xref: /openbmc/linux/mm/mmap.c (revision cf028200)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34 
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39 
40 #include "internal.h"
41 
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags)	(0)
44 #endif
45 
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len)		(addr)
48 #endif
49 
50 static void unmap_region(struct mm_struct *mm,
51 		struct vm_area_struct *vma, struct vm_area_struct *prev,
52 		unsigned long start, unsigned long end);
53 
54 /* description of effects of mapping type and prot in current implementation.
55  * this is due to the limited x86 page protection hardware.  The expected
56  * behavior is in parens:
57  *
58  * map_type	prot
59  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
60  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
61  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
62  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
63  *
64  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
65  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
66  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
67  *
68  */
69 pgprot_t protection_map[16] = {
70 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
71 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
72 };
73 
74 pgprot_t vm_get_page_prot(unsigned long vm_flags)
75 {
76 	return __pgprot(pgprot_val(protection_map[vm_flags &
77 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
78 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
79 }
80 EXPORT_SYMBOL(vm_get_page_prot);
81 
82 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
83 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
84 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
85 /*
86  * Make sure vm_committed_as in one cacheline and not cacheline shared with
87  * other variables. It can be updated by several CPUs frequently.
88  */
89 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
90 
91 /*
92  * Check that a process has enough memory to allocate a new virtual
93  * mapping. 0 means there is enough memory for the allocation to
94  * succeed and -ENOMEM implies there is not.
95  *
96  * We currently support three overcommit policies, which are set via the
97  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
98  *
99  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100  * Additional code 2002 Jul 20 by Robert Love.
101  *
102  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103  *
104  * Note this is a helper function intended to be used by LSMs which
105  * wish to use this logic.
106  */
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 {
109 	unsigned long free, allowed;
110 
111 	vm_acct_memory(pages);
112 
113 	/*
114 	 * Sometimes we want to use more memory than we have
115 	 */
116 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117 		return 0;
118 
119 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120 		free = global_page_state(NR_FREE_PAGES);
121 		free += global_page_state(NR_FILE_PAGES);
122 
123 		/*
124 		 * shmem pages shouldn't be counted as free in this
125 		 * case, they can't be purged, only swapped out, and
126 		 * that won't affect the overall amount of available
127 		 * memory in the system.
128 		 */
129 		free -= global_page_state(NR_SHMEM);
130 
131 		free += nr_swap_pages;
132 
133 		/*
134 		 * Any slabs which are created with the
135 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
136 		 * which are reclaimable, under pressure.  The dentry
137 		 * cache and most inode caches should fall into this
138 		 */
139 		free += global_page_state(NR_SLAB_RECLAIMABLE);
140 
141 		/*
142 		 * Leave reserved pages. The pages are not for anonymous pages.
143 		 */
144 		if (free <= totalreserve_pages)
145 			goto error;
146 		else
147 			free -= totalreserve_pages;
148 
149 		/*
150 		 * Leave the last 3% for root
151 		 */
152 		if (!cap_sys_admin)
153 			free -= free / 32;
154 
155 		if (free > pages)
156 			return 0;
157 
158 		goto error;
159 	}
160 
161 	allowed = (totalram_pages - hugetlb_total_pages())
162 	       	* sysctl_overcommit_ratio / 100;
163 	/*
164 	 * Leave the last 3% for root
165 	 */
166 	if (!cap_sys_admin)
167 		allowed -= allowed / 32;
168 	allowed += total_swap_pages;
169 
170 	/* Don't let a single process grow too big:
171 	   leave 3% of the size of this process for other processes */
172 	if (mm)
173 		allowed -= mm->total_vm / 32;
174 
175 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
176 		return 0;
177 error:
178 	vm_unacct_memory(pages);
179 
180 	return -ENOMEM;
181 }
182 
183 /*
184  * Requires inode->i_mapping->i_mmap_mutex
185  */
186 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
187 		struct file *file, struct address_space *mapping)
188 {
189 	if (vma->vm_flags & VM_DENYWRITE)
190 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
191 	if (vma->vm_flags & VM_SHARED)
192 		mapping->i_mmap_writable--;
193 
194 	flush_dcache_mmap_lock(mapping);
195 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
196 		list_del_init(&vma->shared.nonlinear);
197 	else
198 		vma_interval_tree_remove(vma, &mapping->i_mmap);
199 	flush_dcache_mmap_unlock(mapping);
200 }
201 
202 /*
203  * Unlink a file-based vm structure from its interval tree, to hide
204  * vma from rmap and vmtruncate before freeing its page tables.
205  */
206 void unlink_file_vma(struct vm_area_struct *vma)
207 {
208 	struct file *file = vma->vm_file;
209 
210 	if (file) {
211 		struct address_space *mapping = file->f_mapping;
212 		mutex_lock(&mapping->i_mmap_mutex);
213 		__remove_shared_vm_struct(vma, file, mapping);
214 		mutex_unlock(&mapping->i_mmap_mutex);
215 	}
216 }
217 
218 /*
219  * Close a vm structure and free it, returning the next.
220  */
221 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
222 {
223 	struct vm_area_struct *next = vma->vm_next;
224 
225 	might_sleep();
226 	if (vma->vm_ops && vma->vm_ops->close)
227 		vma->vm_ops->close(vma);
228 	if (vma->vm_file)
229 		fput(vma->vm_file);
230 	mpol_put(vma_policy(vma));
231 	kmem_cache_free(vm_area_cachep, vma);
232 	return next;
233 }
234 
235 static unsigned long do_brk(unsigned long addr, unsigned long len);
236 
237 SYSCALL_DEFINE1(brk, unsigned long, brk)
238 {
239 	unsigned long rlim, retval;
240 	unsigned long newbrk, oldbrk;
241 	struct mm_struct *mm = current->mm;
242 	unsigned long min_brk;
243 
244 	down_write(&mm->mmap_sem);
245 
246 #ifdef CONFIG_COMPAT_BRK
247 	/*
248 	 * CONFIG_COMPAT_BRK can still be overridden by setting
249 	 * randomize_va_space to 2, which will still cause mm->start_brk
250 	 * to be arbitrarily shifted
251 	 */
252 	if (current->brk_randomized)
253 		min_brk = mm->start_brk;
254 	else
255 		min_brk = mm->end_data;
256 #else
257 	min_brk = mm->start_brk;
258 #endif
259 	if (brk < min_brk)
260 		goto out;
261 
262 	/*
263 	 * Check against rlimit here. If this check is done later after the test
264 	 * of oldbrk with newbrk then it can escape the test and let the data
265 	 * segment grow beyond its set limit the in case where the limit is
266 	 * not page aligned -Ram Gupta
267 	 */
268 	rlim = rlimit(RLIMIT_DATA);
269 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270 			(mm->end_data - mm->start_data) > rlim)
271 		goto out;
272 
273 	newbrk = PAGE_ALIGN(brk);
274 	oldbrk = PAGE_ALIGN(mm->brk);
275 	if (oldbrk == newbrk)
276 		goto set_brk;
277 
278 	/* Always allow shrinking brk. */
279 	if (brk <= mm->brk) {
280 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281 			goto set_brk;
282 		goto out;
283 	}
284 
285 	/* Check against existing mmap mappings. */
286 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287 		goto out;
288 
289 	/* Ok, looks good - let it rip. */
290 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291 		goto out;
292 set_brk:
293 	mm->brk = brk;
294 out:
295 	retval = mm->brk;
296 	up_write(&mm->mmap_sem);
297 	return retval;
298 }
299 
300 #ifdef CONFIG_DEBUG_VM_RB
301 static int browse_rb(struct rb_root *root)
302 {
303 	int i = 0, j;
304 	struct rb_node *nd, *pn = NULL;
305 	unsigned long prev = 0, pend = 0;
306 
307 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 		struct vm_area_struct *vma;
309 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 		if (vma->vm_start < prev)
311 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312 		if (vma->vm_start < pend)
313 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314 		if (vma->vm_start > vma->vm_end)
315 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316 		i++;
317 		pn = nd;
318 		prev = vma->vm_start;
319 		pend = vma->vm_end;
320 	}
321 	j = 0;
322 	for (nd = pn; nd; nd = rb_prev(nd)) {
323 		j++;
324 	}
325 	if (i != j)
326 		printk("backwards %d, forwards %d\n", j, i), i = 0;
327 	return i;
328 }
329 
330 void validate_mm(struct mm_struct *mm)
331 {
332 	int bug = 0;
333 	int i = 0;
334 	struct vm_area_struct *vma = mm->mmap;
335 	while (vma) {
336 		struct anon_vma_chain *avc;
337 		vma_lock_anon_vma(vma);
338 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
339 			anon_vma_interval_tree_verify(avc);
340 		vma_unlock_anon_vma(vma);
341 		vma = vma->vm_next;
342 		i++;
343 	}
344 	if (i != mm->map_count)
345 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
346 	i = browse_rb(&mm->mm_rb);
347 	if (i != mm->map_count)
348 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
349 	BUG_ON(bug);
350 }
351 #else
352 #define validate_mm(mm) do { } while (0)
353 #endif
354 
355 /*
356  * vma has some anon_vma assigned, and is already inserted on that
357  * anon_vma's interval trees.
358  *
359  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
360  * vma must be removed from the anon_vma's interval trees using
361  * anon_vma_interval_tree_pre_update_vma().
362  *
363  * After the update, the vma will be reinserted using
364  * anon_vma_interval_tree_post_update_vma().
365  *
366  * The entire update must be protected by exclusive mmap_sem and by
367  * the root anon_vma's mutex.
