xref: /openbmc/linux/mm/mmap.c (revision c127f98ba9aba1818a6ca3a1da5a24653a10d966)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlb.h>
52 #include <asm/mmu_context.h>
53 
54 #include "internal.h"
55 
56 #ifndef arch_mmap_check
57 #define arch_mmap_check(addr, len, flags)	(0)
58 #endif
59 
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
69 #endif
70 
71 static bool ignore_rlimit_data;
72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
73 
74 static void unmap_region(struct mm_struct *mm,
75 		struct vm_area_struct *vma, struct vm_area_struct *prev,
76 		unsigned long start, unsigned long end);
77 
78 /* description of effects of mapping type and prot in current implementation.
79  * this is due to the limited x86 page protection hardware.  The expected
80  * behavior is in parens:
81  *
82  * map_type	prot
83  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
84  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
85  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
86  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
87  *
88  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
89  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
90  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
91  *
92  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
93  * MAP_PRIVATE:
94  *								r: (no) no
95  *								w: (no) no
96  *								x: (yes) yes
97  */
98 pgprot_t protection_map[16] __ro_after_init = {
99 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
101 };
102 
103 pgprot_t vm_get_page_prot(unsigned long vm_flags)
104 {
105 	return __pgprot(pgprot_val(protection_map[vm_flags &
106 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
107 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
108 }
109 EXPORT_SYMBOL(vm_get_page_prot);
110 
111 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
112 {
113 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
114 }
115 
116 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
117 void vma_set_page_prot(struct vm_area_struct *vma)
118 {
119 	unsigned long vm_flags = vma->vm_flags;
120 	pgprot_t vm_page_prot;
121 
122 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
123 	if (vma_wants_writenotify(vma, vm_page_prot)) {
124 		vm_flags &= ~VM_SHARED;
125 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
126 	}
127 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
128 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
129 }
130 
131 /*
132  * Requires inode->i_mapping->i_mmap_rwsem
133  */
134 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
135 		struct file *file, struct address_space *mapping)
136 {
137 	if (vma->vm_flags & VM_DENYWRITE)
138 		atomic_inc(&file_inode(file)->i_writecount);
139 	if (vma->vm_flags & VM_SHARED)
140 		mapping_unmap_writable(mapping);
141 
142 	flush_dcache_mmap_lock(mapping);
143 	vma_interval_tree_remove(vma, &mapping->i_mmap);
144 	flush_dcache_mmap_unlock(mapping);
145 }
146 
147 /*
148  * Unlink a file-based vm structure from its interval tree, to hide
149  * vma from rmap and vmtruncate before freeing its page tables.
150  */
151 void unlink_file_vma(struct vm_area_struct *vma)
152 {
153 	struct file *file = vma->vm_file;
154 
155 	if (file) {
156 		struct address_space *mapping = file->f_mapping;
157 		i_mmap_lock_write(mapping);
158 		__remove_shared_vm_struct(vma, file, mapping);
159 		i_mmap_unlock_write(mapping);
160 	}
161 }
162 
163 /*
164  * Close a vm structure and free it, returning the next.
165  */
166 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
167 {
168 	struct vm_area_struct *next = vma->vm_next;
169 
170 	might_sleep();
171 	if (vma->vm_ops && vma->vm_ops->close)
172 		vma->vm_ops->close(vma);
173 	if (vma->vm_file)
174 		fput(vma->vm_file);
175 	mpol_put(vma_policy(vma));
176 	kmem_cache_free(vm_area_cachep, vma);
177 	return next;
178 }
179 
180 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf);
181 
182 SYSCALL_DEFINE1(brk, unsigned long, brk)
183 {
184 	unsigned long retval;
185 	unsigned long newbrk, oldbrk;
186 	struct mm_struct *mm = current->mm;
187 	struct vm_area_struct *next;
188 	unsigned long min_brk;
189 	bool populate;
190 	LIST_HEAD(uf);
191 
192 	if (down_write_killable(&mm->mmap_sem))
193 		return -EINTR;
194 
195 #ifdef CONFIG_COMPAT_BRK
196 	/*
197 	 * CONFIG_COMPAT_BRK can still be overridden by setting
198 	 * randomize_va_space to 2, which will still cause mm->start_brk
199 	 * to be arbitrarily shifted
200 	 */
201 	if (current->brk_randomized)
202 		min_brk = mm->start_brk;
203 	else
204 		min_brk = mm->end_data;
205 #else
206 	min_brk = mm->start_brk;
207 #endif
208 	if (brk < min_brk)
209 		goto out;
210 
211 	/*
212 	 * Check against rlimit here. If this check is done later after the test
213 	 * of oldbrk with newbrk then it can escape the test and let the data
214 	 * segment grow beyond its set limit the in case where the limit is
215 	 * not page aligned -Ram Gupta
216 	 */
217 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
218 			      mm->end_data, mm->start_data))
219 		goto out;
220 
221 	newbrk = PAGE_ALIGN(brk);
222 	oldbrk = PAGE_ALIGN(mm->brk);
223 	if (oldbrk == newbrk)
224 		goto set_brk;
225 
226 	/* Always allow shrinking brk. */
227 	if (brk <= mm->brk) {
228 		if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
229 			goto set_brk;
230 		goto out;
231 	}
232 
233 	/* Check against existing mmap mappings. */
234 	next = find_vma(mm, oldbrk);
235 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
236 		goto out;
237 
238 	/* Ok, looks good - let it rip. */
239 	if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
240 		goto out;
241 
242 set_brk:
243 	mm->brk = brk;
244 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
245 	up_write(&mm->mmap_sem);
246 	userfaultfd_unmap_complete(mm, &uf);
247 	if (populate)
248 		mm_populate(oldbrk, newbrk - oldbrk);
249 	return brk;
250 
251 out:
252 	retval = mm->brk;
253 	up_write(&mm->mmap_sem);
254 	return retval;
255 }
256 
257 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
258 {
259 	unsigned long max, prev_end, subtree_gap;
260 
261 	/*
262 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
263 	 * allow two stack_guard_gaps between them here, and when choosing
264 	 * an unmapped area; whereas when expanding we only require one.
265 	 * That's a little inconsistent, but keeps the code here simpler.
266 	 */
267 	max = vm_start_gap(vma);
268 	if (vma->vm_prev) {
269 		prev_end = vm_end_gap(vma->vm_prev);
270 		if (max > prev_end)
271 			max -= prev_end;
272 		else
273 			max = 0;
274 	}
275 	if (vma->vm_rb.rb_left) {
276 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
277 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
278 		if (subtree_gap > max)
279 			max = subtree_gap;
280 	}
281 	if (vma->vm_rb.rb_right) {
282 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
283 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
284 		if (subtree_gap > max)
285 			max = subtree_gap;
286 	}
287 	return max;
288 }
289 
290 #ifdef CONFIG_DEBUG_VM_RB
291 static int browse_rb(struct mm_struct *mm)
292 {
293 	struct rb_root *root = &mm->mm_rb;
294 	int i = 0, j, bug = 0;
295 	struct rb_node *nd, *pn = NULL;
296 	unsigned long prev = 0, pend = 0;
297 
298 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
299 		struct vm_area_struct *vma;
300 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
301 		if (vma->vm_start < prev) {
302 			pr_emerg("vm_start %lx < prev %lx\n",
303 				  vma->vm_start, prev);
304 			bug = 1;
305 		}
306 		if (vma->vm_start < pend) {
307 			pr_emerg("vm_start %lx < pend %lx\n",
308 				  vma->vm_start, pend);
309 			bug = 1;
310 		}
311 		if (vma->vm_start > vma->vm_end) {
312 			pr_emerg("vm_start %lx > vm_end %lx\n",
313 				  vma->vm_start, vma->vm_end);
314 			bug = 1;
315 		}
316 		spin_lock(&mm->page_table_lock);
317 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
318 			pr_emerg("free gap %lx, correct %lx\n",
319 			       vma->rb_subtree_gap,
320 			       vma_compute_subtree_gap(vma));
321 			bug = 1;
322 		}
323 		spin_unlock(&mm->page_table_lock);
324 		i++;
325 		pn = nd;
326 		prev = vma->vm_start;
327 		pend = vma->vm_end;
328 	}
329 	j = 0;
330 	for (nd = pn; nd; nd = rb_prev(nd))
331 		j++;
332 	if (i != j) {
333 		pr_emerg("backwards %d, forwards %d\n", j, i);
334 		bug = 1;
335 	}
336 	return bug ? -1 : i;
337 }
338 
339 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
340 {
341 	struct rb_node *nd;
342 
343 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
344 		struct vm_area_struct *vma;
345 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
346 		VM_BUG_ON_VMA(vma != ignore &&
347 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
348 			vma);
349 	}
350 }
351 
352 static void validate_mm(struct mm_struct *mm)
353 {
354 	int bug = 0;
355 	int i = 0;
356 	unsigned long highest_address = 0;
357 	struct vm_area_struct *vma = mm->mmap;
358 
359 	while (vma) {
360 		struct anon_vma *anon_vma = vma->anon_vma;
361 		struct anon_vma_chain *avc;
362 
363 		if (anon_vma) {
364 			anon_vma_lock_read(anon_vma);
365 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
366 				anon_vma_interval_tree_verify(avc);
367 			anon_vma_unlock_read(anon_vma);
368 		}
369 
370 		highest_address = vm_end_gap(vma);
371 		vma = vma->vm_next;
372 		i++;
373 	}
374 	if (i != mm->map_count) {
375 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
376 		bug = 1;
377 	}
378 	if (highest_address != mm->highest_vm_end) {
379 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
380 			  mm->highest_vm_end, highest_address);
381 		bug = 1;
382 	}
383 	i = browse_rb(mm);
384 	if (i != mm->map_count) {
385 		if (i != -1)
386 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
387 		bug = 1;
388 	}
389 	VM_BUG_ON_MM(bug, mm);
390 }
391 #else
392 #define validate_mm_rb(root, ignore) do { } while (0)
393 #define validate_mm(mm) do { } while (0)
394 #endif
395 
396 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
397 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
398 
399 /*
400  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
401  * vma->vm_prev->vm_end values changed, without modifying the vma's position
402  * in the rbtree.
