xref: /openbmc/linux/mm/mmap.c (revision c4ee0af3)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 
45 #include "internal.h"
46 
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags)	(0)
49 #endif
50 
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len)		(addr)
53 #endif
54 
55 static void unmap_region(struct mm_struct *mm,
56 		struct vm_area_struct *vma, struct vm_area_struct *prev,
57 		unsigned long start, unsigned long end);
58 
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type	prot
64  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
65  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
66  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
67  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
68  *
69  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
70  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
71  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78 
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 	return __pgprot(pgprot_val(protection_map[vm_flags &
82 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86 
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
91 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
92 /*
93  * Make sure vm_committed_as in one cacheline and not cacheline shared with
94  * other variables. It can be updated by several CPUs frequently.
95  */
96 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
97 
98 /*
99  * The global memory commitment made in the system can be a metric
100  * that can be used to drive ballooning decisions when Linux is hosted
101  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
102  * balancing memory across competing virtual machines that are hosted.
103  * Several metrics drive this policy engine including the guest reported
104  * memory commitment.
105  */
106 unsigned long vm_memory_committed(void)
107 {
108 	return percpu_counter_read_positive(&vm_committed_as);
109 }
110 EXPORT_SYMBOL_GPL(vm_memory_committed);
111 
112 /*
113  * Check that a process has enough memory to allocate a new virtual
114  * mapping. 0 means there is enough memory for the allocation to
115  * succeed and -ENOMEM implies there is not.
116  *
117  * We currently support three overcommit policies, which are set via the
118  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
119  *
120  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
121  * Additional code 2002 Jul 20 by Robert Love.
122  *
123  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
124  *
125  * Note this is a helper function intended to be used by LSMs which
126  * wish to use this logic.
127  */
128 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
129 {
130 	unsigned long free, allowed, reserve;
131 
132 	vm_acct_memory(pages);
133 
134 	/*
135 	 * Sometimes we want to use more memory than we have
136 	 */
137 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
138 		return 0;
139 
140 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
141 		free = global_page_state(NR_FREE_PAGES);
142 		free += global_page_state(NR_FILE_PAGES);
143 
144 		/*
145 		 * shmem pages shouldn't be counted as free in this
146 		 * case, they can't be purged, only swapped out, and
147 		 * that won't affect the overall amount of available
148 		 * memory in the system.
149 		 */
150 		free -= global_page_state(NR_SHMEM);
151 
152 		free += get_nr_swap_pages();
153 
154 		/*
155 		 * Any slabs which are created with the
156 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
157 		 * which are reclaimable, under pressure.  The dentry
158 		 * cache and most inode caches should fall into this
159 		 */
160 		free += global_page_state(NR_SLAB_RECLAIMABLE);
161 
162 		/*
163 		 * Leave reserved pages. The pages are not for anonymous pages.
164 		 */
165 		if (free <= totalreserve_pages)
166 			goto error;
167 		else
168 			free -= totalreserve_pages;
169 
170 		/*
171 		 * Reserve some for root
172 		 */
173 		if (!cap_sys_admin)
174 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
175 
176 		if (free > pages)
177 			return 0;
178 
179 		goto error;
180 	}
181 
182 	allowed = vm_commit_limit();
183 	/*
184 	 * Reserve some for root
185 	 */
186 	if (!cap_sys_admin)
187 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
188 
189 	/*
190 	 * Don't let a single process grow so big a user can't recover
191 	 */
192 	if (mm) {
193 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
194 		allowed -= min(mm->total_vm / 32, reserve);
195 	}
196 
197 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
198 		return 0;
199 error:
200 	vm_unacct_memory(pages);
201 
202 	return -ENOMEM;
203 }
204 
205 /*
206  * Requires inode->i_mapping->i_mmap_mutex
207  */
208 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
209 		struct file *file, struct address_space *mapping)
210 {
211 	if (vma->vm_flags & VM_DENYWRITE)
212 		atomic_inc(&file_inode(file)->i_writecount);
213 	if (vma->vm_flags & VM_SHARED)
214 		mapping->i_mmap_writable--;
215 
216 	flush_dcache_mmap_lock(mapping);
217 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
218 		list_del_init(&vma->shared.nonlinear);
219 	else
220 		vma_interval_tree_remove(vma, &mapping->i_mmap);
221 	flush_dcache_mmap_unlock(mapping);
222 }
223 
224 /*
225  * Unlink a file-based vm structure from its interval tree, to hide
226  * vma from rmap and vmtruncate before freeing its page tables.
227  */
228 void unlink_file_vma(struct vm_area_struct *vma)
229 {
230 	struct file *file = vma->vm_file;
231 
232 	if (file) {
233 		struct address_space *mapping = file->f_mapping;
234 		mutex_lock(&mapping->i_mmap_mutex);
235 		__remove_shared_vm_struct(vma, file, mapping);
236 		mutex_unlock(&mapping->i_mmap_mutex);
237 	}
238 }
239 
240 /*
241  * Close a vm structure and free it, returning the next.
242  */
243 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
244 {
245 	struct vm_area_struct *next = vma->vm_next;
246 
247 	might_sleep();
248 	if (vma->vm_ops && vma->vm_ops->close)
249 		vma->vm_ops->close(vma);
250 	if (vma->vm_file)
251 		fput(vma->vm_file);
252 	mpol_put(vma_policy(vma));
253 	kmem_cache_free(vm_area_cachep, vma);
254 	return next;
255 }
256 
257 static unsigned long do_brk(unsigned long addr, unsigned long len);
258 
259 SYSCALL_DEFINE1(brk, unsigned long, brk)
260 {
261 	unsigned long rlim, retval;
262 	unsigned long newbrk, oldbrk;
263 	struct mm_struct *mm = current->mm;
264 	unsigned long min_brk;
265 	bool populate;
266 
267 	down_write(&mm->mmap_sem);
268 
269 #ifdef CONFIG_COMPAT_BRK
270 	/*
271 	 * CONFIG_COMPAT_BRK can still be overridden by setting
272 	 * randomize_va_space to 2, which will still cause mm->start_brk
273 	 * to be arbitrarily shifted
274 	 */
275 	if (current->brk_randomized)
276 		min_brk = mm->start_brk;
277 	else
278 		min_brk = mm->end_data;
279 #else
280 	min_brk = mm->start_brk;
281 #endif
282 	if (brk < min_brk)
283 		goto out;
284 
285 	/*
286 	 * Check against rlimit here. If this check is done later after the test
287 	 * of oldbrk with newbrk then it can escape the test and let the data
288 	 * segment grow beyond its set limit the in case where the limit is
289 	 * not page aligned -Ram Gupta
290 	 */
291 	rlim = rlimit(RLIMIT_DATA);
292 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
293 			(mm->end_data - mm->start_data) > rlim)
294 		goto out;
295 
296 	newbrk = PAGE_ALIGN(brk);
297 	oldbrk = PAGE_ALIGN(mm->brk);
298 	if (oldbrk == newbrk)
299 		goto set_brk;
300 
301 	/* Always allow shrinking brk. */
302 	if (brk <= mm->brk) {
303 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
304 			goto set_brk;
305 		goto out;
306 	}
307 
308 	/* Check against existing mmap mappings. */
309 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
310 		goto out;
311 
312 	/* Ok, looks good - let it rip. */
313 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
314 		goto out;
315 
316 set_brk:
317 	mm->brk = brk;
318 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
319 	up_write(&mm->mmap_sem);
320 	if (populate)
321 		mm_populate(oldbrk, newbrk - oldbrk);
322 	return brk;
323 
324 out:
325 	retval = mm->brk;
326 	up_write(&mm->mmap_sem);
327 	return retval;
328 }
329 
330 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
331 {
332 	unsigned long max, subtree_gap;
333 	max = vma->vm_start;
334 	if (vma->vm_prev)
335 		max -= vma->vm_prev->vm_end;
336 	if (vma->vm_rb.rb_left) {
337 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
338 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
339 		if (subtree_gap > max)
340 			max = subtree_gap;
341 	}
342 	if (vma->vm_rb.rb_right) {
343 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
344 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
345 		if (subtree_gap > max)
346 			max = subtree_gap;
347 	}
348 	return max;
349 }
350 
351 #ifdef CONFIG_DEBUG_VM_RB
352 static int browse_rb(struct rb_root *root)
353 {
354 	int i = 0, j, bug = 0;
355 	struct rb_node *nd, *pn = NULL;
356 	unsigned long prev = 0, pend = 0;
357 
358 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
359 		struct vm_area_struct *vma;
360 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
361 		if (vma->vm_start < prev) {
362 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
363 			bug = 1;
364 		}
365 		if (vma->vm_start < pend) {
366 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
367 			bug = 1;
368 		}
369 		if (vma->vm_start > vma->vm_end) {
370 			printk("vm_end %lx < vm_start %lx\n",
371 				vma->vm_end, vma->vm_start);
372 			bug = 1;
373 		}
374 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
375 			printk("free gap %lx, correct %lx\n",
376 			       vma->rb_subtree_gap,
377 			       vma_compute_subtree_gap(vma));
378 			bug = 1;
379 		}
380 		i++;
381 		pn = nd;
382 		prev = vma->vm_start;
383 		pend = vma->vm_end;
384 	}
385 	j = 0;
386 	for (nd = pn; nd; nd = rb_prev(nd))
387 		j++;
388 	if (i != j) {
389 		printk("backwards %d, forwards %d\n", j, i);
390 		bug = 1;
391 	}
392 	return bug ? -1 : i;
393 }
394 
395 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
396 {
397 	struct rb_node *nd;
398 
399 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
400 		struct vm_area_struct *vma;
401 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
402 		BUG_ON(vma != ignore &&
403 		       vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
404 	}
405 }
406 
407 void validate_mm(struct mm_struct *mm)
408 {
409 	int bug = 0;
410 	int i = 0;
411 	unsigned long highest_address = 0;
412 	struct vm_area_struct *vma = mm->mmap;
413 	while (vma) {
414 		struct anon_vma_chain *avc;
415 		vma_lock_anon_vma(vma);
416 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
417 			anon_vma_interval_tree_verify(avc);
418 		vma_unlock_anon_vma(vma);
419 		highest_address = vma->vm_end;
420 		vma = vma->vm_next;
421 		i++;
422 	}
423 	if (i != mm->map_count) {
424 		printk("map_count %d vm_next %d\n", mm->map_count, i);
425 		bug = 1;
426 	}
427 	if (highest_address != mm->highest_vm_end) {
428 		printk("mm->highest_vm_end %lx, found %lx\n",
429 		       mm->highest_vm_end, highest_address);
430 		bug = 1;
431 	}
432 	i = browse_rb(&mm->mm_rb);
433 	if (i != mm->map_count) {
434 		printk("map_count %d rb %d\n", mm->map_count, i);
435 		bug = 1;
436 	}
437 	BUG_ON(bug);
438 }
439 #else
440 #define validate_mm_rb(root, ignore) do { } while (0)
441 #define validate_mm(mm) do { } while (0)
442 #endif
443 
444 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
445 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
446 
447 /*
448  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
449  * vma->vm_prev->vm_end values changed, without modifying the vma's position
450  * in the rbtree.
451  */
452 static void vma_gap_update(struct vm_area_struct *vma)
453 {
454 	/*
455 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
456 	 * function that does exacltly what we want.
457 	 */
458 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
459 }
460 
461 static inline void vma_rb_insert(struct vm_area_struct *vma,
462 				 struct rb_root *root)
463 {
464 	/* All rb_subtree_gap values must be consistent prior to insertion */
465 	validate_mm_rb(root, NULL);
466 
467 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
468 }
469 
470 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
471 {
472 	/*
473 	 * All rb_subtree_gap values must be consistent prior to erase,
474 	 * with the possible exception of the vma being erased.
475 	 */
476 	validate_mm_rb(root, vma);
477 
478 	/*
479 	 * Note rb_erase_augmented is a fairly large inline function,
480 	 * so make sure we instantiate it only once with our desired
481 	 * augmented rbtree callbacks.
482 	 */
483 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
484 }
485 
486 /*
487  * vma has some anon_vma assigned, and is already inserted on that
488  * anon_vma's interval trees.
489  *
490  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
491  * vma must be removed from the anon_vma's interval trees using
492  * anon_vma_interval_tree_pre_update_vma().
493  *
494  * After the update, the vma will be reinserted using
495  * anon_vma_interval_tree_post_update_vma().
496  *
497  * The entire update must be protected by exclusive mmap_sem and by
498  * the root anon_vma's mutex.
