xref: /openbmc/linux/mm/mmap.c (revision cc8bbe1a)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlb.h>
50 #include <asm/mmu_context.h>
51 
52 #include "internal.h"
53 
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags)	(0)
56 #endif
57 
58 #ifndef arch_rebalance_pgtables
59 #define arch_rebalance_pgtables(addr, len)		(addr)
60 #endif
61 
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72 
73 static bool ignore_rlimit_data = true;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75 
76 static void unmap_region(struct mm_struct *mm,
77 		struct vm_area_struct *vma, struct vm_area_struct *prev,
78 		unsigned long start, unsigned long end);
79 
80 /* description of effects of mapping type and prot in current implementation.
81  * this is due to the limited x86 page protection hardware.  The expected
82  * behavior is in parens:
83  *
84  * map_type	prot
85  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
86  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
87  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
88  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
89  *
90  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
91  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
92  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
93  *
94  */
95 pgprot_t protection_map[16] = {
96 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
97 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
98 };
99 
100 pgprot_t vm_get_page_prot(unsigned long vm_flags)
101 {
102 	return __pgprot(pgprot_val(protection_map[vm_flags &
103 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
104 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
105 }
106 EXPORT_SYMBOL(vm_get_page_prot);
107 
108 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
109 {
110 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
111 }
112 
113 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
114 void vma_set_page_prot(struct vm_area_struct *vma)
115 {
116 	unsigned long vm_flags = vma->vm_flags;
117 
118 	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
119 	if (vma_wants_writenotify(vma)) {
120 		vm_flags &= ~VM_SHARED;
121 		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
122 						     vm_flags);
123 	}
124 }
125 
126 
127 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
128 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
129 unsigned long sysctl_overcommit_kbytes __read_mostly;
130 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
131 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
132 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
133 /*
134  * Make sure vm_committed_as in one cacheline and not cacheline shared with
135  * other variables. It can be updated by several CPUs frequently.
136  */
137 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
138 
139 /*
140  * The global memory commitment made in the system can be a metric
141  * that can be used to drive ballooning decisions when Linux is hosted
142  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
143  * balancing memory across competing virtual machines that are hosted.
144  * Several metrics drive this policy engine including the guest reported
145  * memory commitment.
146  */
147 unsigned long vm_memory_committed(void)
148 {
149 	return percpu_counter_read_positive(&vm_committed_as);
150 }
151 EXPORT_SYMBOL_GPL(vm_memory_committed);
152 
153 /*
154  * Check that a process has enough memory to allocate a new virtual
155  * mapping. 0 means there is enough memory for the allocation to
156  * succeed and -ENOMEM implies there is not.
157  *
158  * We currently support three overcommit policies, which are set via the
159  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
160  *
161  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
162  * Additional code 2002 Jul 20 by Robert Love.
163  *
164  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
165  *
166  * Note this is a helper function intended to be used by LSMs which
167  * wish to use this logic.
168  */
169 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
170 {
171 	long free, allowed, reserve;
172 
173 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
174 			-(s64)vm_committed_as_batch * num_online_cpus(),
175 			"memory commitment underflow");
176 
177 	vm_acct_memory(pages);
178 
179 	/*
180 	 * Sometimes we want to use more memory than we have
181 	 */
182 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
183 		return 0;
184 
185 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
186 		free = global_page_state(NR_FREE_PAGES);
187 		free += global_page_state(NR_FILE_PAGES);
188 
189 		/*
190 		 * shmem pages shouldn't be counted as free in this
191 		 * case, they can't be purged, only swapped out, and
192 		 * that won't affect the overall amount of available
193 		 * memory in the system.
194 		 */
195 		free -= global_page_state(NR_SHMEM);
196 
197 		free += get_nr_swap_pages();
198 
199 		/*
200 		 * Any slabs which are created with the
201 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
202 		 * which are reclaimable, under pressure.  The dentry
203 		 * cache and most inode caches should fall into this
204 		 */
205 		free += global_page_state(NR_SLAB_RECLAIMABLE);
206 
207 		/*
208 		 * Leave reserved pages. The pages are not for anonymous pages.
209 		 */
210 		if (free <= totalreserve_pages)
211 			goto error;
212 		else
213 			free -= totalreserve_pages;
214 
215 		/*
216 		 * Reserve some for root
217 		 */
218 		if (!cap_sys_admin)
219 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
220 
221 		if (free > pages)
222 			return 0;
223 
224 		goto error;
225 	}
226 
227 	allowed = vm_commit_limit();
228 	/*
229 	 * Reserve some for root
230 	 */
231 	if (!cap_sys_admin)
232 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
233 
234 	/*
235 	 * Don't let a single process grow so big a user can't recover
236 	 */
237 	if (mm) {
238 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
239 		allowed -= min_t(long, mm->total_vm / 32, reserve);
240 	}
241 
242 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
243 		return 0;
244 error:
245 	vm_unacct_memory(pages);
246 
247 	return -ENOMEM;
248 }
249 
250 /*
251  * Requires inode->i_mapping->i_mmap_rwsem
252  */
253 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
254 		struct file *file, struct address_space *mapping)
255 {
256 	if (vma->vm_flags & VM_DENYWRITE)
257 		atomic_inc(&file_inode(file)->i_writecount);
258 	if (vma->vm_flags & VM_SHARED)
259 		mapping_unmap_writable(mapping);
260 
261 	flush_dcache_mmap_lock(mapping);
262 	vma_interval_tree_remove(vma, &mapping->i_mmap);
263 	flush_dcache_mmap_unlock(mapping);
264 }
265 
266 /*
267  * Unlink a file-based vm structure from its interval tree, to hide
268  * vma from rmap and vmtruncate before freeing its page tables.
269  */
270 void unlink_file_vma(struct vm_area_struct *vma)
271 {
272 	struct file *file = vma->vm_file;
273 
274 	if (file) {
275 		struct address_space *mapping = file->f_mapping;
276 		i_mmap_lock_write(mapping);
277 		__remove_shared_vm_struct(vma, file, mapping);
278 		i_mmap_unlock_write(mapping);
279 	}
280 }
281 
282 /*
283  * Close a vm structure and free it, returning the next.
284  */
285 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
286 {
287 	struct vm_area_struct *next = vma->vm_next;
288 
289 	might_sleep();
290 	if (vma->vm_ops && vma->vm_ops->close)
291 		vma->vm_ops->close(vma);
292 	if (vma->vm_file)
293 		fput(vma->vm_file);
294 	mpol_put(vma_policy(vma));
295 	kmem_cache_free(vm_area_cachep, vma);
296 	return next;
297 }
298 
299 static unsigned long do_brk(unsigned long addr, unsigned long len);
300 
301 SYSCALL_DEFINE1(brk, unsigned long, brk)
302 {
303 	unsigned long retval;
304 	unsigned long newbrk, oldbrk;
305 	struct mm_struct *mm = current->mm;
306 	unsigned long min_brk;
307 	bool populate;
308 
309 	down_write(&mm->mmap_sem);
310 
311 #ifdef CONFIG_COMPAT_BRK
312 	/*
313 	 * CONFIG_COMPAT_BRK can still be overridden by setting
314 	 * randomize_va_space to 2, which will still cause mm->start_brk
315 	 * to be arbitrarily shifted
316 	 */
317 	if (current->brk_randomized)
318 		min_brk = mm->start_brk;
319 	else
320 		min_brk = mm->end_data;
321 #else
322 	min_brk = mm->start_brk;
323 #endif
324 	if (brk < min_brk)
325 		goto out;
326 
327 	/*
328 	 * Check against rlimit here. If this check is done later after the test
329 	 * of oldbrk with newbrk then it can escape the test and let the data
330 	 * segment grow beyond its set limit the in case where the limit is
331 	 * not page aligned -Ram Gupta
332 	 */
333 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
334 			      mm->end_data, mm->start_data))
335 		goto out;
336 
337 	newbrk = PAGE_ALIGN(brk);
338 	oldbrk = PAGE_ALIGN(mm->brk);
339 	if (oldbrk == newbrk)
340 		goto set_brk;
341 
342 	/* Always allow shrinking brk. */
343 	if (brk <= mm->brk) {
344 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
345 			goto set_brk;
346 		goto out;
347 	}
348 
349 	/* Check against existing mmap mappings. */
350 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
351 		goto out;
352 
353 	/* Ok, looks good - let it rip. */
354 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
355 		goto out;
356 
357 set_brk:
358 	mm->brk = brk;
359 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
360 	up_write(&mm->mmap_sem);
361 	if (populate)
362 		mm_populate(oldbrk, newbrk - oldbrk);
363 	return brk;
364 
365 out:
366 	retval = mm->brk;
367 	up_write(&mm->mmap_sem);
368 	return retval;
369 }
370 
371 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
372 {
373 	unsigned long max, subtree_gap;
374 	max = vma->vm_start;
375 	if (vma->vm_prev)
376 		max -= vma->vm_prev->vm_end;
377 	if (vma->vm_rb.rb_left) {
378 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
379 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
380 		if (subtree_gap > max)
381 			max = subtree_gap;
382 	}
383 	if (vma->vm_rb.rb_right) {
384 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
385 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
386 		if (subtree_gap > max)
387 			max = subtree_gap;
388 	}
389 	return max;
390 }
391 
392 #ifdef CONFIG_DEBUG_VM_RB
393 static int browse_rb(struct mm_struct *mm)
394 {
395 	struct rb_root *root = &mm->mm_rb;
396 	int i = 0, j, bug = 0;
397 	struct rb_node *nd, *pn = NULL;
398 	unsigned long prev = 0, pend = 0;
399 
400 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
401 		struct vm_area_struct *vma;
402 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
403 		if (vma->vm_start < prev) {
404 			pr_emerg("vm_start %lx < prev %lx\n",
405 				  vma->vm_start, prev);
406 			bug = 1;
407 		}
408 		if (vma->vm_start < pend) {
409 			pr_emerg("vm_start %lx < pend %lx\n",
410 				  vma->vm_start, pend);
411 			bug = 1;
412 		}
413 		if (vma->vm_start > vma->vm_end) {
414 			pr_emerg("vm_start %lx > vm_end %lx\n",
415 				  vma->vm_start, vma->vm_end);
416 			bug = 1;
417 		}
418 		spin_lock(&mm->page_table_lock);
419 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
420 			pr_emerg("free gap %lx, correct %lx\n",
421 			       vma->rb_subtree_gap,
422 			       vma_compute_subtree_gap(vma));
423 			bug = 1;
424 		}
425 		spin_unlock(&mm->page_table_lock);
426 		i++;
427 		pn = nd;
428 		prev = vma->vm_start;
429 		pend = vma->vm_end;
430 	}
431 	j = 0;
432 	for (nd = pn; nd; nd = rb_prev(nd))
433 		j++;
434 	if (i != j) {
435 		pr_emerg("backwards %d, forwards %d\n", j, i);
436 		bug = 1;
437 	}
438 	return bug ? -1 : i;
439 }
440 
441 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
442 {
443 	struct rb_node *nd;
444 
445 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
446 		struct vm_area_struct *vma;
447 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
448 		VM_BUG_ON_VMA(vma != ignore &&
449 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
450 			vma);
451 	}
452 }
453 
454 static void validate_mm(struct mm_struct *mm)
455 {
456 	int bug = 0;
457 	int i = 0;
458 	unsigned long highest_address = 0;
459 	struct vm_area_struct *vma = mm->mmap;
460 
461 	while (vma) {
462 		struct anon_vma *anon_vma = vma->anon_vma;
463 		struct anon_vma_chain *avc;
464 
465 		if (anon_vma) {
466 			anon_vma_lock_read(anon_vma);
467 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
468 				anon_vma_interval_tree_verify(avc);
469 			anon_vma_unlock_read(anon_vma);
470 		}
471 
472 		highest_address = vma->vm_end;
473 		vma = vma->vm_next;
474 		i++;
475 	}
476 	if (i != mm->map_count) {
477 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
478 		bug = 1;
479 	}
480 	if (highest_address != mm->highest_vm_end) {
481 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
482 			  mm->highest_vm_end, highest_address);
483 		bug = 1;
484 	}
485 	i = browse_rb(mm);
486 	if (i != mm->map_count) {
487 		if (i != -1)
488 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
489 		bug = 1;
490 	}
491 	VM_BUG_ON_MM(bug, mm);
492 }
493 #else
494 #define validate_mm_rb(root, ignore) do { } while (0)
495 #define validate_mm(mm) do { } while (0)
496 #endif
497 
498 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
499 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
500 
501 /*
502  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
503  * vma->vm_prev->vm_end values changed, without modifying the vma's position
504  * in the rbtree.
505  */
506 static void vma_gap_update(struct vm_area_struct *vma)
507 {
508 	/*
509 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
510 	 * function that does exacltly what we want.
511 	 */
512 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
513 }
514 
515 static inline void vma_rb_insert(struct vm_area_struct *vma,
516 				 struct rb_root *root)
517 {
518 	/* All rb_subtree_gap values must be consistent prior to insertion */
519 	validate_mm_rb(root, NULL);
520 
521 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
522 }
523 
524 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
525 {
526 	/*
527 	 * All rb_subtree_gap values must be consistent prior to erase,
528 	 * with the possible exception of the vma being erased.
