xref: /openbmc/linux/mm/mmap.c (revision cd4d09ec)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50 
51 #include "internal.h"
52 
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags)	(0)
55 #endif
56 
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len)		(addr)
59 #endif
60 
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71 
72 
73 static void unmap_region(struct mm_struct *mm,
74 		struct vm_area_struct *vma, struct vm_area_struct *prev,
75 		unsigned long start, unsigned long end);
76 
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type	prot
82  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
83  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
84  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
85  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
86  *
87  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
88  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
89  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
90  *
91  */
92 pgprot_t protection_map[16] = {
93 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
94 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
95 };
96 
97 pgprot_t vm_get_page_prot(unsigned long vm_flags)
98 {
99 	return __pgprot(pgprot_val(protection_map[vm_flags &
100 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
101 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
102 }
103 EXPORT_SYMBOL(vm_get_page_prot);
104 
105 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
106 {
107 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
108 }
109 
110 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
111 void vma_set_page_prot(struct vm_area_struct *vma)
112 {
113 	unsigned long vm_flags = vma->vm_flags;
114 
115 	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
116 	if (vma_wants_writenotify(vma)) {
117 		vm_flags &= ~VM_SHARED;
118 		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
119 						     vm_flags);
120 	}
121 }
122 
123 
124 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
125 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
126 unsigned long sysctl_overcommit_kbytes __read_mostly;
127 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
128 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
129 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
130 /*
131  * Make sure vm_committed_as in one cacheline and not cacheline shared with
132  * other variables. It can be updated by several CPUs frequently.
133  */
134 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
135 
136 /*
137  * The global memory commitment made in the system can be a metric
138  * that can be used to drive ballooning decisions when Linux is hosted
139  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
140  * balancing memory across competing virtual machines that are hosted.
141  * Several metrics drive this policy engine including the guest reported
142  * memory commitment.
143  */
144 unsigned long vm_memory_committed(void)
145 {
146 	return percpu_counter_read_positive(&vm_committed_as);
147 }
148 EXPORT_SYMBOL_GPL(vm_memory_committed);
149 
150 /*
151  * Check that a process has enough memory to allocate a new virtual
152  * mapping. 0 means there is enough memory for the allocation to
153  * succeed and -ENOMEM implies there is not.
154  *
155  * We currently support three overcommit policies, which are set via the
156  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
157  *
158  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
159  * Additional code 2002 Jul 20 by Robert Love.
160  *
161  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
162  *
163  * Note this is a helper function intended to be used by LSMs which
164  * wish to use this logic.
165  */
166 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
167 {
168 	long free, allowed, reserve;
169 
170 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
171 			-(s64)vm_committed_as_batch * num_online_cpus(),
172 			"memory commitment underflow");
173 
174 	vm_acct_memory(pages);
175 
176 	/*
177 	 * Sometimes we want to use more memory than we have
178 	 */
179 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
180 		return 0;
181 
182 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
183 		free = global_page_state(NR_FREE_PAGES);
184 		free += global_page_state(NR_FILE_PAGES);
185 
186 		/*
187 		 * shmem pages shouldn't be counted as free in this
188 		 * case, they can't be purged, only swapped out, and
189 		 * that won't affect the overall amount of available
190 		 * memory in the system.
191 		 */
192 		free -= global_page_state(NR_SHMEM);
193 
194 		free += get_nr_swap_pages();
195 
196 		/*
197 		 * Any slabs which are created with the
198 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
199 		 * which are reclaimable, under pressure.  The dentry
200 		 * cache and most inode caches should fall into this
201 		 */
202 		free += global_page_state(NR_SLAB_RECLAIMABLE);
203 
204 		/*
205 		 * Leave reserved pages. The pages are not for anonymous pages.
206 		 */
207 		if (free <= totalreserve_pages)
208 			goto error;
209 		else
210 			free -= totalreserve_pages;
211 
212 		/*
213 		 * Reserve some for root
214 		 */
215 		if (!cap_sys_admin)
216 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
217 
218 		if (free > pages)
219 			return 0;
220 
221 		goto error;
222 	}
223 
224 	allowed = vm_commit_limit();
225 	/*
226 	 * Reserve some for root
227 	 */
228 	if (!cap_sys_admin)
229 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
230 
231 	/*
232 	 * Don't let a single process grow so big a user can't recover
233 	 */
234 	if (mm) {
235 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
236 		allowed -= min_t(long, mm->total_vm / 32, reserve);
237 	}
238 
239 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
240 		return 0;
241 error:
242 	vm_unacct_memory(pages);
243 
244 	return -ENOMEM;
245 }
246 
247 /*
248  * Requires inode->i_mapping->i_mmap_rwsem
249  */
250 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
251 		struct file *file, struct address_space *mapping)
252 {
253 	if (vma->vm_flags & VM_DENYWRITE)
254 		atomic_inc(&file_inode(file)->i_writecount);
255 	if (vma->vm_flags & VM_SHARED)
256 		mapping_unmap_writable(mapping);
257 
258 	flush_dcache_mmap_lock(mapping);
259 	vma_interval_tree_remove(vma, &mapping->i_mmap);
260 	flush_dcache_mmap_unlock(mapping);
261 }
262 
263 /*
264  * Unlink a file-based vm structure from its interval tree, to hide
265  * vma from rmap and vmtruncate before freeing its page tables.
266  */
267 void unlink_file_vma(struct vm_area_struct *vma)
268 {
269 	struct file *file = vma->vm_file;
270 
271 	if (file) {
272 		struct address_space *mapping = file->f_mapping;
273 		i_mmap_lock_write(mapping);
274 		__remove_shared_vm_struct(vma, file, mapping);
275 		i_mmap_unlock_write(mapping);
276 	}
277 }
278 
279 /*
280  * Close a vm structure and free it, returning the next.
281  */
282 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
283 {
284 	struct vm_area_struct *next = vma->vm_next;
285 
286 	might_sleep();
287 	if (vma->vm_ops && vma->vm_ops->close)
288 		vma->vm_ops->close(vma);
289 	if (vma->vm_file)
290 		fput(vma->vm_file);
291 	mpol_put(vma_policy(vma));
292 	kmem_cache_free(vm_area_cachep, vma);
293 	return next;
294 }
295 
296 static unsigned long do_brk(unsigned long addr, unsigned long len);
297 
298 SYSCALL_DEFINE1(brk, unsigned long, brk)
299 {
300 	unsigned long retval;
301 	unsigned long newbrk, oldbrk;
302 	struct mm_struct *mm = current->mm;
303 	unsigned long min_brk;
304 	bool populate;
305 
306 	down_write(&mm->mmap_sem);
307 
308 #ifdef CONFIG_COMPAT_BRK
309 	/*
310 	 * CONFIG_COMPAT_BRK can still be overridden by setting
311 	 * randomize_va_space to 2, which will still cause mm->start_brk
312 	 * to be arbitrarily shifted
313 	 */
314 	if (current->brk_randomized)
315 		min_brk = mm->start_brk;
316 	else
317 		min_brk = mm->end_data;
318 #else
319 	min_brk = mm->start_brk;
320 #endif
321 	if (brk < min_brk)
322 		goto out;
323 
324 	/*
325 	 * Check against rlimit here. If this check is done later after the test
326 	 * of oldbrk with newbrk then it can escape the test and let the data
327 	 * segment grow beyond its set limit the in case where the limit is
328 	 * not page aligned -Ram Gupta
329 	 */
330 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
331 			      mm->end_data, mm->start_data))
332 		goto out;
333 
334 	newbrk = PAGE_ALIGN(brk);
335 	oldbrk = PAGE_ALIGN(mm->brk);
336 	if (oldbrk == newbrk)
337 		goto set_brk;
338 
339 	/* Always allow shrinking brk. */
340 	if (brk <= mm->brk) {
341 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
342 			goto set_brk;
343 		goto out;
344 	}
345 
346 	/* Check against existing mmap mappings. */
347 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
348 		goto out;
349 
350 	/* Ok, looks good - let it rip. */
351 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
352 		goto out;
353 
354 set_brk:
355 	mm->brk = brk;
356 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
357 	up_write(&mm->mmap_sem);
358 	if (populate)
359 		mm_populate(oldbrk, newbrk - oldbrk);
360 	return brk;
361 
362 out:
363 	retval = mm->brk;
364 	up_write(&mm->mmap_sem);
365 	return retval;
366 }
367 
368 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
369 {
370 	unsigned long max, subtree_gap;
371 	max = vma->vm_start;
372 	if (vma->vm_prev)
373 		max -= vma->vm_prev->vm_end;
374 	if (vma->vm_rb.rb_left) {
375 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
376 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
377 		if (subtree_gap > max)
378 			max = subtree_gap;
379 	}
380 	if (vma->vm_rb.rb_right) {
381 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
382 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
383 		if (subtree_gap > max)
384 			max = subtree_gap;
385 	}
386 	return max;
387 }
388 
389 #ifdef CONFIG_DEBUG_VM_RB
390 static int browse_rb(struct rb_root *root)
391 {
392 	int i = 0, j, bug = 0;
393 	struct rb_node *nd, *pn = NULL;
394 	unsigned long prev = 0, pend = 0;
395 
396 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
397 		struct vm_area_struct *vma;
398 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
399 		if (vma->vm_start < prev) {
400 			pr_emerg("vm_start %lx < prev %lx\n",
401 				  vma->vm_start, prev);
402 			bug = 1;
403 		}
404 		if (vma->vm_start < pend) {
405 			pr_emerg("vm_start %lx < pend %lx\n",
406 				  vma->vm_start, pend);
407 			bug = 1;
408 		}
409 		if (vma->vm_start > vma->vm_end) {
410 			pr_emerg("vm_start %lx > vm_end %lx\n",
411 				  vma->vm_start, vma->vm_end);
412 			bug = 1;
413 		}
414 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
415 			pr_emerg("free gap %lx, correct %lx\n",
416 			       vma->rb_subtree_gap,
417 			       vma_compute_subtree_gap(vma));
418 			bug = 1;
419 		}
420 		i++;
421 		pn = nd;
422 		prev = vma->vm_start;
423 		pend = vma->vm_end;
424 	}
425 	j = 0;
426 	for (nd = pn; nd; nd = rb_prev(nd))
427 		j++;
428 	if (i != j) {
429 		pr_emerg("backwards %d, forwards %d\n", j, i);
430 		bug = 1;
431 	}
432 	return bug ? -1 : i;
433 }
434 
435 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
436 {
437 	struct rb_node *nd;
438 
439 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
440 		struct vm_area_struct *vma;
441 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
442 		VM_BUG_ON_VMA(vma != ignore &&
443 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
444 			vma);
445 	}
446 }
447 
448 static void validate_mm(struct mm_struct *mm)
449 {
450 	int bug = 0;
451 	int i = 0;
452 	unsigned long highest_address = 0;
453 	struct vm_area_struct *vma = mm->mmap;
454 
455 	while (vma) {
456 		struct anon_vma_chain *avc;
457 
458 		vma_lock_anon_vma(vma);
459 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
460 			anon_vma_interval_tree_verify(avc);
461 		vma_unlock_anon_vma(vma);
462 		highest_address = vma->vm_end;
463 		vma = vma->vm_next;
464 		i++;
465 	}
466 	if (i != mm->map_count) {
467 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
468 		bug = 1;
469 	}
470 	if (highest_address != mm->highest_vm_end) {
471 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
472 			  mm->highest_vm_end, highest_address);
473 		bug = 1;
474 	}
475 	i = browse_rb(&mm->mm_rb);
476 	if (i != mm->map_count) {
477 		if (i != -1)
478 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
479 		bug = 1;
480 	}
481 	VM_BUG_ON_MM(bug, mm);
482 }
483 #else
484 #define validate_mm_rb(root, ignore) do { } while (0)
485 #define validate_mm(mm) do { } while (0)
486 #endif
487 
488 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
489 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
490 
491 /*
492  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
493  * vma->vm_prev->vm_end values changed, without modifying the vma's position
494  * in the rbtree.
495  */
496 static void vma_gap_update(struct vm_area_struct *vma)
497 {
498 	/*
499 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
500 	 * function that does exacltly what we want.
501 	 */
502 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
503 }
504 
505 static inline void vma_rb_insert(struct vm_area_struct *vma,
506 				 struct rb_root *root)
507 {
508 	/* All rb_subtree_gap values must be consistent prior to insertion */
509 	validate_mm_rb(root, NULL);
510 
511 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
512 }
513 
514 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
515 {
516 	/*
517 	 * All rb_subtree_gap values must be consistent prior to erase,
518 	 * with the possible exception of the vma being erased.
519 	 */
520 	validate_mm_rb(root, vma);
521 
522 	/*
523 	 * Note rb_erase_augmented is a fairly large inline function,
524 	 * so make sure we instantiate it only once with our desired
525 	 * augmented rbtree callbacks.
526 	 */
527 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
528 }
529 
530 /*
531  * vma has some anon_vma assigned, and is already inserted on that
532  * anon_vma's interval trees.
533  *
534  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
535  * vma must be removed from the anon_vma's interval trees using
536  * anon_vma_interval_tree_pre_update_vma().