368  */
369 static inline void
370 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
371 {
372 	struct anon_vma_chain *avc;
373 
374 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
375 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
376 }
377 
378 static inline void
379 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
380 {
381 	struct anon_vma_chain *avc;
382 
383 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
384 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
385 }
386 
387 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
388 		unsigned long end, struct vm_area_struct **pprev,
389 		struct rb_node ***rb_link, struct rb_node **rb_parent)
390 {
391 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
392 
393 	__rb_link = &mm->mm_rb.rb_node;
394 	rb_prev = __rb_parent = NULL;
395 
396 	while (*__rb_link) {
397 		struct vm_area_struct *vma_tmp;
398 
399 		__rb_parent = *__rb_link;
400 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
401 
402 		if (vma_tmp->vm_end > addr) {
403 			/* Fail if an existing vma overlaps the area */
404 			if (vma_tmp->vm_start < end)
405 				return -ENOMEM;
406 			__rb_link = &__rb_parent->rb_left;
407 		} else {
408 			rb_prev = __rb_parent;
409 			__rb_link = &__rb_parent->rb_right;
410 		}
411 	}
412 
413 	*pprev = NULL;
414 	if (rb_prev)
415 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
416 	*rb_link = __rb_link;
417 	*rb_parent = __rb_parent;
418 	return 0;
419 }
420 
421 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
422 		struct rb_node **rb_link, struct rb_node *rb_parent)
423 {
424 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
425 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
426 }
427 
428 static void __vma_link_file(struct vm_area_struct *vma)
429 {
430 	struct file *file;
431 
432 	file = vma->vm_file;
433 	if (file) {
434 		struct address_space *mapping = file->f_mapping;
435 
436 		if (vma->vm_flags & VM_DENYWRITE)
437 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
438 		if (vma->vm_flags & VM_SHARED)
439 			mapping->i_mmap_writable++;
440 
441 		flush_dcache_mmap_lock(mapping);
442 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
443 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
444 		else
445 			vma_interval_tree_insert(vma, &mapping->i_mmap);
446 		flush_dcache_mmap_unlock(mapping);
447 	}
448 }
449 
450 static void
451 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
452 	struct vm_area_struct *prev, struct rb_node **rb_link,
453 	struct rb_node *rb_parent)
454 {
455 	__vma_link_list(mm, vma, prev, rb_parent);
456 	__vma_link_rb(mm, vma, rb_link, rb_parent);
457 }
458 
459 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
460 			struct vm_area_struct *prev, struct rb_node **rb_link,
461 			struct rb_node *rb_parent)
462 {
463 	struct address_space *mapping = NULL;
464 
465 	if (vma->vm_file)
466 		mapping = vma->vm_file->f_mapping;
467 
468 	if (mapping)
469 		mutex_lock(&mapping->i_mmap_mutex);
470 
471 	__vma_link(mm, vma, prev, rb_link, rb_parent);
472 	__vma_link_file(vma);
473 
474 	if (mapping)
475 		mutex_unlock(&mapping->i_mmap_mutex);
476 
477 	mm->map_count++;
478 	validate_mm(mm);
479 }
480 
481 /*
482  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
483  * mm's list and rbtree.  It has already been inserted into the interval tree.
484  */
485 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
486 {
487 	struct vm_area_struct *prev;
488 	struct rb_node **rb_link, *rb_parent;
489 
490 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
491 			   &prev, &rb_link, &rb_parent))
492 		BUG();
493 	__vma_link(mm, vma, prev, rb_link, rb_parent);
494 	mm->map_count++;
495 }
496 
497 static inline void
498 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
499 		struct vm_area_struct *prev)
500 {
501 	struct vm_area_struct *next = vma->vm_next;
502 
503 	prev->vm_next = next;
504 	if (next)
505 		next->vm_prev = prev;
506 	rb_erase(&vma->vm_rb, &mm->mm_rb);
507 	if (mm->mmap_cache == vma)
508 		mm->mmap_cache = prev;
509 }
510 
511 /*
512  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
513  * is already present in an i_mmap tree without adjusting the tree.
514  * The following helper function should be used when such adjustments
515  * are necessary.  The "insert" vma (if any) is to be inserted
516  * before we drop the necessary locks.
517  */
518 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
519 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
520 {
521 	struct mm_struct *mm = vma->vm_mm;
522 	struct vm_area_struct *next = vma->vm_next;
523 	struct vm_area_struct *importer = NULL;
524 	struct address_space *mapping = NULL;
525 	struct rb_root *root = NULL;
526 	struct anon_vma *anon_vma = NULL;
527 	struct file *file = vma->vm_file;
528 	long adjust_next = 0;
529 	int remove_next = 0;
530 
531 	if (next && !insert) {
532 		struct vm_area_struct *exporter = NULL;
533 
534 		if (end >= next->vm_end) {
535 			/*
536 			 * vma expands, overlapping all the next, and
537 			 * perhaps the one after too (mprotect case 6).
538 			 */
539 again:			remove_next = 1 + (end > next->vm_end);
540 			end = next->vm_end;
541 			exporter = next;
542 			importer = vma;
543 		} else if (end > next->vm_start) {
544 			/*
545 			 * vma expands, overlapping part of the next:
546 			 * mprotect case 5 shifting the boundary up.
547 			 */
548 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
549 			exporter = next;
550 			importer = vma;
551 		} else if (end < vma->vm_end) {
552 			/*
553 			 * vma shrinks, and !insert tells it's not
554 			 * split_vma inserting another: so it must be
555 			 * mprotect case 4 shifting the boundary down.
556 			 */
557 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
558 			exporter = vma;
559 			importer = next;
560 		}
561 
562 		/*
563 		 * Easily overlooked: when mprotect shifts the boundary,
564 		 * make sure the expanding vma has anon_vma set if the
565 		 * shrinking vma had, to cover any anon pages imported.
566 		 */
567 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
568 			if (anon_vma_clone(importer, exporter))
569 				return -ENOMEM;
570 			importer->anon_vma = exporter->anon_vma;
571 		}
572 	}
573 
574 	if (file) {
575 		mapping = file->f_mapping;
576 		if (!(vma->vm_flags & VM_NONLINEAR)) {
577 			root = &mapping->i_mmap;
578 			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
579 
580 			if (adjust_next)
581 				uprobe_munmap(next, next->vm_start,
582 							next->vm_end);
583 		}
584 
585 		mutex_lock(&mapping->i_mmap_mutex);
586 		if (insert) {
587 			/*
588 			 * Put into interval tree now, so instantiated pages
589 			 * are visible to arm/parisc __flush_dcache_page
590 			 * throughout; but we cannot insert into address
591 			 * space until vma start or end is updated.
592 			 */
593 			__vma_link_file(insert);
594 		}
595 	}
596 
597 	vma_adjust_trans_huge(vma, start, end, adjust_next);
598 
599 	anon_vma = vma->anon_vma;
600 	if (!anon_vma && adjust_next)
601 		anon_vma = next->anon_vma;
602 	if (anon_vma) {
603 		VM_BUG_ON(adjust_next && next->anon_vma &&
604 			  anon_vma != next->anon_vma);
605 		anon_vma_lock(anon_vma);
606 		anon_vma_interval_tree_pre_update_vma(vma);
607 		if (adjust_next)
608 			anon_vma_interval_tree_pre_update_vma(next);
609 	}
610 
611 	if (root) {
612 		flush_dcache_mmap_lock(mapping);
613 		vma_interval_tree_remove(vma, root);
614 		if (adjust_next)
615 			vma_interval_tree_remove(next, root);
616 	}
617 
618 	vma->vm_start = start;
619 	vma->vm_end = end;
620 	vma->vm_pgoff = pgoff;
621 	if (adjust_next) {
622 		next->vm_start += adjust_next << PAGE_SHIFT;
623 		next->vm_pgoff += adjust_next;
624 	}
625 
626 	if (root) {
627 		if (adjust_next)
628 			vma_interval_tree_insert(next, root);
629 		vma_interval_tree_insert(vma, root);
630 		flush_dcache_mmap_unlock(mapping);
631 	}
632 
633 	if (remove_next) {
634 		/*
635 		 * vma_merge has merged next into vma, and needs
636 		 * us to remove next before dropping the locks.
637 		 */
638 		__vma_unlink(mm, next, vma);
639 		if (file)
640 			__remove_shared_vm_struct(next, file, mapping);
641 	} else if (insert) {
642 		/*
643 		 * split_vma has split insert from vma, and needs
644 		 * us to insert it before dropping the locks
645 		 * (it may either follow vma or precede it).
646 		 */
647 		__insert_vm_struct(mm, insert);
648 	}
649 
650 	if (anon_vma) {
651 		anon_vma_interval_tree_post_update_vma(vma);
652 		if (adjust_next)
653 			anon_vma_interval_tree_post_update_vma(next);
654 		anon_vma_unlock(anon_vma);
655 	}
656 	if (mapping)
657 		mutex_unlock(&mapping->i_mmap_mutex);
658 
659 	if (root) {
660 		uprobe_mmap(vma);
661 
662 		if (adjust_next)
663 			uprobe_mmap(next);
664 	}
665 
666 	if (remove_next) {
667 		if (file) {
668 			uprobe_munmap(next, next->vm_start, next->vm_end);
669 			fput(file);
670 		}
671 		if (next->anon_vma)
672 			anon_vma_merge(vma, next);
673 		mm->map_count--;
674 		mpol_put(vma_policy(next));
675 		kmem_cache_free(vm_area_cachep, next);
676 		/*
677 		 * In mprotect's case 6 (see comments on vma_merge),
678 		 * we must remove another next too. It would clutter
679 		 * up the code too much to do both in one go.
680 		 */
681 		if (remove_next == 2) {
682 			next = vma->vm_next;
683 			goto again;
684 		}
685 	}
686 	if (insert && file)
687 		uprobe_mmap(insert);
688 
689 	validate_mm(mm);
690 
691 	return 0;
692 }
693 
694 /*
695  * If the vma has a ->close operation then the driver probably needs to release
696  * per-vma resources, so we don't attempt to merge those.
697  */
698 static inline int is_mergeable_vma(struct vm_area_struct *vma,
699 			struct file *file, unsigned long vm_flags)
700 {
701 	if (vma->vm_flags ^ vm_flags)
702 		return 0;
703 	if (vma->vm_file != file)
704 		return 0;
705 	if (vma->vm_ops && vma->vm_ops->close)
706 		return 0;
707 	return 1;
708 }
709 
710 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
711 					struct anon_vma *anon_vma2,
712 					struct vm_area_struct *vma)
713 {
714 	/*
715 	 * The list_is_singular() test is to avoid merging VMA cloned from
716 	 * parents. This can improve scalability caused by anon_vma lock.
717 	 */
718 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
719 		list_is_singular(&vma->anon_vma_chain)))
720 		return 1;
721 	return anon_vma1 == anon_vma2;
722 }
723 
724 /*
725  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
726  * in front of (at a lower virtual address and file offset than) the vma.
727  *
728  * We cannot merge two vmas if they have differently assigned (non-NULL)
729  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
730  *
731  * We don't check here for the merged mmap wrapping around the end of pagecache
732  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
733  * wrap, nor mmaps which cover the final page at index -1UL.
734  */
735 static int
736 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
737 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
738 {
739 	if (is_mergeable_vma(vma, file, vm_flags) &&
740 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
741 		if (vma->vm_pgoff == vm_pgoff)
742 			return 1;
743 	}
744 	return 0;
745 }
746 
747 /*
748  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
749  * beyond (at a higher virtual address and file offset than) the vma.