529 	 */
530 	validate_mm_rb(root, vma);
531 
532 	/*
533 	 * Note rb_erase_augmented is a fairly large inline function,
534 	 * so make sure we instantiate it only once with our desired
535 	 * augmented rbtree callbacks.
536 	 */
537 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
538 }
539 
540 /*
541  * vma has some anon_vma assigned, and is already inserted on that
542  * anon_vma's interval trees.
543  *
544  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
545  * vma must be removed from the anon_vma's interval trees using
546  * anon_vma_interval_tree_pre_update_vma().
547  *
548  * After the update, the vma will be reinserted using
549  * anon_vma_interval_tree_post_update_vma().
550  *
551  * The entire update must be protected by exclusive mmap_sem and by
552  * the root anon_vma's mutex.
553  */
554 static inline void
555 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
556 {
557 	struct anon_vma_chain *avc;
558 
559 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
560 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
561 }
562 
563 static inline void
564 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
565 {
566 	struct anon_vma_chain *avc;
567 
568 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
569 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
570 }
571 
572 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
573 		unsigned long end, struct vm_area_struct **pprev,
574 		struct rb_node ***rb_link, struct rb_node **rb_parent)
575 {
576 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
577 
578 	__rb_link = &mm->mm_rb.rb_node;
579 	rb_prev = __rb_parent = NULL;
580 
581 	while (*__rb_link) {
582 		struct vm_area_struct *vma_tmp;
583 
584 		__rb_parent = *__rb_link;
585 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
586 
587 		if (vma_tmp->vm_end > addr) {
588 			/* Fail if an existing vma overlaps the area */
589 			if (vma_tmp->vm_start < end)
590 				return -ENOMEM;
591 			__rb_link = &__rb_parent->rb_left;
592 		} else {
593 			rb_prev = __rb_parent;
594 			__rb_link = &__rb_parent->rb_right;
595 		}
596 	}
597 
598 	*pprev = NULL;
599 	if (rb_prev)
600 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
601 	*rb_link = __rb_link;
602 	*rb_parent = __rb_parent;
603 	return 0;
604 }
605 
606 static unsigned long count_vma_pages_range(struct mm_struct *mm,
607 		unsigned long addr, unsigned long end)
608 {
609 	unsigned long nr_pages = 0;
610 	struct vm_area_struct *vma;
611 
612 	/* Find first overlaping mapping */
613 	vma = find_vma_intersection(mm, addr, end);
614 	if (!vma)
615 		return 0;
616 
617 	nr_pages = (min(end, vma->vm_end) -
618 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
619 
620 	/* Iterate over the rest of the overlaps */
621 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
622 		unsigned long overlap_len;
623 
624 		if (vma->vm_start > end)
625 			break;
626 
627 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
628 		nr_pages += overlap_len >> PAGE_SHIFT;
629 	}
630 
631 	return nr_pages;
632 }
633 
634 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
635 		struct rb_node **rb_link, struct rb_node *rb_parent)
636 {
637 	/* Update tracking information for the gap following the new vma. */
638 	if (vma->vm_next)
639 		vma_gap_update(vma->vm_next);
640 	else
641 		mm->highest_vm_end = vma->vm_end;
642 
643 	/*
644 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
645 	 * correct insertion point for that vma. As a result, we could not
646 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
647 	 * So, we first insert the vma with a zero rb_subtree_gap value
648 	 * (to be consistent with what we did on the way down), and then
649 	 * immediately update the gap to the correct value. Finally we
650 	 * rebalance the rbtree after all augmented values have been set.
651 	 */
652 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
653 	vma->rb_subtree_gap = 0;
654 	vma_gap_update(vma);
655 	vma_rb_insert(vma, &mm->mm_rb);
656 }
657 
658 static void __vma_link_file(struct vm_area_struct *vma)
659 {
660 	struct file *file;
661 
662 	file = vma->vm_file;
663 	if (file) {
664 		struct address_space *mapping = file->f_mapping;
665 
666 		if (vma->vm_flags & VM_DENYWRITE)
667 			atomic_dec(&file_inode(file)->i_writecount);
668 		if (vma->vm_flags & VM_SHARED)
669 			atomic_inc(&mapping->i_mmap_writable);
670 
671 		flush_dcache_mmap_lock(mapping);
672 		vma_interval_tree_insert(vma, &mapping->i_mmap);
673 		flush_dcache_mmap_unlock(mapping);
674 	}
675 }
676 
677 static void
678 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
679 	struct vm_area_struct *prev, struct rb_node **rb_link,
680 	struct rb_node *rb_parent)
681 {
682 	__vma_link_list(mm, vma, prev, rb_parent);
683 	__vma_link_rb(mm, vma, rb_link, rb_parent);
684 }
685 
686 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
687 			struct vm_area_struct *prev, struct rb_node **rb_link,
688 			struct rb_node *rb_parent)
689 {
690 	struct address_space *mapping = NULL;
691 
692 	if (vma->vm_file) {
693 		mapping = vma->vm_file->f_mapping;
694 		i_mmap_lock_write(mapping);
695 	}
696 
697 	__vma_link(mm, vma, prev, rb_link, rb_parent);
698 	__vma_link_file(vma);
699 
700 	if (mapping)
701 		i_mmap_unlock_write(mapping);
702 
703 	mm->map_count++;
704 	validate_mm(mm);
705 }
706 
707 /*
708  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
709  * mm's list and rbtree.  It has already been inserted into the interval tree.
710  */
711 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
712 {
713 	struct vm_area_struct *prev;
714 	struct rb_node **rb_link, *rb_parent;
715 
716 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
717 			   &prev, &rb_link, &rb_parent))
718 		BUG();
719 	__vma_link(mm, vma, prev, rb_link, rb_parent);
720 	mm->map_count++;
721 }
722 
723 static inline void
724 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
725 		struct vm_area_struct *prev)
726 {
727 	struct vm_area_struct *next;
728 
729 	vma_rb_erase(vma, &mm->mm_rb);
730 	prev->vm_next = next = vma->vm_next;
731 	if (next)
732 		next->vm_prev = prev;
733 
734 	/* Kill the cache */
735 	vmacache_invalidate(mm);
736 }
737 
738 /*
739  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
740  * is already present in an i_mmap tree without adjusting the tree.
741  * The following helper function should be used when such adjustments
742  * are necessary.  The "insert" vma (if any) is to be inserted
743  * before we drop the necessary locks.
744  */
745 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
746 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
747 {
748 	struct mm_struct *mm = vma->vm_mm;
749 	struct vm_area_struct *next = vma->vm_next;
750 	struct vm_area_struct *importer = NULL;
751 	struct address_space *mapping = NULL;
752 	struct rb_root *root = NULL;
753 	struct anon_vma *anon_vma = NULL;
754 	struct file *file = vma->vm_file;
755 	bool start_changed = false, end_changed = false;
756 	long adjust_next = 0;
757 	int remove_next = 0;
758 
759 	if (next && !insert) {
760 		struct vm_area_struct *exporter = NULL;
761 
762 		if (end >= next->vm_end) {
763 			/*
764 			 * vma expands, overlapping all the next, and
765 			 * perhaps the one after too (mprotect case 6).
766 			 */
767 again:			remove_next = 1 + (end > next->vm_end);
768 			end = next->vm_end;
769 			exporter = next;
770 			importer = vma;
771 		} else if (end > next->vm_start) {
772 			/*
773 			 * vma expands, overlapping part of the next:
774 			 * mprotect case 5 shifting the boundary up.
775 			 */
776 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
777 			exporter = next;
778 			importer = vma;
779 		} else if (end < vma->vm_end) {
780 			/*
781 			 * vma shrinks, and !insert tells it's not
782 			 * split_vma inserting another: so it must be
783 			 * mprotect case 4 shifting the boundary down.
784 			 */
785 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
786 			exporter = vma;
787 			importer = next;
788 		}
789 
790 		/*
791 		 * Easily overlooked: when mprotect shifts the boundary,
792 		 * make sure the expanding vma has anon_vma set if the
793 		 * shrinking vma had, to cover any anon pages imported.
794 		 */
795 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
796 			int error;
797 
798 			importer->anon_vma = exporter->anon_vma;
799 			error = anon_vma_clone(importer, exporter);
800 			if (error)
801 				return error;
802 		}
803 	}
804 
805 	if (file) {
806 		mapping = file->f_mapping;
807 		root = &mapping->i_mmap;
808 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
809 
810 		if (adjust_next)
811 			uprobe_munmap(next, next->vm_start, next->vm_end);
812 
813 		i_mmap_lock_write(mapping);
814 		if (insert) {
815 			/*
816 			 * Put into interval tree now, so instantiated pages
817 			 * are visible to arm/parisc __flush_dcache_page
818 			 * throughout; but we cannot insert into address
819 			 * space until vma start or end is updated.
820 			 */
821 			__vma_link_file(insert);
822 		}
823 	}
824 
825 	vma_adjust_trans_huge(vma, start, end, adjust_next);
826 
827 	anon_vma = vma->anon_vma;
828 	if (!anon_vma && adjust_next)
829 		anon_vma = next->anon_vma;
830 	if (anon_vma) {
831 		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
832 			  anon_vma != next->anon_vma, next);
833 		anon_vma_lock_write(anon_vma);
834 		anon_vma_interval_tree_pre_update_vma(vma);
835 		if (adjust_next)
836 			anon_vma_interval_tree_pre_update_vma(next);
837 	}
838 
839 	if (root) {
840 		flush_dcache_mmap_lock(mapping);
841 		vma_interval_tree_remove(vma, root);
842 		if (adjust_next)
843 			vma_interval_tree_remove(next, root);
844 	}
845 
846 	if (start != vma->vm_start) {
847 		vma->vm_start = start;
848 		start_changed = true;
849 	}
850 	if (end != vma->vm_end) {
851 		vma->vm_end = end;
852 		end_changed = true;
853 	}
854 	vma->vm_pgoff = pgoff;
855 	if (adjust_next) {
856 		next->vm_start += adjust_next << PAGE_SHIFT;
857 		next->vm_pgoff += adjust_next;
858 	}
859 
860 	if (root) {
861 		if (adjust_next)
862 			vma_interval_tree_insert(next, root);
863 		vma_interval_tree_insert(vma, root);
864 		flush_dcache_mmap_unlock(mapping);
865 	}
866 
867 	if (remove_next) {
868 		/*
869 		 * vma_merge has merged next into vma, and needs
870 		 * us to remove next before dropping the locks.
871 		 */
872 		__vma_unlink(mm, next, vma);
873 		if (file)
874 			__remove_shared_vm_struct(next, file, mapping);
875 	} else if (insert) {
876 		/*
877 		 * split_vma has split insert from vma, and needs
878 		 * us to insert it before dropping the locks
879 		 * (it may either follow vma or precede it).
880 		 */
881 		__insert_vm_struct(mm, insert);
882 	} else {
883 		if (start_changed)
884 			vma_gap_update(vma);
885 		if (end_changed) {
886 			if (!next)
887 				mm->highest_vm_end = end;
888 			else if (!adjust_next)
889 				vma_gap_update(next);
890 		}
891 	}
892 
893 	if (anon_vma) {
894 		anon_vma_interval_tree_post_update_vma(vma);
895 		if (adjust_next)
896 			anon_vma_interval_tree_post_update_vma(next);
897 		anon_vma_unlock_write(anon_vma);
898 	}
899 	if (mapping)
900 		i_mmap_unlock_write(mapping);
901 
902 	if (root) {
903 		uprobe_mmap(vma);
904 
905 		if (adjust_next)
906 			uprobe_mmap(next);
907 	}
908 
909 	if (remove_next) {
910 		if (file) {
911 			uprobe_munmap(next, next->vm_start, next->vm_end);
912 			fput(file);
913 		}
914 		if (next->anon_vma)
915 			anon_vma_merge(vma, next);
916 		mm->map_count--;
917 		mpol_put(vma_policy(next));
918 		kmem_cache_free(vm_area_cachep, next);
919 		/*
920 		 * In mprotect's case 6 (see comments on vma_merge),
921 		 * we must remove another next too. It would clutter
922 		 * up the code too much to do both in one go.
923 		 */
924 		next = vma->vm_next;
925 		if (remove_next == 2)
926 			goto again;
927 		else if (next)
928 			vma_gap_update(next);
929 		else
930 			mm->highest_vm_end = end;
931 	}
932 	if (insert && file)
933 		uprobe_mmap(insert);
934 
935 	validate_mm(mm);
936 
937 	return 0;
938 }
939 
940 /*
941  * If the vma has a ->close operation then the driver probably needs to release
942  * per-vma resources, so we don't attempt to merge those.
943  */
944 static inline int is_mergeable_vma(struct vm_area_struct *vma,
945 				struct file *file, unsigned long vm_flags,
946 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
947 {
948 	/*
949 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
950 	 * match the flags but dirty bit -- the caller should mark
951 	 * merged VMA as dirty. If dirty bit won't be excluded from
952 	 * comparison, we increase pressue on the memory system forcing
953 	 * the kernel to generate new VMAs when old one could be
954 	 * extended instead.