403  */
404 static void vma_gap_update(struct vm_area_struct *vma)
405 {
406 	/*
407 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
408 	 * function that does exacltly what we want.
409 	 */
410 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
411 }
412 
413 static inline void vma_rb_insert(struct vm_area_struct *vma,
414 				 struct rb_root *root)
415 {
416 	/* All rb_subtree_gap values must be consistent prior to insertion */
417 	validate_mm_rb(root, NULL);
418 
419 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
420 }
421 
422 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
423 {
424 	/*
425 	 * Note rb_erase_augmented is a fairly large inline function,
426 	 * so make sure we instantiate it only once with our desired
427 	 * augmented rbtree callbacks.
428 	 */
429 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
430 }
431 
432 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
433 						struct rb_root *root,
434 						struct vm_area_struct *ignore)
435 {
436 	/*
437 	 * All rb_subtree_gap values must be consistent prior to erase,
438 	 * with the possible exception of the "next" vma being erased if
439 	 * next->vm_start was reduced.
440 	 */
441 	validate_mm_rb(root, ignore);
442 
443 	__vma_rb_erase(vma, root);
444 }
445 
446 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
447 					 struct rb_root *root)
448 {
449 	/*
450 	 * All rb_subtree_gap values must be consistent prior to erase,
451 	 * with the possible exception of the vma being erased.
452 	 */
453 	validate_mm_rb(root, vma);
454 
455 	__vma_rb_erase(vma, root);
456 }
457 
458 /*
459  * vma has some anon_vma assigned, and is already inserted on that
460  * anon_vma's interval trees.
461  *
462  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
463  * vma must be removed from the anon_vma's interval trees using
464  * anon_vma_interval_tree_pre_update_vma().
465  *
466  * After the update, the vma will be reinserted using
467  * anon_vma_interval_tree_post_update_vma().
468  *
469  * The entire update must be protected by exclusive mmap_sem and by
470  * the root anon_vma's mutex.
471  */
472 static inline void
473 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
474 {
475 	struct anon_vma_chain *avc;
476 
477 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
478 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
479 }
480 
481 static inline void
482 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
483 {
484 	struct anon_vma_chain *avc;
485 
486 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
487 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
488 }
489 
490 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
491 		unsigned long end, struct vm_area_struct **pprev,
492 		struct rb_node ***rb_link, struct rb_node **rb_parent)
493 {
494 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
495 
496 	__rb_link = &mm->mm_rb.rb_node;
497 	rb_prev = __rb_parent = NULL;
498 
499 	while (*__rb_link) {
500 		struct vm_area_struct *vma_tmp;
501 
502 		__rb_parent = *__rb_link;
503 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
504 
505 		if (vma_tmp->vm_end > addr) {
506 			/* Fail if an existing vma overlaps the area */
507 			if (vma_tmp->vm_start < end)
508 				return -ENOMEM;
509 			__rb_link = &__rb_parent->rb_left;
510 		} else {
511 			rb_prev = __rb_parent;
512 			__rb_link = &__rb_parent->rb_right;
513 		}
514 	}
515 
516 	*pprev = NULL;
517 	if (rb_prev)
518 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
519 	*rb_link = __rb_link;
520 	*rb_parent = __rb_parent;
521 	return 0;
522 }
523 
524 static unsigned long count_vma_pages_range(struct mm_struct *mm,
525 		unsigned long addr, unsigned long end)
526 {
527 	unsigned long nr_pages = 0;
528 	struct vm_area_struct *vma;
529 
530 	/* Find first overlaping mapping */
531 	vma = find_vma_intersection(mm, addr, end);
532 	if (!vma)
533 		return 0;
534 
535 	nr_pages = (min(end, vma->vm_end) -
536 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
537 
538 	/* Iterate over the rest of the overlaps */
539 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
540 		unsigned long overlap_len;
541 
542 		if (vma->vm_start > end)
543 			break;
544 
545 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
546 		nr_pages += overlap_len >> PAGE_SHIFT;
547 	}
548 
549 	return nr_pages;
550 }
551 
552 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
553 		struct rb_node **rb_link, struct rb_node *rb_parent)
554 {
555 	/* Update tracking information for the gap following the new vma. */
556 	if (vma->vm_next)
557 		vma_gap_update(vma->vm_next);
558 	else
559 		mm->highest_vm_end = vm_end_gap(vma);
560 
561 	/*
562 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
563 	 * correct insertion point for that vma. As a result, we could not
564 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
565 	 * So, we first insert the vma with a zero rb_subtree_gap value
566 	 * (to be consistent with what we did on the way down), and then
567 	 * immediately update the gap to the correct value. Finally we
568 	 * rebalance the rbtree after all augmented values have been set.
569 	 */
570 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
571 	vma->rb_subtree_gap = 0;
572 	vma_gap_update(vma);
573 	vma_rb_insert(vma, &mm->mm_rb);
574 }
575 
576 static void __vma_link_file(struct vm_area_struct *vma)
577 {
578 	struct file *file;
579 
580 	file = vma->vm_file;
581 	if (file) {
582 		struct address_space *mapping = file->f_mapping;
583 
584 		if (vma->vm_flags & VM_DENYWRITE)
585 			atomic_dec(&file_inode(file)->i_writecount);
586 		if (vma->vm_flags & VM_SHARED)
587 			atomic_inc(&mapping->i_mmap_writable);
588 
589 		flush_dcache_mmap_lock(mapping);
590 		vma_interval_tree_insert(vma, &mapping->i_mmap);
591 		flush_dcache_mmap_unlock(mapping);
592 	}
593 }
594 
595 static void
596 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
597 	struct vm_area_struct *prev, struct rb_node **rb_link,
598 	struct rb_node *rb_parent)
599 {
600 	__vma_link_list(mm, vma, prev, rb_parent);
601 	__vma_link_rb(mm, vma, rb_link, rb_parent);
602 }
603 
604 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
605 			struct vm_area_struct *prev, struct rb_node **rb_link,
606 			struct rb_node *rb_parent)
607 {
608 	struct address_space *mapping = NULL;
609 
610 	if (vma->vm_file) {
611 		mapping = vma->vm_file->f_mapping;
612 		i_mmap_lock_write(mapping);
613 	}
614 
615 	__vma_link(mm, vma, prev, rb_link, rb_parent);
616 	__vma_link_file(vma);
617 
618 	if (mapping)
619 		i_mmap_unlock_write(mapping);
620 
621 	mm->map_count++;
622 	validate_mm(mm);
623 }
624 
625 /*
626  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
627  * mm's list and rbtree.  It has already been inserted into the interval tree.
628  */
629 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
630 {
631 	struct vm_area_struct *prev;
632 	struct rb_node **rb_link, *rb_parent;
633 
634 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
635 			   &prev, &rb_link, &rb_parent))
636 		BUG();
637 	__vma_link(mm, vma, prev, rb_link, rb_parent);
638 	mm->map_count++;
639 }
640 
641 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
642 						struct vm_area_struct *vma,
643 						struct vm_area_struct *prev,
644 						bool has_prev,
645 						struct vm_area_struct *ignore)
646 {
647 	struct vm_area_struct *next;
648 
649 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
650 	next = vma->vm_next;
651 	if (has_prev)
652 		prev->vm_next = next;
653 	else {
654 		prev = vma->vm_prev;
655 		if (prev)
656 			prev->vm_next = next;
657 		else
658 			mm->mmap = next;
659 	}
660 	if (next)
661 		next->vm_prev = prev;
662 
663 	/* Kill the cache */
664 	vmacache_invalidate(mm);
665 }
666 
667 static inline void __vma_unlink_prev(struct mm_struct *mm,
668 				     struct vm_area_struct *vma,
669 				     struct vm_area_struct *prev)
670 {
671 	__vma_unlink_common(mm, vma, prev, true, vma);
672 }
673 
674 /*
675  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
676  * is already present in an i_mmap tree without adjusting the tree.
677  * The following helper function should be used when such adjustments
678  * are necessary.  The "insert" vma (if any) is to be inserted
679  * before we drop the necessary locks.
680  */
681 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
682 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
683 	struct vm_area_struct *expand)
684 {
685 	struct mm_struct *mm = vma->vm_mm;
686 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
687 	struct address_space *mapping = NULL;
688 	struct rb_root_cached *root = NULL;
689 	struct anon_vma *anon_vma = NULL;
690 	struct file *file = vma->vm_file;
691 	bool start_changed = false, end_changed = false;
692 	long adjust_next = 0;
693 	int remove_next = 0;
694 
695 	if (next && !insert) {
696 		struct vm_area_struct *exporter = NULL, *importer = NULL;
697 
698 		if (end >= next->vm_end) {
699 			/*
700 			 * vma expands, overlapping all the next, and
701 			 * perhaps the one after too (mprotect case 6).
702 			 * The only other cases that gets here are
703 			 * case 1, case 7 and case 8.
704 			 */
705 			if (next == expand) {
706 				/*
707 				 * The only case where we don't expand "vma"
708 				 * and we expand "next" instead is case 8.
709 				 */
710 				VM_WARN_ON(end != next->vm_end);
711 				/*
712 				 * remove_next == 3 means we're
713 				 * removing "vma" and that to do so we
714 				 * swapped "vma" and "next".
715 				 */
716 				remove_next = 3;
717 				VM_WARN_ON(file != next->vm_file);
718 				swap(vma, next);
719 			} else {
720 				VM_WARN_ON(expand != vma);
721 				/*
722 				 * case 1, 6, 7, remove_next == 2 is case 6,
723 				 * remove_next == 1 is case 1 or 7.
724 				 */
725 				remove_next = 1 + (end > next->vm_end);
726 				VM_WARN_ON(remove_next == 2 &&
727 					   end != next->vm_next->vm_end);
728 				VM_WARN_ON(remove_next == 1 &&
729 					   end != next->vm_end);
730 				/* trim end to next, for case 6 first pass */
731 				end = next->vm_end;
732 			}
733 
734 			exporter = next;
735 			importer = vma;
736 
737 			/*
738 			 * If next doesn't have anon_vma, import from vma after
739 			 * next, if the vma overlaps with it.
