1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 struct vm_area_struct *next, unsigned long start, 82 unsigned long end, bool mm_wr_locked); 83 84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 85 { 86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 87 } 88 89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 90 void vma_set_page_prot(struct vm_area_struct *vma) 91 { 92 unsigned long vm_flags = vma->vm_flags; 93 pgprot_t vm_page_prot; 94 95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 96 if (vma_wants_writenotify(vma, vm_page_prot)) { 97 vm_flags &= ~VM_SHARED; 98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 99 } 100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 102 } 103 104 /* 105 * Requires inode->i_mapping->i_mmap_rwsem 106 */ 107 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 108 struct file *file, struct address_space *mapping) 109 { 110 if (vma->vm_flags & VM_SHARED) 111 mapping_unmap_writable(mapping); 112 113 flush_dcache_mmap_lock(mapping); 114 vma_interval_tree_remove(vma, &mapping->i_mmap); 115 flush_dcache_mmap_unlock(mapping); 116 } 117 118 /* 119 * Unlink a file-based vm structure from its interval tree, to hide 120 * vma from rmap and vmtruncate before freeing its page tables. 121 */ 122 void unlink_file_vma(struct vm_area_struct *vma) 123 { 124 struct file *file = vma->vm_file; 125 126 if (file) { 127 struct address_space *mapping = file->f_mapping; 128 i_mmap_lock_write(mapping); 129 __remove_shared_vm_struct(vma, file, mapping); 130 i_mmap_unlock_write(mapping); 131 } 132 } 133 134 /* 135 * Close a vm structure and free it. 136 */ 137 static void remove_vma(struct vm_area_struct *vma, bool unreachable) 138 { 139 might_sleep(); 140 if (vma->vm_ops && vma->vm_ops->close) 141 vma->vm_ops->close(vma); 142 if (vma->vm_file) 143 fput(vma->vm_file); 144 mpol_put(vma_policy(vma)); 145 if (unreachable) 146 __vm_area_free(vma); 147 else 148 vm_area_free(vma); 149 } 150 151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 152 unsigned long min) 153 { 154 return mas_prev(&vmi->mas, min); 155 } 156 157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 158 unsigned long start, unsigned long end, gfp_t gfp) 159 { 160 vmi->mas.index = start; 161 vmi->mas.last = end - 1; 162 mas_store_gfp(&vmi->mas, NULL, gfp); 163 if (unlikely(mas_is_err(&vmi->mas))) 164 return -ENOMEM; 165 166 return 0; 167 } 168 169 /* 170 * check_brk_limits() - Use platform specific check of range & verify mlock 171 * limits. 172 * @addr: The address to check 173 * @len: The size of increase. 174 * 175 * Return: 0 on success. 176 */ 177 static int check_brk_limits(unsigned long addr, unsigned long len) 178 { 179 unsigned long mapped_addr; 180 181 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 182 if (IS_ERR_VALUE(mapped_addr)) 183 return mapped_addr; 184 185 return mlock_future_check(current->mm, current->mm->def_flags, len); 186 } 187 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 188 unsigned long addr, unsigned long request, unsigned long flags); 189 SYSCALL_DEFINE1(brk, unsigned long, brk) 190 { 191 unsigned long newbrk, oldbrk, origbrk; 192 struct mm_struct *mm = current->mm; 193 struct vm_area_struct *brkvma, *next = NULL; 194 unsigned long min_brk; 195 bool populate; 196 bool downgraded = false; 197 LIST_HEAD(uf); 198 struct vma_iterator vmi; 199 200 if (mmap_write_lock_killable(mm)) 201 return -EINTR; 202 203 origbrk = mm->brk; 204 205 #ifdef CONFIG_COMPAT_BRK 206 /* 207 * CONFIG_COMPAT_BRK can still be overridden by setting 208 * randomize_va_space to 2, which will still cause mm->start_brk 209 * to be arbitrarily shifted 210 */ 211 if (current->brk_randomized) 212 min_brk = mm->start_brk; 213 else 214 min_brk = mm->end_data; 215 #else 216 min_brk = mm->start_brk; 217 #endif 218 if (brk < min_brk) 219 goto out; 220 221 /* 222 * Check against rlimit here. If this check is done later after the test 223 * of oldbrk with newbrk then it can escape the test and let the data 224 * segment grow beyond its set limit the in case where the limit is 225 * not page aligned -Ram Gupta 226 */ 227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 228 mm->end_data, mm->start_data)) 229 goto out; 230 231 newbrk = PAGE_ALIGN(brk); 232 oldbrk = PAGE_ALIGN(mm->brk); 233 if (oldbrk == newbrk) { 234 mm->brk = brk; 235 goto success; 236 } 237 238 /* 239 * Always allow shrinking brk. 240 * do_vma_munmap() may downgrade mmap_lock to read. 241 */ 242 if (brk <= mm->brk) { 243 int ret; 244 245 /* Search one past newbrk */ 246 vma_iter_init(&vmi, mm, newbrk); 247 brkvma = vma_find(&vmi, oldbrk); 248 if (!brkvma || brkvma->vm_start >= oldbrk) 249 goto out; /* mapping intersects with an existing non-brk vma. */ 250 /* 251 * mm->brk must be protected by write mmap_lock. 252 * do_vma_munmap() may downgrade the lock, so update it 253 * before calling do_vma_munmap(). 254 */ 255 mm->brk = brk; 256 ret = do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true); 257 if (ret == 1) { 258 downgraded = true; 259 goto success; 260 } else if (!ret) 261 goto success; 262 263 mm->brk = origbrk; 264 goto out; 265 } 266 267 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 268 goto out; 269 270 /* 271 * Only check if the next VMA is within the stack_guard_gap of the 272 * expansion area 273 */ 274 vma_iter_init(&vmi, mm, oldbrk); 275 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 276 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 277 goto out; 278 279 brkvma = vma_prev_limit(&vmi, mm->start_brk); 280 /* Ok, looks good - let it rip. */ 281 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 282 goto out; 283 284 mm->brk = brk; 285 286 success: 287 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 288 if (downgraded) 289 mmap_read_unlock(mm); 290 else 291 mmap_write_unlock(mm); 292 userfaultfd_unmap_complete(mm, &uf); 293 if (populate) 294 mm_populate(oldbrk, newbrk - oldbrk); 295 return brk; 296 297 out: 298 mmap_write_unlock(mm); 299 return origbrk; 300 } 301 302 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 303 extern void mt_validate(struct maple_tree *mt); 304 extern void mt_dump(const struct maple_tree *mt); 305 306 /* Validate the maple tree */ 307 static void validate_mm_mt(struct mm_struct *mm) 308 { 309 struct maple_tree *mt = &mm->mm_mt; 310 struct vm_area_struct *vma_mt; 311 312 MA_STATE(mas, mt, 0, 0); 313 314 mt_validate(&mm->mm_mt); 315 mas_for_each(&mas, vma_mt, ULONG_MAX) { 316 if ((vma_mt->vm_start != mas.index) || 317 (vma_mt->vm_end - 1 != mas.last)) { 318 pr_emerg("issue in %s\n", current->comm); 319 dump_stack(); 320 dump_vma(vma_mt); 321 pr_emerg("mt piv: %p %lu - %lu\n", vma_mt, 322 mas.index, mas.last); 323 pr_emerg("mt vma: %p %lu - %lu\n", vma_mt, 324 vma_mt->vm_start, vma_mt->vm_end); 325 326 mt_dump(mas.tree); 327 if (vma_mt->vm_end != mas.last + 1) { 328 pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n", 329 mm, vma_mt->vm_start, vma_mt->vm_end, 330 mas.index, mas.last); 331 mt_dump(mas.tree); 332 } 333 VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm); 334 if (vma_mt->vm_start != mas.index) { 335 pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n", 336 mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end); 337 mt_dump(mas.tree); 338 } 339 VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm); 340 } 341 } 342 } 343 344 static void validate_mm(struct mm_struct *mm) 345 { 346 int bug = 0; 347 int i = 0; 348 struct vm_area_struct *vma; 349 MA_STATE(mas, &mm->mm_mt, 0, 0); 350 351 validate_mm_mt(mm); 352 353 mas_for_each(&mas, vma, ULONG_MAX) { 354 #ifdef CONFIG_DEBUG_VM_RB 355 struct anon_vma *anon_vma = vma->anon_vma; 356 struct anon_vma_chain *avc; 357 358 if (anon_vma) { 359 anon_vma_lock_read(anon_vma); 360 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 361 anon_vma_interval_tree_verify(avc); 362 anon_vma_unlock_read(anon_vma); 363 } 364 #endif 365 i++; 366 } 367 if (i != mm->map_count) { 368 pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i); 369 bug = 1; 370 } 371 VM_BUG_ON_MM(bug, mm); 372 } 373 374 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 375 #define validate_mm_mt(root) do { } while (0) 376 #define validate_mm(mm) do { } while (0) 377 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 378 379 /* 380 * vma has some anon_vma assigned, and is already inserted on that 381 * anon_vma's interval trees. 382 * 383 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 384 * vma must be removed from the anon_vma's interval trees using 385 * anon_vma_interval_tree_pre_update_vma(). 386 * 387 * After the update, the vma will be reinserted using 388 * anon_vma_interval_tree_post_update_vma(). 389 * 390 * The entire update must be protected by exclusive mmap_lock and by 391 * the root anon_vma's mutex. 392 */ 393 static inline void 394 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 395 { 396 struct anon_vma_chain *avc; 397 398 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 399 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 400 } 401 402 static inline void 403 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 404 { 405 struct anon_vma_chain *avc; 406 407 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 408 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 409 } 410 411 static unsigned long count_vma_pages_range(struct mm_struct *mm, 412 unsigned long addr, unsigned long end) 413 { 414 VMA_ITERATOR(vmi, mm, addr); 415 struct vm_area_struct *vma; 416 unsigned long nr_pages = 0; 417 418 for_each_vma_range(vmi, vma, end) { 419 unsigned long vm_start = max(addr, vma->vm_start); 420 unsigned long vm_end = min(end, vma->vm_end); 421 422 nr_pages += PHYS_PFN(vm_end - vm_start); 423 } 424 425 return nr_pages; 426 } 427 428 static void __vma_link_file(struct vm_area_struct *vma, 429 struct address_space *mapping) 430 { 431 if (vma->vm_flags & VM_SHARED) 432 mapping_allow_writable(mapping); 433 434 flush_dcache_mmap_lock(mapping); 435 vma_interval_tree_insert(vma, &mapping->i_mmap); 436 flush_dcache_mmap_unlock(mapping); 437 } 438 439 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 440 { 441 VMA_ITERATOR(vmi, mm, 0); 442 struct address_space *mapping = NULL; 443 444 if (vma_iter_prealloc(&vmi)) 445 return -ENOMEM; 446 447 if (vma->vm_file) { 448 mapping = vma->vm_file->f_mapping; 449 i_mmap_lock_write(mapping); 450 } 451 452 vma_iter_store(&vmi, vma); 453 454 if (mapping) { 455 __vma_link_file(vma, mapping); 456 i_mmap_unlock_write(mapping); 457 } 458 459 mm->map_count++; 460 validate_mm(mm); 461 return 0; 462 } 463 464 /* 465 * init_multi_vma_prep() - Initializer for struct vma_prepare 466 * @vp: The vma_prepare struct 467 * @vma: The vma that will be altered once locked 468 * @next: The next vma if it is to be adjusted 469 * @remove: The first vma to be removed 470 * @remove2: The second vma to be removed 471 */ 472 static inline void init_multi_vma_prep(struct vma_prepare *vp, 473 struct vm_area_struct *vma, struct vm_area_struct *next, 474 struct vm_area_struct *remove, struct vm_area_struct *remove2) 475 { 476 memset(vp, 0, sizeof(struct vma_prepare)); 477 vp->vma = vma; 478 vp->anon_vma = vma->anon_vma; 479 vp->remove = remove; 480 vp->remove2 = remove2; 481 vp->adj_next = next; 482 if (!vp->anon_vma && next) 483 vp->anon_vma = next->anon_vma; 484 485 vp->file = vma->vm_file; 486 if (vp->file) 487 vp->mapping = vma->vm_file->f_mapping; 488 489 } 490 491 /* 492 * init_vma_prep() - Initializer wrapper for vma_prepare struct 493 * @vp: The vma_prepare struct 494 * @vma: The vma that will be altered once locked 495 */ 496 static inline void init_vma_prep(struct vma_prepare *vp, 497 struct vm_area_struct *vma) 498 { 499 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 500 } 501 502 503 /* 504 * vma_prepare() - Helper function for handling locking VMAs prior to altering 505 * @vp: The initialized vma_prepare struct 506 */ 507 static inline void vma_prepare(struct vma_prepare *vp) 508 { 509 vma_start_write(vp->vma); 510 if (vp->adj_next) 511 vma_start_write(vp->adj_next); 512 /* vp->insert is always a newly created VMA, no need for locking */ 513 if (vp->remove) 514 vma_start_write(vp->remove); 515 if (vp->remove2) 516 vma_start_write(vp->remove2); 517 518 if (vp->file) { 519 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 520 521 if (vp->adj_next) 522 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 523 vp->adj_next->vm_end); 524 525 i_mmap_lock_write(vp->mapping); 526 if (vp->insert && vp->insert->vm_file) { 527 /* 528 * Put into interval tree now, so instantiated pages 529 * are visible to arm/parisc __flush_dcache_page 530 * throughout; but we cannot insert into address 531 * space until vma start or end is updated. 532 */ 533 __vma_link_file(vp->insert, 534 vp->insert->vm_file->f_mapping); 535 } 536 } 537 538 if (vp->anon_vma) { 539 anon_vma_lock_write(vp->anon_vma); 540 anon_vma_interval_tree_pre_update_vma(vp->vma); 541 if (vp->adj_next) 542 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 543 } 544 545 if (vp->file) { 546 flush_dcache_mmap_lock(vp->mapping); 547 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 548 if (vp->adj_next) 549 vma_interval_tree_remove(vp->adj_next, 550 &vp->mapping->i_mmap); 551 } 552 553 } 554 555 /* 556 * vma_complete- Helper function for handling the unlocking after altering VMAs, 557 * or for inserting a VMA. 558 * 559 * @vp: The vma_prepare struct 560 * @vmi: The vma iterator 561 * @mm: The mm_struct 562 */ 563 static inline void vma_complete(struct vma_prepare *vp, 564 struct vma_iterator *vmi, struct mm_struct *mm) 565 { 566 if (vp->file) { 567 if (vp->adj_next) 568 vma_interval_tree_insert(vp->adj_next, 569 &vp->mapping->i_mmap); 570 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 571 flush_dcache_mmap_unlock(vp->mapping); 572 } 573 574 if (vp->remove && vp->file) { 575 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping); 576 if (vp->remove2) 577 __remove_shared_vm_struct(vp->remove2, vp->file, 578 vp->mapping); 579 } else if (vp->insert) { 580 /* 581 * split_vma has split insert from vma, and needs 582 * us to insert it before dropping the locks 583 * (it may either follow vma or precede it). 