xref: /openbmc/linux/mm/mmap.c (revision d2999e1b)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/perf_event.h>
35 #include <linux/audit.h>
36 #include <linux/khugepaged.h>
37 #include <linux/uprobes.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/sched/sysctl.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43 
44 #include <asm/uaccess.h>
45 #include <asm/cacheflush.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 
49 #include "internal.h"
50 
51 #ifndef arch_mmap_check
52 #define arch_mmap_check(addr, len, flags)	(0)
53 #endif
54 
55 #ifndef arch_rebalance_pgtables
56 #define arch_rebalance_pgtables(addr, len)		(addr)
57 #endif
58 
59 static void unmap_region(struct mm_struct *mm,
60 		struct vm_area_struct *vma, struct vm_area_struct *prev,
61 		unsigned long start, unsigned long end);
62 
63 /* description of effects of mapping type and prot in current implementation.
64  * this is due to the limited x86 page protection hardware.  The expected
65  * behavior is in parens:
66  *
67  * map_type	prot
68  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
69  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
70  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
71  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
72  *
73  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
74  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
75  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
76  *
77  */
78 pgprot_t protection_map[16] = {
79 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
80 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
81 };
82 
83 pgprot_t vm_get_page_prot(unsigned long vm_flags)
84 {
85 	return __pgprot(pgprot_val(protection_map[vm_flags &
86 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
87 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
88 }
89 EXPORT_SYMBOL(vm_get_page_prot);
90 
91 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
92 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
93 unsigned long sysctl_overcommit_kbytes __read_mostly;
94 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
95 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
96 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
97 /*
98  * Make sure vm_committed_as in one cacheline and not cacheline shared with
99  * other variables. It can be updated by several CPUs frequently.
100  */
101 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
102 
103 /*
104  * The global memory commitment made in the system can be a metric
105  * that can be used to drive ballooning decisions when Linux is hosted
106  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
107  * balancing memory across competing virtual machines that are hosted.
108  * Several metrics drive this policy engine including the guest reported
109  * memory commitment.
110  */
111 unsigned long vm_memory_committed(void)
112 {
113 	return percpu_counter_read_positive(&vm_committed_as);
114 }
115 EXPORT_SYMBOL_GPL(vm_memory_committed);
116 
117 /*
118  * Check that a process has enough memory to allocate a new virtual
119  * mapping. 0 means there is enough memory for the allocation to
120  * succeed and -ENOMEM implies there is not.
121  *
122  * We currently support three overcommit policies, which are set via the
123  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
124  *
125  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
126  * Additional code 2002 Jul 20 by Robert Love.
127  *
128  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
129  *
130  * Note this is a helper function intended to be used by LSMs which
131  * wish to use this logic.
132  */
133 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
134 {
135 	unsigned long free, allowed, reserve;
136 
137 	vm_acct_memory(pages);
138 
139 	/*
140 	 * Sometimes we want to use more memory than we have
141 	 */
142 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
143 		return 0;
144 
145 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
146 		free = global_page_state(NR_FREE_PAGES);
147 		free += global_page_state(NR_FILE_PAGES);
148 
149 		/*
150 		 * shmem pages shouldn't be counted as free in this
151 		 * case, they can't be purged, only swapped out, and
152 		 * that won't affect the overall amount of available
153 		 * memory in the system.
154 		 */
155 		free -= global_page_state(NR_SHMEM);
156 
157 		free += get_nr_swap_pages();
158 
159 		/*
160 		 * Any slabs which are created with the
161 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
162 		 * which are reclaimable, under pressure.  The dentry
163 		 * cache and most inode caches should fall into this
164 		 */
165 		free += global_page_state(NR_SLAB_RECLAIMABLE);
166 
167 		/*
168 		 * Leave reserved pages. The pages are not for anonymous pages.
169 		 */
170 		if (free <= totalreserve_pages)
171 			goto error;
172 		else
173 			free -= totalreserve_pages;
174 
175 		/*
176 		 * Reserve some for root
177 		 */
178 		if (!cap_sys_admin)
179 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
180 
181 		if (free > pages)
182 			return 0;
183 
184 		goto error;
185 	}
186 
187 	allowed = vm_commit_limit();
188 	/*
189 	 * Reserve some for root
190 	 */
191 	if (!cap_sys_admin)
192 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
193 
194 	/*
195 	 * Don't let a single process grow so big a user can't recover
196 	 */
197 	if (mm) {
198 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
199 		allowed -= min(mm->total_vm / 32, reserve);
200 	}
201 
202 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
203 		return 0;
204 error:
205 	vm_unacct_memory(pages);
206 
207 	return -ENOMEM;
208 }
209 
210 /*
211  * Requires inode->i_mapping->i_mmap_mutex
212  */
213 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
214 		struct file *file, struct address_space *mapping)
215 {
216 	if (vma->vm_flags & VM_DENYWRITE)
217 		atomic_inc(&file_inode(file)->i_writecount);
218 	if (vma->vm_flags & VM_SHARED)
219 		mapping->i_mmap_writable--;
220 
221 	flush_dcache_mmap_lock(mapping);
222 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
223 		list_del_init(&vma->shared.nonlinear);
224 	else
225 		vma_interval_tree_remove(vma, &mapping->i_mmap);
226 	flush_dcache_mmap_unlock(mapping);
227 }
228 
229 /*
230  * Unlink a file-based vm structure from its interval tree, to hide
231  * vma from rmap and vmtruncate before freeing its page tables.
232  */
233 void unlink_file_vma(struct vm_area_struct *vma)
234 {
235 	struct file *file = vma->vm_file;
236 
237 	if (file) {
238 		struct address_space *mapping = file->f_mapping;
239 		mutex_lock(&mapping->i_mmap_mutex);
240 		__remove_shared_vm_struct(vma, file, mapping);
241 		mutex_unlock(&mapping->i_mmap_mutex);
242 	}
243 }
244 
245 /*
246  * Close a vm structure and free it, returning the next.
247  */
248 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
249 {
250 	struct vm_area_struct *next = vma->vm_next;
251 
252 	might_sleep();
253 	if (vma->vm_ops && vma->vm_ops->close)
254 		vma->vm_ops->close(vma);
255 	if (vma->vm_file)
256 		fput(vma->vm_file);
257 	mpol_put(vma_policy(vma));
258 	kmem_cache_free(vm_area_cachep, vma);
259 	return next;
260 }
261 
262 static unsigned long do_brk(unsigned long addr, unsigned long len);
263 
264 SYSCALL_DEFINE1(brk, unsigned long, brk)
265 {
266 	unsigned long rlim, retval;
267 	unsigned long newbrk, oldbrk;
268 	struct mm_struct *mm = current->mm;
269 	unsigned long min_brk;
270 	bool populate;
271 
272 	down_write(&mm->mmap_sem);
273 
274 #ifdef CONFIG_COMPAT_BRK
275 	/*
276 	 * CONFIG_COMPAT_BRK can still be overridden by setting
277 	 * randomize_va_space to 2, which will still cause mm->start_brk
278 	 * to be arbitrarily shifted
279 	 */
280 	if (current->brk_randomized)
281 		min_brk = mm->start_brk;
282 	else
283 		min_brk = mm->end_data;
284 #else
285 	min_brk = mm->start_brk;
286 #endif
287 	if (brk < min_brk)
288 		goto out;
289 
290 	/*
291 	 * Check against rlimit here. If this check is done later after the test
292 	 * of oldbrk with newbrk then it can escape the test and let the data
293 	 * segment grow beyond its set limit the in case where the limit is
294 	 * not page aligned -Ram Gupta
295 	 */
296 	rlim = rlimit(RLIMIT_DATA);
297 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
298 			(mm->end_data - mm->start_data) > rlim)
299 		goto out;
300 
301 	newbrk = PAGE_ALIGN(brk);
302 	oldbrk = PAGE_ALIGN(mm->brk);
303 	if (oldbrk == newbrk)
304 		goto set_brk;
305 
306 	/* Always allow shrinking brk. */
307 	if (brk <= mm->brk) {
308 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
309 			goto set_brk;
310 		goto out;
311 	}
312 
313 	/* Check against existing mmap mappings. */
314 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
315 		goto out;
316 
317 	/* Ok, looks good - let it rip. */
318 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
319 		goto out;
320 
321 set_brk:
322 	mm->brk = brk;
323 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
324 	up_write(&mm->mmap_sem);
325 	if (populate)
326 		mm_populate(oldbrk, newbrk - oldbrk);
327 	return brk;
328 
329 out:
330 	retval = mm->brk;
331 	up_write(&mm->mmap_sem);
332 	return retval;
333 }
334 
335 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
336 {
337 	unsigned long max, subtree_gap;
338 	max = vma->vm_start;
339 	if (vma->vm_prev)
340 		max -= vma->vm_prev->vm_end;
341 	if (vma->vm_rb.rb_left) {
342 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
343 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
344 		if (subtree_gap > max)
345 			max = subtree_gap;
346 	}
347 	if (vma->vm_rb.rb_right) {
348 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
349 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
350 		if (subtree_gap > max)
351 			max = subtree_gap;
352 	}
353 	return max;
354 }
355 
356 #ifdef CONFIG_DEBUG_VM_RB
357 static int browse_rb(struct rb_root *root)
358 {
359 	int i = 0, j, bug = 0;
360 	struct rb_node *nd, *pn = NULL;
361 	unsigned long prev = 0, pend = 0;
362 
363 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
364 		struct vm_area_struct *vma;
365 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
366 		if (vma->vm_start < prev) {
367 			pr_info("vm_start %lx prev %lx\n", vma->vm_start, prev);
368 			bug = 1;
369 		}
370 		if (vma->vm_start < pend) {
371 			pr_info("vm_start %lx pend %lx\n", vma->vm_start, pend);
372 			bug = 1;
373 		}
374 		if (vma->vm_start > vma->vm_end) {
375 			pr_info("vm_end %lx < vm_start %lx\n",
376 				vma->vm_end, vma->vm_start);
377 			bug = 1;
378 		}
379 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
380 			pr_info("free gap %lx, correct %lx\n",
381 			       vma->rb_subtree_gap,
382 			       vma_compute_subtree_gap(vma));
383 			bug = 1;
384 		}
385 		i++;
386 		pn = nd;
387 		prev = vma->vm_start;
388 		pend = vma->vm_end;
389 	}
390 	j = 0;
391 	for (nd = pn; nd; nd = rb_prev(nd))
392 		j++;
393 	if (i != j) {
394 		pr_info("backwards %d, forwards %d\n", j, i);
395 		bug = 1;
396 	}
397 	return bug ? -1 : i;
398 }
399 
400 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
401 {
402 	struct rb_node *nd;
403 
404 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
405 		struct vm_area_struct *vma;
406 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
407 		BUG_ON(vma != ignore &&
408 		       vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
409 	}
410 }
411 
412 static void validate_mm(struct mm_struct *mm)
413 {
414 	int bug = 0;
415 	int i = 0;
416 	unsigned long highest_address = 0;
417 	struct vm_area_struct *vma = mm->mmap;
418 	while (vma) {
419 		struct anon_vma_chain *avc;
420 		vma_lock_anon_vma(vma);
421 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
422 			anon_vma_interval_tree_verify(avc);
423 		vma_unlock_anon_vma(vma);
424 		highest_address = vma->vm_end;
425 		vma = vma->vm_next;
426 		i++;
427 	}
428 	if (i != mm->map_count) {
429 		pr_info("map_count %d vm_next %d\n", mm->map_count, i);
430 		bug = 1;
431 	}
432 	if (highest_address != mm->highest_vm_end) {
433 		pr_info("mm->highest_vm_end %lx, found %lx\n",
434 		       mm->highest_vm_end, highest_address);
435 		bug = 1;
436 	}
437 	i = browse_rb(&mm->mm_rb);
438 	if (i != mm->map_count) {
439 		pr_info("map_count %d rb %d\n", mm->map_count, i);
440 		bug = 1;
441 	}
442 	BUG_ON(bug);
443 }
444 #else
445 #define validate_mm_rb(root, ignore) do { } while (0)
446 #define validate_mm(mm) do { } while (0)
447 #endif
448 
449 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
450 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
451 
452 /*
453  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
454  * vma->vm_prev->vm_end values changed, without modifying the vma's position
455  * in the rbtree.
456  */
457 static void vma_gap_update(struct vm_area_struct *vma)
458 {
459 	/*
460 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
461 	 * function that does exacltly what we want.
462 	 */
463 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
464 }
465 
466 static inline void vma_rb_insert(struct vm_area_struct *vma,
467 				 struct rb_root *root)
468 {
469 	/* All rb_subtree_gap values must be consistent prior to insertion */
470 	validate_mm_rb(root, NULL);
471 
472 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474 
475 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
476 {
477 	/*
478 	 * All rb_subtree_gap values must be consistent prior to erase,
479 	 * with the possible exception of the vma being erased.
