1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 unsigned long start, unsigned long end); 82 83 /* description of effects of mapping type and prot in current implementation. 84 * this is due to the limited x86 page protection hardware. The expected 85 * behavior is in parens: 86 * 87 * map_type prot 88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 90 * w: (no) no w: (no) no w: (yes) yes w: (no) no 91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 92 * 93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 94 * w: (no) no w: (no) no w: (copy) copy w: (no) no 95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 96 */ 97 pgprot_t protection_map[16] __ro_after_init = { 98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 100 }; 101 102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 104 { 105 return prot; 106 } 107 #endif 108 109 pgprot_t vm_get_page_prot(unsigned long vm_flags) 110 { 111 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 112 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 113 pgprot_val(arch_vm_get_page_prot(vm_flags))); 114 115 return arch_filter_pgprot(ret); 116 } 117 EXPORT_SYMBOL(vm_get_page_prot); 118 119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 120 { 121 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 122 } 123 124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 125 void vma_set_page_prot(struct vm_area_struct *vma) 126 { 127 unsigned long vm_flags = vma->vm_flags; 128 pgprot_t vm_page_prot; 129 130 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 131 if (vma_wants_writenotify(vma, vm_page_prot)) { 132 vm_flags &= ~VM_SHARED; 133 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 134 } 135 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 136 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 137 } 138 139 /* 140 * Requires inode->i_mapping->i_mmap_rwsem 141 */ 142 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 143 struct file *file, struct address_space *mapping) 144 { 145 if (vma->vm_flags & VM_DENYWRITE) 146 atomic_inc(&file_inode(file)->i_writecount); 147 if (vma->vm_flags & VM_SHARED) 148 mapping_unmap_writable(mapping); 149 150 flush_dcache_mmap_lock(mapping); 151 vma_interval_tree_remove(vma, &mapping->i_mmap); 152 flush_dcache_mmap_unlock(mapping); 153 } 154 155 /* 156 * Unlink a file-based vm structure from its interval tree, to hide 157 * vma from rmap and vmtruncate before freeing its page tables. 158 */ 159 void unlink_file_vma(struct vm_area_struct *vma) 160 { 161 struct file *file = vma->vm_file; 162 163 if (file) { 164 struct address_space *mapping = file->f_mapping; 165 i_mmap_lock_write(mapping); 166 __remove_shared_vm_struct(vma, file, mapping); 167 i_mmap_unlock_write(mapping); 168 } 169 } 170 171 /* 172 * Close a vm structure and free it, returning the next. 173 */ 174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 175 { 176 struct vm_area_struct *next = vma->vm_next; 177 178 might_sleep(); 179 if (vma->vm_ops && vma->vm_ops->close) 180 vma->vm_ops->close(vma); 181 if (vma->vm_file) 182 fput(vma->vm_file); 183 mpol_put(vma_policy(vma)); 184 vm_area_free(vma); 185 return next; 186 } 187 188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 189 struct list_head *uf); 190 SYSCALL_DEFINE1(brk, unsigned long, brk) 191 { 192 unsigned long retval; 193 unsigned long newbrk, oldbrk, origbrk; 194 struct mm_struct *mm = current->mm; 195 struct vm_area_struct *next; 196 unsigned long min_brk; 197 bool populate; 198 bool downgraded = false; 199 LIST_HEAD(uf); 200 201 if (mmap_write_lock_killable(mm)) 202 return -EINTR; 203 204 origbrk = mm->brk; 205 206 #ifdef CONFIG_COMPAT_BRK 207 /* 208 * CONFIG_COMPAT_BRK can still be overridden by setting 209 * randomize_va_space to 2, which will still cause mm->start_brk 210 * to be arbitrarily shifted 211 */ 212 if (current->brk_randomized) 213 min_brk = mm->start_brk; 214 else 215 min_brk = mm->end_data; 216 #else 217 min_brk = mm->start_brk; 218 #endif 219 if (brk < min_brk) 220 goto out; 221 222 /* 223 * Check against rlimit here. If this check is done later after the test 224 * of oldbrk with newbrk then it can escape the test and let the data 225 * segment grow beyond its set limit the in case where the limit is 226 * not page aligned -Ram Gupta 227 */ 228 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 229 mm->end_data, mm->start_data)) 230 goto out; 231 232 newbrk = PAGE_ALIGN(brk); 233 oldbrk = PAGE_ALIGN(mm->brk); 234 if (oldbrk == newbrk) { 235 mm->brk = brk; 236 goto success; 237 } 238 239 /* 240 * Always allow shrinking brk. 241 * __do_munmap() may downgrade mmap_lock to read. 242 */ 243 if (brk <= mm->brk) { 244 int ret; 245 246 /* 247 * mm->brk must to be protected by write mmap_lock so update it 248 * before downgrading mmap_lock. When __do_munmap() fails, 249 * mm->brk will be restored from origbrk. 250 */ 251 mm->brk = brk; 252 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 253 if (ret < 0) { 254 mm->brk = origbrk; 255 goto out; 256 } else if (ret == 1) { 257 downgraded = true; 258 } 259 goto success; 260 } 261 262 /* Check against existing mmap mappings. */ 263 next = find_vma(mm, oldbrk); 264 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 265 goto out; 266 267 /* Ok, looks good - let it rip. */ 268 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 269 goto out; 270 mm->brk = brk; 271 272 success: 273 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 274 if (downgraded) 275 mmap_read_unlock(mm); 276 else 277 mmap_write_unlock(mm); 278 userfaultfd_unmap_complete(mm, &uf); 279 if (populate) 280 mm_populate(oldbrk, newbrk - oldbrk); 281 return brk; 282 283 out: 284 retval = origbrk; 285 mmap_write_unlock(mm); 286 return retval; 287 } 288 289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 290 { 291 unsigned long gap, prev_end; 292 293 /* 294 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 295 * allow two stack_guard_gaps between them here, and when choosing 296 * an unmapped area; whereas when expanding we only require one. 297 * That's a little inconsistent, but keeps the code here simpler. 298 */ 299 gap = vm_start_gap(vma); 300 if (vma->vm_prev) { 301 prev_end = vm_end_gap(vma->vm_prev); 302 if (gap > prev_end) 303 gap -= prev_end; 304 else 305 gap = 0; 306 } 307 return gap; 308 } 309 310 #ifdef CONFIG_DEBUG_VM_RB 311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 312 { 313 unsigned long max = vma_compute_gap(vma), subtree_gap; 314 if (vma->vm_rb.rb_left) { 315 subtree_gap = rb_entry(vma->vm_rb.rb_left, 316 struct vm_area_struct, vm_rb)->rb_subtree_gap; 317 if (subtree_gap > max) 318 max = subtree_gap; 319 } 320 if (vma->vm_rb.rb_right) { 321 subtree_gap = rb_entry(vma->vm_rb.rb_right, 322 struct vm_area_struct, vm_rb)->rb_subtree_gap; 323 if (subtree_gap > max) 324 max = subtree_gap; 325 } 326 return max; 327 } 328 329 static int browse_rb(struct mm_struct *mm) 330 { 331 struct rb_root *root = &mm->mm_rb; 332 int i = 0, j, bug = 0; 333 struct rb_node *nd, *pn = NULL; 334 unsigned long prev = 0, pend = 0; 335 336 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 337 struct vm_area_struct *vma; 338 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 339 if (vma->vm_start < prev) { 340 pr_emerg("vm_start %lx < prev %lx\n", 341 vma->vm_start, prev); 342 bug = 1; 343 } 344 if (vma->vm_start < pend) { 345 pr_emerg("vm_start %lx < pend %lx\n", 346 vma->vm_start, pend); 347 bug = 1; 348 } 349 if (vma->vm_start > vma->vm_end) { 350 pr_emerg("vm_start %lx > vm_end %lx\n", 351 vma->vm_start, vma->vm_end); 352 bug = 1; 353 } 354 spin_lock(&mm->page_table_lock); 355 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 356 pr_emerg("free gap %lx, correct %lx\n", 357 vma->rb_subtree_gap, 358 vma_compute_subtree_gap(vma)); 359 bug = 1; 360 } 361 spin_unlock(&mm->page_table_lock); 362 i++; 363 pn = nd; 364 prev = vma->vm_start; 365 pend = vma->vm_end; 366 } 367 j = 0; 368 for (nd = pn; nd; nd = rb_prev(nd)) 369 j++; 370 if (i != j) { 371 pr_emerg("backwards %d, forwards %d\n", j, i); 372 bug = 1; 373 } 374 return bug ? -1 : i; 375 } 376 377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 378 { 379 struct rb_node *nd; 380 381 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 382 struct vm_area_struct *vma; 383 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 384 VM_BUG_ON_VMA(vma != ignore && 385 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 386 vma); 387 } 388 } 389 390 static void validate_mm(struct mm_struct *mm) 391 { 392 int bug = 0; 393 int i = 0; 394 unsigned long highest_address = 0; 395 struct vm_area_struct *vma = mm->mmap; 396 397 while (vma) { 398 struct anon_vma *anon_vma = vma->anon_vma; 399 struct anon_vma_chain *avc; 400 401 if (anon_vma) { 402 anon_vma_lock_read(anon_vma); 403 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 404 anon_vma_interval_tree_verify(avc); 405 anon_vma_unlock_read(anon_vma); 406 } 407 408 highest_address = vm_end_gap(vma); 409 vma = vma->vm_next; 410 i++; 411 } 412 if (i != mm->map_count) { 413 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 414 bug = 1; 415 } 416 if (highest_address != mm->highest_vm_end) { 417 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 418 mm->highest_vm_end, highest_address); 419 bug = 1; 420 } 421 i = browse_rb(mm); 422 if (i != mm->map_count) { 423 if (i != -1) 424 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 425 bug = 1; 426 } 427 VM_BUG_ON_MM(bug, mm); 428 } 429 #else 430 #define validate_mm_rb(root, ignore) do { } while (0) 431 #define validate_mm(mm) do { } while (0) 432 #endif 433 434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 435 struct vm_area_struct, vm_rb, 436 unsigned long, rb_subtree_gap, vma_compute_gap) 437 438 /* 439 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 440 * vma->vm_prev->vm_end values changed, without modifying the vma's position 441 * in the rbtree. 442 */ 443 static void vma_gap_update(struct vm_area_struct *vma) 444 { 445 /* 446 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 447 * a callback function that does exactly what we want. 448 */ 449 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 450 } 451 452 static inline void vma_rb_insert(struct vm_area_struct *vma, 453 struct rb_root *root) 454 { 455 /* All rb_subtree_gap values must be consistent prior to insertion */ 456 validate_mm_rb(root, NULL); 457 458 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 459 } 460 461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 462 { 463 /* 464 * Note rb_erase_augmented is a fairly large inline function, 465 * so make sure we instantiate it only once with our desired 466 * augmented rbtree callbacks. 467 */ 468 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 469 } 470 471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 472 struct rb_root *root, 473 struct vm_area_struct *ignore) 474 { 475 /* 476 * All rb_subtree_gap values must be consistent prior to erase, 477 * with the possible exception of the "next" vma being erased if 478 * next->vm_start was reduced. 479 */ 480 validate_mm_rb(root, ignore); 481 482 __vma_rb_erase(vma, root); 483 } 484 485 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 486 struct rb_root *root) 487 { 488 /* 489 * All rb_subtree_gap values must be consistent prior to erase, 490 * with the possible exception of the vma being erased. 491 */ 492 validate_mm_rb(root, vma); 493 494 __vma_rb_erase(vma, root); 495 } 496 497 /* 498 * vma has some anon_vma assigned, and is already inserted on that 499 * anon_vma's interval trees. 500 * 501 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 502 * vma must be removed from the anon_vma's interval trees using 503 * anon_vma_interval_tree_pre_update_vma(). 504 * 505 * After the update, the vma will be reinserted using 506 * anon_vma_interval_tree_post_update_vma(). 507 * 508 * The entire update must be protected by exclusive mmap_lock and by 509 * the root anon_vma's mutex. 