750  *
751  * We cannot merge two vmas if they have differently assigned (non-NULL)
752  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
753  */
754 static int
755 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
756 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
757 {
758 	if (is_mergeable_vma(vma, file, vm_flags) &&
759 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
760 		pgoff_t vm_pglen;
761 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
762 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
763 			return 1;
764 	}
765 	return 0;
766 }
767 
768 /*
769  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
770  * whether that can be merged with its predecessor or its successor.
771  * Or both (it neatly fills a hole).
772  *
773  * In most cases - when called for mmap, brk or mremap - [addr,end) is
774  * certain not to be mapped by the time vma_merge is called; but when
775  * called for mprotect, it is certain to be already mapped (either at
776  * an offset within prev, or at the start of next), and the flags of
777  * this area are about to be changed to vm_flags - and the no-change
778  * case has already been eliminated.
779  *
780  * The following mprotect cases have to be considered, where AAAA is
781  * the area passed down from mprotect_fixup, never extending beyond one
782  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
783  *
784  *     AAAA             AAAA                AAAA          AAAA
785  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
786  *    cannot merge    might become    might become    might become
787  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
788  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
789  *    mremap move:                                    PPPPNNNNNNNN 8
790  *        AAAA
791  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
792  *    might become    case 1 below    case 2 below    case 3 below
793  *
794  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
795  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
796  */
797 struct vm_area_struct *vma_merge(struct mm_struct *mm,
798 			struct vm_area_struct *prev, unsigned long addr,
799 			unsigned long end, unsigned long vm_flags,
800 		     	struct anon_vma *anon_vma, struct file *file,
801 			pgoff_t pgoff, struct mempolicy *policy)
802 {
803 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
804 	struct vm_area_struct *area, *next;
805 	int err;
806 
807 	/*
808 	 * We later require that vma->vm_flags == vm_flags,
809 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
810 	 */
811 	if (vm_flags & VM_SPECIAL)
812 		return NULL;
813 
814 	if (prev)
815 		next = prev->vm_next;
816 	else
817 		next = mm->mmap;
818 	area = next;
819 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
820 		next = next->vm_next;
821 
822 	/*
823 	 * Can it merge with the predecessor?
824 	 */
825 	if (prev && prev->vm_end == addr &&
826   			mpol_equal(vma_policy(prev), policy) &&
827 			can_vma_merge_after(prev, vm_flags,
828 						anon_vma, file, pgoff)) {
829 		/*
830 		 * OK, it can.  Can we now merge in the successor as well?
831 		 */
832 		if (next && end == next->vm_start &&
833 				mpol_equal(policy, vma_policy(next)) &&
834 				can_vma_merge_before(next, vm_flags,
835 					anon_vma, file, pgoff+pglen) &&
836 				is_mergeable_anon_vma(prev->anon_vma,
837 						      next->anon_vma, NULL)) {
838 							/* cases 1, 6 */
839 			err = vma_adjust(prev, prev->vm_start,
840 				next->vm_end, prev->vm_pgoff, NULL);
841 		} else					/* cases 2, 5, 7 */
842 			err = vma_adjust(prev, prev->vm_start,
843 				end, prev->vm_pgoff, NULL);
844 		if (err)
845 			return NULL;
846 		khugepaged_enter_vma_merge(prev);
847 		return prev;
848 	}
849 
850 	/*
851 	 * Can this new request be merged in front of next?
852 	 */
853 	if (next && end == next->vm_start &&
854  			mpol_equal(policy, vma_policy(next)) &&
855 			can_vma_merge_before(next, vm_flags,
856 					anon_vma, file, pgoff+pglen)) {
857 		if (prev && addr < prev->vm_end)	/* case 4 */
858 			err = vma_adjust(prev, prev->vm_start,
859 				addr, prev->vm_pgoff, NULL);
860 		else					/* cases 3, 8 */
861 			err = vma_adjust(area, addr, next->vm_end,
862 				next->vm_pgoff - pglen, NULL);
863 		if (err)
864 			return NULL;
865 		khugepaged_enter_vma_merge(area);
866 		return area;
867 	}
868 
869 	return NULL;
870 }
871 
872 /*
873  * Rough compatbility check to quickly see if it's even worth looking
874  * at sharing an anon_vma.
875  *
876  * They need to have the same vm_file, and the flags can only differ
877  * in things that mprotect may change.
878  *
879  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
880  * we can merge the two vma's. For example, we refuse to merge a vma if
881  * there is a vm_ops->close() function, because that indicates that the
882  * driver is doing some kind of reference counting. But that doesn't
883  * really matter for the anon_vma sharing case.
884  */
885 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
886 {
887 	return a->vm_end == b->vm_start &&
888 		mpol_equal(vma_policy(a), vma_policy(b)) &&
889 		a->vm_file == b->vm_file &&
890 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
891 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
892 }
893 
894 /*
895  * Do some basic sanity checking to see if we can re-use the anon_vma
896  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
897  * the same as 'old', the other will be the new one that is trying
898  * to share the anon_vma.
899  *
900  * NOTE! This runs with mm_sem held for reading, so it is possible that
901  * the anon_vma of 'old' is concurrently in the process of being set up
902  * by another page fault trying to merge _that_. But that's ok: if it
903  * is being set up, that automatically means that it will be a singleton
904  * acceptable for merging, so we can do all of this optimistically. But
905  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
906  *
907  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
908  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
909  * is to return an anon_vma that is "complex" due to having gone through
910  * a fork).
911  *
912  * We also make sure that the two vma's are compatible (adjacent,
913  * and with the same memory policies). That's all stable, even with just
914  * a read lock on the mm_sem.
915  */
916 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
917 {
918 	if (anon_vma_compatible(a, b)) {
919 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
920 
921 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
922 			return anon_vma;
923 	}
924 	return NULL;
925 }
926 
927 /*
928  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
929  * neighbouring vmas for a suitable anon_vma, before it goes off
930  * to allocate a new anon_vma.  It checks because a repetitive
931  * sequence of mprotects and faults may otherwise lead to distinct
932  * anon_vmas being allocated, preventing vma merge in subsequent
933  * mprotect.
934  */
935 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
936 {
937 	struct anon_vma *anon_vma;
938 	struct vm_area_struct *near;
939 
940 	near = vma->vm_next;
941 	if (!near)
942 		goto try_prev;
943 
944 	anon_vma = reusable_anon_vma(near, vma, near);
945 	if (anon_vma)
946 		return anon_vma;
947 try_prev:
948 	near = vma->vm_prev;
949 	if (!near)
950 		goto none;
951 
952 	anon_vma = reusable_anon_vma(near, near, vma);
953 	if (anon_vma)
954 		return anon_vma;
955 none:
956 	/*
957 	 * There's no absolute need to look only at touching neighbours:
958 	 * we could search further afield for "compatible" anon_vmas.
959 	 * But it would probably just be a waste of time searching,
960 	 * or lead to too many vmas hanging off the same anon_vma.
961 	 * We're trying to allow mprotect remerging later on,
962 	 * not trying to minimize memory used for anon_vmas.
963 	 */
964 	return NULL;
965 }
966 
967 #ifdef CONFIG_PROC_FS
968 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
969 						struct file *file, long pages)
970 {
971 	const unsigned long stack_flags
972 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
973 
974 	mm->total_vm += pages;
975 
976 	if (file) {
977 		mm->shared_vm += pages;
978 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
979 			mm->exec_vm += pages;
980 	} else if (flags & stack_flags)
981 		mm->stack_vm += pages;
982 }
983 #endif /* CONFIG_PROC_FS */
984 
985 /*
986  * If a hint addr is less than mmap_min_addr change hint to be as
987  * low as possible but still greater than mmap_min_addr
988  */
989 static inline unsigned long round_hint_to_min(unsigned long hint)
990 {
991 	hint &= PAGE_MASK;
992 	if (((void *)hint != NULL) &&
993 	    (hint < mmap_min_addr))
994 		return PAGE_ALIGN(mmap_min_addr);
995 	return hint;
996 }
997 
998 /*
999  * The caller must hold down_write(&current->mm->mmap_sem).
1000  */
1001 
1002 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1003 			unsigned long len, unsigned long prot,
1004 			unsigned long flags, unsigned long pgoff)
1005 {
1006 	struct mm_struct * mm = current->mm;
1007 	struct inode *inode;
1008 	vm_flags_t vm_flags;
1009 
1010 	/*
1011 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1012 	 *
1013 	 * (the exception is when the underlying filesystem is noexec
1014 	 *  mounted, in which case we dont add PROT_EXEC.)
1015 	 */
1016 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1017 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1018 			prot |= PROT_EXEC;
1019 
1020 	if (!len)
1021 		return -EINVAL;
1022 
1023 	if (!(flags & MAP_FIXED))
1024 		addr = round_hint_to_min(addr);
1025 
1026 	/* Careful about overflows.. */
1027 	len = PAGE_ALIGN(len);
1028 	if (!len)
1029 		return -ENOMEM;
1030 
1031 	/* offset overflow? */
1032 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1033                return -EOVERFLOW;
1034 
1035 	/* Too many mappings? */
1036 	if (mm->map_count > sysctl_max_map_count)
1037 		return -ENOMEM;
1038 
1039 	/* Obtain the address to map to. we verify (or select) it and ensure
1040 	 * that it represents a valid section of the address space.
1041 	 */
1042 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1043 	if (addr & ~PAGE_MASK)
1044 		return addr;
1045 
1046 	/* Do simple checking here so the lower-level routines won't have
1047 	 * to. we assume access permissions have been handled by the open
1048 	 * of the memory object, so we don't do any here.
1049 	 */
1050 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1051 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1052 
1053 	if (flags & MAP_LOCKED)
1054 		if (!can_do_mlock())
1055 			return -EPERM;
1056 
1057 	/* mlock MCL_FUTURE? */
1058 	if (vm_flags & VM_LOCKED) {
1059 		unsigned long locked, lock_limit;
1060 		locked = len >> PAGE_SHIFT;
1061 		locked += mm->locked_vm;
1062 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1063 		lock_limit >>= PAGE_SHIFT;
1064 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1065 			return -EAGAIN;
1066 	}
1067 
1068 	inode = file ? file->f_path.dentry->d_inode : NULL;
1069 
1070 	if (file) {
1071 		switch (flags & MAP_TYPE) {
1072 		case MAP_SHARED:
1073 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1074 				return -EACCES;
1075 
1076 			/*
1077 			 * Make sure we don't allow writing to an append-only
1078 			 * file..