537  *
538  * After the update, the vma will be reinserted using
539  * anon_vma_interval_tree_post_update_vma().
540  *
541  * The entire update must be protected by exclusive mmap_sem and by
542  * the root anon_vma's mutex.
543  */
544 static inline void
545 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
546 {
547 	struct anon_vma_chain *avc;
548 
549 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
550 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
551 }
552 
553 static inline void
554 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
555 {
556 	struct anon_vma_chain *avc;
557 
558 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
559 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
560 }
561 
562 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
563 		unsigned long end, struct vm_area_struct **pprev,
564 		struct rb_node ***rb_link, struct rb_node **rb_parent)
565 {
566 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
567 
568 	__rb_link = &mm->mm_rb.rb_node;
569 	rb_prev = __rb_parent = NULL;
570 
571 	while (*__rb_link) {
572 		struct vm_area_struct *vma_tmp;
573 
574 		__rb_parent = *__rb_link;
575 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
576 
577 		if (vma_tmp->vm_end > addr) {
578 			/* Fail if an existing vma overlaps the area */
579 			if (vma_tmp->vm_start < end)
580 				return -ENOMEM;
581 			__rb_link = &__rb_parent->rb_left;
582 		} else {
583 			rb_prev = __rb_parent;
584 			__rb_link = &__rb_parent->rb_right;
585 		}
586 	}
587 
588 	*pprev = NULL;
589 	if (rb_prev)
590 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
591 	*rb_link = __rb_link;
592 	*rb_parent = __rb_parent;
593 	return 0;
594 }
595 
596 static unsigned long count_vma_pages_range(struct mm_struct *mm,
597 		unsigned long addr, unsigned long end)
598 {
599 	unsigned long nr_pages = 0;
600 	struct vm_area_struct *vma;
601 
602 	/* Find first overlaping mapping */
603 	vma = find_vma_intersection(mm, addr, end);
604 	if (!vma)
605 		return 0;
606 
607 	nr_pages = (min(end, vma->vm_end) -
608 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
609 
610 	/* Iterate over the rest of the overlaps */
611 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
612 		unsigned long overlap_len;
613 
614 		if (vma->vm_start > end)
615 			break;
616 
617 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
618 		nr_pages += overlap_len >> PAGE_SHIFT;
619 	}
620 
621 	return nr_pages;
622 }
623 
624 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
625 		struct rb_node **rb_link, struct rb_node *rb_parent)
626 {
627 	/* Update tracking information for the gap following the new vma. */
628 	if (vma->vm_next)
629 		vma_gap_update(vma->vm_next);
630 	else
631 		mm->highest_vm_end = vma->vm_end;
632 
633 	/*
634 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
635 	 * correct insertion point for that vma. As a result, we could not
636 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
637 	 * So, we first insert the vma with a zero rb_subtree_gap value
638 	 * (to be consistent with what we did on the way down), and then
639 	 * immediately update the gap to the correct value. Finally we
640 	 * rebalance the rbtree after all augmented values have been set.
641 	 */
642 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
643 	vma->rb_subtree_gap = 0;
644 	vma_gap_update(vma);
645 	vma_rb_insert(vma, &mm->mm_rb);
646 }
647 
648 static void __vma_link_file(struct vm_area_struct *vma)
649 {
650 	struct file *file;
651 
652 	file = vma->vm_file;
653 	if (file) {
654 		struct address_space *mapping = file->f_mapping;
655 
656 		if (vma->vm_flags & VM_DENYWRITE)
657 			atomic_dec(&file_inode(file)->i_writecount);
658 		if (vma->vm_flags & VM_SHARED)
659 			atomic_inc(&mapping->i_mmap_writable);
660 
661 		flush_dcache_mmap_lock(mapping);
662 		vma_interval_tree_insert(vma, &mapping->i_mmap);
663 		flush_dcache_mmap_unlock(mapping);
664 	}
665 }
666 
667 static void
668 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
669 	struct vm_area_struct *prev, struct rb_node **rb_link,
670 	struct rb_node *rb_parent)
671 {
672 	__vma_link_list(mm, vma, prev, rb_parent);
673 	__vma_link_rb(mm, vma, rb_link, rb_parent);
674 }
675 
676 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
677 			struct vm_area_struct *prev, struct rb_node **rb_link,
678 			struct rb_node *rb_parent)
679 {
680 	struct address_space *mapping = NULL;
681 
682 	if (vma->vm_file) {
683 		mapping = vma->vm_file->f_mapping;
684 		i_mmap_lock_write(mapping);
685 	}
686 
687 	__vma_link(mm, vma, prev, rb_link, rb_parent);
688 	__vma_link_file(vma);
689 
690 	if (mapping)
691 		i_mmap_unlock_write(mapping);
692 
693 	mm->map_count++;
694 	validate_mm(mm);
695 }
696 
697 /*
698  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
699  * mm's list and rbtree.  It has already been inserted into the interval tree.
700  */
701 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
702 {
703 	struct vm_area_struct *prev;
704 	struct rb_node **rb_link, *rb_parent;
705 
706 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
707 			   &prev, &rb_link, &rb_parent))
708 		BUG();
709 	__vma_link(mm, vma, prev, rb_link, rb_parent);
710 	mm->map_count++;
711 }
712 
713 static inline void
714 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
715 		struct vm_area_struct *prev)
716 {
717 	struct vm_area_struct *next;
718 
719 	vma_rb_erase(vma, &mm->mm_rb);
720 	prev->vm_next = next = vma->vm_next;
721 	if (next)
722 		next->vm_prev = prev;
723 
724 	/* Kill the cache */
725 	vmacache_invalidate(mm);
726 }
727 
728 /*
729  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
730  * is already present in an i_mmap tree without adjusting the tree.
731  * The following helper function should be used when such adjustments
732  * are necessary.  The "insert" vma (if any) is to be inserted
733  * before we drop the necessary locks.
734  */
735 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
736 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
737 {
738 	struct mm_struct *mm = vma->vm_mm;
739 	struct vm_area_struct *next = vma->vm_next;
740 	struct vm_area_struct *importer = NULL;
741 	struct address_space *mapping = NULL;
742 	struct rb_root *root = NULL;
743 	struct anon_vma *anon_vma = NULL;
744 	struct file *file = vma->vm_file;
745 	bool start_changed = false, end_changed = false;
746 	long adjust_next = 0;
747 	int remove_next = 0;
748 
749 	if (next && !insert) {
750 		struct vm_area_struct *exporter = NULL;
751 
752 		if (end >= next->vm_end) {
753 			/*
754 			 * vma expands, overlapping all the next, and
755 			 * perhaps the one after too (mprotect case 6).
756 			 */
757 again:			remove_next = 1 + (end > next->vm_end);
758 			end = next->vm_end;
759 			exporter = next;
760 			importer = vma;
761 		} else if (end > next->vm_start) {
762 			/*
763 			 * vma expands, overlapping part of the next:
764 			 * mprotect case 5 shifting the boundary up.
765 			 */
766 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
767 			exporter = next;
768 			importer = vma;
769 		} else if (end < vma->vm_end) {
770 			/*
771 			 * vma shrinks, and !insert tells it's not
772 			 * split_vma inserting another: so it must be
773 			 * mprotect case 4 shifting the boundary down.
774 			 */
775 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
776 			exporter = vma;
777 			importer = next;
778 		}
779 
780 		/*
781 		 * Easily overlooked: when mprotect shifts the boundary,
782 		 * make sure the expanding vma has anon_vma set if the
783 		 * shrinking vma had, to cover any anon pages imported.
784 		 */
785 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
786 			int error;
787 
788 			importer->anon_vma = exporter->anon_vma;
789 			error = anon_vma_clone(importer, exporter);
790 			if (error)
791 				return error;
792 		}
793 	}
794 
795 	if (file) {
796 		mapping = file->f_mapping;
797 		root = &mapping->i_mmap;
798 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
799 
800 		if (adjust_next)
801 			uprobe_munmap(next, next->vm_start, next->vm_end);
802 
803 		i_mmap_lock_write(mapping);
804 		if (insert) {
805 			/*
806 			 * Put into interval tree now, so instantiated pages
807 			 * are visible to arm/parisc __flush_dcache_page
808 			 * throughout; but we cannot insert into address
809 			 * space until vma start or end is updated.
810 			 */
811 			__vma_link_file(insert);
812 		}
813 	}
814 
815 	vma_adjust_trans_huge(vma, start, end, adjust_next);
816 
817 	anon_vma = vma->anon_vma;
818 	if (!anon_vma && adjust_next)
819 		anon_vma = next->anon_vma;
820 	if (anon_vma) {
821 		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
822 			  anon_vma != next->anon_vma, next);
823 		anon_vma_lock_write(anon_vma);
824 		anon_vma_interval_tree_pre_update_vma(vma);
825 		if (adjust_next)
826 			anon_vma_interval_tree_pre_update_vma(next);
827 	}
828 
829 	if (root) {
830 		flush_dcache_mmap_lock(mapping);
831 		vma_interval_tree_remove(vma, root);
832 		if (adjust_next)
833 			vma_interval_tree_remove(next, root);
834 	}
835 
836 	if (start != vma->vm_start) {
837 		vma->vm_start = start;
838 		start_changed = true;
839 	}
840 	if (end != vma->vm_end) {
841 		vma->vm_end = end;
842 		end_changed = true;
843 	}
844 	vma->vm_pgoff = pgoff;
845 	if (adjust_next) {
846 		next->vm_start += adjust_next << PAGE_SHIFT;
847 		next->vm_pgoff += adjust_next;
848 	}
849 
850 	if (root) {
851 		if (adjust_next)
852 			vma_interval_tree_insert(next, root);
853 		vma_interval_tree_insert(vma, root);
854 		flush_dcache_mmap_unlock(mapping);
855 	}
856 
857 	if (remove_next) {
858 		/*
859 		 * vma_merge has merged next into vma, and needs
860 		 * us to remove next before dropping the locks.
861 		 */
862 		__vma_unlink(mm, next, vma);
863 		if (file)
864 			__remove_shared_vm_struct(next, file, mapping);
865 	} else if (insert) {
866 		/*
867 		 * split_vma has split insert from vma, and needs
868 		 * us to insert it before dropping the locks
869 		 * (it may either follow vma or precede it).
870 		 */
871 		__insert_vm_struct(mm, insert);
872 	} else {
873 		if (start_changed)
874 			vma_gap_update(vma);
875 		if (end_changed) {
876 			if (!next)
877 				mm->highest_vm_end = end;
878 			else if (!adjust_next)
879 				vma_gap_update(next);
880 		}
881 	}
882 
883 	if (anon_vma) {
884 		anon_vma_interval_tree_post_update_vma(vma);
885 		if (adjust_next)
886 			anon_vma_interval_tree_post_update_vma(next);
887 		anon_vma_unlock_write(anon_vma);
888 	}
889 	if (mapping)
890 		i_mmap_unlock_write(mapping);
891 
892 	if (root) {
893 		uprobe_mmap(vma);
894 
895 		if (adjust_next)
896 			uprobe_mmap(next);
897 	}
898 
899 	if (remove_next) {
900 		if (file) {
901 			uprobe_munmap(next, next->vm_start, next->vm_end);
902 			fput(file);
903 		}
904 		if (next->anon_vma)
905 			anon_vma_merge(vma, next);
906 		mm->map_count--;
907 		mpol_put(vma_policy(next));
908 		kmem_cache_free(vm_area_cachep, next);
909 		/*
910 		 * In mprotect's case 6 (see comments on vma_merge),
911 		 * we must remove another next too. It would clutter
912 		 * up the code too much to do both in one go.
913 		 */
914 		next = vma->vm_next;
915 		if (remove_next == 2)
916 			goto again;
917 		else if (next)
918 			vma_gap_update(next);
919 		else
920 			mm->highest_vm_end = end;
921 	}
922 	if (insert && file)
923 		uprobe_mmap(insert);
924 
925 	validate_mm(mm);
926 
927 	return 0;
928 }
929 
930 /*
931  * If the vma has a ->close operation then the driver probably needs to release
932  * per-vma resources, so we don't attempt to merge those.
933  */
934 static inline int is_mergeable_vma(struct vm_area_struct *vma,
935 				struct file *file, unsigned long vm_flags,
936 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
937 {
938 	/*
939 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
940 	 * match the flags but dirty bit -- the caller should mark
941 	 * merged VMA as dirty. If dirty bit won't be excluded from
942 	 * comparison, we increase pressue on the memory system forcing
943 	 * the kernel to generate new VMAs when old one could be
944 	 * extended instead.
945 	 */
946 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
947 		return 0;
948 	if (vma->vm_file != file)
949 		return 0;
950 	if (vma->vm_ops && vma->vm_ops->close)
951 		return 0;
952 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
953 		return 0;
954 	return 1;
955 }
956 
957 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
958 					struct anon_vma *anon_vma2,
959 					struct vm_area_struct *vma)
960 {
961 	/*
962 	 * The list_is_singular() test is to avoid merging VMA cloned from
963 	 * parents. This can improve scalability caused by anon_vma lock.