584 */ 585 vma_iter_store(vmi, vp->insert); 586 mm->map_count++; 587 } 588 589 if (vp->anon_vma) { 590 anon_vma_interval_tree_post_update_vma(vp->vma); 591 if (vp->adj_next) 592 anon_vma_interval_tree_post_update_vma(vp->adj_next); 593 anon_vma_unlock_write(vp->anon_vma); 594 } 595 596 if (vp->file) { 597 i_mmap_unlock_write(vp->mapping); 598 uprobe_mmap(vp->vma); 599 600 if (vp->adj_next) 601 uprobe_mmap(vp->adj_next); 602 } 603 604 if (vp->remove) { 605 again: 606 vma_mark_detached(vp->remove, true); 607 if (vp->file) { 608 uprobe_munmap(vp->remove, vp->remove->vm_start, 609 vp->remove->vm_end); 610 fput(vp->file); 611 } 612 if (vp->remove->anon_vma) 613 anon_vma_merge(vp->vma, vp->remove); 614 mm->map_count--; 615 mpol_put(vma_policy(vp->remove)); 616 if (!vp->remove2) 617 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 618 vm_area_free(vp->remove); 619 620 /* 621 * In mprotect's case 6 (see comments on vma_merge), 622 * we are removing both mid and next vmas 623 */ 624 if (vp->remove2) { 625 vp->remove = vp->remove2; 626 vp->remove2 = NULL; 627 goto again; 628 } 629 } 630 if (vp->insert && vp->file) 631 uprobe_mmap(vp->insert); 632 } 633 634 /* 635 * dup_anon_vma() - Helper function to duplicate anon_vma 636 * @dst: The destination VMA 637 * @src: The source VMA 638 * 639 * Returns: 0 on success. 640 */ 641 static inline int dup_anon_vma(struct vm_area_struct *dst, 642 struct vm_area_struct *src) 643 { 644 /* 645 * Easily overlooked: when mprotect shifts the boundary, make sure the 646 * expanding vma has anon_vma set if the shrinking vma had, to cover any 647 * anon pages imported. 648 */ 649 if (src->anon_vma && !dst->anon_vma) { 650 dst->anon_vma = src->anon_vma; 651 return anon_vma_clone(dst, src); 652 } 653 654 return 0; 655 } 656 657 /* 658 * vma_expand - Expand an existing VMA 659 * 660 * @vmi: The vma iterator 661 * @vma: The vma to expand 662 * @start: The start of the vma 663 * @end: The exclusive end of the vma 664 * @pgoff: The page offset of vma 665 * @next: The current of next vma. 666 * 667 * Expand @vma to @start and @end. Can expand off the start and end. Will 668 * expand over @next if it's different from @vma and @end == @next->vm_end. 669 * Checking if the @vma can expand and merge with @next needs to be handled by 670 * the caller. 671 * 672 * Returns: 0 on success 673 */ 674 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 675 unsigned long start, unsigned long end, pgoff_t pgoff, 676 struct vm_area_struct *next) 677 { 678 bool remove_next = false; 679 struct vma_prepare vp; 680 681 if (next && (vma != next) && (end == next->vm_end)) { 682 int ret; 683 684 remove_next = true; 685 ret = dup_anon_vma(vma, next); 686 if (ret) 687 return ret; 688 } 689 690 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 691 /* Not merging but overwriting any part of next is not handled. */ 692 VM_WARN_ON(next && !vp.remove && 693 next != vma && end > next->vm_start); 694 /* Only handles expanding */ 695 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 696 697 if (vma_iter_prealloc(vmi)) 698 goto nomem; 699 700 vma_prepare(&vp); 701 vma_adjust_trans_huge(vma, start, end, 0); 702 /* VMA iterator points to previous, so set to start if necessary */ 703 if (vma_iter_addr(vmi) != start) 704 vma_iter_set(vmi, start); 705 706 vma->vm_start = start; 707 vma->vm_end = end; 708 vma->vm_pgoff = pgoff; 709 /* Note: mas must be pointing to the expanding VMA */ 710 vma_iter_store(vmi, vma); 711 712 vma_complete(&vp, vmi, vma->vm_mm); 713 validate_mm(vma->vm_mm); 714 return 0; 715 716 nomem: 717 return -ENOMEM; 718 } 719 720 /* 721 * vma_shrink() - Reduce an existing VMAs memory area 722 * @vmi: The vma iterator 723 * @vma: The VMA to modify 724 * @start: The new start 725 * @end: The new end 726 * 727 * Returns: 0 on success, -ENOMEM otherwise 728 */ 729 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 730 unsigned long start, unsigned long end, pgoff_t pgoff) 731 { 732 struct vma_prepare vp; 733 734 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 735 736 if (vma_iter_prealloc(vmi)) 737 return -ENOMEM; 738 739 init_vma_prep(&vp, vma); 740 vma_prepare(&vp); 741 vma_adjust_trans_huge(vma, start, end, 0); 742 743 if (vma->vm_start < start) 744 vma_iter_clear(vmi, vma->vm_start, start); 745 746 if (vma->vm_end > end) 747 vma_iter_clear(vmi, end, vma->vm_end); 748 749 vma->vm_start = start; 750 vma->vm_end = end; 751 vma->vm_pgoff = pgoff; 752 vma_complete(&vp, vmi, vma->vm_mm); 753 validate_mm(vma->vm_mm); 754 return 0; 755 } 756 757 /* 758 * If the vma has a ->close operation then the driver probably needs to release 759 * per-vma resources, so we don't attempt to merge those if the caller indicates 760 * the current vma may be removed as part of the merge. 761 */ 762 static inline bool is_mergeable_vma(struct vm_area_struct *vma, 763 struct file *file, unsigned long vm_flags, 764 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 765 struct anon_vma_name *anon_name, bool may_remove_vma) 766 { 767 /* 768 * VM_SOFTDIRTY should not prevent from VMA merging, if we 769 * match the flags but dirty bit -- the caller should mark 770 * merged VMA as dirty. If dirty bit won't be excluded from 771 * comparison, we increase pressure on the memory system forcing 772 * the kernel to generate new VMAs when old one could be 773 * extended instead. 774 */ 775 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 776 return false; 777 if (vma->vm_file != file) 778 return false; 779 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 780 return false; 781 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 782 return false; 783 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 784 return false; 785 return true; 786 } 787 788 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 789 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 790 { 791 /* 792 * The list_is_singular() test is to avoid merging VMA cloned from 793 * parents. This can improve scalability caused by anon_vma lock. 794 */ 795 if ((!anon_vma1 || !anon_vma2) && (!vma || 796 list_is_singular(&vma->anon_vma_chain))) 797 return true; 798 return anon_vma1 == anon_vma2; 799 } 800 801 /* 802 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 803 * in front of (at a lower virtual address and file offset than) the vma. 804 * 805 * We cannot merge two vmas if they have differently assigned (non-NULL) 806 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 807 * 808 * We don't check here for the merged mmap wrapping around the end of pagecache 809 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 810 * wrap, nor mmaps which cover the final page at index -1UL. 811 * 812 * We assume the vma may be removed as part of the merge. 813 */ 814 static bool 815 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 816 struct anon_vma *anon_vma, struct file *file, 817 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 818 struct anon_vma_name *anon_name) 819 { 820 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 821 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 822 if (vma->vm_pgoff == vm_pgoff) 823 return true; 824 } 825 return false; 826 } 827 828 /* 829 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 830 * beyond (at a higher virtual address and file offset than) the vma. 831 * 832 * We cannot merge two vmas if they have differently assigned (non-NULL) 833 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 834 * 835 * We assume that vma is not removed as part of the merge. 836 */ 837 static bool 838 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 839 struct anon_vma *anon_vma, struct file *file, 840 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 841 struct anon_vma_name *anon_name) 842 { 843 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 844 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 845 pgoff_t vm_pglen; 846 vm_pglen = vma_pages(vma); 847 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 848 return true; 849 } 850 return false; 851 } 852 853 /* 854 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 855 * figure out whether that can be merged with its predecessor or its 856 * successor. Or both (it neatly fills a hole). 857 * 858 * In most cases - when called for mmap, brk or mremap - [addr,end) is 859 * certain not to be mapped by the time vma_merge is called; but when 860 * called for mprotect, it is certain to be already mapped (either at 861 * an offset within prev, or at the start of next), and the flags of 862 * this area are about to be changed to vm_flags - and the no-change 863 * case has already been eliminated. 864 * 865 * The following mprotect cases have to be considered, where **** is 866 * the area passed down from mprotect_fixup, never extending beyond one 867 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 868 * at the same address as **** and is of the same or larger span, and 869 * NNNN the next vma after ****: 870 * 871 * **** **** **** 872 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 873 * cannot merge might become might become 874 * PPNNNNNNNNNN PPPPPPPPPPCC 875 * mmap, brk or case 4 below case 5 below 876 * mremap move: 877 * **** **** 878 * PPPP NNNN PPPPCCCCNNNN 879 * might become might become 880 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 881 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 882 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 883 * 884 * It is important for case 8 that the vma CCCC overlapping the 885 * region **** is never going to extended over NNNN. Instead NNNN must 886 * be extended in region **** and CCCC must be removed. This way in 887 * all cases where vma_merge succeeds, the moment vma_merge drops the 888 * rmap_locks, the properties of the merged vma will be already 889 * correct for the whole merged range. Some of those properties like 890 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 891 * be correct for the whole merged range immediately after the 892 * rmap_locks are released. Otherwise if NNNN would be removed and 893 * CCCC would be extended over the NNNN range, remove_migration_ptes 894 * or other rmap walkers (if working on addresses beyond the "end" 895 * parameter) may establish ptes with the wrong permissions of CCCC 896 * instead of the right permissions of NNNN. 897 * 898 * In the code below: 899 * PPPP is represented by *prev 900 * CCCC is represented by *curr or not represented at all (NULL) 901 * NNNN is represented by *next or not represented at all (NULL) 902 * **** is not represented - it will be merged and the vma containing the 903 * area is returned, or the function will return NULL 904 */ 905 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm, 906 struct vm_area_struct *prev, unsigned long addr, 907 unsigned long end, unsigned long vm_flags, 908 struct anon_vma *anon_vma, struct file *file, 909 pgoff_t pgoff, struct mempolicy *policy, 910 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 911 struct anon_vma_name *anon_name) 912 { 913 struct vm_area_struct *curr, *next, *res; 914 struct vm_area_struct *vma, *adjust, *remove, *remove2; 915 struct vma_prepare vp; 916 pgoff_t vma_pgoff; 917 int err = 0; 918 bool merge_prev = false; 919 bool merge_next = false; 920 bool vma_expanded = false; 921 unsigned long vma_start = addr; 922 unsigned long vma_end = end; 923 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 924 long adj_start = 0; 925 926 validate_mm(mm); 927 /* 928 * We later require that vma->vm_flags == vm_flags, 929 * so this tests vma->vm_flags & VM_SPECIAL, too. 930 */ 931 if (vm_flags & VM_SPECIAL) 932 return NULL; 933 934 /* Does the input range span an existing VMA? (cases 5 - 8) */ 935 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 936 937 if (!curr || /* cases 1 - 4 */ 938 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 939 next = vma_lookup(mm, end); 940 else 941 next = NULL; /* case 5 */ 942 943 if (prev) { 944 vma_start = prev->vm_start; 945 vma_pgoff = prev->vm_pgoff; 946 947 /* Can we merge the predecessor? */ 948 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 949 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 950 pgoff, vm_userfaultfd_ctx, anon_name)) { 951 merge_prev = true; 952 vma_prev(vmi); 953 } 954 } 955 956 /* Can we merge the successor? */ 957 if (next && mpol_equal(policy, vma_policy(next)) && 958 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 959 vm_userfaultfd_ctx, anon_name)) { 960 merge_next = true; 961 } 962 963 if (!merge_prev && !merge_next) 964 return NULL; /* Not mergeable. */ 965 966 res = vma = prev; 967 remove = remove2 = adjust = NULL; 968 969 /* Verify some invariant that must be enforced by the caller. */ 970 VM_WARN_ON(prev && addr <= prev->vm_start); 971 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 972 VM_WARN_ON(addr >= end); 973 974 /* Can we merge both the predecessor and the successor? */ 975 if (merge_prev && merge_next && 976 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 977 remove = next; /* case 1 */ 978 vma_end = next->vm_end; 979 err = dup_anon_vma(prev, next); 980 if (curr) { /* case 6 */ 981 remove = curr; 982 remove2 = next; 983 if (!next->anon_vma) 984 err = dup_anon_vma(prev, curr); 985 } 986 } else if (merge_prev) { /* case 2 */ 987 if (curr) { 988 err = dup_anon_vma(prev, curr); 989 if (end == curr->vm_end) { /* case 7 */ 990 remove = curr; 991 } else { /* case 5 */ 992 adjust = curr; 993 adj_start = (end - curr->vm_start); 994 } 995 } 996 } else { /* merge_next */ 997 res = next; 998 if (prev && addr < prev->vm_end) { /* case 4 */ 999 vma_end = addr; 1000 adjust = next; 1001 adj_start = -(prev->vm_end - addr); 1002 err = dup_anon_vma(next, prev); 1003 } else { 1004 /* 1005 * Note that cases 3 and 8 are the ONLY ones where prev 1006 * is permitted to be (but is not necessarily) NULL. 1007 */ 1008 vma = next; /* case 3 */ 1009 vma_start = addr; 1010 vma_end = next->vm_end; 1011 vma_pgoff = next->vm_pgoff; 1012 if (curr) { /* case 8 */ 1013 vma_pgoff = curr->vm_pgoff; 1014 remove = curr; 1015 err = dup_anon_vma(next, curr); 1016 } 1017 } 1018 } 1019 1020 /* Error in anon_vma clone. */ 1021 if (err) 1022 return NULL; 1023 1024 if (vma_iter_prealloc(vmi)) 1025 return NULL; 1026 1027 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 1028 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 1029 vp.anon_vma != adjust->anon_vma); 1030 1031 vma_prepare(&vp); 1032 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1033 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 1034 vma_expanded = true; 1035 1036 vma->vm_start = vma_start; 1037 vma->vm_end = vma_end; 1038 vma->vm_pgoff = vma_pgoff; 1039 1040 if (vma_expanded) 1041 vma_iter_store(vmi, vma); 1042 1043 if (adj_start) { 1044 adjust->vm_start += adj_start; 1045 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1046 if (adj_start < 0) { 1047 WARN_ON(vma_expanded); 1048 vma_iter_store(vmi, next); 1049 } 1050 } 1051 1052 vma_complete(&vp, vmi, mm); 1053 vma_iter_free(vmi); 1054 validate_mm(mm); 1055 khugepaged_enter_vma(res, vm_flags); 1056 1057 return res; 1058 } 1059 1060 /* 1061 * Rough compatibility check to quickly see if it's even worth looking 1062 * at sharing an anon_vma. 1063 * 1064 * They need to have the same vm_file, and the flags can only differ 1065 * in things that mprotect may change. 