1079 			 */
1080 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1081 				return -EACCES;
1082 
1083 			/*
1084 			 * Make sure there are no mandatory locks on the file.
1085 			 */
1086 			if (locks_verify_locked(inode))
1087 				return -EAGAIN;
1088 
1089 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1090 			if (!(file->f_mode & FMODE_WRITE))
1091 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1092 
1093 			/* fall through */
1094 		case MAP_PRIVATE:
1095 			if (!(file->f_mode & FMODE_READ))
1096 				return -EACCES;
1097 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1098 				if (vm_flags & VM_EXEC)
1099 					return -EPERM;
1100 				vm_flags &= ~VM_MAYEXEC;
1101 			}
1102 
1103 			if (!file->f_op || !file->f_op->mmap)
1104 				return -ENODEV;
1105 			break;
1106 
1107 		default:
1108 			return -EINVAL;
1109 		}
1110 	} else {
1111 		switch (flags & MAP_TYPE) {
1112 		case MAP_SHARED:
1113 			/*
1114 			 * Ignore pgoff.
1115 			 */
1116 			pgoff = 0;
1117 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1118 			break;
1119 		case MAP_PRIVATE:
1120 			/*
1121 			 * Set pgoff according to addr for anon_vma.
1122 			 */
1123 			pgoff = addr >> PAGE_SHIFT;
1124 			break;
1125 		default:
1126 			return -EINVAL;
1127 		}
1128 	}
1129 
1130 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1131 }
1132 
1133 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1134 		unsigned long, prot, unsigned long, flags,
1135 		unsigned long, fd, unsigned long, pgoff)
1136 {
1137 	struct file *file = NULL;
1138 	unsigned long retval = -EBADF;
1139 
1140 	if (!(flags & MAP_ANONYMOUS)) {
1141 		audit_mmap_fd(fd, flags);
1142 		if (unlikely(flags & MAP_HUGETLB))
1143 			return -EINVAL;
1144 		file = fget(fd);
1145 		if (!file)
1146 			goto out;
1147 	} else if (flags & MAP_HUGETLB) {
1148 		struct user_struct *user = NULL;
1149 		/*
1150 		 * VM_NORESERVE is used because the reservations will be
1151 		 * taken when vm_ops->mmap() is called
1152 		 * A dummy user value is used because we are not locking
1153 		 * memory so no accounting is necessary
1154 		 */
1155 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1156 						VM_NORESERVE, &user,
1157 						HUGETLB_ANONHUGE_INODE);
1158 		if (IS_ERR(file))
1159 			return PTR_ERR(file);
1160 	}
1161 
1162 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1163 
1164 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1165 	if (file)
1166 		fput(file);
1167 out:
1168 	return retval;
1169 }
1170 
1171 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1172 struct mmap_arg_struct {
1173 	unsigned long addr;
1174 	unsigned long len;
1175 	unsigned long prot;
1176 	unsigned long flags;
1177 	unsigned long fd;
1178 	unsigned long offset;
1179 };
1180 
1181 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1182 {
1183 	struct mmap_arg_struct a;
1184 
1185 	if (copy_from_user(&a, arg, sizeof(a)))
1186 		return -EFAULT;
1187 	if (a.offset & ~PAGE_MASK)
1188 		return -EINVAL;
1189 
1190 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1191 			      a.offset >> PAGE_SHIFT);
1192 }
1193 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1194 
1195 /*
1196  * Some shared mappigns will want the pages marked read-only
1197  * to track write events. If so, we'll downgrade vm_page_prot
1198  * to the private version (using protection_map[] without the
1199  * VM_SHARED bit).
1200  */
1201 int vma_wants_writenotify(struct vm_area_struct *vma)
1202 {
1203 	vm_flags_t vm_flags = vma->vm_flags;
1204 
1205 	/* If it was private or non-writable, the write bit is already clear */
1206 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1207 		return 0;
1208 
1209 	/* The backer wishes to know when pages are first written to? */
1210 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1211 		return 1;
1212 
1213 	/* The open routine did something to the protections already? */
1214 	if (pgprot_val(vma->vm_page_prot) !=
1215 	    pgprot_val(vm_get_page_prot(vm_flags)))
1216 		return 0;
1217 
1218 	/* Specialty mapping? */
1219 	if (vm_flags & VM_PFNMAP)
1220 		return 0;
1221 
1222 	/* Can the mapping track the dirty pages? */
1223 	return vma->vm_file && vma->vm_file->f_mapping &&
1224 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1225 }
1226 
1227 /*
1228  * We account for memory if it's a private writeable mapping,
1229  * not hugepages and VM_NORESERVE wasn't set.
1230  */
1231 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1232 {
1233 	/*
1234 	 * hugetlb has its own accounting separate from the core VM
1235 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1236 	 */
1237 	if (file && is_file_hugepages(file))
1238 		return 0;
1239 
1240 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1241 }
1242 
1243 unsigned long mmap_region(struct file *file, unsigned long addr,
1244 			  unsigned long len, unsigned long flags,
1245 			  vm_flags_t vm_flags, unsigned long pgoff)
1246 {
1247 	struct mm_struct *mm = current->mm;
1248 	struct vm_area_struct *vma, *prev;
1249 	int correct_wcount = 0;
1250 	int error;
1251 	struct rb_node **rb_link, *rb_parent;
1252 	unsigned long charged = 0;
1253 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1254 
1255 	/* Clear old maps */
1256 	error = -ENOMEM;
1257 munmap_back:
1258 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1259 		if (do_munmap(mm, addr, len))
1260 			return -ENOMEM;
1261 		goto munmap_back;
1262 	}
1263 
1264 	/* Check against address space limit. */
1265 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1266 		return -ENOMEM;
1267 
1268 	/*
1269 	 * Set 'VM_NORESERVE' if we should not account for the
1270 	 * memory use of this mapping.
1271 	 */
1272 	if ((flags & MAP_NORESERVE)) {
1273 		/* We honor MAP_NORESERVE if allowed to overcommit */
1274 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1275 			vm_flags |= VM_NORESERVE;
1276 
1277 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1278 		if (file && is_file_hugepages(file))
1279 			vm_flags |= VM_NORESERVE;
1280 	}
1281 
1282 	/*
1283 	 * Private writable mapping: check memory availability
1284 	 */
1285 	if (accountable_mapping(file, vm_flags)) {
1286 		charged = len >> PAGE_SHIFT;
1287 		if (security_vm_enough_memory_mm(mm, charged))
1288 			return -ENOMEM;
1289 		vm_flags |= VM_ACCOUNT;
1290 	}
1291 
1292 	/*
1293 	 * Can we just expand an old mapping?
1294 	 */
1295 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1296 	if (vma)
1297 		goto out;
1298 
1299 	/*
1300 	 * Determine the object being mapped and call the appropriate
1301 	 * specific mapper. the address has already been validated, but
1302 	 * not unmapped, but the maps are removed from the list.
1303 	 */
1304 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1305 	if (!vma) {
1306 		error = -ENOMEM;
1307 		goto unacct_error;
1308 	}
1309 
1310 	vma->vm_mm = mm;
1311 	vma->vm_start = addr;
1312 	vma->vm_end = addr + len;
1313 	vma->vm_flags = vm_flags;
1314 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1315 	vma->vm_pgoff = pgoff;
1316 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1317 
1318 	error = -EINVAL;	/* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1319 
1320 	if (file) {
1321 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1322 			goto free_vma;
1323 		if (vm_flags & VM_DENYWRITE) {
1324 			error = deny_write_access(file);
1325 			if (error)
1326 				goto free_vma;
1327 			correct_wcount = 1;
1328 		}
1329 		vma->vm_file = get_file(file);
1330 		error = file->f_op->mmap(file, vma);
1331 		if (error)
1332 			goto unmap_and_free_vma;
1333 
1334 		/* Can addr have changed??
1335 		 *
1336 		 * Answer: Yes, several device drivers can do it in their
1337 		 *         f_op->mmap method. -DaveM
1338 		 */
1339 		addr = vma->vm_start;
1340 		pgoff = vma->vm_pgoff;
1341 		vm_flags = vma->vm_flags;
1342 	} else if (vm_flags & VM_SHARED) {
1343 		if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1344 			goto free_vma;
1345 		error = shmem_zero_setup(vma);
1346 		if (error)
1347 			goto free_vma;
1348 	}
1349 
1350 	if (vma_wants_writenotify(vma)) {
1351 		pgprot_t pprot = vma->vm_page_prot;
1352 
1353 		/* Can vma->vm_page_prot have changed??
1354 		 *
1355 		 * Answer: Yes, drivers may have changed it in their
1356 		 *         f_op->mmap method.
1357 		 *
1358 		 * Ensures that vmas marked as uncached stay that way.
1359 		 */
1360 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1361 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1362 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1363 	}
1364 
1365 	vma_link(mm, vma, prev, rb_link, rb_parent);
1366 	file = vma->vm_file;
1367 
1368 	/* Once vma denies write, undo our temporary denial count */
1369 	if (correct_wcount)
1370 		atomic_inc(&inode->i_writecount);
1371 out:
1372 	perf_event_mmap(vma);
1373 
1374 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1375 	if (vm_flags & VM_LOCKED) {
1376 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1377 			mm->locked_vm += (len >> PAGE_SHIFT);
1378 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1379 		make_pages_present(addr, addr + len);
1380 
1381 	if (file)
1382 		uprobe_mmap(vma);
1383 
1384 	return addr;
1385 
1386 unmap_and_free_vma:
1387 	if (correct_wcount)
1388 		atomic_inc(&inode->i_writecount);
1389 	vma->vm_file = NULL;
1390 	fput(file);
1391 
1392 	/* Undo any partial mapping done by a device driver. */
1393 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1394 	charged = 0;
1395 free_vma:
1396 	kmem_cache_free(vm_area_cachep, vma);
1397 unacct_error:
1398 	if (charged)
1399 		vm_unacct_memory(charged);
1400 	return error;
1401 }
1402 
1403 /* Get an address range which is currently unmapped.
1404  * For shmat() with addr=0.
1405  *
1406  * Ugly calling convention alert:
1407  * Return value with the low bits set means error value,
1408  * ie
1409  *	if (ret & ~PAGE_MASK)
1410  *		error = ret;
1411  *
1412  * This function "knows" that -ENOMEM has the bits set.