510 */ 511 static inline void 512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 513 { 514 struct anon_vma_chain *avc; 515 516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 517 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 518 } 519 520 static inline void 521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 522 { 523 struct anon_vma_chain *avc; 524 525 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 526 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 527 } 528 529 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 530 unsigned long end, struct vm_area_struct **pprev, 531 struct rb_node ***rb_link, struct rb_node **rb_parent) 532 { 533 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 534 535 __rb_link = &mm->mm_rb.rb_node; 536 rb_prev = __rb_parent = NULL; 537 538 while (*__rb_link) { 539 struct vm_area_struct *vma_tmp; 540 541 __rb_parent = *__rb_link; 542 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 543 544 if (vma_tmp->vm_end > addr) { 545 /* Fail if an existing vma overlaps the area */ 546 if (vma_tmp->vm_start < end) 547 return -ENOMEM; 548 __rb_link = &__rb_parent->rb_left; 549 } else { 550 rb_prev = __rb_parent; 551 __rb_link = &__rb_parent->rb_right; 552 } 553 } 554 555 *pprev = NULL; 556 if (rb_prev) 557 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 558 *rb_link = __rb_link; 559 *rb_parent = __rb_parent; 560 return 0; 561 } 562 563 static unsigned long count_vma_pages_range(struct mm_struct *mm, 564 unsigned long addr, unsigned long end) 565 { 566 unsigned long nr_pages = 0; 567 struct vm_area_struct *vma; 568 569 /* Find first overlaping mapping */ 570 vma = find_vma_intersection(mm, addr, end); 571 if (!vma) 572 return 0; 573 574 nr_pages = (min(end, vma->vm_end) - 575 max(addr, vma->vm_start)) >> PAGE_SHIFT; 576 577 /* Iterate over the rest of the overlaps */ 578 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 579 unsigned long overlap_len; 580 581 if (vma->vm_start > end) 582 break; 583 584 overlap_len = min(end, vma->vm_end) - vma->vm_start; 585 nr_pages += overlap_len >> PAGE_SHIFT; 586 } 587 588 return nr_pages; 589 } 590 591 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 592 struct rb_node **rb_link, struct rb_node *rb_parent) 593 { 594 /* Update tracking information for the gap following the new vma. */ 595 if (vma->vm_next) 596 vma_gap_update(vma->vm_next); 597 else 598 mm->highest_vm_end = vm_end_gap(vma); 599 600 /* 601 * vma->vm_prev wasn't known when we followed the rbtree to find the 602 * correct insertion point for that vma. As a result, we could not 603 * update the vma vm_rb parents rb_subtree_gap values on the way down. 604 * So, we first insert the vma with a zero rb_subtree_gap value 605 * (to be consistent with what we did on the way down), and then 606 * immediately update the gap to the correct value. Finally we 607 * rebalance the rbtree after all augmented values have been set. 608 */ 609 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 610 vma->rb_subtree_gap = 0; 611 vma_gap_update(vma); 612 vma_rb_insert(vma, &mm->mm_rb); 613 } 614 615 static void __vma_link_file(struct vm_area_struct *vma) 616 { 617 struct file *file; 618 619 file = vma->vm_file; 620 if (file) { 621 struct address_space *mapping = file->f_mapping; 622 623 if (vma->vm_flags & VM_DENYWRITE) 624 atomic_dec(&file_inode(file)->i_writecount); 625 if (vma->vm_flags & VM_SHARED) 626 atomic_inc(&mapping->i_mmap_writable); 627 628 flush_dcache_mmap_lock(mapping); 629 vma_interval_tree_insert(vma, &mapping->i_mmap); 630 flush_dcache_mmap_unlock(mapping); 631 } 632 } 633 634 static void 635 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 636 struct vm_area_struct *prev, struct rb_node **rb_link, 637 struct rb_node *rb_parent) 638 { 639 __vma_link_list(mm, vma, prev); 640 __vma_link_rb(mm, vma, rb_link, rb_parent); 641 } 642 643 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 644 struct vm_area_struct *prev, struct rb_node **rb_link, 645 struct rb_node *rb_parent) 646 { 647 struct address_space *mapping = NULL; 648 649 if (vma->vm_file) { 650 mapping = vma->vm_file->f_mapping; 651 i_mmap_lock_write(mapping); 652 } 653 654 __vma_link(mm, vma, prev, rb_link, rb_parent); 655 __vma_link_file(vma); 656 657 if (mapping) 658 i_mmap_unlock_write(mapping); 659 660 mm->map_count++; 661 validate_mm(mm); 662 } 663 664 /* 665 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 666 * mm's list and rbtree. It has already been inserted into the interval tree. 667 */ 668 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 669 { 670 struct vm_area_struct *prev; 671 struct rb_node **rb_link, *rb_parent; 672 673 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 674 &prev, &rb_link, &rb_parent)) 675 BUG(); 676 __vma_link(mm, vma, prev, rb_link, rb_parent); 677 mm->map_count++; 678 } 679 680 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 681 struct vm_area_struct *vma, 682 struct vm_area_struct *ignore) 683 { 684 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 685 __vma_unlink_list(mm, vma); 686 /* Kill the cache */ 687 vmacache_invalidate(mm); 688 } 689 690 /* 691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 692 * is already present in an i_mmap tree without adjusting the tree. 693 * The following helper function should be used when such adjustments 694 * are necessary. The "insert" vma (if any) is to be inserted 695 * before we drop the necessary locks. 696 */ 697 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 698 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 699 struct vm_area_struct *expand) 700 { 701 struct mm_struct *mm = vma->vm_mm; 702 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 703 struct address_space *mapping = NULL; 704 struct rb_root_cached *root = NULL; 705 struct anon_vma *anon_vma = NULL; 706 struct file *file = vma->vm_file; 707 bool start_changed = false, end_changed = false; 708 long adjust_next = 0; 709 int remove_next = 0; 710 711 if (next && !insert) { 712 struct vm_area_struct *exporter = NULL, *importer = NULL; 713 714 if (end >= next->vm_end) { 715 /* 716 * vma expands, overlapping all the next, and 717 * perhaps the one after too (mprotect case 6). 718 * The only other cases that gets here are 719 * case 1, case 7 and case 8. 720 */ 721 if (next == expand) { 722 /* 723 * The only case where we don't expand "vma" 724 * and we expand "next" instead is case 8. 725 */ 726 VM_WARN_ON(end != next->vm_end); 727 /* 728 * remove_next == 3 means we're 729 * removing "vma" and that to do so we 730 * swapped "vma" and "next". 731 */ 732 remove_next = 3; 733 VM_WARN_ON(file != next->vm_file); 734 swap(vma, next); 735 } else { 736 VM_WARN_ON(expand != vma); 737 /* 738 * case 1, 6, 7, remove_next == 2 is case 6, 739 * remove_next == 1 is case 1 or 7. 740 */ 741 remove_next = 1 + (end > next->vm_end); 742 VM_WARN_ON(remove_next == 2 && 743 end != next->vm_next->vm_end); 744 /* trim end to next, for case 6 first pass */ 745 end = next->vm_end; 746 } 747 748 exporter = next; 749 importer = vma; 750 751 /* 752 * If next doesn't have anon_vma, import from vma after 753 * next, if the vma overlaps with it. 754 */ 755 if (remove_next == 2 && !next->anon_vma) 756 exporter = next->vm_next; 757 758 } else if (end > next->vm_start) { 759 /* 760 * vma expands, overlapping part of the next: 761 * mprotect case 5 shifting the boundary up. 762 */ 763 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 764 exporter = next; 765 importer = vma; 766 VM_WARN_ON(expand != importer); 767 } else if (end < vma->vm_end) { 768 /* 769 * vma shrinks, and !insert tells it's not 770 * split_vma inserting another: so it must be 771 * mprotect case 4 shifting the boundary down. 772 */ 773 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 774 exporter = vma; 775 importer = next; 776 VM_WARN_ON(expand != importer); 777 } 778 779 /* 780 * Easily overlooked: when mprotect shifts the boundary, 781 * make sure the expanding vma has anon_vma set if the 782 * shrinking vma had, to cover any anon pages imported. 783 */ 784 if (exporter && exporter->anon_vma && !importer->anon_vma) { 785 int error; 786 787 importer->anon_vma = exporter->anon_vma; 788 error = anon_vma_clone(importer, exporter); 789 if (error) 790 return error; 791 } 792 } 793 again: 794 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 795 796 if (file) { 797 mapping = file->f_mapping; 798 root = &mapping->i_mmap; 799 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 800 801 if (adjust_next) 802 uprobe_munmap(next, next->vm_start, next->vm_end); 803 804 i_mmap_lock_write(mapping); 805 if (insert) { 806 /* 807 * Put into interval tree now, so instantiated pages 808 * are visible to arm/parisc __flush_dcache_page 809 * throughout; but we cannot insert into address 810 * space until vma start or end is updated. 811 */ 812 __vma_link_file(insert); 813 } 814 } 815 816 anon_vma = vma->anon_vma; 817 if (!anon_vma && adjust_next) 818 anon_vma = next->anon_vma; 819 if (anon_vma) { 820 VM_WARN_ON(adjust_next && next->anon_vma && 821 anon_vma != next->anon_vma); 822 anon_vma_lock_write(anon_vma); 823 anon_vma_interval_tree_pre_update_vma(vma); 824 if (adjust_next) 825 anon_vma_interval_tree_pre_update_vma(next); 826 } 827 828 if (root) { 829 flush_dcache_mmap_lock(mapping); 830 vma_interval_tree_remove(vma, root); 831 if (adjust_next) 832 vma_interval_tree_remove(next, root); 833 } 834 835 if (start != vma->vm_start) { 836 vma->vm_start = start; 837 start_changed = true; 838 } 839 if (end != vma->vm_end) { 840 vma->vm_end = end; 841 end_changed = true; 842 } 843 vma->vm_pgoff = pgoff; 844 if (adjust_next) { 845 next->vm_start += adjust_next << PAGE_SHIFT; 846 next->vm_pgoff += adjust_next; 847 } 848 849 if (root) { 850 if (adjust_next) 851 vma_interval_tree_insert(next, root); 852 vma_interval_tree_insert(vma, root); 853 flush_dcache_mmap_unlock(mapping); 854 } 855 856 if (remove_next) { 857 /* 858 * vma_merge has merged next into vma, and needs 859 * us to remove next before dropping the locks. 860 */ 861 if (remove_next != 3) 862 __vma_unlink_common(mm, next, next); 863 else 864 /* 865 * vma is not before next if they've been 866 * swapped. 867 * 868 * pre-swap() next->vm_start was reduced so 869 * tell validate_mm_rb to ignore pre-swap() 870 * "next" (which is stored in post-swap() 871 * "vma"). 872 */ 873 __vma_unlink_common(mm, next, vma); 874 if (file) 875 __remove_shared_vm_struct(next, file, mapping); 876 } else if (insert) { 877 /* 878 * split_vma has split insert from vma, and needs 879 * us to insert it before dropping the locks 880 * (it may either follow vma or precede it). 881 */ 882 __insert_vm_struct(mm, insert); 883 } else { 884 if (start_changed) 885 vma_gap_update(vma); 886 if (end_changed) { 887 if (!next) 888 mm->highest_vm_end = vm_end_gap(vma); 889 else if (!adjust_next) 890 vma_gap_update(next); 891 } 892 } 893 894 if (anon_vma) { 895 anon_vma_interval_tree_post_update_vma(vma); 896 if (adjust_next) 897 anon_vma_interval_tree_post_update_vma(next); 898 anon_vma_unlock_write(anon_vma); 899 } 900 if (mapping) 901 i_mmap_unlock_write(mapping); 902 903 if (root) { 904 uprobe_mmap(vma); 905 906 if (adjust_next) 907 uprobe_mmap(next); 908 } 909 910 if (remove_next) { 911 if (file) { 912 uprobe_munmap(next, next->vm_start, next->vm_end); 913 fput(file); 914 } 915 if (next->anon_vma) 916 anon_vma_merge(vma, next); 917 mm->map_count--; 918 mpol_put(vma_policy(next)); 919 vm_area_free(next); 920 /* 921 * In mprotect's case 6 (see comments on vma_merge), 922 * we must remove another next too. It would clutter 923 * up the code too much to do both in one go. 924 */ 925 if (remove_next != 3) { 926 /* 927 * If "next" was removed and vma->vm_end was 928 * expanded (up) over it, in turn 929 * "next->vm_prev->vm_end" changed and the 930 * "vma->vm_next" gap must be updated. 931 */ 932 next = vma->vm_next; 933 } else { 934 /* 935 * For the scope of the comment "next" and 936 * "vma" considered pre-swap(): if "vma" was 937 * removed, next->vm_start was expanded (down) 938 * over it and the "next" gap must be updated. 939 * Because of the swap() the post-swap() "vma" 940 * actually points to pre-swap() "next" 941 * (post-swap() "next" as opposed is now a 942 * dangling pointer). 943 */ 944 next = vma; 945 } 946 if (remove_next == 2) { 947 remove_next = 1; 948 end = next->vm_end; 949 goto again; 950 } 951 else if (next) 952 vma_gap_update(next); 953 else { 954 /* 955 * If remove_next == 2 we obviously can't 956 * reach this path. 957 * 958 * If remove_next == 3 we can't reach this 959 * path because pre-swap() next is always not 960 * NULL. pre-swap() "next" is not being 961 * removed and its next->vm_end is not altered 962 * (and furthermore "end" already matches 963 * next->vm_end in remove_next == 3). 964 * 965 * We reach this only in the remove_next == 1 966 * case if the "next" vma that was removed was 967 * the highest vma of the mm. However in such 968 * case next->vm_end == "end" and the extended 969 * "vma" has vma->vm_end == next->vm_end so 970 * mm->highest_vm_end doesn't need any update 971 * in remove_next == 1 case. 972 */ 973 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 974 } 975 } 976 if (insert && file) 977 uprobe_mmap(insert); 978 979 validate_mm(mm); 980 981 return 0; 982 } 983 984 /* 985 * If the vma has a ->close operation then the driver probably needs to release 986 * per-vma resources, so we don't attempt to merge those. 987 */ 988 static inline int is_mergeable_vma(struct vm_area_struct *vma, 989 struct file *file, unsigned long vm_flags, 990 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 991 { 992 /* 993 * VM_SOFTDIRTY should not prevent from VMA merging, if we 994 * match the flags but dirty bit -- the caller should mark 995 * merged VMA as dirty. If dirty bit won't be excluded from 996 * comparison, we increase pressure on the memory system forcing 997 * the kernel to generate new VMAs when old one could be 998 * extended instead. 999 */ 1000 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1001 return 0; 1002 if (vma->vm_file != file) 1003 return 0; 1004 if (vma->vm_ops && vma->vm_ops->close) 1005 return 0; 1006 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1007 return 0; 1008 return 1; 1009 } 1010 1011 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1012 struct anon_vma *anon_vma2, 1013 struct vm_area_struct *vma) 1014 { 1015 /* 1016 * The list_is_singular() test is to avoid merging VMA cloned from 1017 * parents. This can improve scalability caused by anon_vma lock. 1018 */ 1019 if ((!anon_vma1 || !anon_vma2) && (!vma || 1020 list_is_singular(&vma->anon_vma_chain))) 1021 return 1; 1022 return anon_vma1 == anon_vma2; 1023 } 1024 1025 /* 1026 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1027 * in front of (at a lower virtual address and file offset than) the vma. 1028 * 1029 * We cannot merge two vmas if they have differently assigned (non-NULL) 1030 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1031 * 1032 * We don't check here for the merged mmap wrapping around the end of pagecache 1033 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 1034 * wrap, nor mmaps which cover the final page at index -1UL. 1035 */ 1036 static int 1037 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1038 struct anon_vma *anon_vma, struct file *file, 1039 pgoff_t vm_pgoff, 1040 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1041 { 1042 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1043 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1044 if (vma->vm_pgoff == vm_pgoff) 1045 return 1; 1046 } 1047 return 0; 1048 } 1049 1050 /* 1051 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1052 * beyond (at a higher virtual address and file offset than) the vma. 1053 * 1054 * We cannot merge two vmas if they have differently assigned (non-NULL) 1055 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1056 */ 1057 static int 1058 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1059 struct anon_vma *anon_vma, struct file *file, 1060 pgoff_t vm_pgoff, 1061 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1062 { 1063 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1064 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1065 pgoff_t vm_pglen; 1066 vm_pglen = vma_pages(vma); 1067 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1068 return 1; 1069 } 1070 return 0; 1071 } 1072 1073 /* 1074 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1075 * whether that can be merged with its predecessor or its successor. 