740 			 */
741 			if (remove_next == 2 && !next->anon_vma)
742 				exporter = next->vm_next;
743 
744 		} else if (end > next->vm_start) {
745 			/*
746 			 * vma expands, overlapping part of the next:
747 			 * mprotect case 5 shifting the boundary up.
748 			 */
749 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
750 			exporter = next;
751 			importer = vma;
752 			VM_WARN_ON(expand != importer);
753 		} else if (end < vma->vm_end) {
754 			/*
755 			 * vma shrinks, and !insert tells it's not
756 			 * split_vma inserting another: so it must be
757 			 * mprotect case 4 shifting the boundary down.
758 			 */
759 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
760 			exporter = vma;
761 			importer = next;
762 			VM_WARN_ON(expand != importer);
763 		}
764 
765 		/*
766 		 * Easily overlooked: when mprotect shifts the boundary,
767 		 * make sure the expanding vma has anon_vma set if the
768 		 * shrinking vma had, to cover any anon pages imported.
769 		 */
770 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
771 			int error;
772 
773 			importer->anon_vma = exporter->anon_vma;
774 			error = anon_vma_clone(importer, exporter);
775 			if (error)
776 				return error;
777 		}
778 	}
779 again:
780 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
781 
782 	if (file) {
783 		mapping = file->f_mapping;
784 		root = &mapping->i_mmap;
785 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
786 
787 		if (adjust_next)
788 			uprobe_munmap(next, next->vm_start, next->vm_end);
789 
790 		i_mmap_lock_write(mapping);
791 		if (insert) {
792 			/*
793 			 * Put into interval tree now, so instantiated pages
794 			 * are visible to arm/parisc __flush_dcache_page
795 			 * throughout; but we cannot insert into address
796 			 * space until vma start or end is updated.
797 			 */
798 			__vma_link_file(insert);
799 		}
800 	}
801 
802 	anon_vma = vma->anon_vma;
803 	if (!anon_vma && adjust_next)
804 		anon_vma = next->anon_vma;
805 	if (anon_vma) {
806 		VM_WARN_ON(adjust_next && next->anon_vma &&
807 			   anon_vma != next->anon_vma);
808 		anon_vma_lock_write(anon_vma);
809 		anon_vma_interval_tree_pre_update_vma(vma);
810 		if (adjust_next)
811 			anon_vma_interval_tree_pre_update_vma(next);
812 	}
813 
814 	if (root) {
815 		flush_dcache_mmap_lock(mapping);
816 		vma_interval_tree_remove(vma, root);
817 		if (adjust_next)
818 			vma_interval_tree_remove(next, root);
819 	}
820 
821 	if (start != vma->vm_start) {
822 		vma->vm_start = start;
823 		start_changed = true;
824 	}
825 	if (end != vma->vm_end) {
826 		vma->vm_end = end;
827 		end_changed = true;
828 	}
829 	vma->vm_pgoff = pgoff;
830 	if (adjust_next) {
831 		next->vm_start += adjust_next << PAGE_SHIFT;
832 		next->vm_pgoff += adjust_next;
833 	}
834 
835 	if (root) {
836 		if (adjust_next)
837 			vma_interval_tree_insert(next, root);
838 		vma_interval_tree_insert(vma, root);
839 		flush_dcache_mmap_unlock(mapping);
840 	}
841 
842 	if (remove_next) {
843 		/*
844 		 * vma_merge has merged next into vma, and needs
845 		 * us to remove next before dropping the locks.
846 		 */
847 		if (remove_next != 3)
848 			__vma_unlink_prev(mm, next, vma);
849 		else
850 			/*
851 			 * vma is not before next if they've been
852 			 * swapped.
853 			 *
854 			 * pre-swap() next->vm_start was reduced so
855 			 * tell validate_mm_rb to ignore pre-swap()
856 			 * "next" (which is stored in post-swap()
857 			 * "vma").
858 			 */
859 			__vma_unlink_common(mm, next, NULL, false, vma);
860 		if (file)
861 			__remove_shared_vm_struct(next, file, mapping);
862 	} else if (insert) {
863 		/*
864 		 * split_vma has split insert from vma, and needs
865 		 * us to insert it before dropping the locks
866 		 * (it may either follow vma or precede it).
867 		 */
868 		__insert_vm_struct(mm, insert);
869 	} else {
870 		if (start_changed)
871 			vma_gap_update(vma);
872 		if (end_changed) {
873 			if (!next)
874 				mm->highest_vm_end = vm_end_gap(vma);
875 			else if (!adjust_next)
876 				vma_gap_update(next);
877 		}
878 	}
879 
880 	if (anon_vma) {
881 		anon_vma_interval_tree_post_update_vma(vma);
882 		if (adjust_next)
883 			anon_vma_interval_tree_post_update_vma(next);
884 		anon_vma_unlock_write(anon_vma);
885 	}
886 	if (mapping)
887 		i_mmap_unlock_write(mapping);
888 
889 	if (root) {
890 		uprobe_mmap(vma);
891 
892 		if (adjust_next)
893 			uprobe_mmap(next);
894 	}
895 
896 	if (remove_next) {
897 		if (file) {
898 			uprobe_munmap(next, next->vm_start, next->vm_end);
899 			fput(file);
900 		}
901 		if (next->anon_vma)
902 			anon_vma_merge(vma, next);
903 		mm->map_count--;
904 		mpol_put(vma_policy(next));
905 		kmem_cache_free(vm_area_cachep, next);
906 		/*
907 		 * In mprotect's case 6 (see comments on vma_merge),
908 		 * we must remove another next too. It would clutter
909 		 * up the code too much to do both in one go.
910 		 */
911 		if (remove_next != 3) {
912 			/*
913 			 * If "next" was removed and vma->vm_end was
914 			 * expanded (up) over it, in turn
915 			 * "next->vm_prev->vm_end" changed and the
916 			 * "vma->vm_next" gap must be updated.
917 			 */
918 			next = vma->vm_next;
919 		} else {
920 			/*
921 			 * For the scope of the comment "next" and
922 			 * "vma" considered pre-swap(): if "vma" was
923 			 * removed, next->vm_start was expanded (down)
924 			 * over it and the "next" gap must be updated.
925 			 * Because of the swap() the post-swap() "vma"
926 			 * actually points to pre-swap() "next"
927 			 * (post-swap() "next" as opposed is now a
928 			 * dangling pointer).
929 			 */
930 			next = vma;
931 		}
932 		if (remove_next == 2) {
933 			remove_next = 1;
934 			end = next->vm_end;
935 			goto again;
936 		}
937 		else if (next)
938 			vma_gap_update(next);
939 		else {
940 			/*
941 			 * If remove_next == 2 we obviously can't
942 			 * reach this path.
943 			 *
944 			 * If remove_next == 3 we can't reach this
945 			 * path because pre-swap() next is always not
946 			 * NULL. pre-swap() "next" is not being
947 			 * removed and its next->vm_end is not altered
948 			 * (and furthermore "end" already matches
949 			 * next->vm_end in remove_next == 3).
950 			 *
951 			 * We reach this only in the remove_next == 1
952 			 * case if the "next" vma that was removed was
953 			 * the highest vma of the mm. However in such
954 			 * case next->vm_end == "end" and the extended
955 			 * "vma" has vma->vm_end == next->vm_end so
956 			 * mm->highest_vm_end doesn't need any update
957 			 * in remove_next == 1 case.
958 			 */
959 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
960 		}
961 	}
962 	if (insert && file)
963 		uprobe_mmap(insert);
964 
965 	validate_mm(mm);
966 
967 	return 0;
968 }
969 
970 /*
971  * If the vma has a ->close operation then the driver probably needs to release
972  * per-vma resources, so we don't attempt to merge those.
973  */
974 static inline int is_mergeable_vma(struct vm_area_struct *vma,
975 				struct file *file, unsigned long vm_flags,
976 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
977 {
978 	/*
979 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
980 	 * match the flags but dirty bit -- the caller should mark
981 	 * merged VMA as dirty. If dirty bit won't be excluded from
982 	 * comparison, we increase pressue on the memory system forcing
983 	 * the kernel to generate new VMAs when old one could be
984 	 * extended instead.
985 	 */
986 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
987 		return 0;
988 	if (vma->vm_file != file)
989 		return 0;
990 	if (vma->vm_ops && vma->vm_ops->close)
991 		return 0;
992 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
993 		return 0;
994 	return 1;
995 }
996 
997 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
998 					struct anon_vma *anon_vma2,
999 					struct vm_area_struct *vma)
1000 {
1001 	/*
1002 	 * The list_is_singular() test is to avoid merging VMA cloned from
1003 	 * parents. This can improve scalability caused by anon_vma lock.
1004 	 */
1005 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1006 		list_is_singular(&vma->anon_vma_chain)))
1007 		return 1;
1008 	return anon_vma1 == anon_vma2;
1009 }
1010 
1011 /*
1012  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1013  * in front of (at a lower virtual address and file offset than) the vma.
1014  *
1015  * We cannot merge two vmas if they have differently assigned (non-NULL)
1016  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1017  *
1018  * We don't check here for the merged mmap wrapping around the end of pagecache
1019  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1020  * wrap, nor mmaps which cover the final page at index -1UL.
1021  */
1022 static int
1023 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1024 		     struct anon_vma *anon_vma, struct file *file,
1025 		     pgoff_t vm_pgoff,
1026 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1027 {
1028 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1029 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1030 		if (vma->vm_pgoff == vm_pgoff)
1031 			return 1;
1032 	}
1033 	return 0;
1034 }
1035 
1036 /*
1037  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1038  * beyond (at a higher virtual address and file offset than) the vma.
1039  *
1040  * We cannot merge two vmas if they have differently assigned (non-NULL)
1041  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1042  */
1043 static int
1044 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1045 		    struct anon_vma *anon_vma, struct file *file,
1046 		    pgoff_t vm_pgoff,
1047 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1048 {
1049 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1050 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1051 		pgoff_t vm_pglen;
1052 		vm_pglen = vma_pages(vma);
1053 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1054 			return 1;
1055 	}
1056 	return 0;
1057 }
1058 
1059 /*
1060  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1061  * whether that can be merged with its predecessor or its successor.