480 	 */
481 	validate_mm_rb(root, vma);
482 
483 	/*
484 	 * Note rb_erase_augmented is a fairly large inline function,
485 	 * so make sure we instantiate it only once with our desired
486 	 * augmented rbtree callbacks.
487 	 */
488 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
489 }
490 
491 /*
492  * vma has some anon_vma assigned, and is already inserted on that
493  * anon_vma's interval trees.
494  *
495  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
496  * vma must be removed from the anon_vma's interval trees using
497  * anon_vma_interval_tree_pre_update_vma().
498  *
499  * After the update, the vma will be reinserted using
500  * anon_vma_interval_tree_post_update_vma().
501  *
502  * The entire update must be protected by exclusive mmap_sem and by
503  * the root anon_vma's mutex.
504  */
505 static inline void
506 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
507 {
508 	struct anon_vma_chain *avc;
509 
510 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
511 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
512 }
513 
514 static inline void
515 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
516 {
517 	struct anon_vma_chain *avc;
518 
519 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
520 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
521 }
522 
523 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
524 		unsigned long end, struct vm_area_struct **pprev,
525 		struct rb_node ***rb_link, struct rb_node **rb_parent)
526 {
527 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
528 
529 	__rb_link = &mm->mm_rb.rb_node;
530 	rb_prev = __rb_parent = NULL;
531 
532 	while (*__rb_link) {
533 		struct vm_area_struct *vma_tmp;
534 
535 		__rb_parent = *__rb_link;
536 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
537 
538 		if (vma_tmp->vm_end > addr) {
539 			/* Fail if an existing vma overlaps the area */
540 			if (vma_tmp->vm_start < end)
541 				return -ENOMEM;
542 			__rb_link = &__rb_parent->rb_left;
543 		} else {
544 			rb_prev = __rb_parent;
545 			__rb_link = &__rb_parent->rb_right;
546 		}
547 	}
548 
549 	*pprev = NULL;
550 	if (rb_prev)
551 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
552 	*rb_link = __rb_link;
553 	*rb_parent = __rb_parent;
554 	return 0;
555 }
556 
557 static unsigned long count_vma_pages_range(struct mm_struct *mm,
558 		unsigned long addr, unsigned long end)
559 {
560 	unsigned long nr_pages = 0;
561 	struct vm_area_struct *vma;
562 
563 	/* Find first overlaping mapping */
564 	vma = find_vma_intersection(mm, addr, end);
565 	if (!vma)
566 		return 0;
567 
568 	nr_pages = (min(end, vma->vm_end) -
569 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
570 
571 	/* Iterate over the rest of the overlaps */
572 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
573 		unsigned long overlap_len;
574 
575 		if (vma->vm_start > end)
576 			break;
577 
578 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
579 		nr_pages += overlap_len >> PAGE_SHIFT;
580 	}
581 
582 	return nr_pages;
583 }
584 
585 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
586 		struct rb_node **rb_link, struct rb_node *rb_parent)
587 {
588 	/* Update tracking information for the gap following the new vma. */
589 	if (vma->vm_next)
590 		vma_gap_update(vma->vm_next);
591 	else
592 		mm->highest_vm_end = vma->vm_end;
593 
594 	/*
595 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
596 	 * correct insertion point for that vma. As a result, we could not
597 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
598 	 * So, we first insert the vma with a zero rb_subtree_gap value
599 	 * (to be consistent with what we did on the way down), and then
600 	 * immediately update the gap to the correct value. Finally we
601 	 * rebalance the rbtree after all augmented values have been set.
602 	 */
603 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
604 	vma->rb_subtree_gap = 0;
605 	vma_gap_update(vma);
606 	vma_rb_insert(vma, &mm->mm_rb);
607 }
608 
609 static void __vma_link_file(struct vm_area_struct *vma)
610 {
611 	struct file *file;
612 
613 	file = vma->vm_file;
614 	if (file) {
615 		struct address_space *mapping = file->f_mapping;
616 
617 		if (vma->vm_flags & VM_DENYWRITE)
618 			atomic_dec(&file_inode(file)->i_writecount);
619 		if (vma->vm_flags & VM_SHARED)
620 			mapping->i_mmap_writable++;
621 
622 		flush_dcache_mmap_lock(mapping);
623 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
624 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
625 		else
626 			vma_interval_tree_insert(vma, &mapping->i_mmap);
627 		flush_dcache_mmap_unlock(mapping);
628 	}
629 }
630 
631 static void
632 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
633 	struct vm_area_struct *prev, struct rb_node **rb_link,
634 	struct rb_node *rb_parent)
635 {
636 	__vma_link_list(mm, vma, prev, rb_parent);
637 	__vma_link_rb(mm, vma, rb_link, rb_parent);
638 }
639 
640 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
641 			struct vm_area_struct *prev, struct rb_node **rb_link,
642 			struct rb_node *rb_parent)
643 {
644 	struct address_space *mapping = NULL;
645 
646 	if (vma->vm_file) {
647 		mapping = vma->vm_file->f_mapping;
648 		mutex_lock(&mapping->i_mmap_mutex);
649 	}
650 
651 	__vma_link(mm, vma, prev, rb_link, rb_parent);
652 	__vma_link_file(vma);
653 
654 	if (mapping)
655 		mutex_unlock(&mapping->i_mmap_mutex);
656 
657 	mm->map_count++;
658 	validate_mm(mm);
659 }
660 
661 /*
662  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
663  * mm's list and rbtree.  It has already been inserted into the interval tree.
664  */
665 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
666 {
667 	struct vm_area_struct *prev;
668 	struct rb_node **rb_link, *rb_parent;
669 
670 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
671 			   &prev, &rb_link, &rb_parent))
672 		BUG();
673 	__vma_link(mm, vma, prev, rb_link, rb_parent);
674 	mm->map_count++;
675 }
676 
677 static inline void
678 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
679 		struct vm_area_struct *prev)
680 {
681 	struct vm_area_struct *next;
682 
683 	vma_rb_erase(vma, &mm->mm_rb);
684 	prev->vm_next = next = vma->vm_next;
685 	if (next)
686 		next->vm_prev = prev;
687 
688 	/* Kill the cache */
689 	vmacache_invalidate(mm);
690 }
691 
692 /*
693  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
694  * is already present in an i_mmap tree without adjusting the tree.
695  * The following helper function should be used when such adjustments
696  * are necessary.  The "insert" vma (if any) is to be inserted
697  * before we drop the necessary locks.
698  */
699 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
700 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
701 {
702 	struct mm_struct *mm = vma->vm_mm;
703 	struct vm_area_struct *next = vma->vm_next;
704 	struct vm_area_struct *importer = NULL;
705 	struct address_space *mapping = NULL;
706 	struct rb_root *root = NULL;
707 	struct anon_vma *anon_vma = NULL;
708 	struct file *file = vma->vm_file;
709 	bool start_changed = false, end_changed = false;
710 	long adjust_next = 0;
711 	int remove_next = 0;
712 
713 	if (next && !insert) {
714 		struct vm_area_struct *exporter = NULL;
715 
716 		if (end >= next->vm_end) {
717 			/*
718 			 * vma expands, overlapping all the next, and
719 			 * perhaps the one after too (mprotect case 6).
720 			 */
721 again:			remove_next = 1 + (end > next->vm_end);
722 			end = next->vm_end;
723 			exporter = next;
724 			importer = vma;
725 		} else if (end > next->vm_start) {
726 			/*
727 			 * vma expands, overlapping part of the next:
728 			 * mprotect case 5 shifting the boundary up.
729 			 */
730 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
731 			exporter = next;
732 			importer = vma;
733 		} else if (end < vma->vm_end) {
734 			/*
735 			 * vma shrinks, and !insert tells it's not
736 			 * split_vma inserting another: so it must be
737 			 * mprotect case 4 shifting the boundary down.
738 			 */
739 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
740 			exporter = vma;
741 			importer = next;
742 		}
743 
744 		/*
745 		 * Easily overlooked: when mprotect shifts the boundary,
746 		 * make sure the expanding vma has anon_vma set if the
747 		 * shrinking vma had, to cover any anon pages imported.
748 		 */
749 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
750 			if (anon_vma_clone(importer, exporter))
751 				return -ENOMEM;
752 			importer->anon_vma = exporter->anon_vma;
753 		}
754 	}
755 
756 	if (file) {
757 		mapping = file->f_mapping;
758 		if (!(vma->vm_flags & VM_NONLINEAR)) {
759 			root = &mapping->i_mmap;
760 			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
761 
762 			if (adjust_next)
763 				uprobe_munmap(next, next->vm_start,
764 							next->vm_end);
765 		}
766 
767 		mutex_lock(&mapping->i_mmap_mutex);
768 		if (insert) {
769 			/*
770 			 * Put into interval tree now, so instantiated pages
771 			 * are visible to arm/parisc __flush_dcache_page
772 			 * throughout; but we cannot insert into address
773 			 * space until vma start or end is updated.
774 			 */
775 			__vma_link_file(insert);
776 		}
777 	}
778 
779 	vma_adjust_trans_huge(vma, start, end, adjust_next);
780 
781 	anon_vma = vma->anon_vma;
782 	if (!anon_vma && adjust_next)
783 		anon_vma = next->anon_vma;
784 	if (anon_vma) {
785 		VM_BUG_ON(adjust_next && next->anon_vma &&
786 			  anon_vma != next->anon_vma);
787 		anon_vma_lock_write(anon_vma);
788 		anon_vma_interval_tree_pre_update_vma(vma);
789 		if (adjust_next)
790 			anon_vma_interval_tree_pre_update_vma(next);
791 	}
792 
793 	if (root) {
794 		flush_dcache_mmap_lock(mapping);
795 		vma_interval_tree_remove(vma, root);
796 		if (adjust_next)
797 			vma_interval_tree_remove(next, root);
798 	}
799 
800 	if (start != vma->vm_start) {
801 		vma->vm_start = start;
802 		start_changed = true;
803 	}
804 	if (end != vma->vm_end) {
805 		vma->vm_end = end;
806 		end_changed = true;
807 	}
808 	vma->vm_pgoff = pgoff;
809 	if (adjust_next) {
810 		next->vm_start += adjust_next << PAGE_SHIFT;
811 		next->vm_pgoff += adjust_next;
812 	}
813 
814 	if (root) {
815 		if (adjust_next)
816 			vma_interval_tree_insert(next, root);
817 		vma_interval_tree_insert(vma, root);
818 		flush_dcache_mmap_unlock(mapping);
819 	}
820 
821 	if (remove_next) {
822 		/*
823 		 * vma_merge has merged next into vma, and needs
824 		 * us to remove next before dropping the locks.
825 		 */
826 		__vma_unlink(mm, next, vma);
827 		if (file)
828 			__remove_shared_vm_struct(next, file, mapping);
829 	} else if (insert) {
830 		/*
831 		 * split_vma has split insert from vma, and needs
832 		 * us to insert it before dropping the locks
833 		 * (it may either follow vma or precede it).
834 		 */
835 		__insert_vm_struct(mm, insert);
836 	} else {
837 		if (start_changed)
838 			vma_gap_update(vma);
839 		if (end_changed) {
840 			if (!next)
841 				mm->highest_vm_end = end;
842 			else if (!adjust_next)
843 				vma_gap_update(next);
844 		}
845 	}
846 
847 	if (anon_vma) {
848 		anon_vma_interval_tree_post_update_vma(vma);
849 		if (adjust_next)
850 			anon_vma_interval_tree_post_update_vma(next);
851 		anon_vma_unlock_write(anon_vma);
852 	}
853 	if (mapping)
854 		mutex_unlock(&mapping->i_mmap_mutex);
855 
856 	if (root) {
857 		uprobe_mmap(vma);
858 
859 		if (adjust_next)
860 			uprobe_mmap(next);
861 	}
862 
863 	if (remove_next) {
864 		if (file) {
865 			uprobe_munmap(next, next->vm_start, next->vm_end);
866 			fput(file);
867 		}
868 		if (next->anon_vma)
869 			anon_vma_merge(vma, next);
870 		mm->map_count--;
871 		mpol_put(vma_policy(next));
872 		kmem_cache_free(vm_area_cachep, next);
873 		/*
874 		 * In mprotect's case 6 (see comments on vma_merge),
875 		 * we must remove another next too. It would clutter
876 		 * up the code too much to do both in one go.
877 		 */
878 		next = vma->vm_next;
879 		if (remove_next == 2)
880 			goto again;
881 		else if (next)
882 			vma_gap_update(next);
883 		else
884 			mm->highest_vm_end = end;
885 	}
886 	if (insert && file)
887 		uprobe_mmap(insert);
888 
889 	validate_mm(mm);
890 
891 	return 0;
892 }
893 
894 /*
895  * If the vma has a ->close operation then the driver probably needs to release
896  * per-vma resources, so we don't attempt to merge those.