1076 * Or both (it neatly fills a hole). 1077 * 1078 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1079 * certain not to be mapped by the time vma_merge is called; but when 1080 * called for mprotect, it is certain to be already mapped (either at 1081 * an offset within prev, or at the start of next), and the flags of 1082 * this area are about to be changed to vm_flags - and the no-change 1083 * case has already been eliminated. 1084 * 1085 * The following mprotect cases have to be considered, where AAAA is 1086 * the area passed down from mprotect_fixup, never extending beyond one 1087 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1088 * 1089 * AAAA AAAA AAAA 1090 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1091 * cannot merge might become might become 1092 * PPNNNNNNNNNN PPPPPPPPPPNN 1093 * mmap, brk or case 4 below case 5 below 1094 * mremap move: 1095 * AAAA AAAA 1096 * PPPP NNNN PPPPNNNNXXXX 1097 * might become might become 1098 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1099 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1100 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1101 * 1102 * It is important for case 8 that the vma NNNN overlapping the 1103 * region AAAA is never going to extended over XXXX. Instead XXXX must 1104 * be extended in region AAAA and NNNN must be removed. This way in 1105 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1106 * rmap_locks, the properties of the merged vma will be already 1107 * correct for the whole merged range. Some of those properties like 1108 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1109 * be correct for the whole merged range immediately after the 1110 * rmap_locks are released. Otherwise if XXXX would be removed and 1111 * NNNN would be extended over the XXXX range, remove_migration_ptes 1112 * or other rmap walkers (if working on addresses beyond the "end" 1113 * parameter) may establish ptes with the wrong permissions of NNNN 1114 * instead of the right permissions of XXXX. 1115 */ 1116 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1117 struct vm_area_struct *prev, unsigned long addr, 1118 unsigned long end, unsigned long vm_flags, 1119 struct anon_vma *anon_vma, struct file *file, 1120 pgoff_t pgoff, struct mempolicy *policy, 1121 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1122 { 1123 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1124 struct vm_area_struct *area, *next; 1125 int err; 1126 1127 /* 1128 * We later require that vma->vm_flags == vm_flags, 1129 * so this tests vma->vm_flags & VM_SPECIAL, too. 1130 */ 1131 if (vm_flags & VM_SPECIAL) 1132 return NULL; 1133 1134 if (prev) 1135 next = prev->vm_next; 1136 else 1137 next = mm->mmap; 1138 area = next; 1139 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1140 next = next->vm_next; 1141 1142 /* verify some invariant that must be enforced by the caller */ 1143 VM_WARN_ON(prev && addr <= prev->vm_start); 1144 VM_WARN_ON(area && end > area->vm_end); 1145 VM_WARN_ON(addr >= end); 1146 1147 /* 1148 * Can it merge with the predecessor? 1149 */ 1150 if (prev && prev->vm_end == addr && 1151 mpol_equal(vma_policy(prev), policy) && 1152 can_vma_merge_after(prev, vm_flags, 1153 anon_vma, file, pgoff, 1154 vm_userfaultfd_ctx)) { 1155 /* 1156 * OK, it can. Can we now merge in the successor as well? 1157 */ 1158 if (next && end == next->vm_start && 1159 mpol_equal(policy, vma_policy(next)) && 1160 can_vma_merge_before(next, vm_flags, 1161 anon_vma, file, 1162 pgoff+pglen, 1163 vm_userfaultfd_ctx) && 1164 is_mergeable_anon_vma(prev->anon_vma, 1165 next->anon_vma, NULL)) { 1166 /* cases 1, 6 */ 1167 err = __vma_adjust(prev, prev->vm_start, 1168 next->vm_end, prev->vm_pgoff, NULL, 1169 prev); 1170 } else /* cases 2, 5, 7 */ 1171 err = __vma_adjust(prev, prev->vm_start, 1172 end, prev->vm_pgoff, NULL, prev); 1173 if (err) 1174 return NULL; 1175 khugepaged_enter_vma_merge(prev, vm_flags); 1176 return prev; 1177 } 1178 1179 /* 1180 * Can this new request be merged in front of next? 1181 */ 1182 if (next && end == next->vm_start && 1183 mpol_equal(policy, vma_policy(next)) && 1184 can_vma_merge_before(next, vm_flags, 1185 anon_vma, file, pgoff+pglen, 1186 vm_userfaultfd_ctx)) { 1187 if (prev && addr < prev->vm_end) /* case 4 */ 1188 err = __vma_adjust(prev, prev->vm_start, 1189 addr, prev->vm_pgoff, NULL, next); 1190 else { /* cases 3, 8 */ 1191 err = __vma_adjust(area, addr, next->vm_end, 1192 next->vm_pgoff - pglen, NULL, next); 1193 /* 1194 * In case 3 area is already equal to next and 1195 * this is a noop, but in case 8 "area" has 1196 * been removed and next was expanded over it. 1197 */ 1198 area = next; 1199 } 1200 if (err) 1201 return NULL; 1202 khugepaged_enter_vma_merge(area, vm_flags); 1203 return area; 1204 } 1205 1206 return NULL; 1207 } 1208 1209 /* 1210 * Rough compatibility check to quickly see if it's even worth looking 1211 * at sharing an anon_vma. 1212 * 1213 * They need to have the same vm_file, and the flags can only differ 1214 * in things that mprotect may change. 1215 * 1216 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1217 * we can merge the two vma's. For example, we refuse to merge a vma if 1218 * there is a vm_ops->close() function, because that indicates that the 1219 * driver is doing some kind of reference counting. But that doesn't 1220 * really matter for the anon_vma sharing case. 1221 */ 1222 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1223 { 1224 return a->vm_end == b->vm_start && 1225 mpol_equal(vma_policy(a), vma_policy(b)) && 1226 a->vm_file == b->vm_file && 1227 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1228 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1229 } 1230 1231 /* 1232 * Do some basic sanity checking to see if we can re-use the anon_vma 1233 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1234 * the same as 'old', the other will be the new one that is trying 1235 * to share the anon_vma. 1236 * 1237 * NOTE! This runs with mm_sem held for reading, so it is possible that 1238 * the anon_vma of 'old' is concurrently in the process of being set up 1239 * by another page fault trying to merge _that_. But that's ok: if it 1240 * is being set up, that automatically means that it will be a singleton 1241 * acceptable for merging, so we can do all of this optimistically. But 1242 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1243 * 1244 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1245 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1246 * is to return an anon_vma that is "complex" due to having gone through 1247 * a fork). 1248 * 1249 * We also make sure that the two vma's are compatible (adjacent, 1250 * and with the same memory policies). That's all stable, even with just 1251 * a read lock on the mm_sem. 1252 */ 1253 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1254 { 1255 if (anon_vma_compatible(a, b)) { 1256 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1257 1258 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1259 return anon_vma; 1260 } 1261 return NULL; 1262 } 1263 1264 /* 1265 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1266 * neighbouring vmas for a suitable anon_vma, before it goes off 1267 * to allocate a new anon_vma. It checks because a repetitive 1268 * sequence of mprotects and faults may otherwise lead to distinct 1269 * anon_vmas being allocated, preventing vma merge in subsequent 1270 * mprotect. 1271 */ 1272 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1273 { 1274 struct anon_vma *anon_vma = NULL; 1275 1276 /* Try next first. */ 1277 if (vma->vm_next) { 1278 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next); 1279 if (anon_vma) 1280 return anon_vma; 1281 } 1282 1283 /* Try prev next. */ 1284 if (vma->vm_prev) 1285 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma); 1286 1287 /* 1288 * We might reach here with anon_vma == NULL if we can't find 1289 * any reusable anon_vma. 1290 * There's no absolute need to look only at touching neighbours: 1291 * we could search further afield for "compatible" anon_vmas. 1292 * But it would probably just be a waste of time searching, 1293 * or lead to too many vmas hanging off the same anon_vma. 1294 * We're trying to allow mprotect remerging later on, 1295 * not trying to minimize memory used for anon_vmas. 1296 */ 1297 return anon_vma; 1298 } 1299 1300 /* 1301 * If a hint addr is less than mmap_min_addr change hint to be as 1302 * low as possible but still greater than mmap_min_addr 1303 */ 1304 static inline unsigned long round_hint_to_min(unsigned long hint) 1305 { 1306 hint &= PAGE_MASK; 1307 if (((void *)hint != NULL) && 1308 (hint < mmap_min_addr)) 1309 return PAGE_ALIGN(mmap_min_addr); 1310 return hint; 1311 } 1312 1313 static inline int mlock_future_check(struct mm_struct *mm, 1314 unsigned long flags, 1315 unsigned long len) 1316 { 1317 unsigned long locked, lock_limit; 1318 1319 /* mlock MCL_FUTURE? */ 1320 if (flags & VM_LOCKED) { 1321 locked = len >> PAGE_SHIFT; 1322 locked += mm->locked_vm; 1323 lock_limit = rlimit(RLIMIT_MEMLOCK); 1324 lock_limit >>= PAGE_SHIFT; 1325 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1326 return -EAGAIN; 1327 } 1328 return 0; 1329 } 1330 1331 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1332 { 1333 if (S_ISREG(inode->i_mode)) 1334 return MAX_LFS_FILESIZE; 1335 1336 if (S_ISBLK(inode->i_mode)) 1337 return MAX_LFS_FILESIZE; 1338 1339 if (S_ISSOCK(inode->i_mode)) 1340 return MAX_LFS_FILESIZE; 1341 1342 /* Special "we do even unsigned file positions" case */ 1343 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1344 return 0; 1345 1346 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1347 return ULONG_MAX; 1348 } 1349 1350 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1351 unsigned long pgoff, unsigned long len) 1352 { 1353 u64 maxsize = file_mmap_size_max(file, inode); 1354 1355 if (maxsize && len > maxsize) 1356 return false; 1357 maxsize -= len; 1358 if (pgoff > maxsize >> PAGE_SHIFT) 1359 return false; 1360 return true; 1361 } 1362 1363 /* 1364 * The caller must write-lock current->mm->mmap_lock. 1365 */ 1366 unsigned long do_mmap(struct file *file, unsigned long addr, 1367 unsigned long len, unsigned long prot, 1368 unsigned long flags, unsigned long pgoff, 1369 unsigned long *populate, struct list_head *uf) 1370 { 1371 struct mm_struct *mm = current->mm; 1372 vm_flags_t vm_flags; 1373 int pkey = 0; 1374 1375 *populate = 0; 1376 1377 if (!len) 1378 return -EINVAL; 1379 1380 /* 1381 * Does the application expect PROT_READ to imply PROT_EXEC? 1382 * 1383 * (the exception is when the underlying filesystem is noexec 1384 * mounted, in which case we dont add PROT_EXEC.) 1385 */ 1386 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1387 if (!(file && path_noexec(&file->f_path))) 1388 prot |= PROT_EXEC; 1389 1390 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1391 if (flags & MAP_FIXED_NOREPLACE) 1392 flags |= MAP_FIXED; 1393 1394 if (!(flags & MAP_FIXED)) 1395 addr = round_hint_to_min(addr); 1396 1397 /* Careful about overflows.. */ 1398 len = PAGE_ALIGN(len); 1399 if (!len) 1400 return -ENOMEM; 1401 1402 /* offset overflow? */ 1403 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1404 return -EOVERFLOW; 1405 1406 /* Too many mappings? */ 1407 if (mm->map_count > sysctl_max_map_count) 1408 return -ENOMEM; 1409 1410 /* Obtain the address to map to. we verify (or select) it and ensure 1411 * that it represents a valid section of the address space. 1412 */ 1413 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1414 if (IS_ERR_VALUE(addr)) 1415 return addr; 1416 1417 if (flags & MAP_FIXED_NOREPLACE) { 1418 struct vm_area_struct *vma = find_vma(mm, addr); 1419 1420 if (vma && vma->vm_start < addr + len) 1421 return -EEXIST; 1422 } 1423 1424 if (prot == PROT_EXEC) { 1425 pkey = execute_only_pkey(mm); 1426 if (pkey < 0) 1427 pkey = 0; 1428 } 1429 1430 /* Do simple checking here so the lower-level routines won't have 1431 * to. we assume access permissions have been handled by the open 1432 * of the memory object, so we don't do any here. 1433 */ 1434 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1435 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1436 1437 if (flags & MAP_LOCKED) 1438 if (!can_do_mlock()) 1439 return -EPERM; 1440 1441 if (mlock_future_check(mm, vm_flags, len)) 1442 return -EAGAIN; 1443 1444 if (file) { 1445 struct inode *inode = file_inode(file); 1446 unsigned long flags_mask; 1447 1448 if (!file_mmap_ok(file, inode, pgoff, len)) 1449 return -EOVERFLOW; 1450 1451 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1452 1453 switch (flags & MAP_TYPE) { 1454 case MAP_SHARED: 1455 /* 1456 * Force use of MAP_SHARED_VALIDATE with non-legacy 1457 * flags. E.g. MAP_SYNC is dangerous to use with 1458 * MAP_SHARED as you don't know which consistency model 1459 * you will get. We silently ignore unsupported flags 1460 * with MAP_SHARED to preserve backward compatibility. 