499  */
500 static inline void
501 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
502 {
503 	struct anon_vma_chain *avc;
504 
505 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
506 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
507 }
508 
509 static inline void
510 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
511 {
512 	struct anon_vma_chain *avc;
513 
514 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
515 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
516 }
517 
518 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
519 		unsigned long end, struct vm_area_struct **pprev,
520 		struct rb_node ***rb_link, struct rb_node **rb_parent)
521 {
522 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
523 
524 	__rb_link = &mm->mm_rb.rb_node;
525 	rb_prev = __rb_parent = NULL;
526 
527 	while (*__rb_link) {
528 		struct vm_area_struct *vma_tmp;
529 
530 		__rb_parent = *__rb_link;
531 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
532 
533 		if (vma_tmp->vm_end > addr) {
534 			/* Fail if an existing vma overlaps the area */
535 			if (vma_tmp->vm_start < end)
536 				return -ENOMEM;
537 			__rb_link = &__rb_parent->rb_left;
538 		} else {
539 			rb_prev = __rb_parent;
540 			__rb_link = &__rb_parent->rb_right;
541 		}
542 	}
543 
544 	*pprev = NULL;
545 	if (rb_prev)
546 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
547 	*rb_link = __rb_link;
548 	*rb_parent = __rb_parent;
549 	return 0;
550 }
551 
552 static unsigned long count_vma_pages_range(struct mm_struct *mm,
553 		unsigned long addr, unsigned long end)
554 {
555 	unsigned long nr_pages = 0;
556 	struct vm_area_struct *vma;
557 
558 	/* Find first overlaping mapping */
559 	vma = find_vma_intersection(mm, addr, end);
560 	if (!vma)
561 		return 0;
562 
563 	nr_pages = (min(end, vma->vm_end) -
564 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
565 
566 	/* Iterate over the rest of the overlaps */
567 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
568 		unsigned long overlap_len;
569 
570 		if (vma->vm_start > end)
571 			break;
572 
573 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
574 		nr_pages += overlap_len >> PAGE_SHIFT;
575 	}
576 
577 	return nr_pages;
578 }
579 
580 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
581 		struct rb_node **rb_link, struct rb_node *rb_parent)
582 {
583 	/* Update tracking information for the gap following the new vma. */
584 	if (vma->vm_next)
585 		vma_gap_update(vma->vm_next);
586 	else
587 		mm->highest_vm_end = vma->vm_end;
588 
589 	/*
590 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
591 	 * correct insertion point for that vma. As a result, we could not
592 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
593 	 * So, we first insert the vma with a zero rb_subtree_gap value
594 	 * (to be consistent with what we did on the way down), and then
595 	 * immediately update the gap to the correct value. Finally we
596 	 * rebalance the rbtree after all augmented values have been set.
597 	 */
598 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
599 	vma->rb_subtree_gap = 0;
600 	vma_gap_update(vma);
601 	vma_rb_insert(vma, &mm->mm_rb);
602 }
603 
604 static void __vma_link_file(struct vm_area_struct *vma)
605 {
606 	struct file *file;
607 
608 	file = vma->vm_file;
609 	if (file) {
610 		struct address_space *mapping = file->f_mapping;
611 
612 		if (vma->vm_flags & VM_DENYWRITE)
613 			atomic_dec(&file_inode(file)->i_writecount);
614 		if (vma->vm_flags & VM_SHARED)
615 			mapping->i_mmap_writable++;
616 
617 		flush_dcache_mmap_lock(mapping);
618 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
619 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
620 		else
621 			vma_interval_tree_insert(vma, &mapping->i_mmap);
622 		flush_dcache_mmap_unlock(mapping);
623 	}
624 }
625 
626 static void
627 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
628 	struct vm_area_struct *prev, struct rb_node **rb_link,
629 	struct rb_node *rb_parent)
630 {
631 	__vma_link_list(mm, vma, prev, rb_parent);
632 	__vma_link_rb(mm, vma, rb_link, rb_parent);
633 }
634 
635 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
636 			struct vm_area_struct *prev, struct rb_node **rb_link,
637 			struct rb_node *rb_parent)
638 {
639 	struct address_space *mapping = NULL;
640 
641 	if (vma->vm_file)
642 		mapping = vma->vm_file->f_mapping;
643 
644 	if (mapping)
645 		mutex_lock(&mapping->i_mmap_mutex);
646 
647 	__vma_link(mm, vma, prev, rb_link, rb_parent);
648 	__vma_link_file(vma);
649 
650 	if (mapping)
651 		mutex_unlock(&mapping->i_mmap_mutex);
652 
653 	mm->map_count++;
654 	validate_mm(mm);
655 }
656 
657 /*
658  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
659  * mm's list and rbtree.  It has already been inserted into the interval tree.
660  */
661 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
662 {
663 	struct vm_area_struct *prev;
664 	struct rb_node **rb_link, *rb_parent;
665 
666 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
667 			   &prev, &rb_link, &rb_parent))
668 		BUG();
669 	__vma_link(mm, vma, prev, rb_link, rb_parent);
670 	mm->map_count++;
671 }
672 
673 static inline void
674 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
675 		struct vm_area_struct *prev)
676 {
677 	struct vm_area_struct *next;
678 
679 	vma_rb_erase(vma, &mm->mm_rb);
680 	prev->vm_next = next = vma->vm_next;
681 	if (next)
682 		next->vm_prev = prev;
683 	if (mm->mmap_cache == vma)
684 		mm->mmap_cache = prev;
685 }
686 
687 /*
688  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
689  * is already present in an i_mmap tree without adjusting the tree.
690  * The following helper function should be used when such adjustments
691  * are necessary.  The "insert" vma (if any) is to be inserted
692  * before we drop the necessary locks.
693  */
694 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
695 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
696 {
697 	struct mm_struct *mm = vma->vm_mm;
698 	struct vm_area_struct *next = vma->vm_next;
699 	struct vm_area_struct *importer = NULL;
700 	struct address_space *mapping = NULL;
701 	struct rb_root *root = NULL;
702 	struct anon_vma *anon_vma = NULL;
703 	struct file *file = vma->vm_file;
704 	bool start_changed = false, end_changed = false;
705 	long adjust_next = 0;
706 	int remove_next = 0;
707 
708 	if (next && !insert) {
709 		struct vm_area_struct *exporter = NULL;
710 
711 		if (end >= next->vm_end) {
712 			/*
713 			 * vma expands, overlapping all the next, and
714 			 * perhaps the one after too (mprotect case 6).
715 			 */
716 again:			remove_next = 1 + (end > next->vm_end);
717 			end = next->vm_end;
718 			exporter = next;
719 			importer = vma;
720 		} else if (end > next->vm_start) {
721 			/*
722 			 * vma expands, overlapping part of the next:
723 			 * mprotect case 5 shifting the boundary up.
724 			 */
725 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
726 			exporter = next;
727 			importer = vma;
728 		} else if (end < vma->vm_end) {
729 			/*
730 			 * vma shrinks, and !insert tells it's not
731 			 * split_vma inserting another: so it must be
732 			 * mprotect case 4 shifting the boundary down.
733 			 */
734 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
735 			exporter = vma;
736 			importer = next;
737 		}
738 
739 		/*
740 		 * Easily overlooked: when mprotect shifts the boundary,
741 		 * make sure the expanding vma has anon_vma set if the
742 		 * shrinking vma had, to cover any anon pages imported.
743 		 */
744 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
745 			if (anon_vma_clone(importer, exporter))
746 				return -ENOMEM;
747 			importer->anon_vma = exporter->anon_vma;
748 		}
749 	}
750 
751 	if (file) {
752 		mapping = file->f_mapping;
753 		if (!(vma->vm_flags & VM_NONLINEAR)) {
754 			root = &mapping->i_mmap;
755 			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
756 
757 			if (adjust_next)
758 				uprobe_munmap(next, next->vm_start,
759 							next->vm_end);
760 		}
761 
762 		mutex_lock(&mapping->i_mmap_mutex);
763 		if (insert) {
764 			/*
765 			 * Put into interval tree now, so instantiated pages
766 			 * are visible to arm/parisc __flush_dcache_page
767 			 * throughout; but we cannot insert into address
768 			 * space until vma start or end is updated.
769 			 */
770 			__vma_link_file(insert);
771 		}
772 	}
773 
774 	vma_adjust_trans_huge(vma, start, end, adjust_next);
775 
776 	anon_vma = vma->anon_vma;
777 	if (!anon_vma && adjust_next)
778 		anon_vma = next->anon_vma;
779 	if (anon_vma) {
780 		VM_BUG_ON(adjust_next && next->anon_vma &&
781 			  anon_vma != next->anon_vma);
782 		anon_vma_lock_write(anon_vma);
783 		anon_vma_interval_tree_pre_update_vma(vma);
784 		if (adjust_next)
785 			anon_vma_interval_tree_pre_update_vma(next);
786 	}
787 
788 	if (root) {
789 		flush_dcache_mmap_lock(mapping);
790 		vma_interval_tree_remove(vma, root);
791 		if (adjust_next)
792 			vma_interval_tree_remove(next, root);
793 	}
794 
795 	if (start != vma->vm_start) {
796 		vma->vm_start = start;
797 		start_changed = true;
798 	}
799 	if (end != vma->vm_end) {
800 		vma->vm_end = end;
801 		end_changed = true;
802 	}
803 	vma->vm_pgoff = pgoff;
804 	if (adjust_next) {
805 		next->vm_start += adjust_next << PAGE_SHIFT;
806 		next->vm_pgoff += adjust_next;
807 	}
808 
809 	if (root) {
810 		if (adjust_next)
811 			vma_interval_tree_insert(next, root);
812 		vma_interval_tree_insert(vma, root);
813 		flush_dcache_mmap_unlock(mapping);
814 	}
815 
816 	if (remove_next) {
817 		/*
818 		 * vma_merge has merged next into vma, and needs
819 		 * us to remove next before dropping the locks.
820 		 */
821 		__vma_unlink(mm, next, vma);
822 		if (file)
823 			__remove_shared_vm_struct(next, file, mapping);
824 	} else if (insert) {
825 		/*
826 		 * split_vma has split insert from vma, and needs
827 		 * us to insert it before dropping the locks
828 		 * (it may either follow vma or precede it).
829 		 */
830 		__insert_vm_struct(mm, insert);
831 	} else {
832 		if (start_changed)
833 			vma_gap_update(vma);
834 		if (end_changed) {
835 			if (!next)
836 				mm->highest_vm_end = end;
837 			else if (!adjust_next)
838 				vma_gap_update(next);
839 		}
840 	}
841 
842 	if (anon_vma) {
843 		anon_vma_interval_tree_post_update_vma(vma);
844 		if (adjust_next)
845 			anon_vma_interval_tree_post_update_vma(next);
846 		anon_vma_unlock_write(anon_vma);
847 	}
848 	if (mapping)
849 		mutex_unlock(&mapping->i_mmap_mutex);
850 
851 	if (root) {
852 		uprobe_mmap(vma);
853 
854 		if (adjust_next)
855 			uprobe_mmap(next);
856 	}
857 
858 	if (remove_next) {
859 		if (file) {
860 			uprobe_munmap(next, next->vm_start, next->vm_end);
861 			fput(file);
862 		}
863 		if (next->anon_vma)
864 			anon_vma_merge(vma, next);
865 		mm->map_count--;
866 		mpol_put(vma_policy(next));
867 		kmem_cache_free(vm_area_cachep, next);
868 		/*
869 		 * In mprotect's case 6 (see comments on vma_merge),
870 		 * we must remove another next too. It would clutter
871 		 * up the code too much to do both in one go.
872 		 */
873 		next = vma->vm_next;
874 		if (remove_next == 2)
875 			goto again;
876 		else if (next)
877 			vma_gap_update(next);
878 		else
879 			mm->highest_vm_end = end;
880 	}
881 	if (insert && file)
882 		uprobe_mmap(insert);
883 
884 	validate_mm(mm);
885 
886 	return 0;
887 }
888 
889 /*
890  * If the vma has a ->close operation then the driver probably needs to release
891  * per-vma resources, so we don't attempt to merge those.