1413  */
1414 #ifndef HAVE_ARCH_UNMAPPED_AREA
1415 unsigned long
1416 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1417 		unsigned long len, unsigned long pgoff, unsigned long flags)
1418 {
1419 	struct mm_struct *mm = current->mm;
1420 	struct vm_area_struct *vma;
1421 	unsigned long start_addr;
1422 
1423 	if (len > TASK_SIZE)
1424 		return -ENOMEM;
1425 
1426 	if (flags & MAP_FIXED)
1427 		return addr;
1428 
1429 	if (addr) {
1430 		addr = PAGE_ALIGN(addr);
1431 		vma = find_vma(mm, addr);
1432 		if (TASK_SIZE - len >= addr &&
1433 		    (!vma || addr + len <= vma->vm_start))
1434 			return addr;
1435 	}
1436 	if (len > mm->cached_hole_size) {
1437 	        start_addr = addr = mm->free_area_cache;
1438 	} else {
1439 	        start_addr = addr = TASK_UNMAPPED_BASE;
1440 	        mm->cached_hole_size = 0;
1441 	}
1442 
1443 full_search:
1444 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1445 		/* At this point:  (!vma || addr < vma->vm_end). */
1446 		if (TASK_SIZE - len < addr) {
1447 			/*
1448 			 * Start a new search - just in case we missed
1449 			 * some holes.
1450 			 */
1451 			if (start_addr != TASK_UNMAPPED_BASE) {
1452 				addr = TASK_UNMAPPED_BASE;
1453 			        start_addr = addr;
1454 				mm->cached_hole_size = 0;
1455 				goto full_search;
1456 			}
1457 			return -ENOMEM;
1458 		}
1459 		if (!vma || addr + len <= vma->vm_start) {
1460 			/*
1461 			 * Remember the place where we stopped the search:
1462 			 */
1463 			mm->free_area_cache = addr + len;
1464 			return addr;
1465 		}
1466 		if (addr + mm->cached_hole_size < vma->vm_start)
1467 		        mm->cached_hole_size = vma->vm_start - addr;
1468 		addr = vma->vm_end;
1469 	}
1470 }
1471 #endif
1472 
1473 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1474 {
1475 	/*
1476 	 * Is this a new hole at the lowest possible address?
1477 	 */
1478 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1479 		mm->free_area_cache = addr;
1480 }
1481 
1482 /*
1483  * This mmap-allocator allocates new areas top-down from below the
1484  * stack's low limit (the base):
1485  */
1486 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1487 unsigned long
1488 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1489 			  const unsigned long len, const unsigned long pgoff,
1490 			  const unsigned long flags)
1491 {
1492 	struct vm_area_struct *vma;
1493 	struct mm_struct *mm = current->mm;
1494 	unsigned long addr = addr0, start_addr;
1495 
1496 	/* requested length too big for entire address space */
1497 	if (len > TASK_SIZE)
1498 		return -ENOMEM;
1499 
1500 	if (flags & MAP_FIXED)
1501 		return addr;
1502 
1503 	/* requesting a specific address */
1504 	if (addr) {
1505 		addr = PAGE_ALIGN(addr);
1506 		vma = find_vma(mm, addr);
1507 		if (TASK_SIZE - len >= addr &&
1508 				(!vma || addr + len <= vma->vm_start))
1509 			return addr;
1510 	}
1511 
1512 	/* check if free_area_cache is useful for us */
1513 	if (len <= mm->cached_hole_size) {
1514  	        mm->cached_hole_size = 0;
1515  		mm->free_area_cache = mm->mmap_base;
1516  	}
1517 
1518 try_again:
1519 	/* either no address requested or can't fit in requested address hole */
1520 	start_addr = addr = mm->free_area_cache;
1521 
1522 	if (addr < len)
1523 		goto fail;
1524 
1525 	addr -= len;
1526 	do {
1527 		/*
1528 		 * Lookup failure means no vma is above this address,
1529 		 * else if new region fits below vma->vm_start,
1530 		 * return with success:
1531 		 */
1532 		vma = find_vma(mm, addr);
1533 		if (!vma || addr+len <= vma->vm_start)
1534 			/* remember the address as a hint for next time */
1535 			return (mm->free_area_cache = addr);
1536 
1537  		/* remember the largest hole we saw so far */
1538  		if (addr + mm->cached_hole_size < vma->vm_start)
1539  		        mm->cached_hole_size = vma->vm_start - addr;
1540 
1541 		/* try just below the current vma->vm_start */
1542 		addr = vma->vm_start-len;
1543 	} while (len < vma->vm_start);
1544 
1545 fail:
1546 	/*
1547 	 * if hint left us with no space for the requested
1548 	 * mapping then try again:
1549 	 *
1550 	 * Note: this is different with the case of bottomup
1551 	 * which does the fully line-search, but we use find_vma
1552 	 * here that causes some holes skipped.
1553 	 */
1554 	if (start_addr != mm->mmap_base) {
1555 		mm->free_area_cache = mm->mmap_base;
1556 		mm->cached_hole_size = 0;
1557 		goto try_again;
1558 	}
1559 
1560 	/*
1561 	 * A failed mmap() very likely causes application failure,
1562 	 * so fall back to the bottom-up function here. This scenario
1563 	 * can happen with large stack limits and large mmap()
1564 	 * allocations.
1565 	 */
1566 	mm->cached_hole_size = ~0UL;
1567   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1568 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1569 	/*
1570 	 * Restore the topdown base:
1571 	 */
1572 	mm->free_area_cache = mm->mmap_base;
1573 	mm->cached_hole_size = ~0UL;
1574 
1575 	return addr;
1576 }
1577 #endif
1578 
1579 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1580 {
1581 	/*
1582 	 * Is this a new hole at the highest possible address?
1583 	 */
1584 	if (addr > mm->free_area_cache)
1585 		mm->free_area_cache = addr;
1586 
1587 	/* dont allow allocations above current base */
1588 	if (mm->free_area_cache > mm->mmap_base)
1589 		mm->free_area_cache = mm->mmap_base;
1590 }
1591 
1592 unsigned long
1593 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1594 		unsigned long pgoff, unsigned long flags)
1595 {
1596 	unsigned long (*get_area)(struct file *, unsigned long,
1597 				  unsigned long, unsigned long, unsigned long);
1598 
1599 	unsigned long error = arch_mmap_check(addr, len, flags);
1600 	if (error)
1601 		return error;
1602 
1603 	/* Careful about overflows.. */
1604 	if (len > TASK_SIZE)
1605 		return -ENOMEM;
1606 
1607 	get_area = current->mm->get_unmapped_area;
1608 	if (file && file->f_op && file->f_op->get_unmapped_area)
1609 		get_area = file->f_op->get_unmapped_area;
1610 	addr = get_area(file, addr, len, pgoff, flags);
1611 	if (IS_ERR_VALUE(addr))
1612 		return addr;
1613 
1614 	if (addr > TASK_SIZE - len)
1615 		return -ENOMEM;
1616 	if (addr & ~PAGE_MASK)
1617 		return -EINVAL;
1618 
1619 	addr = arch_rebalance_pgtables(addr, len);
1620 	error = security_mmap_addr(addr);
1621 	return error ? error : addr;
1622 }
1623 
1624 EXPORT_SYMBOL(get_unmapped_area);
1625 
1626 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1627 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1628 {
1629 	struct vm_area_struct *vma = NULL;
1630 
1631 	if (WARN_ON_ONCE(!mm))		/* Remove this in linux-3.6 */
1632 		return NULL;
1633 
1634 	/* Check the cache first. */
1635 	/* (Cache hit rate is typically around 35%.) */
1636 	vma = mm->mmap_cache;
1637 	if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1638 		struct rb_node *rb_node;
1639 
1640 		rb_node = mm->mm_rb.rb_node;
1641 		vma = NULL;
1642 
1643 		while (rb_node) {
1644 			struct vm_area_struct *vma_tmp;
1645 
1646 			vma_tmp = rb_entry(rb_node,
1647 					   struct vm_area_struct, vm_rb);
1648 
1649 			if (vma_tmp->vm_end > addr) {
1650 				vma = vma_tmp;
1651 				if (vma_tmp->vm_start <= addr)
1652 					break;
1653 				rb_node = rb_node->rb_left;
1654 			} else
1655 				rb_node = rb_node->rb_right;
1656 		}
1657 		if (vma)
1658 			mm->mmap_cache = vma;
1659 	}
1660 	return vma;
1661 }
1662 
1663 EXPORT_SYMBOL(find_vma);
1664 
1665 /*
1666  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1667  */
1668 struct vm_area_struct *
1669 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1670 			struct vm_area_struct **pprev)
1671 {
1672 	struct vm_area_struct *vma;
1673 
1674 	vma = find_vma(mm, addr);
1675 	if (vma) {
1676 		*pprev = vma->vm_prev;
1677 	} else {
1678 		struct rb_node *rb_node = mm->mm_rb.rb_node;
1679 		*pprev = NULL;
1680 		while (rb_node) {
1681 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1682 			rb_node = rb_node->rb_right;
1683 		}
1684 	}
1685 	return vma;
1686 }
1687 
1688 /*
1689  * Verify that the stack growth is acceptable and
1690  * update accounting. This is shared with both the
1691  * grow-up and grow-down cases.
1692  */
1693 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1694 {
1695 	struct mm_struct *mm = vma->vm_mm;
1696 	struct rlimit *rlim = current->signal->rlim;
1697 	unsigned long new_start;
1698 
1699 	/* address space limit tests */
1700 	if (!may_expand_vm(mm, grow))
1701 		return -ENOMEM;
1702 
1703 	/* Stack limit test */
1704 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1705 		return -ENOMEM;
1706 
1707 	/* mlock limit tests */
1708 	if (vma->vm_flags & VM_LOCKED) {
1709 		unsigned long locked;
1710 		unsigned long limit;
1711 		locked = mm->locked_vm + grow;
1712 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1713 		limit >>= PAGE_SHIFT;
1714 		if (locked > limit && !capable(CAP_IPC_LOCK))
1715 			return -ENOMEM;
1716 	}
1717 
1718 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1719 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1720 			vma->vm_end - size;
1721 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1722 		return -EFAULT;
1723 
1724 	/*
1725 	 * Overcommit..  This must be the final test, as it will
1726 	 * update security statistics.
1727 	 */
1728 	if (security_vm_enough_memory_mm(mm, grow))
1729 		return -ENOMEM;
1730 
1731 	/* Ok, everything looks good - let it rip */
1732 	if (vma->vm_flags & VM_LOCKED)
1733 		mm->locked_vm += grow;
1734 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1735 	return 0;
1736 }
1737 
1738 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1739 /*
1740  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1741  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1742  */
1743 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1744 {
1745 	int error;
1746 
1747 	if (!(vma->vm_flags & VM_GROWSUP))
1748 		return -EFAULT;
1749 
1750 	/*
1751 	 * We must make sure the anon_vma is allocated
1752 	 * so that the anon_vma locking is not a noop.