897  */
898 static inline int is_mergeable_vma(struct vm_area_struct *vma,
899 			struct file *file, unsigned long vm_flags)
900 {
901 	/*
902 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
903 	 * match the flags but dirty bit -- the caller should mark
904 	 * merged VMA as dirty. If dirty bit won't be excluded from
905 	 * comparison, we increase pressue on the memory system forcing
906 	 * the kernel to generate new VMAs when old one could be
907 	 * extended instead.
908 	 */
909 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
910 		return 0;
911 	if (vma->vm_file != file)
912 		return 0;
913 	if (vma->vm_ops && vma->vm_ops->close)
914 		return 0;
915 	return 1;
916 }
917 
918 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
919 					struct anon_vma *anon_vma2,
920 					struct vm_area_struct *vma)
921 {
922 	/*
923 	 * The list_is_singular() test is to avoid merging VMA cloned from
924 	 * parents. This can improve scalability caused by anon_vma lock.
925 	 */
926 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
927 		list_is_singular(&vma->anon_vma_chain)))
928 		return 1;
929 	return anon_vma1 == anon_vma2;
930 }
931 
932 /*
933  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
934  * in front of (at a lower virtual address and file offset than) the vma.
935  *
936  * We cannot merge two vmas if they have differently assigned (non-NULL)
937  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
938  *
939  * We don't check here for the merged mmap wrapping around the end of pagecache
940  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
941  * wrap, nor mmaps which cover the final page at index -1UL.
942  */
943 static int
944 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
945 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
946 {
947 	if (is_mergeable_vma(vma, file, vm_flags) &&
948 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
949 		if (vma->vm_pgoff == vm_pgoff)
950 			return 1;
951 	}
952 	return 0;
953 }
954 
955 /*
956  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
957  * beyond (at a higher virtual address and file offset than) the vma.
958  *
959  * We cannot merge two vmas if they have differently assigned (non-NULL)
960  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
961  */
962 static int
963 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
964 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
965 {
966 	if (is_mergeable_vma(vma, file, vm_flags) &&
967 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
968 		pgoff_t vm_pglen;
969 		vm_pglen = vma_pages(vma);
970 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
971 			return 1;
972 	}
973 	return 0;
974 }
975 
976 /*
977  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
978  * whether that can be merged with its predecessor or its successor.
979  * Or both (it neatly fills a hole).
980  *
981  * In most cases - when called for mmap, brk or mremap - [addr,end) is
982  * certain not to be mapped by the time vma_merge is called; but when
983  * called for mprotect, it is certain to be already mapped (either at
984  * an offset within prev, or at the start of next), and the flags of
985  * this area are about to be changed to vm_flags - and the no-change
986  * case has already been eliminated.
987  *
988  * The following mprotect cases have to be considered, where AAAA is
989  * the area passed down from mprotect_fixup, never extending beyond one
990  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
991  *
992  *     AAAA             AAAA                AAAA          AAAA
993  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
994  *    cannot merge    might become    might become    might become
995  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
996  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
997  *    mremap move:                                    PPPPNNNNNNNN 8
998  *        AAAA
999  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1000  *    might become    case 1 below    case 2 below    case 3 below
1001  *
1002  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1003  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1004  */
1005 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1006 			struct vm_area_struct *prev, unsigned long addr,
1007 			unsigned long end, unsigned long vm_flags,
1008 		     	struct anon_vma *anon_vma, struct file *file,
1009 			pgoff_t pgoff, struct mempolicy *policy)
1010 {
1011 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1012 	struct vm_area_struct *area, *next;
1013 	int err;
1014 
1015 	/*
1016 	 * We later require that vma->vm_flags == vm_flags,
1017 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1018 	 */
1019 	if (vm_flags & VM_SPECIAL)
1020 		return NULL;
1021 
1022 	if (prev)
1023 		next = prev->vm_next;
1024 	else
1025 		next = mm->mmap;
1026 	area = next;
1027 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1028 		next = next->vm_next;
1029 
1030 	/*
1031 	 * Can it merge with the predecessor?
1032 	 */
1033 	if (prev && prev->vm_end == addr &&
1034   			mpol_equal(vma_policy(prev), policy) &&
1035 			can_vma_merge_after(prev, vm_flags,
1036 						anon_vma, file, pgoff)) {
1037 		/*
1038 		 * OK, it can.  Can we now merge in the successor as well?
1039 		 */
1040 		if (next && end == next->vm_start &&
1041 				mpol_equal(policy, vma_policy(next)) &&
1042 				can_vma_merge_before(next, vm_flags,
1043 					anon_vma, file, pgoff+pglen) &&
1044 				is_mergeable_anon_vma(prev->anon_vma,
1045 						      next->anon_vma, NULL)) {
1046 							/* cases 1, 6 */
1047 			err = vma_adjust(prev, prev->vm_start,
1048 				next->vm_end, prev->vm_pgoff, NULL);
1049 		} else					/* cases 2, 5, 7 */
1050 			err = vma_adjust(prev, prev->vm_start,
1051 				end, prev->vm_pgoff, NULL);
1052 		if (err)
1053 			return NULL;
1054 		khugepaged_enter_vma_merge(prev);
1055 		return prev;
1056 	}
1057 
1058 	/*
1059 	 * Can this new request be merged in front of next?
1060 	 */
1061 	if (next && end == next->vm_start &&
1062  			mpol_equal(policy, vma_policy(next)) &&
1063 			can_vma_merge_before(next, vm_flags,
1064 					anon_vma, file, pgoff+pglen)) {
1065 		if (prev && addr < prev->vm_end)	/* case 4 */
1066 			err = vma_adjust(prev, prev->vm_start,
1067 				addr, prev->vm_pgoff, NULL);
1068 		else					/* cases 3, 8 */
1069 			err = vma_adjust(area, addr, next->vm_end,
1070 				next->vm_pgoff - pglen, NULL);
1071 		if (err)
1072 			return NULL;
1073 		khugepaged_enter_vma_merge(area);
1074 		return area;
1075 	}
1076 
1077 	return NULL;
1078 }
1079 
1080 /*
1081  * Rough compatbility check to quickly see if it's even worth looking
1082  * at sharing an anon_vma.
1083  *
1084  * They need to have the same vm_file, and the flags can only differ
1085  * in things that mprotect may change.
1086  *
1087  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1088  * we can merge the two vma's. For example, we refuse to merge a vma if
1089  * there is a vm_ops->close() function, because that indicates that the
1090  * driver is doing some kind of reference counting. But that doesn't
1091  * really matter for the anon_vma sharing case.
1092  */
1093 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1094 {
1095 	return a->vm_end == b->vm_start &&
1096 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1097 		a->vm_file == b->vm_file &&
1098 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1099 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1100 }
1101 
1102 /*
1103  * Do some basic sanity checking to see if we can re-use the anon_vma
1104  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1105  * the same as 'old', the other will be the new one that is trying
1106  * to share the anon_vma.
1107  *
1108  * NOTE! This runs with mm_sem held for reading, so it is possible that
1109  * the anon_vma of 'old' is concurrently in the process of being set up
1110  * by another page fault trying to merge _that_. But that's ok: if it
1111  * is being set up, that automatically means that it will be a singleton
1112  * acceptable for merging, so we can do all of this optimistically. But
1113  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1114  *
1115  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1116  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1117  * is to return an anon_vma that is "complex" due to having gone through
1118  * a fork).
1119  *
1120  * We also make sure that the two vma's are compatible (adjacent,
1121  * and with the same memory policies). That's all stable, even with just
1122  * a read lock on the mm_sem.
1123  */
1124 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1125 {
1126 	if (anon_vma_compatible(a, b)) {
1127 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1128 
1129 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1130 			return anon_vma;
1131 	}
1132 	return NULL;
1133 }
1134 
1135 /*
1136  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1137  * neighbouring vmas for a suitable anon_vma, before it goes off
1138  * to allocate a new anon_vma.  It checks because a repetitive
1139  * sequence of mprotects and faults may otherwise lead to distinct
1140  * anon_vmas being allocated, preventing vma merge in subsequent
1141  * mprotect.
1142  */
1143 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1144 {
1145 	struct anon_vma *anon_vma;
1146 	struct vm_area_struct *near;
1147 
1148 	near = vma->vm_next;
1149 	if (!near)
1150 		goto try_prev;
1151 
1152 	anon_vma = reusable_anon_vma(near, vma, near);
1153 	if (anon_vma)
1154 		return anon_vma;
1155 try_prev:
1156 	near = vma->vm_prev;
1157 	if (!near)
1158 		goto none;
1159 
1160 	anon_vma = reusable_anon_vma(near, near, vma);
1161 	if (anon_vma)
1162 		return anon_vma;
1163 none:
1164 	/*
1165 	 * There's no absolute need to look only at touching neighbours:
1166 	 * we could search further afield for "compatible" anon_vmas.
1167 	 * But it would probably just be a waste of time searching,
1168 	 * or lead to too many vmas hanging off the same anon_vma.
1169 	 * We're trying to allow mprotect remerging later on,
1170 	 * not trying to minimize memory used for anon_vmas.
1171 	 */
1172 	return NULL;
1173 }
1174 
1175 #ifdef CONFIG_PROC_FS
1176 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1177 						struct file *file, long pages)
1178 {
1179 	const unsigned long stack_flags
1180 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1181 
1182 	mm->total_vm += pages;
1183 
1184 	if (file) {
1185 		mm->shared_vm += pages;
1186 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1187 			mm->exec_vm += pages;
1188 	} else if (flags & stack_flags)
1189 		mm->stack_vm += pages;
1190 }
1191 #endif /* CONFIG_PROC_FS */
1192 
1193 /*
1194  * If a hint addr is less than mmap_min_addr change hint to be as
1195  * low as possible but still greater than mmap_min_addr
1196  */
1197 static inline unsigned long round_hint_to_min(unsigned long hint)
1198 {
1199 	hint &= PAGE_MASK;
1200 	if (((void *)hint != NULL) &&
1201 	    (hint < mmap_min_addr))
1202 		return PAGE_ALIGN(mmap_min_addr);
1203 	return hint;
1204 }
1205 
1206 static inline int mlock_future_check(struct mm_struct *mm,
1207 				     unsigned long flags,
1208 				     unsigned long len)
1209 {
1210 	unsigned long locked, lock_limit;
1211 
1212 	/*  mlock MCL_FUTURE? */
1213 	if (flags & VM_LOCKED) {
1214 		locked = len >> PAGE_SHIFT;
1215 		locked += mm->locked_vm;
1216 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1217 		lock_limit >>= PAGE_SHIFT;
1218 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1219 			return -EAGAIN;
1220 	}
1221 	return 0;
1222 }
1223 
1224 /*
1225  * The caller must hold down_write(&current->mm->mmap_sem).
1226  */
1227 
1228 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1229 			unsigned long len, unsigned long prot,
1230 			unsigned long flags, unsigned long pgoff,
1231 			unsigned long *populate)
1232 {
1233 	struct mm_struct * mm = current->mm;
1234 	vm_flags_t vm_flags;
1235 
1236 	*populate = 0;
1237 
1238 	/*
1239 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1240 	 *
1241 	 * (the exception is when the underlying filesystem is noexec
1242 	 *  mounted, in which case we dont add PROT_EXEC.)
1243 	 */
1244 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1245 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1246 			prot |= PROT_EXEC;
1247 
1248 	if (!len)
1249 		return -EINVAL;
1250 
1251 	if (!(flags & MAP_FIXED))
1252 		addr = round_hint_to_min(addr);
1253 
1254 	/* Careful about overflows.. */
1255 	len = PAGE_ALIGN(len);
1256 	if (!len)
1257 		return -ENOMEM;
1258 
1259 	/* offset overflow? */
1260 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1261                return -EOVERFLOW;
1262 
1263 	/* Too many mappings? */
1264 	if (mm->map_count > sysctl_max_map_count)
1265 		return -ENOMEM;
1266 
1267 	/* Obtain the address to map to. we verify (or select) it and ensure
1268 	 * that it represents a valid section of the address space.
1269 	 */
1270 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1271 	if (addr & ~PAGE_MASK)
1272 		return addr;
1273 
1274 	/* Do simple checking here so the lower-level routines won't have
1275 	 * to. we assume access permissions have been handled by the open
1276 	 * of the memory object, so we don't do any here.