1062  * Or both (it neatly fills a hole).
1063  *
1064  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1065  * certain not to be mapped by the time vma_merge is called; but when
1066  * called for mprotect, it is certain to be already mapped (either at
1067  * an offset within prev, or at the start of next), and the flags of
1068  * this area are about to be changed to vm_flags - and the no-change
1069  * case has already been eliminated.
1070  *
1071  * The following mprotect cases have to be considered, where AAAA is
1072  * the area passed down from mprotect_fixup, never extending beyond one
1073  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1074  *
1075  *     AAAA             AAAA                AAAA          AAAA
1076  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1077  *    cannot merge    might become    might become    might become
1078  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1079  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1080  *    mremap move:                                    PPPPXXXXXXXX 8
1081  *        AAAA
1082  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1083  *    might become    case 1 below    case 2 below    case 3 below
1084  *
1085  * It is important for case 8 that the the vma NNNN overlapping the
1086  * region AAAA is never going to extended over XXXX. Instead XXXX must
1087  * be extended in region AAAA and NNNN must be removed. This way in
1088  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1089  * rmap_locks, the properties of the merged vma will be already
1090  * correct for the whole merged range. Some of those properties like
1091  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1092  * be correct for the whole merged range immediately after the
1093  * rmap_locks are released. Otherwise if XXXX would be removed and
1094  * NNNN would be extended over the XXXX range, remove_migration_ptes
1095  * or other rmap walkers (if working on addresses beyond the "end"
1096  * parameter) may establish ptes with the wrong permissions of NNNN
1097  * instead of the right permissions of XXXX.
1098  */
1099 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1100 			struct vm_area_struct *prev, unsigned long addr,
1101 			unsigned long end, unsigned long vm_flags,
1102 			struct anon_vma *anon_vma, struct file *file,
1103 			pgoff_t pgoff, struct mempolicy *policy,
1104 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1105 {
1106 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1107 	struct vm_area_struct *area, *next;
1108 	int err;
1109 
1110 	/*
1111 	 * We later require that vma->vm_flags == vm_flags,
1112 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1113 	 */
1114 	if (vm_flags & VM_SPECIAL)
1115 		return NULL;
1116 
1117 	if (prev)
1118 		next = prev->vm_next;
1119 	else
1120 		next = mm->mmap;
1121 	area = next;
1122 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1123 		next = next->vm_next;
1124 
1125 	/* verify some invariant that must be enforced by the caller */
1126 	VM_WARN_ON(prev && addr <= prev->vm_start);
1127 	VM_WARN_ON(area && end > area->vm_end);
1128 	VM_WARN_ON(addr >= end);
1129 
1130 	/*
1131 	 * Can it merge with the predecessor?
1132 	 */
1133 	if (prev && prev->vm_end == addr &&
1134 			mpol_equal(vma_policy(prev), policy) &&
1135 			can_vma_merge_after(prev, vm_flags,
1136 					    anon_vma, file, pgoff,
1137 					    vm_userfaultfd_ctx)) {
1138 		/*
1139 		 * OK, it can.  Can we now merge in the successor as well?
1140 		 */
1141 		if (next && end == next->vm_start &&
1142 				mpol_equal(policy, vma_policy(next)) &&
1143 				can_vma_merge_before(next, vm_flags,
1144 						     anon_vma, file,
1145 						     pgoff+pglen,
1146 						     vm_userfaultfd_ctx) &&
1147 				is_mergeable_anon_vma(prev->anon_vma,
1148 						      next->anon_vma, NULL)) {
1149 							/* cases 1, 6 */
1150 			err = __vma_adjust(prev, prev->vm_start,
1151 					 next->vm_end, prev->vm_pgoff, NULL,
1152 					 prev);
1153 		} else					/* cases 2, 5, 7 */
1154 			err = __vma_adjust(prev, prev->vm_start,
1155 					 end, prev->vm_pgoff, NULL, prev);
1156 		if (err)
1157 			return NULL;
1158 		khugepaged_enter_vma_merge(prev, vm_flags);
1159 		return prev;
1160 	}
1161 
1162 	/*
1163 	 * Can this new request be merged in front of next?
1164 	 */
1165 	if (next && end == next->vm_start &&
1166 			mpol_equal(policy, vma_policy(next)) &&
1167 			can_vma_merge_before(next, vm_flags,
1168 					     anon_vma, file, pgoff+pglen,
1169 					     vm_userfaultfd_ctx)) {
1170 		if (prev && addr < prev->vm_end)	/* case 4 */
1171 			err = __vma_adjust(prev, prev->vm_start,
1172 					 addr, prev->vm_pgoff, NULL, next);
1173 		else {					/* cases 3, 8 */
1174 			err = __vma_adjust(area, addr, next->vm_end,
1175 					 next->vm_pgoff - pglen, NULL, next);
1176 			/*
1177 			 * In case 3 area is already equal to next and
1178 			 * this is a noop, but in case 8 "area" has
1179 			 * been removed and next was expanded over it.
1180 			 */
1181 			area = next;
1182 		}
1183 		if (err)
1184 			return NULL;
1185 		khugepaged_enter_vma_merge(area, vm_flags);
1186 		return area;
1187 	}
1188 
1189 	return NULL;
1190 }
1191 
1192 /*
1193  * Rough compatbility check to quickly see if it's even worth looking
1194  * at sharing an anon_vma.
1195  *
1196  * They need to have the same vm_file, and the flags can only differ
1197  * in things that mprotect may change.
1198  *
1199  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1200  * we can merge the two vma's. For example, we refuse to merge a vma if
1201  * there is a vm_ops->close() function, because that indicates that the
1202  * driver is doing some kind of reference counting. But that doesn't
1203  * really matter for the anon_vma sharing case.
1204  */
1205 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1206 {
1207 	return a->vm_end == b->vm_start &&
1208 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1209 		a->vm_file == b->vm_file &&
1210 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1211 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1212 }
1213 
1214 /*
1215  * Do some basic sanity checking to see if we can re-use the anon_vma
1216  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1217  * the same as 'old', the other will be the new one that is trying
1218  * to share the anon_vma.
1219  *
1220  * NOTE! This runs with mm_sem held for reading, so it is possible that
1221  * the anon_vma of 'old' is concurrently in the process of being set up
1222  * by another page fault trying to merge _that_. But that's ok: if it
1223  * is being set up, that automatically means that it will be a singleton
1224  * acceptable for merging, so we can do all of this optimistically. But
1225  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1226  *
1227  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1228  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1229  * is to return an anon_vma that is "complex" due to having gone through
1230  * a fork).
1231  *
1232  * We also make sure that the two vma's are compatible (adjacent,
1233  * and with the same memory policies). That's all stable, even with just
1234  * a read lock on the mm_sem.
1235  */
1236 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1237 {
1238 	if (anon_vma_compatible(a, b)) {
1239 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1240 
1241 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1242 			return anon_vma;
1243 	}
1244 	return NULL;
1245 }
1246 
1247 /*
1248  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1249  * neighbouring vmas for a suitable anon_vma, before it goes off
1250  * to allocate a new anon_vma.  It checks because a repetitive
1251  * sequence of mprotects and faults may otherwise lead to distinct
1252  * anon_vmas being allocated, preventing vma merge in subsequent
1253  * mprotect.
1254  */
1255 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1256 {
1257 	struct anon_vma *anon_vma;
1258 	struct vm_area_struct *near;
1259 
1260 	near = vma->vm_next;
1261 	if (!near)
1262 		goto try_prev;
1263 
1264 	anon_vma = reusable_anon_vma(near, vma, near);
1265 	if (anon_vma)
1266 		return anon_vma;
1267 try_prev:
1268 	near = vma->vm_prev;
1269 	if (!near)
1270 		goto none;
1271 
1272 	anon_vma = reusable_anon_vma(near, near, vma);
1273 	if (anon_vma)
1274 		return anon_vma;
1275 none:
1276 	/*
1277 	 * There's no absolute need to look only at touching neighbours:
1278 	 * we could search further afield for "compatible" anon_vmas.
1279 	 * But it would probably just be a waste of time searching,
1280 	 * or lead to too many vmas hanging off the same anon_vma.
1281 	 * We're trying to allow mprotect remerging later on,
1282 	 * not trying to minimize memory used for anon_vmas.
1283 	 */
1284 	return NULL;
1285 }
1286 
1287 /*
1288  * If a hint addr is less than mmap_min_addr change hint to be as
1289  * low as possible but still greater than mmap_min_addr
1290  */
1291 static inline unsigned long round_hint_to_min(unsigned long hint)
1292 {
1293 	hint &= PAGE_MASK;
1294 	if (((void *)hint != NULL) &&
1295 	    (hint < mmap_min_addr))
1296 		return PAGE_ALIGN(mmap_min_addr);
1297 	return hint;
1298 }
1299 
1300 static inline int mlock_future_check(struct mm_struct *mm,
1301 				     unsigned long flags,
1302 				     unsigned long len)
1303 {
1304 	unsigned long locked, lock_limit;
1305 
1306 	/*  mlock MCL_FUTURE? */
1307 	if (flags & VM_LOCKED) {
1308 		locked = len >> PAGE_SHIFT;
1309 		locked += mm->locked_vm;
1310 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1311 		lock_limit >>= PAGE_SHIFT;
1312 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1313 			return -EAGAIN;
1314 	}
1315 	return 0;
1316 }
1317 
1318 /*
1319  * The caller must hold down_write(&current->mm->mmap_sem).
1320  */
1321 unsigned long do_mmap(struct file *file, unsigned long addr,
1322 			unsigned long len, unsigned long prot,
1323 			unsigned long flags, vm_flags_t vm_flags,
1324 			unsigned long pgoff, unsigned long *populate,
1325 			struct list_head *uf)
1326 {
1327 	struct mm_struct *mm = current->mm;
1328 	int pkey = 0;
1329 
1330 	*populate = 0;
1331 
1332 	if (!len)
1333 		return -EINVAL;
1334 
1335 	/*
1336 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1337 	 *
1338 	 * (the exception is when the underlying filesystem is noexec
1339 	 *  mounted, in which case we dont add PROT_EXEC.)