892  */
893 static inline int is_mergeable_vma(struct vm_area_struct *vma,
894 			struct file *file, unsigned long vm_flags)
895 {
896 	if (vma->vm_flags ^ vm_flags)
897 		return 0;
898 	if (vma->vm_file != file)
899 		return 0;
900 	if (vma->vm_ops && vma->vm_ops->close)
901 		return 0;
902 	return 1;
903 }
904 
905 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
906 					struct anon_vma *anon_vma2,
907 					struct vm_area_struct *vma)
908 {
909 	/*
910 	 * The list_is_singular() test is to avoid merging VMA cloned from
911 	 * parents. This can improve scalability caused by anon_vma lock.
912 	 */
913 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
914 		list_is_singular(&vma->anon_vma_chain)))
915 		return 1;
916 	return anon_vma1 == anon_vma2;
917 }
918 
919 /*
920  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
921  * in front of (at a lower virtual address and file offset than) the vma.
922  *
923  * We cannot merge two vmas if they have differently assigned (non-NULL)
924  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
925  *
926  * We don't check here for the merged mmap wrapping around the end of pagecache
927  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
928  * wrap, nor mmaps which cover the final page at index -1UL.
929  */
930 static int
931 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
932 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
933 {
934 	if (is_mergeable_vma(vma, file, vm_flags) &&
935 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
936 		if (vma->vm_pgoff == vm_pgoff)
937 			return 1;
938 	}
939 	return 0;
940 }
941 
942 /*
943  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
944  * beyond (at a higher virtual address and file offset than) the vma.
945  *
946  * We cannot merge two vmas if they have differently assigned (non-NULL)
947  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
948  */
949 static int
950 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
951 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
952 {
953 	if (is_mergeable_vma(vma, file, vm_flags) &&
954 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
955 		pgoff_t vm_pglen;
956 		vm_pglen = vma_pages(vma);
957 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
958 			return 1;
959 	}
960 	return 0;
961 }
962 
963 /*
964  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
965  * whether that can be merged with its predecessor or its successor.
966  * Or both (it neatly fills a hole).
967  *
968  * In most cases - when called for mmap, brk or mremap - [addr,end) is
969  * certain not to be mapped by the time vma_merge is called; but when
970  * called for mprotect, it is certain to be already mapped (either at
971  * an offset within prev, or at the start of next), and the flags of
972  * this area are about to be changed to vm_flags - and the no-change
973  * case has already been eliminated.
974  *
975  * The following mprotect cases have to be considered, where AAAA is
976  * the area passed down from mprotect_fixup, never extending beyond one
977  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
978  *
979  *     AAAA             AAAA                AAAA          AAAA
980  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
981  *    cannot merge    might become    might become    might become
982  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
983  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
984  *    mremap move:                                    PPPPNNNNNNNN 8
985  *        AAAA
986  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
987  *    might become    case 1 below    case 2 below    case 3 below
988  *
989  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
990  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
991  */
992 struct vm_area_struct *vma_merge(struct mm_struct *mm,
993 			struct vm_area_struct *prev, unsigned long addr,
994 			unsigned long end, unsigned long vm_flags,
995 		     	struct anon_vma *anon_vma, struct file *file,
996 			pgoff_t pgoff, struct mempolicy *policy)
997 {
998 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
999 	struct vm_area_struct *area, *next;
1000 	int err;
1001 
1002 	/*
1003 	 * We later require that vma->vm_flags == vm_flags,
1004 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1005 	 */
1006 	if (vm_flags & VM_SPECIAL)
1007 		return NULL;
1008 
1009 	if (prev)
1010 		next = prev->vm_next;
1011 	else
1012 		next = mm->mmap;
1013 	area = next;
1014 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1015 		next = next->vm_next;
1016 
1017 	/*
1018 	 * Can it merge with the predecessor?
1019 	 */
1020 	if (prev && prev->vm_end == addr &&
1021   			mpol_equal(vma_policy(prev), policy) &&
1022 			can_vma_merge_after(prev, vm_flags,
1023 						anon_vma, file, pgoff)) {
1024 		/*
1025 		 * OK, it can.  Can we now merge in the successor as well?
1026 		 */
1027 		if (next && end == next->vm_start &&
1028 				mpol_equal(policy, vma_policy(next)) &&
1029 				can_vma_merge_before(next, vm_flags,
1030 					anon_vma, file, pgoff+pglen) &&
1031 				is_mergeable_anon_vma(prev->anon_vma,
1032 						      next->anon_vma, NULL)) {
1033 							/* cases 1, 6 */
1034 			err = vma_adjust(prev, prev->vm_start,
1035 				next->vm_end, prev->vm_pgoff, NULL);
1036 		} else					/* cases 2, 5, 7 */
1037 			err = vma_adjust(prev, prev->vm_start,
1038 				end, prev->vm_pgoff, NULL);
1039 		if (err)
1040 			return NULL;
1041 		khugepaged_enter_vma_merge(prev);
1042 		return prev;
1043 	}
1044 
1045 	/*
1046 	 * Can this new request be merged in front of next?
1047 	 */
1048 	if (next && end == next->vm_start &&
1049  			mpol_equal(policy, vma_policy(next)) &&
1050 			can_vma_merge_before(next, vm_flags,
1051 					anon_vma, file, pgoff+pglen)) {
1052 		if (prev && addr < prev->vm_end)	/* case 4 */
1053 			err = vma_adjust(prev, prev->vm_start,
1054 				addr, prev->vm_pgoff, NULL);
1055 		else					/* cases 3, 8 */
1056 			err = vma_adjust(area, addr, next->vm_end,
1057 				next->vm_pgoff - pglen, NULL);
1058 		if (err)
1059 			return NULL;
1060 		khugepaged_enter_vma_merge(area);
1061 		return area;
1062 	}
1063 
1064 	return NULL;
1065 }
1066 
1067 /*
1068  * Rough compatbility check to quickly see if it's even worth looking
1069  * at sharing an anon_vma.
1070  *
1071  * They need to have the same vm_file, and the flags can only differ
1072  * in things that mprotect may change.
1073  *
1074  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1075  * we can merge the two vma's. For example, we refuse to merge a vma if
1076  * there is a vm_ops->close() function, because that indicates that the
1077  * driver is doing some kind of reference counting. But that doesn't
1078  * really matter for the anon_vma sharing case.
1079  */
1080 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1081 {
1082 	return a->vm_end == b->vm_start &&
1083 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1084 		a->vm_file == b->vm_file &&
1085 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1086 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1087 }
1088 
1089 /*
1090  * Do some basic sanity checking to see if we can re-use the anon_vma
1091  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1092  * the same as 'old', the other will be the new one that is trying
1093  * to share the anon_vma.
1094  *
1095  * NOTE! This runs with mm_sem held for reading, so it is possible that
1096  * the anon_vma of 'old' is concurrently in the process of being set up
1097  * by another page fault trying to merge _that_. But that's ok: if it
1098  * is being set up, that automatically means that it will be a singleton
1099  * acceptable for merging, so we can do all of this optimistically. But
1100  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1101  *
1102  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1103  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1104  * is to return an anon_vma that is "complex" due to having gone through
1105  * a fork).
1106  *
1107  * We also make sure that the two vma's are compatible (adjacent,
1108  * and with the same memory policies). That's all stable, even with just
1109  * a read lock on the mm_sem.
1110  */
1111 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1112 {
1113 	if (anon_vma_compatible(a, b)) {
1114 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1115 
1116 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1117 			return anon_vma;
1118 	}
1119 	return NULL;
1120 }
1121 
1122 /*
1123  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1124  * neighbouring vmas for a suitable anon_vma, before it goes off
1125  * to allocate a new anon_vma.  It checks because a repetitive
1126  * sequence of mprotects and faults may otherwise lead to distinct
1127  * anon_vmas being allocated, preventing vma merge in subsequent
1128  * mprotect.
1129  */
1130 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1131 {
1132 	struct anon_vma *anon_vma;
1133 	struct vm_area_struct *near;
1134 
1135 	near = vma->vm_next;
1136 	if (!near)
1137 		goto try_prev;
1138 
1139 	anon_vma = reusable_anon_vma(near, vma, near);
1140 	if (anon_vma)
1141 		return anon_vma;
1142 try_prev:
1143 	near = vma->vm_prev;
1144 	if (!near)
1145 		goto none;
1146 
1147 	anon_vma = reusable_anon_vma(near, near, vma);
1148 	if (anon_vma)
1149 		return anon_vma;
1150 none:
1151 	/*
1152 	 * There's no absolute need to look only at touching neighbours:
1153 	 * we could search further afield for "compatible" anon_vmas.
1154 	 * But it would probably just be a waste of time searching,
1155 	 * or lead to too many vmas hanging off the same anon_vma.
1156 	 * We're trying to allow mprotect remerging later on,
1157 	 * not trying to minimize memory used for anon_vmas.
1158 	 */
1159 	return NULL;
1160 }
1161 
1162 #ifdef CONFIG_PROC_FS
1163 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1164 						struct file *file, long pages)
1165 {
1166 	const unsigned long stack_flags
1167 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1168 
1169 	mm->total_vm += pages;
1170 
1171 	if (file) {
1172 		mm->shared_vm += pages;
1173 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1174 			mm->exec_vm += pages;
1175 	} else if (flags & stack_flags)
1176 		mm->stack_vm += pages;
1177 }
1178 #endif /* CONFIG_PROC_FS */
1179 
1180 /*
1181  * If a hint addr is less than mmap_min_addr change hint to be as
1182  * low as possible but still greater than mmap_min_addr
1183  */
1184 static inline unsigned long round_hint_to_min(unsigned long hint)
1185 {
1186 	hint &= PAGE_MASK;
1187 	if (((void *)hint != NULL) &&
1188 	    (hint < mmap_min_addr))
1189 		return PAGE_ALIGN(mmap_min_addr);
1190 	return hint;
1191 }
1192 
1193 /*
1194  * The caller must hold down_write(&current->mm->mmap_sem).
1195  */
1196 
1197 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1198 			unsigned long len, unsigned long prot,
1199 			unsigned long flags, unsigned long pgoff,
1200 			unsigned long *populate)
1201 {
1202 	struct mm_struct * mm = current->mm;
1203 	vm_flags_t vm_flags;
1204 
1205 	*populate = 0;
1206 
1207 	/*
1208 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1209 	 *
1210 	 * (the exception is when the underlying filesystem is noexec
1211 	 *  mounted, in which case we dont add PROT_EXEC.)
1212 	 */
1213 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1214 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1215 			prot |= PROT_EXEC;
1216 
1217 	if (!len)
1218 		return -EINVAL;
1219 
1220 	if (!(flags & MAP_FIXED))
1221 		addr = round_hint_to_min(addr);
1222 
1223 	/* Careful about overflows.. */
1224 	len = PAGE_ALIGN(len);
1225 	if (!len)
1226 		return -ENOMEM;
1227 
1228 	/* offset overflow? */
1229 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1230                return -EOVERFLOW;
1231 
1232 	/* Too many mappings? */
1233 	if (mm->map_count > sysctl_max_map_count)
1234 		return -ENOMEM;
1235 
1236 	/* Obtain the address to map to. we verify (or select) it and ensure
1237 	 * that it represents a valid section of the address space.
1238 	 */
1239 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1240 	if (addr & ~PAGE_MASK)
1241 		return addr;
1242 
1243 	/* Do simple checking here so the lower-level routines won't have
1244 	 * to. we assume access permissions have been handled by the open
1245 	 * of the memory object, so we don't do any here.
1246 	 */
1247 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1248 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1249 
1250 	if (flags & MAP_LOCKED)
1251 		if (!can_do_mlock())
1252 			return -EPERM;
1253 
1254 	/* mlock MCL_FUTURE? */
1255 	if (vm_flags & VM_LOCKED) {
1256 		unsigned long locked, lock_limit;
1257 		locked = len >> PAGE_SHIFT;
1258 		locked += mm->locked_vm;
1259 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1260 		lock_limit >>= PAGE_SHIFT;
1261 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1262 			return -EAGAIN;
1263 	}
1264 
1265 	if (file) {
1266 		struct inode *inode = file_inode(file);
1267 
1268 		switch (flags & MAP_TYPE) {
1269 		case MAP_SHARED:
1270 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1271 				return -EACCES;
1272 
1273 			/*
1274 			 * Make sure we don't allow writing to an append-only
1275 			 * file..
1276 			 */
1277 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1278 				return -EACCES;
1279 
1280 			/*
1281 			 * Make sure there are no mandatory locks on the file.