1753 	 */
1754 	if (unlikely(anon_vma_prepare(vma)))
1755 		return -ENOMEM;
1756 	vma_lock_anon_vma(vma);
1757 
1758 	/*
1759 	 * vma->vm_start/vm_end cannot change under us because the caller
1760 	 * is required to hold the mmap_sem in read mode.  We need the
1761 	 * anon_vma lock to serialize against concurrent expand_stacks.
1762 	 * Also guard against wrapping around to address 0.
1763 	 */
1764 	if (address < PAGE_ALIGN(address+4))
1765 		address = PAGE_ALIGN(address+4);
1766 	else {
1767 		vma_unlock_anon_vma(vma);
1768 		return -ENOMEM;
1769 	}
1770 	error = 0;
1771 
1772 	/* Somebody else might have raced and expanded it already */
1773 	if (address > vma->vm_end) {
1774 		unsigned long size, grow;
1775 
1776 		size = address - vma->vm_start;
1777 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1778 
1779 		error = -ENOMEM;
1780 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1781 			error = acct_stack_growth(vma, size, grow);
1782 			if (!error) {
1783 				anon_vma_interval_tree_pre_update_vma(vma);
1784 				vma->vm_end = address;
1785 				anon_vma_interval_tree_post_update_vma(vma);
1786 				perf_event_mmap(vma);
1787 			}
1788 		}
1789 	}
1790 	vma_unlock_anon_vma(vma);
1791 	khugepaged_enter_vma_merge(vma);
1792 	validate_mm(vma->vm_mm);
1793 	return error;
1794 }
1795 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1796 
1797 /*
1798  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1799  */
1800 int expand_downwards(struct vm_area_struct *vma,
1801 				   unsigned long address)
1802 {
1803 	int error;
1804 
1805 	/*
1806 	 * We must make sure the anon_vma is allocated
1807 	 * so that the anon_vma locking is not a noop.
1808 	 */
1809 	if (unlikely(anon_vma_prepare(vma)))
1810 		return -ENOMEM;
1811 
1812 	address &= PAGE_MASK;
1813 	error = security_mmap_addr(address);
1814 	if (error)
1815 		return error;
1816 
1817 	vma_lock_anon_vma(vma);
1818 
1819 	/*
1820 	 * vma->vm_start/vm_end cannot change under us because the caller
1821 	 * is required to hold the mmap_sem in read mode.  We need the
1822 	 * anon_vma lock to serialize against concurrent expand_stacks.
1823 	 */
1824 
1825 	/* Somebody else might have raced and expanded it already */
1826 	if (address < vma->vm_start) {
1827 		unsigned long size, grow;
1828 
1829 		size = vma->vm_end - address;
1830 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1831 
1832 		error = -ENOMEM;
1833 		if (grow <= vma->vm_pgoff) {
1834 			error = acct_stack_growth(vma, size, grow);
1835 			if (!error) {
1836 				anon_vma_interval_tree_pre_update_vma(vma);
1837 				vma->vm_start = address;
1838 				vma->vm_pgoff -= grow;
1839 				anon_vma_interval_tree_post_update_vma(vma);
1840 				perf_event_mmap(vma);
1841 			}
1842 		}
1843 	}
1844 	vma_unlock_anon_vma(vma);
1845 	khugepaged_enter_vma_merge(vma);
1846 	validate_mm(vma->vm_mm);
1847 	return error;
1848 }
1849 
1850 #ifdef CONFIG_STACK_GROWSUP
1851 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1852 {
1853 	return expand_upwards(vma, address);
1854 }
1855 
1856 struct vm_area_struct *
1857 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1858 {
1859 	struct vm_area_struct *vma, *prev;
1860 
1861 	addr &= PAGE_MASK;
1862 	vma = find_vma_prev(mm, addr, &prev);
1863 	if (vma && (vma->vm_start <= addr))
1864 		return vma;
1865 	if (!prev || expand_stack(prev, addr))
1866 		return NULL;
1867 	if (prev->vm_flags & VM_LOCKED) {
1868 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1869 	}
1870 	return prev;
1871 }
1872 #else
1873 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1874 {
1875 	return expand_downwards(vma, address);
1876 }
1877 
1878 struct vm_area_struct *
1879 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1880 {
1881 	struct vm_area_struct * vma;
1882 	unsigned long start;
1883 
1884 	addr &= PAGE_MASK;
1885 	vma = find_vma(mm,addr);
1886 	if (!vma)
1887 		return NULL;
1888 	if (vma->vm_start <= addr)
1889 		return vma;
1890 	if (!(vma->vm_flags & VM_GROWSDOWN))
1891 		return NULL;
1892 	start = vma->vm_start;
1893 	if (expand_stack(vma, addr))
1894 		return NULL;
1895 	if (vma->vm_flags & VM_LOCKED) {
1896 		mlock_vma_pages_range(vma, addr, start);
1897 	}
1898 	return vma;
1899 }
1900 #endif
1901 
1902 /*
1903  * Ok - we have the memory areas we should free on the vma list,
1904  * so release them, and do the vma updates.
1905  *
1906  * Called with the mm semaphore held.
1907  */
1908 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1909 {
1910 	unsigned long nr_accounted = 0;
1911 
1912 	/* Update high watermark before we lower total_vm */
1913 	update_hiwater_vm(mm);
1914 	do {
1915 		long nrpages = vma_pages(vma);
1916 
1917 		if (vma->vm_flags & VM_ACCOUNT)
1918 			nr_accounted += nrpages;
1919 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1920 		vma = remove_vma(vma);
1921 	} while (vma);
1922 	vm_unacct_memory(nr_accounted);
1923 	validate_mm(mm);
1924 }
1925 
1926 /*
1927  * Get rid of page table information in the indicated region.
1928  *
1929  * Called with the mm semaphore held.
1930  */
1931 static void unmap_region(struct mm_struct *mm,
1932 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1933 		unsigned long start, unsigned long end)
1934 {
1935 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1936 	struct mmu_gather tlb;
1937 
1938 	lru_add_drain();
1939 	tlb_gather_mmu(&tlb, mm, 0);
1940 	update_hiwater_rss(mm);
1941 	unmap_vmas(&tlb, vma, start, end);
1942 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1943 				 next ? next->vm_start : 0);
1944 	tlb_finish_mmu(&tlb, start, end);
1945 }
1946 
1947 /*
1948  * Create a list of vma's touched by the unmap, removing them from the mm's
1949  * vma list as we go..
1950  */
1951 static void
1952 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1953 	struct vm_area_struct *prev, unsigned long end)
1954 {
1955 	struct vm_area_struct **insertion_point;
1956 	struct vm_area_struct *tail_vma = NULL;
1957 	unsigned long addr;
1958 
1959 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1960 	vma->vm_prev = NULL;
1961 	do {
1962 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1963 		mm->map_count--;
1964 		tail_vma = vma;
1965 		vma = vma->vm_next;
1966 	} while (vma && vma->vm_start < end);
1967 	*insertion_point = vma;
1968 	if (vma)
1969 		vma->vm_prev = prev;
1970 	tail_vma->vm_next = NULL;
1971 	if (mm->unmap_area == arch_unmap_area)
1972 		addr = prev ? prev->vm_end : mm->mmap_base;
1973 	else
1974 		addr = vma ?  vma->vm_start : mm->mmap_base;
1975 	mm->unmap_area(mm, addr);
1976 	mm->mmap_cache = NULL;		/* Kill the cache. */
1977 }
1978 
1979 /*
1980  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1981  * munmap path where it doesn't make sense to fail.
1982  */
1983 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1984 	      unsigned long addr, int new_below)
1985 {
1986 	struct mempolicy *pol;
1987 	struct vm_area_struct *new;
1988 	int err = -ENOMEM;
1989 
1990 	if (is_vm_hugetlb_page(vma) && (addr &
1991 					~(huge_page_mask(hstate_vma(vma)))))
1992 		return -EINVAL;
1993 
1994 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1995 	if (!new)
1996 		goto out_err;
1997 
1998 	/* most fields are the same, copy all, and then fixup */
1999 	*new = *vma;
2000 
2001 	INIT_LIST_HEAD(&new->anon_vma_chain);
2002 
2003 	if (new_below)
2004 		new->vm_end = addr;
2005 	else {
2006 		new->vm_start = addr;
2007 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2008 	}
2009 
2010 	pol = mpol_dup(vma_policy(vma));
2011 	if (IS_ERR(pol)) {
2012 		err = PTR_ERR(pol);
2013 		goto out_free_vma;
2014 	}
2015 	vma_set_policy(new, pol);
2016 
2017 	if (anon_vma_clone(new, vma))
2018 		goto out_free_mpol;
2019 
2020 	if (new->vm_file)
2021 		get_file(new->vm_file);
2022 
2023 	if (new->vm_ops && new->vm_ops->open)
2024 		new->vm_ops->open(new);
2025 
2026 	if (new_below)
2027 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2028 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2029 	else
2030 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2031 
2032 	/* Success. */
2033 	if (!err)
2034 		return 0;
2035 
2036 	/* Clean everything up if vma_adjust failed. */
2037 	if (new->vm_ops && new->vm_ops->close)
2038 		new->vm_ops->close(new);
2039 	if (new->vm_file)
2040 		fput(new->vm_file);
2041 	unlink_anon_vmas(new);
2042  out_free_mpol:
2043 	mpol_put(pol);
2044  out_free_vma:
2045 	kmem_cache_free(vm_area_cachep, new);
2046  out_err:
2047 	return err;
2048 }
2049 
2050 /*
2051  * Split a vma into two pieces at address 'addr', a new vma is allocated
2052  * either for the first part or the tail.
2053  */
2054 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2055 	      unsigned long addr, int new_below)
2056 {
2057 	if (mm->map_count >= sysctl_max_map_count)
2058 		return -ENOMEM;
2059 
2060 	return __split_vma(mm, vma, addr, new_below);
2061 }
2062 
2063 /* Munmap is split into 2 main parts -- this part which finds
2064  * what needs doing, and the areas themselves, which do the
2065  * work.  This now handles partial unmappings.