1066 * 1067 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1068 * we can merge the two vma's. For example, we refuse to merge a vma if 1069 * there is a vm_ops->close() function, because that indicates that the 1070 * driver is doing some kind of reference counting. But that doesn't 1071 * really matter for the anon_vma sharing case. 1072 */ 1073 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1074 { 1075 return a->vm_end == b->vm_start && 1076 mpol_equal(vma_policy(a), vma_policy(b)) && 1077 a->vm_file == b->vm_file && 1078 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1079 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1080 } 1081 1082 /* 1083 * Do some basic sanity checking to see if we can re-use the anon_vma 1084 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1085 * the same as 'old', the other will be the new one that is trying 1086 * to share the anon_vma. 1087 * 1088 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1089 * the anon_vma of 'old' is concurrently in the process of being set up 1090 * by another page fault trying to merge _that_. But that's ok: if it 1091 * is being set up, that automatically means that it will be a singleton 1092 * acceptable for merging, so we can do all of this optimistically. But 1093 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1094 * 1095 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1096 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1097 * is to return an anon_vma that is "complex" due to having gone through 1098 * a fork). 1099 * 1100 * We also make sure that the two vma's are compatible (adjacent, 1101 * and with the same memory policies). That's all stable, even with just 1102 * a read lock on the mmap_lock. 1103 */ 1104 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1105 { 1106 if (anon_vma_compatible(a, b)) { 1107 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1108 1109 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1110 return anon_vma; 1111 } 1112 return NULL; 1113 } 1114 1115 /* 1116 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1117 * neighbouring vmas for a suitable anon_vma, before it goes off 1118 * to allocate a new anon_vma. It checks because a repetitive 1119 * sequence of mprotects and faults may otherwise lead to distinct 1120 * anon_vmas being allocated, preventing vma merge in subsequent 1121 * mprotect. 1122 */ 1123 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1124 { 1125 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end); 1126 struct anon_vma *anon_vma = NULL; 1127 struct vm_area_struct *prev, *next; 1128 1129 /* Try next first. */ 1130 next = mas_walk(&mas); 1131 if (next) { 1132 anon_vma = reusable_anon_vma(next, vma, next); 1133 if (anon_vma) 1134 return anon_vma; 1135 } 1136 1137 prev = mas_prev(&mas, 0); 1138 VM_BUG_ON_VMA(prev != vma, vma); 1139 prev = mas_prev(&mas, 0); 1140 /* Try prev next. */ 1141 if (prev) 1142 anon_vma = reusable_anon_vma(prev, prev, vma); 1143 1144 /* 1145 * We might reach here with anon_vma == NULL if we can't find 1146 * any reusable anon_vma. 1147 * There's no absolute need to look only at touching neighbours: 1148 * we could search further afield for "compatible" anon_vmas. 1149 * But it would probably just be a waste of time searching, 1150 * or lead to too many vmas hanging off the same anon_vma. 1151 * We're trying to allow mprotect remerging later on, 1152 * not trying to minimize memory used for anon_vmas. 1153 */ 1154 return anon_vma; 1155 } 1156 1157 /* 1158 * If a hint addr is less than mmap_min_addr change hint to be as 1159 * low as possible but still greater than mmap_min_addr 1160 */ 1161 static inline unsigned long round_hint_to_min(unsigned long hint) 1162 { 1163 hint &= PAGE_MASK; 1164 if (((void *)hint != NULL) && 1165 (hint < mmap_min_addr)) 1166 return PAGE_ALIGN(mmap_min_addr); 1167 return hint; 1168 } 1169 1170 int mlock_future_check(struct mm_struct *mm, unsigned long flags, 1171 unsigned long len) 1172 { 1173 unsigned long locked, lock_limit; 1174 1175 /* mlock MCL_FUTURE? */ 1176 if (flags & VM_LOCKED) { 1177 locked = len >> PAGE_SHIFT; 1178 locked += mm->locked_vm; 1179 lock_limit = rlimit(RLIMIT_MEMLOCK); 1180 lock_limit >>= PAGE_SHIFT; 1181 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1182 return -EAGAIN; 1183 } 1184 return 0; 1185 } 1186 1187 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1188 { 1189 if (S_ISREG(inode->i_mode)) 1190 return MAX_LFS_FILESIZE; 1191 1192 if (S_ISBLK(inode->i_mode)) 1193 return MAX_LFS_FILESIZE; 1194 1195 if (S_ISSOCK(inode->i_mode)) 1196 return MAX_LFS_FILESIZE; 1197 1198 /* Special "we do even unsigned file positions" case */ 1199 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1200 return 0; 1201 1202 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1203 return ULONG_MAX; 1204 } 1205 1206 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1207 unsigned long pgoff, unsigned long len) 1208 { 1209 u64 maxsize = file_mmap_size_max(file, inode); 1210 1211 if (maxsize && len > maxsize) 1212 return false; 1213 maxsize -= len; 1214 if (pgoff > maxsize >> PAGE_SHIFT) 1215 return false; 1216 return true; 1217 } 1218 1219 /* 1220 * The caller must write-lock current->mm->mmap_lock. 1221 */ 1222 unsigned long do_mmap(struct file *file, unsigned long addr, 1223 unsigned long len, unsigned long prot, 1224 unsigned long flags, unsigned long pgoff, 1225 unsigned long *populate, struct list_head *uf) 1226 { 1227 struct mm_struct *mm = current->mm; 1228 vm_flags_t vm_flags; 1229 int pkey = 0; 1230 1231 validate_mm(mm); 1232 *populate = 0; 1233 1234 if (!len) 1235 return -EINVAL; 1236 1237 /* 1238 * Does the application expect PROT_READ to imply PROT_EXEC? 1239 * 1240 * (the exception is when the underlying filesystem is noexec 1241 * mounted, in which case we dont add PROT_EXEC.) 1242 */ 1243 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1244 if (!(file && path_noexec(&file->f_path))) 1245 prot |= PROT_EXEC; 1246 1247 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1248 if (flags & MAP_FIXED_NOREPLACE) 1249 flags |= MAP_FIXED; 1250 1251 if (!(flags & MAP_FIXED)) 1252 addr = round_hint_to_min(addr); 1253 1254 /* Careful about overflows.. */ 1255 len = PAGE_ALIGN(len); 1256 if (!len) 1257 return -ENOMEM; 1258 1259 /* offset overflow? */ 1260 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1261 return -EOVERFLOW; 1262 1263 /* Too many mappings? */ 1264 if (mm->map_count > sysctl_max_map_count) 1265 return -ENOMEM; 1266 1267 /* Obtain the address to map to. we verify (or select) it and ensure 1268 * that it represents a valid section of the address space. 1269 */ 1270 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1271 if (IS_ERR_VALUE(addr)) 1272 return addr; 1273 1274 if (flags & MAP_FIXED_NOREPLACE) { 1275 if (find_vma_intersection(mm, addr, addr + len)) 1276 return -EEXIST; 1277 } 1278 1279 if (prot == PROT_EXEC) { 1280 pkey = execute_only_pkey(mm); 1281 if (pkey < 0) 1282 pkey = 0; 1283 } 1284 1285 /* Do simple checking here so the lower-level routines won't have 1286 * to. we assume access permissions have been handled by the open 1287 * of the memory object, so we don't do any here. 1288 */ 1289 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1290 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1291 1292 if (flags & MAP_LOCKED) 1293 if (!can_do_mlock()) 1294 return -EPERM; 1295 1296 if (mlock_future_check(mm, vm_flags, len)) 1297 return -EAGAIN; 1298 1299 if (file) { 1300 struct inode *inode = file_inode(file); 1301 unsigned long flags_mask; 1302 1303 if (!file_mmap_ok(file, inode, pgoff, len)) 1304 return -EOVERFLOW; 1305 1306 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1307 1308 switch (flags & MAP_TYPE) { 1309 case MAP_SHARED: 1310 /* 1311 * Force use of MAP_SHARED_VALIDATE with non-legacy 1312 * flags. E.g. MAP_SYNC is dangerous to use with 1313 * MAP_SHARED as you don't know which consistency model 1314 * you will get. We silently ignore unsupported flags 1315 * with MAP_SHARED to preserve backward compatibility. 1316 */ 1317 flags &= LEGACY_MAP_MASK; 1318 fallthrough; 1319 case MAP_SHARED_VALIDATE: 1320 if (flags & ~flags_mask) 1321 return -EOPNOTSUPP; 1322 if (prot & PROT_WRITE) { 1323 if (!(file->f_mode & FMODE_WRITE)) 1324 return -EACCES; 1325 if (IS_SWAPFILE(file->f_mapping->host)) 1326 return -ETXTBSY; 1327 } 1328 1329 /* 1330 * Make sure we don't allow writing to an append-only 1331 * file.. 1332 */ 1333 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1334 return -EACCES; 1335 1336 vm_flags |= VM_SHARED | VM_MAYSHARE; 1337 if (!(file->f_mode & FMODE_WRITE)) 1338 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1339 fallthrough; 1340 case MAP_PRIVATE: 1341 if (!(file->f_mode & FMODE_READ)) 1342 return -EACCES; 1343 if (path_noexec(&file->f_path)) { 1344 if (vm_flags & VM_EXEC) 1345 return -EPERM; 1346 vm_flags &= ~VM_MAYEXEC; 1347 } 1348 1349 if (!file->f_op->mmap) 1350 return -ENODEV; 1351 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1352 return -EINVAL; 1353 break; 1354 1355 default: 1356 return -EINVAL; 1357 } 1358 } else { 1359 switch (flags & MAP_TYPE) { 1360 case MAP_SHARED: 1361 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1362 return -EINVAL; 1363 /* 1364 * Ignore pgoff. 1365 */ 1366 pgoff = 0; 1367 vm_flags |= VM_SHARED | VM_MAYSHARE; 1368 break; 1369 case MAP_PRIVATE: 1370 /* 1371 * Set pgoff according to addr for anon_vma. 1372 */ 1373 pgoff = addr >> PAGE_SHIFT; 1374 break; 1375 default: 1376 return -EINVAL; 1377 } 1378 } 1379 1380 /* 1381 * Set 'VM_NORESERVE' if we should not account for the 1382 * memory use of this mapping. 1383 */ 1384 if (flags & MAP_NORESERVE) { 1385 /* We honor MAP_NORESERVE if allowed to overcommit */ 1386 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1387 vm_flags |= VM_NORESERVE; 1388 1389 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1390 if (file && is_file_hugepages(file)) 1391 vm_flags |= VM_NORESERVE; 1392 } 1393 1394 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1395 if (!IS_ERR_VALUE(addr) && 1396 ((vm_flags & VM_LOCKED) || 1397 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1398 *populate = len; 1399 return addr; 1400 } 1401 1402 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1403 unsigned long prot, unsigned long flags, 1404 unsigned long fd, unsigned long pgoff) 1405 { 1406 struct file *file = NULL; 1407 unsigned long retval; 1408 1409 if (!(flags & MAP_ANONYMOUS)) { 1410 audit_mmap_fd(fd, flags); 1411 file = fget(fd); 1412 if (!file) 1413 return -EBADF; 1414 if (is_file_hugepages(file)) { 1415 len = ALIGN(len, huge_page_size(hstate_file(file))); 1416 } else if (unlikely(flags & MAP_HUGETLB)) { 1417 retval = -EINVAL; 1418 goto out_fput; 1419 } 1420 } else if (flags & MAP_HUGETLB) { 1421 struct hstate *hs; 1422 1423 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1424 if (!hs) 1425 return -EINVAL; 1426 1427 len = ALIGN(len, huge_page_size(hs)); 1428 /* 1429 * VM_NORESERVE is used because the reservations will be 1430 * taken when vm_ops->mmap() is called 1431 */ 1432 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1433 VM_NORESERVE, 1434 HUGETLB_ANONHUGE_INODE, 1435 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1436 if (IS_ERR(file)) 1437 return PTR_ERR(file); 1438 } 1439 1440 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1441 out_fput: 1442 if (file) 1443 fput(file); 1444 return retval; 1445 } 1446 1447 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1448 unsigned long, prot, unsigned long, flags, 1449 unsigned long, fd, unsigned long, pgoff) 1450 { 1451 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1452 } 1453 1454 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1455 struct mmap_arg_struct { 1456 unsigned long addr; 1457 unsigned long len; 1458 unsigned long prot; 1459 unsigned long flags; 1460 unsigned long fd; 1461 unsigned long offset; 1462 }; 1463 1464 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1465 { 1466 struct mmap_arg_struct a; 1467 1468 if (copy_from_user(&a, arg, sizeof(a))) 1469 return -EFAULT; 1470 if (offset_in_page(a.offset)) 1471 return -EINVAL; 1472 1473 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1474 a.offset >> PAGE_SHIFT); 1475 } 1476 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1477 1478 /* 1479 * Some shared mappings will want the pages marked read-only 1480 * to track write events. If so, we'll downgrade vm_page_prot 1481 * to the private version (using protection_map[] without the 1482 * VM_SHARED bit). 