1282 			 */
1283 			if (locks_verify_locked(inode))
1284 				return -EAGAIN;
1285 
1286 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1287 			if (!(file->f_mode & FMODE_WRITE))
1288 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1289 
1290 			/* fall through */
1291 		case MAP_PRIVATE:
1292 			if (!(file->f_mode & FMODE_READ))
1293 				return -EACCES;
1294 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1295 				if (vm_flags & VM_EXEC)
1296 					return -EPERM;
1297 				vm_flags &= ~VM_MAYEXEC;
1298 			}
1299 
1300 			if (!file->f_op->mmap)
1301 				return -ENODEV;
1302 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1303 				return -EINVAL;
1304 			break;
1305 
1306 		default:
1307 			return -EINVAL;
1308 		}
1309 	} else {
1310 		switch (flags & MAP_TYPE) {
1311 		case MAP_SHARED:
1312 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1313 				return -EINVAL;
1314 			/*
1315 			 * Ignore pgoff.
1316 			 */
1317 			pgoff = 0;
1318 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1319 			break;
1320 		case MAP_PRIVATE:
1321 			/*
1322 			 * Set pgoff according to addr for anon_vma.
1323 			 */
1324 			pgoff = addr >> PAGE_SHIFT;
1325 			break;
1326 		default:
1327 			return -EINVAL;
1328 		}
1329 	}
1330 
1331 	/*
1332 	 * Set 'VM_NORESERVE' if we should not account for the
1333 	 * memory use of this mapping.
1334 	 */
1335 	if (flags & MAP_NORESERVE) {
1336 		/* We honor MAP_NORESERVE if allowed to overcommit */
1337 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1338 			vm_flags |= VM_NORESERVE;
1339 
1340 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1341 		if (file && is_file_hugepages(file))
1342 			vm_flags |= VM_NORESERVE;
1343 	}
1344 
1345 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1346 	if (!IS_ERR_VALUE(addr) &&
1347 	    ((vm_flags & VM_LOCKED) ||
1348 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1349 		*populate = len;
1350 	return addr;
1351 }
1352 
1353 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1354 		unsigned long, prot, unsigned long, flags,
1355 		unsigned long, fd, unsigned long, pgoff)
1356 {
1357 	struct file *file = NULL;
1358 	unsigned long retval = -EBADF;
1359 
1360 	if (!(flags & MAP_ANONYMOUS)) {
1361 		audit_mmap_fd(fd, flags);
1362 		file = fget(fd);
1363 		if (!file)
1364 			goto out;
1365 		if (is_file_hugepages(file))
1366 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1367 		retval = -EINVAL;
1368 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1369 			goto out_fput;
1370 	} else if (flags & MAP_HUGETLB) {
1371 		struct user_struct *user = NULL;
1372 		struct hstate *hs;
1373 
1374 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1375 		if (!hs)
1376 			return -EINVAL;
1377 
1378 		len = ALIGN(len, huge_page_size(hs));
1379 		/*
1380 		 * VM_NORESERVE is used because the reservations will be
1381 		 * taken when vm_ops->mmap() is called
1382 		 * A dummy user value is used because we are not locking
1383 		 * memory so no accounting is necessary
1384 		 */
1385 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1386 				VM_NORESERVE,
1387 				&user, HUGETLB_ANONHUGE_INODE,
1388 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1389 		if (IS_ERR(file))
1390 			return PTR_ERR(file);
1391 	}
1392 
1393 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1394 
1395 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1396 out_fput:
1397 	if (file)
1398 		fput(file);
1399 out:
1400 	return retval;
1401 }
1402 
1403 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1404 struct mmap_arg_struct {
1405 	unsigned long addr;
1406 	unsigned long len;
1407 	unsigned long prot;
1408 	unsigned long flags;
1409 	unsigned long fd;
1410 	unsigned long offset;
1411 };
1412 
1413 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1414 {
1415 	struct mmap_arg_struct a;
1416 
1417 	if (copy_from_user(&a, arg, sizeof(a)))
1418 		return -EFAULT;
1419 	if (a.offset & ~PAGE_MASK)
1420 		return -EINVAL;
1421 
1422 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1423 			      a.offset >> PAGE_SHIFT);
1424 }
1425 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1426 
1427 /*
1428  * Some shared mappigns will want the pages marked read-only
1429  * to track write events. If so, we'll downgrade vm_page_prot
1430  * to the private version (using protection_map[] without the
1431  * VM_SHARED bit).
1432  */
1433 int vma_wants_writenotify(struct vm_area_struct *vma)
1434 {
1435 	vm_flags_t vm_flags = vma->vm_flags;
1436 
1437 	/* If it was private or non-writable, the write bit is already clear */
1438 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1439 		return 0;
1440 
1441 	/* The backer wishes to know when pages are first written to? */
1442 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1443 		return 1;
1444 
1445 	/* The open routine did something to the protections already? */
1446 	if (pgprot_val(vma->vm_page_prot) !=
1447 	    pgprot_val(vm_get_page_prot(vm_flags)))
1448 		return 0;
1449 
1450 	/* Specialty mapping? */
1451 	if (vm_flags & VM_PFNMAP)
1452 		return 0;
1453 
1454 	/* Can the mapping track the dirty pages? */
1455 	return vma->vm_file && vma->vm_file->f_mapping &&
1456 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1457 }
1458 
1459 /*
1460  * We account for memory if it's a private writeable mapping,
1461  * not hugepages and VM_NORESERVE wasn't set.
1462  */
1463 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1464 {
1465 	/*
1466 	 * hugetlb has its own accounting separate from the core VM
1467 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1468 	 */
1469 	if (file && is_file_hugepages(file))
1470 		return 0;
1471 
1472 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1473 }
1474 
1475 unsigned long mmap_region(struct file *file, unsigned long addr,
1476 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1477 {
1478 	struct mm_struct *mm = current->mm;
1479 	struct vm_area_struct *vma, *prev;
1480 	int error;
1481 	struct rb_node **rb_link, *rb_parent;
1482 	unsigned long charged = 0;
1483 
1484 	/* Check against address space limit. */
1485 	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1486 		unsigned long nr_pages;
1487 
1488 		/*
1489 		 * MAP_FIXED may remove pages of mappings that intersects with
1490 		 * requested mapping. Account for the pages it would unmap.
1491 		 */
1492 		if (!(vm_flags & MAP_FIXED))
1493 			return -ENOMEM;
1494 
1495 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1496 
1497 		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1498 			return -ENOMEM;
1499 	}
1500 
1501 	/* Clear old maps */
1502 	error = -ENOMEM;
1503 munmap_back:
1504 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1505 		if (do_munmap(mm, addr, len))
1506 			return -ENOMEM;
1507 		goto munmap_back;
1508 	}
1509 
1510 	/*
1511 	 * Private writable mapping: check memory availability
1512 	 */
1513 	if (accountable_mapping(file, vm_flags)) {
1514 		charged = len >> PAGE_SHIFT;
1515 		if (security_vm_enough_memory_mm(mm, charged))
1516 			return -ENOMEM;
1517 		vm_flags |= VM_ACCOUNT;
1518 	}
1519 
1520 	/*
1521 	 * Can we just expand an old mapping?
1522 	 */
1523 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1524 	if (vma)
1525 		goto out;
1526 
1527 	/*
1528 	 * Determine the object being mapped and call the appropriate
1529 	 * specific mapper. the address has already been validated, but
1530 	 * not unmapped, but the maps are removed from the list.
1531 	 */
1532 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1533 	if (!vma) {
1534 		error = -ENOMEM;
1535 		goto unacct_error;
1536 	}
1537 
1538 	vma->vm_mm = mm;
1539 	vma->vm_start = addr;
1540 	vma->vm_end = addr + len;
1541 	vma->vm_flags = vm_flags;
1542 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1543 	vma->vm_pgoff = pgoff;
1544 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1545 
1546 	if (file) {
1547 		if (vm_flags & VM_DENYWRITE) {
1548 			error = deny_write_access(file);
1549 			if (error)
1550 				goto free_vma;
1551 		}
1552 		vma->vm_file = get_file(file);
1553 		error = file->f_op->mmap(file, vma);
1554 		if (error)
1555 			goto unmap_and_free_vma;
1556 
1557 		/* Can addr have changed??
1558 		 *
1559 		 * Answer: Yes, several device drivers can do it in their
1560 		 *         f_op->mmap method. -DaveM
1561 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1562 		 *      be updated for vma_link()
1563 		 */
1564 		WARN_ON_ONCE(addr != vma->vm_start);
1565 
1566 		addr = vma->vm_start;
1567 		vm_flags = vma->vm_flags;
1568 	} else if (vm_flags & VM_SHARED) {
1569 		error = shmem_zero_setup(vma);
1570 		if (error)
1571 			goto free_vma;
1572 	}
1573 
1574 	if (vma_wants_writenotify(vma)) {
1575 		pgprot_t pprot = vma->vm_page_prot;
1576 
1577 		/* Can vma->vm_page_prot have changed??
1578 		 *
1579 		 * Answer: Yes, drivers may have changed it in their
1580 		 *         f_op->mmap method.
1581 		 *
1582 		 * Ensures that vmas marked as uncached stay that way.
1583 		 */
1584 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1585 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1586 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1587 	}
1588 
1589 	vma_link(mm, vma, prev, rb_link, rb_parent);
1590 	/* Once vma denies write, undo our temporary denial count */
1591 	if (vm_flags & VM_DENYWRITE)
1592 		allow_write_access(file);
1593 	file = vma->vm_file;
1594 out:
1595 	perf_event_mmap(vma);
1596 
1597 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1598 	if (vm_flags & VM_LOCKED) {
1599 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1600 					vma == get_gate_vma(current->mm)))
1601 			mm->locked_vm += (len >> PAGE_SHIFT);
1602 		else
1603 			vma->vm_flags &= ~VM_LOCKED;
1604 	}
1605 
1606 	if (file)
1607 		uprobe_mmap(vma);
1608 
1609 	/*
1610 	 * New (or expanded) vma always get soft dirty status.
1611 	 * Otherwise user-space soft-dirty page tracker won't
1612 	 * be able to distinguish situation when vma area unmapped,
1613 	 * then new mapped in-place (which must be aimed as
1614 	 * a completely new data area).
1615 	 */
1616 	vma->vm_flags |= VM_SOFTDIRTY;
1617 
1618 	return addr;
1619 
1620 unmap_and_free_vma:
1621 	if (vm_flags & VM_DENYWRITE)
1622 		allow_write_access(file);
1623 	vma->vm_file = NULL;
1624 	fput(file);
1625 
1626 	/* Undo any partial mapping done by a device driver. */
1627 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1628 	charged = 0;
1629 free_vma:
1630 	kmem_cache_free(vm_area_cachep, vma);
1631 unacct_error:
1632 	if (charged)
1633 		vm_unacct_memory(charged);
1634 	return error;
1635 }
1636 
1637 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1638 {
1639 	/*
1640 	 * We implement the search by looking for an rbtree node that
1641 	 * immediately follows a suitable gap. That is,
1642 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1643 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1644 	 * - gap_end - gap_start >= length
1645 	 */
1646 
1647 	struct mm_struct *mm = current->mm;
1648 	struct vm_area_struct *vma;
1649 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1650 
1651 	/* Adjust search length to account for worst case alignment overhead */
1652 	length = info->length + info->align_mask;
1653 	if (length < info->length)
1654 		return -ENOMEM;
1655 
1656 	/* Adjust search limits by the desired length */
1657 	if (info->high_limit < length)
1658 		return -ENOMEM;
1659 	high_limit = info->high_limit - length;
1660 
1661 	if (info->low_limit > high_limit)
1662 		return -ENOMEM;
1663 	low_limit = info->low_limit + length;
1664 
1665 	/* Check if rbtree root looks promising */
1666 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1667 		goto check_highest;
1668 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1669 	if (vma->rb_subtree_gap < length)
1670 		goto check_highest;
1671 
1672 	while (true) {
1673 		/* Visit left subtree if it looks promising */
1674 		gap_end = vma->vm_start;
1675 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1676 			struct vm_area_struct *left =
1677 				rb_entry(vma->vm_rb.rb_left,
1678 					 struct vm_area_struct, vm_rb);
1679 			if (left->rb_subtree_gap >= length) {
1680 				vma = left;
1681 				continue;
1682 			}
1683 		}
1684 
1685 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1686 check_current:
1687 		/* Check if current node has a suitable gap */
1688 		if (gap_start > high_limit)
1689 			return -ENOMEM;
1690 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1691 			goto found;
1692 
1693 		/* Visit right subtree if it looks promising */
1694 		if (vma->vm_rb.rb_right) {
1695 			struct vm_area_struct *right =
1696 				rb_entry(vma->vm_rb.rb_right,
1697 					 struct vm_area_struct, vm_rb);
1698 			if (right->rb_subtree_gap >= length) {
1699 				vma = right;
1700 				continue;
1701 			}
1702 		}
1703 
1704 		/* Go back up the rbtree to find next candidate node */
1705 		while (true) {
1706 			struct rb_node *prev = &vma->vm_rb;
1707 			if (!rb_parent(prev))
1708 				goto check_highest;
1709 			vma = rb_entry(rb_parent(prev),
1710 				       struct vm_area_struct, vm_rb);
1711 			if (prev == vma->vm_rb.rb_left) {
1712 				gap_start = vma->vm_prev->vm_end;
1713 				gap_end = vma->vm_start;
1714 				goto check_current;
1715 			}
1716 		}
1717 	}
1718 
1719 check_highest:
1720 	/* Check highest gap, which does not precede any rbtree node */
1721 	gap_start = mm->highest_vm_end;
1722 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1723 	if (gap_start > high_limit)
1724 		return -ENOMEM;
1725 
1726 found:
1727 	/* We found a suitable gap. Clip it with the original low_limit. */
1728 	if (gap_start < info->low_limit)
1729 		gap_start = info->low_limit;
1730 
1731 	/* Adjust gap address to the desired alignment */
1732 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1733 
1734 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1735 	VM_BUG_ON(gap_start + info->length > gap_end);
1736 	return gap_start;
1737 }
1738 
1739 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1740 {
1741 	struct mm_struct *mm = current->mm;
1742 	struct vm_area_struct *vma;
1743 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1744 
1745 	/* Adjust search length to account for worst case alignment overhead */
1746 	length = info->length + info->align_mask;
1747 	if (length < info->length)
1748 		return -ENOMEM;
1749 
1750 	/*
1751 	 * Adjust search limits by the desired length.