1277 	 */
1278 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1279 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1280 
1281 	if (flags & MAP_LOCKED)
1282 		if (!can_do_mlock())
1283 			return -EPERM;
1284 
1285 	if (mlock_future_check(mm, vm_flags, len))
1286 		return -EAGAIN;
1287 
1288 	if (file) {
1289 		struct inode *inode = file_inode(file);
1290 
1291 		switch (flags & MAP_TYPE) {
1292 		case MAP_SHARED:
1293 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1294 				return -EACCES;
1295 
1296 			/*
1297 			 * Make sure we don't allow writing to an append-only
1298 			 * file..
1299 			 */
1300 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1301 				return -EACCES;
1302 
1303 			/*
1304 			 * Make sure there are no mandatory locks on the file.
1305 			 */
1306 			if (locks_verify_locked(file))
1307 				return -EAGAIN;
1308 
1309 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1310 			if (!(file->f_mode & FMODE_WRITE))
1311 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1312 
1313 			/* fall through */
1314 		case MAP_PRIVATE:
1315 			if (!(file->f_mode & FMODE_READ))
1316 				return -EACCES;
1317 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1318 				if (vm_flags & VM_EXEC)
1319 					return -EPERM;
1320 				vm_flags &= ~VM_MAYEXEC;
1321 			}
1322 
1323 			if (!file->f_op->mmap)
1324 				return -ENODEV;
1325 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1326 				return -EINVAL;
1327 			break;
1328 
1329 		default:
1330 			return -EINVAL;
1331 		}
1332 	} else {
1333 		switch (flags & MAP_TYPE) {
1334 		case MAP_SHARED:
1335 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1336 				return -EINVAL;
1337 			/*
1338 			 * Ignore pgoff.
1339 			 */
1340 			pgoff = 0;
1341 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1342 			break;
1343 		case MAP_PRIVATE:
1344 			/*
1345 			 * Set pgoff according to addr for anon_vma.
1346 			 */
1347 			pgoff = addr >> PAGE_SHIFT;
1348 			break;
1349 		default:
1350 			return -EINVAL;
1351 		}
1352 	}
1353 
1354 	/*
1355 	 * Set 'VM_NORESERVE' if we should not account for the
1356 	 * memory use of this mapping.
1357 	 */
1358 	if (flags & MAP_NORESERVE) {
1359 		/* We honor MAP_NORESERVE if allowed to overcommit */
1360 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1361 			vm_flags |= VM_NORESERVE;
1362 
1363 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1364 		if (file && is_file_hugepages(file))
1365 			vm_flags |= VM_NORESERVE;
1366 	}
1367 
1368 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1369 	if (!IS_ERR_VALUE(addr) &&
1370 	    ((vm_flags & VM_LOCKED) ||
1371 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1372 		*populate = len;
1373 	return addr;
1374 }
1375 
1376 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1377 		unsigned long, prot, unsigned long, flags,
1378 		unsigned long, fd, unsigned long, pgoff)
1379 {
1380 	struct file *file = NULL;
1381 	unsigned long retval = -EBADF;
1382 
1383 	if (!(flags & MAP_ANONYMOUS)) {
1384 		audit_mmap_fd(fd, flags);
1385 		file = fget(fd);
1386 		if (!file)
1387 			goto out;
1388 		if (is_file_hugepages(file))
1389 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1390 		retval = -EINVAL;
1391 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1392 			goto out_fput;
1393 	} else if (flags & MAP_HUGETLB) {
1394 		struct user_struct *user = NULL;
1395 		struct hstate *hs;
1396 
1397 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1398 		if (!hs)
1399 			return -EINVAL;
1400 
1401 		len = ALIGN(len, huge_page_size(hs));
1402 		/*
1403 		 * VM_NORESERVE is used because the reservations will be
1404 		 * taken when vm_ops->mmap() is called
1405 		 * A dummy user value is used because we are not locking
1406 		 * memory so no accounting is necessary
1407 		 */
1408 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1409 				VM_NORESERVE,
1410 				&user, HUGETLB_ANONHUGE_INODE,
1411 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1412 		if (IS_ERR(file))
1413 			return PTR_ERR(file);
1414 	}
1415 
1416 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1417 
1418 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1419 out_fput:
1420 	if (file)
1421 		fput(file);
1422 out:
1423 	return retval;
1424 }
1425 
1426 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1427 struct mmap_arg_struct {
1428 	unsigned long addr;
1429 	unsigned long len;
1430 	unsigned long prot;
1431 	unsigned long flags;
1432 	unsigned long fd;
1433 	unsigned long offset;
1434 };
1435 
1436 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1437 {
1438 	struct mmap_arg_struct a;
1439 
1440 	if (copy_from_user(&a, arg, sizeof(a)))
1441 		return -EFAULT;
1442 	if (a.offset & ~PAGE_MASK)
1443 		return -EINVAL;
1444 
1445 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1446 			      a.offset >> PAGE_SHIFT);
1447 }
1448 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1449 
1450 /*
1451  * Some shared mappigns will want the pages marked read-only
1452  * to track write events. If so, we'll downgrade vm_page_prot
1453  * to the private version (using protection_map[] without the
1454  * VM_SHARED bit).
1455  */
1456 int vma_wants_writenotify(struct vm_area_struct *vma)
1457 {
1458 	vm_flags_t vm_flags = vma->vm_flags;
1459 
1460 	/* If it was private or non-writable, the write bit is already clear */
1461 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1462 		return 0;
1463 
1464 	/* The backer wishes to know when pages are first written to? */
1465 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1466 		return 1;
1467 
1468 	/* The open routine did something to the protections already? */
1469 	if (pgprot_val(vma->vm_page_prot) !=
1470 	    pgprot_val(vm_get_page_prot(vm_flags)))
1471 		return 0;
1472 
1473 	/* Specialty mapping? */
1474 	if (vm_flags & VM_PFNMAP)
1475 		return 0;
1476 
1477 	/* Can the mapping track the dirty pages? */
1478 	return vma->vm_file && vma->vm_file->f_mapping &&
1479 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1480 }
1481 
1482 /*
1483  * We account for memory if it's a private writeable mapping,
1484  * not hugepages and VM_NORESERVE wasn't set.
1485  */
1486 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1487 {
1488 	/*
1489 	 * hugetlb has its own accounting separate from the core VM
1490 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1491 	 */
1492 	if (file && is_file_hugepages(file))
1493 		return 0;
1494 
1495 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1496 }
1497 
1498 unsigned long mmap_region(struct file *file, unsigned long addr,
1499 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1500 {
1501 	struct mm_struct *mm = current->mm;
1502 	struct vm_area_struct *vma, *prev;
1503 	int error;
1504 	struct rb_node **rb_link, *rb_parent;
1505 	unsigned long charged = 0;
1506 
1507 	/* Check against address space limit. */
1508 	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1509 		unsigned long nr_pages;
1510 
1511 		/*
1512 		 * MAP_FIXED may remove pages of mappings that intersects with
1513 		 * requested mapping. Account for the pages it would unmap.
1514 		 */
1515 		if (!(vm_flags & MAP_FIXED))
1516 			return -ENOMEM;
1517 
1518 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1519 
1520 		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1521 			return -ENOMEM;
1522 	}
1523 
1524 	/* Clear old maps */
1525 	error = -ENOMEM;
1526 munmap_back:
1527 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1528 		if (do_munmap(mm, addr, len))
1529 			return -ENOMEM;
1530 		goto munmap_back;
1531 	}
1532 
1533 	/*
1534 	 * Private writable mapping: check memory availability
1535 	 */
1536 	if (accountable_mapping(file, vm_flags)) {
1537 		charged = len >> PAGE_SHIFT;
1538 		if (security_vm_enough_memory_mm(mm, charged))
1539 			return -ENOMEM;
1540 		vm_flags |= VM_ACCOUNT;
1541 	}
1542 
1543 	/*
1544 	 * Can we just expand an old mapping?
1545 	 */
1546 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1547 	if (vma)
1548 		goto out;
1549 
1550 	/*
1551 	 * Determine the object being mapped and call the appropriate
1552 	 * specific mapper. the address has already been validated, but
1553 	 * not unmapped, but the maps are removed from the list.
1554 	 */
1555 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1556 	if (!vma) {
1557 		error = -ENOMEM;
1558 		goto unacct_error;
1559 	}
1560 
1561 	vma->vm_mm = mm;
1562 	vma->vm_start = addr;
1563 	vma->vm_end = addr + len;
1564 	vma->vm_flags = vm_flags;
1565 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1566 	vma->vm_pgoff = pgoff;
1567 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1568 
1569 	if (file) {
1570 		if (vm_flags & VM_DENYWRITE) {
1571 			error = deny_write_access(file);
1572 			if (error)
1573 				goto free_vma;
1574 		}
1575 		vma->vm_file = get_file(file);
1576 		error = file->f_op->mmap(file, vma);
1577 		if (error)
1578 			goto unmap_and_free_vma;
1579 
1580 		/* Can addr have changed??
1581 		 *
1582 		 * Answer: Yes, several device drivers can do it in their
1583 		 *         f_op->mmap method. -DaveM
1584 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1585 		 *      be updated for vma_link()
1586 		 */
1587 		WARN_ON_ONCE(addr != vma->vm_start);
1588 
1589 		addr = vma->vm_start;
1590 		vm_flags = vma->vm_flags;
1591 	} else if (vm_flags & VM_SHARED) {
1592 		error = shmem_zero_setup(vma);
1593 		if (error)
1594 			goto free_vma;
1595 	}
1596 
1597 	if (vma_wants_writenotify(vma)) {
1598 		pgprot_t pprot = vma->vm_page_prot;
1599 
1600 		/* Can vma->vm_page_prot have changed??
1601 		 *
1602 		 * Answer: Yes, drivers may have changed it in their
1603 		 *         f_op->mmap method.
1604 		 *
1605 		 * Ensures that vmas marked as uncached stay that way.
1606 		 */
1607 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1608 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1609 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1610 	}
1611 
1612 	vma_link(mm, vma, prev, rb_link, rb_parent);
1613 	/* Once vma denies write, undo our temporary denial count */
1614 	if (vm_flags & VM_DENYWRITE)
1615 		allow_write_access(file);
1616 	file = vma->vm_file;
1617 out:
1618 	perf_event_mmap(vma);
1619 
1620 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1621 	if (vm_flags & VM_LOCKED) {
1622 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1623 					vma == get_gate_vma(current->mm)))
1624 			mm->locked_vm += (len >> PAGE_SHIFT);
1625 		else
1626 			vma->vm_flags &= ~VM_LOCKED;
1627 	}
1628 
1629 	if (file)
1630 		uprobe_mmap(vma);
1631 
1632 	/*
1633 	 * New (or expanded) vma always get soft dirty status.
1634 	 * Otherwise user-space soft-dirty page tracker won't
1635 	 * be able to distinguish situation when vma area unmapped,
1636 	 * then new mapped in-place (which must be aimed as
1637 	 * a completely new data area).