1483 */ 1484 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1485 { 1486 vm_flags_t vm_flags = vma->vm_flags; 1487 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1488 1489 /* If it was private or non-writable, the write bit is already clear */ 1490 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1491 return 0; 1492 1493 /* The backer wishes to know when pages are first written to? */ 1494 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1495 return 1; 1496 1497 /* The open routine did something to the protections that pgprot_modify 1498 * won't preserve? */ 1499 if (pgprot_val(vm_page_prot) != 1500 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1501 return 0; 1502 1503 /* 1504 * Do we need to track softdirty? hugetlb does not support softdirty 1505 * tracking yet. 1506 */ 1507 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1508 return 1; 1509 1510 /* Do we need write faults for uffd-wp tracking? */ 1511 if (userfaultfd_wp(vma)) 1512 return 1; 1513 1514 /* Specialty mapping? */ 1515 if (vm_flags & VM_PFNMAP) 1516 return 0; 1517 1518 /* Can the mapping track the dirty pages? */ 1519 return vma->vm_file && vma->vm_file->f_mapping && 1520 mapping_can_writeback(vma->vm_file->f_mapping); 1521 } 1522 1523 /* 1524 * We account for memory if it's a private writeable mapping, 1525 * not hugepages and VM_NORESERVE wasn't set. 1526 */ 1527 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1528 { 1529 /* 1530 * hugetlb has its own accounting separate from the core VM 1531 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1532 */ 1533 if (file && is_file_hugepages(file)) 1534 return 0; 1535 1536 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1537 } 1538 1539 /** 1540 * unmapped_area() - Find an area between the low_limit and the high_limit with 1541 * the correct alignment and offset, all from @info. Note: current->mm is used 1542 * for the search. 1543 * 1544 * @info: The unmapped area information including the range [low_limit - 1545 * high_limit), the alignment offset and mask. 1546 * 1547 * Return: A memory address or -ENOMEM. 1548 */ 1549 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1550 { 1551 unsigned long length, gap, low_limit; 1552 struct vm_area_struct *tmp; 1553 1554 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1555 1556 /* Adjust search length to account for worst case alignment overhead */ 1557 length = info->length + info->align_mask; 1558 if (length < info->length) 1559 return -ENOMEM; 1560 1561 low_limit = info->low_limit; 1562 retry: 1563 if (mas_empty_area(&mas, low_limit, info->high_limit - 1, length)) 1564 return -ENOMEM; 1565 1566 gap = mas.index; 1567 gap += (info->align_offset - gap) & info->align_mask; 1568 tmp = mas_next(&mas, ULONG_MAX); 1569 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */ 1570 if (vm_start_gap(tmp) < gap + length - 1) { 1571 low_limit = tmp->vm_end; 1572 mas_reset(&mas); 1573 goto retry; 1574 } 1575 } else { 1576 tmp = mas_prev(&mas, 0); 1577 if (tmp && vm_end_gap(tmp) > gap) { 1578 low_limit = vm_end_gap(tmp); 1579 mas_reset(&mas); 1580 goto retry; 1581 } 1582 } 1583 1584 return gap; 1585 } 1586 1587 /** 1588 * unmapped_area_topdown() - Find an area between the low_limit and the 1589 * high_limit with the correct alignment and offset at the highest available 1590 * address, all from @info. Note: current->mm is used for the search. 1591 * 1592 * @info: The unmapped area information including the range [low_limit - 1593 * high_limit), the alignment offset and mask. 1594 * 1595 * Return: A memory address or -ENOMEM. 1596 */ 1597 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1598 { 1599 unsigned long length, gap, high_limit, gap_end; 1600 struct vm_area_struct *tmp; 1601 1602 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1603 /* Adjust search length to account for worst case alignment overhead */ 1604 length = info->length + info->align_mask; 1605 if (length < info->length) 1606 return -ENOMEM; 1607 1608 high_limit = info->high_limit; 1609 retry: 1610 if (mas_empty_area_rev(&mas, info->low_limit, high_limit - 1, 1611 length)) 1612 return -ENOMEM; 1613 1614 gap = mas.last + 1 - info->length; 1615 gap -= (gap - info->align_offset) & info->align_mask; 1616 gap_end = mas.last; 1617 tmp = mas_next(&mas, ULONG_MAX); 1618 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */ 1619 if (vm_start_gap(tmp) <= gap_end) { 1620 high_limit = vm_start_gap(tmp); 1621 mas_reset(&mas); 1622 goto retry; 1623 } 1624 } else { 1625 tmp = mas_prev(&mas, 0); 1626 if (tmp && vm_end_gap(tmp) > gap) { 1627 high_limit = tmp->vm_start; 1628 mas_reset(&mas); 1629 goto retry; 1630 } 1631 } 1632 1633 return gap; 1634 } 1635 1636 /* 1637 * Search for an unmapped address range. 1638 * 1639 * We are looking for a range that: 1640 * - does not intersect with any VMA; 1641 * - is contained within the [low_limit, high_limit) interval; 1642 * - is at least the desired size. 1643 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1644 */ 1645 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1646 { 1647 unsigned long addr; 1648 1649 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1650 addr = unmapped_area_topdown(info); 1651 else 1652 addr = unmapped_area(info); 1653 1654 trace_vm_unmapped_area(addr, info); 1655 return addr; 1656 } 1657 1658 /* Get an address range which is currently unmapped. 1659 * For shmat() with addr=0. 1660 * 1661 * Ugly calling convention alert: 1662 * Return value with the low bits set means error value, 1663 * ie 1664 * if (ret & ~PAGE_MASK) 1665 * error = ret; 1666 * 1667 * This function "knows" that -ENOMEM has the bits set. 1668 */ 1669 unsigned long 1670 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1671 unsigned long len, unsigned long pgoff, 1672 unsigned long flags) 1673 { 1674 struct mm_struct *mm = current->mm; 1675 struct vm_area_struct *vma, *prev; 1676 struct vm_unmapped_area_info info; 1677 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1678 1679 if (len > mmap_end - mmap_min_addr) 1680 return -ENOMEM; 1681 1682 if (flags & MAP_FIXED) 1683 return addr; 1684 1685 if (addr) { 1686 addr = PAGE_ALIGN(addr); 1687 vma = find_vma_prev(mm, addr, &prev); 1688 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1689 (!vma || addr + len <= vm_start_gap(vma)) && 1690 (!prev || addr >= vm_end_gap(prev))) 1691 return addr; 1692 } 1693 1694 info.flags = 0; 1695 info.length = len; 1696 info.low_limit = mm->mmap_base; 1697 info.high_limit = mmap_end; 1698 info.align_mask = 0; 1699 info.align_offset = 0; 1700 return vm_unmapped_area(&info); 1701 } 1702 1703 #ifndef HAVE_ARCH_UNMAPPED_AREA 1704 unsigned long 1705 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1706 unsigned long len, unsigned long pgoff, 1707 unsigned long flags) 1708 { 1709 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1710 } 1711 #endif 1712 1713 /* 1714 * This mmap-allocator allocates new areas top-down from below the 1715 * stack's low limit (the base): 1716 */ 1717 unsigned long 1718 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1719 unsigned long len, unsigned long pgoff, 1720 unsigned long flags) 1721 { 1722 struct vm_area_struct *vma, *prev; 1723 struct mm_struct *mm = current->mm; 1724 struct vm_unmapped_area_info info; 1725 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1726 1727 /* requested length too big for entire address space */ 1728 if (len > mmap_end - mmap_min_addr) 1729 return -ENOMEM; 1730 1731 if (flags & MAP_FIXED) 1732 return addr; 1733 1734 /* requesting a specific address */ 1735 if (addr) { 1736 addr = PAGE_ALIGN(addr); 1737 vma = find_vma_prev(mm, addr, &prev); 1738 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1739 (!vma || addr + len <= vm_start_gap(vma)) && 1740 (!prev || addr >= vm_end_gap(prev))) 1741 return addr; 1742 } 1743 1744 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1745 info.length = len; 1746 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1747 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1748 info.align_mask = 0; 1749 info.align_offset = 0; 1750 addr = vm_unmapped_area(&info); 1751 1752 /* 1753 * A failed mmap() very likely causes application failure, 1754 * so fall back to the bottom-up function here. This scenario 1755 * can happen with large stack limits and large mmap() 1756 * allocations. 1757 */ 1758 if (offset_in_page(addr)) { 1759 VM_BUG_ON(addr != -ENOMEM); 1760 info.flags = 0; 1761 info.low_limit = TASK_UNMAPPED_BASE; 1762 info.high_limit = mmap_end; 1763 addr = vm_unmapped_area(&info); 1764 } 1765 1766 return addr; 1767 } 1768 1769 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1770 unsigned long 1771 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1772 unsigned long len, unsigned long pgoff, 1773 unsigned long flags) 1774 { 1775 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1776 } 1777 #endif 1778 1779 unsigned long 1780 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1781 unsigned long pgoff, unsigned long flags) 1782 { 1783 unsigned long (*get_area)(struct file *, unsigned long, 1784 unsigned long, unsigned long, unsigned long); 1785 1786 unsigned long error = arch_mmap_check(addr, len, flags); 1787 if (error) 1788 return error; 1789 1790 /* Careful about overflows.. */ 1791 if (len > TASK_SIZE) 1792 return -ENOMEM; 1793 1794 get_area = current->mm->get_unmapped_area; 1795 if (file) { 1796 if (file->f_op->get_unmapped_area) 1797 get_area = file->f_op->get_unmapped_area; 1798 } else if (flags & MAP_SHARED) { 1799 /* 1800 * mmap_region() will call shmem_zero_setup() to create a file, 1801 * so use shmem's get_unmapped_area in case it can be huge. 1802 * do_mmap() will clear pgoff, so match alignment. 1803 */ 1804 pgoff = 0; 1805 get_area = shmem_get_unmapped_area; 1806 } 1807 1808 addr = get_area(file, addr, len, pgoff, flags); 1809 if (IS_ERR_VALUE(addr)) 1810 return addr; 1811 1812 if (addr > TASK_SIZE - len) 1813 return -ENOMEM; 1814 if (offset_in_page(addr)) 1815 return -EINVAL; 1816 1817 error = security_mmap_addr(addr); 1818 return error ? error : addr; 1819 } 1820 1821 EXPORT_SYMBOL(get_unmapped_area); 1822 1823 /** 1824 * find_vma_intersection() - Look up the first VMA which intersects the interval 1825 * @mm: The process address space. 1826 * @start_addr: The inclusive start user address. 1827 * @end_addr: The exclusive end user address. 1828 * 1829 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1830 * start_addr < end_addr. 1831 */ 1832 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1833 unsigned long start_addr, 1834 unsigned long end_addr) 1835 { 1836 unsigned long index = start_addr; 1837 1838 mmap_assert_locked(mm); 1839 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1840 } 1841 EXPORT_SYMBOL(find_vma_intersection); 1842 1843 /** 1844 * find_vma() - Find the VMA for a given address, or the next VMA. 1845 * @mm: The mm_struct to check 1846 * @addr: The address 1847 * 1848 * Returns: The VMA associated with addr, or the next VMA. 1849 * May return %NULL in the case of no VMA at addr or above. 1850 */ 1851 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1852 { 1853 unsigned long index = addr; 1854 1855 mmap_assert_locked(mm); 1856 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1857 } 1858 EXPORT_SYMBOL(find_vma); 1859 1860 /** 1861 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1862 * set %pprev to the previous VMA, if any. 1863 * @mm: The mm_struct to check 1864 * @addr: The address 1865 * @pprev: The pointer to set to the previous VMA 1866 * 1867 * Note that RCU lock is missing here since the external mmap_lock() is used 1868 * instead. 1869 * 1870 * Returns: The VMA associated with @addr, or the next vma. 1871 * May return %NULL in the case of no vma at addr or above. 1872 */ 1873 struct vm_area_struct * 1874 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1875 struct vm_area_struct **pprev) 1876 { 1877 struct vm_area_struct *vma; 1878 MA_STATE(mas, &mm->mm_mt, addr, addr); 1879 1880 vma = mas_walk(&mas); 1881 *pprev = mas_prev(&mas, 0); 1882 if (!vma) 1883 vma = mas_next(&mas, ULONG_MAX); 1884 return vma; 1885 } 1886 1887 /* 1888 * Verify that the stack growth is acceptable and 1889 * update accounting. This is shared with both the 1890 * grow-up and grow-down cases. 1891 */ 1892 static int acct_stack_growth(struct vm_area_struct *vma, 1893 unsigned long size, unsigned long grow) 1894 { 1895 struct mm_struct *mm = vma->vm_mm; 1896 unsigned long new_start; 1897 1898 /* address space limit tests */ 1899 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1900 return -ENOMEM; 1901 1902 /* Stack limit test */ 1903 if (size > rlimit(RLIMIT_STACK)) 1904 return -ENOMEM; 1905 1906 /* mlock limit tests */ 1907 if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1908 return -ENOMEM; 1909 1910 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1911 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1912 vma->vm_end - size; 1913 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1914 return -EFAULT; 1915 1916 /* 1917 * Overcommit.. This must be the final test, as it will 1918 * update security statistics. 