955 	 */
956 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
957 		return 0;
958 	if (vma->vm_file != file)
959 		return 0;
960 	if (vma->vm_ops && vma->vm_ops->close)
961 		return 0;
962 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
963 		return 0;
964 	return 1;
965 }
966 
967 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
968 					struct anon_vma *anon_vma2,
969 					struct vm_area_struct *vma)
970 {
971 	/*
972 	 * The list_is_singular() test is to avoid merging VMA cloned from
973 	 * parents. This can improve scalability caused by anon_vma lock.
974 	 */
975 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
976 		list_is_singular(&vma->anon_vma_chain)))
977 		return 1;
978 	return anon_vma1 == anon_vma2;
979 }
980 
981 /*
982  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
983  * in front of (at a lower virtual address and file offset than) the vma.
984  *
985  * We cannot merge two vmas if they have differently assigned (non-NULL)
986  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
987  *
988  * We don't check here for the merged mmap wrapping around the end of pagecache
989  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
990  * wrap, nor mmaps which cover the final page at index -1UL.
991  */
992 static int
993 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
994 		     struct anon_vma *anon_vma, struct file *file,
995 		     pgoff_t vm_pgoff,
996 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
997 {
998 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
999 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1000 		if (vma->vm_pgoff == vm_pgoff)
1001 			return 1;
1002 	}
1003 	return 0;
1004 }
1005 
1006 /*
1007  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1008  * beyond (at a higher virtual address and file offset than) the vma.
1009  *
1010  * We cannot merge two vmas if they have differently assigned (non-NULL)
1011  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1012  */
1013 static int
1014 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1015 		    struct anon_vma *anon_vma, struct file *file,
1016 		    pgoff_t vm_pgoff,
1017 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1018 {
1019 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1020 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1021 		pgoff_t vm_pglen;
1022 		vm_pglen = vma_pages(vma);
1023 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1024 			return 1;
1025 	}
1026 	return 0;
1027 }
1028 
1029 /*
1030  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1031  * whether that can be merged with its predecessor or its successor.
1032  * Or both (it neatly fills a hole).
1033  *
1034  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1035  * certain not to be mapped by the time vma_merge is called; but when
1036  * called for mprotect, it is certain to be already mapped (either at
1037  * an offset within prev, or at the start of next), and the flags of
1038  * this area are about to be changed to vm_flags - and the no-change
1039  * case has already been eliminated.
1040  *
1041  * The following mprotect cases have to be considered, where AAAA is
1042  * the area passed down from mprotect_fixup, never extending beyond one
1043  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1044  *
1045  *     AAAA             AAAA                AAAA          AAAA
1046  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1047  *    cannot merge    might become    might become    might become
1048  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1049  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1050  *    mremap move:                                    PPPPNNNNNNNN 8
1051  *        AAAA
1052  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1053  *    might become    case 1 below    case 2 below    case 3 below
1054  *
1055  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1056  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1057  */
1058 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1059 			struct vm_area_struct *prev, unsigned long addr,
1060 			unsigned long end, unsigned long vm_flags,
1061 			struct anon_vma *anon_vma, struct file *file,
1062 			pgoff_t pgoff, struct mempolicy *policy,
1063 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1064 {
1065 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1066 	struct vm_area_struct *area, *next;
1067 	int err;
1068 
1069 	/*
1070 	 * We later require that vma->vm_flags == vm_flags,
1071 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1072 	 */
1073 	if (vm_flags & VM_SPECIAL)
1074 		return NULL;
1075 
1076 	if (prev)
1077 		next = prev->vm_next;
1078 	else
1079 		next = mm->mmap;
1080 	area = next;
1081 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1082 		next = next->vm_next;
1083 
1084 	/*
1085 	 * Can it merge with the predecessor?
1086 	 */
1087 	if (prev && prev->vm_end == addr &&
1088 			mpol_equal(vma_policy(prev), policy) &&
1089 			can_vma_merge_after(prev, vm_flags,
1090 					    anon_vma, file, pgoff,
1091 					    vm_userfaultfd_ctx)) {
1092 		/*
1093 		 * OK, it can.  Can we now merge in the successor as well?
1094 		 */
1095 		if (next && end == next->vm_start &&
1096 				mpol_equal(policy, vma_policy(next)) &&
1097 				can_vma_merge_before(next, vm_flags,
1098 						     anon_vma, file,
1099 						     pgoff+pglen,
1100 						     vm_userfaultfd_ctx) &&
1101 				is_mergeable_anon_vma(prev->anon_vma,
1102 						      next->anon_vma, NULL)) {
1103 							/* cases 1, 6 */
1104 			err = vma_adjust(prev, prev->vm_start,
1105 				next->vm_end, prev->vm_pgoff, NULL);
1106 		} else					/* cases 2, 5, 7 */
1107 			err = vma_adjust(prev, prev->vm_start,
1108 				end, prev->vm_pgoff, NULL);
1109 		if (err)
1110 			return NULL;
1111 		khugepaged_enter_vma_merge(prev, vm_flags);
1112 		return prev;
1113 	}
1114 
1115 	/*
1116 	 * Can this new request be merged in front of next?
1117 	 */
1118 	if (next && end == next->vm_start &&
1119 			mpol_equal(policy, vma_policy(next)) &&
1120 			can_vma_merge_before(next, vm_flags,
1121 					     anon_vma, file, pgoff+pglen,
1122 					     vm_userfaultfd_ctx)) {
1123 		if (prev && addr < prev->vm_end)	/* case 4 */
1124 			err = vma_adjust(prev, prev->vm_start,
1125 				addr, prev->vm_pgoff, NULL);
1126 		else					/* cases 3, 8 */
1127 			err = vma_adjust(area, addr, next->vm_end,
1128 				next->vm_pgoff - pglen, NULL);
1129 		if (err)
1130 			return NULL;
1131 		khugepaged_enter_vma_merge(area, vm_flags);
1132 		return area;
1133 	}
1134 
1135 	return NULL;
1136 }
1137 
1138 /*
1139  * Rough compatbility check to quickly see if it's even worth looking
1140  * at sharing an anon_vma.
1141  *
1142  * They need to have the same vm_file, and the flags can only differ
1143  * in things that mprotect may change.
1144  *
1145  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1146  * we can merge the two vma's. For example, we refuse to merge a vma if
1147  * there is a vm_ops->close() function, because that indicates that the
1148  * driver is doing some kind of reference counting. But that doesn't
1149  * really matter for the anon_vma sharing case.
1150  */
1151 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1152 {
1153 	return a->vm_end == b->vm_start &&
1154 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1155 		a->vm_file == b->vm_file &&
1156 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1157 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1158 }
1159 
1160 /*
1161  * Do some basic sanity checking to see if we can re-use the anon_vma
1162  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1163  * the same as 'old', the other will be the new one that is trying
1164  * to share the anon_vma.
1165  *
1166  * NOTE! This runs with mm_sem held for reading, so it is possible that
1167  * the anon_vma of 'old' is concurrently in the process of being set up
1168  * by another page fault trying to merge _that_. But that's ok: if it
1169  * is being set up, that automatically means that it will be a singleton
1170  * acceptable for merging, so we can do all of this optimistically. But
1171  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1172  *
1173  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1174  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1175  * is to return an anon_vma that is "complex" due to having gone through
1176  * a fork).
1177  *
1178  * We also make sure that the two vma's are compatible (adjacent,
1179  * and with the same memory policies). That's all stable, even with just
1180  * a read lock on the mm_sem.
1181  */
1182 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1183 {
1184 	if (anon_vma_compatible(a, b)) {
1185 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1186 
1187 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1188 			return anon_vma;
1189 	}
1190 	return NULL;
1191 }
1192 
1193 /*
1194  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1195  * neighbouring vmas for a suitable anon_vma, before it goes off
1196  * to allocate a new anon_vma.  It checks because a repetitive
1197  * sequence of mprotects and faults may otherwise lead to distinct
1198  * anon_vmas being allocated, preventing vma merge in subsequent
1199  * mprotect.
1200  */
1201 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1202 {
1203 	struct anon_vma *anon_vma;
1204 	struct vm_area_struct *near;
1205 
1206 	near = vma->vm_next;
1207 	if (!near)
1208 		goto try_prev;
1209 
1210 	anon_vma = reusable_anon_vma(near, vma, near);
1211 	if (anon_vma)
1212 		return anon_vma;
1213 try_prev:
1214 	near = vma->vm_prev;
1215 	if (!near)
1216 		goto none;
1217 
1218 	anon_vma = reusable_anon_vma(near, near, vma);
1219 	if (anon_vma)
1220 		return anon_vma;
1221 none:
1222 	/*
1223 	 * There's no absolute need to look only at touching neighbours:
1224 	 * we could search further afield for "compatible" anon_vmas.
1225 	 * But it would probably just be a waste of time searching,
1226 	 * or lead to too many vmas hanging off the same anon_vma.
1227 	 * We're trying to allow mprotect remerging later on,
1228 	 * not trying to minimize memory used for anon_vmas.
1229 	 */
1230 	return NULL;
1231 }
1232 
1233 /*
1234  * If a hint addr is less than mmap_min_addr change hint to be as
1235  * low as possible but still greater than mmap_min_addr
1236  */
1237 static inline unsigned long round_hint_to_min(unsigned long hint)
1238 {
1239 	hint &= PAGE_MASK;
1240 	if (((void *)hint != NULL) &&
1241 	    (hint < mmap_min_addr))
1242 		return PAGE_ALIGN(mmap_min_addr);
1243 	return hint;
1244 }
1245 
1246 static inline int mlock_future_check(struct mm_struct *mm,
1247 				     unsigned long flags,
1248 				     unsigned long len)
1249 {
1250 	unsigned long locked, lock_limit;
1251 
1252 	/*  mlock MCL_FUTURE? */
1253 	if (flags & VM_LOCKED) {
1254 		locked = len >> PAGE_SHIFT;
1255 		locked += mm->locked_vm;
1256 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1257 		lock_limit >>= PAGE_SHIFT;
1258 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1259 			return -EAGAIN;
1260 	}
1261 	return 0;
1262 }
1263 
1264 /*
1265  * The caller must hold down_write(&current->mm->mmap_sem).
1266  */
1267 unsigned long do_mmap(struct file *file, unsigned long addr,
1268 			unsigned long len, unsigned long prot,
1269 			unsigned long flags, vm_flags_t vm_flags,
1270 			unsigned long pgoff, unsigned long *populate)
1271 {
1272 	struct mm_struct *mm = current->mm;
1273 
1274 	*populate = 0;
1275 
1276 	if (!len)
1277 		return -EINVAL;
1278 
1279 	/*
1280 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1281 	 *
1282 	 * (the exception is when the underlying filesystem is noexec
1283 	 *  mounted, in which case we dont add PROT_EXEC.)
1284 	 */
1285 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1286 		if (!(file && path_noexec(&file->f_path)))
1287 			prot |= PROT_EXEC;
1288 
1289 	if (!(flags & MAP_FIXED))
1290 		addr = round_hint_to_min(addr);
1291 
1292 	/* Careful about overflows.. */
1293 	len = PAGE_ALIGN(len);
1294 	if (!len)
1295 		return -ENOMEM;
1296 
1297 	/* offset overflow? */
1298 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1299 		return -EOVERFLOW;
1300 
1301 	/* Too many mappings? */
1302 	if (mm->map_count > sysctl_max_map_count)
1303 		return -ENOMEM;
1304 
1305 	/* Obtain the address to map to. we verify (or select) it and ensure
1306 	 * that it represents a valid section of the address space.
1307 	 */
1308 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1309 	if (offset_in_page(addr))
1310 		return addr;
1311 
1312 	/* Do simple checking here so the lower-level routines won't have
1313 	 * to. we assume access permissions have been handled by the open
1314 	 * of the memory object, so we don't do any here.
1315 	 */
1316 	vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1317 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1318 
1319 	if (flags & MAP_LOCKED)
1320 		if (!can_do_mlock())
1321 			return -EPERM;
1322 
1323 	if (mlock_future_check(mm, vm_flags, len))
1324 		return -EAGAIN;
1325 
1326 	if (file) {
1327 		struct inode *inode = file_inode(file);
1328 
1329 		switch (flags & MAP_TYPE) {
1330 		case MAP_SHARED:
1331 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1332 				return -EACCES;
1333 
1334 			/*
1335 			 * Make sure we don't allow writing to an append-only
1336 			 * file..
1337 			 */
1338 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1339 				return -EACCES;
1340 
1341 			/*
1342 			 * Make sure there are no mandatory locks on the file.
1343 			 */
1344 			if (locks_verify_locked(file))
1345 				return -EAGAIN;
1346 
1347 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1348 			if (!(file->f_mode & FMODE_WRITE))
1349 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1350 
1351 			/* fall through */
1352 		case MAP_PRIVATE:
1353 			if (!(file->f_mode & FMODE_READ))
1354 				return -EACCES;
1355 			if (path_noexec(&file->f_path)) {
1356 				if (vm_flags & VM_EXEC)
1357 					return -EPERM;
1358 				vm_flags &= ~VM_MAYEXEC;
1359 			}
1360 
1361 			if (!file->f_op->mmap)
1362 				return -ENODEV;
1363 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1364 				return -EINVAL;
1365 			break;
1366 
1367 		default:
1368 			return -EINVAL;
1369 		}
1370 	} else {
1371 		switch (flags & MAP_TYPE) {
1372 		case MAP_SHARED:
1373 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1374 				return -EINVAL;
1375 			/*
1376 			 * Ignore pgoff.