1340 	 */
1341 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1342 		if (!(file && path_noexec(&file->f_path)))
1343 			prot |= PROT_EXEC;
1344 
1345 	if (!(flags & MAP_FIXED))
1346 		addr = round_hint_to_min(addr);
1347 
1348 	/* Careful about overflows.. */
1349 	len = PAGE_ALIGN(len);
1350 	if (!len)
1351 		return -ENOMEM;
1352 
1353 	/* offset overflow? */
1354 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1355 		return -EOVERFLOW;
1356 
1357 	/* Too many mappings? */
1358 	if (mm->map_count > sysctl_max_map_count)
1359 		return -ENOMEM;
1360 
1361 	/* Obtain the address to map to. we verify (or select) it and ensure
1362 	 * that it represents a valid section of the address space.
1363 	 */
1364 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1365 	if (offset_in_page(addr))
1366 		return addr;
1367 
1368 	if (prot == PROT_EXEC) {
1369 		pkey = execute_only_pkey(mm);
1370 		if (pkey < 0)
1371 			pkey = 0;
1372 	}
1373 
1374 	/* Do simple checking here so the lower-level routines won't have
1375 	 * to. we assume access permissions have been handled by the open
1376 	 * of the memory object, so we don't do any here.
1377 	 */
1378 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1379 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1380 
1381 	if (flags & MAP_LOCKED)
1382 		if (!can_do_mlock())
1383 			return -EPERM;
1384 
1385 	if (mlock_future_check(mm, vm_flags, len))
1386 		return -EAGAIN;
1387 
1388 	if (file) {
1389 		struct inode *inode = file_inode(file);
1390 		unsigned long flags_mask;
1391 
1392 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1393 
1394 		switch (flags & MAP_TYPE) {
1395 		case MAP_SHARED:
1396 			/*
1397 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1398 			 * flags. E.g. MAP_SYNC is dangerous to use with
1399 			 * MAP_SHARED as you don't know which consistency model
1400 			 * you will get. We silently ignore unsupported flags
1401 			 * with MAP_SHARED to preserve backward compatibility.
1402 			 */
1403 			flags &= LEGACY_MAP_MASK;
1404 			/* fall through */
1405 		case MAP_SHARED_VALIDATE:
1406 			if (flags & ~flags_mask)
1407 				return -EOPNOTSUPP;
1408 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1409 				return -EACCES;
1410 
1411 			/*
1412 			 * Make sure we don't allow writing to an append-only
1413 			 * file..
1414 			 */
1415 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1416 				return -EACCES;
1417 
1418 			/*
1419 			 * Make sure there are no mandatory locks on the file.
1420 			 */
1421 			if (locks_verify_locked(file))
1422 				return -EAGAIN;
1423 
1424 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1425 			if (!(file->f_mode & FMODE_WRITE))
1426 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1427 
1428 			/* fall through */
1429 		case MAP_PRIVATE:
1430 			if (!(file->f_mode & FMODE_READ))
1431 				return -EACCES;
1432 			if (path_noexec(&file->f_path)) {
1433 				if (vm_flags & VM_EXEC)
1434 					return -EPERM;
1435 				vm_flags &= ~VM_MAYEXEC;
1436 			}
1437 
1438 			if (!file->f_op->mmap)
1439 				return -ENODEV;
1440 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1441 				return -EINVAL;
1442 			break;
1443 
1444 		default:
1445 			return -EINVAL;
1446 		}
1447 	} else {
1448 		switch (flags & MAP_TYPE) {
1449 		case MAP_SHARED:
1450 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1451 				return -EINVAL;
1452 			/*
1453 			 * Ignore pgoff.
1454 			 */
1455 			pgoff = 0;
1456 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1457 			break;
1458 		case MAP_PRIVATE:
1459 			/*
1460 			 * Set pgoff according to addr for anon_vma.
1461 			 */
1462 			pgoff = addr >> PAGE_SHIFT;
1463 			break;
1464 		default:
1465 			return -EINVAL;
1466 		}
1467 	}
1468 
1469 	/*
1470 	 * Set 'VM_NORESERVE' if we should not account for the
1471 	 * memory use of this mapping.
1472 	 */
1473 	if (flags & MAP_NORESERVE) {
1474 		/* We honor MAP_NORESERVE if allowed to overcommit */
1475 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1476 			vm_flags |= VM_NORESERVE;
1477 
1478 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1479 		if (file && is_file_hugepages(file))
1480 			vm_flags |= VM_NORESERVE;
1481 	}
1482 
1483 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1484 	if (!IS_ERR_VALUE(addr) &&
1485 	    ((vm_flags & VM_LOCKED) ||
1486 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1487 		*populate = len;
1488 	return addr;
1489 }
1490 
1491 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1492 		unsigned long, prot, unsigned long, flags,
1493 		unsigned long, fd, unsigned long, pgoff)
1494 {
1495 	struct file *file = NULL;
1496 	unsigned long retval;
1497 
1498 	if (!(flags & MAP_ANONYMOUS)) {
1499 		audit_mmap_fd(fd, flags);
1500 		file = fget(fd);
1501 		if (!file)
1502 			return -EBADF;
1503 		if (is_file_hugepages(file))
1504 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1505 		retval = -EINVAL;
1506 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1507 			goto out_fput;
1508 	} else if (flags & MAP_HUGETLB) {
1509 		struct user_struct *user = NULL;
1510 		struct hstate *hs;
1511 
1512 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1513 		if (!hs)
1514 			return -EINVAL;
1515 
1516 		len = ALIGN(len, huge_page_size(hs));
1517 		/*
1518 		 * VM_NORESERVE is used because the reservations will be
1519 		 * taken when vm_ops->mmap() is called
1520 		 * A dummy user value is used because we are not locking
1521 		 * memory so no accounting is necessary
1522 		 */
1523 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1524 				VM_NORESERVE,
1525 				&user, HUGETLB_ANONHUGE_INODE,
1526 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1527 		if (IS_ERR(file))
1528 			return PTR_ERR(file);
1529 	}
1530 
1531 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1532 
1533 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1534 out_fput:
1535 	if (file)
1536 		fput(file);
1537 	return retval;
1538 }
1539 
1540 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1541 struct mmap_arg_struct {
1542 	unsigned long addr;
1543 	unsigned long len;
1544 	unsigned long prot;
1545 	unsigned long flags;
1546 	unsigned long fd;
1547 	unsigned long offset;
1548 };
1549 
1550 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1551 {
1552 	struct mmap_arg_struct a;
1553 
1554 	if (copy_from_user(&a, arg, sizeof(a)))
1555 		return -EFAULT;
1556 	if (offset_in_page(a.offset))
1557 		return -EINVAL;
1558 
1559 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1560 			      a.offset >> PAGE_SHIFT);
1561 }
1562 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1563 
1564 /*
1565  * Some shared mappigns will want the pages marked read-only
1566  * to track write events. If so, we'll downgrade vm_page_prot
1567  * to the private version (using protection_map[] without the
1568  * VM_SHARED bit).
1569  */
1570 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1571 {
1572 	vm_flags_t vm_flags = vma->vm_flags;
1573 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1574 
1575 	/* If it was private or non-writable, the write bit is already clear */
1576 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1577 		return 0;
1578 
1579 	/* The backer wishes to know when pages are first written to? */
1580 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1581 		return 1;
1582 
1583 	/* The open routine did something to the protections that pgprot_modify
1584 	 * won't preserve? */
1585 	if (pgprot_val(vm_page_prot) !=
1586 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1587 		return 0;
1588 
1589 	/* Do we need to track softdirty? */
1590 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1591 		return 1;
1592 
1593 	/* Specialty mapping? */
1594 	if (vm_flags & VM_PFNMAP)
1595 		return 0;
1596 
1597 	/* Can the mapping track the dirty pages? */
1598 	return vma->vm_file && vma->vm_file->f_mapping &&
1599 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1600 }
1601 
1602 /*
1603  * We account for memory if it's a private writeable mapping,
1604  * not hugepages and VM_NORESERVE wasn't set.
1605  */
1606 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1607 {
1608 	/*
1609 	 * hugetlb has its own accounting separate from the core VM
1610 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1611 	 */
1612 	if (file && is_file_hugepages(file))
1613 		return 0;
1614 
1615 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1616 }
1617 
1618 unsigned long mmap_region(struct file *file, unsigned long addr,
1619 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1620 		struct list_head *uf)
1621 {
1622 	struct mm_struct *mm = current->mm;
1623 	struct vm_area_struct *vma, *prev;
1624 	int error;
1625 	struct rb_node **rb_link, *rb_parent;
1626 	unsigned long charged = 0;
1627 
1628 	/* Check against address space limit. */
1629 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1630 		unsigned long nr_pages;
1631 
1632 		/*
1633 		 * MAP_FIXED may remove pages of mappings that intersects with
1634 		 * requested mapping. Account for the pages it would unmap.
1635 		 */
1636 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1637 
1638 		if (!may_expand_vm(mm, vm_flags,
1639 					(len >> PAGE_SHIFT) - nr_pages))
1640 			return -ENOMEM;
1641 	}
1642 
1643 	/* Clear old maps */
1644 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1645 			      &rb_parent)) {
1646 		if (do_munmap(mm, addr, len, uf))
1647 			return -ENOMEM;
1648 	}
1649 
1650 	/*
1651 	 * Private writable mapping: check memory availability
1652 	 */
1653 	if (accountable_mapping(file, vm_flags)) {
1654 		charged = len >> PAGE_SHIFT;
1655 		if (security_vm_enough_memory_mm(mm, charged))
1656 			return -ENOMEM;
1657 		vm_flags |= VM_ACCOUNT;
1658 	}
1659 
1660 	/*
1661 	 * Can we just expand an old mapping?