1919 */ 1920 if (security_vm_enough_memory_mm(mm, grow)) 1921 return -ENOMEM; 1922 1923 return 0; 1924 } 1925 1926 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1927 /* 1928 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1929 * vma is the last one with address > vma->vm_end. Have to extend vma. 1930 */ 1931 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1932 { 1933 struct mm_struct *mm = vma->vm_mm; 1934 struct vm_area_struct *next; 1935 unsigned long gap_addr; 1936 int error = 0; 1937 MA_STATE(mas, &mm->mm_mt, 0, 0); 1938 1939 if (!(vma->vm_flags & VM_GROWSUP)) 1940 return -EFAULT; 1941 1942 /* Guard against exceeding limits of the address space. */ 1943 address &= PAGE_MASK; 1944 if (address >= (TASK_SIZE & PAGE_MASK)) 1945 return -ENOMEM; 1946 address += PAGE_SIZE; 1947 1948 /* Enforce stack_guard_gap */ 1949 gap_addr = address + stack_guard_gap; 1950 1951 /* Guard against overflow */ 1952 if (gap_addr < address || gap_addr > TASK_SIZE) 1953 gap_addr = TASK_SIZE; 1954 1955 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1956 if (next && vma_is_accessible(next)) { 1957 if (!(next->vm_flags & VM_GROWSUP)) 1958 return -ENOMEM; 1959 /* Check that both stack segments have the same anon_vma? */ 1960 } 1961 1962 if (mas_preallocate(&mas, GFP_KERNEL)) 1963 return -ENOMEM; 1964 1965 /* We must make sure the anon_vma is allocated. */ 1966 if (unlikely(anon_vma_prepare(vma))) { 1967 mas_destroy(&mas); 1968 return -ENOMEM; 1969 } 1970 1971 /* 1972 * vma->vm_start/vm_end cannot change under us because the caller 1973 * is required to hold the mmap_lock in read mode. We need the 1974 * anon_vma lock to serialize against concurrent expand_stacks. 1975 */ 1976 anon_vma_lock_write(vma->anon_vma); 1977 1978 /* Somebody else might have raced and expanded it already */ 1979 if (address > vma->vm_end) { 1980 unsigned long size, grow; 1981 1982 size = address - vma->vm_start; 1983 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1984 1985 error = -ENOMEM; 1986 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1987 error = acct_stack_growth(vma, size, grow); 1988 if (!error) { 1989 /* 1990 * We only hold a shared mmap_lock lock here, so 1991 * we need to protect against concurrent vma 1992 * expansions. anon_vma_lock_write() doesn't 1993 * help here, as we don't guarantee that all 1994 * growable vmas in a mm share the same root 1995 * anon vma. So, we reuse mm->page_table_lock 1996 * to guard against concurrent vma expansions. 1997 */ 1998 spin_lock(&mm->page_table_lock); 1999 if (vma->vm_flags & VM_LOCKED) 2000 mm->locked_vm += grow; 2001 vm_stat_account(mm, vma->vm_flags, grow); 2002 anon_vma_interval_tree_pre_update_vma(vma); 2003 vma->vm_end = address; 2004 /* Overwrite old entry in mtree. */ 2005 mas_set_range(&mas, vma->vm_start, address - 1); 2006 mas_store_prealloc(&mas, vma); 2007 anon_vma_interval_tree_post_update_vma(vma); 2008 spin_unlock(&mm->page_table_lock); 2009 2010 perf_event_mmap(vma); 2011 } 2012 } 2013 } 2014 anon_vma_unlock_write(vma->anon_vma); 2015 khugepaged_enter_vma(vma, vma->vm_flags); 2016 mas_destroy(&mas); 2017 return error; 2018 } 2019 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2020 2021 /* 2022 * vma is the first one with address < vma->vm_start. Have to extend vma. 2023 */ 2024 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2025 { 2026 struct mm_struct *mm = vma->vm_mm; 2027 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start); 2028 struct vm_area_struct *prev; 2029 int error = 0; 2030 2031 address &= PAGE_MASK; 2032 if (address < mmap_min_addr) 2033 return -EPERM; 2034 2035 /* Enforce stack_guard_gap */ 2036 prev = mas_prev(&mas, 0); 2037 /* Check that both stack segments have the same anon_vma? */ 2038 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2039 vma_is_accessible(prev)) { 2040 if (address - prev->vm_end < stack_guard_gap) 2041 return -ENOMEM; 2042 } 2043 2044 if (mas_preallocate(&mas, GFP_KERNEL)) 2045 return -ENOMEM; 2046 2047 /* We must make sure the anon_vma is allocated. */ 2048 if (unlikely(anon_vma_prepare(vma))) { 2049 mas_destroy(&mas); 2050 return -ENOMEM; 2051 } 2052 2053 /* 2054 * vma->vm_start/vm_end cannot change under us because the caller 2055 * is required to hold the mmap_lock in read mode. We need the 2056 * anon_vma lock to serialize against concurrent expand_stacks. 2057 */ 2058 anon_vma_lock_write(vma->anon_vma); 2059 2060 /* Somebody else might have raced and expanded it already */ 2061 if (address < vma->vm_start) { 2062 unsigned long size, grow; 2063 2064 size = vma->vm_end - address; 2065 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2066 2067 error = -ENOMEM; 2068 if (grow <= vma->vm_pgoff) { 2069 error = acct_stack_growth(vma, size, grow); 2070 if (!error) { 2071 /* 2072 * We only hold a shared mmap_lock lock here, so 2073 * we need to protect against concurrent vma 2074 * expansions. anon_vma_lock_write() doesn't 2075 * help here, as we don't guarantee that all 2076 * growable vmas in a mm share the same root 2077 * anon vma. So, we reuse mm->page_table_lock 2078 * to guard against concurrent vma expansions. 2079 */ 2080 spin_lock(&mm->page_table_lock); 2081 if (vma->vm_flags & VM_LOCKED) 2082 mm->locked_vm += grow; 2083 vm_stat_account(mm, vma->vm_flags, grow); 2084 anon_vma_interval_tree_pre_update_vma(vma); 2085 vma->vm_start = address; 2086 vma->vm_pgoff -= grow; 2087 /* Overwrite old entry in mtree. */ 2088 mas_set_range(&mas, address, vma->vm_end - 1); 2089 mas_store_prealloc(&mas, vma); 2090 anon_vma_interval_tree_post_update_vma(vma); 2091 spin_unlock(&mm->page_table_lock); 2092 2093 perf_event_mmap(vma); 2094 } 2095 } 2096 } 2097 anon_vma_unlock_write(vma->anon_vma); 2098 khugepaged_enter_vma(vma, vma->vm_flags); 2099 mas_destroy(&mas); 2100 return error; 2101 } 2102 2103 /* enforced gap between the expanding stack and other mappings. */ 2104 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2105 2106 static int __init cmdline_parse_stack_guard_gap(char *p) 2107 { 2108 unsigned long val; 2109 char *endptr; 2110 2111 val = simple_strtoul(p, &endptr, 10); 2112 if (!*endptr) 2113 stack_guard_gap = val << PAGE_SHIFT; 2114 2115 return 1; 2116 } 2117 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2118 2119 #ifdef CONFIG_STACK_GROWSUP 2120 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2121 { 2122 return expand_upwards(vma, address); 2123 } 2124 2125 struct vm_area_struct * 2126 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2127 { 2128 struct vm_area_struct *vma, *prev; 2129 2130 addr &= PAGE_MASK; 2131 vma = find_vma_prev(mm, addr, &prev); 2132 if (vma && (vma->vm_start <= addr)) 2133 return vma; 2134 if (!prev || expand_stack(prev, addr)) 2135 return NULL; 2136 if (prev->vm_flags & VM_LOCKED) 2137 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2138 return prev; 2139 } 2140 #else 2141 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2142 { 2143 return expand_downwards(vma, address); 2144 } 2145 2146 struct vm_area_struct * 2147 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2148 { 2149 struct vm_area_struct *vma; 2150 unsigned long start; 2151 2152 addr &= PAGE_MASK; 2153 vma = find_vma(mm, addr); 2154 if (!vma) 2155 return NULL; 2156 if (vma->vm_start <= addr) 2157 return vma; 2158 if (!(vma->vm_flags & VM_GROWSDOWN)) 2159 return NULL; 2160 start = vma->vm_start; 2161 if (expand_stack(vma, addr)) 2162 return NULL; 2163 if (vma->vm_flags & VM_LOCKED) 2164 populate_vma_page_range(vma, addr, start, NULL); 2165 return vma; 2166 } 2167 #endif 2168 2169 EXPORT_SYMBOL_GPL(find_extend_vma); 2170 2171 /* 2172 * Ok - we have the memory areas we should free on a maple tree so release them, 2173 * and do the vma updates. 2174 * 2175 * Called with the mm semaphore held. 2176 */ 2177 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2178 { 2179 unsigned long nr_accounted = 0; 2180 struct vm_area_struct *vma; 2181 2182 /* Update high watermark before we lower total_vm */ 2183 update_hiwater_vm(mm); 2184 mas_for_each(mas, vma, ULONG_MAX) { 2185 long nrpages = vma_pages(vma); 2186 2187 if (vma->vm_flags & VM_ACCOUNT) 2188 nr_accounted += nrpages; 2189 vm_stat_account(mm, vma->vm_flags, -nrpages); 2190 remove_vma(vma, false); 2191 } 2192 vm_unacct_memory(nr_accounted); 2193 validate_mm(mm); 2194 } 2195 2196 /* 2197 * Get rid of page table information in the indicated region. 2198 * 2199 * Called with the mm semaphore held. 2200 */ 2201 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt, 2202 struct vm_area_struct *vma, struct vm_area_struct *prev, 2203 struct vm_area_struct *next, 2204 unsigned long start, unsigned long end, bool mm_wr_locked) 2205 { 2206 struct mmu_gather tlb; 2207 2208 lru_add_drain(); 2209 tlb_gather_mmu(&tlb, mm); 2210 update_hiwater_rss(mm); 2211 unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked); 2212 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2213 next ? next->vm_start : USER_PGTABLES_CEILING, 2214 mm_wr_locked); 2215 tlb_finish_mmu(&tlb); 2216 } 2217 2218 /* 2219 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2220 * has already been checked or doesn't make sense to fail. 2221 * VMA Iterator will point to the end VMA. 2222 */ 2223 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2224 unsigned long addr, int new_below) 2225 { 2226 struct vma_prepare vp; 2227 struct vm_area_struct *new; 2228 int err; 2229 2230 validate_mm_mt(vma->vm_mm); 2231 2232 WARN_ON(vma->vm_start >= addr); 2233 WARN_ON(vma->vm_end <= addr); 2234 2235 if (vma->vm_ops && vma->vm_ops->may_split) { 2236 err = vma->vm_ops->may_split(vma, addr); 2237 if (err) 2238 return err; 2239 } 2240 2241 new = vm_area_dup(vma); 2242 if (!new) 2243 return -ENOMEM; 2244 2245 err = -ENOMEM; 2246 if (vma_iter_prealloc(vmi)) 2247 goto out_free_vma; 2248 2249 if (new_below) { 2250 new->vm_end = addr; 2251 } else { 2252 new->vm_start = addr; 2253 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2254 } 2255 2256 err = vma_dup_policy(vma, new); 2257 if (err) 2258 goto out_free_vmi; 2259 2260 err = anon_vma_clone(new, vma); 2261 if (err) 2262 goto out_free_mpol; 2263 2264 if (new->vm_file) 2265 get_file(new->vm_file); 2266 2267 if (new->vm_ops && new->vm_ops->open) 2268 new->vm_ops->open(new); 2269 2270 init_vma_prep(&vp, vma); 2271 vp.insert = new; 2272 vma_prepare(&vp); 2273 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 2274 2275 if (new_below) { 2276 vma->vm_start = addr; 2277 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 2278 } else { 2279 vma->vm_end = addr; 2280 } 2281 2282 /* vma_complete stores the new vma */ 2283 vma_complete(&vp, vmi, vma->vm_mm); 2284 2285 /* Success. */ 2286 if (new_below) 2287 vma_next(vmi); 2288 validate_mm_mt(vma->vm_mm); 2289 return 0; 2290 2291 out_free_mpol: 2292 mpol_put(vma_policy(new)); 2293 out_free_vmi: 2294 vma_iter_free(vmi); 2295 out_free_vma: 2296 vm_area_free(new); 2297 validate_mm_mt(vma->vm_mm); 2298 return err; 2299 } 2300 2301 /* 2302 * Split a vma into two pieces at address 'addr', a new vma is allocated 2303 * either for the first part or the tail. 2304 */ 2305 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2306 unsigned long addr, int new_below) 2307 { 2308 if (vma->vm_mm->map_count >= sysctl_max_map_count) 2309 return -ENOMEM; 2310 2311 return __split_vma(vmi, vma, addr, new_below); 2312 } 2313 2314 static inline int munmap_sidetree(struct vm_area_struct *vma, 2315 struct ma_state *mas_detach) 2316 { 2317 vma_start_write(vma); 2318 mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1); 2319 if (mas_store_gfp(mas_detach, vma, GFP_KERNEL)) 2320 return -ENOMEM; 2321 2322 vma_mark_detached(vma, true); 2323 if (vma->vm_flags & VM_LOCKED) 2324 vma->vm_mm->locked_vm -= vma_pages(vma); 2325 2326 return 0; 2327 } 2328 2329 /* 2330 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 2331 * @vmi: The vma iterator 2332 * @vma: The starting vm_area_struct 2333 * @mm: The mm_struct 2334 * @start: The aligned start address to munmap. 2335 * @end: The aligned end address to munmap. 2336 * @uf: The userfaultfd list_head 2337 * @downgrade: Set to true to attempt a write downgrade of the mmap_lock 2338 * 2339 * If @downgrade is true, check return code for potential release of the lock. 2340 */ 2341 static int 2342 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2343 struct mm_struct *mm, unsigned long start, 2344 unsigned long end, struct list_head *uf, bool downgrade) 2345 { 2346 struct vm_area_struct *prev, *next = NULL; 2347 struct maple_tree mt_detach; 2348 int count = 0; 2349 int error = -ENOMEM; 2350 MA_STATE(mas_detach, &mt_detach, 0, 0); 2351 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2352 mt_set_external_lock(&mt_detach, &mm->mmap_lock); 2353 2354 /* 2355 * If we need to split any vma, do it now to save pain later. 2356 * 2357 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2358 * unmapped vm_area_struct will remain in use: so lower split_vma 2359 * places tmp vma above, and higher split_vma places tmp vma below. 2360 */ 2361 2362 /* Does it split the first one? */ 2363 if (start > vma->vm_start) { 2364 2365 /* 2366 * Make sure that map_count on return from munmap() will 2367 * not exceed its limit; but let map_count go just above 2368 * its limit temporarily, to help free resources as expected. 2369 */ 2370 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2371 goto map_count_exceeded; 2372 2373 error = __split_vma(vmi, vma, start, 0); 2374 if (error) 2375 goto start_split_failed; 2376 2377 vma = vma_iter_load(vmi); 2378 } 2379 2380 prev = vma_prev(vmi); 2381 if (unlikely((!prev))) 2382 vma_iter_set(vmi, start); 2383 2384 /* 2385 * Detach a range of VMAs from the mm. Using next as a temp variable as 2386 * it is always overwritten. 