1377 			 */
1378 			pgoff = 0;
1379 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1380 			break;
1381 		case MAP_PRIVATE:
1382 			/*
1383 			 * Set pgoff according to addr for anon_vma.
1384 			 */
1385 			pgoff = addr >> PAGE_SHIFT;
1386 			break;
1387 		default:
1388 			return -EINVAL;
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * Set 'VM_NORESERVE' if we should not account for the
1394 	 * memory use of this mapping.
1395 	 */
1396 	if (flags & MAP_NORESERVE) {
1397 		/* We honor MAP_NORESERVE if allowed to overcommit */
1398 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1399 			vm_flags |= VM_NORESERVE;
1400 
1401 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1402 		if (file && is_file_hugepages(file))
1403 			vm_flags |= VM_NORESERVE;
1404 	}
1405 
1406 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1407 	if (!IS_ERR_VALUE(addr) &&
1408 	    ((vm_flags & VM_LOCKED) ||
1409 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1410 		*populate = len;
1411 	return addr;
1412 }
1413 
1414 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1415 		unsigned long, prot, unsigned long, flags,
1416 		unsigned long, fd, unsigned long, pgoff)
1417 {
1418 	struct file *file = NULL;
1419 	unsigned long retval;
1420 
1421 	if (!(flags & MAP_ANONYMOUS)) {
1422 		audit_mmap_fd(fd, flags);
1423 		file = fget(fd);
1424 		if (!file)
1425 			return -EBADF;
1426 		if (is_file_hugepages(file))
1427 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1428 		retval = -EINVAL;
1429 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1430 			goto out_fput;
1431 	} else if (flags & MAP_HUGETLB) {
1432 		struct user_struct *user = NULL;
1433 		struct hstate *hs;
1434 
1435 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1436 		if (!hs)
1437 			return -EINVAL;
1438 
1439 		len = ALIGN(len, huge_page_size(hs));
1440 		/*
1441 		 * VM_NORESERVE is used because the reservations will be
1442 		 * taken when vm_ops->mmap() is called
1443 		 * A dummy user value is used because we are not locking
1444 		 * memory so no accounting is necessary
1445 		 */
1446 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1447 				VM_NORESERVE,
1448 				&user, HUGETLB_ANONHUGE_INODE,
1449 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1450 		if (IS_ERR(file))
1451 			return PTR_ERR(file);
1452 	}
1453 
1454 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1455 
1456 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1457 out_fput:
1458 	if (file)
1459 		fput(file);
1460 	return retval;
1461 }
1462 
1463 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1464 struct mmap_arg_struct {
1465 	unsigned long addr;
1466 	unsigned long len;
1467 	unsigned long prot;
1468 	unsigned long flags;
1469 	unsigned long fd;
1470 	unsigned long offset;
1471 };
1472 
1473 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1474 {
1475 	struct mmap_arg_struct a;
1476 
1477 	if (copy_from_user(&a, arg, sizeof(a)))
1478 		return -EFAULT;
1479 	if (offset_in_page(a.offset))
1480 		return -EINVAL;
1481 
1482 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1483 			      a.offset >> PAGE_SHIFT);
1484 }
1485 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1486 
1487 /*
1488  * Some shared mappigns will want the pages marked read-only
1489  * to track write events. If so, we'll downgrade vm_page_prot
1490  * to the private version (using protection_map[] without the
1491  * VM_SHARED bit).
1492  */
1493 int vma_wants_writenotify(struct vm_area_struct *vma)
1494 {
1495 	vm_flags_t vm_flags = vma->vm_flags;
1496 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1497 
1498 	/* If it was private or non-writable, the write bit is already clear */
1499 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1500 		return 0;
1501 
1502 	/* The backer wishes to know when pages are first written to? */
1503 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1504 		return 1;
1505 
1506 	/* The open routine did something to the protections that pgprot_modify
1507 	 * won't preserve? */
1508 	if (pgprot_val(vma->vm_page_prot) !=
1509 	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1510 		return 0;
1511 
1512 	/* Do we need to track softdirty? */
1513 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1514 		return 1;
1515 
1516 	/* Specialty mapping? */
1517 	if (vm_flags & VM_PFNMAP)
1518 		return 0;
1519 
1520 	/* Can the mapping track the dirty pages? */
1521 	return vma->vm_file && vma->vm_file->f_mapping &&
1522 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1523 }
1524 
1525 /*
1526  * We account for memory if it's a private writeable mapping,
1527  * not hugepages and VM_NORESERVE wasn't set.
1528  */
1529 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1530 {
1531 	/*
1532 	 * hugetlb has its own accounting separate from the core VM
1533 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1534 	 */
1535 	if (file && is_file_hugepages(file))
1536 		return 0;
1537 
1538 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1539 }
1540 
1541 unsigned long mmap_region(struct file *file, unsigned long addr,
1542 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1543 {
1544 	struct mm_struct *mm = current->mm;
1545 	struct vm_area_struct *vma, *prev;
1546 	int error;
1547 	struct rb_node **rb_link, *rb_parent;
1548 	unsigned long charged = 0;
1549 
1550 	/* Check against address space limit. */
1551 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1552 		unsigned long nr_pages;
1553 
1554 		/*
1555 		 * MAP_FIXED may remove pages of mappings that intersects with
1556 		 * requested mapping. Account for the pages it would unmap.
1557 		 */
1558 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1559 
1560 		if (!may_expand_vm(mm, vm_flags,
1561 					(len >> PAGE_SHIFT) - nr_pages))
1562 			return -ENOMEM;
1563 	}
1564 
1565 	/* Clear old maps */
1566 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1567 			      &rb_parent)) {
1568 		if (do_munmap(mm, addr, len))
1569 			return -ENOMEM;
1570 	}
1571 
1572 	/*
1573 	 * Private writable mapping: check memory availability
1574 	 */
1575 	if (accountable_mapping(file, vm_flags)) {
1576 		charged = len >> PAGE_SHIFT;
1577 		if (security_vm_enough_memory_mm(mm, charged))
1578 			return -ENOMEM;
1579 		vm_flags |= VM_ACCOUNT;
1580 	}
1581 
1582 	/*
1583 	 * Can we just expand an old mapping?
1584 	 */
1585 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1586 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1587 	if (vma)
1588 		goto out;
1589 
1590 	/*
1591 	 * Determine the object being mapped and call the appropriate
1592 	 * specific mapper. the address has already been validated, but
1593 	 * not unmapped, but the maps are removed from the list.
1594 	 */
1595 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1596 	if (!vma) {
1597 		error = -ENOMEM;
1598 		goto unacct_error;
1599 	}
1600 
1601 	vma->vm_mm = mm;
1602 	vma->vm_start = addr;
1603 	vma->vm_end = addr + len;
1604 	vma->vm_flags = vm_flags;
1605 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1606 	vma->vm_pgoff = pgoff;
1607 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1608 
1609 	if (file) {
1610 		if (vm_flags & VM_DENYWRITE) {
1611 			error = deny_write_access(file);
1612 			if (error)
1613 				goto free_vma;
1614 		}
1615 		if (vm_flags & VM_SHARED) {
1616 			error = mapping_map_writable(file->f_mapping);
1617 			if (error)
1618 				goto allow_write_and_free_vma;
1619 		}
1620 
1621 		/* ->mmap() can change vma->vm_file, but must guarantee that
1622 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1623 		 * and map writably if VM_SHARED is set. This usually means the
1624 		 * new file must not have been exposed to user-space, yet.
1625 		 */
1626 		vma->vm_file = get_file(file);
1627 		error = file->f_op->mmap(file, vma);
1628 		if (error)
1629 			goto unmap_and_free_vma;
1630 
1631 		/* Can addr have changed??
1632 		 *
1633 		 * Answer: Yes, several device drivers can do it in their
1634 		 *         f_op->mmap method. -DaveM
1635 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1636 		 *      be updated for vma_link()
1637 		 */
1638 		WARN_ON_ONCE(addr != vma->vm_start);
1639 
1640 		addr = vma->vm_start;
1641 		vm_flags = vma->vm_flags;
1642 	} else if (vm_flags & VM_SHARED) {
1643 		error = shmem_zero_setup(vma);
1644 		if (error)
1645 			goto free_vma;
1646 	}
1647 
1648 	vma_link(mm, vma, prev, rb_link, rb_parent);
1649 	/* Once vma denies write, undo our temporary denial count */
1650 	if (file) {
1651 		if (vm_flags & VM_SHARED)
1652 			mapping_unmap_writable(file->f_mapping);
1653 		if (vm_flags & VM_DENYWRITE)
1654 			allow_write_access(file);
1655 	}
1656 	file = vma->vm_file;
1657 out:
1658 	perf_event_mmap(vma);
1659 
1660 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1661 	if (vm_flags & VM_LOCKED) {
1662 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1663 					vma == get_gate_vma(current->mm)))
1664 			mm->locked_vm += (len >> PAGE_SHIFT);
1665 		else
1666 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1667 	}
1668 
1669 	if (file)
1670 		uprobe_mmap(vma);
1671 
1672 	/*
1673 	 * New (or expanded) vma always get soft dirty status.
1674 	 * Otherwise user-space soft-dirty page tracker won't
1675 	 * be able to distinguish situation when vma area unmapped,
1676 	 * then new mapped in-place (which must be aimed as
1677 	 * a completely new data area).
1678 	 */
1679 	vma->vm_flags |= VM_SOFTDIRTY;
1680 
1681 	vma_set_page_prot(vma);
1682 
1683 	return addr;
1684 
1685 unmap_and_free_vma:
1686 	vma->vm_file = NULL;
1687 	fput(file);
1688 
1689 	/* Undo any partial mapping done by a device driver. */
1690 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1691 	charged = 0;
1692 	if (vm_flags & VM_SHARED)
1693 		mapping_unmap_writable(file->f_mapping);
1694 allow_write_and_free_vma:
1695 	if (vm_flags & VM_DENYWRITE)
1696 		allow_write_access(file);
1697 free_vma:
1698 	kmem_cache_free(vm_area_cachep, vma);
1699 unacct_error:
1700 	if (charged)
1701 		vm_unacct_memory(charged);
1702 	return error;
1703 }
1704 
1705 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1706 {
1707 	/*
1708 	 * We implement the search by looking for an rbtree node that
1709 	 * immediately follows a suitable gap. That is,
1710 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1711 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1712 	 * - gap_end - gap_start >= length
1713 	 */
1714 
1715 	struct mm_struct *mm = current->mm;
1716 	struct vm_area_struct *vma;
1717 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1718 
1719 	/* Adjust search length to account for worst case alignment overhead */
1720 	length = info->length + info->align_mask;
1721 	if (length < info->length)
1722 		return -ENOMEM;
1723 
1724 	/* Adjust search limits by the desired length */
1725 	if (info->high_limit < length)
1726 		return -ENOMEM;
1727 	high_limit = info->high_limit - length;
1728 
1729 	if (info->low_limit > high_limit)
1730 		return -ENOMEM;
1731 	low_limit = info->low_limit + length;
1732 
1733 	/* Check if rbtree root looks promising */
1734 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1735 		goto check_highest;
1736 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1737 	if (vma->rb_subtree_gap < length)
1738 		goto check_highest;
1739 
1740 	while (true) {
1741 		/* Visit left subtree if it looks promising */
1742 		gap_end = vma->vm_start;
1743 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1744 			struct vm_area_struct *left =
1745 				rb_entry(vma->vm_rb.rb_left,
1746 					 struct vm_area_struct, vm_rb);
1747 			if (left->rb_subtree_gap >= length) {
1748 				vma = left;
1749 				continue;
1750 			}
1751 		}
1752 
1753 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1754 check_current:
1755 		/* Check if current node has a suitable gap */
1756 		if (gap_start > high_limit)
1757 			return -ENOMEM;
1758 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1759 			goto found;
1760 
1761 		/* Visit right subtree if it looks promising */
1762 		if (vma->vm_rb.rb_right) {
1763 			struct vm_area_struct *right =
1764 				rb_entry(vma->vm_rb.rb_right,
1765 					 struct vm_area_struct, vm_rb);
1766 			if (right->rb_subtree_gap >= length) {
1767 				vma = right;
1768 				continue;
1769 			}
1770 		}
1771 
1772 		/* Go back up the rbtree to find next candidate node */
1773 		while (true) {
1774 			struct rb_node *prev = &vma->vm_rb;
1775 			if (!rb_parent(prev))
1776 				goto check_highest;
1777 			vma = rb_entry(rb_parent(prev),
1778 				       struct vm_area_struct, vm_rb);
1779 			if (prev == vma->vm_rb.rb_left) {
1780 				gap_start = vma->vm_prev->vm_end;
1781 				gap_end = vma->vm_start;
1782 				goto check_current;
1783 			}
1784 		}
1785 	}
1786 
1787 check_highest:
1788 	/* Check highest gap, which does not precede any rbtree node */
1789 	gap_start = mm->highest_vm_end;
1790 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1791 	if (gap_start > high_limit)
1792 		return -ENOMEM;
1793 
1794 found:
1795 	/* We found a suitable gap. Clip it with the original low_limit. */
1796 	if (gap_start < info->low_limit)
1797 		gap_start = info->low_limit;
1798 
1799 	/* Adjust gap address to the desired alignment */
1800 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1801 
1802 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1803 	VM_BUG_ON(gap_start + info->length > gap_end);
1804 	return gap_start;
1805 }
1806 
1807 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1808 {
1809 	struct mm_struct *mm = current->mm;
1810 	struct vm_area_struct *vma;
1811 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1812 
1813 	/* Adjust search length to account for worst case alignment overhead */
1814 	length = info->length + info->align_mask;
1815 	if (length < info->length)
1816 		return -ENOMEM;
1817 
1818 	/*
1819 	 * Adjust search limits by the desired length.