964 	 */
965 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
966 		list_is_singular(&vma->anon_vma_chain)))
967 		return 1;
968 	return anon_vma1 == anon_vma2;
969 }
970 
971 /*
972  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
973  * in front of (at a lower virtual address and file offset than) the vma.
974  *
975  * We cannot merge two vmas if they have differently assigned (non-NULL)
976  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
977  *
978  * We don't check here for the merged mmap wrapping around the end of pagecache
979  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
980  * wrap, nor mmaps which cover the final page at index -1UL.
981  */
982 static int
983 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
984 		     struct anon_vma *anon_vma, struct file *file,
985 		     pgoff_t vm_pgoff,
986 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
987 {
988 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
989 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
990 		if (vma->vm_pgoff == vm_pgoff)
991 			return 1;
992 	}
993 	return 0;
994 }
995 
996 /*
997  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
998  * beyond (at a higher virtual address and file offset than) the vma.
999  *
1000  * We cannot merge two vmas if they have differently assigned (non-NULL)
1001  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1002  */
1003 static int
1004 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1005 		    struct anon_vma *anon_vma, struct file *file,
1006 		    pgoff_t vm_pgoff,
1007 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1008 {
1009 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1010 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1011 		pgoff_t vm_pglen;
1012 		vm_pglen = vma_pages(vma);
1013 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1014 			return 1;
1015 	}
1016 	return 0;
1017 }
1018 
1019 /*
1020  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1021  * whether that can be merged with its predecessor or its successor.
1022  * Or both (it neatly fills a hole).
1023  *
1024  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1025  * certain not to be mapped by the time vma_merge is called; but when
1026  * called for mprotect, it is certain to be already mapped (either at
1027  * an offset within prev, or at the start of next), and the flags of
1028  * this area are about to be changed to vm_flags - and the no-change
1029  * case has already been eliminated.
1030  *
1031  * The following mprotect cases have to be considered, where AAAA is
1032  * the area passed down from mprotect_fixup, never extending beyond one
1033  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1034  *
1035  *     AAAA             AAAA                AAAA          AAAA
1036  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1037  *    cannot merge    might become    might become    might become
1038  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1039  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1040  *    mremap move:                                    PPPPNNNNNNNN 8
1041  *        AAAA
1042  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1043  *    might become    case 1 below    case 2 below    case 3 below
1044  *
1045  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1046  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1047  */
1048 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1049 			struct vm_area_struct *prev, unsigned long addr,
1050 			unsigned long end, unsigned long vm_flags,
1051 			struct anon_vma *anon_vma, struct file *file,
1052 			pgoff_t pgoff, struct mempolicy *policy,
1053 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1054 {
1055 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1056 	struct vm_area_struct *area, *next;
1057 	int err;
1058 
1059 	/*
1060 	 * We later require that vma->vm_flags == vm_flags,
1061 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1062 	 */
1063 	if (vm_flags & VM_SPECIAL)
1064 		return NULL;
1065 
1066 	if (prev)
1067 		next = prev->vm_next;
1068 	else
1069 		next = mm->mmap;
1070 	area = next;
1071 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1072 		next = next->vm_next;
1073 
1074 	/*
1075 	 * Can it merge with the predecessor?
1076 	 */
1077 	if (prev && prev->vm_end == addr &&
1078 			mpol_equal(vma_policy(prev), policy) &&
1079 			can_vma_merge_after(prev, vm_flags,
1080 					    anon_vma, file, pgoff,
1081 					    vm_userfaultfd_ctx)) {
1082 		/*
1083 		 * OK, it can.  Can we now merge in the successor as well?
1084 		 */
1085 		if (next && end == next->vm_start &&
1086 				mpol_equal(policy, vma_policy(next)) &&
1087 				can_vma_merge_before(next, vm_flags,
1088 						     anon_vma, file,
1089 						     pgoff+pglen,
1090 						     vm_userfaultfd_ctx) &&
1091 				is_mergeable_anon_vma(prev->anon_vma,
1092 						      next->anon_vma, NULL)) {
1093 							/* cases 1, 6 */
1094 			err = vma_adjust(prev, prev->vm_start,
1095 				next->vm_end, prev->vm_pgoff, NULL);
1096 		} else					/* cases 2, 5, 7 */
1097 			err = vma_adjust(prev, prev->vm_start,
1098 				end, prev->vm_pgoff, NULL);
1099 		if (err)
1100 			return NULL;
1101 		khugepaged_enter_vma_merge(prev, vm_flags);
1102 		return prev;
1103 	}
1104 
1105 	/*
1106 	 * Can this new request be merged in front of next?
1107 	 */
1108 	if (next && end == next->vm_start &&
1109 			mpol_equal(policy, vma_policy(next)) &&
1110 			can_vma_merge_before(next, vm_flags,
1111 					     anon_vma, file, pgoff+pglen,
1112 					     vm_userfaultfd_ctx)) {
1113 		if (prev && addr < prev->vm_end)	/* case 4 */
1114 			err = vma_adjust(prev, prev->vm_start,
1115 				addr, prev->vm_pgoff, NULL);
1116 		else					/* cases 3, 8 */
1117 			err = vma_adjust(area, addr, next->vm_end,
1118 				next->vm_pgoff - pglen, NULL);
1119 		if (err)
1120 			return NULL;
1121 		khugepaged_enter_vma_merge(area, vm_flags);
1122 		return area;
1123 	}
1124 
1125 	return NULL;
1126 }
1127 
1128 /*
1129  * Rough compatbility check to quickly see if it's even worth looking
1130  * at sharing an anon_vma.
1131  *
1132  * They need to have the same vm_file, and the flags can only differ
1133  * in things that mprotect may change.
1134  *
1135  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1136  * we can merge the two vma's. For example, we refuse to merge a vma if
1137  * there is a vm_ops->close() function, because that indicates that the
1138  * driver is doing some kind of reference counting. But that doesn't
1139  * really matter for the anon_vma sharing case.
1140  */
1141 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1142 {
1143 	return a->vm_end == b->vm_start &&
1144 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1145 		a->vm_file == b->vm_file &&
1146 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1147 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1148 }
1149 
1150 /*
1151  * Do some basic sanity checking to see if we can re-use the anon_vma
1152  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1153  * the same as 'old', the other will be the new one that is trying
1154  * to share the anon_vma.
1155  *
1156  * NOTE! This runs with mm_sem held for reading, so it is possible that
1157  * the anon_vma of 'old' is concurrently in the process of being set up
1158  * by another page fault trying to merge _that_. But that's ok: if it
1159  * is being set up, that automatically means that it will be a singleton
1160  * acceptable for merging, so we can do all of this optimistically. But
1161  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1162  *
1163  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1164  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1165  * is to return an anon_vma that is "complex" due to having gone through
1166  * a fork).
1167  *
1168  * We also make sure that the two vma's are compatible (adjacent,
1169  * and with the same memory policies). That's all stable, even with just
1170  * a read lock on the mm_sem.
1171  */
1172 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1173 {
1174 	if (anon_vma_compatible(a, b)) {
1175 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1176 
1177 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1178 			return anon_vma;
1179 	}
1180 	return NULL;
1181 }
1182 
1183 /*
1184  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1185  * neighbouring vmas for a suitable anon_vma, before it goes off
1186  * to allocate a new anon_vma.  It checks because a repetitive
1187  * sequence of mprotects and faults may otherwise lead to distinct
1188  * anon_vmas being allocated, preventing vma merge in subsequent
1189  * mprotect.
1190  */
1191 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1192 {
1193 	struct anon_vma *anon_vma;
1194 	struct vm_area_struct *near;
1195 
1196 	near = vma->vm_next;
1197 	if (!near)
1198 		goto try_prev;
1199 
1200 	anon_vma = reusable_anon_vma(near, vma, near);
1201 	if (anon_vma)
1202 		return anon_vma;
1203 try_prev:
1204 	near = vma->vm_prev;
1205 	if (!near)
1206 		goto none;
1207 
1208 	anon_vma = reusable_anon_vma(near, near, vma);
1209 	if (anon_vma)
1210 		return anon_vma;
1211 none:
1212 	/*
1213 	 * There's no absolute need to look only at touching neighbours:
1214 	 * we could search further afield for "compatible" anon_vmas.
1215 	 * But it would probably just be a waste of time searching,
1216 	 * or lead to too many vmas hanging off the same anon_vma.
1217 	 * We're trying to allow mprotect remerging later on,
1218 	 * not trying to minimize memory used for anon_vmas.
1219 	 */
1220 	return NULL;
1221 }
1222 
1223 /*
1224  * If a hint addr is less than mmap_min_addr change hint to be as
1225  * low as possible but still greater than mmap_min_addr
1226  */
1227 static inline unsigned long round_hint_to_min(unsigned long hint)
1228 {
1229 	hint &= PAGE_MASK;
1230 	if (((void *)hint != NULL) &&
1231 	    (hint < mmap_min_addr))
1232 		return PAGE_ALIGN(mmap_min_addr);
1233 	return hint;
1234 }
1235 
1236 static inline int mlock_future_check(struct mm_struct *mm,
1237 				     unsigned long flags,
1238 				     unsigned long len)
1239 {
1240 	unsigned long locked, lock_limit;
1241 
1242 	/*  mlock MCL_FUTURE? */
1243 	if (flags & VM_LOCKED) {
1244 		locked = len >> PAGE_SHIFT;
1245 		locked += mm->locked_vm;
1246 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1247 		lock_limit >>= PAGE_SHIFT;
1248 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1249 			return -EAGAIN;
1250 	}
1251 	return 0;
1252 }
1253 
1254 /*
1255  * The caller must hold down_write(&current->mm->mmap_sem).
1256  */
1257 unsigned long do_mmap(struct file *file, unsigned long addr,
1258 			unsigned long len, unsigned long prot,
1259 			unsigned long flags, vm_flags_t vm_flags,
1260 			unsigned long pgoff, unsigned long *populate)
1261 {
1262 	struct mm_struct *mm = current->mm;
1263 
1264 	*populate = 0;
1265 
1266 	if (!len)
1267 		return -EINVAL;
1268 
1269 	/*
1270 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1271 	 *
1272 	 * (the exception is when the underlying filesystem is noexec
1273 	 *  mounted, in which case we dont add PROT_EXEC.)
1274 	 */
1275 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1276 		if (!(file && path_noexec(&file->f_path)))
1277 			prot |= PROT_EXEC;
1278 
1279 	if (!(flags & MAP_FIXED))
1280 		addr = round_hint_to_min(addr);
1281 
1282 	/* Careful about overflows.. */
1283 	len = PAGE_ALIGN(len);
1284 	if (!len)
1285 		return -ENOMEM;
1286 
1287 	/* offset overflow? */
1288 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1289 		return -EOVERFLOW;
1290 
1291 	/* Too many mappings? */
1292 	if (mm->map_count > sysctl_max_map_count)
1293 		return -ENOMEM;
1294 
1295 	/* Obtain the address to map to. we verify (or select) it and ensure
1296 	 * that it represents a valid section of the address space.
1297 	 */
1298 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1299 	if (offset_in_page(addr))
1300 		return addr;
1301 
1302 	/* Do simple checking here so the lower-level routines won't have
1303 	 * to. we assume access permissions have been handled by the open
1304 	 * of the memory object, so we don't do any here.
1305 	 */
1306 	vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1307 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1308 
1309 	if (flags & MAP_LOCKED)
1310 		if (!can_do_mlock())
1311 			return -EPERM;
1312 
1313 	if (mlock_future_check(mm, vm_flags, len))
1314 		return -EAGAIN;
1315 
1316 	if (file) {
1317 		struct inode *inode = file_inode(file);
1318 
1319 		switch (flags & MAP_TYPE) {
1320 		case MAP_SHARED:
1321 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1322 				return -EACCES;
1323 
1324 			/*
1325 			 * Make sure we don't allow writing to an append-only
1326 			 * file..
1327 			 */
1328 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1329 				return -EACCES;
1330 
1331 			/*
1332 			 * Make sure there are no mandatory locks on the file.
1333 			 */
1334 			if (locks_verify_locked(file))
1335 				return -EAGAIN;
1336 
1337 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1338 			if (!(file->f_mode & FMODE_WRITE))
1339 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1340 
1341 			/* fall through */
1342 		case MAP_PRIVATE:
1343 			if (!(file->f_mode & FMODE_READ))
1344 				return -EACCES;
1345 			if (path_noexec(&file->f_path)) {
1346 				if (vm_flags & VM_EXEC)
1347 					return -EPERM;
1348 				vm_flags &= ~VM_MAYEXEC;
1349 			}
1350 
1351 			if (!file->f_op->mmap)
1352 				return -ENODEV;
1353 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1354 				return -EINVAL;
1355 			break;
1356 
1357 		default:
1358 			return -EINVAL;
1359 		}
1360 	} else {
1361 		switch (flags & MAP_TYPE) {
1362 		case MAP_SHARED:
1363 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1364 				return -EINVAL;
1365 			/*
1366 			 * Ignore pgoff.