1638 	 */
1639 	vma->vm_flags |= VM_SOFTDIRTY;
1640 
1641 	return addr;
1642 
1643 unmap_and_free_vma:
1644 	if (vm_flags & VM_DENYWRITE)
1645 		allow_write_access(file);
1646 	vma->vm_file = NULL;
1647 	fput(file);
1648 
1649 	/* Undo any partial mapping done by a device driver. */
1650 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1651 	charged = 0;
1652 free_vma:
1653 	kmem_cache_free(vm_area_cachep, vma);
1654 unacct_error:
1655 	if (charged)
1656 		vm_unacct_memory(charged);
1657 	return error;
1658 }
1659 
1660 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1661 {
1662 	/*
1663 	 * We implement the search by looking for an rbtree node that
1664 	 * immediately follows a suitable gap. That is,
1665 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1666 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1667 	 * - gap_end - gap_start >= length
1668 	 */
1669 
1670 	struct mm_struct *mm = current->mm;
1671 	struct vm_area_struct *vma;
1672 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1673 
1674 	/* Adjust search length to account for worst case alignment overhead */
1675 	length = info->length + info->align_mask;
1676 	if (length < info->length)
1677 		return -ENOMEM;
1678 
1679 	/* Adjust search limits by the desired length */
1680 	if (info->high_limit < length)
1681 		return -ENOMEM;
1682 	high_limit = info->high_limit - length;
1683 
1684 	if (info->low_limit > high_limit)
1685 		return -ENOMEM;
1686 	low_limit = info->low_limit + length;
1687 
1688 	/* Check if rbtree root looks promising */
1689 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1690 		goto check_highest;
1691 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1692 	if (vma->rb_subtree_gap < length)
1693 		goto check_highest;
1694 
1695 	while (true) {
1696 		/* Visit left subtree if it looks promising */
1697 		gap_end = vma->vm_start;
1698 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1699 			struct vm_area_struct *left =
1700 				rb_entry(vma->vm_rb.rb_left,
1701 					 struct vm_area_struct, vm_rb);
1702 			if (left->rb_subtree_gap >= length) {
1703 				vma = left;
1704 				continue;
1705 			}
1706 		}
1707 
1708 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1709 check_current:
1710 		/* Check if current node has a suitable gap */
1711 		if (gap_start > high_limit)
1712 			return -ENOMEM;
1713 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1714 			goto found;
1715 
1716 		/* Visit right subtree if it looks promising */
1717 		if (vma->vm_rb.rb_right) {
1718 			struct vm_area_struct *right =
1719 				rb_entry(vma->vm_rb.rb_right,
1720 					 struct vm_area_struct, vm_rb);
1721 			if (right->rb_subtree_gap >= length) {
1722 				vma = right;
1723 				continue;
1724 			}
1725 		}
1726 
1727 		/* Go back up the rbtree to find next candidate node */
1728 		while (true) {
1729 			struct rb_node *prev = &vma->vm_rb;
1730 			if (!rb_parent(prev))
1731 				goto check_highest;
1732 			vma = rb_entry(rb_parent(prev),
1733 				       struct vm_area_struct, vm_rb);
1734 			if (prev == vma->vm_rb.rb_left) {
1735 				gap_start = vma->vm_prev->vm_end;
1736 				gap_end = vma->vm_start;
1737 				goto check_current;
1738 			}
1739 		}
1740 	}
1741 
1742 check_highest:
1743 	/* Check highest gap, which does not precede any rbtree node */
1744 	gap_start = mm->highest_vm_end;
1745 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1746 	if (gap_start > high_limit)
1747 		return -ENOMEM;
1748 
1749 found:
1750 	/* We found a suitable gap. Clip it with the original low_limit. */
1751 	if (gap_start < info->low_limit)
1752 		gap_start = info->low_limit;
1753 
1754 	/* Adjust gap address to the desired alignment */
1755 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1756 
1757 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1758 	VM_BUG_ON(gap_start + info->length > gap_end);
1759 	return gap_start;
1760 }
1761 
1762 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1763 {
1764 	struct mm_struct *mm = current->mm;
1765 	struct vm_area_struct *vma;
1766 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1767 
1768 	/* Adjust search length to account for worst case alignment overhead */
1769 	length = info->length + info->align_mask;
1770 	if (length < info->length)
1771 		return -ENOMEM;
1772 
1773 	/*
1774 	 * Adjust search limits by the desired length.
1775 	 * See implementation comment at top of unmapped_area().
1776 	 */
1777 	gap_end = info->high_limit;
1778 	if (gap_end < length)
1779 		return -ENOMEM;
1780 	high_limit = gap_end - length;
1781 
1782 	if (info->low_limit > high_limit)
1783 		return -ENOMEM;
1784 	low_limit = info->low_limit + length;
1785 
1786 	/* Check highest gap, which does not precede any rbtree node */
1787 	gap_start = mm->highest_vm_end;
1788 	if (gap_start <= high_limit)
1789 		goto found_highest;
1790 
1791 	/* Check if rbtree root looks promising */
1792 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1793 		return -ENOMEM;
1794 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1795 	if (vma->rb_subtree_gap < length)
1796 		return -ENOMEM;
1797 
1798 	while (true) {
1799 		/* Visit right subtree if it looks promising */
1800 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1801 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1802 			struct vm_area_struct *right =
1803 				rb_entry(vma->vm_rb.rb_right,
1804 					 struct vm_area_struct, vm_rb);
1805 			if (right->rb_subtree_gap >= length) {
1806 				vma = right;
1807 				continue;
1808 			}
1809 		}
1810 
1811 check_current:
1812 		/* Check if current node has a suitable gap */
1813 		gap_end = vma->vm_start;
1814 		if (gap_end < low_limit)
1815 			return -ENOMEM;
1816 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1817 			goto found;
1818 
1819 		/* Visit left subtree if it looks promising */
1820 		if (vma->vm_rb.rb_left) {
1821 			struct vm_area_struct *left =
1822 				rb_entry(vma->vm_rb.rb_left,
1823 					 struct vm_area_struct, vm_rb);
1824 			if (left->rb_subtree_gap >= length) {
1825 				vma = left;
1826 				continue;
1827 			}
1828 		}
1829 
1830 		/* Go back up the rbtree to find next candidate node */
1831 		while (true) {
1832 			struct rb_node *prev = &vma->vm_rb;
1833 			if (!rb_parent(prev))
1834 				return -ENOMEM;
1835 			vma = rb_entry(rb_parent(prev),
1836 				       struct vm_area_struct, vm_rb);
1837 			if (prev == vma->vm_rb.rb_right) {
1838 				gap_start = vma->vm_prev ?
1839 					vma->vm_prev->vm_end : 0;
1840 				goto check_current;
1841 			}
1842 		}
1843 	}
1844 
1845 found:
1846 	/* We found a suitable gap. Clip it with the original high_limit. */
1847 	if (gap_end > info->high_limit)
1848 		gap_end = info->high_limit;
1849 
1850 found_highest:
1851 	/* Compute highest gap address at the desired alignment */
1852 	gap_end -= info->length;
1853 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1854 
1855 	VM_BUG_ON(gap_end < info->low_limit);
1856 	VM_BUG_ON(gap_end < gap_start);
1857 	return gap_end;
1858 }
1859 
1860 /* Get an address range which is currently unmapped.
1861  * For shmat() with addr=0.
1862  *
1863  * Ugly calling convention alert:
1864  * Return value with the low bits set means error value,
1865  * ie
1866  *	if (ret & ~PAGE_MASK)
1867  *		error = ret;
1868  *
1869  * This function "knows" that -ENOMEM has the bits set.
1870  */
1871 #ifndef HAVE_ARCH_UNMAPPED_AREA
1872 unsigned long
1873 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1874 		unsigned long len, unsigned long pgoff, unsigned long flags)
1875 {
1876 	struct mm_struct *mm = current->mm;
1877 	struct vm_area_struct *vma;
1878 	struct vm_unmapped_area_info info;
1879 
1880 	if (len > TASK_SIZE - mmap_min_addr)
1881 		return -ENOMEM;
1882 
1883 	if (flags & MAP_FIXED)
1884 		return addr;
1885 
1886 	if (addr) {
1887 		addr = PAGE_ALIGN(addr);
1888 		vma = find_vma(mm, addr);
1889 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1890 		    (!vma || addr + len <= vma->vm_start))
1891 			return addr;
1892 	}
1893 
1894 	info.flags = 0;
1895 	info.length = len;
1896 	info.low_limit = mm->mmap_base;
1897 	info.high_limit = TASK_SIZE;
1898 	info.align_mask = 0;
1899 	return vm_unmapped_area(&info);
1900 }
1901 #endif
1902 
1903 /*
1904  * This mmap-allocator allocates new areas top-down from below the
1905  * stack's low limit (the base):
1906  */
1907 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1908 unsigned long
1909 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1910 			  const unsigned long len, const unsigned long pgoff,
1911 			  const unsigned long flags)
1912 {
1913 	struct vm_area_struct *vma;
1914 	struct mm_struct *mm = current->mm;
1915 	unsigned long addr = addr0;
1916 	struct vm_unmapped_area_info info;
1917 
1918 	/* requested length too big for entire address space */
1919 	if (len > TASK_SIZE - mmap_min_addr)
1920 		return -ENOMEM;
1921 
1922 	if (flags & MAP_FIXED)
1923 		return addr;
1924 
1925 	/* requesting a specific address */
1926 	if (addr) {
1927 		addr = PAGE_ALIGN(addr);
1928 		vma = find_vma(mm, addr);
1929 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1930 				(!vma || addr + len <= vma->vm_start))
1931 			return addr;
1932 	}
1933 
1934 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1935 	info.length = len;
1936 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1937 	info.high_limit = mm->mmap_base;
1938 	info.align_mask = 0;
1939 	addr = vm_unmapped_area(&info);
1940 
1941 	/*
1942 	 * A failed mmap() very likely causes application failure,
1943 	 * so fall back to the bottom-up function here. This scenario
1944 	 * can happen with large stack limits and large mmap()
1945 	 * allocations.
1946 	 */
1947 	if (addr & ~PAGE_MASK) {
1948 		VM_BUG_ON(addr != -ENOMEM);
1949 		info.flags = 0;
1950 		info.low_limit = TASK_UNMAPPED_BASE;
1951 		info.high_limit = TASK_SIZE;
1952 		addr = vm_unmapped_area(&info);
1953 	}
1954 
1955 	return addr;
1956 }
1957 #endif
1958 
1959 unsigned long
1960 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1961 		unsigned long pgoff, unsigned long flags)
1962 {
1963 	unsigned long (*get_area)(struct file *, unsigned long,
1964 				  unsigned long, unsigned long, unsigned long);
1965 
1966 	unsigned long error = arch_mmap_check(addr, len, flags);
1967 	if (error)
1968 		return error;
1969 
1970 	/* Careful about overflows.. */
1971 	if (len > TASK_SIZE)
1972 		return -ENOMEM;
1973 
1974 	get_area = current->mm->get_unmapped_area;
1975 	if (file && file->f_op->get_unmapped_area)
1976 		get_area = file->f_op->get_unmapped_area;
1977 	addr = get_area(file, addr, len, pgoff, flags);
1978 	if (IS_ERR_VALUE(addr))
1979 		return addr;
1980 
1981 	if (addr > TASK_SIZE - len)
1982 		return -ENOMEM;
1983 	if (addr & ~PAGE_MASK)
1984 		return -EINVAL;
1985 
1986 	addr = arch_rebalance_pgtables(addr, len);
1987 	error = security_mmap_addr(addr);
1988 	return error ? error : addr;
1989 }
1990 
1991 EXPORT_SYMBOL(get_unmapped_area);
1992 
1993 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1994 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1995 {
1996 	struct rb_node *rb_node;
1997 	struct vm_area_struct *vma;
1998 
1999 	/* Check the cache first. */
2000 	vma = vmacache_find(mm, addr);
2001 	if (likely(vma))
2002 		return vma;
2003 
2004 	rb_node = mm->mm_rb.rb_node;
2005 	vma = NULL;
2006 
2007 	while (rb_node) {
2008 		struct vm_area_struct *tmp;
2009 
2010 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2011 
2012 		if (tmp->vm_end > addr) {
2013 			vma = tmp;
2014 			if (tmp->vm_start <= addr)
2015 				break;
2016 			rb_node = rb_node->rb_left;
2017 		} else
2018 			rb_node = rb_node->rb_right;
2019 	}
2020 
2021 	if (vma)
2022 		vmacache_update(addr, vma);
2023 	return vma;
2024 }
2025 
2026 EXPORT_SYMBOL(find_vma);
2027 
2028 /*
2029  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2030  */
2031 struct vm_area_struct *
2032 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2033 			struct vm_area_struct **pprev)
2034 {
2035 	struct vm_area_struct *vma;
2036 
2037 	vma = find_vma(mm, addr);
2038 	if (vma) {
2039 		*pprev = vma->vm_prev;
2040 	} else {
2041 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2042 		*pprev = NULL;
2043 		while (rb_node) {
2044 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2045 			rb_node = rb_node->rb_right;
2046 		}
2047 	}
2048 	return vma;
2049 }
2050 
2051 /*
2052  * Verify that the stack growth is acceptable and
2053  * update accounting. This is shared with both the
2054  * grow-up and grow-down cases.
2055  */
2056 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2057 {
2058 	struct mm_struct *mm = vma->vm_mm;
2059 	struct rlimit *rlim = current->signal->rlim;
2060 	unsigned long new_start;
2061 
2062 	/* address space limit tests */
2063 	if (!may_expand_vm(mm, grow))
2064 		return -ENOMEM;
2065 
2066 	/* Stack limit test */
2067 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2068 		return -ENOMEM;
2069 
2070 	/* mlock limit tests */
2071 	if (vma->vm_flags & VM_LOCKED) {
2072 		unsigned long locked;
2073 		unsigned long limit;
2074 		locked = mm->locked_vm + grow;
2075 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2076 		limit >>= PAGE_SHIFT;
2077 		if (locked > limit && !capable(CAP_IPC_LOCK))
2078 			return -ENOMEM;
2079 	}
2080 
2081 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2082 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2083 			vma->vm_end - size;
2084 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2085 		return -EFAULT;
2086 
2087 	/*
2088 	 * Overcommit..  This must be the final test, as it will
2089 	 * update security statistics.
2090 	 */
2091 	if (security_vm_enough_memory_mm(mm, grow))
2092 		return -ENOMEM;
2093 
2094 	/* Ok, everything looks good - let it rip */
2095 	if (vma->vm_flags & VM_LOCKED)
2096 		mm->locked_vm += grow;
2097 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2098 	return 0;
2099 }
2100 
2101 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2102 /*
2103  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2104  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2105  */
2106 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2107 {
2108 	int error;
2109 
2110 	if (!(vma->vm_flags & VM_GROWSUP))
2111 		return -EFAULT;
2112 
2113 	/*
2114 	 * We must make sure the anon_vma is allocated
2115 	 * so that the anon_vma locking is not a noop.