1820 	 * See implementation comment at top of unmapped_area().
1821 	 */
1822 	gap_end = info->high_limit;
1823 	if (gap_end < length)
1824 		return -ENOMEM;
1825 	high_limit = gap_end - length;
1826 
1827 	if (info->low_limit > high_limit)
1828 		return -ENOMEM;
1829 	low_limit = info->low_limit + length;
1830 
1831 	/* Check highest gap, which does not precede any rbtree node */
1832 	gap_start = mm->highest_vm_end;
1833 	if (gap_start <= high_limit)
1834 		goto found_highest;
1835 
1836 	/* Check if rbtree root looks promising */
1837 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1838 		return -ENOMEM;
1839 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1840 	if (vma->rb_subtree_gap < length)
1841 		return -ENOMEM;
1842 
1843 	while (true) {
1844 		/* Visit right subtree if it looks promising */
1845 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1846 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1847 			struct vm_area_struct *right =
1848 				rb_entry(vma->vm_rb.rb_right,
1849 					 struct vm_area_struct, vm_rb);
1850 			if (right->rb_subtree_gap >= length) {
1851 				vma = right;
1852 				continue;
1853 			}
1854 		}
1855 
1856 check_current:
1857 		/* Check if current node has a suitable gap */
1858 		gap_end = vma->vm_start;
1859 		if (gap_end < low_limit)
1860 			return -ENOMEM;
1861 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1862 			goto found;
1863 
1864 		/* Visit left subtree if it looks promising */
1865 		if (vma->vm_rb.rb_left) {
1866 			struct vm_area_struct *left =
1867 				rb_entry(vma->vm_rb.rb_left,
1868 					 struct vm_area_struct, vm_rb);
1869 			if (left->rb_subtree_gap >= length) {
1870 				vma = left;
1871 				continue;
1872 			}
1873 		}
1874 
1875 		/* Go back up the rbtree to find next candidate node */
1876 		while (true) {
1877 			struct rb_node *prev = &vma->vm_rb;
1878 			if (!rb_parent(prev))
1879 				return -ENOMEM;
1880 			vma = rb_entry(rb_parent(prev),
1881 				       struct vm_area_struct, vm_rb);
1882 			if (prev == vma->vm_rb.rb_right) {
1883 				gap_start = vma->vm_prev ?
1884 					vma->vm_prev->vm_end : 0;
1885 				goto check_current;
1886 			}
1887 		}
1888 	}
1889 
1890 found:
1891 	/* We found a suitable gap. Clip it with the original high_limit. */
1892 	if (gap_end > info->high_limit)
1893 		gap_end = info->high_limit;
1894 
1895 found_highest:
1896 	/* Compute highest gap address at the desired alignment */
1897 	gap_end -= info->length;
1898 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1899 
1900 	VM_BUG_ON(gap_end < info->low_limit);
1901 	VM_BUG_ON(gap_end < gap_start);
1902 	return gap_end;
1903 }
1904 
1905 /* Get an address range which is currently unmapped.
1906  * For shmat() with addr=0.
1907  *
1908  * Ugly calling convention alert:
1909  * Return value with the low bits set means error value,
1910  * ie
1911  *	if (ret & ~PAGE_MASK)
1912  *		error = ret;
1913  *
1914  * This function "knows" that -ENOMEM has the bits set.
1915  */
1916 #ifndef HAVE_ARCH_UNMAPPED_AREA
1917 unsigned long
1918 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1919 		unsigned long len, unsigned long pgoff, unsigned long flags)
1920 {
1921 	struct mm_struct *mm = current->mm;
1922 	struct vm_area_struct *vma;
1923 	struct vm_unmapped_area_info info;
1924 
1925 	if (len > TASK_SIZE - mmap_min_addr)
1926 		return -ENOMEM;
1927 
1928 	if (flags & MAP_FIXED)
1929 		return addr;
1930 
1931 	if (addr) {
1932 		addr = PAGE_ALIGN(addr);
1933 		vma = find_vma(mm, addr);
1934 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1935 		    (!vma || addr + len <= vma->vm_start))
1936 			return addr;
1937 	}
1938 
1939 	info.flags = 0;
1940 	info.length = len;
1941 	info.low_limit = mm->mmap_base;
1942 	info.high_limit = TASK_SIZE;
1943 	info.align_mask = 0;
1944 	return vm_unmapped_area(&info);
1945 }
1946 #endif
1947 
1948 /*
1949  * This mmap-allocator allocates new areas top-down from below the
1950  * stack's low limit (the base):
1951  */
1952 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1953 unsigned long
1954 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1955 			  const unsigned long len, const unsigned long pgoff,
1956 			  const unsigned long flags)
1957 {
1958 	struct vm_area_struct *vma;
1959 	struct mm_struct *mm = current->mm;
1960 	unsigned long addr = addr0;
1961 	struct vm_unmapped_area_info info;
1962 
1963 	/* requested length too big for entire address space */
1964 	if (len > TASK_SIZE - mmap_min_addr)
1965 		return -ENOMEM;
1966 
1967 	if (flags & MAP_FIXED)
1968 		return addr;
1969 
1970 	/* requesting a specific address */
1971 	if (addr) {
1972 		addr = PAGE_ALIGN(addr);
1973 		vma = find_vma(mm, addr);
1974 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1975 				(!vma || addr + len <= vma->vm_start))
1976 			return addr;
1977 	}
1978 
1979 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1980 	info.length = len;
1981 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1982 	info.high_limit = mm->mmap_base;
1983 	info.align_mask = 0;
1984 	addr = vm_unmapped_area(&info);
1985 
1986 	/*
1987 	 * A failed mmap() very likely causes application failure,
1988 	 * so fall back to the bottom-up function here. This scenario
1989 	 * can happen with large stack limits and large mmap()
1990 	 * allocations.
1991 	 */
1992 	if (offset_in_page(addr)) {
1993 		VM_BUG_ON(addr != -ENOMEM);
1994 		info.flags = 0;
1995 		info.low_limit = TASK_UNMAPPED_BASE;
1996 		info.high_limit = TASK_SIZE;
1997 		addr = vm_unmapped_area(&info);
1998 	}
1999 
2000 	return addr;
2001 }
2002 #endif
2003 
2004 unsigned long
2005 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2006 		unsigned long pgoff, unsigned long flags)
2007 {
2008 	unsigned long (*get_area)(struct file *, unsigned long,
2009 				  unsigned long, unsigned long, unsigned long);
2010 
2011 	unsigned long error = arch_mmap_check(addr, len, flags);
2012 	if (error)
2013 		return error;
2014 
2015 	/* Careful about overflows.. */
2016 	if (len > TASK_SIZE)
2017 		return -ENOMEM;
2018 
2019 	get_area = current->mm->get_unmapped_area;
2020 	if (file && file->f_op->get_unmapped_area)
2021 		get_area = file->f_op->get_unmapped_area;
2022 	addr = get_area(file, addr, len, pgoff, flags);
2023 	if (IS_ERR_VALUE(addr))
2024 		return addr;
2025 
2026 	if (addr > TASK_SIZE - len)
2027 		return -ENOMEM;
2028 	if (offset_in_page(addr))
2029 		return -EINVAL;
2030 
2031 	addr = arch_rebalance_pgtables(addr, len);
2032 	error = security_mmap_addr(addr);
2033 	return error ? error : addr;
2034 }
2035 
2036 EXPORT_SYMBOL(get_unmapped_area);
2037 
2038 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2039 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2040 {
2041 	struct rb_node *rb_node;
2042 	struct vm_area_struct *vma;
2043 
2044 	/* Check the cache first. */
2045 	vma = vmacache_find(mm, addr);
2046 	if (likely(vma))
2047 		return vma;
2048 
2049 	rb_node = mm->mm_rb.rb_node;
2050 
2051 	while (rb_node) {
2052 		struct vm_area_struct *tmp;
2053 
2054 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2055 
2056 		if (tmp->vm_end > addr) {
2057 			vma = tmp;
2058 			if (tmp->vm_start <= addr)
2059 				break;
2060 			rb_node = rb_node->rb_left;
2061 		} else
2062 			rb_node = rb_node->rb_right;
2063 	}
2064 
2065 	if (vma)
2066 		vmacache_update(addr, vma);
2067 	return vma;
2068 }
2069 
2070 EXPORT_SYMBOL(find_vma);
2071 
2072 /*
2073  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2074  */
2075 struct vm_area_struct *
2076 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2077 			struct vm_area_struct **pprev)
2078 {
2079 	struct vm_area_struct *vma;
2080 
2081 	vma = find_vma(mm, addr);
2082 	if (vma) {
2083 		*pprev = vma->vm_prev;
2084 	} else {
2085 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2086 		*pprev = NULL;
2087 		while (rb_node) {
2088 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2089 			rb_node = rb_node->rb_right;
2090 		}
2091 	}
2092 	return vma;
2093 }
2094 
2095 /*
2096  * Verify that the stack growth is acceptable and
2097  * update accounting. This is shared with both the
2098  * grow-up and grow-down cases.
2099  */
2100 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2101 {
2102 	struct mm_struct *mm = vma->vm_mm;
2103 	struct rlimit *rlim = current->signal->rlim;
2104 	unsigned long new_start, actual_size;
2105 
2106 	/* address space limit tests */
2107 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2108 		return -ENOMEM;
2109 
2110 	/* Stack limit test */
2111 	actual_size = size;
2112 	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2113 		actual_size -= PAGE_SIZE;
2114 	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2115 		return -ENOMEM;
2116 
2117 	/* mlock limit tests */
2118 	if (vma->vm_flags & VM_LOCKED) {
2119 		unsigned long locked;
2120 		unsigned long limit;
2121 		locked = mm->locked_vm + grow;
2122 		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2123 		limit >>= PAGE_SHIFT;
2124 		if (locked > limit && !capable(CAP_IPC_LOCK))
2125 			return -ENOMEM;
2126 	}
2127 
2128 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2129 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2130 			vma->vm_end - size;
2131 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2132 		return -EFAULT;
2133 
2134 	/*
2135 	 * Overcommit..  This must be the final test, as it will
2136 	 * update security statistics.
2137 	 */
2138 	if (security_vm_enough_memory_mm(mm, grow))
2139 		return -ENOMEM;
2140 
2141 	return 0;
2142 }
2143 
2144 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2145 /*
2146  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2147  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2148  */
2149 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2150 {
2151 	struct mm_struct *mm = vma->vm_mm;
2152 	int error = 0;
2153 
2154 	if (!(vma->vm_flags & VM_GROWSUP))
2155 		return -EFAULT;
2156 
2157 	/* Guard against wrapping around to address 0. */
2158 	if (address < PAGE_ALIGN(address+4))
2159 		address = PAGE_ALIGN(address+4);
2160 	else
2161 		return -ENOMEM;
2162 
2163 	/* We must make sure the anon_vma is allocated. */
2164 	if (unlikely(anon_vma_prepare(vma)))
2165 		return -ENOMEM;
2166 
2167 	/*
2168 	 * vma->vm_start/vm_end cannot change under us because the caller
2169 	 * is required to hold the mmap_sem in read mode.  We need the
2170 	 * anon_vma lock to serialize against concurrent expand_stacks.
2171 	 */
2172 	anon_vma_lock_write(vma->anon_vma);
2173 
2174 	/* Somebody else might have raced and expanded it already */
2175 	if (address > vma->vm_end) {
2176 		unsigned long size, grow;
2177 
2178 		size = address - vma->vm_start;
2179 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2180 
2181 		error = -ENOMEM;
2182 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2183 			error = acct_stack_growth(vma, size, grow);
2184 			if (!error) {
2185 				/*
2186 				 * vma_gap_update() doesn't support concurrent
2187 				 * updates, but we only hold a shared mmap_sem
2188 				 * lock here, so we need to protect against
2189 				 * concurrent vma expansions.
2190 				 * anon_vma_lock_write() doesn't help here, as
2191 				 * we don't guarantee that all growable vmas
2192 				 * in a mm share the same root anon vma.
2193 				 * So, we reuse mm->page_table_lock to guard
2194 				 * against concurrent vma expansions.