2066  * Jeremy Fitzhardinge <jeremy@goop.org>
2067  */
2068 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2069 {
2070 	unsigned long end;
2071 	struct vm_area_struct *vma, *prev, *last;
2072 
2073 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2074 		return -EINVAL;
2075 
2076 	if ((len = PAGE_ALIGN(len)) == 0)
2077 		return -EINVAL;
2078 
2079 	/* Find the first overlapping VMA */
2080 	vma = find_vma(mm, start);
2081 	if (!vma)
2082 		return 0;
2083 	prev = vma->vm_prev;
2084 	/* we have  start < vma->vm_end  */
2085 
2086 	/* if it doesn't overlap, we have nothing.. */
2087 	end = start + len;
2088 	if (vma->vm_start >= end)
2089 		return 0;
2090 
2091 	/*
2092 	 * If we need to split any vma, do it now to save pain later.
2093 	 *
2094 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2095 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2096 	 * places tmp vma above, and higher split_vma places tmp vma below.
2097 	 */
2098 	if (start > vma->vm_start) {
2099 		int error;
2100 
2101 		/*
2102 		 * Make sure that map_count on return from munmap() will
2103 		 * not exceed its limit; but let map_count go just above
2104 		 * its limit temporarily, to help free resources as expected.
2105 		 */
2106 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2107 			return -ENOMEM;
2108 
2109 		error = __split_vma(mm, vma, start, 0);
2110 		if (error)
2111 			return error;
2112 		prev = vma;
2113 	}
2114 
2115 	/* Does it split the last one? */
2116 	last = find_vma(mm, end);
2117 	if (last && end > last->vm_start) {
2118 		int error = __split_vma(mm, last, end, 1);
2119 		if (error)
2120 			return error;
2121 	}
2122 	vma = prev? prev->vm_next: mm->mmap;
2123 
2124 	/*
2125 	 * unlock any mlock()ed ranges before detaching vmas
2126 	 */
2127 	if (mm->locked_vm) {
2128 		struct vm_area_struct *tmp = vma;
2129 		while (tmp && tmp->vm_start < end) {
2130 			if (tmp->vm_flags & VM_LOCKED) {
2131 				mm->locked_vm -= vma_pages(tmp);
2132 				munlock_vma_pages_all(tmp);
2133 			}
2134 			tmp = tmp->vm_next;
2135 		}
2136 	}
2137 
2138 	/*
2139 	 * Remove the vma's, and unmap the actual pages
2140 	 */
2141 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2142 	unmap_region(mm, vma, prev, start, end);
2143 
2144 	/* Fix up all other VM information */
2145 	remove_vma_list(mm, vma);
2146 
2147 	return 0;
2148 }
2149 
2150 int vm_munmap(unsigned long start, size_t len)
2151 {
2152 	int ret;
2153 	struct mm_struct *mm = current->mm;
2154 
2155 	down_write(&mm->mmap_sem);
2156 	ret = do_munmap(mm, start, len);
2157 	up_write(&mm->mmap_sem);
2158 	return ret;
2159 }
2160 EXPORT_SYMBOL(vm_munmap);
2161 
2162 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2163 {
2164 	profile_munmap(addr);
2165 	return vm_munmap(addr, len);
2166 }
2167 
2168 static inline void verify_mm_writelocked(struct mm_struct *mm)
2169 {
2170 #ifdef CONFIG_DEBUG_VM
2171 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2172 		WARN_ON(1);
2173 		up_read(&mm->mmap_sem);
2174 	}
2175 #endif
2176 }
2177 
2178 /*
2179  *  this is really a simplified "do_mmap".  it only handles
2180  *  anonymous maps.  eventually we may be able to do some
2181  *  brk-specific accounting here.
2182  */
2183 static unsigned long do_brk(unsigned long addr, unsigned long len)
2184 {
2185 	struct mm_struct * mm = current->mm;
2186 	struct vm_area_struct * vma, * prev;
2187 	unsigned long flags;
2188 	struct rb_node ** rb_link, * rb_parent;
2189 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2190 	int error;
2191 
2192 	len = PAGE_ALIGN(len);
2193 	if (!len)
2194 		return addr;
2195 
2196 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2197 
2198 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2199 	if (error & ~PAGE_MASK)
2200 		return error;
2201 
2202 	/*
2203 	 * mlock MCL_FUTURE?
2204 	 */
2205 	if (mm->def_flags & VM_LOCKED) {
2206 		unsigned long locked, lock_limit;
2207 		locked = len >> PAGE_SHIFT;
2208 		locked += mm->locked_vm;
2209 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2210 		lock_limit >>= PAGE_SHIFT;
2211 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2212 			return -EAGAIN;
2213 	}
2214 
2215 	/*
2216 	 * mm->mmap_sem is required to protect against another thread
2217 	 * changing the mappings in case we sleep.
2218 	 */
2219 	verify_mm_writelocked(mm);
2220 
2221 	/*
2222 	 * Clear old maps.  this also does some error checking for us
2223 	 */
2224  munmap_back:
2225 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2226 		if (do_munmap(mm, addr, len))
2227 			return -ENOMEM;
2228 		goto munmap_back;
2229 	}
2230 
2231 	/* Check against address space limits *after* clearing old maps... */
2232 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2233 		return -ENOMEM;
2234 
2235 	if (mm->map_count > sysctl_max_map_count)
2236 		return -ENOMEM;
2237 
2238 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2239 		return -ENOMEM;
2240 
2241 	/* Can we just expand an old private anonymous mapping? */
2242 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2243 					NULL, NULL, pgoff, NULL);
2244 	if (vma)
2245 		goto out;
2246 
2247 	/*
2248 	 * create a vma struct for an anonymous mapping
2249 	 */
2250 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2251 	if (!vma) {
2252 		vm_unacct_memory(len >> PAGE_SHIFT);
2253 		return -ENOMEM;
2254 	}
2255 
2256 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2257 	vma->vm_mm = mm;
2258 	vma->vm_start = addr;
2259 	vma->vm_end = addr + len;
2260 	vma->vm_pgoff = pgoff;
2261 	vma->vm_flags = flags;
2262 	vma->vm_page_prot = vm_get_page_prot(flags);
2263 	vma_link(mm, vma, prev, rb_link, rb_parent);
2264 out:
2265 	perf_event_mmap(vma);
2266 	mm->total_vm += len >> PAGE_SHIFT;
2267 	if (flags & VM_LOCKED) {
2268 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2269 			mm->locked_vm += (len >> PAGE_SHIFT);
2270 	}
2271 	return addr;
2272 }
2273 
2274 unsigned long vm_brk(unsigned long addr, unsigned long len)
2275 {
2276 	struct mm_struct *mm = current->mm;
2277 	unsigned long ret;
2278 
2279 	down_write(&mm->mmap_sem);
2280 	ret = do_brk(addr, len);
2281 	up_write(&mm->mmap_sem);
2282 	return ret;
2283 }
2284 EXPORT_SYMBOL(vm_brk);
2285 
2286 /* Release all mmaps. */
2287 void exit_mmap(struct mm_struct *mm)
2288 {
2289 	struct mmu_gather tlb;
2290 	struct vm_area_struct *vma;
2291 	unsigned long nr_accounted = 0;
2292 
2293 	/* mm's last user has gone, and its about to be pulled down */
2294 	mmu_notifier_release(mm);
2295 
2296 	if (mm->locked_vm) {
2297 		vma = mm->mmap;
2298 		while (vma) {
2299 			if (vma->vm_flags & VM_LOCKED)
2300 				munlock_vma_pages_all(vma);
2301 			vma = vma->vm_next;
2302 		}
2303 	}
2304 
2305 	arch_exit_mmap(mm);
2306 
2307 	vma = mm->mmap;
2308 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2309 		return;
2310 
2311 	lru_add_drain();
2312 	flush_cache_mm(mm);
2313 	tlb_gather_mmu(&tlb, mm, 1);
2314 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2315 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2316 	unmap_vmas(&tlb, vma, 0, -1);
2317 
2318 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2319 	tlb_finish_mmu(&tlb, 0, -1);
2320 
2321 	/*
2322 	 * Walk the list again, actually closing and freeing it,
2323 	 * with preemption enabled, without holding any MM locks.
2324 	 */
2325 	while (vma) {
2326 		if (vma->vm_flags & VM_ACCOUNT)
2327 			nr_accounted += vma_pages(vma);
2328 		vma = remove_vma(vma);
2329 	}
2330 	vm_unacct_memory(nr_accounted);
2331 
2332 	WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2333 }
2334 
2335 /* Insert vm structure into process list sorted by address
2336  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2337  * then i_mmap_mutex is taken here.
2338  */
2339 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2340 {
2341 	struct vm_area_struct *prev;
2342 	struct rb_node **rb_link, *rb_parent;
2343 
2344 	/*
2345 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2346 	 * until its first write fault, when page's anon_vma and index
2347 	 * are set.  But now set the vm_pgoff it will almost certainly
2348 	 * end up with (unless mremap moves it elsewhere before that
2349 	 * first wfault), so /proc/pid/maps tells a consistent story.
2350 	 *
2351 	 * By setting it to reflect the virtual start address of the
2352 	 * vma, merges and splits can happen in a seamless way, just
2353 	 * using the existing file pgoff checks and manipulations.
2354 	 * Similarly in do_mmap_pgoff and in do_brk.
2355 	 */
2356 	if (!vma->vm_file) {
2357 		BUG_ON(vma->anon_vma);
2358 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2359 	}
2360 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2361 			   &prev, &rb_link, &rb_parent))
2362 		return -ENOMEM;
2363 	if ((vma->vm_flags & VM_ACCOUNT) &&
2364 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2365 		return -ENOMEM;
2366 
2367 	vma_link(mm, vma, prev, rb_link, rb_parent);
2368 	return 0;
2369 }
2370 
2371 /*
2372  * Copy the vma structure to a new location in the same mm,
2373  * prior to moving page table entries, to effect an mremap move.
2374  */
2375 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2376 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2377 	bool *need_rmap_locks)
2378 {
2379 	struct vm_area_struct *vma = *vmap;
2380 	unsigned long vma_start = vma->vm_start;
2381 	struct mm_struct *mm = vma->vm_mm;
2382 	struct vm_area_struct *new_vma, *prev;
2383 	struct rb_node **rb_link, *rb_parent;
2384 	struct mempolicy *pol;
2385 	bool faulted_in_anon_vma = true;
2386 
2387 	/*
2388 	 * If anonymous vma has not yet been faulted, update new pgoff
2389 	 * to match new location, to increase its chance of merging.