1461 */ 1462 flags &= LEGACY_MAP_MASK; 1463 fallthrough; 1464 case MAP_SHARED_VALIDATE: 1465 if (flags & ~flags_mask) 1466 return -EOPNOTSUPP; 1467 if (prot & PROT_WRITE) { 1468 if (!(file->f_mode & FMODE_WRITE)) 1469 return -EACCES; 1470 if (IS_SWAPFILE(file->f_mapping->host)) 1471 return -ETXTBSY; 1472 } 1473 1474 /* 1475 * Make sure we don't allow writing to an append-only 1476 * file.. 1477 */ 1478 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1479 return -EACCES; 1480 1481 /* 1482 * Make sure there are no mandatory locks on the file. 1483 */ 1484 if (locks_verify_locked(file)) 1485 return -EAGAIN; 1486 1487 vm_flags |= VM_SHARED | VM_MAYSHARE; 1488 if (!(file->f_mode & FMODE_WRITE)) 1489 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1490 fallthrough; 1491 case MAP_PRIVATE: 1492 if (!(file->f_mode & FMODE_READ)) 1493 return -EACCES; 1494 if (path_noexec(&file->f_path)) { 1495 if (vm_flags & VM_EXEC) 1496 return -EPERM; 1497 vm_flags &= ~VM_MAYEXEC; 1498 } 1499 1500 if (!file->f_op->mmap) 1501 return -ENODEV; 1502 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1503 return -EINVAL; 1504 break; 1505 1506 default: 1507 return -EINVAL; 1508 } 1509 } else { 1510 switch (flags & MAP_TYPE) { 1511 case MAP_SHARED: 1512 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1513 return -EINVAL; 1514 /* 1515 * Ignore pgoff. 1516 */ 1517 pgoff = 0; 1518 vm_flags |= VM_SHARED | VM_MAYSHARE; 1519 break; 1520 case MAP_PRIVATE: 1521 /* 1522 * Set pgoff according to addr for anon_vma. 1523 */ 1524 pgoff = addr >> PAGE_SHIFT; 1525 break; 1526 default: 1527 return -EINVAL; 1528 } 1529 } 1530 1531 /* 1532 * Set 'VM_NORESERVE' if we should not account for the 1533 * memory use of this mapping. 1534 */ 1535 if (flags & MAP_NORESERVE) { 1536 /* We honor MAP_NORESERVE if allowed to overcommit */ 1537 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1538 vm_flags |= VM_NORESERVE; 1539 1540 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1541 if (file && is_file_hugepages(file)) 1542 vm_flags |= VM_NORESERVE; 1543 } 1544 1545 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1546 if (!IS_ERR_VALUE(addr) && 1547 ((vm_flags & VM_LOCKED) || 1548 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1549 *populate = len; 1550 return addr; 1551 } 1552 1553 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1554 unsigned long prot, unsigned long flags, 1555 unsigned long fd, unsigned long pgoff) 1556 { 1557 struct file *file = NULL; 1558 unsigned long retval; 1559 1560 if (!(flags & MAP_ANONYMOUS)) { 1561 audit_mmap_fd(fd, flags); 1562 file = fget(fd); 1563 if (!file) 1564 return -EBADF; 1565 if (is_file_hugepages(file)) { 1566 len = ALIGN(len, huge_page_size(hstate_file(file))); 1567 } else if (unlikely(flags & MAP_HUGETLB)) { 1568 retval = -EINVAL; 1569 goto out_fput; 1570 } 1571 } else if (flags & MAP_HUGETLB) { 1572 struct user_struct *user = NULL; 1573 struct hstate *hs; 1574 1575 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1576 if (!hs) 1577 return -EINVAL; 1578 1579 len = ALIGN(len, huge_page_size(hs)); 1580 /* 1581 * VM_NORESERVE is used because the reservations will be 1582 * taken when vm_ops->mmap() is called 1583 * A dummy user value is used because we are not locking 1584 * memory so no accounting is necessary 1585 */ 1586 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1587 VM_NORESERVE, 1588 &user, HUGETLB_ANONHUGE_INODE, 1589 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1590 if (IS_ERR(file)) 1591 return PTR_ERR(file); 1592 } 1593 1594 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1595 1596 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1597 out_fput: 1598 if (file) 1599 fput(file); 1600 return retval; 1601 } 1602 1603 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1604 unsigned long, prot, unsigned long, flags, 1605 unsigned long, fd, unsigned long, pgoff) 1606 { 1607 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1608 } 1609 1610 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1611 struct mmap_arg_struct { 1612 unsigned long addr; 1613 unsigned long len; 1614 unsigned long prot; 1615 unsigned long flags; 1616 unsigned long fd; 1617 unsigned long offset; 1618 }; 1619 1620 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1621 { 1622 struct mmap_arg_struct a; 1623 1624 if (copy_from_user(&a, arg, sizeof(a))) 1625 return -EFAULT; 1626 if (offset_in_page(a.offset)) 1627 return -EINVAL; 1628 1629 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1630 a.offset >> PAGE_SHIFT); 1631 } 1632 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1633 1634 /* 1635 * Some shared mappings will want the pages marked read-only 1636 * to track write events. If so, we'll downgrade vm_page_prot 1637 * to the private version (using protection_map[] without the 1638 * VM_SHARED bit). 1639 */ 1640 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1641 { 1642 vm_flags_t vm_flags = vma->vm_flags; 1643 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1644 1645 /* If it was private or non-writable, the write bit is already clear */ 1646 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1647 return 0; 1648 1649 /* The backer wishes to know when pages are first written to? */ 1650 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1651 return 1; 1652 1653 /* The open routine did something to the protections that pgprot_modify 1654 * won't preserve? */ 1655 if (pgprot_val(vm_page_prot) != 1656 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1657 return 0; 1658 1659 /* Do we need to track softdirty? */ 1660 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1661 return 1; 1662 1663 /* Specialty mapping? */ 1664 if (vm_flags & VM_PFNMAP) 1665 return 0; 1666 1667 /* Can the mapping track the dirty pages? */ 1668 return vma->vm_file && vma->vm_file->f_mapping && 1669 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1670 } 1671 1672 /* 1673 * We account for memory if it's a private writeable mapping, 1674 * not hugepages and VM_NORESERVE wasn't set. 1675 */ 1676 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1677 { 1678 /* 1679 * hugetlb has its own accounting separate from the core VM 1680 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1681 */ 1682 if (file && is_file_hugepages(file)) 1683 return 0; 1684 1685 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1686 } 1687 1688 unsigned long mmap_region(struct file *file, unsigned long addr, 1689 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1690 struct list_head *uf) 1691 { 1692 struct mm_struct *mm = current->mm; 1693 struct vm_area_struct *vma, *prev, *merge; 1694 int error; 1695 struct rb_node **rb_link, *rb_parent; 1696 unsigned long charged = 0; 1697 1698 /* Check against address space limit. */ 1699 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1700 unsigned long nr_pages; 1701 1702 /* 1703 * MAP_FIXED may remove pages of mappings that intersects with 1704 * requested mapping. Account for the pages it would unmap. 1705 */ 1706 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1707 1708 if (!may_expand_vm(mm, vm_flags, 1709 (len >> PAGE_SHIFT) - nr_pages)) 1710 return -ENOMEM; 1711 } 1712 1713 /* Clear old maps */ 1714 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1715 &rb_parent)) { 1716 if (do_munmap(mm, addr, len, uf)) 1717 return -ENOMEM; 1718 } 1719 1720 /* 1721 * Private writable mapping: check memory availability 1722 */ 1723 if (accountable_mapping(file, vm_flags)) { 1724 charged = len >> PAGE_SHIFT; 1725 if (security_vm_enough_memory_mm(mm, charged)) 1726 return -ENOMEM; 1727 vm_flags |= VM_ACCOUNT; 1728 } 1729 1730 /* 1731 * Can we just expand an old mapping? 1732 */ 1733 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1734 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1735 if (vma) 1736 goto out; 1737 1738 /* 1739 * Determine the object being mapped and call the appropriate 1740 * specific mapper. the address has already been validated, but 1741 * not unmapped, but the maps are removed from the list. 1742 */ 1743 vma = vm_area_alloc(mm); 1744 if (!vma) { 1745 error = -ENOMEM; 1746 goto unacct_error; 1747 } 1748 1749 vma->vm_start = addr; 1750 vma->vm_end = addr + len; 1751 vma->vm_flags = vm_flags; 1752 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1753 vma->vm_pgoff = pgoff; 1754 1755 if (file) { 1756 if (vm_flags & VM_DENYWRITE) { 1757 error = deny_write_access(file); 1758 if (error) 1759 goto free_vma; 1760 } 1761 if (vm_flags & VM_SHARED) { 1762 error = mapping_map_writable(file->f_mapping); 1763 if (error) 1764 goto allow_write_and_free_vma; 1765 } 1766 1767 /* ->mmap() can change vma->vm_file, but must guarantee that 1768 * vma_link() below can deny write-access if VM_DENYWRITE is set 1769 * and map writably if VM_SHARED is set. This usually means the 1770 * new file must not have been exposed to user-space, yet. 1771 */ 1772 vma->vm_file = get_file(file); 1773 error = call_mmap(file, vma); 1774 if (error) 1775 goto unmap_and_free_vma; 1776 1777 /* If vm_flags changed after call_mmap(), we should try merge vma again 1778 * as we may succeed this time. 1779 */ 1780 if (unlikely(vm_flags != vma->vm_flags && prev)) { 1781 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, 1782 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX); 1783 if (merge) { 1784 /* ->mmap() can change vma->vm_file and fput the original file. So 1785 * fput the vma->vm_file here or we would add an extra fput for file 1786 * and cause general protection fault ultimately. 1787 */ 1788 fput(vma->vm_file); 1789 vm_area_free(vma); 1790 vma = merge; 1791 /* Update vm_flags and possible addr to pick up the change. We don't 1792 * warn here if addr changed as the vma is not linked by vma_link(). 1793 */ 1794 addr = vma->vm_start; 1795 vm_flags = vma->vm_flags; 1796 goto unmap_writable; 1797 } 1798 } 1799 1800 /* Can addr have changed?? 1801 * 1802 * Answer: Yes, several device drivers can do it in their 1803 * f_op->mmap method. -DaveM 1804 * Bug: If addr is changed, prev, rb_link, rb_parent should 1805 * be updated for vma_link() 1806 */ 1807 WARN_ON_ONCE(addr != vma->vm_start); 1808 1809 addr = vma->vm_start; 1810 vm_flags = vma->vm_flags; 1811 } else if (vm_flags & VM_SHARED) { 1812 error = shmem_zero_setup(vma); 1813 if (error) 1814 goto free_vma; 1815 } else { 1816 vma_set_anonymous(vma); 1817 } 1818 1819 vma_link(mm, vma, prev, rb_link, rb_parent); 1820 /* Once vma denies write, undo our temporary denial count */ 1821 if (file) { 1822 unmap_writable: 1823 if (vm_flags & VM_SHARED) 1824 mapping_unmap_writable(file->f_mapping); 1825 if (vm_flags & VM_DENYWRITE) 1826 allow_write_access(file); 1827 } 1828 file = vma->vm_file; 1829 out: 1830 perf_event_mmap(vma); 1831 1832 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1833 if (vm_flags & VM_LOCKED) { 1834 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1835 is_vm_hugetlb_page(vma) || 1836 vma == get_gate_vma(current->mm)) 1837 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1838 else 1839 mm->locked_vm += (len >> PAGE_SHIFT); 1840 } 1841 1842 if (file) 1843 uprobe_mmap(vma); 1844 1845 /* 1846 * New (or expanded) vma always get soft dirty status. 1847 * Otherwise user-space soft-dirty page tracker won't 1848 * be able to distinguish situation when vma area unmapped, 1849 * then new mapped in-place (which must be aimed as 1850 * a completely new data area). 1851 */ 1852 vma->vm_flags |= VM_SOFTDIRTY; 1853 1854 vma_set_page_prot(vma); 1855 1856 return addr; 1857 1858 unmap_and_free_vma: 1859 vma->vm_file = NULL; 1860 fput(file); 1861 1862 /* Undo any partial mapping done by a device driver. */ 1863 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1864 charged = 0; 1865 if (vm_flags & VM_SHARED) 1866 mapping_unmap_writable(file->f_mapping); 1867 allow_write_and_free_vma: 1868 if (vm_flags & VM_DENYWRITE) 1869 allow_write_access(file); 1870 free_vma: 1871 vm_area_free(vma); 1872 unacct_error: 1873 if (charged) 1874 vm_unacct_memory(charged); 1875 return error; 1876 } 1877 1878 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1879 { 1880 /* 1881 * We implement the search by looking for an rbtree node that 1882 * immediately follows a suitable gap. That is, 1883 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1884 * - gap_end = vma->vm_start >= info->low_limit + length; 1885 * - gap_end - gap_start >= length 1886 */ 1887 1888 struct mm_struct *mm = current->mm; 1889 struct vm_area_struct *vma; 1890 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1891 1892 /* Adjust search length to account for worst case alignment overhead */ 1893 length = info->length + info->align_mask; 1894 if (length < info->length) 1895 return -ENOMEM; 1896 1897 /* Adjust search limits by the desired length */ 1898 if (info->high_limit < length) 1899 return -ENOMEM; 1900 high_limit = info->high_limit - length; 1901 1902 if (info->low_limit > high_limit) 1903 return -ENOMEM; 1904 low_limit = info->low_limit + length; 1905 1906 /* Check if rbtree root looks promising */ 1907 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1908 goto check_highest; 1909 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1910 if (vma->rb_subtree_gap < length) 1911 goto check_highest; 1912 1913 while (true) { 1914 /* Visit left subtree if it looks promising */ 1915 gap_end = vm_start_gap(vma); 1916 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1917 struct vm_area_struct *left = 1918 rb_entry(vma->vm_rb.rb_left, 1919 struct vm_area_struct, vm_rb); 1920 if (left->rb_subtree_gap >= length) { 1921 vma = left; 1922 continue; 1923 } 1924 } 1925 1926 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1927 check_current: 1928 /* Check if current node has a suitable gap */ 1929 if (gap_start > high_limit) 1930 return -ENOMEM; 1931 if (gap_end >= low_limit && 1932 gap_end > gap_start && gap_end - gap_start >= length) 1933 goto found; 1934 1935 /* Visit right subtree if it looks promising */ 1936 if (vma->vm_rb.rb_right) { 1937 struct vm_area_struct *right = 1938 rb_entry(vma->vm_rb.rb_right, 1939 struct vm_area_struct, vm_rb); 1940 if (right->rb_subtree_gap >= length) { 1941 vma = right; 1942 continue; 1943 } 1944 } 1945 1946 /* Go back up the rbtree to find next candidate node */ 1947 while (true) { 1948 struct rb_node *prev = &vma->vm_rb; 1949 if (!rb_parent(prev)) 1950 goto check_highest; 1951 vma = rb_entry(rb_parent(prev), 1952 struct vm_area_struct, vm_rb); 1953 if (prev == vma->vm_rb.rb_left) { 1954 gap_start = vm_end_gap(vma->vm_prev); 1955 gap_end = vm_start_gap(vma); 1956 goto check_current; 1957 } 1958 } 1959 } 1960 1961 check_highest: 1962 /* Check highest gap, which does not precede any rbtree node */ 1963 gap_start = mm->highest_vm_end; 1964 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1965 if (gap_start > high_limit) 1966 return -ENOMEM; 1967 1968 found: 1969 /* We found a suitable gap. Clip it with the original low_limit. */ 1970 if (gap_start < info->low_limit) 1971 gap_start = info->low_limit; 1972 1973 /* Adjust gap address to the desired alignment */ 1974 gap_start += (info->align_offset - gap_start) & info->align_mask; 1975 1976 VM_BUG_ON(gap_start + info->length > info->high_limit); 1977 VM_BUG_ON(gap_start + info->length > gap_end); 1978 return gap_start; 1979 } 1980 1981 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1982 { 1983 struct mm_struct *mm = current->mm; 1984 struct vm_area_struct *vma; 1985 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1986 1987 /* Adjust search length to account for worst case alignment overhead */ 1988 length = info->length + info->align_mask; 1989 if (length < info->length) 1990 return -ENOMEM; 1991 1992 /* 1993 * Adjust search limits by the desired length. 