1367 			 */
1368 			pgoff = 0;
1369 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1370 			break;
1371 		case MAP_PRIVATE:
1372 			/*
1373 			 * Set pgoff according to addr for anon_vma.
1374 			 */
1375 			pgoff = addr >> PAGE_SHIFT;
1376 			break;
1377 		default:
1378 			return -EINVAL;
1379 		}
1380 	}
1381 
1382 	/*
1383 	 * Set 'VM_NORESERVE' if we should not account for the
1384 	 * memory use of this mapping.
1385 	 */
1386 	if (flags & MAP_NORESERVE) {
1387 		/* We honor MAP_NORESERVE if allowed to overcommit */
1388 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1389 			vm_flags |= VM_NORESERVE;
1390 
1391 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1392 		if (file && is_file_hugepages(file))
1393 			vm_flags |= VM_NORESERVE;
1394 	}
1395 
1396 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1397 	if (!IS_ERR_VALUE(addr) &&
1398 	    ((vm_flags & VM_LOCKED) ||
1399 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1400 		*populate = len;
1401 	return addr;
1402 }
1403 
1404 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1405 		unsigned long, prot, unsigned long, flags,
1406 		unsigned long, fd, unsigned long, pgoff)
1407 {
1408 	struct file *file = NULL;
1409 	unsigned long retval;
1410 
1411 	if (!(flags & MAP_ANONYMOUS)) {
1412 		audit_mmap_fd(fd, flags);
1413 		file = fget(fd);
1414 		if (!file)
1415 			return -EBADF;
1416 		if (is_file_hugepages(file))
1417 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1418 		retval = -EINVAL;
1419 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1420 			goto out_fput;
1421 	} else if (flags & MAP_HUGETLB) {
1422 		struct user_struct *user = NULL;
1423 		struct hstate *hs;
1424 
1425 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1426 		if (!hs)
1427 			return -EINVAL;
1428 
1429 		len = ALIGN(len, huge_page_size(hs));
1430 		/*
1431 		 * VM_NORESERVE is used because the reservations will be
1432 		 * taken when vm_ops->mmap() is called
1433 		 * A dummy user value is used because we are not locking
1434 		 * memory so no accounting is necessary
1435 		 */
1436 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1437 				VM_NORESERVE,
1438 				&user, HUGETLB_ANONHUGE_INODE,
1439 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1440 		if (IS_ERR(file))
1441 			return PTR_ERR(file);
1442 	}
1443 
1444 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1445 
1446 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1447 out_fput:
1448 	if (file)
1449 		fput(file);
1450 	return retval;
1451 }
1452 
1453 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1454 struct mmap_arg_struct {
1455 	unsigned long addr;
1456 	unsigned long len;
1457 	unsigned long prot;
1458 	unsigned long flags;
1459 	unsigned long fd;
1460 	unsigned long offset;
1461 };
1462 
1463 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1464 {
1465 	struct mmap_arg_struct a;
1466 
1467 	if (copy_from_user(&a, arg, sizeof(a)))
1468 		return -EFAULT;
1469 	if (offset_in_page(a.offset))
1470 		return -EINVAL;
1471 
1472 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1473 			      a.offset >> PAGE_SHIFT);
1474 }
1475 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1476 
1477 /*
1478  * Some shared mappigns will want the pages marked read-only
1479  * to track write events. If so, we'll downgrade vm_page_prot
1480  * to the private version (using protection_map[] without the
1481  * VM_SHARED bit).
1482  */
1483 int vma_wants_writenotify(struct vm_area_struct *vma)
1484 {
1485 	vm_flags_t vm_flags = vma->vm_flags;
1486 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1487 
1488 	/* If it was private or non-writable, the write bit is already clear */
1489 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1490 		return 0;
1491 
1492 	/* The backer wishes to know when pages are first written to? */
1493 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1494 		return 1;
1495 
1496 	/* The open routine did something to the protections that pgprot_modify
1497 	 * won't preserve? */
1498 	if (pgprot_val(vma->vm_page_prot) !=
1499 	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1500 		return 0;
1501 
1502 	/* Do we need to track softdirty? */
1503 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1504 		return 1;
1505 
1506 	/* Specialty mapping? */
1507 	if (vm_flags & VM_PFNMAP)
1508 		return 0;
1509 
1510 	/* Can the mapping track the dirty pages? */
1511 	return vma->vm_file && vma->vm_file->f_mapping &&
1512 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1513 }
1514 
1515 /*
1516  * We account for memory if it's a private writeable mapping,
1517  * not hugepages and VM_NORESERVE wasn't set.
1518  */
1519 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1520 {
1521 	/*
1522 	 * hugetlb has its own accounting separate from the core VM
1523 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1524 	 */
1525 	if (file && is_file_hugepages(file))
1526 		return 0;
1527 
1528 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1529 }
1530 
1531 unsigned long mmap_region(struct file *file, unsigned long addr,
1532 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1533 {
1534 	struct mm_struct *mm = current->mm;
1535 	struct vm_area_struct *vma, *prev;
1536 	int error;
1537 	struct rb_node **rb_link, *rb_parent;
1538 	unsigned long charged = 0;
1539 
1540 	/* Check against address space limit. */
1541 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1542 		unsigned long nr_pages;
1543 
1544 		/*
1545 		 * MAP_FIXED may remove pages of mappings that intersects with
1546 		 * requested mapping. Account for the pages it would unmap.
1547 		 */
1548 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1549 
1550 		if (!may_expand_vm(mm, vm_flags,
1551 					(len >> PAGE_SHIFT) - nr_pages))
1552 			return -ENOMEM;
1553 	}
1554 
1555 	/* Clear old maps */
1556 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1557 			      &rb_parent)) {
1558 		if (do_munmap(mm, addr, len))
1559 			return -ENOMEM;
1560 	}
1561 
1562 	/*
1563 	 * Private writable mapping: check memory availability
1564 	 */
1565 	if (accountable_mapping(file, vm_flags)) {
1566 		charged = len >> PAGE_SHIFT;
1567 		if (security_vm_enough_memory_mm(mm, charged))
1568 			return -ENOMEM;
1569 		vm_flags |= VM_ACCOUNT;
1570 	}
1571 
1572 	/*
1573 	 * Can we just expand an old mapping?
1574 	 */
1575 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1576 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1577 	if (vma)
1578 		goto out;
1579 
1580 	/*
1581 	 * Determine the object being mapped and call the appropriate
1582 	 * specific mapper. the address has already been validated, but
1583 	 * not unmapped, but the maps are removed from the list.
1584 	 */
1585 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1586 	if (!vma) {
1587 		error = -ENOMEM;
1588 		goto unacct_error;
1589 	}
1590 
1591 	vma->vm_mm = mm;
1592 	vma->vm_start = addr;
1593 	vma->vm_end = addr + len;
1594 	vma->vm_flags = vm_flags;
1595 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1596 	vma->vm_pgoff = pgoff;
1597 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1598 
1599 	if (file) {
1600 		if (vm_flags & VM_DENYWRITE) {
1601 			error = deny_write_access(file);
1602 			if (error)
1603 				goto free_vma;
1604 		}
1605 		if (vm_flags & VM_SHARED) {
1606 			error = mapping_map_writable(file->f_mapping);
1607 			if (error)
1608 				goto allow_write_and_free_vma;
1609 		}
1610 
1611 		/* ->mmap() can change vma->vm_file, but must guarantee that
1612 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1613 		 * and map writably if VM_SHARED is set. This usually means the
1614 		 * new file must not have been exposed to user-space, yet.
1615 		 */
1616 		vma->vm_file = get_file(file);
1617 		error = file->f_op->mmap(file, vma);
1618 		if (error)
1619 			goto unmap_and_free_vma;
1620 
1621 		/* Can addr have changed??
1622 		 *
1623 		 * Answer: Yes, several device drivers can do it in their
1624 		 *         f_op->mmap method. -DaveM
1625 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1626 		 *      be updated for vma_link()
1627 		 */
1628 		WARN_ON_ONCE(addr != vma->vm_start);
1629 
1630 		addr = vma->vm_start;
1631 		vm_flags = vma->vm_flags;
1632 	} else if (vm_flags & VM_SHARED) {
1633 		error = shmem_zero_setup(vma);
1634 		if (error)
1635 			goto free_vma;
1636 	}
1637 
1638 	vma_link(mm, vma, prev, rb_link, rb_parent);
1639 	/* Once vma denies write, undo our temporary denial count */
1640 	if (file) {
1641 		if (vm_flags & VM_SHARED)
1642 			mapping_unmap_writable(file->f_mapping);
1643 		if (vm_flags & VM_DENYWRITE)
1644 			allow_write_access(file);
1645 	}
1646 	file = vma->vm_file;
1647 out:
1648 	perf_event_mmap(vma);
1649 
1650 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1651 	if (vm_flags & VM_LOCKED) {
1652 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1653 					vma == get_gate_vma(current->mm)))
1654 			mm->locked_vm += (len >> PAGE_SHIFT);
1655 		else
1656 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1657 	}
1658 
1659 	if (file)
1660 		uprobe_mmap(vma);
1661 
1662 	/*
1663 	 * New (or expanded) vma always get soft dirty status.
1664 	 * Otherwise user-space soft-dirty page tracker won't
1665 	 * be able to distinguish situation when vma area unmapped,
1666 	 * then new mapped in-place (which must be aimed as
1667 	 * a completely new data area).
1668 	 */
1669 	vma->vm_flags |= VM_SOFTDIRTY;
1670 
1671 	vma_set_page_prot(vma);
1672 
1673 	return addr;
1674 
1675 unmap_and_free_vma:
1676 	vma->vm_file = NULL;
1677 	fput(file);
1678 
1679 	/* Undo any partial mapping done by a device driver. */
1680 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1681 	charged = 0;
1682 	if (vm_flags & VM_SHARED)
1683 		mapping_unmap_writable(file->f_mapping);
1684 allow_write_and_free_vma:
1685 	if (vm_flags & VM_DENYWRITE)
1686 		allow_write_access(file);
1687 free_vma:
1688 	kmem_cache_free(vm_area_cachep, vma);
1689 unacct_error:
1690 	if (charged)
1691 		vm_unacct_memory(charged);
1692 	return error;
1693 }
1694 
1695 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1696 {
1697 	/*
1698 	 * We implement the search by looking for an rbtree node that
1699 	 * immediately follows a suitable gap. That is,
1700 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1701 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1702 	 * - gap_end - gap_start >= length
1703 	 */
1704 
1705 	struct mm_struct *mm = current->mm;
1706 	struct vm_area_struct *vma;
1707 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1708 
1709 	/* Adjust search length to account for worst case alignment overhead */
1710 	length = info->length + info->align_mask;
1711 	if (length < info->length)
1712 		return -ENOMEM;
1713 
1714 	/* Adjust search limits by the desired length */
1715 	if (info->high_limit < length)
1716 		return -ENOMEM;
1717 	high_limit = info->high_limit - length;
1718 
1719 	if (info->low_limit > high_limit)
1720 		return -ENOMEM;
1721 	low_limit = info->low_limit + length;
1722 
1723 	/* Check if rbtree root looks promising */
1724 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1725 		goto check_highest;
1726 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1727 	if (vma->rb_subtree_gap < length)
1728 		goto check_highest;
1729 
1730 	while (true) {
1731 		/* Visit left subtree if it looks promising */
1732 		gap_end = vma->vm_start;
1733 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1734 			struct vm_area_struct *left =
1735 				rb_entry(vma->vm_rb.rb_left,
1736 					 struct vm_area_struct, vm_rb);
1737 			if (left->rb_subtree_gap >= length) {
1738 				vma = left;
1739 				continue;
1740 			}
1741 		}
1742 
1743 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1744 check_current:
1745 		/* Check if current node has a suitable gap */
1746 		if (gap_start > high_limit)
1747 			return -ENOMEM;
1748 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1749 			goto found;
1750 
1751 		/* Visit right subtree if it looks promising */
1752 		if (vma->vm_rb.rb_right) {
1753 			struct vm_area_struct *right =
1754 				rb_entry(vma->vm_rb.rb_right,
1755 					 struct vm_area_struct, vm_rb);
1756 			if (right->rb_subtree_gap >= length) {
1757 				vma = right;
1758 				continue;
1759 			}
1760 		}
1761 
1762 		/* Go back up the rbtree to find next candidate node */
1763 		while (true) {
1764 			struct rb_node *prev = &vma->vm_rb;
1765 			if (!rb_parent(prev))
1766 				goto check_highest;
1767 			vma = rb_entry(rb_parent(prev),
1768 				       struct vm_area_struct, vm_rb);
1769 			if (prev == vma->vm_rb.rb_left) {
1770 				gap_start = vma->vm_prev->vm_end;
1771 				gap_end = vma->vm_start;
1772 				goto check_current;
1773 			}
1774 		}
1775 	}
1776 
1777 check_highest:
1778 	/* Check highest gap, which does not precede any rbtree node */
1779 	gap_start = mm->highest_vm_end;
1780 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1781 	if (gap_start > high_limit)
1782 		return -ENOMEM;
1783 
1784 found:
1785 	/* We found a suitable gap. Clip it with the original low_limit. */
1786 	if (gap_start < info->low_limit)
1787 		gap_start = info->low_limit;
1788 
1789 	/* Adjust gap address to the desired alignment */
1790 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1791 
1792 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1793 	VM_BUG_ON(gap_start + info->length > gap_end);
1794 	return gap_start;
1795 }
1796 
1797 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1798 {
1799 	struct mm_struct *mm = current->mm;
1800 	struct vm_area_struct *vma;
1801 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1802 
1803 	/* Adjust search length to account for worst case alignment overhead */
1804 	length = info->length + info->align_mask;
1805 	if (length < info->length)
1806 		return -ENOMEM;
1807 
1808 	/*
1809 	 * Adjust search limits by the desired length.