2195 				 */
2196 				spin_lock(&mm->page_table_lock);
2197 				if (vma->vm_flags & VM_LOCKED)
2198 					mm->locked_vm += grow;
2199 				vm_stat_account(mm, vma->vm_flags, grow);
2200 				anon_vma_interval_tree_pre_update_vma(vma);
2201 				vma->vm_end = address;
2202 				anon_vma_interval_tree_post_update_vma(vma);
2203 				if (vma->vm_next)
2204 					vma_gap_update(vma->vm_next);
2205 				else
2206 					mm->highest_vm_end = address;
2207 				spin_unlock(&mm->page_table_lock);
2208 
2209 				perf_event_mmap(vma);
2210 			}
2211 		}
2212 	}
2213 	anon_vma_unlock_write(vma->anon_vma);
2214 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2215 	validate_mm(mm);
2216 	return error;
2217 }
2218 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2219 
2220 /*
2221  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2222  */
2223 int expand_downwards(struct vm_area_struct *vma,
2224 				   unsigned long address)
2225 {
2226 	struct mm_struct *mm = vma->vm_mm;
2227 	int error;
2228 
2229 	address &= PAGE_MASK;
2230 	error = security_mmap_addr(address);
2231 	if (error)
2232 		return error;
2233 
2234 	/* We must make sure the anon_vma is allocated. */
2235 	if (unlikely(anon_vma_prepare(vma)))
2236 		return -ENOMEM;
2237 
2238 	/*
2239 	 * vma->vm_start/vm_end cannot change under us because the caller
2240 	 * is required to hold the mmap_sem in read mode.  We need the
2241 	 * anon_vma lock to serialize against concurrent expand_stacks.
2242 	 */
2243 	anon_vma_lock_write(vma->anon_vma);
2244 
2245 	/* Somebody else might have raced and expanded it already */
2246 	if (address < vma->vm_start) {
2247 		unsigned long size, grow;
2248 
2249 		size = vma->vm_end - address;
2250 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2251 
2252 		error = -ENOMEM;
2253 		if (grow <= vma->vm_pgoff) {
2254 			error = acct_stack_growth(vma, size, grow);
2255 			if (!error) {
2256 				/*
2257 				 * vma_gap_update() doesn't support concurrent
2258 				 * updates, but we only hold a shared mmap_sem
2259 				 * lock here, so we need to protect against
2260 				 * concurrent vma expansions.
2261 				 * anon_vma_lock_write() doesn't help here, as
2262 				 * we don't guarantee that all growable vmas
2263 				 * in a mm share the same root anon vma.
2264 				 * So, we reuse mm->page_table_lock to guard
2265 				 * against concurrent vma expansions.
2266 				 */
2267 				spin_lock(&mm->page_table_lock);
2268 				if (vma->vm_flags & VM_LOCKED)
2269 					mm->locked_vm += grow;
2270 				vm_stat_account(mm, vma->vm_flags, grow);
2271 				anon_vma_interval_tree_pre_update_vma(vma);
2272 				vma->vm_start = address;
2273 				vma->vm_pgoff -= grow;
2274 				anon_vma_interval_tree_post_update_vma(vma);
2275 				vma_gap_update(vma);
2276 				spin_unlock(&mm->page_table_lock);
2277 
2278 				perf_event_mmap(vma);
2279 			}
2280 		}
2281 	}
2282 	anon_vma_unlock_write(vma->anon_vma);
2283 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2284 	validate_mm(mm);
2285 	return error;
2286 }
2287 
2288 /*
2289  * Note how expand_stack() refuses to expand the stack all the way to
2290  * abut the next virtual mapping, *unless* that mapping itself is also
2291  * a stack mapping. We want to leave room for a guard page, after all
2292  * (the guard page itself is not added here, that is done by the
2293  * actual page faulting logic)
2294  *
2295  * This matches the behavior of the guard page logic (see mm/memory.c:
2296  * check_stack_guard_page()), which only allows the guard page to be
2297  * removed under these circumstances.
2298  */
2299 #ifdef CONFIG_STACK_GROWSUP
2300 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2301 {
2302 	struct vm_area_struct *next;
2303 
2304 	address &= PAGE_MASK;
2305 	next = vma->vm_next;
2306 	if (next && next->vm_start == address + PAGE_SIZE) {
2307 		if (!(next->vm_flags & VM_GROWSUP))
2308 			return -ENOMEM;
2309 	}
2310 	return expand_upwards(vma, address);
2311 }
2312 
2313 struct vm_area_struct *
2314 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2315 {
2316 	struct vm_area_struct *vma, *prev;
2317 
2318 	addr &= PAGE_MASK;
2319 	vma = find_vma_prev(mm, addr, &prev);
2320 	if (vma && (vma->vm_start <= addr))
2321 		return vma;
2322 	if (!prev || expand_stack(prev, addr))
2323 		return NULL;
2324 	if (prev->vm_flags & VM_LOCKED)
2325 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2326 	return prev;
2327 }
2328 #else
2329 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2330 {
2331 	struct vm_area_struct *prev;
2332 
2333 	address &= PAGE_MASK;
2334 	prev = vma->vm_prev;
2335 	if (prev && prev->vm_end == address) {
2336 		if (!(prev->vm_flags & VM_GROWSDOWN))
2337 			return -ENOMEM;
2338 	}
2339 	return expand_downwards(vma, address);
2340 }
2341 
2342 struct vm_area_struct *
2343 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2344 {
2345 	struct vm_area_struct *vma;
2346 	unsigned long start;
2347 
2348 	addr &= PAGE_MASK;
2349 	vma = find_vma(mm, addr);
2350 	if (!vma)
2351 		return NULL;
2352 	if (vma->vm_start <= addr)
2353 		return vma;
2354 	if (!(vma->vm_flags & VM_GROWSDOWN))
2355 		return NULL;
2356 	start = vma->vm_start;
2357 	if (expand_stack(vma, addr))
2358 		return NULL;
2359 	if (vma->vm_flags & VM_LOCKED)
2360 		populate_vma_page_range(vma, addr, start, NULL);
2361 	return vma;
2362 }
2363 #endif
2364 
2365 EXPORT_SYMBOL_GPL(find_extend_vma);
2366 
2367 /*
2368  * Ok - we have the memory areas we should free on the vma list,
2369  * so release them, and do the vma updates.
2370  *
2371  * Called with the mm semaphore held.
2372  */
2373 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2374 {
2375 	unsigned long nr_accounted = 0;
2376 
2377 	/* Update high watermark before we lower total_vm */
2378 	update_hiwater_vm(mm);
2379 	do {
2380 		long nrpages = vma_pages(vma);
2381 
2382 		if (vma->vm_flags & VM_ACCOUNT)
2383 			nr_accounted += nrpages;
2384 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2385 		vma = remove_vma(vma);
2386 	} while (vma);
2387 	vm_unacct_memory(nr_accounted);
2388 	validate_mm(mm);
2389 }
2390 
2391 /*
2392  * Get rid of page table information in the indicated region.
2393  *
2394  * Called with the mm semaphore held.
2395  */
2396 static void unmap_region(struct mm_struct *mm,
2397 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2398 		unsigned long start, unsigned long end)
2399 {
2400 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2401 	struct mmu_gather tlb;
2402 
2403 	lru_add_drain();
2404 	tlb_gather_mmu(&tlb, mm, start, end);
2405 	update_hiwater_rss(mm);
2406 	unmap_vmas(&tlb, vma, start, end);
2407 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2408 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2409 	tlb_finish_mmu(&tlb, start, end);
2410 }
2411 
2412 /*
2413  * Create a list of vma's touched by the unmap, removing them from the mm's
2414  * vma list as we go..
2415  */
2416 static void
2417 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2418 	struct vm_area_struct *prev, unsigned long end)
2419 {
2420 	struct vm_area_struct **insertion_point;
2421 	struct vm_area_struct *tail_vma = NULL;
2422 
2423 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2424 	vma->vm_prev = NULL;
2425 	do {
2426 		vma_rb_erase(vma, &mm->mm_rb);
2427 		mm->map_count--;
2428 		tail_vma = vma;
2429 		vma = vma->vm_next;
2430 	} while (vma && vma->vm_start < end);
2431 	*insertion_point = vma;
2432 	if (vma) {
2433 		vma->vm_prev = prev;
2434 		vma_gap_update(vma);
2435 	} else
2436 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2437 	tail_vma->vm_next = NULL;
2438 
2439 	/* Kill the cache */
2440 	vmacache_invalidate(mm);
2441 }
2442 
2443 /*
2444  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2445  * munmap path where it doesn't make sense to fail.
2446  */
2447 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2448 	      unsigned long addr, int new_below)
2449 {
2450 	struct vm_area_struct *new;
2451 	int err;
2452 
2453 	if (is_vm_hugetlb_page(vma) && (addr &
2454 					~(huge_page_mask(hstate_vma(vma)))))
2455 		return -EINVAL;
2456 
2457 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2458 	if (!new)
2459 		return -ENOMEM;
2460 
2461 	/* most fields are the same, copy all, and then fixup */
2462 	*new = *vma;
2463 
2464 	INIT_LIST_HEAD(&new->anon_vma_chain);
2465 
2466 	if (new_below)
2467 		new->vm_end = addr;
2468 	else {
2469 		new->vm_start = addr;
2470 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2471 	}
2472 
2473 	err = vma_dup_policy(vma, new);
2474 	if (err)
2475 		goto out_free_vma;
2476 
2477 	err = anon_vma_clone(new, vma);
2478 	if (err)
2479 		goto out_free_mpol;
2480 
2481 	if (new->vm_file)
2482 		get_file(new->vm_file);
2483 
2484 	if (new->vm_ops && new->vm_ops->open)
2485 		new->vm_ops->open(new);
2486 
2487 	if (new_below)
2488 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2489 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2490 	else
2491 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2492 
2493 	/* Success. */
2494 	if (!err)
2495 		return 0;
2496 
2497 	/* Clean everything up if vma_adjust failed. */
2498 	if (new->vm_ops && new->vm_ops->close)
2499 		new->vm_ops->close(new);
2500 	if (new->vm_file)
2501 		fput(new->vm_file);
2502 	unlink_anon_vmas(new);
2503  out_free_mpol:
2504 	mpol_put(vma_policy(new));
2505  out_free_vma:
2506 	kmem_cache_free(vm_area_cachep, new);
2507 	return err;
2508 }
2509 
2510 /*
2511  * Split a vma into two pieces at address 'addr', a new vma is allocated
2512  * either for the first part or the tail.
2513  */
2514 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2515 	      unsigned long addr, int new_below)
2516 {
2517 	if (mm->map_count >= sysctl_max_map_count)
2518 		return -ENOMEM;
2519 
2520 	return __split_vma(mm, vma, addr, new_below);
2521 }
2522 
2523 /* Munmap is split into 2 main parts -- this part which finds
2524  * what needs doing, and the areas themselves, which do the
2525  * work.  This now handles partial unmappings.
2526  * Jeremy Fitzhardinge <jeremy@goop.org>
2527  */
2528 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2529 {
2530 	unsigned long end;
2531 	struct vm_area_struct *vma, *prev, *last;
2532 
2533 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2534 		return -EINVAL;
2535 
2536 	len = PAGE_ALIGN(len);
2537 	if (len == 0)
2538 		return -EINVAL;
2539 
2540 	/* Find the first overlapping VMA */
2541 	vma = find_vma(mm, start);
2542 	if (!vma)
2543 		return 0;
2544 	prev = vma->vm_prev;
2545 	/* we have  start < vma->vm_end  */
2546 
2547 	/* if it doesn't overlap, we have nothing.. */
2548 	end = start + len;
2549 	if (vma->vm_start >= end)
2550 		return 0;
2551 
2552 	/*
2553 	 * If we need to split any vma, do it now to save pain later.
2554 	 *
2555 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2556 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2557 	 * places tmp vma above, and higher split_vma places tmp vma below.
2558 	 */
2559 	if (start > vma->vm_start) {
2560 		int error;
2561 
2562 		/*
2563 		 * Make sure that map_count on return from munmap() will
2564 		 * not exceed its limit; but let map_count go just above
2565 		 * its limit temporarily, to help free resources as expected.
2566 		 */
2567 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2568 			return -ENOMEM;
2569 
2570 		error = __split_vma(mm, vma, start, 0);
2571 		if (error)
2572 			return error;
2573 		prev = vma;
2574 	}
2575 
2576 	/* Does it split the last one? */
2577 	last = find_vma(mm, end);
2578 	if (last && end > last->vm_start) {
2579 		int error = __split_vma(mm, last, end, 1);
2580 		if (error)
2581 			return error;
2582 	}
2583 	vma = prev ? prev->vm_next : mm->mmap;
2584 
2585 	/*
2586 	 * unlock any mlock()ed ranges before detaching vmas
2587 	 */
2588 	if (mm->locked_vm) {
2589 		struct vm_area_struct *tmp = vma;
2590 		while (tmp && tmp->vm_start < end) {
2591 			if (tmp->vm_flags & VM_LOCKED) {
2592 				mm->locked_vm -= vma_pages(tmp);
2593 				munlock_vma_pages_all(tmp);
2594 			}
2595 			tmp = tmp->vm_next;
2596 		}
2597 	}
2598 
2599 	/*
2600 	 * Remove the vma's, and unmap the actual pages
2601 	 */
2602 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2603 	unmap_region(mm, vma, prev, start, end);
2604 
2605 	arch_unmap(mm, vma, start, end);
2606 
2607 	/* Fix up all other VM information */
2608 	remove_vma_list(mm, vma);
2609 
2610 	return 0;
2611 }
2612 
2613 int vm_munmap(unsigned long start, size_t len)
2614 {
2615 	int ret;
2616 	struct mm_struct *mm = current->mm;
2617 
2618 	down_write(&mm->mmap_sem);
2619 	ret = do_munmap(mm, start, len);
2620 	up_write(&mm->mmap_sem);
2621 	return ret;
2622 }
2623 EXPORT_SYMBOL(vm_munmap);
2624 
2625 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2626 {
2627 	profile_munmap(addr);
2628 	return vm_munmap(addr, len);
2629 }
2630 
2631 
2632 /*
2633  * Emulation of deprecated remap_file_pages() syscall.