1994 * See implementation comment at top of unmapped_area(). 1995 */ 1996 gap_end = info->high_limit; 1997 if (gap_end < length) 1998 return -ENOMEM; 1999 high_limit = gap_end - length; 2000 2001 if (info->low_limit > high_limit) 2002 return -ENOMEM; 2003 low_limit = info->low_limit + length; 2004 2005 /* Check highest gap, which does not precede any rbtree node */ 2006 gap_start = mm->highest_vm_end; 2007 if (gap_start <= high_limit) 2008 goto found_highest; 2009 2010 /* Check if rbtree root looks promising */ 2011 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2012 return -ENOMEM; 2013 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2014 if (vma->rb_subtree_gap < length) 2015 return -ENOMEM; 2016 2017 while (true) { 2018 /* Visit right subtree if it looks promising */ 2019 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2020 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2021 struct vm_area_struct *right = 2022 rb_entry(vma->vm_rb.rb_right, 2023 struct vm_area_struct, vm_rb); 2024 if (right->rb_subtree_gap >= length) { 2025 vma = right; 2026 continue; 2027 } 2028 } 2029 2030 check_current: 2031 /* Check if current node has a suitable gap */ 2032 gap_end = vm_start_gap(vma); 2033 if (gap_end < low_limit) 2034 return -ENOMEM; 2035 if (gap_start <= high_limit && 2036 gap_end > gap_start && gap_end - gap_start >= length) 2037 goto found; 2038 2039 /* Visit left subtree if it looks promising */ 2040 if (vma->vm_rb.rb_left) { 2041 struct vm_area_struct *left = 2042 rb_entry(vma->vm_rb.rb_left, 2043 struct vm_area_struct, vm_rb); 2044 if (left->rb_subtree_gap >= length) { 2045 vma = left; 2046 continue; 2047 } 2048 } 2049 2050 /* Go back up the rbtree to find next candidate node */ 2051 while (true) { 2052 struct rb_node *prev = &vma->vm_rb; 2053 if (!rb_parent(prev)) 2054 return -ENOMEM; 2055 vma = rb_entry(rb_parent(prev), 2056 struct vm_area_struct, vm_rb); 2057 if (prev == vma->vm_rb.rb_right) { 2058 gap_start = vma->vm_prev ? 2059 vm_end_gap(vma->vm_prev) : 0; 2060 goto check_current; 2061 } 2062 } 2063 } 2064 2065 found: 2066 /* We found a suitable gap. Clip it with the original high_limit. */ 2067 if (gap_end > info->high_limit) 2068 gap_end = info->high_limit; 2069 2070 found_highest: 2071 /* Compute highest gap address at the desired alignment */ 2072 gap_end -= info->length; 2073 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2074 2075 VM_BUG_ON(gap_end < info->low_limit); 2076 VM_BUG_ON(gap_end < gap_start); 2077 return gap_end; 2078 } 2079 2080 /* 2081 * Search for an unmapped address range. 2082 * 2083 * We are looking for a range that: 2084 * - does not intersect with any VMA; 2085 * - is contained within the [low_limit, high_limit) interval; 2086 * - is at least the desired size. 2087 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2088 */ 2089 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 2090 { 2091 unsigned long addr; 2092 2093 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2094 addr = unmapped_area_topdown(info); 2095 else 2096 addr = unmapped_area(info); 2097 2098 trace_vm_unmapped_area(addr, info); 2099 return addr; 2100 } 2101 2102 #ifndef arch_get_mmap_end 2103 #define arch_get_mmap_end(addr) (TASK_SIZE) 2104 #endif 2105 2106 #ifndef arch_get_mmap_base 2107 #define arch_get_mmap_base(addr, base) (base) 2108 #endif 2109 2110 /* Get an address range which is currently unmapped. 2111 * For shmat() with addr=0. 2112 * 2113 * Ugly calling convention alert: 2114 * Return value with the low bits set means error value, 2115 * ie 2116 * if (ret & ~PAGE_MASK) 2117 * error = ret; 2118 * 2119 * This function "knows" that -ENOMEM has the bits set. 2120 */ 2121 #ifndef HAVE_ARCH_UNMAPPED_AREA 2122 unsigned long 2123 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2124 unsigned long len, unsigned long pgoff, unsigned long flags) 2125 { 2126 struct mm_struct *mm = current->mm; 2127 struct vm_area_struct *vma, *prev; 2128 struct vm_unmapped_area_info info; 2129 const unsigned long mmap_end = arch_get_mmap_end(addr); 2130 2131 if (len > mmap_end - mmap_min_addr) 2132 return -ENOMEM; 2133 2134 if (flags & MAP_FIXED) 2135 return addr; 2136 2137 if (addr) { 2138 addr = PAGE_ALIGN(addr); 2139 vma = find_vma_prev(mm, addr, &prev); 2140 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2141 (!vma || addr + len <= vm_start_gap(vma)) && 2142 (!prev || addr >= vm_end_gap(prev))) 2143 return addr; 2144 } 2145 2146 info.flags = 0; 2147 info.length = len; 2148 info.low_limit = mm->mmap_base; 2149 info.high_limit = mmap_end; 2150 info.align_mask = 0; 2151 info.align_offset = 0; 2152 return vm_unmapped_area(&info); 2153 } 2154 #endif 2155 2156 /* 2157 * This mmap-allocator allocates new areas top-down from below the 2158 * stack's low limit (the base): 2159 */ 2160 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2161 unsigned long 2162 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2163 unsigned long len, unsigned long pgoff, 2164 unsigned long flags) 2165 { 2166 struct vm_area_struct *vma, *prev; 2167 struct mm_struct *mm = current->mm; 2168 struct vm_unmapped_area_info info; 2169 const unsigned long mmap_end = arch_get_mmap_end(addr); 2170 2171 /* requested length too big for entire address space */ 2172 if (len > mmap_end - mmap_min_addr) 2173 return -ENOMEM; 2174 2175 if (flags & MAP_FIXED) 2176 return addr; 2177 2178 /* requesting a specific address */ 2179 if (addr) { 2180 addr = PAGE_ALIGN(addr); 2181 vma = find_vma_prev(mm, addr, &prev); 2182 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2183 (!vma || addr + len <= vm_start_gap(vma)) && 2184 (!prev || addr >= vm_end_gap(prev))) 2185 return addr; 2186 } 2187 2188 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2189 info.length = len; 2190 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2191 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2192 info.align_mask = 0; 2193 info.align_offset = 0; 2194 addr = vm_unmapped_area(&info); 2195 2196 /* 2197 * A failed mmap() very likely causes application failure, 2198 * so fall back to the bottom-up function here. This scenario 2199 * can happen with large stack limits and large mmap() 2200 * allocations. 2201 */ 2202 if (offset_in_page(addr)) { 2203 VM_BUG_ON(addr != -ENOMEM); 2204 info.flags = 0; 2205 info.low_limit = TASK_UNMAPPED_BASE; 2206 info.high_limit = mmap_end; 2207 addr = vm_unmapped_area(&info); 2208 } 2209 2210 return addr; 2211 } 2212 #endif 2213 2214 unsigned long 2215 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2216 unsigned long pgoff, unsigned long flags) 2217 { 2218 unsigned long (*get_area)(struct file *, unsigned long, 2219 unsigned long, unsigned long, unsigned long); 2220 2221 unsigned long error = arch_mmap_check(addr, len, flags); 2222 if (error) 2223 return error; 2224 2225 /* Careful about overflows.. */ 2226 if (len > TASK_SIZE) 2227 return -ENOMEM; 2228 2229 get_area = current->mm->get_unmapped_area; 2230 if (file) { 2231 if (file->f_op->get_unmapped_area) 2232 get_area = file->f_op->get_unmapped_area; 2233 } else if (flags & MAP_SHARED) { 2234 /* 2235 * mmap_region() will call shmem_zero_setup() to create a file, 2236 * so use shmem's get_unmapped_area in case it can be huge. 2237 * do_mmap() will clear pgoff, so match alignment. 2238 */ 2239 pgoff = 0; 2240 get_area = shmem_get_unmapped_area; 2241 } 2242 2243 addr = get_area(file, addr, len, pgoff, flags); 2244 if (IS_ERR_VALUE(addr)) 2245 return addr; 2246 2247 if (addr > TASK_SIZE - len) 2248 return -ENOMEM; 2249 if (offset_in_page(addr)) 2250 return -EINVAL; 2251 2252 error = security_mmap_addr(addr); 2253 return error ? error : addr; 2254 } 2255 2256 EXPORT_SYMBOL(get_unmapped_area); 2257 2258 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2259 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2260 { 2261 struct rb_node *rb_node; 2262 struct vm_area_struct *vma; 2263 2264 /* Check the cache first. */ 2265 vma = vmacache_find(mm, addr); 2266 if (likely(vma)) 2267 return vma; 2268 2269 rb_node = mm->mm_rb.rb_node; 2270 2271 while (rb_node) { 2272 struct vm_area_struct *tmp; 2273 2274 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2275 2276 if (tmp->vm_end > addr) { 2277 vma = tmp; 2278 if (tmp->vm_start <= addr) 2279 break; 2280 rb_node = rb_node->rb_left; 2281 } else 2282 rb_node = rb_node->rb_right; 2283 } 2284 2285 if (vma) 2286 vmacache_update(addr, vma); 2287 return vma; 2288 } 2289 2290 EXPORT_SYMBOL(find_vma); 2291 2292 /* 2293 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2294 */ 2295 struct vm_area_struct * 2296 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2297 struct vm_area_struct **pprev) 2298 { 2299 struct vm_area_struct *vma; 2300 2301 vma = find_vma(mm, addr); 2302 if (vma) { 2303 *pprev = vma->vm_prev; 2304 } else { 2305 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2306 2307 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2308 } 2309 return vma; 2310 } 2311 2312 /* 2313 * Verify that the stack growth is acceptable and 2314 * update accounting. This is shared with both the 2315 * grow-up and grow-down cases. 2316 */ 2317 static int acct_stack_growth(struct vm_area_struct *vma, 2318 unsigned long size, unsigned long grow) 2319 { 2320 struct mm_struct *mm = vma->vm_mm; 2321 unsigned long new_start; 2322 2323 /* address space limit tests */ 2324 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2325 return -ENOMEM; 2326 2327 /* Stack limit test */ 2328 if (size > rlimit(RLIMIT_STACK)) 2329 return -ENOMEM; 2330 2331 /* mlock limit tests */ 2332 if (vma->vm_flags & VM_LOCKED) { 2333 unsigned long locked; 2334 unsigned long limit; 2335 locked = mm->locked_vm + grow; 2336 limit = rlimit(RLIMIT_MEMLOCK); 2337 limit >>= PAGE_SHIFT; 2338 if (locked > limit && !capable(CAP_IPC_LOCK)) 2339 return -ENOMEM; 2340 } 2341 2342 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2343 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2344 vma->vm_end - size; 2345 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2346 return -EFAULT; 2347 2348 /* 2349 * Overcommit.. This must be the final test, as it will 2350 * update security statistics. 2351 */ 2352 if (security_vm_enough_memory_mm(mm, grow)) 2353 return -ENOMEM; 2354 2355 return 0; 2356 } 2357 2358 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2359 /* 2360 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2361 * vma is the last one with address > vma->vm_end. Have to extend vma. 2362 */ 2363 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2364 { 2365 struct mm_struct *mm = vma->vm_mm; 2366 struct vm_area_struct *next; 2367 unsigned long gap_addr; 2368 int error = 0; 2369 2370 if (!(vma->vm_flags & VM_GROWSUP)) 2371 return -EFAULT; 2372 2373 /* Guard against exceeding limits of the address space. */ 2374 address &= PAGE_MASK; 2375 if (address >= (TASK_SIZE & PAGE_MASK)) 2376 return -ENOMEM; 2377 address += PAGE_SIZE; 2378 2379 /* Enforce stack_guard_gap */ 2380 gap_addr = address + stack_guard_gap; 2381 2382 /* Guard against overflow */ 2383 if (gap_addr < address || gap_addr > TASK_SIZE) 2384 gap_addr = TASK_SIZE; 2385 2386 next = vma->vm_next; 2387 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) { 2388 if (!(next->vm_flags & VM_GROWSUP)) 2389 return -ENOMEM; 2390 /* Check that both stack segments have the same anon_vma? */ 2391 } 2392 2393 /* We must make sure the anon_vma is allocated. */ 2394 if (unlikely(anon_vma_prepare(vma))) 2395 return -ENOMEM; 2396 2397 /* 2398 * vma->vm_start/vm_end cannot change under us because the caller 2399 * is required to hold the mmap_lock in read mode. We need the 2400 * anon_vma lock to serialize against concurrent expand_stacks. 