1752 	 * See implementation comment at top of unmapped_area().
1753 	 */
1754 	gap_end = info->high_limit;
1755 	if (gap_end < length)
1756 		return -ENOMEM;
1757 	high_limit = gap_end - length;
1758 
1759 	if (info->low_limit > high_limit)
1760 		return -ENOMEM;
1761 	low_limit = info->low_limit + length;
1762 
1763 	/* Check highest gap, which does not precede any rbtree node */
1764 	gap_start = mm->highest_vm_end;
1765 	if (gap_start <= high_limit)
1766 		goto found_highest;
1767 
1768 	/* Check if rbtree root looks promising */
1769 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1770 		return -ENOMEM;
1771 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1772 	if (vma->rb_subtree_gap < length)
1773 		return -ENOMEM;
1774 
1775 	while (true) {
1776 		/* Visit right subtree if it looks promising */
1777 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1778 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1779 			struct vm_area_struct *right =
1780 				rb_entry(vma->vm_rb.rb_right,
1781 					 struct vm_area_struct, vm_rb);
1782 			if (right->rb_subtree_gap >= length) {
1783 				vma = right;
1784 				continue;
1785 			}
1786 		}
1787 
1788 check_current:
1789 		/* Check if current node has a suitable gap */
1790 		gap_end = vma->vm_start;
1791 		if (gap_end < low_limit)
1792 			return -ENOMEM;
1793 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1794 			goto found;
1795 
1796 		/* Visit left subtree if it looks promising */
1797 		if (vma->vm_rb.rb_left) {
1798 			struct vm_area_struct *left =
1799 				rb_entry(vma->vm_rb.rb_left,
1800 					 struct vm_area_struct, vm_rb);
1801 			if (left->rb_subtree_gap >= length) {
1802 				vma = left;
1803 				continue;
1804 			}
1805 		}
1806 
1807 		/* Go back up the rbtree to find next candidate node */
1808 		while (true) {
1809 			struct rb_node *prev = &vma->vm_rb;
1810 			if (!rb_parent(prev))
1811 				return -ENOMEM;
1812 			vma = rb_entry(rb_parent(prev),
1813 				       struct vm_area_struct, vm_rb);
1814 			if (prev == vma->vm_rb.rb_right) {
1815 				gap_start = vma->vm_prev ?
1816 					vma->vm_prev->vm_end : 0;
1817 				goto check_current;
1818 			}
1819 		}
1820 	}
1821 
1822 found:
1823 	/* We found a suitable gap. Clip it with the original high_limit. */
1824 	if (gap_end > info->high_limit)
1825 		gap_end = info->high_limit;
1826 
1827 found_highest:
1828 	/* Compute highest gap address at the desired alignment */
1829 	gap_end -= info->length;
1830 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1831 
1832 	VM_BUG_ON(gap_end < info->low_limit);
1833 	VM_BUG_ON(gap_end < gap_start);
1834 	return gap_end;
1835 }
1836 
1837 /* Get an address range which is currently unmapped.
1838  * For shmat() with addr=0.
1839  *
1840  * Ugly calling convention alert:
1841  * Return value with the low bits set means error value,
1842  * ie
1843  *	if (ret & ~PAGE_MASK)
1844  *		error = ret;
1845  *
1846  * This function "knows" that -ENOMEM has the bits set.
1847  */
1848 #ifndef HAVE_ARCH_UNMAPPED_AREA
1849 unsigned long
1850 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1851 		unsigned long len, unsigned long pgoff, unsigned long flags)
1852 {
1853 	struct mm_struct *mm = current->mm;
1854 	struct vm_area_struct *vma;
1855 	struct vm_unmapped_area_info info;
1856 
1857 	if (len > TASK_SIZE - mmap_min_addr)
1858 		return -ENOMEM;
1859 
1860 	if (flags & MAP_FIXED)
1861 		return addr;
1862 
1863 	if (addr) {
1864 		addr = PAGE_ALIGN(addr);
1865 		vma = find_vma(mm, addr);
1866 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1867 		    (!vma || addr + len <= vma->vm_start))
1868 			return addr;
1869 	}
1870 
1871 	info.flags = 0;
1872 	info.length = len;
1873 	info.low_limit = mm->mmap_base;
1874 	info.high_limit = TASK_SIZE;
1875 	info.align_mask = 0;
1876 	return vm_unmapped_area(&info);
1877 }
1878 #endif
1879 
1880 /*
1881  * This mmap-allocator allocates new areas top-down from below the
1882  * stack's low limit (the base):
1883  */
1884 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1885 unsigned long
1886 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1887 			  const unsigned long len, const unsigned long pgoff,
1888 			  const unsigned long flags)
1889 {
1890 	struct vm_area_struct *vma;
1891 	struct mm_struct *mm = current->mm;
1892 	unsigned long addr = addr0;
1893 	struct vm_unmapped_area_info info;
1894 
1895 	/* requested length too big for entire address space */
1896 	if (len > TASK_SIZE - mmap_min_addr)
1897 		return -ENOMEM;
1898 
1899 	if (flags & MAP_FIXED)
1900 		return addr;
1901 
1902 	/* requesting a specific address */
1903 	if (addr) {
1904 		addr = PAGE_ALIGN(addr);
1905 		vma = find_vma(mm, addr);
1906 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1907 				(!vma || addr + len <= vma->vm_start))
1908 			return addr;
1909 	}
1910 
1911 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1912 	info.length = len;
1913 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1914 	info.high_limit = mm->mmap_base;
1915 	info.align_mask = 0;
1916 	addr = vm_unmapped_area(&info);
1917 
1918 	/*
1919 	 * A failed mmap() very likely causes application failure,
1920 	 * so fall back to the bottom-up function here. This scenario
1921 	 * can happen with large stack limits and large mmap()
1922 	 * allocations.
1923 	 */
1924 	if (addr & ~PAGE_MASK) {
1925 		VM_BUG_ON(addr != -ENOMEM);
1926 		info.flags = 0;
1927 		info.low_limit = TASK_UNMAPPED_BASE;
1928 		info.high_limit = TASK_SIZE;
1929 		addr = vm_unmapped_area(&info);
1930 	}
1931 
1932 	return addr;
1933 }
1934 #endif
1935 
1936 unsigned long
1937 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1938 		unsigned long pgoff, unsigned long flags)
1939 {
1940 	unsigned long (*get_area)(struct file *, unsigned long,
1941 				  unsigned long, unsigned long, unsigned long);
1942 
1943 	unsigned long error = arch_mmap_check(addr, len, flags);
1944 	if (error)
1945 		return error;
1946 
1947 	/* Careful about overflows.. */
1948 	if (len > TASK_SIZE)
1949 		return -ENOMEM;
1950 
1951 	get_area = current->mm->get_unmapped_area;
1952 	if (file && file->f_op->get_unmapped_area)
1953 		get_area = file->f_op->get_unmapped_area;
1954 	addr = get_area(file, addr, len, pgoff, flags);
1955 	if (IS_ERR_VALUE(addr))
1956 		return addr;
1957 
1958 	if (addr > TASK_SIZE - len)
1959 		return -ENOMEM;
1960 	if (addr & ~PAGE_MASK)
1961 		return -EINVAL;
1962 
1963 	addr = arch_rebalance_pgtables(addr, len);
1964 	error = security_mmap_addr(addr);
1965 	return error ? error : addr;
1966 }
1967 
1968 EXPORT_SYMBOL(get_unmapped_area);
1969 
1970 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1971 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1972 {
1973 	struct vm_area_struct *vma = NULL;
1974 
1975 	/* Check the cache first. */
1976 	/* (Cache hit rate is typically around 35%.) */
1977 	vma = ACCESS_ONCE(mm->mmap_cache);
1978 	if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1979 		struct rb_node *rb_node;
1980 
1981 		rb_node = mm->mm_rb.rb_node;
1982 		vma = NULL;
1983 
1984 		while (rb_node) {
1985 			struct vm_area_struct *vma_tmp;
1986 
1987 			vma_tmp = rb_entry(rb_node,
1988 					   struct vm_area_struct, vm_rb);
1989 
1990 			if (vma_tmp->vm_end > addr) {
1991 				vma = vma_tmp;
1992 				if (vma_tmp->vm_start <= addr)
1993 					break;
1994 				rb_node = rb_node->rb_left;
1995 			} else
1996 				rb_node = rb_node->rb_right;
1997 		}
1998 		if (vma)
1999 			mm->mmap_cache = vma;
2000 	}
2001 	return vma;
2002 }
2003 
2004 EXPORT_SYMBOL(find_vma);
2005 
2006 /*
2007  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2008  */
2009 struct vm_area_struct *
2010 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2011 			struct vm_area_struct **pprev)
2012 {
2013 	struct vm_area_struct *vma;
2014 
2015 	vma = find_vma(mm, addr);
2016 	if (vma) {
2017 		*pprev = vma->vm_prev;
2018 	} else {
2019 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2020 		*pprev = NULL;
2021 		while (rb_node) {
2022 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2023 			rb_node = rb_node->rb_right;
2024 		}
2025 	}
2026 	return vma;
2027 }
2028 
2029 /*
2030  * Verify that the stack growth is acceptable and
2031  * update accounting. This is shared with both the
2032  * grow-up and grow-down cases.
2033  */
2034 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2035 {
2036 	struct mm_struct *mm = vma->vm_mm;
2037 	struct rlimit *rlim = current->signal->rlim;
2038 	unsigned long new_start;
2039 
2040 	/* address space limit tests */
2041 	if (!may_expand_vm(mm, grow))
2042 		return -ENOMEM;
2043 
2044 	/* Stack limit test */
2045 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2046 		return -ENOMEM;
2047 
2048 	/* mlock limit tests */
2049 	if (vma->vm_flags & VM_LOCKED) {
2050 		unsigned long locked;
2051 		unsigned long limit;
2052 		locked = mm->locked_vm + grow;
2053 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2054 		limit >>= PAGE_SHIFT;
2055 		if (locked > limit && !capable(CAP_IPC_LOCK))
2056 			return -ENOMEM;
2057 	}
2058 
2059 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2060 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2061 			vma->vm_end - size;
2062 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2063 		return -EFAULT;
2064 
2065 	/*
2066 	 * Overcommit..  This must be the final test, as it will
2067 	 * update security statistics.
2068 	 */
2069 	if (security_vm_enough_memory_mm(mm, grow))
2070 		return -ENOMEM;
2071 
2072 	/* Ok, everything looks good - let it rip */
2073 	if (vma->vm_flags & VM_LOCKED)
2074 		mm->locked_vm += grow;
2075 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2076 	return 0;
2077 }
2078 
2079 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2080 /*
2081  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2082  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2083  */
2084 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2085 {
2086 	int error;
2087 
2088 	if (!(vma->vm_flags & VM_GROWSUP))
2089 		return -EFAULT;
2090 
2091 	/*
2092 	 * We must make sure the anon_vma is allocated
2093 	 * so that the anon_vma locking is not a noop.