2634  */
2635 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2636 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2637 {
2638 
2639 	struct mm_struct *mm = current->mm;
2640 	struct vm_area_struct *vma;
2641 	unsigned long populate = 0;
2642 	unsigned long ret = -EINVAL;
2643 	struct file *file;
2644 
2645 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2646 			"See Documentation/vm/remap_file_pages.txt.\n",
2647 			current->comm, current->pid);
2648 
2649 	if (prot)
2650 		return ret;
2651 	start = start & PAGE_MASK;
2652 	size = size & PAGE_MASK;
2653 
2654 	if (start + size <= start)
2655 		return ret;
2656 
2657 	/* Does pgoff wrap? */
2658 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2659 		return ret;
2660 
2661 	down_write(&mm->mmap_sem);
2662 	vma = find_vma(mm, start);
2663 
2664 	if (!vma || !(vma->vm_flags & VM_SHARED))
2665 		goto out;
2666 
2667 	if (start < vma->vm_start)
2668 		goto out;
2669 
2670 	if (start + size > vma->vm_end) {
2671 		struct vm_area_struct *next;
2672 
2673 		for (next = vma->vm_next; next; next = next->vm_next) {
2674 			/* hole between vmas ? */
2675 			if (next->vm_start != next->vm_prev->vm_end)
2676 				goto out;
2677 
2678 			if (next->vm_file != vma->vm_file)
2679 				goto out;
2680 
2681 			if (next->vm_flags != vma->vm_flags)
2682 				goto out;
2683 
2684 			if (start + size <= next->vm_end)
2685 				break;
2686 		}
2687 
2688 		if (!next)
2689 			goto out;
2690 	}
2691 
2692 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2693 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2694 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2695 
2696 	flags &= MAP_NONBLOCK;
2697 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2698 	if (vma->vm_flags & VM_LOCKED) {
2699 		struct vm_area_struct *tmp;
2700 		flags |= MAP_LOCKED;
2701 
2702 		/* drop PG_Mlocked flag for over-mapped range */
2703 		for (tmp = vma; tmp->vm_start >= start + size;
2704 				tmp = tmp->vm_next) {
2705 			munlock_vma_pages_range(tmp,
2706 					max(tmp->vm_start, start),
2707 					min(tmp->vm_end, start + size));
2708 		}
2709 	}
2710 
2711 	file = get_file(vma->vm_file);
2712 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2713 			prot, flags, pgoff, &populate);
2714 	fput(file);
2715 out:
2716 	up_write(&mm->mmap_sem);
2717 	if (populate)
2718 		mm_populate(ret, populate);
2719 	if (!IS_ERR_VALUE(ret))
2720 		ret = 0;
2721 	return ret;
2722 }
2723 
2724 static inline void verify_mm_writelocked(struct mm_struct *mm)
2725 {
2726 #ifdef CONFIG_DEBUG_VM
2727 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2728 		WARN_ON(1);
2729 		up_read(&mm->mmap_sem);
2730 	}
2731 #endif
2732 }
2733 
2734 /*
2735  *  this is really a simplified "do_mmap".  it only handles
2736  *  anonymous maps.  eventually we may be able to do some
2737  *  brk-specific accounting here.
2738  */
2739 static unsigned long do_brk(unsigned long addr, unsigned long len)
2740 {
2741 	struct mm_struct *mm = current->mm;
2742 	struct vm_area_struct *vma, *prev;
2743 	unsigned long flags;
2744 	struct rb_node **rb_link, *rb_parent;
2745 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2746 	int error;
2747 
2748 	len = PAGE_ALIGN(len);
2749 	if (!len)
2750 		return addr;
2751 
2752 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2753 
2754 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2755 	if (offset_in_page(error))
2756 		return error;
2757 
2758 	error = mlock_future_check(mm, mm->def_flags, len);
2759 	if (error)
2760 		return error;
2761 
2762 	/*
2763 	 * mm->mmap_sem is required to protect against another thread
2764 	 * changing the mappings in case we sleep.
2765 	 */
2766 	verify_mm_writelocked(mm);
2767 
2768 	/*
2769 	 * Clear old maps.  this also does some error checking for us
2770 	 */
2771 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2772 			      &rb_parent)) {
2773 		if (do_munmap(mm, addr, len))
2774 			return -ENOMEM;
2775 	}
2776 
2777 	/* Check against address space limits *after* clearing old maps... */
2778 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2779 		return -ENOMEM;
2780 
2781 	if (mm->map_count > sysctl_max_map_count)
2782 		return -ENOMEM;
2783 
2784 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2785 		return -ENOMEM;
2786 
2787 	/* Can we just expand an old private anonymous mapping? */
2788 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2789 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2790 	if (vma)
2791 		goto out;
2792 
2793 	/*
2794 	 * create a vma struct for an anonymous mapping
2795 	 */
2796 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2797 	if (!vma) {
2798 		vm_unacct_memory(len >> PAGE_SHIFT);
2799 		return -ENOMEM;
2800 	}
2801 
2802 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2803 	vma->vm_mm = mm;
2804 	vma->vm_start = addr;
2805 	vma->vm_end = addr + len;
2806 	vma->vm_pgoff = pgoff;
2807 	vma->vm_flags = flags;
2808 	vma->vm_page_prot = vm_get_page_prot(flags);
2809 	vma_link(mm, vma, prev, rb_link, rb_parent);
2810 out:
2811 	perf_event_mmap(vma);
2812 	mm->total_vm += len >> PAGE_SHIFT;
2813 	mm->data_vm += len >> PAGE_SHIFT;
2814 	if (flags & VM_LOCKED)
2815 		mm->locked_vm += (len >> PAGE_SHIFT);
2816 	vma->vm_flags |= VM_SOFTDIRTY;
2817 	return addr;
2818 }
2819 
2820 unsigned long vm_brk(unsigned long addr, unsigned long len)
2821 {
2822 	struct mm_struct *mm = current->mm;
2823 	unsigned long ret;
2824 	bool populate;
2825 
2826 	down_write(&mm->mmap_sem);
2827 	ret = do_brk(addr, len);
2828 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2829 	up_write(&mm->mmap_sem);
2830 	if (populate)
2831 		mm_populate(addr, len);
2832 	return ret;
2833 }
2834 EXPORT_SYMBOL(vm_brk);
2835 
2836 /* Release all mmaps. */
2837 void exit_mmap(struct mm_struct *mm)
2838 {
2839 	struct mmu_gather tlb;
2840 	struct vm_area_struct *vma;
2841 	unsigned long nr_accounted = 0;
2842 
2843 	/* mm's last user has gone, and its about to be pulled down */
2844 	mmu_notifier_release(mm);
2845 
2846 	if (mm->locked_vm) {
2847 		vma = mm->mmap;
2848 		while (vma) {
2849 			if (vma->vm_flags & VM_LOCKED)
2850 				munlock_vma_pages_all(vma);
2851 			vma = vma->vm_next;
2852 		}
2853 	}
2854 
2855 	arch_exit_mmap(mm);
2856 
2857 	vma = mm->mmap;
2858 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2859 		return;
2860 
2861 	lru_add_drain();
2862 	flush_cache_mm(mm);
2863 	tlb_gather_mmu(&tlb, mm, 0, -1);
2864 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2865 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2866 	unmap_vmas(&tlb, vma, 0, -1);
2867 
2868 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2869 	tlb_finish_mmu(&tlb, 0, -1);
2870 
2871 	/*
2872 	 * Walk the list again, actually closing and freeing it,
2873 	 * with preemption enabled, without holding any MM locks.
2874 	 */
2875 	while (vma) {
2876 		if (vma->vm_flags & VM_ACCOUNT)
2877 			nr_accounted += vma_pages(vma);
2878 		vma = remove_vma(vma);
2879 	}
2880 	vm_unacct_memory(nr_accounted);
2881 }
2882 
2883 /* Insert vm structure into process list sorted by address
2884  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2885  * then i_mmap_rwsem is taken here.
2886  */
2887 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2888 {
2889 	struct vm_area_struct *prev;
2890 	struct rb_node **rb_link, *rb_parent;
2891 
2892 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2893 			   &prev, &rb_link, &rb_parent))
2894 		return -ENOMEM;
2895 	if ((vma->vm_flags & VM_ACCOUNT) &&
2896 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2897 		return -ENOMEM;
2898 
2899 	/*
2900 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2901 	 * until its first write fault, when page's anon_vma and index
2902 	 * are set.  But now set the vm_pgoff it will almost certainly
2903 	 * end up with (unless mremap moves it elsewhere before that
2904 	 * first wfault), so /proc/pid/maps tells a consistent story.
2905 	 *
2906 	 * By setting it to reflect the virtual start address of the
2907 	 * vma, merges and splits can happen in a seamless way, just
2908 	 * using the existing file pgoff checks and manipulations.
2909 	 * Similarly in do_mmap_pgoff and in do_brk.
2910 	 */
2911 	if (vma_is_anonymous(vma)) {
2912 		BUG_ON(vma->anon_vma);
2913 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2914 	}
2915 
2916 	vma_link(mm, vma, prev, rb_link, rb_parent);
2917 	return 0;
2918 }
2919 
2920 /*
2921  * Copy the vma structure to a new location in the same mm,
2922  * prior to moving page table entries, to effect an mremap move.
2923  */
2924 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2925 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2926 	bool *need_rmap_locks)
2927 {
2928 	struct vm_area_struct *vma = *vmap;
2929 	unsigned long vma_start = vma->vm_start;
2930 	struct mm_struct *mm = vma->vm_mm;
2931 	struct vm_area_struct *new_vma, *prev;
2932 	struct rb_node **rb_link, *rb_parent;
2933 	bool faulted_in_anon_vma = true;
2934 
2935 	/*
2936 	 * If anonymous vma has not yet been faulted, update new pgoff
2937 	 * to match new location, to increase its chance of merging.
2938 	 */
2939 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2940 		pgoff = addr >> PAGE_SHIFT;
2941 		faulted_in_anon_vma = false;
2942 	}
2943 
2944 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2945 		return NULL;	/* should never get here */
2946 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2947 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2948 			    vma->vm_userfaultfd_ctx);
2949 	if (new_vma) {
2950 		/*
2951 		 * Source vma may have been merged into new_vma
2952 		 */
2953 		if (unlikely(vma_start >= new_vma->vm_start &&
2954 			     vma_start < new_vma->vm_end)) {
2955 			/*
2956 			 * The only way we can get a vma_merge with
2957 			 * self during an mremap is if the vma hasn't
2958 			 * been faulted in yet and we were allowed to
2959 			 * reset the dst vma->vm_pgoff to the
2960 			 * destination address of the mremap to allow
2961 			 * the merge to happen. mremap must change the
2962 			 * vm_pgoff linearity between src and dst vmas
2963 			 * (in turn preventing a vma_merge) to be
2964 			 * safe. It is only safe to keep the vm_pgoff
2965 			 * linear if there are no pages mapped yet.
2966 			 */
2967 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2968 			*vmap = vma = new_vma;
2969 		}
2970 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2971 	} else {
2972 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2973 		if (!new_vma)
2974 			goto out;
2975 		*new_vma = *vma;
2976 		new_vma->vm_start = addr;
2977 		new_vma->vm_end = addr + len;
2978 		new_vma->vm_pgoff = pgoff;
2979 		if (vma_dup_policy(vma, new_vma))
2980 			goto out_free_vma;
2981 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2982 		if (anon_vma_clone(new_vma, vma))
2983 			goto out_free_mempol;
2984 		if (new_vma->vm_file)
2985 			get_file(new_vma->vm_file);
2986 		if (new_vma->vm_ops && new_vma->vm_ops->open)
2987 			new_vma->vm_ops->open(new_vma);
2988 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
2989 		*need_rmap_locks = false;
2990 	}
2991 	return new_vma;
2992 
2993 out_free_mempol:
2994 	mpol_put(vma_policy(new_vma));
2995 out_free_vma:
2996 	kmem_cache_free(vm_area_cachep, new_vma);
2997 out:
2998 	return NULL;
2999 }
3000 
3001 /*
3002  * Return true if the calling process may expand its vm space by the passed
3003  * number of pages
3004  */
3005 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3006 {
3007 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3008 		return false;
3009 
3010 	if (is_data_mapping(flags) &&
3011 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3012 		if (ignore_rlimit_data)
3013 			pr_warn_once("%s (%d): VmData %lu exceed data ulimit "
3014 				     "%lu. Will be forbidden soon.\n",
3015 				     current->comm, current->pid,
3016 				     (mm->data_vm + npages) << PAGE_SHIFT,
3017 				     rlimit(RLIMIT_DATA));
3018 		else
3019 			return false;
3020 	}
3021 
3022 	return true;
3023 }
3024 
3025 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3026 {
3027 	mm->total_vm += npages;
3028 
3029 	if (is_exec_mapping(flags))
3030 		mm->exec_vm += npages;
3031 	else if (is_stack_mapping(flags))
3032 		mm->stack_vm += npages;
3033 	else if (is_data_mapping(flags))
3034 		mm->data_vm += npages;
3035 }
3036 
3037 static int special_mapping_fault(struct vm_area_struct *vma,
3038 				 struct vm_fault *vmf);
3039 
3040 /*
3041  * Having a close hook prevents vma merging regardless of flags.