2401 */ 2402 anon_vma_lock_write(vma->anon_vma); 2403 2404 /* Somebody else might have raced and expanded it already */ 2405 if (address > vma->vm_end) { 2406 unsigned long size, grow; 2407 2408 size = address - vma->vm_start; 2409 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2410 2411 error = -ENOMEM; 2412 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2413 error = acct_stack_growth(vma, size, grow); 2414 if (!error) { 2415 /* 2416 * vma_gap_update() doesn't support concurrent 2417 * updates, but we only hold a shared mmap_lock 2418 * lock here, so we need to protect against 2419 * concurrent vma expansions. 2420 * anon_vma_lock_write() doesn't help here, as 2421 * we don't guarantee that all growable vmas 2422 * in a mm share the same root anon vma. 2423 * So, we reuse mm->page_table_lock to guard 2424 * against concurrent vma expansions. 2425 */ 2426 spin_lock(&mm->page_table_lock); 2427 if (vma->vm_flags & VM_LOCKED) 2428 mm->locked_vm += grow; 2429 vm_stat_account(mm, vma->vm_flags, grow); 2430 anon_vma_interval_tree_pre_update_vma(vma); 2431 vma->vm_end = address; 2432 anon_vma_interval_tree_post_update_vma(vma); 2433 if (vma->vm_next) 2434 vma_gap_update(vma->vm_next); 2435 else 2436 mm->highest_vm_end = vm_end_gap(vma); 2437 spin_unlock(&mm->page_table_lock); 2438 2439 perf_event_mmap(vma); 2440 } 2441 } 2442 } 2443 anon_vma_unlock_write(vma->anon_vma); 2444 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2445 validate_mm(mm); 2446 return error; 2447 } 2448 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2449 2450 /* 2451 * vma is the first one with address < vma->vm_start. Have to extend vma. 2452 */ 2453 int expand_downwards(struct vm_area_struct *vma, 2454 unsigned long address) 2455 { 2456 struct mm_struct *mm = vma->vm_mm; 2457 struct vm_area_struct *prev; 2458 int error = 0; 2459 2460 address &= PAGE_MASK; 2461 if (address < mmap_min_addr) 2462 return -EPERM; 2463 2464 /* Enforce stack_guard_gap */ 2465 prev = vma->vm_prev; 2466 /* Check that both stack segments have the same anon_vma? */ 2467 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2468 vma_is_accessible(prev)) { 2469 if (address - prev->vm_end < stack_guard_gap) 2470 return -ENOMEM; 2471 } 2472 2473 /* We must make sure the anon_vma is allocated. */ 2474 if (unlikely(anon_vma_prepare(vma))) 2475 return -ENOMEM; 2476 2477 /* 2478 * vma->vm_start/vm_end cannot change under us because the caller 2479 * is required to hold the mmap_lock in read mode. We need the 2480 * anon_vma lock to serialize against concurrent expand_stacks. 2481 */ 2482 anon_vma_lock_write(vma->anon_vma); 2483 2484 /* Somebody else might have raced and expanded it already */ 2485 if (address < vma->vm_start) { 2486 unsigned long size, grow; 2487 2488 size = vma->vm_end - address; 2489 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2490 2491 error = -ENOMEM; 2492 if (grow <= vma->vm_pgoff) { 2493 error = acct_stack_growth(vma, size, grow); 2494 if (!error) { 2495 /* 2496 * vma_gap_update() doesn't support concurrent 2497 * updates, but we only hold a shared mmap_lock 2498 * lock here, so we need to protect against 2499 * concurrent vma expansions. 2500 * anon_vma_lock_write() doesn't help here, as 2501 * we don't guarantee that all growable vmas 2502 * in a mm share the same root anon vma. 2503 * So, we reuse mm->page_table_lock to guard 2504 * against concurrent vma expansions. 2505 */ 2506 spin_lock(&mm->page_table_lock); 2507 if (vma->vm_flags & VM_LOCKED) 2508 mm->locked_vm += grow; 2509 vm_stat_account(mm, vma->vm_flags, grow); 2510 anon_vma_interval_tree_pre_update_vma(vma); 2511 vma->vm_start = address; 2512 vma->vm_pgoff -= grow; 2513 anon_vma_interval_tree_post_update_vma(vma); 2514 vma_gap_update(vma); 2515 spin_unlock(&mm->page_table_lock); 2516 2517 perf_event_mmap(vma); 2518 } 2519 } 2520 } 2521 anon_vma_unlock_write(vma->anon_vma); 2522 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2523 validate_mm(mm); 2524 return error; 2525 } 2526 2527 /* enforced gap between the expanding stack and other mappings. */ 2528 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2529 2530 static int __init cmdline_parse_stack_guard_gap(char *p) 2531 { 2532 unsigned long val; 2533 char *endptr; 2534 2535 val = simple_strtoul(p, &endptr, 10); 2536 if (!*endptr) 2537 stack_guard_gap = val << PAGE_SHIFT; 2538 2539 return 0; 2540 } 2541 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2542 2543 #ifdef CONFIG_STACK_GROWSUP 2544 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2545 { 2546 return expand_upwards(vma, address); 2547 } 2548 2549 struct vm_area_struct * 2550 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2551 { 2552 struct vm_area_struct *vma, *prev; 2553 2554 addr &= PAGE_MASK; 2555 vma = find_vma_prev(mm, addr, &prev); 2556 if (vma && (vma->vm_start <= addr)) 2557 return vma; 2558 /* don't alter vm_end if the coredump is running */ 2559 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr)) 2560 return NULL; 2561 if (prev->vm_flags & VM_LOCKED) 2562 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2563 return prev; 2564 } 2565 #else 2566 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2567 { 2568 return expand_downwards(vma, address); 2569 } 2570 2571 struct vm_area_struct * 2572 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2573 { 2574 struct vm_area_struct *vma; 2575 unsigned long start; 2576 2577 addr &= PAGE_MASK; 2578 vma = find_vma(mm, addr); 2579 if (!vma) 2580 return NULL; 2581 if (vma->vm_start <= addr) 2582 return vma; 2583 if (!(vma->vm_flags & VM_GROWSDOWN)) 2584 return NULL; 2585 /* don't alter vm_start if the coredump is running */ 2586 if (!mmget_still_valid(mm)) 2587 return NULL; 2588 start = vma->vm_start; 2589 if (expand_stack(vma, addr)) 2590 return NULL; 2591 if (vma->vm_flags & VM_LOCKED) 2592 populate_vma_page_range(vma, addr, start, NULL); 2593 return vma; 2594 } 2595 #endif 2596 2597 EXPORT_SYMBOL_GPL(find_extend_vma); 2598 2599 /* 2600 * Ok - we have the memory areas we should free on the vma list, 2601 * so release them, and do the vma updates. 2602 * 2603 * Called with the mm semaphore held. 2604 */ 2605 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2606 { 2607 unsigned long nr_accounted = 0; 2608 2609 /* Update high watermark before we lower total_vm */ 2610 update_hiwater_vm(mm); 2611 do { 2612 long nrpages = vma_pages(vma); 2613 2614 if (vma->vm_flags & VM_ACCOUNT) 2615 nr_accounted += nrpages; 2616 vm_stat_account(mm, vma->vm_flags, -nrpages); 2617 vma = remove_vma(vma); 2618 } while (vma); 2619 vm_unacct_memory(nr_accounted); 2620 validate_mm(mm); 2621 } 2622 2623 /* 2624 * Get rid of page table information in the indicated region. 2625 * 2626 * Called with the mm semaphore held. 2627 */ 2628 static void unmap_region(struct mm_struct *mm, 2629 struct vm_area_struct *vma, struct vm_area_struct *prev, 2630 unsigned long start, unsigned long end) 2631 { 2632 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2633 struct mmu_gather tlb; 2634 2635 lru_add_drain(); 2636 tlb_gather_mmu(&tlb, mm, start, end); 2637 update_hiwater_rss(mm); 2638 unmap_vmas(&tlb, vma, start, end); 2639 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2640 next ? next->vm_start : USER_PGTABLES_CEILING); 2641 tlb_finish_mmu(&tlb, start, end); 2642 } 2643 2644 /* 2645 * Create a list of vma's touched by the unmap, removing them from the mm's 2646 * vma list as we go.. 2647 */ 2648 static bool 2649 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2650 struct vm_area_struct *prev, unsigned long end) 2651 { 2652 struct vm_area_struct **insertion_point; 2653 struct vm_area_struct *tail_vma = NULL; 2654 2655 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2656 vma->vm_prev = NULL; 2657 do { 2658 vma_rb_erase(vma, &mm->mm_rb); 2659 mm->map_count--; 2660 tail_vma = vma; 2661 vma = vma->vm_next; 2662 } while (vma && vma->vm_start < end); 2663 *insertion_point = vma; 2664 if (vma) { 2665 vma->vm_prev = prev; 2666 vma_gap_update(vma); 2667 } else 2668 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2669 tail_vma->vm_next = NULL; 2670 2671 /* Kill the cache */ 2672 vmacache_invalidate(mm); 2673 2674 /* 2675 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2676 * VM_GROWSUP VMA. Such VMAs can change their size under 2677 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2678 */ 2679 if (vma && (vma->vm_flags & VM_GROWSDOWN)) 2680 return false; 2681 if (prev && (prev->vm_flags & VM_GROWSUP)) 2682 return false; 2683 return true; 2684 } 2685 2686 /* 2687 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2688 * has already been checked or doesn't make sense to fail. 2689 */ 2690 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2691 unsigned long addr, int new_below) 2692 { 2693 struct vm_area_struct *new; 2694 int err; 2695 2696 if (vma->vm_ops && vma->vm_ops->split) { 2697 err = vma->vm_ops->split(vma, addr); 2698 if (err) 2699 return err; 2700 } 2701 2702 new = vm_area_dup(vma); 2703 if (!new) 2704 return -ENOMEM; 2705 2706 if (new_below) 2707 new->vm_end = addr; 2708 else { 2709 new->vm_start = addr; 2710 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2711 } 2712 2713 err = vma_dup_policy(vma, new); 2714 if (err) 2715 goto out_free_vma; 2716 2717 err = anon_vma_clone(new, vma); 2718 if (err) 2719 goto out_free_mpol; 2720 2721 if (new->vm_file) 2722 get_file(new->vm_file); 2723 2724 if (new->vm_ops && new->vm_ops->open) 2725 new->vm_ops->open(new); 2726 2727 if (new_below) 2728 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2729 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2730 else 2731 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2732 2733 /* Success. */ 2734 if (!err) 2735 return 0; 2736 2737 /* Clean everything up if vma_adjust failed. */ 2738 if (new->vm_ops && new->vm_ops->close) 2739 new->vm_ops->close(new); 2740 if (new->vm_file) 2741 fput(new->vm_file); 2742 unlink_anon_vmas(new); 2743 out_free_mpol: 2744 mpol_put(vma_policy(new)); 2745 out_free_vma: 2746 vm_area_free(new); 2747 return err; 2748 } 2749 2750 /* 2751 * Split a vma into two pieces at address 'addr', a new vma is allocated 2752 * either for the first part or the tail. 2753 */ 2754 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2755 unsigned long addr, int new_below) 2756 { 2757 if (mm->map_count >= sysctl_max_map_count) 2758 return -ENOMEM; 2759 2760 return __split_vma(mm, vma, addr, new_below); 2761 } 2762 2763 /* Munmap is split into 2 main parts -- this part which finds 2764 * what needs doing, and the areas themselves, which do the 2765 * work. This now handles partial unmappings. 2766 * Jeremy Fitzhardinge <jeremy@goop.org> 2767 */ 2768 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2769 struct list_head *uf, bool downgrade) 2770 { 2771 unsigned long end; 2772 struct vm_area_struct *vma, *prev, *last; 2773 2774 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2775 return -EINVAL; 2776 2777 len = PAGE_ALIGN(len); 2778 end = start + len; 2779 if (len == 0) 2780 return -EINVAL; 2781 2782 /* 2783 * arch_unmap() might do unmaps itself. It must be called 2784 * and finish any rbtree manipulation before this code 2785 * runs and also starts to manipulate the rbtree. 2786 */ 2787 arch_unmap(mm, start, end); 2788 2789 /* Find the first overlapping VMA */ 2790 vma = find_vma(mm, start); 2791 if (!vma) 2792 return 0; 2793 prev = vma->vm_prev; 2794 /* we have start < vma->vm_end */ 2795 2796 /* if it doesn't overlap, we have nothing.. */ 2797 if (vma->vm_start >= end) 2798 return 0; 2799 2800 /* 2801 * If we need to split any vma, do it now to save pain later. 2802 * 2803 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2804 * unmapped vm_area_struct will remain in use: so lower split_vma 2805 * places tmp vma above, and higher split_vma places tmp vma below. 2806 */ 2807 if (start > vma->vm_start) { 2808 int error; 2809 2810 /* 2811 * Make sure that map_count on return from munmap() will 2812 * not exceed its limit; but let map_count go just above 2813 * its limit temporarily, to help free resources as expected. 2814 */ 2815 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2816 return -ENOMEM; 2817 2818 error = __split_vma(mm, vma, start, 0); 2819 if (error) 2820 return error; 2821 prev = vma; 2822 } 2823 2824 /* Does it split the last one? */ 2825 last = find_vma(mm, end); 2826 if (last && end > last->vm_start) { 2827 int error = __split_vma(mm, last, end, 1); 2828 if (error) 2829 return error; 2830 } 2831 vma = prev ? prev->vm_next : mm->mmap; 2832 2833 if (unlikely(uf)) { 2834 /* 2835 * If userfaultfd_unmap_prep returns an error the vmas 2836 * will remain splitted, but userland will get a 2837 * highly unexpected error anyway. This is no 2838 * different than the case where the first of the two 2839 * __split_vma fails, but we don't undo the first 2840 * split, despite we could. This is unlikely enough 2841 * failure that it's not worth optimizing it for. 2842 */ 2843 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2844 if (error) 2845 return error; 2846 } 2847 2848 /* 2849 * unlock any mlock()ed ranges before detaching vmas 2850 */ 2851 if (mm->locked_vm) { 2852 struct vm_area_struct *tmp = vma; 2853 while (tmp && tmp->vm_start < end) { 2854 if (tmp->vm_flags & VM_LOCKED) { 2855 mm->locked_vm -= vma_pages(tmp); 2856 munlock_vma_pages_all(tmp); 2857 } 2858 2859 tmp = tmp->vm_next; 2860 } 2861 } 2862 2863 /* Detach vmas from rbtree */ 2864 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end)) 2865 downgrade = false; 2866 2867 if (downgrade) 2868 mmap_write_downgrade(mm); 2869 2870 unmap_region(mm, vma, prev, start, end); 2871 2872 /* Fix up all other VM information */ 2873 remove_vma_list(mm, vma); 2874 2875 return downgrade ? 