2387 */ 2388 for_each_vma_range(*vmi, next, end) { 2389 /* Does it split the end? */ 2390 if (next->vm_end > end) { 2391 error = __split_vma(vmi, next, end, 0); 2392 if (error) 2393 goto end_split_failed; 2394 } 2395 error = munmap_sidetree(next, &mas_detach); 2396 if (error) 2397 goto munmap_sidetree_failed; 2398 2399 count++; 2400 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2401 BUG_ON(next->vm_start < start); 2402 BUG_ON(next->vm_start > end); 2403 #endif 2404 } 2405 2406 next = vma_next(vmi); 2407 if (unlikely(uf)) { 2408 /* 2409 * If userfaultfd_unmap_prep returns an error the vmas 2410 * will remain split, but userland will get a 2411 * highly unexpected error anyway. This is no 2412 * different than the case where the first of the two 2413 * __split_vma fails, but we don't undo the first 2414 * split, despite we could. This is unlikely enough 2415 * failure that it's not worth optimizing it for. 2416 */ 2417 error = userfaultfd_unmap_prep(mm, start, end, uf); 2418 2419 if (error) 2420 goto userfaultfd_error; 2421 } 2422 2423 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2424 /* Make sure no VMAs are about to be lost. */ 2425 { 2426 MA_STATE(test, &mt_detach, start, end - 1); 2427 struct vm_area_struct *vma_mas, *vma_test; 2428 int test_count = 0; 2429 2430 vma_iter_set(vmi, start); 2431 rcu_read_lock(); 2432 vma_test = mas_find(&test, end - 1); 2433 for_each_vma_range(*vmi, vma_mas, end) { 2434 BUG_ON(vma_mas != vma_test); 2435 test_count++; 2436 vma_test = mas_next(&test, end - 1); 2437 } 2438 rcu_read_unlock(); 2439 BUG_ON(count != test_count); 2440 } 2441 #endif 2442 /* Point of no return */ 2443 vma_iter_set(vmi, start); 2444 if (vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL)) 2445 return -ENOMEM; 2446 2447 mm->map_count -= count; 2448 /* 2449 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2450 * VM_GROWSUP VMA. Such VMAs can change their size under 2451 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2452 */ 2453 if (downgrade) { 2454 if (next && (next->vm_flags & VM_GROWSDOWN)) 2455 downgrade = false; 2456 else if (prev && (prev->vm_flags & VM_GROWSUP)) 2457 downgrade = false; 2458 else 2459 mmap_write_downgrade(mm); 2460 } 2461 2462 /* 2463 * We can free page tables without write-locking mmap_lock because VMAs 2464 * were isolated before we downgraded mmap_lock. 2465 */ 2466 unmap_region(mm, &mt_detach, vma, prev, next, start, end, !downgrade); 2467 /* Statistics and freeing VMAs */ 2468 mas_set(&mas_detach, start); 2469 remove_mt(mm, &mas_detach); 2470 __mt_destroy(&mt_detach); 2471 2472 2473 validate_mm(mm); 2474 return downgrade ? 1 : 0; 2475 2476 userfaultfd_error: 2477 munmap_sidetree_failed: 2478 end_split_failed: 2479 __mt_destroy(&mt_detach); 2480 start_split_failed: 2481 map_count_exceeded: 2482 return error; 2483 } 2484 2485 /* 2486 * do_vmi_munmap() - munmap a given range. 2487 * @vmi: The vma iterator 2488 * @mm: The mm_struct 2489 * @start: The start address to munmap 2490 * @len: The length of the range to munmap 2491 * @uf: The userfaultfd list_head 2492 * @downgrade: set to true if the user wants to attempt to write_downgrade the 2493 * mmap_lock 2494 * 2495 * This function takes a @mas that is either pointing to the previous VMA or set 2496 * to MA_START and sets it up to remove the mapping(s). The @len will be 2497 * aligned and any arch_unmap work will be preformed. 2498 * 2499 * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise. 2500 */ 2501 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 2502 unsigned long start, size_t len, struct list_head *uf, 2503 bool downgrade) 2504 { 2505 unsigned long end; 2506 struct vm_area_struct *vma; 2507 2508 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2509 return -EINVAL; 2510 2511 end = start + PAGE_ALIGN(len); 2512 if (end == start) 2513 return -EINVAL; 2514 2515 /* arch_unmap() might do unmaps itself. */ 2516 arch_unmap(mm, start, end); 2517 2518 /* Find the first overlapping VMA */ 2519 vma = vma_find(vmi, end); 2520 if (!vma) 2521 return 0; 2522 2523 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade); 2524 } 2525 2526 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2527 * @mm: The mm_struct 2528 * @start: The start address to munmap 2529 * @len: The length to be munmapped. 2530 * @uf: The userfaultfd list_head 2531 */ 2532 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2533 struct list_head *uf) 2534 { 2535 VMA_ITERATOR(vmi, mm, start); 2536 2537 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 2538 } 2539 2540 unsigned long mmap_region(struct file *file, unsigned long addr, 2541 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2542 struct list_head *uf) 2543 { 2544 struct mm_struct *mm = current->mm; 2545 struct vm_area_struct *vma = NULL; 2546 struct vm_area_struct *next, *prev, *merge; 2547 pgoff_t pglen = len >> PAGE_SHIFT; 2548 unsigned long charged = 0; 2549 unsigned long end = addr + len; 2550 unsigned long merge_start = addr, merge_end = end; 2551 pgoff_t vm_pgoff; 2552 int error; 2553 VMA_ITERATOR(vmi, mm, addr); 2554 2555 /* Check against address space limit. */ 2556 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2557 unsigned long nr_pages; 2558 2559 /* 2560 * MAP_FIXED may remove pages of mappings that intersects with 2561 * requested mapping. Account for the pages it would unmap. 2562 */ 2563 nr_pages = count_vma_pages_range(mm, addr, end); 2564 2565 if (!may_expand_vm(mm, vm_flags, 2566 (len >> PAGE_SHIFT) - nr_pages)) 2567 return -ENOMEM; 2568 } 2569 2570 /* Unmap any existing mapping in the area */ 2571 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false)) 2572 return -ENOMEM; 2573 2574 /* 2575 * Private writable mapping: check memory availability 2576 */ 2577 if (accountable_mapping(file, vm_flags)) { 2578 charged = len >> PAGE_SHIFT; 2579 if (security_vm_enough_memory_mm(mm, charged)) 2580 return -ENOMEM; 2581 vm_flags |= VM_ACCOUNT; 2582 } 2583 2584 next = vma_next(&vmi); 2585 prev = vma_prev(&vmi); 2586 if (vm_flags & VM_SPECIAL) 2587 goto cannot_expand; 2588 2589 /* Attempt to expand an old mapping */ 2590 /* Check next */ 2591 if (next && next->vm_start == end && !vma_policy(next) && 2592 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2593 NULL_VM_UFFD_CTX, NULL)) { 2594 merge_end = next->vm_end; 2595 vma = next; 2596 vm_pgoff = next->vm_pgoff - pglen; 2597 } 2598 2599 /* Check prev */ 2600 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2601 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2602 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2603 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2604 NULL_VM_UFFD_CTX, NULL))) { 2605 merge_start = prev->vm_start; 2606 vma = prev; 2607 vm_pgoff = prev->vm_pgoff; 2608 } 2609 2610 2611 /* Actually expand, if possible */ 2612 if (vma && 2613 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { 2614 khugepaged_enter_vma(vma, vm_flags); 2615 goto expanded; 2616 } 2617 2618 cannot_expand: 2619 /* 2620 * Determine the object being mapped and call the appropriate 2621 * specific mapper. the address has already been validated, but 2622 * not unmapped, but the maps are removed from the list. 2623 */ 2624 vma = vm_area_alloc(mm); 2625 if (!vma) { 2626 error = -ENOMEM; 2627 goto unacct_error; 2628 } 2629 2630 vma_iter_set(&vmi, addr); 2631 vma->vm_start = addr; 2632 vma->vm_end = end; 2633 vm_flags_init(vma, vm_flags); 2634 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2635 vma->vm_pgoff = pgoff; 2636 2637 if (file) { 2638 if (vm_flags & VM_SHARED) { 2639 error = mapping_map_writable(file->f_mapping); 2640 if (error) 2641 goto free_vma; 2642 } 2643 2644 vma->vm_file = get_file(file); 2645 error = call_mmap(file, vma); 2646 if (error) 2647 goto unmap_and_free_vma; 2648 2649 /* 2650 * Expansion is handled above, merging is handled below. 2651 * Drivers should not alter the address of the VMA. 2652 */ 2653 error = -EINVAL; 2654 if (WARN_ON((addr != vma->vm_start))) 2655 goto close_and_free_vma; 2656 2657 vma_iter_set(&vmi, addr); 2658 /* 2659 * If vm_flags changed after call_mmap(), we should try merge 2660 * vma again as we may succeed this time. 2661 */ 2662 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2663 merge = vma_merge(&vmi, mm, prev, vma->vm_start, 2664 vma->vm_end, vma->vm_flags, NULL, 2665 vma->vm_file, vma->vm_pgoff, NULL, 2666 NULL_VM_UFFD_CTX, NULL); 2667 if (merge) { 2668 /* 2669 * ->mmap() can change vma->vm_file and fput 2670 * the original file. So fput the vma->vm_file 2671 * here or we would add an extra fput for file 2672 * and cause general protection fault 2673 * ultimately. 2674 */ 2675 fput(vma->vm_file); 2676 vm_area_free(vma); 2677 vma = merge; 2678 /* Update vm_flags to pick up the change. */ 2679 vm_flags = vma->vm_flags; 2680 goto unmap_writable; 2681 } 2682 } 2683 2684 vm_flags = vma->vm_flags; 2685 } else if (vm_flags & VM_SHARED) { 2686 error = shmem_zero_setup(vma); 2687 if (error) 2688 goto free_vma; 2689 } else { 2690 vma_set_anonymous(vma); 2691 } 2692 2693 if (map_deny_write_exec(vma, vma->vm_flags)) { 2694 error = -EACCES; 2695 goto close_and_free_vma; 2696 } 2697 2698 /* Allow architectures to sanity-check the vm_flags */ 2699 error = -EINVAL; 2700 if (!arch_validate_flags(vma->vm_flags)) 2701 goto close_and_free_vma; 2702 2703 error = -ENOMEM; 2704 if (vma_iter_prealloc(&vmi)) 2705 goto close_and_free_vma; 2706 2707 if (vma->vm_file) 2708 i_mmap_lock_write(vma->vm_file->f_mapping); 2709 2710 vma_iter_store(&vmi, vma); 2711 mm->map_count++; 2712 if (vma->vm_file) { 2713 if (vma->vm_flags & VM_SHARED) 2714 mapping_allow_writable(vma->vm_file->f_mapping); 2715 2716 flush_dcache_mmap_lock(vma->vm_file->f_mapping); 2717 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap); 2718 flush_dcache_mmap_unlock(vma->vm_file->f_mapping); 2719 i_mmap_unlock_write(vma->vm_file->f_mapping); 2720 } 2721 2722 /* 2723 * vma_merge() calls khugepaged_enter_vma() either, the below 2724 * call covers the non-merge case. 2725 */ 2726 khugepaged_enter_vma(vma, vma->vm_flags); 2727 2728 /* Once vma denies write, undo our temporary denial count */ 2729 unmap_writable: 2730 if (file && vm_flags & VM_SHARED) 2731 mapping_unmap_writable(file->f_mapping); 2732 file = vma->vm_file; 2733 ksm_add_vma(vma); 2734 expanded: 2735 perf_event_mmap(vma); 2736 2737 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 2738 if (vm_flags & VM_LOCKED) { 2739 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2740 is_vm_hugetlb_page(vma) || 2741 vma == get_gate_vma(current->mm)) 2742 vm_flags_clear(vma, VM_LOCKED_MASK); 2743 else 2744 mm->locked_vm += (len >> PAGE_SHIFT); 2745 } 2746 2747 if (file) 2748 uprobe_mmap(vma); 2749 2750 /* 2751 * New (or expanded) vma always get soft dirty status. 2752 * Otherwise user-space soft-dirty page tracker won't 2753 * be able to distinguish situation when vma area unmapped, 2754 * then new mapped in-place (which must be aimed as 2755 * a completely new data area). 2756 */ 2757 vm_flags_set(vma, VM_SOFTDIRTY); 2758 2759 vma_set_page_prot(vma); 2760 2761 validate_mm(mm); 2762 return addr; 2763 2764 close_and_free_vma: 2765 if (file && vma->vm_ops && vma->vm_ops->close) 2766 vma->vm_ops->close(vma); 2767 2768 if (file || vma->vm_file) { 2769 unmap_and_free_vma: 2770 fput(vma->vm_file); 2771 vma->vm_file = NULL; 2772 2773 /* Undo any partial mapping done by a device driver. */ 2774 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start, 2775 vma->vm_end, true); 2776 } 2777 if (file && (vm_flags & VM_SHARED)) 2778 mapping_unmap_writable(file->f_mapping); 2779 free_vma: 2780 vm_area_free(vma); 2781 unacct_error: 2782 if (charged) 2783 vm_unacct_memory(charged); 2784 validate_mm(mm); 2785 return error; 2786 } 2787 2788 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2789 { 2790 int ret; 2791 struct mm_struct *mm = current->mm; 2792 LIST_HEAD(uf); 2793 VMA_ITERATOR(vmi, mm, start); 2794 2795 if (mmap_write_lock_killable(mm)) 2796 return -EINTR; 2797 2798 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, downgrade); 2799 /* 2800 * Returning 1 indicates mmap_lock is downgraded. 2801 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2802 * it to 0 before return. 2803 */ 2804 if (ret == 1) { 2805 mmap_read_unlock(mm); 2806 ret = 0; 2807 } else 2808 mmap_write_unlock(mm); 2809 2810 userfaultfd_unmap_complete(mm, &uf); 2811 return ret; 2812 } 2813 2814 int vm_munmap(unsigned long start, size_t len) 2815 { 2816 return __vm_munmap(start, len, false); 2817 } 2818 EXPORT_SYMBOL(vm_munmap); 2819 2820 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2821 { 2822 addr = untagged_addr(addr); 2823 return __vm_munmap(addr, len, true); 2824 } 2825 2826 2827 /* 2828 * Emulation of deprecated remap_file_pages() syscall. 2829 */ 2830 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2831 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2832 { 2833 2834 struct mm_struct *mm = current->mm; 2835 struct vm_area_struct *vma; 2836 unsigned long populate = 0; 2837 unsigned long ret = -EINVAL; 2838 struct file *file; 2839 2840 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 2841 current->comm, current->pid); 2842 2843 if (prot) 2844 return ret; 2845 start = start & PAGE_MASK; 2846 size = size & PAGE_MASK; 2847 2848 if (start + size <= start) 2849 return ret; 2850 2851 /* Does pgoff wrap? */ 2852 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2853 return ret; 2854 2855 if (mmap_write_lock_killable(mm)) 2856 return -EINTR; 2857 2858 vma = vma_lookup(mm, start); 2859 2860 if (!vma || !