3042  */
3043 static void special_mapping_close(struct vm_area_struct *vma)
3044 {
3045 }
3046 
3047 static const char *special_mapping_name(struct vm_area_struct *vma)
3048 {
3049 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3050 }
3051 
3052 static const struct vm_operations_struct special_mapping_vmops = {
3053 	.close = special_mapping_close,
3054 	.fault = special_mapping_fault,
3055 	.name = special_mapping_name,
3056 };
3057 
3058 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3059 	.close = special_mapping_close,
3060 	.fault = special_mapping_fault,
3061 };
3062 
3063 static int special_mapping_fault(struct vm_area_struct *vma,
3064 				struct vm_fault *vmf)
3065 {
3066 	pgoff_t pgoff;
3067 	struct page **pages;
3068 
3069 	if (vma->vm_ops == &legacy_special_mapping_vmops)
3070 		pages = vma->vm_private_data;
3071 	else
3072 		pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3073 			pages;
3074 
3075 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3076 		pgoff--;
3077 
3078 	if (*pages) {
3079 		struct page *page = *pages;
3080 		get_page(page);
3081 		vmf->page = page;
3082 		return 0;
3083 	}
3084 
3085 	return VM_FAULT_SIGBUS;
3086 }
3087 
3088 static struct vm_area_struct *__install_special_mapping(
3089 	struct mm_struct *mm,
3090 	unsigned long addr, unsigned long len,
3091 	unsigned long vm_flags, void *priv,
3092 	const struct vm_operations_struct *ops)
3093 {
3094 	int ret;
3095 	struct vm_area_struct *vma;
3096 
3097 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3098 	if (unlikely(vma == NULL))
3099 		return ERR_PTR(-ENOMEM);
3100 
3101 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3102 	vma->vm_mm = mm;
3103 	vma->vm_start = addr;
3104 	vma->vm_end = addr + len;
3105 
3106 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3107 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3108 
3109 	vma->vm_ops = ops;
3110 	vma->vm_private_data = priv;
3111 
3112 	ret = insert_vm_struct(mm, vma);
3113 	if (ret)
3114 		goto out;
3115 
3116 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3117 
3118 	perf_event_mmap(vma);
3119 
3120 	return vma;
3121 
3122 out:
3123 	kmem_cache_free(vm_area_cachep, vma);
3124 	return ERR_PTR(ret);
3125 }
3126 
3127 /*
3128  * Called with mm->mmap_sem held for writing.
3129  * Insert a new vma covering the given region, with the given flags.
3130  * Its pages are supplied by the given array of struct page *.
3131  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3132  * The region past the last page supplied will always produce SIGBUS.
3133  * The array pointer and the pages it points to are assumed to stay alive
3134  * for as long as this mapping might exist.
3135  */
3136 struct vm_area_struct *_install_special_mapping(
3137 	struct mm_struct *mm,
3138 	unsigned long addr, unsigned long len,
3139 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3140 {
3141 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3142 					&special_mapping_vmops);
3143 }
3144 
3145 int install_special_mapping(struct mm_struct *mm,
3146 			    unsigned long addr, unsigned long len,
3147 			    unsigned long vm_flags, struct page **pages)
3148 {
3149 	struct vm_area_struct *vma = __install_special_mapping(
3150 		mm, addr, len, vm_flags, (void *)pages,
3151 		&legacy_special_mapping_vmops);
3152 
3153 	return PTR_ERR_OR_ZERO(vma);
3154 }
3155 
3156 static DEFINE_MUTEX(mm_all_locks_mutex);
3157 
3158 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3159 {
3160 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3161 		/*
3162 		 * The LSB of head.next can't change from under us
3163 		 * because we hold the mm_all_locks_mutex.
3164 		 */
3165 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3166 		/*
3167 		 * We can safely modify head.next after taking the
3168 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3169 		 * the same anon_vma we won't take it again.
3170 		 *
3171 		 * No need of atomic instructions here, head.next
3172 		 * can't change from under us thanks to the
3173 		 * anon_vma->root->rwsem.
3174 		 */
3175 		if (__test_and_set_bit(0, (unsigned long *)
3176 				       &anon_vma->root->rb_root.rb_node))
3177 			BUG();
3178 	}
3179 }
3180 
3181 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3182 {
3183 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3184 		/*
3185 		 * AS_MM_ALL_LOCKS can't change from under us because
3186 		 * we hold the mm_all_locks_mutex.
3187 		 *
3188 		 * Operations on ->flags have to be atomic because
3189 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3190 		 * mm_all_locks_mutex, there may be other cpus
3191 		 * changing other bitflags in parallel to us.
3192 		 */
3193 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3194 			BUG();
3195 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3196 	}
3197 }
3198 
3199 /*
3200  * This operation locks against the VM for all pte/vma/mm related
3201  * operations that could ever happen on a certain mm. This includes
3202  * vmtruncate, try_to_unmap, and all page faults.
3203  *
3204  * The caller must take the mmap_sem in write mode before calling
3205  * mm_take_all_locks(). The caller isn't allowed to release the
3206  * mmap_sem until mm_drop_all_locks() returns.
3207  *
3208  * mmap_sem in write mode is required in order to block all operations
3209  * that could modify pagetables and free pages without need of
3210  * altering the vma layout. It's also needed in write mode to avoid new
3211  * anon_vmas to be associated with existing vmas.
3212  *
3213  * A single task can't take more than one mm_take_all_locks() in a row
3214  * or it would deadlock.
3215  *
3216  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3217  * mapping->flags avoid to take the same lock twice, if more than one
3218  * vma in this mm is backed by the same anon_vma or address_space.
3219  *
3220  * We take locks in following order, accordingly to comment at beginning
3221  * of mm/rmap.c:
3222  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3223  *     hugetlb mapping);
3224  *   - all i_mmap_rwsem locks;
3225  *   - all anon_vma->rwseml
3226  *
3227  * We can take all locks within these types randomly because the VM code
3228  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3229  * mm_all_locks_mutex.
3230  *
3231  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3232  * that may have to take thousand of locks.
3233  *
3234  * mm_take_all_locks() can fail if it's interrupted by signals.
3235  */
3236 int mm_take_all_locks(struct mm_struct *mm)
3237 {
3238 	struct vm_area_struct *vma;
3239 	struct anon_vma_chain *avc;
3240 
3241 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3242 
3243 	mutex_lock(&mm_all_locks_mutex);
3244 
3245 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3246 		if (signal_pending(current))
3247 			goto out_unlock;
3248 		if (vma->vm_file && vma->vm_file->f_mapping &&
3249 				is_vm_hugetlb_page(vma))
3250 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3251 	}
3252 
3253 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3254 		if (signal_pending(current))
3255 			goto out_unlock;
3256 		if (vma->vm_file && vma->vm_file->f_mapping &&
3257 				!is_vm_hugetlb_page(vma))
3258 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3259 	}
3260 
3261 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3262 		if (signal_pending(current))
3263 			goto out_unlock;
3264 		if (vma->anon_vma)
3265 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3266 				vm_lock_anon_vma(mm, avc->anon_vma);
3267 	}
3268 
3269 	return 0;
3270 
3271 out_unlock:
3272 	mm_drop_all_locks(mm);
3273 	return -EINTR;
3274 }
3275 
3276 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3277 {
3278 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3279 		/*
3280 		 * The LSB of head.next can't change to 0 from under
3281 		 * us because we hold the mm_all_locks_mutex.
3282 		 *
3283 		 * We must however clear the bitflag before unlocking
3284 		 * the vma so the users using the anon_vma->rb_root will
3285 		 * never see our bitflag.
3286 		 *
3287 		 * No need of atomic instructions here, head.next
3288 		 * can't change from under us until we release the
3289 		 * anon_vma->root->rwsem.
3290 		 */
3291 		if (!__test_and_clear_bit(0, (unsigned long *)
3292 					  &anon_vma->root->rb_root.rb_node))
3293 			BUG();
3294 		anon_vma_unlock_write(anon_vma);
3295 	}
3296 }
3297 
3298 static void vm_unlock_mapping(struct address_space *mapping)
3299 {
3300 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3301 		/*
3302 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3303 		 * because we hold the mm_all_locks_mutex.
3304 		 */
3305 		i_mmap_unlock_write(mapping);
3306 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3307 					&mapping->flags))
3308 			BUG();
3309 	}
3310 }
3311 
3312 /*
3313  * The mmap_sem cannot be released by the caller until
3314  * mm_drop_all_locks() returns.
3315  */
3316 void mm_drop_all_locks(struct mm_struct *mm)
3317 {
3318 	struct vm_area_struct *vma;
3319 	struct anon_vma_chain *avc;
3320 
3321 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3322 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3323 
3324 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3325 		if (vma->anon_vma)
3326 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3327 				vm_unlock_anon_vma(avc->anon_vma);
3328 		if (vma->vm_file && vma->vm_file->f_mapping)
3329 			vm_unlock_mapping(vma->vm_file->f_mapping);
3330 	}
3331 
3332 	mutex_unlock(&mm_all_locks_mutex);
3333 }
3334 
3335 /*
3336  * initialise the VMA slab
3337  */
3338 void __init mmap_init(void)
3339 {
3340 	int ret;
3341 
3342 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3343 	VM_BUG_ON(ret);
3344 }
3345 
3346 /*
3347  * Initialise sysctl_user_reserve_kbytes.
3348  *
3349  * This is intended to prevent a user from starting a single memory hogging
3350  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3351  * mode.
3352  *
3353  * The default value is min(3% of free memory, 128MB)
3354  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3355  */
3356 static int init_user_reserve(void)
3357 {
3358 	unsigned long free_kbytes;
3359 
3360 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3361 
3362 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3363 	return 0;
3364 }
3365 subsys_initcall(init_user_reserve);
3366 
3367 /*
3368  * Initialise sysctl_admin_reserve_kbytes.
3369  *
3370  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3371  * to log in and kill a memory hogging process.
3372  *
3373  * Systems with more than 256MB will reserve 8MB, enough to recover
3374  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3375  * only reserve 3% of free pages by default.
3376  */
3377 static int init_admin_reserve(void)
3378 {
3379 	unsigned long free_kbytes;
3380 
3381 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3382 
3383 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3384 	return 0;
3385 }
3386 subsys_initcall(init_admin_reserve);
3387 
3388 /*
3389  * Reinititalise user and admin reserves if memory is added or removed.
3390  *
3391  * The default user reserve max is 128MB, and the default max for the
3392  * admin reserve is 8MB. These are usually, but not always, enough to
3393  * enable recovery from a memory hogging process using login/sshd, a shell,
3394  * and tools like top. It may make sense to increase or even disable the
3395  * reserve depending on the existence of swap or variations in the recovery
3396  * tools. So, the admin may have changed them.
3397  *
3398  * If memory is added and the reserves have been eliminated or increased above
3399  * the default max, then we'll trust the admin.
3400  *
3401  * If memory is removed and there isn't enough free memory, then we
3402  * need to reset the reserves.
3403  *
3404  * Otherwise keep the reserve set by the admin.
3405  */
3406 static int reserve_mem_notifier(struct notifier_block *nb,
3407 			     unsigned long action, void *data)
3408 {
3409 	unsigned long tmp, free_kbytes;
3410 
3411 	switch (action) {
3412 	case MEM_ONLINE:
3413 		/* Default max is 128MB. Leave alone if modified by operator. */
3414 		tmp = sysctl_user_reserve_kbytes;
3415 		if (0 < tmp && tmp < (1UL << 17))
3416 			init_user_reserve();
3417 
3418 		/* Default max is 8MB.  Leave alone if modified by operator. */
3419 		tmp = sysctl_admin_reserve_kbytes;
3420 		if (0 < tmp && tmp < (1UL << 13))
3421 			init_admin_reserve();
3422 
3423 		break;
3424 	case MEM_OFFLINE:
3425 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3426 
3427 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3428 			init_user_reserve();
3429 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3430 				sysctl_user_reserve_kbytes);
3431 		}
3432 
3433 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3434 			init_admin_reserve();
3435 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3436 				sysctl_admin_reserve_kbytes);
3437 		}
3438 		break;
3439 	default:
3440 		break;
3441 	}
3442 	return NOTIFY_OK;
3443 }
3444 
3445 static struct notifier_block reserve_mem_nb = {
3446 	.notifier_call = reserve_mem_notifier,
3447 };
3448 
3449 static int __meminit init_reserve_notifier(void)
3450 {
3451 	if (register_hotmemory_notifier(&reserve_mem_nb))
3452 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3453 
3454 	return 0;
3455 }
3456 subsys_initcall(init_reserve_notifier);
3457