1662 	 */
1663 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1664 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1665 	if (vma)
1666 		goto out;
1667 
1668 	/*
1669 	 * Determine the object being mapped and call the appropriate
1670 	 * specific mapper. the address has already been validated, but
1671 	 * not unmapped, but the maps are removed from the list.
1672 	 */
1673 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1674 	if (!vma) {
1675 		error = -ENOMEM;
1676 		goto unacct_error;
1677 	}
1678 
1679 	vma->vm_mm = mm;
1680 	vma->vm_start = addr;
1681 	vma->vm_end = addr + len;
1682 	vma->vm_flags = vm_flags;
1683 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1684 	vma->vm_pgoff = pgoff;
1685 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1686 
1687 	if (file) {
1688 		if (vm_flags & VM_DENYWRITE) {
1689 			error = deny_write_access(file);
1690 			if (error)
1691 				goto free_vma;
1692 		}
1693 		if (vm_flags & VM_SHARED) {
1694 			error = mapping_map_writable(file->f_mapping);
1695 			if (error)
1696 				goto allow_write_and_free_vma;
1697 		}
1698 
1699 		/* ->mmap() can change vma->vm_file, but must guarantee that
1700 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1701 		 * and map writably if VM_SHARED is set. This usually means the
1702 		 * new file must not have been exposed to user-space, yet.
1703 		 */
1704 		vma->vm_file = get_file(file);
1705 		error = call_mmap(file, vma);
1706 		if (error)
1707 			goto unmap_and_free_vma;
1708 
1709 		/* Can addr have changed??
1710 		 *
1711 		 * Answer: Yes, several device drivers can do it in their
1712 		 *         f_op->mmap method. -DaveM
1713 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1714 		 *      be updated for vma_link()
1715 		 */
1716 		WARN_ON_ONCE(addr != vma->vm_start);
1717 
1718 		addr = vma->vm_start;
1719 		vm_flags = vma->vm_flags;
1720 	} else if (vm_flags & VM_SHARED) {
1721 		error = shmem_zero_setup(vma);
1722 		if (error)
1723 			goto free_vma;
1724 	}
1725 
1726 	vma_link(mm, vma, prev, rb_link, rb_parent);
1727 	/* Once vma denies write, undo our temporary denial count */
1728 	if (file) {
1729 		if (vm_flags & VM_SHARED)
1730 			mapping_unmap_writable(file->f_mapping);
1731 		if (vm_flags & VM_DENYWRITE)
1732 			allow_write_access(file);
1733 	}
1734 	file = vma->vm_file;
1735 out:
1736 	perf_event_mmap(vma);
1737 
1738 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1739 	if (vm_flags & VM_LOCKED) {
1740 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1741 					vma == get_gate_vma(current->mm)))
1742 			mm->locked_vm += (len >> PAGE_SHIFT);
1743 		else
1744 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1745 	}
1746 
1747 	if (file)
1748 		uprobe_mmap(vma);
1749 
1750 	/*
1751 	 * New (or expanded) vma always get soft dirty status.
1752 	 * Otherwise user-space soft-dirty page tracker won't
1753 	 * be able to distinguish situation when vma area unmapped,
1754 	 * then new mapped in-place (which must be aimed as
1755 	 * a completely new data area).
1756 	 */
1757 	vma->vm_flags |= VM_SOFTDIRTY;
1758 
1759 	vma_set_page_prot(vma);
1760 
1761 	return addr;
1762 
1763 unmap_and_free_vma:
1764 	vma->vm_file = NULL;
1765 	fput(file);
1766 
1767 	/* Undo any partial mapping done by a device driver. */
1768 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1769 	charged = 0;
1770 	if (vm_flags & VM_SHARED)
1771 		mapping_unmap_writable(file->f_mapping);
1772 allow_write_and_free_vma:
1773 	if (vm_flags & VM_DENYWRITE)
1774 		allow_write_access(file);
1775 free_vma:
1776 	kmem_cache_free(vm_area_cachep, vma);
1777 unacct_error:
1778 	if (charged)
1779 		vm_unacct_memory(charged);
1780 	return error;
1781 }
1782 
1783 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1784 {
1785 	/*
1786 	 * We implement the search by looking for an rbtree node that
1787 	 * immediately follows a suitable gap. That is,
1788 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1789 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1790 	 * - gap_end - gap_start >= length
1791 	 */
1792 
1793 	struct mm_struct *mm = current->mm;
1794 	struct vm_area_struct *vma;
1795 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1796 
1797 	/* Adjust search length to account for worst case alignment overhead */
1798 	length = info->length + info->align_mask;
1799 	if (length < info->length)
1800 		return -ENOMEM;
1801 
1802 	/* Adjust search limits by the desired length */
1803 	if (info->high_limit < length)
1804 		return -ENOMEM;
1805 	high_limit = info->high_limit - length;
1806 
1807 	if (info->low_limit > high_limit)
1808 		return -ENOMEM;
1809 	low_limit = info->low_limit + length;
1810 
1811 	/* Check if rbtree root looks promising */
1812 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1813 		goto check_highest;
1814 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1815 	if (vma->rb_subtree_gap < length)
1816 		goto check_highest;
1817 
1818 	while (true) {
1819 		/* Visit left subtree if it looks promising */
1820 		gap_end = vm_start_gap(vma);
1821 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1822 			struct vm_area_struct *left =
1823 				rb_entry(vma->vm_rb.rb_left,
1824 					 struct vm_area_struct, vm_rb);
1825 			if (left->rb_subtree_gap >= length) {
1826 				vma = left;
1827 				continue;
1828 			}
1829 		}
1830 
1831 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1832 check_current:
1833 		/* Check if current node has a suitable gap */
1834 		if (gap_start > high_limit)
1835 			return -ENOMEM;
1836 		if (gap_end >= low_limit &&
1837 		    gap_end > gap_start && gap_end - gap_start >= length)
1838 			goto found;
1839 
1840 		/* Visit right subtree if it looks promising */
1841 		if (vma->vm_rb.rb_right) {
1842 			struct vm_area_struct *right =
1843 				rb_entry(vma->vm_rb.rb_right,
1844 					 struct vm_area_struct, vm_rb);
1845 			if (right->rb_subtree_gap >= length) {
1846 				vma = right;
1847 				continue;
1848 			}
1849 		}
1850 
1851 		/* Go back up the rbtree to find next candidate node */
1852 		while (true) {
1853 			struct rb_node *prev = &vma->vm_rb;
1854 			if (!rb_parent(prev))
1855 				goto check_highest;
1856 			vma = rb_entry(rb_parent(prev),
1857 				       struct vm_area_struct, vm_rb);
1858 			if (prev == vma->vm_rb.rb_left) {
1859 				gap_start = vm_end_gap(vma->vm_prev);
1860 				gap_end = vm_start_gap(vma);
1861 				goto check_current;
1862 			}
1863 		}
1864 	}
1865 
1866 check_highest:
1867 	/* Check highest gap, which does not precede any rbtree node */
1868 	gap_start = mm->highest_vm_end;
1869 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1870 	if (gap_start > high_limit)
1871 		return -ENOMEM;
1872 
1873 found:
1874 	/* We found a suitable gap. Clip it with the original low_limit. */
1875 	if (gap_start < info->low_limit)
1876 		gap_start = info->low_limit;
1877 
1878 	/* Adjust gap address to the desired alignment */
1879 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1880 
1881 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1882 	VM_BUG_ON(gap_start + info->length > gap_end);
1883 	return gap_start;
1884 }
1885 
1886 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1887 {
1888 	struct mm_struct *mm = current->mm;
1889 	struct vm_area_struct *vma;
1890 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1891 
1892 	/* Adjust search length to account for worst case alignment overhead */
1893 	length = info->length + info->align_mask;
1894 	if (length < info->length)
1895 		return -ENOMEM;
1896 
1897 	/*
1898 	 * Adjust search limits by the desired length.
1899 	 * See implementation comment at top of unmapped_area().
1900 	 */
1901 	gap_end = info->high_limit;
1902 	if (gap_end < length)
1903 		return -ENOMEM;
1904 	high_limit = gap_end - length;
1905 
1906 	if (info->low_limit > high_limit)
1907 		return -ENOMEM;
1908 	low_limit = info->low_limit + length;
1909 
1910 	/* Check highest gap, which does not precede any rbtree node */
1911 	gap_start = mm->highest_vm_end;
1912 	if (gap_start <= high_limit)
1913 		goto found_highest;
1914 
1915 	/* Check if rbtree root looks promising */
1916 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1917 		return -ENOMEM;
1918 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1919 	if (vma->rb_subtree_gap < length)
1920 		return -ENOMEM;
1921 
1922 	while (true) {
1923 		/* Visit right subtree if it looks promising */
1924 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1925 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1926 			struct vm_area_struct *right =
1927 				rb_entry(vma->vm_rb.rb_right,
1928 					 struct vm_area_struct, vm_rb);
1929 			if (right->rb_subtree_gap >= length) {
1930 				vma = right;
1931 				continue;
1932 			}
1933 		}
1934 
1935 check_current:
1936 		/* Check if current node has a suitable gap */
1937 		gap_end = vm_start_gap(vma);
1938 		if (gap_end < low_limit)
1939 			return -ENOMEM;
1940 		if (gap_start <= high_limit &&
1941 		    gap_end > gap_start && gap_end - gap_start >= length)
1942 			goto found;
1943 
1944 		/* Visit left subtree if it looks promising */
1945 		if (vma->vm_rb.rb_left) {
1946 			struct vm_area_struct *left =
1947 				rb_entry(vma->vm_rb.rb_left,
1948 					 struct vm_area_struct, vm_rb);
1949 			if (left->rb_subtree_gap >= length) {
1950 				vma = left;
1951 				continue;
1952 			}
1953 		}
1954 
1955 		/* Go back up the rbtree to find next candidate node */
1956 		while (true) {
1957 			struct rb_node *prev = &vma->vm_rb;
1958 			if (!rb_parent(prev))
1959 				return -ENOMEM;
1960 			vma = rb_entry(rb_parent(prev),
1961 				       struct vm_area_struct, vm_rb);
1962 			if (prev == vma->vm_rb.rb_right) {
1963 				gap_start = vma->vm_prev ?