2116 	 */
2117 	if (unlikely(anon_vma_prepare(vma)))
2118 		return -ENOMEM;
2119 	vma_lock_anon_vma(vma);
2120 
2121 	/*
2122 	 * vma->vm_start/vm_end cannot change under us because the caller
2123 	 * is required to hold the mmap_sem in read mode.  We need the
2124 	 * anon_vma lock to serialize against concurrent expand_stacks.
2125 	 * Also guard against wrapping around to address 0.
2126 	 */
2127 	if (address < PAGE_ALIGN(address+4))
2128 		address = PAGE_ALIGN(address+4);
2129 	else {
2130 		vma_unlock_anon_vma(vma);
2131 		return -ENOMEM;
2132 	}
2133 	error = 0;
2134 
2135 	/* Somebody else might have raced and expanded it already */
2136 	if (address > vma->vm_end) {
2137 		unsigned long size, grow;
2138 
2139 		size = address - vma->vm_start;
2140 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2141 
2142 		error = -ENOMEM;
2143 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2144 			error = acct_stack_growth(vma, size, grow);
2145 			if (!error) {
2146 				/*
2147 				 * vma_gap_update() doesn't support concurrent
2148 				 * updates, but we only hold a shared mmap_sem
2149 				 * lock here, so we need to protect against
2150 				 * concurrent vma expansions.
2151 				 * vma_lock_anon_vma() doesn't help here, as
2152 				 * we don't guarantee that all growable vmas
2153 				 * in a mm share the same root anon vma.
2154 				 * So, we reuse mm->page_table_lock to guard
2155 				 * against concurrent vma expansions.
2156 				 */
2157 				spin_lock(&vma->vm_mm->page_table_lock);
2158 				anon_vma_interval_tree_pre_update_vma(vma);
2159 				vma->vm_end = address;
2160 				anon_vma_interval_tree_post_update_vma(vma);
2161 				if (vma->vm_next)
2162 					vma_gap_update(vma->vm_next);
2163 				else
2164 					vma->vm_mm->highest_vm_end = address;
2165 				spin_unlock(&vma->vm_mm->page_table_lock);
2166 
2167 				perf_event_mmap(vma);
2168 			}
2169 		}
2170 	}
2171 	vma_unlock_anon_vma(vma);
2172 	khugepaged_enter_vma_merge(vma);
2173 	validate_mm(vma->vm_mm);
2174 	return error;
2175 }
2176 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2177 
2178 /*
2179  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2180  */
2181 int expand_downwards(struct vm_area_struct *vma,
2182 				   unsigned long address)
2183 {
2184 	int error;
2185 
2186 	/*
2187 	 * We must make sure the anon_vma is allocated
2188 	 * so that the anon_vma locking is not a noop.
2189 	 */
2190 	if (unlikely(anon_vma_prepare(vma)))
2191 		return -ENOMEM;
2192 
2193 	address &= PAGE_MASK;
2194 	error = security_mmap_addr(address);
2195 	if (error)
2196 		return error;
2197 
2198 	vma_lock_anon_vma(vma);
2199 
2200 	/*
2201 	 * vma->vm_start/vm_end cannot change under us because the caller
2202 	 * is required to hold the mmap_sem in read mode.  We need the
2203 	 * anon_vma lock to serialize against concurrent expand_stacks.
2204 	 */
2205 
2206 	/* Somebody else might have raced and expanded it already */
2207 	if (address < vma->vm_start) {
2208 		unsigned long size, grow;
2209 
2210 		size = vma->vm_end - address;
2211 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2212 
2213 		error = -ENOMEM;
2214 		if (grow <= vma->vm_pgoff) {
2215 			error = acct_stack_growth(vma, size, grow);
2216 			if (!error) {
2217 				/*
2218 				 * vma_gap_update() doesn't support concurrent
2219 				 * updates, but we only hold a shared mmap_sem
2220 				 * lock here, so we need to protect against
2221 				 * concurrent vma expansions.
2222 				 * vma_lock_anon_vma() doesn't help here, as
2223 				 * we don't guarantee that all growable vmas
2224 				 * in a mm share the same root anon vma.
2225 				 * So, we reuse mm->page_table_lock to guard
2226 				 * against concurrent vma expansions.
2227 				 */
2228 				spin_lock(&vma->vm_mm->page_table_lock);
2229 				anon_vma_interval_tree_pre_update_vma(vma);
2230 				vma->vm_start = address;
2231 				vma->vm_pgoff -= grow;
2232 				anon_vma_interval_tree_post_update_vma(vma);
2233 				vma_gap_update(vma);
2234 				spin_unlock(&vma->vm_mm->page_table_lock);
2235 
2236 				perf_event_mmap(vma);
2237 			}
2238 		}
2239 	}
2240 	vma_unlock_anon_vma(vma);
2241 	khugepaged_enter_vma_merge(vma);
2242 	validate_mm(vma->vm_mm);
2243 	return error;
2244 }
2245 
2246 /*
2247  * Note how expand_stack() refuses to expand the stack all the way to
2248  * abut the next virtual mapping, *unless* that mapping itself is also
2249  * a stack mapping. We want to leave room for a guard page, after all
2250  * (the guard page itself is not added here, that is done by the
2251  * actual page faulting logic)
2252  *
2253  * This matches the behavior of the guard page logic (see mm/memory.c:
2254  * check_stack_guard_page()), which only allows the guard page to be
2255  * removed under these circumstances.
2256  */
2257 #ifdef CONFIG_STACK_GROWSUP
2258 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2259 {
2260 	struct vm_area_struct *next;
2261 
2262 	address &= PAGE_MASK;
2263 	next = vma->vm_next;
2264 	if (next && next->vm_start == address + PAGE_SIZE) {
2265 		if (!(next->vm_flags & VM_GROWSUP))
2266 			return -ENOMEM;
2267 	}
2268 	return expand_upwards(vma, address);
2269 }
2270 
2271 struct vm_area_struct *
2272 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2273 {
2274 	struct vm_area_struct *vma, *prev;
2275 
2276 	addr &= PAGE_MASK;
2277 	vma = find_vma_prev(mm, addr, &prev);
2278 	if (vma && (vma->vm_start <= addr))
2279 		return vma;
2280 	if (!prev || expand_stack(prev, addr))
2281 		return NULL;
2282 	if (prev->vm_flags & VM_LOCKED)
2283 		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2284 	return prev;
2285 }
2286 #else
2287 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2288 {
2289 	struct vm_area_struct *prev;
2290 
2291 	address &= PAGE_MASK;
2292 	prev = vma->vm_prev;
2293 	if (prev && prev->vm_end == address) {
2294 		if (!(prev->vm_flags & VM_GROWSDOWN))
2295 			return -ENOMEM;
2296 	}
2297 	return expand_downwards(vma, address);
2298 }
2299 
2300 struct vm_area_struct *
2301 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2302 {
2303 	struct vm_area_struct * vma;
2304 	unsigned long start;
2305 
2306 	addr &= PAGE_MASK;
2307 	vma = find_vma(mm,addr);
2308 	if (!vma)
2309 		return NULL;
2310 	if (vma->vm_start <= addr)
2311 		return vma;
2312 	if (!(vma->vm_flags & VM_GROWSDOWN))
2313 		return NULL;
2314 	start = vma->vm_start;
2315 	if (expand_stack(vma, addr))
2316 		return NULL;
2317 	if (vma->vm_flags & VM_LOCKED)
2318 		__mlock_vma_pages_range(vma, addr, start, NULL);
2319 	return vma;
2320 }
2321 #endif
2322 
2323 /*
2324  * Ok - we have the memory areas we should free on the vma list,
2325  * so release them, and do the vma updates.
2326  *
2327  * Called with the mm semaphore held.
2328  */
2329 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2330 {
2331 	unsigned long nr_accounted = 0;
2332 
2333 	/* Update high watermark before we lower total_vm */
2334 	update_hiwater_vm(mm);
2335 	do {
2336 		long nrpages = vma_pages(vma);
2337 
2338 		if (vma->vm_flags & VM_ACCOUNT)
2339 			nr_accounted += nrpages;
2340 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2341 		vma = remove_vma(vma);
2342 	} while (vma);
2343 	vm_unacct_memory(nr_accounted);
2344 	validate_mm(mm);
2345 }
2346 
2347 /*
2348  * Get rid of page table information in the indicated region.
2349  *
2350  * Called with the mm semaphore held.
2351  */
2352 static void unmap_region(struct mm_struct *mm,
2353 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2354 		unsigned long start, unsigned long end)
2355 {
2356 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2357 	struct mmu_gather tlb;
2358 
2359 	lru_add_drain();
2360 	tlb_gather_mmu(&tlb, mm, start, end);
2361 	update_hiwater_rss(mm);
2362 	unmap_vmas(&tlb, vma, start, end);
2363 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2364 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2365 	tlb_finish_mmu(&tlb, start, end);
2366 }
2367 
2368 /*
2369  * Create a list of vma's touched by the unmap, removing them from the mm's
2370  * vma list as we go..
2371  */
2372 static void
2373 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2374 	struct vm_area_struct *prev, unsigned long end)
2375 {
2376 	struct vm_area_struct **insertion_point;
2377 	struct vm_area_struct *tail_vma = NULL;
2378 
2379 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2380 	vma->vm_prev = NULL;
2381 	do {
2382 		vma_rb_erase(vma, &mm->mm_rb);
2383 		mm->map_count--;
2384 		tail_vma = vma;
2385 		vma = vma->vm_next;
2386 	} while (vma && vma->vm_start < end);
2387 	*insertion_point = vma;
2388 	if (vma) {
2389 		vma->vm_prev = prev;
2390 		vma_gap_update(vma);
2391 	} else
2392 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2393 	tail_vma->vm_next = NULL;
2394 
2395 	/* Kill the cache */
2396 	vmacache_invalidate(mm);
2397 }
2398 
2399 /*
2400  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2401  * munmap path where it doesn't make sense to fail.
2402  */
2403 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2404 	      unsigned long addr, int new_below)
2405 {
2406 	struct vm_area_struct *new;
2407 	int err = -ENOMEM;
2408 
2409 	if (is_vm_hugetlb_page(vma) && (addr &
2410 					~(huge_page_mask(hstate_vma(vma)))))
2411 		return -EINVAL;
2412 
2413 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2414 	if (!new)
2415 		goto out_err;
2416 
2417 	/* most fields are the same, copy all, and then fixup */
2418 	*new = *vma;
2419 
2420 	INIT_LIST_HEAD(&new->anon_vma_chain);
2421 
2422 	if (new_below)
2423 		new->vm_end = addr;
2424 	else {
2425 		new->vm_start = addr;
2426 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2427 	}
2428 
2429 	err = vma_dup_policy(vma, new);
2430 	if (err)
2431 		goto out_free_vma;
2432 
2433 	if (anon_vma_clone(new, vma))
2434 		goto out_free_mpol;
2435 
2436 	if (new->vm_file)
2437 		get_file(new->vm_file);
2438 
2439 	if (new->vm_ops && new->vm_ops->open)
2440 		new->vm_ops->open(new);
2441 
2442 	if (new_below)
2443 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2444 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2445 	else
2446 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2447 
2448 	/* Success. */
2449 	if (!err)
2450 		return 0;
2451 
2452 	/* Clean everything up if vma_adjust failed. */
2453 	if (new->vm_ops && new->vm_ops->close)
2454 		new->vm_ops->close(new);
2455 	if (new->vm_file)
2456 		fput(new->vm_file);
2457 	unlink_anon_vmas(new);
2458  out_free_mpol:
2459 	mpol_put(vma_policy(new));
2460  out_free_vma:
2461 	kmem_cache_free(vm_area_cachep, new);
2462  out_err:
2463 	return err;
2464 }
2465 
2466 /*
2467  * Split a vma into two pieces at address 'addr', a new vma is allocated
2468  * either for the first part or the tail.
2469  */
2470 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2471 	      unsigned long addr, int new_below)
2472 {
2473 	if (mm->map_count >= sysctl_max_map_count)
2474 		return -ENOMEM;
2475 
2476 	return __split_vma(mm, vma, addr, new_below);
2477 }
2478 
2479 /* Munmap is split into 2 main parts -- this part which finds
2480  * what needs doing, and the areas themselves, which do the
2481  * work.  This now handles partial unmappings.