2390 	 */
2391 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2392 		pgoff = addr >> PAGE_SHIFT;
2393 		faulted_in_anon_vma = false;
2394 	}
2395 
2396 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2397 		return NULL;	/* should never get here */
2398 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2399 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2400 	if (new_vma) {
2401 		/*
2402 		 * Source vma may have been merged into new_vma
2403 		 */
2404 		if (unlikely(vma_start >= new_vma->vm_start &&
2405 			     vma_start < new_vma->vm_end)) {
2406 			/*
2407 			 * The only way we can get a vma_merge with
2408 			 * self during an mremap is if the vma hasn't
2409 			 * been faulted in yet and we were allowed to
2410 			 * reset the dst vma->vm_pgoff to the
2411 			 * destination address of the mremap to allow
2412 			 * the merge to happen. mremap must change the
2413 			 * vm_pgoff linearity between src and dst vmas
2414 			 * (in turn preventing a vma_merge) to be
2415 			 * safe. It is only safe to keep the vm_pgoff
2416 			 * linear if there are no pages mapped yet.
2417 			 */
2418 			VM_BUG_ON(faulted_in_anon_vma);
2419 			*vmap = vma = new_vma;
2420 		}
2421 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2422 	} else {
2423 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2424 		if (new_vma) {
2425 			*new_vma = *vma;
2426 			new_vma->vm_start = addr;
2427 			new_vma->vm_end = addr + len;
2428 			new_vma->vm_pgoff = pgoff;
2429 			pol = mpol_dup(vma_policy(vma));
2430 			if (IS_ERR(pol))
2431 				goto out_free_vma;
2432 			vma_set_policy(new_vma, pol);
2433 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2434 			if (anon_vma_clone(new_vma, vma))
2435 				goto out_free_mempol;
2436 			if (new_vma->vm_file)
2437 				get_file(new_vma->vm_file);
2438 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2439 				new_vma->vm_ops->open(new_vma);
2440 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2441 			*need_rmap_locks = false;
2442 		}
2443 	}
2444 	return new_vma;
2445 
2446  out_free_mempol:
2447 	mpol_put(pol);
2448  out_free_vma:
2449 	kmem_cache_free(vm_area_cachep, new_vma);
2450 	return NULL;
2451 }
2452 
2453 /*
2454  * Return true if the calling process may expand its vm space by the passed
2455  * number of pages
2456  */
2457 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2458 {
2459 	unsigned long cur = mm->total_vm;	/* pages */
2460 	unsigned long lim;
2461 
2462 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2463 
2464 	if (cur + npages > lim)
2465 		return 0;
2466 	return 1;
2467 }
2468 
2469 
2470 static int special_mapping_fault(struct vm_area_struct *vma,
2471 				struct vm_fault *vmf)
2472 {
2473 	pgoff_t pgoff;
2474 	struct page **pages;
2475 
2476 	/*
2477 	 * special mappings have no vm_file, and in that case, the mm
2478 	 * uses vm_pgoff internally. So we have to subtract it from here.
2479 	 * We are allowed to do this because we are the mm; do not copy
2480 	 * this code into drivers!
2481 	 */
2482 	pgoff = vmf->pgoff - vma->vm_pgoff;
2483 
2484 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2485 		pgoff--;
2486 
2487 	if (*pages) {
2488 		struct page *page = *pages;
2489 		get_page(page);
2490 		vmf->page = page;
2491 		return 0;
2492 	}
2493 
2494 	return VM_FAULT_SIGBUS;
2495 }
2496 
2497 /*
2498  * Having a close hook prevents vma merging regardless of flags.
2499  */
2500 static void special_mapping_close(struct vm_area_struct *vma)
2501 {
2502 }
2503 
2504 static const struct vm_operations_struct special_mapping_vmops = {
2505 	.close = special_mapping_close,
2506 	.fault = special_mapping_fault,
2507 };
2508 
2509 /*
2510  * Called with mm->mmap_sem held for writing.
2511  * Insert a new vma covering the given region, with the given flags.
2512  * Its pages are supplied by the given array of struct page *.
2513  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2514  * The region past the last page supplied will always produce SIGBUS.
2515  * The array pointer and the pages it points to are assumed to stay alive
2516  * for as long as this mapping might exist.
2517  */
2518 int install_special_mapping(struct mm_struct *mm,
2519 			    unsigned long addr, unsigned long len,
2520 			    unsigned long vm_flags, struct page **pages)
2521 {
2522 	int ret;
2523 	struct vm_area_struct *vma;
2524 
2525 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2526 	if (unlikely(vma == NULL))
2527 		return -ENOMEM;
2528 
2529 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2530 	vma->vm_mm = mm;
2531 	vma->vm_start = addr;
2532 	vma->vm_end = addr + len;
2533 
2534 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2535 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2536 
2537 	vma->vm_ops = &special_mapping_vmops;
2538 	vma->vm_private_data = pages;
2539 
2540 	ret = insert_vm_struct(mm, vma);
2541 	if (ret)
2542 		goto out;
2543 
2544 	mm->total_vm += len >> PAGE_SHIFT;
2545 
2546 	perf_event_mmap(vma);
2547 
2548 	return 0;
2549 
2550 out:
2551 	kmem_cache_free(vm_area_cachep, vma);
2552 	return ret;
2553 }
2554 
2555 static DEFINE_MUTEX(mm_all_locks_mutex);
2556 
2557 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2558 {
2559 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2560 		/*
2561 		 * The LSB of head.next can't change from under us
2562 		 * because we hold the mm_all_locks_mutex.
2563 		 */
2564 		mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2565 		/*
2566 		 * We can safely modify head.next after taking the
2567 		 * anon_vma->root->mutex. If some other vma in this mm shares
2568 		 * the same anon_vma we won't take it again.
2569 		 *
2570 		 * No need of atomic instructions here, head.next
2571 		 * can't change from under us thanks to the
2572 		 * anon_vma->root->mutex.
2573 		 */
2574 		if (__test_and_set_bit(0, (unsigned long *)
2575 				       &anon_vma->root->rb_root.rb_node))
2576 			BUG();
2577 	}
2578 }
2579 
2580 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2581 {
2582 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2583 		/*
2584 		 * AS_MM_ALL_LOCKS can't change from under us because
2585 		 * we hold the mm_all_locks_mutex.
2586 		 *
2587 		 * Operations on ->flags have to be atomic because
2588 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2589 		 * mm_all_locks_mutex, there may be other cpus
2590 		 * changing other bitflags in parallel to us.
2591 		 */
2592 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2593 			BUG();
2594 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2595 	}
2596 }
2597 
2598 /*
2599  * This operation locks against the VM for all pte/vma/mm related
2600  * operations that could ever happen on a certain mm. This includes
2601  * vmtruncate, try_to_unmap, and all page faults.
2602  *
2603  * The caller must take the mmap_sem in write mode before calling
2604  * mm_take_all_locks(). The caller isn't allowed to release the
2605  * mmap_sem until mm_drop_all_locks() returns.
2606  *
2607  * mmap_sem in write mode is required in order to block all operations
2608  * that could modify pagetables and free pages without need of
2609  * altering the vma layout (for example populate_range() with
2610  * nonlinear vmas). It's also needed in write mode to avoid new
2611  * anon_vmas to be associated with existing vmas.
2612  *
2613  * A single task can't take more than one mm_take_all_locks() in a row
2614  * or it would deadlock.
2615  *
2616  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2617  * mapping->flags avoid to take the same lock twice, if more than one
2618  * vma in this mm is backed by the same anon_vma or address_space.
2619  *
2620  * We can take all the locks in random order because the VM code
2621  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2622  * takes more than one of them in a row. Secondly we're protected
2623  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2624  *
2625  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2626  * that may have to take thousand of locks.
2627  *
2628  * mm_take_all_locks() can fail if it's interrupted by signals.
2629  */
2630 int mm_take_all_locks(struct mm_struct *mm)
2631 {
2632 	struct vm_area_struct *vma;
2633 	struct anon_vma_chain *avc;
2634 
2635 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2636 
2637 	mutex_lock(&mm_all_locks_mutex);
2638 
2639 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2640 		if (signal_pending(current))
2641 			goto out_unlock;
2642 		if (vma->vm_file && vma->vm_file->f_mapping)
2643 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2644 	}
2645 
2646 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2647 		if (signal_pending(current))
2648 			goto out_unlock;
2649 		if (vma->anon_vma)
2650 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2651 				vm_lock_anon_vma(mm, avc->anon_vma);
2652 	}
2653 
2654 	return 0;
2655 
2656 out_unlock:
2657 	mm_drop_all_locks(mm);
2658 	return -EINTR;
2659 }
2660 
2661 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2662 {
2663 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2664 		/*
2665 		 * The LSB of head.next can't change to 0 from under
2666 		 * us because we hold the mm_all_locks_mutex.
2667 		 *
2668 		 * We must however clear the bitflag before unlocking
2669 		 * the vma so the users using the anon_vma->rb_root will
2670 		 * never see our bitflag.
2671 		 *
2672 		 * No need of atomic instructions here, head.next
2673 		 * can't change from under us until we release the
2674 		 * anon_vma->root->mutex.
2675 		 */
2676 		if (!__test_and_clear_bit(0, (unsigned long *)
2677 					  &anon_vma->root->rb_root.rb_node))
2678 			BUG();
2679 		anon_vma_unlock(anon_vma);
2680 	}
2681 }
2682 
2683 static void vm_unlock_mapping(struct address_space *mapping)
2684 {
2685 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2686 		/*
2687 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2688 		 * because we hold the mm_all_locks_mutex.
2689 		 */
2690 		mutex_unlock(&mapping->i_mmap_mutex);
2691 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2692 					&mapping->flags))
2693 			BUG();
2694 	}
2695 }
2696 
2697 /*
2698  * The mmap_sem cannot be released by the caller until
2699  * mm_drop_all_locks() returns.
2700  */
2701 void mm_drop_all_locks(struct mm_struct *mm)
2702 {
2703 	struct vm_area_struct *vma;
2704 	struct anon_vma_chain *avc;
2705 
2706 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2707 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2708 
2709 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2710 		if (vma->anon_vma)
2711 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2712 				vm_unlock_anon_vma(avc->anon_vma);
2713 		if (vma->vm_file && vma->vm_file->f_mapping)
2714 			vm_unlock_mapping(vma->vm_file->f_mapping);
2715 	}
2716 
2717 	mutex_unlock(&mm_all_locks_mutex);
2718 }
2719 
2720 /*
2721  * initialise the VMA slab
2722  */
2723 void __init mmap_init(void)
2724 {
2725 	int ret;
2726 
2727 	ret = percpu_counter_init(&vm_committed_as, 0);
2728 	VM_BUG_ON(ret);
2729 }
2730