1964 					vm_end_gap(vma->vm_prev) : 0;
1965 				goto check_current;
1966 			}
1967 		}
1968 	}
1969 
1970 found:
1971 	/* We found a suitable gap. Clip it with the original high_limit. */
1972 	if (gap_end > info->high_limit)
1973 		gap_end = info->high_limit;
1974 
1975 found_highest:
1976 	/* Compute highest gap address at the desired alignment */
1977 	gap_end -= info->length;
1978 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1979 
1980 	VM_BUG_ON(gap_end < info->low_limit);
1981 	VM_BUG_ON(gap_end < gap_start);
1982 	return gap_end;
1983 }
1984 
1985 /* Get an address range which is currently unmapped.
1986  * For shmat() with addr=0.
1987  *
1988  * Ugly calling convention alert:
1989  * Return value with the low bits set means error value,
1990  * ie
1991  *	if (ret & ~PAGE_MASK)
1992  *		error = ret;
1993  *
1994  * This function "knows" that -ENOMEM has the bits set.
1995  */
1996 #ifndef HAVE_ARCH_UNMAPPED_AREA
1997 unsigned long
1998 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1999 		unsigned long len, unsigned long pgoff, unsigned long flags)
2000 {
2001 	struct mm_struct *mm = current->mm;
2002 	struct vm_area_struct *vma, *prev;
2003 	struct vm_unmapped_area_info info;
2004 
2005 	if (len > TASK_SIZE - mmap_min_addr)
2006 		return -ENOMEM;
2007 
2008 	if (flags & MAP_FIXED)
2009 		return addr;
2010 
2011 	if (addr) {
2012 		addr = PAGE_ALIGN(addr);
2013 		vma = find_vma_prev(mm, addr, &prev);
2014 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2015 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2016 		    (!prev || addr >= vm_end_gap(prev)))
2017 			return addr;
2018 	}
2019 
2020 	info.flags = 0;
2021 	info.length = len;
2022 	info.low_limit = mm->mmap_base;
2023 	info.high_limit = TASK_SIZE;
2024 	info.align_mask = 0;
2025 	return vm_unmapped_area(&info);
2026 }
2027 #endif
2028 
2029 /*
2030  * This mmap-allocator allocates new areas top-down from below the
2031  * stack's low limit (the base):
2032  */
2033 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2034 unsigned long
2035 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2036 			  const unsigned long len, const unsigned long pgoff,
2037 			  const unsigned long flags)
2038 {
2039 	struct vm_area_struct *vma, *prev;
2040 	struct mm_struct *mm = current->mm;
2041 	unsigned long addr = addr0;
2042 	struct vm_unmapped_area_info info;
2043 
2044 	/* requested length too big for entire address space */
2045 	if (len > TASK_SIZE - mmap_min_addr)
2046 		return -ENOMEM;
2047 
2048 	if (flags & MAP_FIXED)
2049 		return addr;
2050 
2051 	/* requesting a specific address */
2052 	if (addr) {
2053 		addr = PAGE_ALIGN(addr);
2054 		vma = find_vma_prev(mm, addr, &prev);
2055 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2056 				(!vma || addr + len <= vm_start_gap(vma)) &&
2057 				(!prev || addr >= vm_end_gap(prev)))
2058 			return addr;
2059 	}
2060 
2061 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2062 	info.length = len;
2063 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2064 	info.high_limit = mm->mmap_base;
2065 	info.align_mask = 0;
2066 	addr = vm_unmapped_area(&info);
2067 
2068 	/*
2069 	 * A failed mmap() very likely causes application failure,
2070 	 * so fall back to the bottom-up function here. This scenario
2071 	 * can happen with large stack limits and large mmap()
2072 	 * allocations.
2073 	 */
2074 	if (offset_in_page(addr)) {
2075 		VM_BUG_ON(addr != -ENOMEM);
2076 		info.flags = 0;
2077 		info.low_limit = TASK_UNMAPPED_BASE;
2078 		info.high_limit = TASK_SIZE;
2079 		addr = vm_unmapped_area(&info);
2080 	}
2081 
2082 	return addr;
2083 }
2084 #endif
2085 
2086 unsigned long
2087 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2088 		unsigned long pgoff, unsigned long flags)
2089 {
2090 	unsigned long (*get_area)(struct file *, unsigned long,
2091 				  unsigned long, unsigned long, unsigned long);
2092 
2093 	unsigned long error = arch_mmap_check(addr, len, flags);
2094 	if (error)
2095 		return error;
2096 
2097 	/* Careful about overflows.. */
2098 	if (len > TASK_SIZE)
2099 		return -ENOMEM;
2100 
2101 	get_area = current->mm->get_unmapped_area;
2102 	if (file) {
2103 		if (file->f_op->get_unmapped_area)
2104 			get_area = file->f_op->get_unmapped_area;
2105 	} else if (flags & MAP_SHARED) {
2106 		/*
2107 		 * mmap_region() will call shmem_zero_setup() to create a file,
2108 		 * so use shmem's get_unmapped_area in case it can be huge.
2109 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2110 		 */
2111 		pgoff = 0;
2112 		get_area = shmem_get_unmapped_area;
2113 	}
2114 
2115 	addr = get_area(file, addr, len, pgoff, flags);
2116 	if (IS_ERR_VALUE(addr))
2117 		return addr;
2118 
2119 	if (addr > TASK_SIZE - len)
2120 		return -ENOMEM;
2121 	if (offset_in_page(addr))
2122 		return -EINVAL;
2123 
2124 	error = security_mmap_addr(addr);
2125 	return error ? error : addr;
2126 }
2127 
2128 EXPORT_SYMBOL(get_unmapped_area);
2129 
2130 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2131 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2132 {
2133 	struct rb_node *rb_node;
2134 	struct vm_area_struct *vma;
2135 
2136 	/* Check the cache first. */
2137 	vma = vmacache_find(mm, addr);
2138 	if (likely(vma))
2139 		return vma;
2140 
2141 	rb_node = mm->mm_rb.rb_node;
2142 
2143 	while (rb_node) {
2144 		struct vm_area_struct *tmp;
2145 
2146 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2147 
2148 		if (tmp->vm_end > addr) {
2149 			vma = tmp;
2150 			if (tmp->vm_start <= addr)
2151 				break;
2152 			rb_node = rb_node->rb_left;
2153 		} else
2154 			rb_node = rb_node->rb_right;
2155 	}
2156 
2157 	if (vma)
2158 		vmacache_update(addr, vma);
2159 	return vma;
2160 }
2161 
2162 EXPORT_SYMBOL(find_vma);
2163 
2164 /*
2165  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2166  */
2167 struct vm_area_struct *
2168 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2169 			struct vm_area_struct **pprev)
2170 {
2171 	struct vm_area_struct *vma;
2172 
2173 	vma = find_vma(mm, addr);
2174 	if (vma) {
2175 		*pprev = vma->vm_prev;
2176 	} else {
2177 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2178 		*pprev = NULL;
2179 		while (rb_node) {
2180 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2181 			rb_node = rb_node->rb_right;
2182 		}
2183 	}
2184 	return vma;
2185 }
2186 
2187 /*
2188  * Verify that the stack growth is acceptable and
2189  * update accounting. This is shared with both the
2190  * grow-up and grow-down cases.
2191  */
2192 static int acct_stack_growth(struct vm_area_struct *vma,
2193 			     unsigned long size, unsigned long grow)
2194 {
2195 	struct mm_struct *mm = vma->vm_mm;
2196 	unsigned long new_start;
2197 
2198 	/* address space limit tests */
2199 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2200 		return -ENOMEM;
2201 
2202 	/* Stack limit test */
2203 	if (size > rlimit(RLIMIT_STACK))
2204 		return -ENOMEM;
2205 
2206 	/* mlock limit tests */
2207 	if (vma->vm_flags & VM_LOCKED) {
2208 		unsigned long locked;
2209 		unsigned long limit;
2210 		locked = mm->locked_vm + grow;
2211 		limit = rlimit(RLIMIT_MEMLOCK);
2212 		limit >>= PAGE_SHIFT;
2213 		if (locked > limit && !capable(CAP_IPC_LOCK))
2214 			return -ENOMEM;
2215 	}
2216 
2217 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2218 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2219 			vma->vm_end - size;
2220 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2221 		return -EFAULT;
2222 
2223 	/*
2224 	 * Overcommit..  This must be the final test, as it will
2225 	 * update security statistics.
2226 	 */
2227 	if (security_vm_enough_memory_mm(mm, grow))
2228 		return -ENOMEM;
2229 
2230 	return 0;
2231 }
2232 
2233 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2234 /*
2235  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2236  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2237  */
2238 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2239 {
2240 	struct mm_struct *mm = vma->vm_mm;
2241 	struct vm_area_struct *next;
2242 	unsigned long gap_addr;
2243 	int error = 0;
2244 
2245 	if (!(vma->vm_flags & VM_GROWSUP))
2246 		return -EFAULT;
2247 
2248 	/* Guard against exceeding limits of the address space. */
2249 	address &= PAGE_MASK;
2250 	if (address >= (TASK_SIZE & PAGE_MASK))
2251 		return -ENOMEM;
2252 	address += PAGE_SIZE;
2253 
2254 	/* Enforce stack_guard_gap */
2255 	gap_addr = address + stack_guard_gap;
2256 
2257 	/* Guard against overflow */
2258 	if (gap_addr < address || gap_addr > TASK_SIZE)
2259 		gap_addr = TASK_SIZE;
2260 
2261 	next = vma->vm_next;
2262 	if (next && next->vm_start < gap_addr &&
2263 			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2264 		if (!(next->vm_flags & VM_GROWSUP))
2265 			return -ENOMEM;
2266 		/* Check that both stack segments have the same anon_vma? */
2267 	}
2268 
2269 	/* We must make sure the anon_vma is allocated. */
2270 	if (unlikely(anon_vma_prepare(vma)))
2271 		return -ENOMEM;
2272 
2273 	/*
2274 	 * vma->vm_start/vm_end cannot change under us because the caller
2275 	 * is required to hold the mmap_sem in read mode.  We need the
2276 	 * anon_vma lock to serialize against concurrent expand_stacks.