2482  * Jeremy Fitzhardinge <jeremy@goop.org>
2483  */
2484 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2485 {
2486 	unsigned long end;
2487 	struct vm_area_struct *vma, *prev, *last;
2488 
2489 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2490 		return -EINVAL;
2491 
2492 	if ((len = PAGE_ALIGN(len)) == 0)
2493 		return -EINVAL;
2494 
2495 	/* Find the first overlapping VMA */
2496 	vma = find_vma(mm, start);
2497 	if (!vma)
2498 		return 0;
2499 	prev = vma->vm_prev;
2500 	/* we have  start < vma->vm_end  */
2501 
2502 	/* if it doesn't overlap, we have nothing.. */
2503 	end = start + len;
2504 	if (vma->vm_start >= end)
2505 		return 0;
2506 
2507 	/*
2508 	 * If we need to split any vma, do it now to save pain later.
2509 	 *
2510 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2511 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2512 	 * places tmp vma above, and higher split_vma places tmp vma below.
2513 	 */
2514 	if (start > vma->vm_start) {
2515 		int error;
2516 
2517 		/*
2518 		 * Make sure that map_count on return from munmap() will
2519 		 * not exceed its limit; but let map_count go just above
2520 		 * its limit temporarily, to help free resources as expected.
2521 		 */
2522 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2523 			return -ENOMEM;
2524 
2525 		error = __split_vma(mm, vma, start, 0);
2526 		if (error)
2527 			return error;
2528 		prev = vma;
2529 	}
2530 
2531 	/* Does it split the last one? */
2532 	last = find_vma(mm, end);
2533 	if (last && end > last->vm_start) {
2534 		int error = __split_vma(mm, last, end, 1);
2535 		if (error)
2536 			return error;
2537 	}
2538 	vma = prev? prev->vm_next: mm->mmap;
2539 
2540 	/*
2541 	 * unlock any mlock()ed ranges before detaching vmas
2542 	 */
2543 	if (mm->locked_vm) {
2544 		struct vm_area_struct *tmp = vma;
2545 		while (tmp && tmp->vm_start < end) {
2546 			if (tmp->vm_flags & VM_LOCKED) {
2547 				mm->locked_vm -= vma_pages(tmp);
2548 				munlock_vma_pages_all(tmp);
2549 			}
2550 			tmp = tmp->vm_next;
2551 		}
2552 	}
2553 
2554 	/*
2555 	 * Remove the vma's, and unmap the actual pages
2556 	 */
2557 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2558 	unmap_region(mm, vma, prev, start, end);
2559 
2560 	/* Fix up all other VM information */
2561 	remove_vma_list(mm, vma);
2562 
2563 	return 0;
2564 }
2565 
2566 int vm_munmap(unsigned long start, size_t len)
2567 {
2568 	int ret;
2569 	struct mm_struct *mm = current->mm;
2570 
2571 	down_write(&mm->mmap_sem);
2572 	ret = do_munmap(mm, start, len);
2573 	up_write(&mm->mmap_sem);
2574 	return ret;
2575 }
2576 EXPORT_SYMBOL(vm_munmap);
2577 
2578 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2579 {
2580 	profile_munmap(addr);
2581 	return vm_munmap(addr, len);
2582 }
2583 
2584 static inline void verify_mm_writelocked(struct mm_struct *mm)
2585 {
2586 #ifdef CONFIG_DEBUG_VM
2587 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2588 		WARN_ON(1);
2589 		up_read(&mm->mmap_sem);
2590 	}
2591 #endif
2592 }
2593 
2594 /*
2595  *  this is really a simplified "do_mmap".  it only handles
2596  *  anonymous maps.  eventually we may be able to do some
2597  *  brk-specific accounting here.
2598  */
2599 static unsigned long do_brk(unsigned long addr, unsigned long len)
2600 {
2601 	struct mm_struct * mm = current->mm;
2602 	struct vm_area_struct * vma, * prev;
2603 	unsigned long flags;
2604 	struct rb_node ** rb_link, * rb_parent;
2605 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2606 	int error;
2607 
2608 	len = PAGE_ALIGN(len);
2609 	if (!len)
2610 		return addr;
2611 
2612 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2613 
2614 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2615 	if (error & ~PAGE_MASK)
2616 		return error;
2617 
2618 	error = mlock_future_check(mm, mm->def_flags, len);
2619 	if (error)
2620 		return error;
2621 
2622 	/*
2623 	 * mm->mmap_sem is required to protect against another thread
2624 	 * changing the mappings in case we sleep.
2625 	 */
2626 	verify_mm_writelocked(mm);
2627 
2628 	/*
2629 	 * Clear old maps.  this also does some error checking for us
2630 	 */
2631  munmap_back:
2632 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2633 		if (do_munmap(mm, addr, len))
2634 			return -ENOMEM;
2635 		goto munmap_back;
2636 	}
2637 
2638 	/* Check against address space limits *after* clearing old maps... */
2639 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2640 		return -ENOMEM;
2641 
2642 	if (mm->map_count > sysctl_max_map_count)
2643 		return -ENOMEM;
2644 
2645 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2646 		return -ENOMEM;
2647 
2648 	/* Can we just expand an old private anonymous mapping? */
2649 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2650 					NULL, NULL, pgoff, NULL);
2651 	if (vma)
2652 		goto out;
2653 
2654 	/*
2655 	 * create a vma struct for an anonymous mapping
2656 	 */
2657 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2658 	if (!vma) {
2659 		vm_unacct_memory(len >> PAGE_SHIFT);
2660 		return -ENOMEM;
2661 	}
2662 
2663 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2664 	vma->vm_mm = mm;
2665 	vma->vm_start = addr;
2666 	vma->vm_end = addr + len;
2667 	vma->vm_pgoff = pgoff;
2668 	vma->vm_flags = flags;
2669 	vma->vm_page_prot = vm_get_page_prot(flags);
2670 	vma_link(mm, vma, prev, rb_link, rb_parent);
2671 out:
2672 	perf_event_mmap(vma);
2673 	mm->total_vm += len >> PAGE_SHIFT;
2674 	if (flags & VM_LOCKED)
2675 		mm->locked_vm += (len >> PAGE_SHIFT);
2676 	vma->vm_flags |= VM_SOFTDIRTY;
2677 	return addr;
2678 }
2679 
2680 unsigned long vm_brk(unsigned long addr, unsigned long len)
2681 {
2682 	struct mm_struct *mm = current->mm;
2683 	unsigned long ret;
2684 	bool populate;
2685 
2686 	down_write(&mm->mmap_sem);
2687 	ret = do_brk(addr, len);
2688 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2689 	up_write(&mm->mmap_sem);
2690 	if (populate)
2691 		mm_populate(addr, len);
2692 	return ret;
2693 }
2694 EXPORT_SYMBOL(vm_brk);
2695 
2696 /* Release all mmaps. */
2697 void exit_mmap(struct mm_struct *mm)
2698 {
2699 	struct mmu_gather tlb;
2700 	struct vm_area_struct *vma;
2701 	unsigned long nr_accounted = 0;
2702 
2703 	/* mm's last user has gone, and its about to be pulled down */
2704 	mmu_notifier_release(mm);
2705 
2706 	if (mm->locked_vm) {
2707 		vma = mm->mmap;
2708 		while (vma) {
2709 			if (vma->vm_flags & VM_LOCKED)
2710 				munlock_vma_pages_all(vma);
2711 			vma = vma->vm_next;
2712 		}
2713 	}
2714 
2715 	arch_exit_mmap(mm);
2716 
2717 	vma = mm->mmap;
2718 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2719 		return;
2720 
2721 	lru_add_drain();
2722 	flush_cache_mm(mm);
2723 	tlb_gather_mmu(&tlb, mm, 0, -1);
2724 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2725 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2726 	unmap_vmas(&tlb, vma, 0, -1);
2727 
2728 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2729 	tlb_finish_mmu(&tlb, 0, -1);
2730 
2731 	/*
2732 	 * Walk the list again, actually closing and freeing it,
2733 	 * with preemption enabled, without holding any MM locks.
2734 	 */
2735 	while (vma) {
2736 		if (vma->vm_flags & VM_ACCOUNT)
2737 			nr_accounted += vma_pages(vma);
2738 		vma = remove_vma(vma);
2739 	}
2740 	vm_unacct_memory(nr_accounted);
2741 
2742 	WARN_ON(atomic_long_read(&mm->nr_ptes) >
2743 			(FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2744 }
2745 
2746 /* Insert vm structure into process list sorted by address
2747  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2748  * then i_mmap_mutex is taken here.
2749  */
2750 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2751 {
2752 	struct vm_area_struct *prev;
2753 	struct rb_node **rb_link, *rb_parent;
2754 
2755 	/*
2756 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2757 	 * until its first write fault, when page's anon_vma and index
2758 	 * are set.  But now set the vm_pgoff it will almost certainly
2759 	 * end up with (unless mremap moves it elsewhere before that
2760 	 * first wfault), so /proc/pid/maps tells a consistent story.
2761 	 *
2762 	 * By setting it to reflect the virtual start address of the
2763 	 * vma, merges and splits can happen in a seamless way, just
2764 	 * using the existing file pgoff checks and manipulations.
2765 	 * Similarly in do_mmap_pgoff and in do_brk.
2766 	 */
2767 	if (!vma->vm_file) {
2768 		BUG_ON(vma->anon_vma);
2769 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2770 	}
2771 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2772 			   &prev, &rb_link, &rb_parent))
2773 		return -ENOMEM;
2774 	if ((vma->vm_flags & VM_ACCOUNT) &&
2775 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2776 		return -ENOMEM;
2777 
2778 	vma_link(mm, vma, prev, rb_link, rb_parent);
2779 	return 0;
2780 }
2781 
2782 /*
2783  * Copy the vma structure to a new location in the same mm,
2784  * prior to moving page table entries, to effect an mremap move.
2785  */
2786 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2787 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2788 	bool *need_rmap_locks)
2789 {
2790 	struct vm_area_struct *vma = *vmap;
2791 	unsigned long vma_start = vma->vm_start;
2792 	struct mm_struct *mm = vma->vm_mm;
2793 	struct vm_area_struct *new_vma, *prev;
2794 	struct rb_node **rb_link, *rb_parent;
2795 	bool faulted_in_anon_vma = true;
2796 
2797 	/*
2798 	 * If anonymous vma has not yet been faulted, update new pgoff
2799 	 * to match new location, to increase its chance of merging.
2800 	 */
2801 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2802 		pgoff = addr >> PAGE_SHIFT;
2803 		faulted_in_anon_vma = false;
2804 	}
2805 
2806 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2807 		return NULL;	/* should never get here */
2808 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2809 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2810 	if (new_vma) {
2811 		/*
2812 		 * Source vma may have been merged into new_vma
2813 		 */
2814 		if (unlikely(vma_start >= new_vma->vm_start &&
2815 			     vma_start < new_vma->vm_end)) {
2816 			/*
2817 			 * The only way we can get a vma_merge with
2818 			 * self during an mremap is if the vma hasn't
2819 			 * been faulted in yet and we were allowed to
2820 			 * reset the dst vma->vm_pgoff to the
2821 			 * destination address of the mremap to allow
2822 			 * the merge to happen. mremap must change the
2823 			 * vm_pgoff linearity between src and dst vmas
2824 			 * (in turn preventing a vma_merge) to be
2825 			 * safe. It is only safe to keep the vm_pgoff
2826 			 * linear if there are no pages mapped yet.
2827 			 */
2828 			VM_BUG_ON(faulted_in_anon_vma);
2829 			*vmap = vma = new_vma;
2830 		}
2831 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2832 	} else {
2833 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2834 		if (new_vma) {
2835 			*new_vma = *vma;
2836 			new_vma->vm_start = addr;
2837 			new_vma->vm_end = addr + len;
2838 			new_vma->vm_pgoff = pgoff;
2839 			if (vma_dup_policy(vma, new_vma))
2840 				goto out_free_vma;
2841 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2842 			if (anon_vma_clone(new_vma, vma))
2843 				goto out_free_mempol;
2844 			if (new_vma->vm_file)
2845 				get_file(new_vma->vm_file);
2846 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2847 				new_vma->vm_ops->open(new_vma);
2848 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2849 			*need_rmap_locks = false;
2850 		}
2851 	}
2852 	return new_vma;
2853 
2854  out_free_mempol:
2855 	mpol_put(vma_policy(new_vma));
2856  out_free_vma:
2857 	kmem_cache_free(vm_area_cachep, new_vma);
2858 	return NULL;
2859 }
2860 
2861 /*
2862  * Return true if the calling process may expand its vm space by the passed
2863  * number of pages
2864  */
2865 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2866 {
2867 	unsigned long cur = mm->total_vm;	/* pages */
2868 	unsigned long lim;
2869 
2870 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2871 
2872 	if (cur + npages > lim)
2873 		return 0;
2874 	return 1;
2875 }
2876 
2877 static int special_mapping_fault(struct vm_area_struct *vma,
2878 				 struct vm_fault *vmf);
2879 
2880 /*
2881  * Having a close hook prevents vma merging regardless of flags.