1 : 0; 2876 } 2877 2878 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2879 struct list_head *uf) 2880 { 2881 return __do_munmap(mm, start, len, uf, false); 2882 } 2883 2884 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2885 { 2886 int ret; 2887 struct mm_struct *mm = current->mm; 2888 LIST_HEAD(uf); 2889 2890 if (mmap_write_lock_killable(mm)) 2891 return -EINTR; 2892 2893 ret = __do_munmap(mm, start, len, &uf, downgrade); 2894 /* 2895 * Returning 1 indicates mmap_lock is downgraded. 2896 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2897 * it to 0 before return. 2898 */ 2899 if (ret == 1) { 2900 mmap_read_unlock(mm); 2901 ret = 0; 2902 } else 2903 mmap_write_unlock(mm); 2904 2905 userfaultfd_unmap_complete(mm, &uf); 2906 return ret; 2907 } 2908 2909 int vm_munmap(unsigned long start, size_t len) 2910 { 2911 return __vm_munmap(start, len, false); 2912 } 2913 EXPORT_SYMBOL(vm_munmap); 2914 2915 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2916 { 2917 addr = untagged_addr(addr); 2918 profile_munmap(addr); 2919 return __vm_munmap(addr, len, true); 2920 } 2921 2922 2923 /* 2924 * Emulation of deprecated remap_file_pages() syscall. 2925 */ 2926 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2927 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2928 { 2929 2930 struct mm_struct *mm = current->mm; 2931 struct vm_area_struct *vma; 2932 unsigned long populate = 0; 2933 unsigned long ret = -EINVAL; 2934 struct file *file; 2935 2936 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2937 current->comm, current->pid); 2938 2939 if (prot) 2940 return ret; 2941 start = start & PAGE_MASK; 2942 size = size & PAGE_MASK; 2943 2944 if (start + size <= start) 2945 return ret; 2946 2947 /* Does pgoff wrap? */ 2948 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2949 return ret; 2950 2951 if (mmap_write_lock_killable(mm)) 2952 return -EINTR; 2953 2954 vma = find_vma(mm, start); 2955 2956 if (!vma || !(vma->vm_flags & VM_SHARED)) 2957 goto out; 2958 2959 if (start < vma->vm_start) 2960 goto out; 2961 2962 if (start + size > vma->vm_end) { 2963 struct vm_area_struct *next; 2964 2965 for (next = vma->vm_next; next; next = next->vm_next) { 2966 /* hole between vmas ? */ 2967 if (next->vm_start != next->vm_prev->vm_end) 2968 goto out; 2969 2970 if (next->vm_file != vma->vm_file) 2971 goto out; 2972 2973 if (next->vm_flags != vma->vm_flags) 2974 goto out; 2975 2976 if (start + size <= next->vm_end) 2977 break; 2978 } 2979 2980 if (!next) 2981 goto out; 2982 } 2983 2984 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2985 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2986 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2987 2988 flags &= MAP_NONBLOCK; 2989 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2990 if (vma->vm_flags & VM_LOCKED) { 2991 struct vm_area_struct *tmp; 2992 flags |= MAP_LOCKED; 2993 2994 /* drop PG_Mlocked flag for over-mapped range */ 2995 for (tmp = vma; tmp->vm_start >= start + size; 2996 tmp = tmp->vm_next) { 2997 /* 2998 * Split pmd and munlock page on the border 2999 * of the range. 3000 */ 3001 vma_adjust_trans_huge(tmp, start, start + size, 0); 3002 3003 munlock_vma_pages_range(tmp, 3004 max(tmp->vm_start, start), 3005 min(tmp->vm_end, start + size)); 3006 } 3007 } 3008 3009 file = get_file(vma->vm_file); 3010 ret = do_mmap(vma->vm_file, start, size, 3011 prot, flags, pgoff, &populate, NULL); 3012 fput(file); 3013 out: 3014 mmap_write_unlock(mm); 3015 if (populate) 3016 mm_populate(ret, populate); 3017 if (!IS_ERR_VALUE(ret)) 3018 ret = 0; 3019 return ret; 3020 } 3021 3022 /* 3023 * this is really a simplified "do_mmap". it only handles 3024 * anonymous maps. eventually we may be able to do some 3025 * brk-specific accounting here. 3026 */ 3027 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 3028 { 3029 struct mm_struct *mm = current->mm; 3030 struct vm_area_struct *vma, *prev; 3031 struct rb_node **rb_link, *rb_parent; 3032 pgoff_t pgoff = addr >> PAGE_SHIFT; 3033 int error; 3034 unsigned long mapped_addr; 3035 3036 /* Until we need other flags, refuse anything except VM_EXEC. */ 3037 if ((flags & (~VM_EXEC)) != 0) 3038 return -EINVAL; 3039 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3040 3041 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3042 if (IS_ERR_VALUE(mapped_addr)) 3043 return mapped_addr; 3044 3045 error = mlock_future_check(mm, mm->def_flags, len); 3046 if (error) 3047 return error; 3048 3049 /* 3050 * Clear old maps. this also does some error checking for us 3051 */ 3052 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 3053 &rb_parent)) { 3054 if (do_munmap(mm, addr, len, uf)) 3055 return -ENOMEM; 3056 } 3057 3058 /* Check against address space limits *after* clearing old maps... */ 3059 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3060 return -ENOMEM; 3061 3062 if (mm->map_count > sysctl_max_map_count) 3063 return -ENOMEM; 3064 3065 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3066 return -ENOMEM; 3067 3068 /* Can we just expand an old private anonymous mapping? */ 3069 vma = vma_merge(mm, prev, addr, addr + len, flags, 3070 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3071 if (vma) 3072 goto out; 3073 3074 /* 3075 * create a vma struct for an anonymous mapping 3076 */ 3077 vma = vm_area_alloc(mm); 3078 if (!vma) { 3079 vm_unacct_memory(len >> PAGE_SHIFT); 3080 return -ENOMEM; 3081 } 3082 3083 vma_set_anonymous(vma); 3084 vma->vm_start = addr; 3085 vma->vm_end = addr + len; 3086 vma->vm_pgoff = pgoff; 3087 vma->vm_flags = flags; 3088 vma->vm_page_prot = vm_get_page_prot(flags); 3089 vma_link(mm, vma, prev, rb_link, rb_parent); 3090 out: 3091 perf_event_mmap(vma); 3092 mm->total_vm += len >> PAGE_SHIFT; 3093 mm->data_vm += len >> PAGE_SHIFT; 3094 if (flags & VM_LOCKED) 3095 mm->locked_vm += (len >> PAGE_SHIFT); 3096 vma->vm_flags |= VM_SOFTDIRTY; 3097 return 0; 3098 } 3099 3100 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3101 { 3102 struct mm_struct *mm = current->mm; 3103 unsigned long len; 3104 int ret; 3105 bool populate; 3106 LIST_HEAD(uf); 3107 3108 len = PAGE_ALIGN(request); 3109 if (len < request) 3110 return -ENOMEM; 3111 if (!len) 3112 return 0; 3113 3114 if (mmap_write_lock_killable(mm)) 3115 return -EINTR; 3116 3117 ret = do_brk_flags(addr, len, flags, &uf); 3118 populate = ((mm->def_flags & VM_LOCKED) != 0); 3119 mmap_write_unlock(mm); 3120 userfaultfd_unmap_complete(mm, &uf); 3121 if (populate && !ret) 3122 mm_populate(addr, len); 3123 return ret; 3124 } 3125 EXPORT_SYMBOL(vm_brk_flags); 3126 3127 int vm_brk(unsigned long addr, unsigned long len) 3128 { 3129 return vm_brk_flags(addr, len, 0); 3130 } 3131 EXPORT_SYMBOL(vm_brk); 3132 3133 /* Release all mmaps. */ 3134 void exit_mmap(struct mm_struct *mm) 3135 { 3136 struct mmu_gather tlb; 3137 struct vm_area_struct *vma; 3138 unsigned long nr_accounted = 0; 3139 3140 /* mm's last user has gone, and its about to be pulled down */ 3141 mmu_notifier_release(mm); 3142 3143 if (unlikely(mm_is_oom_victim(mm))) { 3144 /* 3145 * Manually reap the mm to free as much memory as possible. 3146 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3147 * this mm from further consideration. Taking mm->mmap_lock for 3148 * write after setting MMF_OOM_SKIP will guarantee that the oom 3149 * reaper will not run on this mm again after mmap_lock is 3150 * dropped. 3151 * 3152 * Nothing can be holding mm->mmap_lock here and the above call 3153 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3154 * __oom_reap_task_mm() will not block. 3155 * 3156 * This needs to be done before calling munlock_vma_pages_all(), 3157 * which clears VM_LOCKED, otherwise the oom reaper cannot 3158 * reliably test it. 3159 */ 3160 (void)__oom_reap_task_mm(mm); 3161 3162 set_bit(MMF_OOM_SKIP, &mm->flags); 3163 mmap_write_lock(mm); 3164 mmap_write_unlock(mm); 3165 } 3166 3167 if (mm->locked_vm) { 3168 vma = mm->mmap; 3169 while (vma) { 3170 if (vma->vm_flags & VM_LOCKED) 3171 munlock_vma_pages_all(vma); 3172 vma = vma->vm_next; 3173 } 3174 } 3175 3176 arch_exit_mmap(mm); 3177 3178 vma = mm->mmap; 3179 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3180 return; 3181 3182 lru_add_drain(); 3183 flush_cache_mm(mm); 3184 tlb_gather_mmu(&tlb, mm, 0, -1); 3185 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3186 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3187 unmap_vmas(&tlb, vma, 0, -1); 3188 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3189 tlb_finish_mmu(&tlb, 0, -1); 3190 3191 /* 3192 * Walk the list again, actually closing and freeing it, 3193 * with preemption enabled, without holding any MM locks. 3194 */ 3195 while (vma) { 3196 if (vma->vm_flags & VM_ACCOUNT) 3197 nr_accounted += vma_pages(vma); 3198 vma = remove_vma(vma); 3199 cond_resched(); 3200 } 3201 vm_unacct_memory(nr_accounted); 3202 } 3203 3204 /* Insert vm structure into process list sorted by address 3205 * and into the inode's i_mmap tree. If vm_file is non-NULL 3206 * then i_mmap_rwsem is taken here. 3207 */ 3208 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3209 { 3210 struct vm_area_struct *prev; 3211 struct rb_node **rb_link, *rb_parent; 3212 3213 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3214 &prev, &rb_link, &rb_parent)) 3215 return -ENOMEM; 3216 if ((vma->vm_flags & VM_ACCOUNT) && 3217 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3218 return -ENOMEM; 3219 3220 /* 3221 * The vm_pgoff of a purely anonymous vma should be irrelevant 3222 * until its first write fault, when page's anon_vma and index 3223 * are set. But now set the vm_pgoff it will almost certainly 3224 * end up with (unless mremap moves it elsewhere before that 3225 * first wfault), so /proc/pid/maps tells a consistent story. 3226 * 3227 * By setting it to reflect the virtual start address of the 3228 * vma, merges and splits can happen in a seamless way, just 3229 * using the existing file pgoff checks and manipulations. 3230 * Similarly in do_mmap and in do_brk. 3231 */ 3232 if (vma_is_anonymous(vma)) { 3233 BUG_ON(vma->anon_vma); 3234 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3235 } 3236 3237 vma_link(mm, vma, prev, rb_link, rb_parent); 3238 return 0; 3239 } 3240 3241 /* 3242 * Copy the vma structure to a new location in the same mm, 3243 * prior to moving page table entries, to effect an mremap move. 3244 */ 3245 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3246 unsigned long addr, unsigned long len, pgoff_t pgoff, 3247 bool *need_rmap_locks) 3248 { 3249 struct vm_area_struct *vma = *vmap; 3250 unsigned long vma_start = vma->vm_start; 3251 struct mm_struct *mm = vma->vm_mm; 3252 struct vm_area_struct *new_vma, *prev; 3253 struct rb_node **rb_link, *rb_parent; 3254 bool faulted_in_anon_vma = true; 3255 3256 /* 3257 * If anonymous vma has not yet been faulted, update new pgoff 3258 * to match new location, to increase its chance of merging. 3259 */ 3260 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3261 pgoff = addr >> PAGE_SHIFT; 3262 faulted_in_anon_vma = false; 3263 } 3264 3265 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3266 return NULL; /* should never get here */ 3267 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3268 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3269 vma->vm_userfaultfd_ctx); 3270 if (new_vma) { 3271 /* 3272 * Source vma may have been merged into new_vma 3273 */ 3274 if (unlikely(vma_start >= new_vma->vm_start && 3275 vma_start < new_vma->vm_end)) { 3276 /* 3277 * The only way we can get a vma_merge with 3278 * self during an mremap is if the vma hasn't 3279 * been faulted in yet and we were allowed to 3280 * reset the dst vma->vm_pgoff to the 3281 * destination address of the mremap to allow 3282 * the merge to happen. mremap must change the 3283 * vm_pgoff linearity between src and dst vmas 3284 * (in turn preventing a vma_merge) to be 3285 * safe. It is only safe to keep the vm_pgoff 3286 * linear if there are no pages mapped yet. 3287 */ 3288 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3289 *vmap = vma = new_vma; 3290 } 3291 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3292 } else { 3293 new_vma = vm_area_dup(vma); 3294 if (!new_vma) 3295 goto out; 3296 new_vma->vm_start = addr; 3297 new_vma->vm_end = addr + len; 3298 new_vma->vm_pgoff = pgoff; 3299 if (vma_dup_policy(vma, new_vma)) 3300 goto out_free_vma; 3301 if (anon_vma_clone(new_vma, vma)) 3302 goto out_free_mempol; 3303 if (new_vma->vm_file) 3304 get_file(new_vma->vm_file); 3305 if (new_vma->vm_ops && new_vma->vm_ops->open) 3306 new_vma->vm_ops->open(new_vma); 3307 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3308 *need_rmap_locks = false; 3309 } 3310 return new_vma; 3311 3312 out_free_mempol: 3313 mpol_put(vma_policy(new_vma)); 3314 out_free_vma: 3315 vm_area_free(new_vma); 3316 out: 3317 return NULL; 3318 } 3319 3320 /* 3321 * Return true if the calling process may expand its vm space by the passed 3322 * number of pages 3323 */ 3324 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3325 { 3326 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3327 return false; 3328 3329 if (is_data_mapping(flags) && 3330 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3331 /* Workaround for Valgrind */ 3332 if (rlimit(RLIMIT_DATA) == 0 && 3333 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3334 return true; 3335 3336 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3337 current->comm, current->pid, 3338 (mm->data_vm + npages) << PAGE_SHIFT, 3339 rlimit(RLIMIT_DATA), 3340 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3341 3342 if (!ignore_rlimit_data) 3343 return false; 3344 } 3345 3346 return true; 3347 } 3348 3349 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3350 { 3351 mm->total_vm += npages; 3352 3353 if (is_exec_mapping(flags)) 3354 mm->exec_vm += npages; 3355 else if (is_stack_mapping(flags)) 3356 mm->stack_vm += npages; 3357 else if (is_data_mapping(flags)) 3358 mm->data_vm += npages; 3359 } 3360 3361 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3362 3363 /* 3364 * Having a close hook prevents vma merging regardless of flags. 