } 3788 return NOTIFY_OK; 3789 } 3790 3791 static struct notifier_block reserve_mem_nb = { 3792 .notifier_call = reserve_mem_notifier, 3793 }; 3794 3795 static int __meminit init_reserve_notifier(void) 3796 { 3797 if (register_hotmemory_notifier(&reserve_mem_nb)) 3798 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3799 3800 return 0; 3801 } 3802 subsys_initcall(init_reserve_notifier); 3803