2882  */
2883 static void special_mapping_close(struct vm_area_struct *vma)
2884 {
2885 }
2886 
2887 static const char *special_mapping_name(struct vm_area_struct *vma)
2888 {
2889 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2890 }
2891 
2892 static const struct vm_operations_struct special_mapping_vmops = {
2893 	.close = special_mapping_close,
2894 	.fault = special_mapping_fault,
2895 	.name = special_mapping_name,
2896 };
2897 
2898 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2899 	.close = special_mapping_close,
2900 	.fault = special_mapping_fault,
2901 };
2902 
2903 static int special_mapping_fault(struct vm_area_struct *vma,
2904 				struct vm_fault *vmf)
2905 {
2906 	pgoff_t pgoff;
2907 	struct page **pages;
2908 
2909 	/*
2910 	 * special mappings have no vm_file, and in that case, the mm
2911 	 * uses vm_pgoff internally. So we have to subtract it from here.
2912 	 * We are allowed to do this because we are the mm; do not copy
2913 	 * this code into drivers!
2914 	 */
2915 	pgoff = vmf->pgoff - vma->vm_pgoff;
2916 
2917 	if (vma->vm_ops == &legacy_special_mapping_vmops)
2918 		pages = vma->vm_private_data;
2919 	else
2920 		pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2921 			pages;
2922 
2923 	for (; pgoff && *pages; ++pages)
2924 		pgoff--;
2925 
2926 	if (*pages) {
2927 		struct page *page = *pages;
2928 		get_page(page);
2929 		vmf->page = page;
2930 		return 0;
2931 	}
2932 
2933 	return VM_FAULT_SIGBUS;
2934 }
2935 
2936 static struct vm_area_struct *__install_special_mapping(
2937 	struct mm_struct *mm,
2938 	unsigned long addr, unsigned long len,
2939 	unsigned long vm_flags, const struct vm_operations_struct *ops,
2940 	void *priv)
2941 {
2942 	int ret;
2943 	struct vm_area_struct *vma;
2944 
2945 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2946 	if (unlikely(vma == NULL))
2947 		return ERR_PTR(-ENOMEM);
2948 
2949 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2950 	vma->vm_mm = mm;
2951 	vma->vm_start = addr;
2952 	vma->vm_end = addr + len;
2953 
2954 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2955 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2956 
2957 	vma->vm_ops = ops;
2958 	vma->vm_private_data = priv;
2959 
2960 	ret = insert_vm_struct(mm, vma);
2961 	if (ret)
2962 		goto out;
2963 
2964 	mm->total_vm += len >> PAGE_SHIFT;
2965 
2966 	perf_event_mmap(vma);
2967 
2968 	return vma;
2969 
2970 out:
2971 	kmem_cache_free(vm_area_cachep, vma);
2972 	return ERR_PTR(ret);
2973 }
2974 
2975 /*
2976  * Called with mm->mmap_sem held for writing.
2977  * Insert a new vma covering the given region, with the given flags.
2978  * Its pages are supplied by the given array of struct page *.
2979  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2980  * The region past the last page supplied will always produce SIGBUS.
2981  * The array pointer and the pages it points to are assumed to stay alive
2982  * for as long as this mapping might exist.
2983  */
2984 struct vm_area_struct *_install_special_mapping(
2985 	struct mm_struct *mm,
2986 	unsigned long addr, unsigned long len,
2987 	unsigned long vm_flags, const struct vm_special_mapping *spec)
2988 {
2989 	return __install_special_mapping(mm, addr, len, vm_flags,
2990 					 &special_mapping_vmops, (void *)spec);
2991 }
2992 
2993 int install_special_mapping(struct mm_struct *mm,
2994 			    unsigned long addr, unsigned long len,
2995 			    unsigned long vm_flags, struct page **pages)
2996 {
2997 	struct vm_area_struct *vma = __install_special_mapping(
2998 		mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
2999 		(void *)pages);
3000 
3001 	return PTR_ERR_OR_ZERO(vma);
3002 }
3003 
3004 static DEFINE_MUTEX(mm_all_locks_mutex);
3005 
3006 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3007 {
3008 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3009 		/*
3010 		 * The LSB of head.next can't change from under us
3011 		 * because we hold the mm_all_locks_mutex.
3012 		 */
3013 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3014 		/*
3015 		 * We can safely modify head.next after taking the
3016 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3017 		 * the same anon_vma we won't take it again.
3018 		 *
3019 		 * No need of atomic instructions here, head.next
3020 		 * can't change from under us thanks to the
3021 		 * anon_vma->root->rwsem.
3022 		 */
3023 		if (__test_and_set_bit(0, (unsigned long *)
3024 				       &anon_vma->root->rb_root.rb_node))
3025 			BUG();
3026 	}
3027 }
3028 
3029 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3030 {
3031 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3032 		/*
3033 		 * AS_MM_ALL_LOCKS can't change from under us because
3034 		 * we hold the mm_all_locks_mutex.
3035 		 *
3036 		 * Operations on ->flags have to be atomic because
3037 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3038 		 * mm_all_locks_mutex, there may be other cpus
3039 		 * changing other bitflags in parallel to us.
3040 		 */
3041 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3042 			BUG();
3043 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3044 	}
3045 }
3046 
3047 /*
3048  * This operation locks against the VM for all pte/vma/mm related
3049  * operations that could ever happen on a certain mm. This includes
3050  * vmtruncate, try_to_unmap, and all page faults.
3051  *
3052  * The caller must take the mmap_sem in write mode before calling
3053  * mm_take_all_locks(). The caller isn't allowed to release the
3054  * mmap_sem until mm_drop_all_locks() returns.
3055  *
3056  * mmap_sem in write mode is required in order to block all operations
3057  * that could modify pagetables and free pages without need of
3058  * altering the vma layout (for example populate_range() with
3059  * nonlinear vmas). It's also needed in write mode to avoid new
3060  * anon_vmas to be associated with existing vmas.
3061  *
3062  * A single task can't take more than one mm_take_all_locks() in a row
3063  * or it would deadlock.
3064  *
3065  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3066  * mapping->flags avoid to take the same lock twice, if more than one
3067  * vma in this mm is backed by the same anon_vma or address_space.
3068  *
3069  * We can take all the locks in random order because the VM code
3070  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3071  * takes more than one of them in a row. Secondly we're protected
3072  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3073  *
3074  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3075  * that may have to take thousand of locks.
3076  *
3077  * mm_take_all_locks() can fail if it's interrupted by signals.
3078  */
3079 int mm_take_all_locks(struct mm_struct *mm)
3080 {
3081 	struct vm_area_struct *vma;
3082 	struct anon_vma_chain *avc;
3083 
3084 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3085 
3086 	mutex_lock(&mm_all_locks_mutex);
3087 
3088 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3089 		if (signal_pending(current))
3090 			goto out_unlock;
3091 		if (vma->vm_file && vma->vm_file->f_mapping)
3092 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3093 	}
3094 
3095 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3096 		if (signal_pending(current))
3097 			goto out_unlock;
3098 		if (vma->anon_vma)
3099 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3100 				vm_lock_anon_vma(mm, avc->anon_vma);
3101 	}
3102 
3103 	return 0;
3104 
3105 out_unlock:
3106 	mm_drop_all_locks(mm);
3107 	return -EINTR;
3108 }
3109 
3110 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3111 {
3112 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3113 		/*
3114 		 * The LSB of head.next can't change to 0 from under
3115 		 * us because we hold the mm_all_locks_mutex.
3116 		 *
3117 		 * We must however clear the bitflag before unlocking
3118 		 * the vma so the users using the anon_vma->rb_root will
3119 		 * never see our bitflag.
3120 		 *
3121 		 * No need of atomic instructions here, head.next
3122 		 * can't change from under us until we release the
3123 		 * anon_vma->root->rwsem.
3124 		 */
3125 		if (!__test_and_clear_bit(0, (unsigned long *)
3126 					  &anon_vma->root->rb_root.rb_node))
3127 			BUG();
3128 		anon_vma_unlock_write(anon_vma);
3129 	}
3130 }
3131 
3132 static void vm_unlock_mapping(struct address_space *mapping)
3133 {
3134 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3135 		/*
3136 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3137 		 * because we hold the mm_all_locks_mutex.
3138 		 */
3139 		mutex_unlock(&mapping->i_mmap_mutex);
3140 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3141 					&mapping->flags))
3142 			BUG();
3143 	}
3144 }
3145 
3146 /*
3147  * The mmap_sem cannot be released by the caller until
3148  * mm_drop_all_locks() returns.
3149  */
3150 void mm_drop_all_locks(struct mm_struct *mm)
3151 {
3152 	struct vm_area_struct *vma;
3153 	struct anon_vma_chain *avc;
3154 
3155 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3156 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3157 
3158 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3159 		if (vma->anon_vma)
3160 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3161 				vm_unlock_anon_vma(avc->anon_vma);
3162 		if (vma->vm_file && vma->vm_file->f_mapping)
3163 			vm_unlock_mapping(vma->vm_file->f_mapping);
3164 	}
3165 
3166 	mutex_unlock(&mm_all_locks_mutex);
3167 }
3168 
3169 /*
3170  * initialise the VMA slab
3171  */
3172 void __init mmap_init(void)
3173 {
3174 	int ret;
3175 
3176 	ret = percpu_counter_init(&vm_committed_as, 0);
3177 	VM_BUG_ON(ret);
3178 }
3179 
3180 /*
3181  * Initialise sysctl_user_reserve_kbytes.
3182  *
3183  * This is intended to prevent a user from starting a single memory hogging
3184  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3185  * mode.
3186  *
3187  * The default value is min(3% of free memory, 128MB)
3188  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3189  */
3190 static int init_user_reserve(void)
3191 {
3192 	unsigned long free_kbytes;
3193 
3194 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3195 
3196 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3197 	return 0;
3198 }
3199 subsys_initcall(init_user_reserve);
3200 
3201 /*
3202  * Initialise sysctl_admin_reserve_kbytes.
3203  *
3204  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3205  * to log in and kill a memory hogging process.
3206  *
3207  * Systems with more than 256MB will reserve 8MB, enough to recover
3208  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3209  * only reserve 3% of free pages by default.
3210  */
3211 static int init_admin_reserve(void)
3212 {
3213 	unsigned long free_kbytes;
3214 
3215 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3216 
3217 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3218 	return 0;
3219 }
3220 subsys_initcall(init_admin_reserve);
3221 
3222 /*
3223  * Reinititalise user and admin reserves if memory is added or removed.
3224  *
3225  * The default user reserve max is 128MB, and the default max for the
3226  * admin reserve is 8MB. These are usually, but not always, enough to
3227  * enable recovery from a memory hogging process using login/sshd, a shell,
3228  * and tools like top. It may make sense to increase or even disable the
3229  * reserve depending on the existence of swap or variations in the recovery
3230  * tools. So, the admin may have changed them.
3231  *
3232  * If memory is added and the reserves have been eliminated or increased above
3233  * the default max, then we'll trust the admin.
3234  *
3235  * If memory is removed and there isn't enough free memory, then we
3236  * need to reset the reserves.
3237  *
3238  * Otherwise keep the reserve set by the admin.
3239  */
3240 static int reserve_mem_notifier(struct notifier_block *nb,
3241 			     unsigned long action, void *data)
3242 {
3243 	unsigned long tmp, free_kbytes;
3244 
3245 	switch (action) {
3246 	case MEM_ONLINE:
3247 		/* Default max is 128MB. Leave alone if modified by operator. */
3248 		tmp = sysctl_user_reserve_kbytes;
3249 		if (0 < tmp && tmp < (1UL << 17))
3250 			init_user_reserve();
3251 
3252 		/* Default max is 8MB.  Leave alone if modified by operator. */
3253 		tmp = sysctl_admin_reserve_kbytes;
3254 		if (0 < tmp && tmp < (1UL << 13))
3255 			init_admin_reserve();
3256 
3257 		break;
3258 	case MEM_OFFLINE:
3259 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3260 
3261 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3262 			init_user_reserve();
3263 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3264 				sysctl_user_reserve_kbytes);
3265 		}
3266 
3267 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3268 			init_admin_reserve();
3269 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3270 				sysctl_admin_reserve_kbytes);
3271 		}
3272 		break;
3273 	default:
3274 		break;
3275 	}
3276 	return NOTIFY_OK;
3277 }
3278 
3279 static struct notifier_block reserve_mem_nb = {
3280 	.notifier_call = reserve_mem_notifier,
3281 };
3282 
3283 static int __meminit init_reserve_notifier(void)
3284 {
3285 	if (register_hotmemory_notifier(&reserve_mem_nb))
3286 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3287 
3288 	return 0;
3289 }
3290 subsys_initcall(init_reserve_notifier);
3291