2094 	 */
2095 	if (unlikely(anon_vma_prepare(vma)))
2096 		return -ENOMEM;
2097 	vma_lock_anon_vma(vma);
2098 
2099 	/*
2100 	 * vma->vm_start/vm_end cannot change under us because the caller
2101 	 * is required to hold the mmap_sem in read mode.  We need the
2102 	 * anon_vma lock to serialize against concurrent expand_stacks.
2103 	 * Also guard against wrapping around to address 0.
2104 	 */
2105 	if (address < PAGE_ALIGN(address+4))
2106 		address = PAGE_ALIGN(address+4);
2107 	else {
2108 		vma_unlock_anon_vma(vma);
2109 		return -ENOMEM;
2110 	}
2111 	error = 0;
2112 
2113 	/* Somebody else might have raced and expanded it already */
2114 	if (address > vma->vm_end) {
2115 		unsigned long size, grow;
2116 
2117 		size = address - vma->vm_start;
2118 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2119 
2120 		error = -ENOMEM;
2121 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2122 			error = acct_stack_growth(vma, size, grow);
2123 			if (!error) {
2124 				/*
2125 				 * vma_gap_update() doesn't support concurrent
2126 				 * updates, but we only hold a shared mmap_sem
2127 				 * lock here, so we need to protect against
2128 				 * concurrent vma expansions.
2129 				 * vma_lock_anon_vma() doesn't help here, as
2130 				 * we don't guarantee that all growable vmas
2131 				 * in a mm share the same root anon vma.
2132 				 * So, we reuse mm->page_table_lock to guard
2133 				 * against concurrent vma expansions.
2134 				 */
2135 				spin_lock(&vma->vm_mm->page_table_lock);
2136 				anon_vma_interval_tree_pre_update_vma(vma);
2137 				vma->vm_end = address;
2138 				anon_vma_interval_tree_post_update_vma(vma);
2139 				if (vma->vm_next)
2140 					vma_gap_update(vma->vm_next);
2141 				else
2142 					vma->vm_mm->highest_vm_end = address;
2143 				spin_unlock(&vma->vm_mm->page_table_lock);
2144 
2145 				perf_event_mmap(vma);
2146 			}
2147 		}
2148 	}
2149 	vma_unlock_anon_vma(vma);
2150 	khugepaged_enter_vma_merge(vma);
2151 	validate_mm(vma->vm_mm);
2152 	return error;
2153 }
2154 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2155 
2156 /*
2157  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2158  */
2159 int expand_downwards(struct vm_area_struct *vma,
2160 				   unsigned long address)
2161 {
2162 	int error;
2163 
2164 	/*
2165 	 * We must make sure the anon_vma is allocated
2166 	 * so that the anon_vma locking is not a noop.
2167 	 */
2168 	if (unlikely(anon_vma_prepare(vma)))
2169 		return -ENOMEM;
2170 
2171 	address &= PAGE_MASK;
2172 	error = security_mmap_addr(address);
2173 	if (error)
2174 		return error;
2175 
2176 	vma_lock_anon_vma(vma);
2177 
2178 	/*
2179 	 * vma->vm_start/vm_end cannot change under us because the caller
2180 	 * is required to hold the mmap_sem in read mode.  We need the
2181 	 * anon_vma lock to serialize against concurrent expand_stacks.
2182 	 */
2183 
2184 	/* Somebody else might have raced and expanded it already */
2185 	if (address < vma->vm_start) {
2186 		unsigned long size, grow;
2187 
2188 		size = vma->vm_end - address;
2189 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2190 
2191 		error = -ENOMEM;
2192 		if (grow <= vma->vm_pgoff) {
2193 			error = acct_stack_growth(vma, size, grow);
2194 			if (!error) {
2195 				/*
2196 				 * vma_gap_update() doesn't support concurrent
2197 				 * updates, but we only hold a shared mmap_sem
2198 				 * lock here, so we need to protect against
2199 				 * concurrent vma expansions.
2200 				 * vma_lock_anon_vma() doesn't help here, as
2201 				 * we don't guarantee that all growable vmas
2202 				 * in a mm share the same root anon vma.
2203 				 * So, we reuse mm->page_table_lock to guard
2204 				 * against concurrent vma expansions.
2205 				 */
2206 				spin_lock(&vma->vm_mm->page_table_lock);
2207 				anon_vma_interval_tree_pre_update_vma(vma);
2208 				vma->vm_start = address;
2209 				vma->vm_pgoff -= grow;
2210 				anon_vma_interval_tree_post_update_vma(vma);
2211 				vma_gap_update(vma);
2212 				spin_unlock(&vma->vm_mm->page_table_lock);
2213 
2214 				perf_event_mmap(vma);
2215 			}
2216 		}
2217 	}
2218 	vma_unlock_anon_vma(vma);
2219 	khugepaged_enter_vma_merge(vma);
2220 	validate_mm(vma->vm_mm);
2221 	return error;
2222 }
2223 
2224 /*
2225  * Note how expand_stack() refuses to expand the stack all the way to
2226  * abut the next virtual mapping, *unless* that mapping itself is also
2227  * a stack mapping. We want to leave room for a guard page, after all
2228  * (the guard page itself is not added here, that is done by the
2229  * actual page faulting logic)
2230  *
2231  * This matches the behavior of the guard page logic (see mm/memory.c:
2232  * check_stack_guard_page()), which only allows the guard page to be
2233  * removed under these circumstances.
2234  */
2235 #ifdef CONFIG_STACK_GROWSUP
2236 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2237 {
2238 	struct vm_area_struct *next;
2239 
2240 	address &= PAGE_MASK;
2241 	next = vma->vm_next;
2242 	if (next && next->vm_start == address + PAGE_SIZE) {
2243 		if (!(next->vm_flags & VM_GROWSUP))
2244 			return -ENOMEM;
2245 	}
2246 	return expand_upwards(vma, address);
2247 }
2248 
2249 struct vm_area_struct *
2250 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2251 {
2252 	struct vm_area_struct *vma, *prev;
2253 
2254 	addr &= PAGE_MASK;
2255 	vma = find_vma_prev(mm, addr, &prev);
2256 	if (vma && (vma->vm_start <= addr))
2257 		return vma;
2258 	if (!prev || expand_stack(prev, addr))
2259 		return NULL;
2260 	if (prev->vm_flags & VM_LOCKED)
2261 		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2262 	return prev;
2263 }
2264 #else
2265 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2266 {
2267 	struct vm_area_struct *prev;
2268 
2269 	address &= PAGE_MASK;
2270 	prev = vma->vm_prev;
2271 	if (prev && prev->vm_end == address) {
2272 		if (!(prev->vm_flags & VM_GROWSDOWN))
2273 			return -ENOMEM;
2274 	}
2275 	return expand_downwards(vma, address);
2276 }
2277 
2278 struct vm_area_struct *
2279 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2280 {
2281 	struct vm_area_struct * vma;
2282 	unsigned long start;
2283 
2284 	addr &= PAGE_MASK;
2285 	vma = find_vma(mm,addr);
2286 	if (!vma)
2287 		return NULL;
2288 	if (vma->vm_start <= addr)
2289 		return vma;
2290 	if (!(vma->vm_flags & VM_GROWSDOWN))
2291 		return NULL;
2292 	start = vma->vm_start;
2293 	if (expand_stack(vma, addr))
2294 		return NULL;
2295 	if (vma->vm_flags & VM_LOCKED)
2296 		__mlock_vma_pages_range(vma, addr, start, NULL);
2297 	return vma;
2298 }
2299 #endif
2300 
2301 /*
2302  * Ok - we have the memory areas we should free on the vma list,
2303  * so release them, and do the vma updates.
2304  *
2305  * Called with the mm semaphore held.
2306  */
2307 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2308 {
2309 	unsigned long nr_accounted = 0;
2310 
2311 	/* Update high watermark before we lower total_vm */
2312 	update_hiwater_vm(mm);
2313 	do {
2314 		long nrpages = vma_pages(vma);
2315 
2316 		if (vma->vm_flags & VM_ACCOUNT)
2317 			nr_accounted += nrpages;
2318 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2319 		vma = remove_vma(vma);
2320 	} while (vma);
2321 	vm_unacct_memory(nr_accounted);
2322 	validate_mm(mm);
2323 }
2324 
2325 /*
2326  * Get rid of page table information in the indicated region.
2327  *
2328  * Called with the mm semaphore held.
2329  */
2330 static void unmap_region(struct mm_struct *mm,
2331 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2332 		unsigned long start, unsigned long end)
2333 {
2334 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2335 	struct mmu_gather tlb;
2336 
2337 	lru_add_drain();
2338 	tlb_gather_mmu(&tlb, mm, start, end);
2339 	update_hiwater_rss(mm);
2340 	unmap_vmas(&tlb, vma, start, end);
2341 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2342 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2343 	tlb_finish_mmu(&tlb, start, end);
2344 }
2345 
2346 /*
2347  * Create a list of vma's touched by the unmap, removing them from the mm's
2348  * vma list as we go..
2349  */
2350 static void
2351 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2352 	struct vm_area_struct *prev, unsigned long end)
2353 {
2354 	struct vm_area_struct **insertion_point;
2355 	struct vm_area_struct *tail_vma = NULL;
2356 
2357 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2358 	vma->vm_prev = NULL;
2359 	do {
2360 		vma_rb_erase(vma, &mm->mm_rb);
2361 		mm->map_count--;
2362 		tail_vma = vma;
2363 		vma = vma->vm_next;
2364 	} while (vma && vma->vm_start < end);
2365 	*insertion_point = vma;
2366 	if (vma) {
2367 		vma->vm_prev = prev;
2368 		vma_gap_update(vma);
2369 	} else
2370 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2371 	tail_vma->vm_next = NULL;
2372 	mm->mmap_cache = NULL;		/* Kill the cache. */
2373 }
2374 
2375 /*
2376  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2377  * munmap path where it doesn't make sense to fail.
2378  */
2379 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2380 	      unsigned long addr, int new_below)
2381 {
2382 	struct vm_area_struct *new;
2383 	int err = -ENOMEM;
2384 
2385 	if (is_vm_hugetlb_page(vma) && (addr &
2386 					~(huge_page_mask(hstate_vma(vma)))))
2387 		return -EINVAL;
2388 
2389 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2390 	if (!new)
2391 		goto out_err;
2392 
2393 	/* most fields are the same, copy all, and then fixup */
2394 	*new = *vma;
2395 
2396 	INIT_LIST_HEAD(&new->anon_vma_chain);
2397 
2398 	if (new_below)
2399 		new->vm_end = addr;
2400 	else {
2401 		new->vm_start = addr;
2402 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2403 	}
2404 
2405 	err = vma_dup_policy(vma, new);
2406 	if (err)
2407 		goto out_free_vma;
2408 
2409 	if (anon_vma_clone(new, vma))
2410 		goto out_free_mpol;
2411 
2412 	if (new->vm_file)
2413 		get_file(new->vm_file);
2414 
2415 	if (new->vm_ops && new->vm_ops->open)
2416 		new->vm_ops->open(new);
2417 
2418 	if (new_below)
2419 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2420 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2421 	else
2422 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2423 
2424 	/* Success. */
2425 	if (!err)
2426 		return 0;
2427 
2428 	/* Clean everything up if vma_adjust failed. */
2429 	if (new->vm_ops && new->vm_ops->close)
2430 		new->vm_ops->close(new);
2431 	if (new->vm_file)
2432 		fput(new->vm_file);
2433 	unlink_anon_vmas(new);
2434  out_free_mpol:
2435 	mpol_put(vma_policy(new));
2436  out_free_vma:
2437 	kmem_cache_free(vm_area_cachep, new);
2438  out_err:
2439 	return err;
2440 }
2441 
2442 /*
2443  * Split a vma into two pieces at address 'addr', a new vma is allocated
2444  * either for the first part or the tail.
2445  */
2446 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2447 	      unsigned long addr, int new_below)
2448 {
2449 	if (mm->map_count >= sysctl_max_map_count)
2450 		return -ENOMEM;
2451 
2452 	return __split_vma(mm, vma, addr, new_below);
2453 }
2454 
2455 /* Munmap is split into 2 main parts -- this part which finds
2456  * what needs doing, and the areas themselves, which do the
2457  * work.  This now handles partial unmappings.