(vma->vm_flags & VM_SHARED)) 2861 goto out; 2862 2863 if (start + size > vma->vm_end) { 2864 VMA_ITERATOR(vmi, mm, vma->vm_end); 2865 struct vm_area_struct *next, *prev = vma; 2866 2867 for_each_vma_range(vmi, next, start + size) { 2868 /* hole between vmas ? */ 2869 if (next->vm_start != prev->vm_end) 2870 goto out; 2871 2872 if (next->vm_file != vma->vm_file) 2873 goto out; 2874 2875 if (next->vm_flags != vma->vm_flags) 2876 goto out; 2877 2878 if (start + size <= next->vm_end) 2879 break; 2880 2881 prev = next; 2882 } 2883 2884 if (!next) 2885 goto out; 2886 } 2887 2888 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2889 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2890 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2891 2892 flags &= MAP_NONBLOCK; 2893 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2894 if (vma->vm_flags & VM_LOCKED) 2895 flags |= MAP_LOCKED; 2896 2897 file = get_file(vma->vm_file); 2898 ret = do_mmap(vma->vm_file, start, size, 2899 prot, flags, pgoff, &populate, NULL); 2900 fput(file); 2901 out: 2902 mmap_write_unlock(mm); 2903 if (populate) 2904 mm_populate(ret, populate); 2905 if (!IS_ERR_VALUE(ret)) 2906 ret = 0; 2907 return ret; 2908 } 2909 2910 /* 2911 * do_vma_munmap() - Unmap a full or partial vma. 2912 * @vmi: The vma iterator pointing at the vma 2913 * @vma: The first vma to be munmapped 2914 * @start: the start of the address to unmap 2915 * @end: The end of the address to unmap 2916 * @uf: The userfaultfd list_head 2917 * @downgrade: Attempt to downgrade or not 2918 * 2919 * Returns: 0 on success and not downgraded, 1 on success and downgraded. 2920 * unmaps a VMA mapping when the vma iterator is already in position. 2921 * Does not handle alignment. 2922 */ 2923 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2924 unsigned long start, unsigned long end, 2925 struct list_head *uf, bool downgrade) 2926 { 2927 struct mm_struct *mm = vma->vm_mm; 2928 int ret; 2929 2930 arch_unmap(mm, start, end); 2931 ret = do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade); 2932 validate_mm_mt(mm); 2933 return ret; 2934 } 2935 2936 /* 2937 * do_brk_flags() - Increase the brk vma if the flags match. 2938 * @vmi: The vma iterator 2939 * @addr: The start address 2940 * @len: The length of the increase 2941 * @vma: The vma, 2942 * @flags: The VMA Flags 2943 * 2944 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 2945 * do not match then create a new anonymous VMA. Eventually we may be able to 2946 * do some brk-specific accounting here. 2947 */ 2948 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 2949 unsigned long addr, unsigned long len, unsigned long flags) 2950 { 2951 struct mm_struct *mm = current->mm; 2952 struct vma_prepare vp; 2953 2954 validate_mm_mt(mm); 2955 /* 2956 * Check against address space limits by the changed size 2957 * Note: This happens *after* clearing old mappings in some code paths. 2958 */ 2959 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2960 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2961 return -ENOMEM; 2962 2963 if (mm->map_count > sysctl_max_map_count) 2964 return -ENOMEM; 2965 2966 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2967 return -ENOMEM; 2968 2969 /* 2970 * Expand the existing vma if possible; Note that singular lists do not 2971 * occur after forking, so the expand will only happen on new VMAs. 2972 */ 2973 if (vma && vma->vm_end == addr && !vma_policy(vma) && 2974 can_vma_merge_after(vma, flags, NULL, NULL, 2975 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { 2976 if (vma_iter_prealloc(vmi)) 2977 goto unacct_fail; 2978 2979 init_vma_prep(&vp, vma); 2980 vma_prepare(&vp); 2981 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 2982 vma->vm_end = addr + len; 2983 vm_flags_set(vma, VM_SOFTDIRTY); 2984 vma_iter_store(vmi, vma); 2985 2986 vma_complete(&vp, vmi, mm); 2987 khugepaged_enter_vma(vma, flags); 2988 goto out; 2989 } 2990 2991 /* create a vma struct for an anonymous mapping */ 2992 vma = vm_area_alloc(mm); 2993 if (!vma) 2994 goto unacct_fail; 2995 2996 vma_set_anonymous(vma); 2997 vma->vm_start = addr; 2998 vma->vm_end = addr + len; 2999 vma->vm_pgoff = addr >> PAGE_SHIFT; 3000 vm_flags_init(vma, flags); 3001 vma->vm_page_prot = vm_get_page_prot(flags); 3002 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 3003 goto mas_store_fail; 3004 3005 mm->map_count++; 3006 ksm_add_vma(vma); 3007 out: 3008 perf_event_mmap(vma); 3009 mm->total_vm += len >> PAGE_SHIFT; 3010 mm->data_vm += len >> PAGE_SHIFT; 3011 if (flags & VM_LOCKED) 3012 mm->locked_vm += (len >> PAGE_SHIFT); 3013 vm_flags_set(vma, VM_SOFTDIRTY); 3014 validate_mm(mm); 3015 return 0; 3016 3017 mas_store_fail: 3018 vm_area_free(vma); 3019 unacct_fail: 3020 vm_unacct_memory(len >> PAGE_SHIFT); 3021 return -ENOMEM; 3022 } 3023 3024 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3025 { 3026 struct mm_struct *mm = current->mm; 3027 struct vm_area_struct *vma = NULL; 3028 unsigned long len; 3029 int ret; 3030 bool populate; 3031 LIST_HEAD(uf); 3032 VMA_ITERATOR(vmi, mm, addr); 3033 3034 len = PAGE_ALIGN(request); 3035 if (len < request) 3036 return -ENOMEM; 3037 if (!len) 3038 return 0; 3039 3040 if (mmap_write_lock_killable(mm)) 3041 return -EINTR; 3042 3043 /* Until we need other flags, refuse anything except VM_EXEC. */ 3044 if ((flags & (~VM_EXEC)) != 0) 3045 return -EINVAL; 3046 3047 ret = check_brk_limits(addr, len); 3048 if (ret) 3049 goto limits_failed; 3050 3051 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 3052 if (ret) 3053 goto munmap_failed; 3054 3055 vma = vma_prev(&vmi); 3056 ret = do_brk_flags(&vmi, vma, addr, len, flags); 3057 populate = ((mm->def_flags & VM_LOCKED) != 0); 3058 mmap_write_unlock(mm); 3059 userfaultfd_unmap_complete(mm, &uf); 3060 if (populate && !ret) 3061 mm_populate(addr, len); 3062 return ret; 3063 3064 munmap_failed: 3065 limits_failed: 3066 mmap_write_unlock(mm); 3067 return ret; 3068 } 3069 EXPORT_SYMBOL(vm_brk_flags); 3070 3071 int vm_brk(unsigned long addr, unsigned long len) 3072 { 3073 return vm_brk_flags(addr, len, 0); 3074 } 3075 EXPORT_SYMBOL(vm_brk); 3076 3077 /* Release all mmaps. */ 3078 void exit_mmap(struct mm_struct *mm) 3079 { 3080 struct mmu_gather tlb; 3081 struct vm_area_struct *vma; 3082 unsigned long nr_accounted = 0; 3083 MA_STATE(mas, &mm->mm_mt, 0, 0); 3084 int count = 0; 3085 3086 /* mm's last user has gone, and its about to be pulled down */ 3087 mmu_notifier_release(mm); 3088 3089 mmap_read_lock(mm); 3090 arch_exit_mmap(mm); 3091 3092 vma = mas_find(&mas, ULONG_MAX); 3093 if (!vma) { 3094 /* Can happen if dup_mmap() received an OOM */ 3095 mmap_read_unlock(mm); 3096 return; 3097 } 3098 3099 lru_add_drain(); 3100 flush_cache_mm(mm); 3101 tlb_gather_mmu_fullmm(&tlb, mm); 3102 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3103 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3104 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false); 3105 mmap_read_unlock(mm); 3106 3107 /* 3108 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3109 * because the memory has been already freed. 3110 */ 3111 set_bit(MMF_OOM_SKIP, &mm->flags); 3112 mmap_write_lock(mm); 3113 mt_clear_in_rcu(&mm->mm_mt); 3114 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS, 3115 USER_PGTABLES_CEILING, true); 3116 tlb_finish_mmu(&tlb); 3117 3118 /* 3119 * Walk the list again, actually closing and freeing it, with preemption 3120 * enabled, without holding any MM locks besides the unreachable 3121 * mmap_write_lock. 3122 */ 3123 do { 3124 if (vma->vm_flags & VM_ACCOUNT) 3125 nr_accounted += vma_pages(vma); 3126 remove_vma(vma, true); 3127 count++; 3128 cond_resched(); 3129 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL); 3130 3131 BUG_ON(count != mm->map_count); 3132 3133 trace_exit_mmap(mm); 3134 __mt_destroy(&mm->mm_mt); 3135 mmap_write_unlock(mm); 3136 vm_unacct_memory(nr_accounted); 3137 } 3138 3139 /* Insert vm structure into process list sorted by address 3140 * and into the inode's i_mmap tree. If vm_file is non-NULL 3141 * then i_mmap_rwsem is taken here. 3142 */ 3143 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3144 { 3145 unsigned long charged = vma_pages(vma); 3146 3147 3148 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3149 return -ENOMEM; 3150 3151 if ((vma->vm_flags & VM_ACCOUNT) && 3152 security_vm_enough_memory_mm(mm, charged)) 3153 return -ENOMEM; 3154 3155 /* 3156 * The vm_pgoff of a purely anonymous vma should be irrelevant 3157 * until its first write fault, when page's anon_vma and index 3158 * are set. But now set the vm_pgoff it will almost certainly 3159 * end up with (unless mremap moves it elsewhere before that 3160 * first wfault), so /proc/pid/maps tells a consistent story. 3161 * 3162 * By setting it to reflect the virtual start address of the 3163 * vma, merges and splits can happen in a seamless way, just 3164 * using the existing file pgoff checks and manipulations. 3165 * Similarly in do_mmap and in do_brk_flags. 3166 */ 3167 if (vma_is_anonymous(vma)) { 3168 BUG_ON(vma->anon_vma); 3169 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3170 } 3171 3172 if (vma_link(mm, vma)) { 3173 vm_unacct_memory(charged); 3174 return -ENOMEM; 3175 } 3176 3177 return 0; 3178 } 3179 3180 /* 3181 * Copy the vma structure to a new location in the same mm, 3182 * prior to moving page table entries, to effect an mremap move. 3183 */ 3184 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3185 unsigned long addr, unsigned long len, pgoff_t pgoff, 3186 bool *need_rmap_locks) 3187 { 3188 struct vm_area_struct *vma = *vmap; 3189 unsigned long vma_start = vma->vm_start; 3190 struct mm_struct *mm = vma->vm_mm; 3191 struct vm_area_struct *new_vma, *prev; 3192 bool faulted_in_anon_vma = true; 3193 VMA_ITERATOR(vmi, mm, addr); 3194 3195 validate_mm_mt(mm); 3196 /* 3197 * If anonymous vma has not yet been faulted, update new pgoff 3198 * to match new location, to increase its chance of merging. 3199 */ 3200 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3201 pgoff = addr >> PAGE_SHIFT; 3202 faulted_in_anon_vma = false; 3203 } 3204 3205 new_vma = find_vma_prev(mm, addr, &prev); 3206 if (new_vma && new_vma->vm_start < addr + len) 3207 return NULL; /* should never get here */ 3208 3209 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags, 3210 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3211 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3212 if (new_vma) { 3213 /* 3214 * Source vma may have been merged into new_vma 3215 */ 3216 if (unlikely(vma_start >= new_vma->vm_start && 3217 vma_start < new_vma->vm_end)) { 3218 /* 3219 * The only way we can get a vma_merge with 3220 * self during an mremap is if the vma hasn't 3221 * been faulted in yet and we were allowed to 3222 * reset the dst vma->vm_pgoff to the 3223 * destination address of the mremap to allow 3224 * the merge to happen. mremap must change the 3225 * vm_pgoff linearity between src and dst vmas 3226 * (in turn preventing a vma_merge) to be 3227 * safe. It is only safe to keep the vm_pgoff 3228 * linear if there are no pages mapped yet. 3229 */ 3230 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3231 *vmap = vma = new_vma; 3232 } 3233 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3234 } else { 3235 new_vma = vm_area_dup(vma); 3236 if (!new_vma) 3237 goto out; 3238 new_vma->vm_start = addr; 3239 new_vma->vm_end = addr + len; 3240 new_vma->vm_pgoff = pgoff; 3241 if (vma_dup_policy(vma, new_vma)) 3242 goto out_free_vma; 3243 if (anon_vma_clone(new_vma, vma)) 3244 goto out_free_mempol; 3245 if (new_vma->vm_file) 3246 get_file(new_vma->vm_file); 3247 if (new_vma->vm_ops && new_vma->vm_ops->open) 3248 new_vma->vm_ops->open(new_vma); 3249 vma_start_write(new_vma); 3250 if (vma_link(mm, new_vma)) 3251 goto out_vma_link; 3252 *need_rmap_locks = false; 3253 } 3254 validate_mm_mt(mm); 3255 return new_vma; 3256 3257 out_vma_link: 3258 if (new_vma->vm_ops && new_vma->vm_ops->close) 3259 new_vma->vm_ops->close(new_vma); 3260 3261 if (new_vma->vm_file) 3262 fput(new_vma->vm_file); 3263 3264 unlink_anon_vmas(new_vma); 3265 out_free_mempol: 3266 mpol_put(vma_policy(new_vma)); 3267 out_free_vma: 3268 vm_area_free(new_vma); 3269 out: 3270 validate_mm_mt(mm); 3271 return NULL; 3272 } 3273 3274 /* 3275 * Return true if the calling process may expand its vm space by the passed 3276 * number of pages 3277 */ 3278 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3279 { 3280 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3281 return false; 3282 3283 if (is_data_mapping(flags) && 3284 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3285 /* Workaround for Valgrind */ 3286 if (rlimit(RLIMIT_DATA) == 0 && 3287 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3288 return true; 3289 3290 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3291 current->comm, current->pid, 3292 (mm->data_vm + npages) << PAGE_SHIFT, 3293 rlimit(RLIMIT_DATA), 3294 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3295 3296 if (!ignore_rlimit_data) 3297 return false; 3298 } 3299 3300 return true; 3301 } 3302 3303 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3304 { 3305 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3306 3307 if (is_exec_mapping(flags)) 3308 mm->exec_vm += npages; 3309 else if (is_stack_mapping(flags)) 3310 mm->stack_vm += npages; 3311 else if (is_data_mapping(flags)) 3312 mm->data_vm += npages; 3313 } 3314 3315 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3316 3317 /* 3318 * Having a close hook prevents vma merging regardless of flags. 3319 */ 3320 static void special_mapping_close(struct vm_area_struct *vma) 3321 { 3322 } 3323 3324 static const char *special_mapping_name(struct vm_area_struct *vma) 3325 { 3326 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3327 } 3328 3329 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3330 { 3331 struct vm_special_mapping *sm = new_vma->vm_private_data; 3332 3333 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3334 return -EFAULT; 3335 3336 if (sm->mremap) 3337 return sm->mremap(sm, new_vma); 3338 3339 return 0; 3340 } 3341 3342 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3343 { 3344 /* 3345 * Forbid splitting special mappings - kernel has expectations over 3346 * the number of pages in mapping. Together with VM_DONTEXPAND 3347 * the size of vma should stay the same over the special mapping's 3348 * lifetime. 