1810 	 * See implementation comment at top of unmapped_area().
1811 	 */
1812 	gap_end = info->high_limit;
1813 	if (gap_end < length)
1814 		return -ENOMEM;
1815 	high_limit = gap_end - length;
1816 
1817 	if (info->low_limit > high_limit)
1818 		return -ENOMEM;
1819 	low_limit = info->low_limit + length;
1820 
1821 	/* Check highest gap, which does not precede any rbtree node */
1822 	gap_start = mm->highest_vm_end;
1823 	if (gap_start <= high_limit)
1824 		goto found_highest;
1825 
1826 	/* Check if rbtree root looks promising */
1827 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1828 		return -ENOMEM;
1829 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1830 	if (vma->rb_subtree_gap < length)
1831 		return -ENOMEM;
1832 
1833 	while (true) {
1834 		/* Visit right subtree if it looks promising */
1835 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1836 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1837 			struct vm_area_struct *right =
1838 				rb_entry(vma->vm_rb.rb_right,
1839 					 struct vm_area_struct, vm_rb);
1840 			if (right->rb_subtree_gap >= length) {
1841 				vma = right;
1842 				continue;
1843 			}
1844 		}
1845 
1846 check_current:
1847 		/* Check if current node has a suitable gap */
1848 		gap_end = vma->vm_start;
1849 		if (gap_end < low_limit)
1850 			return -ENOMEM;
1851 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1852 			goto found;
1853 
1854 		/* Visit left subtree if it looks promising */
1855 		if (vma->vm_rb.rb_left) {
1856 			struct vm_area_struct *left =
1857 				rb_entry(vma->vm_rb.rb_left,
1858 					 struct vm_area_struct, vm_rb);
1859 			if (left->rb_subtree_gap >= length) {
1860 				vma = left;
1861 				continue;
1862 			}
1863 		}
1864 
1865 		/* Go back up the rbtree to find next candidate node */
1866 		while (true) {
1867 			struct rb_node *prev = &vma->vm_rb;
1868 			if (!rb_parent(prev))
1869 				return -ENOMEM;
1870 			vma = rb_entry(rb_parent(prev),
1871 				       struct vm_area_struct, vm_rb);
1872 			if (prev == vma->vm_rb.rb_right) {
1873 				gap_start = vma->vm_prev ?
1874 					vma->vm_prev->vm_end : 0;
1875 				goto check_current;
1876 			}
1877 		}
1878 	}
1879 
1880 found:
1881 	/* We found a suitable gap. Clip it with the original high_limit. */
1882 	if (gap_end > info->high_limit)
1883 		gap_end = info->high_limit;
1884 
1885 found_highest:
1886 	/* Compute highest gap address at the desired alignment */
1887 	gap_end -= info->length;
1888 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1889 
1890 	VM_BUG_ON(gap_end < info->low_limit);
1891 	VM_BUG_ON(gap_end < gap_start);
1892 	return gap_end;
1893 }
1894 
1895 /* Get an address range which is currently unmapped.
1896  * For shmat() with addr=0.
1897  *
1898  * Ugly calling convention alert:
1899  * Return value with the low bits set means error value,
1900  * ie
1901  *	if (ret & ~PAGE_MASK)
1902  *		error = ret;
1903  *
1904  * This function "knows" that -ENOMEM has the bits set.
1905  */
1906 #ifndef HAVE_ARCH_UNMAPPED_AREA
1907 unsigned long
1908 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1909 		unsigned long len, unsigned long pgoff, unsigned long flags)
1910 {
1911 	struct mm_struct *mm = current->mm;
1912 	struct vm_area_struct *vma;
1913 	struct vm_unmapped_area_info info;
1914 
1915 	if (len > TASK_SIZE - mmap_min_addr)
1916 		return -ENOMEM;
1917 
1918 	if (flags & MAP_FIXED)
1919 		return addr;
1920 
1921 	if (addr) {
1922 		addr = PAGE_ALIGN(addr);
1923 		vma = find_vma(mm, addr);
1924 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1925 		    (!vma || addr + len <= vma->vm_start))
1926 			return addr;
1927 	}
1928 
1929 	info.flags = 0;
1930 	info.length = len;
1931 	info.low_limit = mm->mmap_base;
1932 	info.high_limit = TASK_SIZE;
1933 	info.align_mask = 0;
1934 	return vm_unmapped_area(&info);
1935 }
1936 #endif
1937 
1938 /*
1939  * This mmap-allocator allocates new areas top-down from below the
1940  * stack's low limit (the base):
1941  */
1942 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1943 unsigned long
1944 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1945 			  const unsigned long len, const unsigned long pgoff,
1946 			  const unsigned long flags)
1947 {
1948 	struct vm_area_struct *vma;
1949 	struct mm_struct *mm = current->mm;
1950 	unsigned long addr = addr0;
1951 	struct vm_unmapped_area_info info;
1952 
1953 	/* requested length too big for entire address space */
1954 	if (len > TASK_SIZE - mmap_min_addr)
1955 		return -ENOMEM;
1956 
1957 	if (flags & MAP_FIXED)
1958 		return addr;
1959 
1960 	/* requesting a specific address */
1961 	if (addr) {
1962 		addr = PAGE_ALIGN(addr);
1963 		vma = find_vma(mm, addr);
1964 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1965 				(!vma || addr + len <= vma->vm_start))
1966 			return addr;
1967 	}
1968 
1969 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1970 	info.length = len;
1971 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1972 	info.high_limit = mm->mmap_base;
1973 	info.align_mask = 0;
1974 	addr = vm_unmapped_area(&info);
1975 
1976 	/*
1977 	 * A failed mmap() very likely causes application failure,
1978 	 * so fall back to the bottom-up function here. This scenario
1979 	 * can happen with large stack limits and large mmap()
1980 	 * allocations.
1981 	 */
1982 	if (offset_in_page(addr)) {
1983 		VM_BUG_ON(addr != -ENOMEM);
1984 		info.flags = 0;
1985 		info.low_limit = TASK_UNMAPPED_BASE;
1986 		info.high_limit = TASK_SIZE;
1987 		addr = vm_unmapped_area(&info);
1988 	}
1989 
1990 	return addr;
1991 }
1992 #endif
1993 
1994 unsigned long
1995 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1996 		unsigned long pgoff, unsigned long flags)
1997 {
1998 	unsigned long (*get_area)(struct file *, unsigned long,
1999 				  unsigned long, unsigned long, unsigned long);
2000 
2001 	unsigned long error = arch_mmap_check(addr, len, flags);
2002 	if (error)
2003 		return error;
2004 
2005 	/* Careful about overflows.. */
2006 	if (len > TASK_SIZE)
2007 		return -ENOMEM;
2008 
2009 	get_area = current->mm->get_unmapped_area;
2010 	if (file && file->f_op->get_unmapped_area)
2011 		get_area = file->f_op->get_unmapped_area;
2012 	addr = get_area(file, addr, len, pgoff, flags);
2013 	if (IS_ERR_VALUE(addr))
2014 		return addr;
2015 
2016 	if (addr > TASK_SIZE - len)
2017 		return -ENOMEM;
2018 	if (offset_in_page(addr))
2019 		return -EINVAL;
2020 
2021 	addr = arch_rebalance_pgtables(addr, len);
2022 	error = security_mmap_addr(addr);
2023 	return error ? error : addr;
2024 }
2025 
2026 EXPORT_SYMBOL(get_unmapped_area);
2027 
2028 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2029 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2030 {
2031 	struct rb_node *rb_node;
2032 	struct vm_area_struct *vma;
2033 
2034 	/* Check the cache first. */
2035 	vma = vmacache_find(mm, addr);
2036 	if (likely(vma))
2037 		return vma;
2038 
2039 	rb_node = mm->mm_rb.rb_node;
2040 
2041 	while (rb_node) {
2042 		struct vm_area_struct *tmp;
2043 
2044 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2045 
2046 		if (tmp->vm_end > addr) {
2047 			vma = tmp;
2048 			if (tmp->vm_start <= addr)
2049 				break;
2050 			rb_node = rb_node->rb_left;
2051 		} else
2052 			rb_node = rb_node->rb_right;
2053 	}
2054 
2055 	if (vma)
2056 		vmacache_update(addr, vma);
2057 	return vma;
2058 }
2059 
2060 EXPORT_SYMBOL(find_vma);
2061 
2062 /*
2063  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2064  */
2065 struct vm_area_struct *
2066 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2067 			struct vm_area_struct **pprev)
2068 {
2069 	struct vm_area_struct *vma;
2070 
2071 	vma = find_vma(mm, addr);
2072 	if (vma) {
2073 		*pprev = vma->vm_prev;
2074 	} else {
2075 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2076 		*pprev = NULL;
2077 		while (rb_node) {
2078 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2079 			rb_node = rb_node->rb_right;
2080 		}
2081 	}
2082 	return vma;
2083 }
2084 
2085 /*
2086  * Verify that the stack growth is acceptable and
2087  * update accounting. This is shared with both the
2088  * grow-up and grow-down cases.
2089  */
2090 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2091 {
2092 	struct mm_struct *mm = vma->vm_mm;
2093 	struct rlimit *rlim = current->signal->rlim;
2094 	unsigned long new_start, actual_size;
2095 
2096 	/* address space limit tests */
2097 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2098 		return -ENOMEM;
2099 
2100 	/* Stack limit test */
2101 	actual_size = size;
2102 	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2103 		actual_size -= PAGE_SIZE;
2104 	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2105 		return -ENOMEM;
2106 
2107 	/* mlock limit tests */
2108 	if (vma->vm_flags & VM_LOCKED) {
2109 		unsigned long locked;
2110 		unsigned long limit;
2111 		locked = mm->locked_vm + grow;
2112 		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2113 		limit >>= PAGE_SHIFT;
2114 		if (locked > limit && !capable(CAP_IPC_LOCK))
2115 			return -ENOMEM;
2116 	}
2117 
2118 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2119 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2120 			vma->vm_end - size;
2121 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2122 		return -EFAULT;
2123 
2124 	/*
2125 	 * Overcommit..  This must be the final test, as it will
2126 	 * update security statistics.
2127 	 */
2128 	if (security_vm_enough_memory_mm(mm, grow))
2129 		return -ENOMEM;
2130 
2131 	return 0;
2132 }
2133 
2134 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2135 /*
2136  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2137  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2138  */
2139 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2140 {
2141 	struct mm_struct *mm = vma->vm_mm;
2142 	int error;
2143 
2144 	if (!(vma->vm_flags & VM_GROWSUP))
2145 		return -EFAULT;
2146 
2147 	/*
2148 	 * We must make sure the anon_vma is allocated
2149 	 * so that the anon_vma locking is not a noop.
2150 	 */
2151 	if (unlikely(anon_vma_prepare(vma)))
2152 		return -ENOMEM;
2153 	vma_lock_anon_vma(vma);
2154 
2155 	/*
2156 	 * vma->vm_start/vm_end cannot change under us because the caller
2157 	 * is required to hold the mmap_sem in read mode.  We need the
2158 	 * anon_vma lock to serialize against concurrent expand_stacks.
2159 	 * Also guard against wrapping around to address 0.
2160 	 */
2161 	if (address < PAGE_ALIGN(address+4))
2162 		address = PAGE_ALIGN(address+4);
2163 	else {
2164 		vma_unlock_anon_vma(vma);
2165 		return -ENOMEM;
2166 	}
2167 	error = 0;
2168 
2169 	/* Somebody else might have raced and expanded it already */
2170 	if (address > vma->vm_end) {
2171 		unsigned long size, grow;
2172 
2173 		size = address - vma->vm_start;
2174 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2175 
2176 		error = -ENOMEM;
2177 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2178 			error = acct_stack_growth(vma, size, grow);
2179 			if (!error) {
2180 				/*
2181 				 * vma_gap_update() doesn't support concurrent
2182 				 * updates, but we only hold a shared mmap_sem
2183 				 * lock here, so we need to protect against
2184 				 * concurrent vma expansions.
2185 				 * vma_lock_anon_vma() doesn't help here, as
2186 				 * we don't guarantee that all growable vmas
2187 				 * in a mm share the same root anon vma.
2188 				 * So, we reuse mm->page_table_lock to guard
2189 				 * against concurrent vma expansions.