2458  * Jeremy Fitzhardinge <jeremy@goop.org>
2459  */
2460 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2461 {
2462 	unsigned long end;
2463 	struct vm_area_struct *vma, *prev, *last;
2464 
2465 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2466 		return -EINVAL;
2467 
2468 	if ((len = PAGE_ALIGN(len)) == 0)
2469 		return -EINVAL;
2470 
2471 	/* Find the first overlapping VMA */
2472 	vma = find_vma(mm, start);
2473 	if (!vma)
2474 		return 0;
2475 	prev = vma->vm_prev;
2476 	/* we have  start < vma->vm_end  */
2477 
2478 	/* if it doesn't overlap, we have nothing.. */
2479 	end = start + len;
2480 	if (vma->vm_start >= end)
2481 		return 0;
2482 
2483 	/*
2484 	 * If we need to split any vma, do it now to save pain later.
2485 	 *
2486 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2487 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2488 	 * places tmp vma above, and higher split_vma places tmp vma below.
2489 	 */
2490 	if (start > vma->vm_start) {
2491 		int error;
2492 
2493 		/*
2494 		 * Make sure that map_count on return from munmap() will
2495 		 * not exceed its limit; but let map_count go just above
2496 		 * its limit temporarily, to help free resources as expected.
2497 		 */
2498 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2499 			return -ENOMEM;
2500 
2501 		error = __split_vma(mm, vma, start, 0);
2502 		if (error)
2503 			return error;
2504 		prev = vma;
2505 	}
2506 
2507 	/* Does it split the last one? */
2508 	last = find_vma(mm, end);
2509 	if (last && end > last->vm_start) {
2510 		int error = __split_vma(mm, last, end, 1);
2511 		if (error)
2512 			return error;
2513 	}
2514 	vma = prev? prev->vm_next: mm->mmap;
2515 
2516 	/*
2517 	 * unlock any mlock()ed ranges before detaching vmas
2518 	 */
2519 	if (mm->locked_vm) {
2520 		struct vm_area_struct *tmp = vma;
2521 		while (tmp && tmp->vm_start < end) {
2522 			if (tmp->vm_flags & VM_LOCKED) {
2523 				mm->locked_vm -= vma_pages(tmp);
2524 				munlock_vma_pages_all(tmp);
2525 			}
2526 			tmp = tmp->vm_next;
2527 		}
2528 	}
2529 
2530 	/*
2531 	 * Remove the vma's, and unmap the actual pages
2532 	 */
2533 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2534 	unmap_region(mm, vma, prev, start, end);
2535 
2536 	/* Fix up all other VM information */
2537 	remove_vma_list(mm, vma);
2538 
2539 	return 0;
2540 }
2541 
2542 int vm_munmap(unsigned long start, size_t len)
2543 {
2544 	int ret;
2545 	struct mm_struct *mm = current->mm;
2546 
2547 	down_write(&mm->mmap_sem);
2548 	ret = do_munmap(mm, start, len);
2549 	up_write(&mm->mmap_sem);
2550 	return ret;
2551 }
2552 EXPORT_SYMBOL(vm_munmap);
2553 
2554 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2555 {
2556 	profile_munmap(addr);
2557 	return vm_munmap(addr, len);
2558 }
2559 
2560 static inline void verify_mm_writelocked(struct mm_struct *mm)
2561 {
2562 #ifdef CONFIG_DEBUG_VM
2563 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2564 		WARN_ON(1);
2565 		up_read(&mm->mmap_sem);
2566 	}
2567 #endif
2568 }
2569 
2570 /*
2571  *  this is really a simplified "do_mmap".  it only handles
2572  *  anonymous maps.  eventually we may be able to do some
2573  *  brk-specific accounting here.
2574  */
2575 static unsigned long do_brk(unsigned long addr, unsigned long len)
2576 {
2577 	struct mm_struct * mm = current->mm;
2578 	struct vm_area_struct * vma, * prev;
2579 	unsigned long flags;
2580 	struct rb_node ** rb_link, * rb_parent;
2581 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2582 	int error;
2583 
2584 	len = PAGE_ALIGN(len);
2585 	if (!len)
2586 		return addr;
2587 
2588 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2589 
2590 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2591 	if (error & ~PAGE_MASK)
2592 		return error;
2593 
2594 	/*
2595 	 * mlock MCL_FUTURE?
2596 	 */
2597 	if (mm->def_flags & VM_LOCKED) {
2598 		unsigned long locked, lock_limit;
2599 		locked = len >> PAGE_SHIFT;
2600 		locked += mm->locked_vm;
2601 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2602 		lock_limit >>= PAGE_SHIFT;
2603 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2604 			return -EAGAIN;
2605 	}
2606 
2607 	/*
2608 	 * mm->mmap_sem is required to protect against another thread
2609 	 * changing the mappings in case we sleep.
2610 	 */
2611 	verify_mm_writelocked(mm);
2612 
2613 	/*
2614 	 * Clear old maps.  this also does some error checking for us
2615 	 */
2616  munmap_back:
2617 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2618 		if (do_munmap(mm, addr, len))
2619 			return -ENOMEM;
2620 		goto munmap_back;
2621 	}
2622 
2623 	/* Check against address space limits *after* clearing old maps... */
2624 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2625 		return -ENOMEM;
2626 
2627 	if (mm->map_count > sysctl_max_map_count)
2628 		return -ENOMEM;
2629 
2630 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2631 		return -ENOMEM;
2632 
2633 	/* Can we just expand an old private anonymous mapping? */
2634 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2635 					NULL, NULL, pgoff, NULL);
2636 	if (vma)
2637 		goto out;
2638 
2639 	/*
2640 	 * create a vma struct for an anonymous mapping
2641 	 */
2642 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2643 	if (!vma) {
2644 		vm_unacct_memory(len >> PAGE_SHIFT);
2645 		return -ENOMEM;
2646 	}
2647 
2648 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2649 	vma->vm_mm = mm;
2650 	vma->vm_start = addr;
2651 	vma->vm_end = addr + len;
2652 	vma->vm_pgoff = pgoff;
2653 	vma->vm_flags = flags;
2654 	vma->vm_page_prot = vm_get_page_prot(flags);
2655 	vma_link(mm, vma, prev, rb_link, rb_parent);
2656 out:
2657 	perf_event_mmap(vma);
2658 	mm->total_vm += len >> PAGE_SHIFT;
2659 	if (flags & VM_LOCKED)
2660 		mm->locked_vm += (len >> PAGE_SHIFT);
2661 	vma->vm_flags |= VM_SOFTDIRTY;
2662 	return addr;
2663 }
2664 
2665 unsigned long vm_brk(unsigned long addr, unsigned long len)
2666 {
2667 	struct mm_struct *mm = current->mm;
2668 	unsigned long ret;
2669 	bool populate;
2670 
2671 	down_write(&mm->mmap_sem);
2672 	ret = do_brk(addr, len);
2673 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2674 	up_write(&mm->mmap_sem);
2675 	if (populate)
2676 		mm_populate(addr, len);
2677 	return ret;
2678 }
2679 EXPORT_SYMBOL(vm_brk);
2680 
2681 /* Release all mmaps. */
2682 void exit_mmap(struct mm_struct *mm)
2683 {
2684 	struct mmu_gather tlb;
2685 	struct vm_area_struct *vma;
2686 	unsigned long nr_accounted = 0;
2687 
2688 	/* mm's last user has gone, and its about to be pulled down */
2689 	mmu_notifier_release(mm);
2690 
2691 	if (mm->locked_vm) {
2692 		vma = mm->mmap;
2693 		while (vma) {
2694 			if (vma->vm_flags & VM_LOCKED)
2695 				munlock_vma_pages_all(vma);
2696 			vma = vma->vm_next;
2697 		}
2698 	}
2699 
2700 	arch_exit_mmap(mm);
2701 
2702 	vma = mm->mmap;
2703 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2704 		return;
2705 
2706 	lru_add_drain();
2707 	flush_cache_mm(mm);
2708 	tlb_gather_mmu(&tlb, mm, 0, -1);
2709 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2710 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2711 	unmap_vmas(&tlb, vma, 0, -1);
2712 
2713 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2714 	tlb_finish_mmu(&tlb, 0, -1);
2715 
2716 	/*
2717 	 * Walk the list again, actually closing and freeing it,
2718 	 * with preemption enabled, without holding any MM locks.
2719 	 */
2720 	while (vma) {
2721 		if (vma->vm_flags & VM_ACCOUNT)
2722 			nr_accounted += vma_pages(vma);
2723 		vma = remove_vma(vma);
2724 	}
2725 	vm_unacct_memory(nr_accounted);
2726 
2727 	WARN_ON(atomic_long_read(&mm->nr_ptes) >
2728 			(FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2729 }
2730 
2731 /* Insert vm structure into process list sorted by address
2732  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2733  * then i_mmap_mutex is taken here.
2734  */
2735 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2736 {
2737 	struct vm_area_struct *prev;
2738 	struct rb_node **rb_link, *rb_parent;
2739 
2740 	/*
2741 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2742 	 * until its first write fault, when page's anon_vma and index
2743 	 * are set.  But now set the vm_pgoff it will almost certainly
2744 	 * end up with (unless mremap moves it elsewhere before that
2745 	 * first wfault), so /proc/pid/maps tells a consistent story.
2746 	 *
2747 	 * By setting it to reflect the virtual start address of the
2748 	 * vma, merges and splits can happen in a seamless way, just
2749 	 * using the existing file pgoff checks and manipulations.
2750 	 * Similarly in do_mmap_pgoff and in do_brk.
2751 	 */
2752 	if (!vma->vm_file) {
2753 		BUG_ON(vma->anon_vma);
2754 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2755 	}
2756 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2757 			   &prev, &rb_link, &rb_parent))
2758 		return -ENOMEM;
2759 	if ((vma->vm_flags & VM_ACCOUNT) &&
2760 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2761 		return -ENOMEM;
2762 
2763 	vma_link(mm, vma, prev, rb_link, rb_parent);
2764 	return 0;
2765 }
2766 
2767 /*
2768  * Copy the vma structure to a new location in the same mm,
2769  * prior to moving page table entries, to effect an mremap move.
2770  */
2771 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2772 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2773 	bool *need_rmap_locks)
2774 {
2775 	struct vm_area_struct *vma = *vmap;
2776 	unsigned long vma_start = vma->vm_start;
2777 	struct mm_struct *mm = vma->vm_mm;
2778 	struct vm_area_struct *new_vma, *prev;
2779 	struct rb_node **rb_link, *rb_parent;
2780 	bool faulted_in_anon_vma = true;
2781 
2782 	/*
2783 	 * If anonymous vma has not yet been faulted, update new pgoff
2784 	 * to match new location, to increase its chance of merging.
2785 	 */
2786 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2787 		pgoff = addr >> PAGE_SHIFT;
2788 		faulted_in_anon_vma = false;
2789 	}
2790 
2791 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2792 		return NULL;	/* should never get here */
2793 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2794 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2795 	if (new_vma) {
2796 		/*
2797 		 * Source vma may have been merged into new_vma
2798 		 */
2799 		if (unlikely(vma_start >= new_vma->vm_start &&
2800 			     vma_start < new_vma->vm_end)) {
2801 			/*
2802 			 * The only way we can get a vma_merge with
2803 			 * self during an mremap is if the vma hasn't
2804 			 * been faulted in yet and we were allowed to
2805 			 * reset the dst vma->vm_pgoff to the
2806 			 * destination address of the mremap to allow
2807 			 * the merge to happen. mremap must change the
2808 			 * vm_pgoff linearity between src and dst vmas
2809 			 * (in turn preventing a vma_merge) to be
2810 			 * safe. It is only safe to keep the vm_pgoff
2811 			 * linear if there are no pages mapped yet.