3349 */ 3350 return -EINVAL; 3351 } 3352 3353 static const struct vm_operations_struct special_mapping_vmops = { 3354 .close = special_mapping_close, 3355 .fault = special_mapping_fault, 3356 .mremap = special_mapping_mremap, 3357 .name = special_mapping_name, 3358 /* vDSO code relies that VVAR can't be accessed remotely */ 3359 .access = NULL, 3360 .may_split = special_mapping_split, 3361 }; 3362 3363 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3364 .close = special_mapping_close, 3365 .fault = special_mapping_fault, 3366 }; 3367 3368 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3369 { 3370 struct vm_area_struct *vma = vmf->vma; 3371 pgoff_t pgoff; 3372 struct page **pages; 3373 3374 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3375 pages = vma->vm_private_data; 3376 } else { 3377 struct vm_special_mapping *sm = vma->vm_private_data; 3378 3379 if (sm->fault) 3380 return sm->fault(sm, vmf->vma, vmf); 3381 3382 pages = sm->pages; 3383 } 3384 3385 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3386 pgoff--; 3387 3388 if (*pages) { 3389 struct page *page = *pages; 3390 get_page(page); 3391 vmf->page = page; 3392 return 0; 3393 } 3394 3395 return VM_FAULT_SIGBUS; 3396 } 3397 3398 static struct vm_area_struct *__install_special_mapping( 3399 struct mm_struct *mm, 3400 unsigned long addr, unsigned long len, 3401 unsigned long vm_flags, void *priv, 3402 const struct vm_operations_struct *ops) 3403 { 3404 int ret; 3405 struct vm_area_struct *vma; 3406 3407 validate_mm_mt(mm); 3408 vma = vm_area_alloc(mm); 3409 if (unlikely(vma == NULL)) 3410 return ERR_PTR(-ENOMEM); 3411 3412 vma->vm_start = addr; 3413 vma->vm_end = addr + len; 3414 3415 vm_flags_init(vma, (vm_flags | mm->def_flags | 3416 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 3417 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3418 3419 vma->vm_ops = ops; 3420 vma->vm_private_data = priv; 3421 3422 ret = insert_vm_struct(mm, vma); 3423 if (ret) 3424 goto out; 3425 3426 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3427 3428 perf_event_mmap(vma); 3429 3430 validate_mm_mt(mm); 3431 return vma; 3432 3433 out: 3434 vm_area_free(vma); 3435 validate_mm_mt(mm); 3436 return ERR_PTR(ret); 3437 } 3438 3439 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3440 const struct vm_special_mapping *sm) 3441 { 3442 return vma->vm_private_data == sm && 3443 (vma->vm_ops == &special_mapping_vmops || 3444 vma->vm_ops == &legacy_special_mapping_vmops); 3445 } 3446 3447 /* 3448 * Called with mm->mmap_lock held for writing. 3449 * Insert a new vma covering the given region, with the given flags. 3450 * Its pages are supplied by the given array of struct page *. 3451 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3452 * The region past the last page supplied will always produce SIGBUS. 3453 * The array pointer and the pages it points to are assumed to stay alive 3454 * for as long as this mapping might exist. 3455 */ 3456 struct vm_area_struct *_install_special_mapping( 3457 struct mm_struct *mm, 3458 unsigned long addr, unsigned long len, 3459 unsigned long vm_flags, const struct vm_special_mapping *spec) 3460 { 3461 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3462 &special_mapping_vmops); 3463 } 3464 3465 int install_special_mapping(struct mm_struct *mm, 3466 unsigned long addr, unsigned long len, 3467 unsigned long vm_flags, struct page **pages) 3468 { 3469 struct vm_area_struct *vma = __install_special_mapping( 3470 mm, addr, len, vm_flags, (void *)pages, 3471 &legacy_special_mapping_vmops); 3472 3473 return PTR_ERR_OR_ZERO(vma); 3474 } 3475 3476 static DEFINE_MUTEX(mm_all_locks_mutex); 3477 3478 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3479 { 3480 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3481 /* 3482 * The LSB of head.next can't change from under us 3483 * because we hold the mm_all_locks_mutex. 3484 */ 3485 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3486 /* 3487 * We can safely modify head.next after taking the 3488 * anon_vma->root->rwsem. If some other vma in this mm shares 3489 * the same anon_vma we won't take it again. 3490 * 3491 * No need of atomic instructions here, head.next 3492 * can't change from under us thanks to the 3493 * anon_vma->root->rwsem. 3494 */ 3495 if (__test_and_set_bit(0, (unsigned long *) 3496 &anon_vma->root->rb_root.rb_root.rb_node)) 3497 BUG(); 3498 } 3499 } 3500 3501 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3502 { 3503 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3504 /* 3505 * AS_MM_ALL_LOCKS can't change from under us because 3506 * we hold the mm_all_locks_mutex. 3507 * 3508 * Operations on ->flags have to be atomic because 3509 * even if AS_MM_ALL_LOCKS is stable thanks to the 3510 * mm_all_locks_mutex, there may be other cpus 3511 * changing other bitflags in parallel to us. 3512 */ 3513 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3514 BUG(); 3515 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3516 } 3517 } 3518 3519 /* 3520 * This operation locks against the VM for all pte/vma/mm related 3521 * operations that could ever happen on a certain mm. This includes 3522 * vmtruncate, try_to_unmap, and all page faults. 3523 * 3524 * The caller must take the mmap_lock in write mode before calling 3525 * mm_take_all_locks(). The caller isn't allowed to release the 3526 * mmap_lock until mm_drop_all_locks() returns. 3527 * 3528 * mmap_lock in write mode is required in order to block all operations 3529 * that could modify pagetables and free pages without need of 3530 * altering the vma layout. It's also needed in write mode to avoid new 3531 * anon_vmas to be associated with existing vmas. 3532 * 3533 * A single task can't take more than one mm_take_all_locks() in a row 3534 * or it would deadlock. 3535 * 3536 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3537 * mapping->flags avoid to take the same lock twice, if more than one 3538 * vma in this mm is backed by the same anon_vma or address_space. 3539 * 3540 * We take locks in following order, accordingly to comment at beginning 3541 * of mm/rmap.c: 3542 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3543 * hugetlb mapping); 3544 * - all vmas marked locked 3545 * - all i_mmap_rwsem locks; 3546 * - all anon_vma->rwseml 3547 * 3548 * We can take all locks within these types randomly because the VM code 3549 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3550 * mm_all_locks_mutex. 3551 * 3552 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3553 * that may have to take thousand of locks. 3554 * 3555 * mm_take_all_locks() can fail if it's interrupted by signals. 3556 */ 3557 int mm_take_all_locks(struct mm_struct *mm) 3558 { 3559 struct vm_area_struct *vma; 3560 struct anon_vma_chain *avc; 3561 MA_STATE(mas, &mm->mm_mt, 0, 0); 3562 3563 mmap_assert_write_locked(mm); 3564 3565 mutex_lock(&mm_all_locks_mutex); 3566 3567 mas_for_each(&mas, vma, ULONG_MAX) { 3568 if (signal_pending(current)) 3569 goto out_unlock; 3570 vma_start_write(vma); 3571 } 3572 3573 mas_set(&mas, 0); 3574 mas_for_each(&mas, vma, ULONG_MAX) { 3575 if (signal_pending(current)) 3576 goto out_unlock; 3577 if (vma->vm_file && vma->vm_file->f_mapping && 3578 is_vm_hugetlb_page(vma)) 3579 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3580 } 3581 3582 mas_set(&mas, 0); 3583 mas_for_each(&mas, vma, ULONG_MAX) { 3584 if (signal_pending(current)) 3585 goto out_unlock; 3586 if (vma->vm_file && vma->vm_file->f_mapping && 3587 !is_vm_hugetlb_page(vma)) 3588 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3589 } 3590 3591 mas_set(&mas, 0); 3592 mas_for_each(&mas, vma, ULONG_MAX) { 3593 if (signal_pending(current)) 3594 goto out_unlock; 3595 if (vma->anon_vma) 3596 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3597 vm_lock_anon_vma(mm, avc->anon_vma); 3598 } 3599 3600 return 0; 3601 3602 out_unlock: 3603 mm_drop_all_locks(mm); 3604 return -EINTR; 3605 } 3606 3607 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3608 { 3609 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3610 /* 3611 * The LSB of head.next can't change to 0 from under 3612 * us because we hold the mm_all_locks_mutex. 3613 * 3614 * We must however clear the bitflag before unlocking 3615 * the vma so the users using the anon_vma->rb_root will 3616 * never see our bitflag. 3617 * 3618 * No need of atomic instructions here, head.next 3619 * can't change from under us until we release the 3620 * anon_vma->root->rwsem. 3621 */ 3622 if (!__test_and_clear_bit(0, (unsigned long *) 3623 &anon_vma->root->rb_root.rb_root.rb_node)) 3624 BUG(); 3625 anon_vma_unlock_write(anon_vma); 3626 } 3627 } 3628 3629 static void vm_unlock_mapping(struct address_space *mapping) 3630 { 3631 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3632 /* 3633 * AS_MM_ALL_LOCKS can't change to 0 from under us 3634 * because we hold the mm_all_locks_mutex. 3635 */ 3636 i_mmap_unlock_write(mapping); 3637 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3638 &mapping->flags)) 3639 BUG(); 3640 } 3641 } 3642 3643 /* 3644 * The mmap_lock cannot be released by the caller until 3645 * mm_drop_all_locks() returns. 3646 */ 3647 void mm_drop_all_locks(struct mm_struct *mm) 3648 { 3649 struct vm_area_struct *vma; 3650 struct anon_vma_chain *avc; 3651 MA_STATE(mas, &mm->mm_mt, 0, 0); 3652 3653 mmap_assert_write_locked(mm); 3654 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3655 3656 mas_for_each(&mas, vma, ULONG_MAX) { 3657 if (vma->anon_vma) 3658 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3659 vm_unlock_anon_vma(avc->anon_vma); 3660 if (vma->vm_file && vma->vm_file->f_mapping) 3661 vm_unlock_mapping(vma->vm_file->f_mapping); 3662 } 3663 vma_end_write_all(mm); 3664 3665 mutex_unlock(&mm_all_locks_mutex); 3666 } 3667 3668 /* 3669 * initialise the percpu counter for VM 3670 */ 3671 void __init mmap_init(void) 3672 { 3673 int ret; 3674 3675 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3676 VM_BUG_ON(ret); 3677 } 3678 3679 /* 3680 * Initialise sysctl_user_reserve_kbytes. 3681 * 3682 * This is intended to prevent a user from starting a single memory hogging 3683 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3684 * mode. 3685 * 3686 * The default value is min(3% of free memory, 128MB) 3687 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3688 */ 3689 static int init_user_reserve(void) 3690 { 3691 unsigned long free_kbytes; 3692 3693 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3694 3695 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3696 return 0; 3697 } 3698 subsys_initcall(init_user_reserve); 3699 3700 /* 3701 * Initialise sysctl_admin_reserve_kbytes. 3702 * 3703 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3704 * to log in and kill a memory hogging process. 3705 * 3706 * Systems with more than 256MB will reserve 8MB, enough to recover 3707 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3708 * only reserve 3% of free pages by default. 3709 */ 3710 static int init_admin_reserve(void) 3711 { 3712 unsigned long free_kbytes; 3713 3714 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3715 3716 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3717 return 0; 3718 } 3719 subsys_initcall(init_admin_reserve); 3720 3721 /* 3722 * Reinititalise user and admin reserves if memory is added or removed. 3723 * 3724 * The default user reserve max is 128MB, and the default max for the 3725 * admin reserve is 8MB. These are usually, but not always, enough to 3726 * enable recovery from a memory hogging process using login/sshd, a shell, 3727 * and tools like top. It may make sense to increase or even disable the 3728 * reserve depending on the existence of swap or variations in the recovery 3729 * tools. So, the admin may have changed them. 3730 * 3731 * If memory is added and the reserves have been eliminated or increased above 3732 * the default max, then we'll trust the admin. 3733 * 3734 * If memory is removed and there isn't enough free memory, then we 3735 * need to reset the reserves. 3736 * 3737 * Otherwise keep the reserve set by the admin. 3738 */ 3739 static int reserve_mem_notifier(struct notifier_block *nb, 3740 unsigned long action, void *data) 3741 { 3742 unsigned long tmp, free_kbytes; 3743 3744 switch (action) { 3745 case MEM_ONLINE: 3746 /* Default max is 128MB. Leave alone if modified by operator. */ 3747 tmp = sysctl_user_reserve_kbytes; 3748 if (0 < tmp && tmp < (1UL << 17)) 3749 init_user_reserve(); 3750 3751 /* Default max is 8MB. Leave alone if modified by operator. */ 3752 tmp = sysctl_admin_reserve_kbytes; 3753 if (0 < tmp && tmp < (1UL << 13)) 3754 init_admin_reserve(); 3755 3756 break; 3757 case MEM_OFFLINE: 3758 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3759 3760 if (sysctl_user_reserve_kbytes > free_kbytes) { 3761 init_user_reserve(); 3762 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3763 sysctl_user_reserve_kbytes); 3764 } 3765 3766 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3767 init_admin_reserve(); 3768 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3769 sysctl_admin_reserve_kbytes); 3770 } 3771 break; 3772 default: 3773 break; 3774 } 3775 return NOTIFY_OK; 3776 } 3777 3778 static int __meminit init_reserve_notifier(void) 3779 { 3780 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 3781 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3782 3783 return 0; 3784 } 3785 subsys_initcall(init_reserve_notifier); 3786