2190 				 */
2191 				spin_lock(&mm->page_table_lock);
2192 				if (vma->vm_flags & VM_LOCKED)
2193 					mm->locked_vm += grow;
2194 				vm_stat_account(mm, vma->vm_flags, grow);
2195 				anon_vma_interval_tree_pre_update_vma(vma);
2196 				vma->vm_end = address;
2197 				anon_vma_interval_tree_post_update_vma(vma);
2198 				if (vma->vm_next)
2199 					vma_gap_update(vma->vm_next);
2200 				else
2201 					mm->highest_vm_end = address;
2202 				spin_unlock(&mm->page_table_lock);
2203 
2204 				perf_event_mmap(vma);
2205 			}
2206 		}
2207 	}
2208 	vma_unlock_anon_vma(vma);
2209 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2210 	validate_mm(mm);
2211 	return error;
2212 }
2213 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2214 
2215 /*
2216  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2217  */
2218 int expand_downwards(struct vm_area_struct *vma,
2219 				   unsigned long address)
2220 {
2221 	struct mm_struct *mm = vma->vm_mm;
2222 	int error;
2223 
2224 	/*
2225 	 * We must make sure the anon_vma is allocated
2226 	 * so that the anon_vma locking is not a noop.
2227 	 */
2228 	if (unlikely(anon_vma_prepare(vma)))
2229 		return -ENOMEM;
2230 
2231 	address &= PAGE_MASK;
2232 	error = security_mmap_addr(address);
2233 	if (error)
2234 		return error;
2235 
2236 	vma_lock_anon_vma(vma);
2237 
2238 	/*
2239 	 * vma->vm_start/vm_end cannot change under us because the caller
2240 	 * is required to hold the mmap_sem in read mode.  We need the
2241 	 * anon_vma lock to serialize against concurrent expand_stacks.
2242 	 */
2243 
2244 	/* Somebody else might have raced and expanded it already */
2245 	if (address < vma->vm_start) {
2246 		unsigned long size, grow;
2247 
2248 		size = vma->vm_end - address;
2249 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2250 
2251 		error = -ENOMEM;
2252 		if (grow <= vma->vm_pgoff) {
2253 			error = acct_stack_growth(vma, size, grow);
2254 			if (!error) {
2255 				/*
2256 				 * vma_gap_update() doesn't support concurrent
2257 				 * updates, but we only hold a shared mmap_sem
2258 				 * lock here, so we need to protect against
2259 				 * concurrent vma expansions.
2260 				 * vma_lock_anon_vma() doesn't help here, as
2261 				 * we don't guarantee that all growable vmas
2262 				 * in a mm share the same root anon vma.
2263 				 * So, we reuse mm->page_table_lock to guard
2264 				 * against concurrent vma expansions.
2265 				 */
2266 				spin_lock(&mm->page_table_lock);
2267 				if (vma->vm_flags & VM_LOCKED)
2268 					mm->locked_vm += grow;
2269 				vm_stat_account(mm, vma->vm_flags, grow);
2270 				anon_vma_interval_tree_pre_update_vma(vma);
2271 				vma->vm_start = address;
2272 				vma->vm_pgoff -= grow;
2273 				anon_vma_interval_tree_post_update_vma(vma);
2274 				vma_gap_update(vma);
2275 				spin_unlock(&mm->page_table_lock);
2276 
2277 				perf_event_mmap(vma);
2278 			}
2279 		}
2280 	}
2281 	vma_unlock_anon_vma(vma);
2282 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2283 	validate_mm(mm);
2284 	return error;
2285 }
2286 
2287 /*
2288  * Note how expand_stack() refuses to expand the stack all the way to
2289  * abut the next virtual mapping, *unless* that mapping itself is also
2290  * a stack mapping. We want to leave room for a guard page, after all
2291  * (the guard page itself is not added here, that is done by the
2292  * actual page faulting logic)
2293  *
2294  * This matches the behavior of the guard page logic (see mm/memory.c:
2295  * check_stack_guard_page()), which only allows the guard page to be
2296  * removed under these circumstances.
2297  */
2298 #ifdef CONFIG_STACK_GROWSUP
2299 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2300 {
2301 	struct vm_area_struct *next;
2302 
2303 	address &= PAGE_MASK;
2304 	next = vma->vm_next;
2305 	if (next && next->vm_start == address + PAGE_SIZE) {
2306 		if (!(next->vm_flags & VM_GROWSUP))
2307 			return -ENOMEM;
2308 	}
2309 	return expand_upwards(vma, address);
2310 }
2311 
2312 struct vm_area_struct *
2313 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2314 {
2315 	struct vm_area_struct *vma, *prev;
2316 
2317 	addr &= PAGE_MASK;
2318 	vma = find_vma_prev(mm, addr, &prev);
2319 	if (vma && (vma->vm_start <= addr))
2320 		return vma;
2321 	if (!prev || expand_stack(prev, addr))
2322 		return NULL;
2323 	if (prev->vm_flags & VM_LOCKED)
2324 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2325 	return prev;
2326 }
2327 #else
2328 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2329 {
2330 	struct vm_area_struct *prev;
2331 
2332 	address &= PAGE_MASK;
2333 	prev = vma->vm_prev;
2334 	if (prev && prev->vm_end == address) {
2335 		if (!(prev->vm_flags & VM_GROWSDOWN))
2336 			return -ENOMEM;
2337 	}
2338 	return expand_downwards(vma, address);
2339 }
2340 
2341 struct vm_area_struct *
2342 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2343 {
2344 	struct vm_area_struct *vma;
2345 	unsigned long start;
2346 
2347 	addr &= PAGE_MASK;
2348 	vma = find_vma(mm, addr);
2349 	if (!vma)
2350 		return NULL;
2351 	if (vma->vm_start <= addr)
2352 		return vma;
2353 	if (!(vma->vm_flags & VM_GROWSDOWN))
2354 		return NULL;
2355 	start = vma->vm_start;
2356 	if (expand_stack(vma, addr))
2357 		return NULL;
2358 	if (vma->vm_flags & VM_LOCKED)
2359 		populate_vma_page_range(vma, addr, start, NULL);
2360 	return vma;
2361 }
2362 #endif
2363 
2364 EXPORT_SYMBOL_GPL(find_extend_vma);
2365 
2366 /*
2367  * Ok - we have the memory areas we should free on the vma list,
2368  * so release them, and do the vma updates.
2369  *
2370  * Called with the mm semaphore held.
2371  */
2372 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2373 {
2374 	unsigned long nr_accounted = 0;
2375 
2376 	/* Update high watermark before we lower total_vm */
2377 	update_hiwater_vm(mm);
2378 	do {
2379 		long nrpages = vma_pages(vma);
2380 
2381 		if (vma->vm_flags & VM_ACCOUNT)
2382 			nr_accounted += nrpages;
2383 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2384 		vma = remove_vma(vma);
2385 	} while (vma);
2386 	vm_unacct_memory(nr_accounted);
2387 	validate_mm(mm);
2388 }
2389 
2390 /*
2391  * Get rid of page table information in the indicated region.
2392  *
2393  * Called with the mm semaphore held.
2394  */
2395 static void unmap_region(struct mm_struct *mm,
2396 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2397 		unsigned long start, unsigned long end)
2398 {
2399 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2400 	struct mmu_gather tlb;
2401 
2402 	lru_add_drain();
2403 	tlb_gather_mmu(&tlb, mm, start, end);
2404 	update_hiwater_rss(mm);
2405 	unmap_vmas(&tlb, vma, start, end);
2406 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2407 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2408 	tlb_finish_mmu(&tlb, start, end);
2409 }
2410 
2411 /*
2412  * Create a list of vma's touched by the unmap, removing them from the mm's
2413  * vma list as we go..
2414  */
2415 static void
2416 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2417 	struct vm_area_struct *prev, unsigned long end)
2418 {
2419 	struct vm_area_struct **insertion_point;
2420 	struct vm_area_struct *tail_vma = NULL;
2421 
2422 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2423 	vma->vm_prev = NULL;
2424 	do {
2425 		vma_rb_erase(vma, &mm->mm_rb);
2426 		mm->map_count--;
2427 		tail_vma = vma;
2428 		vma = vma->vm_next;
2429 	} while (vma && vma->vm_start < end);
2430 	*insertion_point = vma;
2431 	if (vma) {
2432 		vma->vm_prev = prev;
2433 		vma_gap_update(vma);
2434 	} else
2435 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2436 	tail_vma->vm_next = NULL;
2437 
2438 	/* Kill the cache */
2439 	vmacache_invalidate(mm);
2440 }
2441 
2442 /*
2443  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2444  * munmap path where it doesn't make sense to fail.
2445  */
2446 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2447 	      unsigned long addr, int new_below)
2448 {
2449 	struct vm_area_struct *new;
2450 	int err;
2451 
2452 	if (is_vm_hugetlb_page(vma) && (addr &
2453 					~(huge_page_mask(hstate_vma(vma)))))
2454 		return -EINVAL;
2455 
2456 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2457 	if (!new)
2458 		return -ENOMEM;
2459 
2460 	/* most fields are the same, copy all, and then fixup */
2461 	*new = *vma;
2462 
2463 	INIT_LIST_HEAD(&new->anon_vma_chain);
2464 
2465 	if (new_below)
2466 		new->vm_end = addr;
2467 	else {
2468 		new->vm_start = addr;
2469 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2470 	}
2471 
2472 	err = vma_dup_policy(vma, new);
2473 	if (err)
2474 		goto out_free_vma;
2475 
2476 	err = anon_vma_clone(new, vma);
2477 	if (err)
2478 		goto out_free_mpol;
2479 
2480 	if (new->vm_file)
2481 		get_file(new->vm_file);
2482 
2483 	if (new->vm_ops && new->vm_ops->open)
2484 		new->vm_ops->open(new);
2485 
2486 	if (new_below)
2487 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2488 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2489 	else
2490 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2491 
2492 	/* Success. */
2493 	if (!err)
2494 		return 0;
2495 
2496 	/* Clean everything up if vma_adjust failed. */
2497 	if (new->vm_ops && new->vm_ops->close)
2498 		new->vm_ops->close(new);
2499 	if (new->vm_file)
2500 		fput(new->vm_file);
2501 	unlink_anon_vmas(new);
2502  out_free_mpol:
2503 	mpol_put(vma_policy(new));
2504  out_free_vma:
2505 	kmem_cache_free(vm_area_cachep, new);
2506 	return err;
2507 }
2508 
2509 /*
2510  * Split a vma into two pieces at address 'addr', a new vma is allocated
2511  * either for the first part or the tail.
2512  */
2513 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2514 	      unsigned long addr, int new_below)
2515 {
2516 	if (mm->map_count >= sysctl_max_map_count)
2517 		return -ENOMEM;
2518 
2519 	return __split_vma(mm, vma, addr, new_below);
2520 }
2521 
2522 /* Munmap is split into 2 main parts -- this part which finds
2523  * what needs doing, and the areas themselves, which do the
2524  * work.  This now handles partial unmappings.
2525  * Jeremy Fitzhardinge <jeremy@goop.org>
2526  */
2527 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2528 {
2529 	unsigned long end;
2530 	struct vm_area_struct *vma, *prev, *last;
2531 
2532 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2533 		return -EINVAL;
2534 
2535 	len = PAGE_ALIGN(len);
2536 	if (len == 0)
2537 		return -EINVAL;
2538 
2539 	/* Find the first overlapping VMA */
2540 	vma = find_vma(mm, start);
2541 	if (!vma)
2542 		return 0;
2543 	prev = vma->vm_prev;
2544 	/* we have  start < vma->vm_end  */
2545 
2546 	/* if it doesn't overlap, we have nothing.. */
2547 	end = start + len;
2548 	if (vma->vm_start >= end)
2549 		return 0;
2550 
2551 	/*
2552 	 * If we need to split any vma, do it now to save pain later.
2553 	 *
2554 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2555 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2556 	 * places tmp vma above, and higher split_vma places tmp vma below.
2557 	 */
2558 	if (start > vma->vm_start) {
2559 		int error;
2560 
2561 		/*
2562 		 * Make sure that map_count on return from munmap() will
2563 		 * not exceed its limit; but let map_count go just above
2564 		 * its limit temporarily, to help free resources as expected.
2565 		 */
2566 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2567 			return -ENOMEM;
2568 
2569 		error = __split_vma(mm, vma, start, 0);
2570 		if (error)
2571 			return error;
2572 		prev = vma;
2573 	}
2574 
2575 	/* Does it split the last one? */
2576 	last = find_vma(mm, end);
2577 	if (last && end > last->vm_start) {
2578 		int error = __split_vma(mm, last, end, 1);
2579 		if (error)
2580 			return error;
2581 	}
2582 	vma = prev ? prev->vm_next : mm->mmap;
2583 
2584 	/*
2585 	 * unlock any mlock()ed ranges before detaching vmas
2586 	 */
2587 	if (mm->locked_vm) {
2588 		struct vm_area_struct *tmp = vma;
2589 		while (tmp && tmp->vm_start < end) {
2590 			if (tmp->vm_flags & VM_LOCKED) {
2591 				mm->locked_vm -= vma_pages(tmp);
2592 				munlock_vma_pages_all(tmp);
2593 			}
2594 			tmp = tmp->vm_next;
2595 		}
2596 	}
2597 
2598 	/*
2599 	 * Remove the vma's, and unmap the actual pages
2600 	 */
2601 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2602 	unmap_region(mm, vma, prev, start, end);
2603 
2604 	arch_unmap(mm, vma, start, end);
2605 
2606 	/* Fix up all other VM information */
2607 	remove_vma_list(mm, vma);
2608 
2609 	return 0;
2610 }
2611 
2612 int vm_munmap(unsigned long start, size_t len)
2613 {
2614 	int ret;
2615 	struct mm_struct *mm = current->mm;
2616 
2617 	down_write(&mm->mmap_sem);
2618 	ret = do_munmap(mm, start, len);
2619 	up_write(&mm->mmap_sem);
2620 	return ret;
2621 }
2622 EXPORT_SYMBOL(vm_munmap);
2623 
2624 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2625 {
2626 	profile_munmap(addr);
2627 	return vm_munmap(addr, len);
2628 }
2629 
2630 
2631 /*
2632  * Emulation of deprecated remap_file_pages() syscall.