2812 			 */
2813 			VM_BUG_ON(faulted_in_anon_vma);
2814 			*vmap = vma = new_vma;
2815 		}
2816 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2817 	} else {
2818 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2819 		if (new_vma) {
2820 			*new_vma = *vma;
2821 			new_vma->vm_start = addr;
2822 			new_vma->vm_end = addr + len;
2823 			new_vma->vm_pgoff = pgoff;
2824 			if (vma_dup_policy(vma, new_vma))
2825 				goto out_free_vma;
2826 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2827 			if (anon_vma_clone(new_vma, vma))
2828 				goto out_free_mempol;
2829 			if (new_vma->vm_file)
2830 				get_file(new_vma->vm_file);
2831 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2832 				new_vma->vm_ops->open(new_vma);
2833 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2834 			*need_rmap_locks = false;
2835 		}
2836 	}
2837 	return new_vma;
2838 
2839  out_free_mempol:
2840 	mpol_put(vma_policy(new_vma));
2841  out_free_vma:
2842 	kmem_cache_free(vm_area_cachep, new_vma);
2843 	return NULL;
2844 }
2845 
2846 /*
2847  * Return true if the calling process may expand its vm space by the passed
2848  * number of pages
2849  */
2850 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2851 {
2852 	unsigned long cur = mm->total_vm;	/* pages */
2853 	unsigned long lim;
2854 
2855 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2856 
2857 	if (cur + npages > lim)
2858 		return 0;
2859 	return 1;
2860 }
2861 
2862 
2863 static int special_mapping_fault(struct vm_area_struct *vma,
2864 				struct vm_fault *vmf)
2865 {
2866 	pgoff_t pgoff;
2867 	struct page **pages;
2868 
2869 	/*
2870 	 * special mappings have no vm_file, and in that case, the mm
2871 	 * uses vm_pgoff internally. So we have to subtract it from here.
2872 	 * We are allowed to do this because we are the mm; do not copy
2873 	 * this code into drivers!
2874 	 */
2875 	pgoff = vmf->pgoff - vma->vm_pgoff;
2876 
2877 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2878 		pgoff--;
2879 
2880 	if (*pages) {
2881 		struct page *page = *pages;
2882 		get_page(page);
2883 		vmf->page = page;
2884 		return 0;
2885 	}
2886 
2887 	return VM_FAULT_SIGBUS;
2888 }
2889 
2890 /*
2891  * Having a close hook prevents vma merging regardless of flags.
2892  */
2893 static void special_mapping_close(struct vm_area_struct *vma)
2894 {
2895 }
2896 
2897 static const struct vm_operations_struct special_mapping_vmops = {
2898 	.close = special_mapping_close,
2899 	.fault = special_mapping_fault,
2900 };
2901 
2902 /*
2903  * Called with mm->mmap_sem held for writing.
2904  * Insert a new vma covering the given region, with the given flags.
2905  * Its pages are supplied by the given array of struct page *.
2906  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2907  * The region past the last page supplied will always produce SIGBUS.
2908  * The array pointer and the pages it points to are assumed to stay alive
2909  * for as long as this mapping might exist.
2910  */
2911 int install_special_mapping(struct mm_struct *mm,
2912 			    unsigned long addr, unsigned long len,
2913 			    unsigned long vm_flags, struct page **pages)
2914 {
2915 	int ret;
2916 	struct vm_area_struct *vma;
2917 
2918 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2919 	if (unlikely(vma == NULL))
2920 		return -ENOMEM;
2921 
2922 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2923 	vma->vm_mm = mm;
2924 	vma->vm_start = addr;
2925 	vma->vm_end = addr + len;
2926 
2927 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2928 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2929 
2930 	vma->vm_ops = &special_mapping_vmops;
2931 	vma->vm_private_data = pages;
2932 
2933 	ret = insert_vm_struct(mm, vma);
2934 	if (ret)
2935 		goto out;
2936 
2937 	mm->total_vm += len >> PAGE_SHIFT;
2938 
2939 	perf_event_mmap(vma);
2940 
2941 	return 0;
2942 
2943 out:
2944 	kmem_cache_free(vm_area_cachep, vma);
2945 	return ret;
2946 }
2947 
2948 static DEFINE_MUTEX(mm_all_locks_mutex);
2949 
2950 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2951 {
2952 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2953 		/*
2954 		 * The LSB of head.next can't change from under us
2955 		 * because we hold the mm_all_locks_mutex.
2956 		 */
2957 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2958 		/*
2959 		 * We can safely modify head.next after taking the
2960 		 * anon_vma->root->rwsem. If some other vma in this mm shares
2961 		 * the same anon_vma we won't take it again.
2962 		 *
2963 		 * No need of atomic instructions here, head.next
2964 		 * can't change from under us thanks to the
2965 		 * anon_vma->root->rwsem.
2966 		 */
2967 		if (__test_and_set_bit(0, (unsigned long *)
2968 				       &anon_vma->root->rb_root.rb_node))
2969 			BUG();
2970 	}
2971 }
2972 
2973 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2974 {
2975 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2976 		/*
2977 		 * AS_MM_ALL_LOCKS can't change from under us because
2978 		 * we hold the mm_all_locks_mutex.
2979 		 *
2980 		 * Operations on ->flags have to be atomic because
2981 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2982 		 * mm_all_locks_mutex, there may be other cpus
2983 		 * changing other bitflags in parallel to us.
2984 		 */
2985 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2986 			BUG();
2987 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2988 	}
2989 }
2990 
2991 /*
2992  * This operation locks against the VM for all pte/vma/mm related
2993  * operations that could ever happen on a certain mm. This includes
2994  * vmtruncate, try_to_unmap, and all page faults.
2995  *
2996  * The caller must take the mmap_sem in write mode before calling
2997  * mm_take_all_locks(). The caller isn't allowed to release the
2998  * mmap_sem until mm_drop_all_locks() returns.
2999  *
3000  * mmap_sem in write mode is required in order to block all operations
3001  * that could modify pagetables and free pages without need of
3002  * altering the vma layout (for example populate_range() with
3003  * nonlinear vmas). It's also needed in write mode to avoid new
3004  * anon_vmas to be associated with existing vmas.
3005  *
3006  * A single task can't take more than one mm_take_all_locks() in a row
3007  * or it would deadlock.
3008  *
3009  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3010  * mapping->flags avoid to take the same lock twice, if more than one
3011  * vma in this mm is backed by the same anon_vma or address_space.
3012  *
3013  * We can take all the locks in random order because the VM code
3014  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3015  * takes more than one of them in a row. Secondly we're protected
3016  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3017  *
3018  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3019  * that may have to take thousand of locks.
3020  *
3021  * mm_take_all_locks() can fail if it's interrupted by signals.
3022  */
3023 int mm_take_all_locks(struct mm_struct *mm)
3024 {
3025 	struct vm_area_struct *vma;
3026 	struct anon_vma_chain *avc;
3027 
3028 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3029 
3030 	mutex_lock(&mm_all_locks_mutex);
3031 
3032 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3033 		if (signal_pending(current))
3034 			goto out_unlock;
3035 		if (vma->vm_file && vma->vm_file->f_mapping)
3036 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3037 	}
3038 
3039 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3040 		if (signal_pending(current))
3041 			goto out_unlock;
3042 		if (vma->anon_vma)
3043 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3044 				vm_lock_anon_vma(mm, avc->anon_vma);
3045 	}
3046 
3047 	return 0;
3048 
3049 out_unlock:
3050 	mm_drop_all_locks(mm);
3051 	return -EINTR;
3052 }
3053 
3054 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3055 {
3056 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3057 		/*
3058 		 * The LSB of head.next can't change to 0 from under
3059 		 * us because we hold the mm_all_locks_mutex.
3060 		 *
3061 		 * We must however clear the bitflag before unlocking
3062 		 * the vma so the users using the anon_vma->rb_root will
3063 		 * never see our bitflag.
3064 		 *
3065 		 * No need of atomic instructions here, head.next
3066 		 * can't change from under us until we release the
3067 		 * anon_vma->root->rwsem.
3068 		 */
3069 		if (!__test_and_clear_bit(0, (unsigned long *)
3070 					  &anon_vma->root->rb_root.rb_node))
3071 			BUG();
3072 		anon_vma_unlock_write(anon_vma);
3073 	}
3074 }
3075 
3076 static void vm_unlock_mapping(struct address_space *mapping)
3077 {
3078 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3079 		/*
3080 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3081 		 * because we hold the mm_all_locks_mutex.
3082 		 */
3083 		mutex_unlock(&mapping->i_mmap_mutex);
3084 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3085 					&mapping->flags))
3086 			BUG();
3087 	}
3088 }
3089 
3090 /*
3091  * The mmap_sem cannot be released by the caller until
3092  * mm_drop_all_locks() returns.
3093  */
3094 void mm_drop_all_locks(struct mm_struct *mm)
3095 {
3096 	struct vm_area_struct *vma;
3097 	struct anon_vma_chain *avc;
3098 
3099 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3100 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3101 
3102 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3103 		if (vma->anon_vma)
3104 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3105 				vm_unlock_anon_vma(avc->anon_vma);
3106 		if (vma->vm_file && vma->vm_file->f_mapping)
3107 			vm_unlock_mapping(vma->vm_file->f_mapping);
3108 	}
3109 
3110 	mutex_unlock(&mm_all_locks_mutex);
3111 }
3112 
3113 /*
3114  * initialise the VMA slab
3115  */
3116 void __init mmap_init(void)
3117 {
3118 	int ret;
3119 
3120 	ret = percpu_counter_init(&vm_committed_as, 0);
3121 	VM_BUG_ON(ret);
3122 }
3123 
3124 /*
3125  * Initialise sysctl_user_reserve_kbytes.
3126  *
3127  * This is intended to prevent a user from starting a single memory hogging
3128  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3129  * mode.
3130  *
3131  * The default value is min(3% of free memory, 128MB)
3132  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3133  */
3134 static int init_user_reserve(void)
3135 {
3136 	unsigned long free_kbytes;
3137 
3138 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3139 
3140 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3141 	return 0;
3142 }
3143 module_init(init_user_reserve)
3144 
3145 /*
3146  * Initialise sysctl_admin_reserve_kbytes.
3147  *
3148  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3149  * to log in and kill a memory hogging process.
3150  *
3151  * Systems with more than 256MB will reserve 8MB, enough to recover
3152  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3153  * only reserve 3% of free pages by default.
3154  */
3155 static int init_admin_reserve(void)
3156 {
3157 	unsigned long free_kbytes;
3158 
3159 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3160 
3161 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3162 	return 0;
3163 }
3164 module_init(init_admin_reserve)
3165 
3166 /*
3167  * Reinititalise user and admin reserves if memory is added or removed.
3168  *
3169  * The default user reserve max is 128MB, and the default max for the
3170  * admin reserve is 8MB. These are usually, but not always, enough to
3171  * enable recovery from a memory hogging process using login/sshd, a shell,
3172  * and tools like top. It may make sense to increase or even disable the
3173  * reserve depending on the existence of swap or variations in the recovery
3174  * tools. So, the admin may have changed them.
3175  *
3176  * If memory is added and the reserves have been eliminated or increased above
3177  * the default max, then we'll trust the admin.
3178  *
3179  * If memory is removed and there isn't enough free memory, then we
3180  * need to reset the reserves.
3181  *
3182  * Otherwise keep the reserve set by the admin.
3183  */
3184 static int reserve_mem_notifier(struct notifier_block *nb,
3185 			     unsigned long action, void *data)
3186 {
3187 	unsigned long tmp, free_kbytes;
3188 
3189 	switch (action) {
3190 	case MEM_ONLINE:
3191 		/* Default max is 128MB. Leave alone if modified by operator. */
3192 		tmp = sysctl_user_reserve_kbytes;
3193 		if (0 < tmp && tmp < (1UL << 17))
3194 			init_user_reserve();
3195 
3196 		/* Default max is 8MB.  Leave alone if modified by operator. */
3197 		tmp = sysctl_admin_reserve_kbytes;
3198 		if (0 < tmp && tmp < (1UL << 13))
3199 			init_admin_reserve();
3200 
3201 		break;
3202 	case MEM_OFFLINE:
3203 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3204 
3205 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3206 			init_user_reserve();
3207 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3208 				sysctl_user_reserve_kbytes);
3209 		}
3210 
3211 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3212 			init_admin_reserve();
3213 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3214 				sysctl_admin_reserve_kbytes);
3215 		}
3216 		break;
3217 	default:
3218 		break;
3219 	}
3220 	return NOTIFY_OK;
3221 }
3222 
3223 static struct notifier_block reserve_mem_nb = {
3224 	.notifier_call = reserve_mem_notifier,
3225 };
3226 
3227 static int __meminit init_reserve_notifier(void)
3228 {
3229 	if (register_hotmemory_notifier(&reserve_mem_nb))
3230 		printk("Failed registering memory add/remove notifier for admin reserve");
3231 
3232 	return 0;
3233 }
3234 module_init(init_reserve_notifier)
3235