3365 */ 3366 static void special_mapping_close(struct vm_area_struct *vma) 3367 { 3368 } 3369 3370 static const char *special_mapping_name(struct vm_area_struct *vma) 3371 { 3372 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3373 } 3374 3375 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3376 { 3377 struct vm_special_mapping *sm = new_vma->vm_private_data; 3378 3379 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3380 return -EFAULT; 3381 3382 if (sm->mremap) 3383 return sm->mremap(sm, new_vma); 3384 3385 return 0; 3386 } 3387 3388 static const struct vm_operations_struct special_mapping_vmops = { 3389 .close = special_mapping_close, 3390 .fault = special_mapping_fault, 3391 .mremap = special_mapping_mremap, 3392 .name = special_mapping_name, 3393 /* vDSO code relies that VVAR can't be accessed remotely */ 3394 .access = NULL, 3395 }; 3396 3397 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3398 .close = special_mapping_close, 3399 .fault = special_mapping_fault, 3400 }; 3401 3402 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3403 { 3404 struct vm_area_struct *vma = vmf->vma; 3405 pgoff_t pgoff; 3406 struct page **pages; 3407 3408 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3409 pages = vma->vm_private_data; 3410 } else { 3411 struct vm_special_mapping *sm = vma->vm_private_data; 3412 3413 if (sm->fault) 3414 return sm->fault(sm, vmf->vma, vmf); 3415 3416 pages = sm->pages; 3417 } 3418 3419 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3420 pgoff--; 3421 3422 if (*pages) { 3423 struct page *page = *pages; 3424 get_page(page); 3425 vmf->page = page; 3426 return 0; 3427 } 3428 3429 return VM_FAULT_SIGBUS; 3430 } 3431 3432 static struct vm_area_struct *__install_special_mapping( 3433 struct mm_struct *mm, 3434 unsigned long addr, unsigned long len, 3435 unsigned long vm_flags, void *priv, 3436 const struct vm_operations_struct *ops) 3437 { 3438 int ret; 3439 struct vm_area_struct *vma; 3440 3441 vma = vm_area_alloc(mm); 3442 if (unlikely(vma == NULL)) 3443 return ERR_PTR(-ENOMEM); 3444 3445 vma->vm_start = addr; 3446 vma->vm_end = addr + len; 3447 3448 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3449 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3450 3451 vma->vm_ops = ops; 3452 vma->vm_private_data = priv; 3453 3454 ret = insert_vm_struct(mm, vma); 3455 if (ret) 3456 goto out; 3457 3458 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3459 3460 perf_event_mmap(vma); 3461 3462 return vma; 3463 3464 out: 3465 vm_area_free(vma); 3466 return ERR_PTR(ret); 3467 } 3468 3469 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3470 const struct vm_special_mapping *sm) 3471 { 3472 return vma->vm_private_data == sm && 3473 (vma->vm_ops == &special_mapping_vmops || 3474 vma->vm_ops == &legacy_special_mapping_vmops); 3475 } 3476 3477 /* 3478 * Called with mm->mmap_lock held for writing. 3479 * Insert a new vma covering the given region, with the given flags. 3480 * Its pages are supplied by the given array of struct page *. 3481 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3482 * The region past the last page supplied will always produce SIGBUS. 3483 * The array pointer and the pages it points to are assumed to stay alive 3484 * for as long as this mapping might exist. 3485 */ 3486 struct vm_area_struct *_install_special_mapping( 3487 struct mm_struct *mm, 3488 unsigned long addr, unsigned long len, 3489 unsigned long vm_flags, const struct vm_special_mapping *spec) 3490 { 3491 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3492 &special_mapping_vmops); 3493 } 3494 3495 int install_special_mapping(struct mm_struct *mm, 3496 unsigned long addr, unsigned long len, 3497 unsigned long vm_flags, struct page **pages) 3498 { 3499 struct vm_area_struct *vma = __install_special_mapping( 3500 mm, addr, len, vm_flags, (void *)pages, 3501 &legacy_special_mapping_vmops); 3502 3503 return PTR_ERR_OR_ZERO(vma); 3504 } 3505 3506 static DEFINE_MUTEX(mm_all_locks_mutex); 3507 3508 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3509 { 3510 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3511 /* 3512 * The LSB of head.next can't change from under us 3513 * because we hold the mm_all_locks_mutex. 3514 */ 3515 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3516 /* 3517 * We can safely modify head.next after taking the 3518 * anon_vma->root->rwsem. If some other vma in this mm shares 3519 * the same anon_vma we won't take it again. 3520 * 3521 * No need of atomic instructions here, head.next 3522 * can't change from under us thanks to the 3523 * anon_vma->root->rwsem. 3524 */ 3525 if (__test_and_set_bit(0, (unsigned long *) 3526 &anon_vma->root->rb_root.rb_root.rb_node)) 3527 BUG(); 3528 } 3529 } 3530 3531 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3532 { 3533 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3534 /* 3535 * AS_MM_ALL_LOCKS can't change from under us because 3536 * we hold the mm_all_locks_mutex. 3537 * 3538 * Operations on ->flags have to be atomic because 3539 * even if AS_MM_ALL_LOCKS is stable thanks to the 3540 * mm_all_locks_mutex, there may be other cpus 3541 * changing other bitflags in parallel to us. 3542 */ 3543 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3544 BUG(); 3545 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3546 } 3547 } 3548 3549 /* 3550 * This operation locks against the VM for all pte/vma/mm related 3551 * operations that could ever happen on a certain mm. This includes 3552 * vmtruncate, try_to_unmap, and all page faults. 3553 * 3554 * The caller must take the mmap_lock in write mode before calling 3555 * mm_take_all_locks(). The caller isn't allowed to release the 3556 * mmap_lock until mm_drop_all_locks() returns. 3557 * 3558 * mmap_lock in write mode is required in order to block all operations 3559 * that could modify pagetables and free pages without need of 3560 * altering the vma layout. It's also needed in write mode to avoid new 3561 * anon_vmas to be associated with existing vmas. 3562 * 3563 * A single task can't take more than one mm_take_all_locks() in a row 3564 * or it would deadlock. 3565 * 3566 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3567 * mapping->flags avoid to take the same lock twice, if more than one 3568 * vma in this mm is backed by the same anon_vma or address_space. 3569 * 3570 * We take locks in following order, accordingly to comment at beginning 3571 * of mm/rmap.c: 3572 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3573 * hugetlb mapping); 3574 * - all i_mmap_rwsem locks; 3575 * - all anon_vma->rwseml 3576 * 3577 * We can take all locks within these types randomly because the VM code 3578 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3579 * mm_all_locks_mutex. 3580 * 3581 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3582 * that may have to take thousand of locks. 3583 * 3584 * mm_take_all_locks() can fail if it's interrupted by signals. 3585 */ 3586 int mm_take_all_locks(struct mm_struct *mm) 3587 { 3588 struct vm_area_struct *vma; 3589 struct anon_vma_chain *avc; 3590 3591 BUG_ON(mmap_read_trylock(mm)); 3592 3593 mutex_lock(&mm_all_locks_mutex); 3594 3595 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3596 if (signal_pending(current)) 3597 goto out_unlock; 3598 if (vma->vm_file && vma->vm_file->f_mapping && 3599 is_vm_hugetlb_page(vma)) 3600 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3601 } 3602 3603 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3604 if (signal_pending(current)) 3605 goto out_unlock; 3606 if (vma->vm_file && vma->vm_file->f_mapping && 3607 !is_vm_hugetlb_page(vma)) 3608 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3609 } 3610 3611 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3612 if (signal_pending(current)) 3613 goto out_unlock; 3614 if (vma->anon_vma) 3615 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3616 vm_lock_anon_vma(mm, avc->anon_vma); 3617 } 3618 3619 return 0; 3620 3621 out_unlock: 3622 mm_drop_all_locks(mm); 3623 return -EINTR; 3624 } 3625 3626 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3627 { 3628 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3629 /* 3630 * The LSB of head.next can't change to 0 from under 3631 * us because we hold the mm_all_locks_mutex. 3632 * 3633 * We must however clear the bitflag before unlocking 3634 * the vma so the users using the anon_vma->rb_root will 3635 * never see our bitflag. 3636 * 3637 * No need of atomic instructions here, head.next 3638 * can't change from under us until we release the 3639 * anon_vma->root->rwsem. 3640 */ 3641 if (!__test_and_clear_bit(0, (unsigned long *) 3642 &anon_vma->root->rb_root.rb_root.rb_node)) 3643 BUG(); 3644 anon_vma_unlock_write(anon_vma); 3645 } 3646 } 3647 3648 static void vm_unlock_mapping(struct address_space *mapping) 3649 { 3650 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3651 /* 3652 * AS_MM_ALL_LOCKS can't change to 0 from under us 3653 * because we hold the mm_all_locks_mutex. 3654 */ 3655 i_mmap_unlock_write(mapping); 3656 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3657 &mapping->flags)) 3658 BUG(); 3659 } 3660 } 3661 3662 /* 3663 * The mmap_lock cannot be released by the caller until 3664 * mm_drop_all_locks() returns. 3665 */ 3666 void mm_drop_all_locks(struct mm_struct *mm) 3667 { 3668 struct vm_area_struct *vma; 3669 struct anon_vma_chain *avc; 3670 3671 BUG_ON(mmap_read_trylock(mm)); 3672 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3673 3674 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3675 if (vma->anon_vma) 3676 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3677 vm_unlock_anon_vma(avc->anon_vma); 3678 if (vma->vm_file && vma->vm_file->f_mapping) 3679 vm_unlock_mapping(vma->vm_file->f_mapping); 3680 } 3681 3682 mutex_unlock(&mm_all_locks_mutex); 3683 } 3684 3685 /* 3686 * initialise the percpu counter for VM 3687 */ 3688 void __init mmap_init(void) 3689 { 3690 int ret; 3691 3692 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3693 VM_BUG_ON(ret); 3694 } 3695 3696 /* 3697 * Initialise sysctl_user_reserve_kbytes. 3698 * 3699 * This is intended to prevent a user from starting a single memory hogging 3700 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3701 * mode. 3702 * 3703 * The default value is min(3% of free memory, 128MB) 3704 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3705 */ 3706 static int init_user_reserve(void) 3707 { 3708 unsigned long free_kbytes; 3709 3710 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3711 3712 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3713 return 0; 3714 } 3715 subsys_initcall(init_user_reserve); 3716 3717 /* 3718 * Initialise sysctl_admin_reserve_kbytes. 3719 * 3720 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3721 * to log in and kill a memory hogging process. 3722 * 3723 * Systems with more than 256MB will reserve 8MB, enough to recover 3724 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3725 * only reserve 3% of free pages by default. 3726 */ 3727 static int init_admin_reserve(void) 3728 { 3729 unsigned long free_kbytes; 3730 3731 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3732 3733 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3734 return 0; 3735 } 3736 subsys_initcall(init_admin_reserve); 3737 3738 /* 3739 * Reinititalise user and admin reserves if memory is added or removed. 3740 * 3741 * The default user reserve max is 128MB, and the default max for the 3742 * admin reserve is 8MB. These are usually, but not always, enough to 3743 * enable recovery from a memory hogging process using login/sshd, a shell, 3744 * and tools like top. It may make sense to increase or even disable the 3745 * reserve depending on the existence of swap or variations in the recovery 3746 * tools. So, the admin may have changed them. 3747 * 3748 * If memory is added and the reserves have been eliminated or increased above 3749 * the default max, then we'll trust the admin. 3750 * 3751 * If memory is removed and there isn't enough free memory, then we 3752 * need to reset the reserves. 3753 * 3754 * Otherwise keep the reserve set by the admin. 3755 */ 3756 static int reserve_mem_notifier(struct notifier_block *nb, 3757 unsigned long action, void *data) 3758 { 3759 unsigned long tmp, free_kbytes; 3760 3761 switch (action) { 3762 case MEM_ONLINE: 3763 /* Default max is 128MB. Leave alone if modified by operator. */ 3764 tmp = sysctl_user_reserve_kbytes; 3765 if (0 < tmp && tmp < (1UL << 17)) 3766 init_user_reserve(); 3767 3768 /* Default max is 8MB. Leave alone if modified by operator. */ 3769 tmp = sysctl_admin_reserve_kbytes; 3770 if (0 < tmp && tmp < (1UL << 13)) 3771 init_admin_reserve(); 3772 3773 break; 3774 case MEM_OFFLINE: 3775 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3776 3777 if (sysctl_user_reserve_kbytes > free_kbytes) { 3778 init_user_reserve(); 3779 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3780 sysctl_user_reserve_kbytes); 3781 } 3782 3783 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3784 init_admin_reserve(); 3785 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3786 sysctl_admin_reserve_kbytes); 3787 } 3788 break; 3789 default: 3790 break; 3791 } 3792 return NOTIFY_OK; 3793 } 3794 3795 static struct notifier_block reserve_mem_nb = { 3796 .notifier_call = reserve_mem_notifier, 3797 }; 3798 3799 static int __meminit init_reserve_notifier(void) 3800 { 3801 if (register_hotmemory_notifier(&reserve_mem_nb)) 3802 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3803 3804 return 0; 3805 } 3806 subsys_initcall(init_reserve_notifier); 3807