2633  */
2634 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2635 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2636 {
2637 
2638 	struct mm_struct *mm = current->mm;
2639 	struct vm_area_struct *vma;
2640 	unsigned long populate = 0;
2641 	unsigned long ret = -EINVAL;
2642 	struct file *file;
2643 
2644 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2645 			"See Documentation/vm/remap_file_pages.txt.\n",
2646 			current->comm, current->pid);
2647 
2648 	if (prot)
2649 		return ret;
2650 	start = start & PAGE_MASK;
2651 	size = size & PAGE_MASK;
2652 
2653 	if (start + size <= start)
2654 		return ret;
2655 
2656 	/* Does pgoff wrap? */
2657 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2658 		return ret;
2659 
2660 	down_write(&mm->mmap_sem);
2661 	vma = find_vma(mm, start);
2662 
2663 	if (!vma || !(vma->vm_flags & VM_SHARED))
2664 		goto out;
2665 
2666 	if (start < vma->vm_start || start + size > vma->vm_end)
2667 		goto out;
2668 
2669 	if (pgoff == linear_page_index(vma, start)) {
2670 		ret = 0;
2671 		goto out;
2672 	}
2673 
2674 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2675 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2676 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2677 
2678 	flags &= MAP_NONBLOCK;
2679 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2680 	if (vma->vm_flags & VM_LOCKED) {
2681 		flags |= MAP_LOCKED;
2682 		/* drop PG_Mlocked flag for over-mapped range */
2683 		munlock_vma_pages_range(vma, start, start + size);
2684 	}
2685 
2686 	file = get_file(vma->vm_file);
2687 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2688 			prot, flags, pgoff, &populate);
2689 	fput(file);
2690 out:
2691 	up_write(&mm->mmap_sem);
2692 	if (populate)
2693 		mm_populate(ret, populate);
2694 	if (!IS_ERR_VALUE(ret))
2695 		ret = 0;
2696 	return ret;
2697 }
2698 
2699 static inline void verify_mm_writelocked(struct mm_struct *mm)
2700 {
2701 #ifdef CONFIG_DEBUG_VM
2702 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2703 		WARN_ON(1);
2704 		up_read(&mm->mmap_sem);
2705 	}
2706 #endif
2707 }
2708 
2709 /*
2710  *  this is really a simplified "do_mmap".  it only handles
2711  *  anonymous maps.  eventually we may be able to do some
2712  *  brk-specific accounting here.
2713  */
2714 static unsigned long do_brk(unsigned long addr, unsigned long len)
2715 {
2716 	struct mm_struct *mm = current->mm;
2717 	struct vm_area_struct *vma, *prev;
2718 	unsigned long flags;
2719 	struct rb_node **rb_link, *rb_parent;
2720 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2721 	int error;
2722 
2723 	len = PAGE_ALIGN(len);
2724 	if (!len)
2725 		return addr;
2726 
2727 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2728 
2729 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2730 	if (offset_in_page(error))
2731 		return error;
2732 
2733 	error = mlock_future_check(mm, mm->def_flags, len);
2734 	if (error)
2735 		return error;
2736 
2737 	/*
2738 	 * mm->mmap_sem is required to protect against another thread
2739 	 * changing the mappings in case we sleep.
2740 	 */
2741 	verify_mm_writelocked(mm);
2742 
2743 	/*
2744 	 * Clear old maps.  this also does some error checking for us
2745 	 */
2746 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2747 			      &rb_parent)) {
2748 		if (do_munmap(mm, addr, len))
2749 			return -ENOMEM;
2750 	}
2751 
2752 	/* Check against address space limits *after* clearing old maps... */
2753 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2754 		return -ENOMEM;
2755 
2756 	if (mm->map_count > sysctl_max_map_count)
2757 		return -ENOMEM;
2758 
2759 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2760 		return -ENOMEM;
2761 
2762 	/* Can we just expand an old private anonymous mapping? */
2763 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2764 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2765 	if (vma)
2766 		goto out;
2767 
2768 	/*
2769 	 * create a vma struct for an anonymous mapping
2770 	 */
2771 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2772 	if (!vma) {
2773 		vm_unacct_memory(len >> PAGE_SHIFT);
2774 		return -ENOMEM;
2775 	}
2776 
2777 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2778 	vma->vm_mm = mm;
2779 	vma->vm_start = addr;
2780 	vma->vm_end = addr + len;
2781 	vma->vm_pgoff = pgoff;
2782 	vma->vm_flags = flags;
2783 	vma->vm_page_prot = vm_get_page_prot(flags);
2784 	vma_link(mm, vma, prev, rb_link, rb_parent);
2785 out:
2786 	perf_event_mmap(vma);
2787 	mm->total_vm += len >> PAGE_SHIFT;
2788 	mm->data_vm += len >> PAGE_SHIFT;
2789 	if (flags & VM_LOCKED)
2790 		mm->locked_vm += (len >> PAGE_SHIFT);
2791 	vma->vm_flags |= VM_SOFTDIRTY;
2792 	return addr;
2793 }
2794 
2795 unsigned long vm_brk(unsigned long addr, unsigned long len)
2796 {
2797 	struct mm_struct *mm = current->mm;
2798 	unsigned long ret;
2799 	bool populate;
2800 
2801 	down_write(&mm->mmap_sem);
2802 	ret = do_brk(addr, len);
2803 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2804 	up_write(&mm->mmap_sem);
2805 	if (populate)
2806 		mm_populate(addr, len);
2807 	return ret;
2808 }
2809 EXPORT_SYMBOL(vm_brk);
2810 
2811 /* Release all mmaps. */
2812 void exit_mmap(struct mm_struct *mm)
2813 {
2814 	struct mmu_gather tlb;
2815 	struct vm_area_struct *vma;
2816 	unsigned long nr_accounted = 0;
2817 
2818 	/* mm's last user has gone, and its about to be pulled down */
2819 	mmu_notifier_release(mm);
2820 
2821 	if (mm->locked_vm) {
2822 		vma = mm->mmap;
2823 		while (vma) {
2824 			if (vma->vm_flags & VM_LOCKED)
2825 				munlock_vma_pages_all(vma);
2826 			vma = vma->vm_next;
2827 		}
2828 	}
2829 
2830 	arch_exit_mmap(mm);
2831 
2832 	vma = mm->mmap;
2833 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2834 		return;
2835 
2836 	lru_add_drain();
2837 	flush_cache_mm(mm);
2838 	tlb_gather_mmu(&tlb, mm, 0, -1);
2839 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2840 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2841 	unmap_vmas(&tlb, vma, 0, -1);
2842 
2843 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2844 	tlb_finish_mmu(&tlb, 0, -1);
2845 
2846 	/*
2847 	 * Walk the list again, actually closing and freeing it,
2848 	 * with preemption enabled, without holding any MM locks.
2849 	 */
2850 	while (vma) {
2851 		if (vma->vm_flags & VM_ACCOUNT)
2852 			nr_accounted += vma_pages(vma);
2853 		vma = remove_vma(vma);
2854 	}
2855 	vm_unacct_memory(nr_accounted);
2856 }
2857 
2858 /* Insert vm structure into process list sorted by address
2859  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2860  * then i_mmap_rwsem is taken here.
2861  */
2862 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2863 {
2864 	struct vm_area_struct *prev;
2865 	struct rb_node **rb_link, *rb_parent;
2866 
2867 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2868 			   &prev, &rb_link, &rb_parent))
2869 		return -ENOMEM;
2870 	if ((vma->vm_flags & VM_ACCOUNT) &&
2871 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2872 		return -ENOMEM;
2873 
2874 	/*
2875 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2876 	 * until its first write fault, when page's anon_vma and index
2877 	 * are set.  But now set the vm_pgoff it will almost certainly
2878 	 * end up with (unless mremap moves it elsewhere before that
2879 	 * first wfault), so /proc/pid/maps tells a consistent story.
2880 	 *
2881 	 * By setting it to reflect the virtual start address of the
2882 	 * vma, merges and splits can happen in a seamless way, just
2883 	 * using the existing file pgoff checks and manipulations.
2884 	 * Similarly in do_mmap_pgoff and in do_brk.
2885 	 */
2886 	if (vma_is_anonymous(vma)) {
2887 		BUG_ON(vma->anon_vma);
2888 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2889 	}
2890 
2891 	vma_link(mm, vma, prev, rb_link, rb_parent);
2892 	return 0;
2893 }
2894 
2895 /*
2896  * Copy the vma structure to a new location in the same mm,
2897  * prior to moving page table entries, to effect an mremap move.
2898  */
2899 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2900 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2901 	bool *need_rmap_locks)
2902 {
2903 	struct vm_area_struct *vma = *vmap;
2904 	unsigned long vma_start = vma->vm_start;
2905 	struct mm_struct *mm = vma->vm_mm;
2906 	struct vm_area_struct *new_vma, *prev;
2907 	struct rb_node **rb_link, *rb_parent;
2908 	bool faulted_in_anon_vma = true;
2909 
2910 	/*
2911 	 * If anonymous vma has not yet been faulted, update new pgoff
2912 	 * to match new location, to increase its chance of merging.
2913 	 */
2914 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2915 		pgoff = addr >> PAGE_SHIFT;
2916 		faulted_in_anon_vma = false;
2917 	}
2918 
2919 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2920 		return NULL;	/* should never get here */
2921 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2922 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2923 			    vma->vm_userfaultfd_ctx);
2924 	if (new_vma) {
2925 		/*
2926 		 * Source vma may have been merged into new_vma
2927 		 */
2928 		if (unlikely(vma_start >= new_vma->vm_start &&
2929 			     vma_start < new_vma->vm_end)) {
2930 			/*
2931 			 * The only way we can get a vma_merge with
2932 			 * self during an mremap is if the vma hasn't
2933 			 * been faulted in yet and we were allowed to
2934 			 * reset the dst vma->vm_pgoff to the
2935 			 * destination address of the mremap to allow
2936 			 * the merge to happen. mremap must change the
2937 			 * vm_pgoff linearity between src and dst vmas
2938 			 * (in turn preventing a vma_merge) to be
2939 			 * safe. It is only safe to keep the vm_pgoff
2940 			 * linear if there are no pages mapped yet.
2941 			 */
2942 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2943 			*vmap = vma = new_vma;
2944 		}
2945 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2946 	} else {
2947 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2948 		if (!new_vma)
2949 			goto out;
2950 		*new_vma = *vma;
2951 		new_vma->vm_start = addr;
2952 		new_vma->vm_end = addr + len;
2953 		new_vma->vm_pgoff = pgoff;
2954 		if (vma_dup_policy(vma, new_vma))
2955 			goto out_free_vma;
2956 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2957 		if (anon_vma_clone(new_vma, vma))
2958 			goto out_free_mempol;
2959 		if (new_vma->vm_file)
2960 			get_file(new_vma->vm_file);
2961 		if (new_vma->vm_ops && new_vma->vm_ops->open)
2962 			new_vma->vm_ops->open(new_vma);
2963 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
2964 		*need_rmap_locks = false;
2965 	}
2966 	return new_vma;
2967 
2968 out_free_mempol:
2969 	mpol_put(vma_policy(new_vma));
2970 out_free_vma:
2971 	kmem_cache_free(vm_area_cachep, new_vma);
2972 out:
2973 	return NULL;
2974 }
2975 
2976 /*
2977  * Return true if the calling process may expand its vm space by the passed
2978  * number of pages
2979  */
2980 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2981 {
2982 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2983 		return false;
2984 
2985 	if ((flags & (VM_WRITE | VM_SHARED | (VM_STACK_FLAGS &
2986 				(VM_GROWSUP | VM_GROWSDOWN)))) == VM_WRITE)
2987 		return mm->data_vm + npages <= rlimit(RLIMIT_DATA);
2988 
2989 	return true;
2990 }
2991 
2992 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2993 {
2994 	mm->total_vm += npages;
2995 
2996 	if ((flags & (VM_EXEC | VM_WRITE)) == VM_EXEC)
2997 		mm->exec_vm += npages;
2998 	else if (flags & (VM_STACK_FLAGS & (VM_GROWSUP | VM_GROWSDOWN)))
2999 		mm->stack_vm += npages;
3000 	else if ((flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
3001 		mm->data_vm += npages;
3002 }
3003 
3004 static int special_mapping_fault(struct vm_area_struct *vma,
3005 				 struct vm_fault *vmf);
3006 
3007 /*
3008  * Having a close hook prevents vma merging regardless of flags.
3009  */
3010 static void special_mapping_close(struct vm_area_struct *vma)
3011 {
3012 }
3013 
3014 static const char *special_mapping_name(struct vm_area_struct *vma)
3015 {
3016 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3017 }
3018 
3019 static const struct vm_operations_struct special_mapping_vmops = {
3020 	.close = special_mapping_close,
3021 	.fault = special_mapping_fault,
3022 	.name = special_mapping_name,
3023 };
3024 
3025 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3026 	.close = special_mapping_close,
3027 	.fault = special_mapping_fault,
3028 };
3029 
3030 static int special_mapping_fault(struct vm_area_struct *vma,
3031 				struct vm_fault *vmf)
3032 {
3033 	pgoff_t pgoff;
3034 	struct page **pages;
3035 
3036 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3037 		pages = vma->vm_private_data;
3038 	} else {
3039 		struct vm_special_mapping *sm = vma->vm_private_data;
3040 
3041 		if (sm->fault)
3042 			return sm->fault(sm, vma, vmf);
3043 
3044 		pages = sm->pages;
3045 	}
3046 
3047 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3048 		pgoff--;
3049 
3050 	if (*pages) {
3051 		struct page *page = *pages;
3052 		get_page(page);
3053 		vmf->page = page;
3054 		return 0;
3055 	}
3056 
3057 	return VM_FAULT_SIGBUS;
3058 }
3059 
3060 static struct vm_area_struct *__install_special_mapping(
3061 	struct mm_struct *mm,
3062 	unsigned long addr, unsigned long len,
3063 	unsigned long vm_flags, void *priv,
3064 	const struct vm_operations_struct *ops)
3065 {
3066 	int ret;
3067 	struct vm_area_struct *vma;
3068 
3069 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3070 	if (unlikely(vma == NULL))
3071 		return ERR_PTR(-ENOMEM);
3072 
3073 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3074 	vma->vm_mm = mm;
3075 	vma->vm_start = addr;
3076 	vma->vm_end = addr + len;
3077 
3078 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3079 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3080 
3081 	vma->vm_ops = ops;
3082 	vma->vm_private_data = priv;
3083 
3084 	ret = insert_vm_struct(mm, vma);
3085 	if (ret)
3086 		goto out;
3087 
3088 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3089 
3090 	perf_event_mmap(vma);
3091 
3092 	return vma;
3093 
3094 out:
3095 	kmem_cache_free(vm_area_cachep, vma);
3096 	return ERR_PTR(ret);
3097 }
3098 
3099 /*
3100  * Called with mm->mmap_sem held for writing.
3101  * Insert a new vma covering the given region, with the given flags.
3102  * Its pages are supplied by the given array of struct page *.
3103  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3104  * The region past the last page supplied will always produce SIGBUS.
3105  * The array pointer and the pages it points to are assumed to stay alive
3106  * for as long as this mapping might exist.
3107  */
3108 struct vm_area_struct *_install_special_mapping(
3109 	struct mm_struct *mm,
3110 	unsigned long addr, unsigned long len,
3111 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3112 {
3113 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3114 					&special_mapping_vmops);
3115 }
3116 
3117 int install_special_mapping(struct mm_struct *mm,
3118 			    unsigned long addr, unsigned long len,
3119 			    unsigned long vm_flags, struct page **pages)
3120 {
3121 	struct vm_area_struct *vma = __install_special_mapping(
3122 		mm, addr, len, vm_flags, (void *)pages,
3123 		&legacy_special_mapping_vmops);
3124 
3125 	return PTR_ERR_OR_ZERO(vma);
3126 }
3127 
3128 static DEFINE_MUTEX(mm_all_locks_mutex);
3129 
3130 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3131 {
3132 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3133 		/*
3134 		 * The LSB of head.next can't change from under us
3135 		 * because we hold the mm_all_locks_mutex.
3136 		 */
3137 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3138 		/*
3139 		 * We can safely modify head.next after taking the
3140 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3141 		 * the same anon_vma we won't take it again.
3142 		 *
3143 		 * No need of atomic instructions here, head.next
3144 		 * can't change from under us thanks to the
3145 		 * anon_vma->root->rwsem.
3146 		 */
3147 		if (__test_and_set_bit(0, (unsigned long *)
3148 				       &anon_vma->root->rb_root.rb_node))
3149 			BUG();
3150 	}
3151 }
3152 
3153 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3154 {
3155 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3156 		/*
3157 		 * AS_MM_ALL_LOCKS can't change from under us because
3158 		 * we hold the mm_all_locks_mutex.
3159 		 *
3160 		 * Operations on ->flags have to be atomic because
3161 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3162 		 * mm_all_locks_mutex, there may be other cpus
3163 		 * changing other bitflags in parallel to us.
3164 		 */
3165 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3166 			BUG();
3167 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3168 	}
3169 }
3170 
3171 /*
3172  * This operation locks against the VM for all pte/vma/mm related
3173  * operations that could ever happen on a certain mm. This includes
3174  * vmtruncate, try_to_unmap, and all page faults.
3175  *
3176  * The caller must take the mmap_sem in write mode before calling
3177  * mm_take_all_locks(). The caller isn't allowed to release the
3178  * mmap_sem until mm_drop_all_locks() returns.
3179  *
3180  * mmap_sem in write mode is required in order to block all operations
3181  * that could modify pagetables and free pages without need of
3182  * altering the vma layout. It's also needed in write mode to avoid new
3183  * anon_vmas to be associated with existing vmas.
3184  *
3185  * A single task can't take more than one mm_take_all_locks() in a row
3186  * or it would deadlock.
3187  *
3188  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3189  * mapping->flags avoid to take the same lock twice, if more than one
3190  * vma in this mm is backed by the same anon_vma or address_space.
3191  *
3192  * We take locks in following order, accordingly to comment at beginning
3193  * of mm/rmap.c:
3194  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3195  *     hugetlb mapping);
3196  *   - all i_mmap_rwsem locks;
3197  *   - all anon_vma->rwseml
3198  *
3199  * We can take all locks within these types randomly because the VM code
3200  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3201  * mm_all_locks_mutex.
3202  *
3203  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3204  * that may have to take thousand of locks.
3205  *
3206  * mm_take_all_locks() can fail if it's interrupted by signals.
3207  */
3208 int mm_take_all_locks(struct mm_struct *mm)
3209 {
3210 	struct vm_area_struct *vma;
3211 	struct anon_vma_chain *avc;
3212 
3213 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3214 
3215 	mutex_lock(&mm_all_locks_mutex);
3216 
3217 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3218 		if (signal_pending(current))
3219 			goto out_unlock;
3220 		if (vma->vm_file && vma->vm_file->f_mapping &&
3221 				is_vm_hugetlb_page(vma))
3222 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3223 	}
3224 
3225 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3226 		if (signal_pending(current))
3227 			goto out_unlock;
3228 		if (vma->vm_file && vma->vm_file->f_mapping &&
3229 				!is_vm_hugetlb_page(vma))
3230 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3231 	}
3232 
3233 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3234 		if (signal_pending(current))
3235 			goto out_unlock;
3236 		if (vma->anon_vma)
3237 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3238 				vm_lock_anon_vma(mm, avc->anon_vma);
3239 	}
3240 
3241 	return 0;
3242 
3243 out_unlock:
3244 	mm_drop_all_locks(mm);
3245 	return -EINTR;
3246 }
3247 
3248 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3249 {
3250 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3251 		/*
3252 		 * The LSB of head.next can't change to 0 from under
3253 		 * us because we hold the mm_all_locks_mutex.
3254 		 *
3255 		 * We must however clear the bitflag before unlocking
3256 		 * the vma so the users using the anon_vma->rb_root will
3257 		 * never see our bitflag.
3258 		 *
3259 		 * No need of atomic instructions here, head.next
3260 		 * can't change from under us until we release the
3261 		 * anon_vma->root->rwsem.
3262 		 */
3263 		if (!__test_and_clear_bit(0, (unsigned long *)
3264 					  &anon_vma->root->rb_root.rb_node))
3265 			BUG();
3266 		anon_vma_unlock_write(anon_vma);
3267 	}
3268 }
3269 
3270 static void vm_unlock_mapping(struct address_space *mapping)
3271 {
3272 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3273 		/*
3274 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3275 		 * because we hold the mm_all_locks_mutex.
3276 		 */
3277 		i_mmap_unlock_write(mapping);
3278 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3279 					&mapping->flags))
3280 			BUG();
3281 	}
3282 }
3283 
3284 /*
3285  * The mmap_sem cannot be released by the caller until
3286  * mm_drop_all_locks() returns.
3287  */
3288 void mm_drop_all_locks(struct mm_struct *mm)
3289 {
3290 	struct vm_area_struct *vma;
3291 	struct anon_vma_chain *avc;
3292 
3293 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3294 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3295 
3296 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3297 		if (vma->anon_vma)
3298 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3299 				vm_unlock_anon_vma(avc->anon_vma);
3300 		if (vma->vm_file && vma->vm_file->f_mapping)
3301 			vm_unlock_mapping(vma->vm_file->f_mapping);
3302 	}
3303 
3304 	mutex_unlock(&mm_all_locks_mutex);
3305 }
3306 
3307 /*
3308  * initialise the VMA slab
3309  */
3310 void __init mmap_init(void)
3311 {
3312 	int ret;
3313 
3314 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3315 	VM_BUG_ON(ret);
3316 }
3317 
3318 /*
3319  * Initialise sysctl_user_reserve_kbytes.
3320  *
3321  * This is intended to prevent a user from starting a single memory hogging
3322  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3323  * mode.
3324  *
3325  * The default value is min(3% of free memory, 128MB)
3326  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3327  */
3328 static int init_user_reserve(void)
3329 {
3330 	unsigned long free_kbytes;
3331 
3332 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3333 
3334 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3335 	return 0;
3336 }
3337 subsys_initcall(init_user_reserve);
3338 
3339 /*
3340  * Initialise sysctl_admin_reserve_kbytes.
3341  *
3342  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3343  * to log in and kill a memory hogging process.
3344  *
3345  * Systems with more than 256MB will reserve 8MB, enough to recover
3346  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3347  * only reserve 3% of free pages by default.
3348  */
3349 static int init_admin_reserve(void)
3350 {
3351 	unsigned long free_kbytes;
3352 
3353 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3354 
3355 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3356 	return 0;
3357 }
3358 subsys_initcall(init_admin_reserve);
3359 
3360 /*
3361  * Reinititalise user and admin reserves if memory is added or removed.
3362  *
3363  * The default user reserve max is 128MB, and the default max for the
3364  * admin reserve is 8MB. These are usually, but not always, enough to
3365  * enable recovery from a memory hogging process using login/sshd, a shell,
3366  * and tools like top. It may make sense to increase or even disable the
3367  * reserve depending on the existence of swap or variations in the recovery
3368  * tools. So, the admin may have changed them.
3369  *
3370  * If memory is added and the reserves have been eliminated or increased above
3371  * the default max, then we'll trust the admin.
3372  *
3373  * If memory is removed and there isn't enough free memory, then we
3374  * need to reset the reserves.
3375  *
3376  * Otherwise keep the reserve set by the admin.
3377  */
3378 static int reserve_mem_notifier(struct notifier_block *nb,
3379 			     unsigned long action, void *data)
3380 {
3381 	unsigned long tmp, free_kbytes;
3382 
3383 	switch (action) {
3384 	case MEM_ONLINE:
3385 		/* Default max is 128MB. Leave alone if modified by operator. */
3386 		tmp = sysctl_user_reserve_kbytes;
3387 		if (0 < tmp && tmp < (1UL << 17))
3388 			init_user_reserve();
3389 
3390 		/* Default max is 8MB.  Leave alone if modified by operator. */
3391 		tmp = sysctl_admin_reserve_kbytes;
3392 		if (0 < tmp && tmp < (1UL << 13))
3393 			init_admin_reserve();
3394 
3395 		break;
3396 	case MEM_OFFLINE:
3397 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3398 
3399 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3400 			init_user_reserve();
3401 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3402 				sysctl_user_reserve_kbytes);
3403 		}
3404 
3405 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3406 			init_admin_reserve();
3407 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3408 				sysctl_admin_reserve_kbytes);
3409 		}
3410 		break;
3411 	default:
3412 		break;
3413 	}
3414 	return NOTIFY_OK;
3415 }
3416 
3417 static struct notifier_block reserve_mem_nb = {
3418 	.notifier_call = reserve_mem_notifier,
3419 };
3420 
3421 static int __meminit init_reserve_notifier(void)
3422 {
3423 	if (register_hotmemory_notifier(&reserve_mem_nb))
3424 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3425 
3426 	return 0;
3427 }
3428 subsys_initcall(init_reserve_notifier);
3429