2277 	 */
2278 	anon_vma_lock_write(vma->anon_vma);
2279 
2280 	/* Somebody else might have raced and expanded it already */
2281 	if (address > vma->vm_end) {
2282 		unsigned long size, grow;
2283 
2284 		size = address - vma->vm_start;
2285 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2286 
2287 		error = -ENOMEM;
2288 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2289 			error = acct_stack_growth(vma, size, grow);
2290 			if (!error) {
2291 				/*
2292 				 * vma_gap_update() doesn't support concurrent
2293 				 * updates, but we only hold a shared mmap_sem
2294 				 * lock here, so we need to protect against
2295 				 * concurrent vma expansions.
2296 				 * anon_vma_lock_write() doesn't help here, as
2297 				 * we don't guarantee that all growable vmas
2298 				 * in a mm share the same root anon vma.
2299 				 * So, we reuse mm->page_table_lock to guard
2300 				 * against concurrent vma expansions.
2301 				 */
2302 				spin_lock(&mm->page_table_lock);
2303 				if (vma->vm_flags & VM_LOCKED)
2304 					mm->locked_vm += grow;
2305 				vm_stat_account(mm, vma->vm_flags, grow);
2306 				anon_vma_interval_tree_pre_update_vma(vma);
2307 				vma->vm_end = address;
2308 				anon_vma_interval_tree_post_update_vma(vma);
2309 				if (vma->vm_next)
2310 					vma_gap_update(vma->vm_next);
2311 				else
2312 					mm->highest_vm_end = vm_end_gap(vma);
2313 				spin_unlock(&mm->page_table_lock);
2314 
2315 				perf_event_mmap(vma);
2316 			}
2317 		}
2318 	}
2319 	anon_vma_unlock_write(vma->anon_vma);
2320 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2321 	validate_mm(mm);
2322 	return error;
2323 }
2324 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2325 
2326 /*
2327  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2328  */
2329 int expand_downwards(struct vm_area_struct *vma,
2330 				   unsigned long address)
2331 {
2332 	struct mm_struct *mm = vma->vm_mm;
2333 	struct vm_area_struct *prev;
2334 	int error;
2335 
2336 	address &= PAGE_MASK;
2337 	error = security_mmap_addr(address);
2338 	if (error)
2339 		return error;
2340 
2341 	/* Enforce stack_guard_gap */
2342 	prev = vma->vm_prev;
2343 	/* Check that both stack segments have the same anon_vma? */
2344 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2345 			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2346 		if (address - prev->vm_end < stack_guard_gap)
2347 			return -ENOMEM;
2348 	}
2349 
2350 	/* We must make sure the anon_vma is allocated. */
2351 	if (unlikely(anon_vma_prepare(vma)))
2352 		return -ENOMEM;
2353 
2354 	/*
2355 	 * vma->vm_start/vm_end cannot change under us because the caller
2356 	 * is required to hold the mmap_sem in read mode.  We need the
2357 	 * anon_vma lock to serialize against concurrent expand_stacks.
2358 	 */
2359 	anon_vma_lock_write(vma->anon_vma);
2360 
2361 	/* Somebody else might have raced and expanded it already */
2362 	if (address < vma->vm_start) {
2363 		unsigned long size, grow;
2364 
2365 		size = vma->vm_end - address;
2366 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2367 
2368 		error = -ENOMEM;
2369 		if (grow <= vma->vm_pgoff) {
2370 			error = acct_stack_growth(vma, size, grow);
2371 			if (!error) {
2372 				/*
2373 				 * vma_gap_update() doesn't support concurrent
2374 				 * updates, but we only hold a shared mmap_sem
2375 				 * lock here, so we need to protect against
2376 				 * concurrent vma expansions.
2377 				 * anon_vma_lock_write() doesn't help here, as
2378 				 * we don't guarantee that all growable vmas
2379 				 * in a mm share the same root anon vma.
2380 				 * So, we reuse mm->page_table_lock to guard
2381 				 * against concurrent vma expansions.
2382 				 */
2383 				spin_lock(&mm->page_table_lock);
2384 				if (vma->vm_flags & VM_LOCKED)
2385 					mm->locked_vm += grow;
2386 				vm_stat_account(mm, vma->vm_flags, grow);
2387 				anon_vma_interval_tree_pre_update_vma(vma);
2388 				vma->vm_start = address;
2389 				vma->vm_pgoff -= grow;
2390 				anon_vma_interval_tree_post_update_vma(vma);
2391 				vma_gap_update(vma);
2392 				spin_unlock(&mm->page_table_lock);
2393 
2394 				perf_event_mmap(vma);
2395 			}
2396 		}
2397 	}
2398 	anon_vma_unlock_write(vma->anon_vma);
2399 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2400 	validate_mm(mm);
2401 	return error;
2402 }
2403 
2404 /* enforced gap between the expanding stack and other mappings. */
2405 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2406 
2407 static int __init cmdline_parse_stack_guard_gap(char *p)
2408 {
2409 	unsigned long val;
2410 	char *endptr;
2411 
2412 	val = simple_strtoul(p, &endptr, 10);
2413 	if (!*endptr)
2414 		stack_guard_gap = val << PAGE_SHIFT;
2415 
2416 	return 0;
2417 }
2418 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2419 
2420 #ifdef CONFIG_STACK_GROWSUP
2421 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2422 {
2423 	return expand_upwards(vma, address);
2424 }
2425 
2426 struct vm_area_struct *
2427 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2428 {
2429 	struct vm_area_struct *vma, *prev;
2430 
2431 	addr &= PAGE_MASK;
2432 	vma = find_vma_prev(mm, addr, &prev);
2433 	if (vma && (vma->vm_start <= addr))
2434 		return vma;
2435 	if (!prev || expand_stack(prev, addr))
2436 		return NULL;
2437 	if (prev->vm_flags & VM_LOCKED)
2438 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2439 	return prev;
2440 }
2441 #else
2442 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2443 {
2444 	return expand_downwards(vma, address);
2445 }
2446 
2447 struct vm_area_struct *
2448 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2449 {
2450 	struct vm_area_struct *vma;
2451 	unsigned long start;
2452 
2453 	addr &= PAGE_MASK;
2454 	vma = find_vma(mm, addr);
2455 	if (!vma)
2456 		return NULL;
2457 	if (vma->vm_start <= addr)
2458 		return vma;
2459 	if (!(vma->vm_flags & VM_GROWSDOWN))
2460 		return NULL;
2461 	start = vma->vm_start;
2462 	if (expand_stack(vma, addr))
2463 		return NULL;
2464 	if (vma->vm_flags & VM_LOCKED)
2465 		populate_vma_page_range(vma, addr, start, NULL);
2466 	return vma;
2467 }
2468 #endif
2469 
2470 EXPORT_SYMBOL_GPL(find_extend_vma);
2471 
2472 /*
2473  * Ok - we have the memory areas we should free on the vma list,
2474  * so release them, and do the vma updates.
2475  *
2476  * Called with the mm semaphore held.
2477  */
2478 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2479 {
2480 	unsigned long nr_accounted = 0;
2481 
2482 	/* Update high watermark before we lower total_vm */
2483 	update_hiwater_vm(mm);
2484 	do {
2485 		long nrpages = vma_pages(vma);
2486 
2487 		if (vma->vm_flags & VM_ACCOUNT)
2488 			nr_accounted += nrpages;
2489 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2490 		vma = remove_vma(vma);
2491 	} while (vma);
2492 	vm_unacct_memory(nr_accounted);
2493 	validate_mm(mm);
2494 }
2495 
2496 /*
2497  * Get rid of page table information in the indicated region.
2498  *
2499  * Called with the mm semaphore held.
2500  */
2501 static void unmap_region(struct mm_struct *mm,
2502 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2503 		unsigned long start, unsigned long end)
2504 {
2505 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2506 	struct mmu_gather tlb;
2507 
2508 	lru_add_drain();
2509 	tlb_gather_mmu(&tlb, mm, start, end);
2510 	update_hiwater_rss(mm);
2511 	unmap_vmas(&tlb, vma, start, end);
2512 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2513 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2514 	tlb_finish_mmu(&tlb, start, end);
2515 }
2516 
2517 /*
2518  * Create a list of vma's touched by the unmap, removing them from the mm's
2519  * vma list as we go..
2520  */
2521 static void
2522 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2523 	struct vm_area_struct *prev, unsigned long end)
2524 {
2525 	struct vm_area_struct **insertion_point;
2526 	struct vm_area_struct *tail_vma = NULL;
2527 
2528 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2529 	vma->vm_prev = NULL;
2530 	do {
2531 		vma_rb_erase(vma, &mm->mm_rb);
2532 		mm->map_count--;
2533 		tail_vma = vma;
2534 		vma = vma->vm_next;
2535 	} while (vma && vma->vm_start < end);
2536 	*insertion_point = vma;
2537 	if (vma) {
2538 		vma->vm_prev = prev;
2539 		vma_gap_update(vma);
2540 	} else
2541 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2542 	tail_vma->vm_next = NULL;
2543 
2544 	/* Kill the cache */
2545 	vmacache_invalidate(mm);
2546 }
2547 
2548 /*
2549  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2550  * has already been checked or doesn't make sense to fail.
2551  */
2552 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2553 		unsigned long addr, int new_below)
2554 {
2555 	struct vm_area_struct *new;
2556 	int err;
2557 
2558 	if (vma->vm_ops && vma->vm_ops->split) {
2559 		err = vma->vm_ops->split(vma, addr);
2560 		if (err)
2561 			return err;
2562 	}
2563 
2564 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2565 	if (!new)
2566 		return -ENOMEM;
2567 
2568 	/* most fields are the same, copy all, and then fixup */
2569 	*new = *vma;
2570 
2571 	INIT_LIST_HEAD(&new->anon_vma_chain);
2572 
2573 	if (new_below)
2574 		new->vm_end = addr;
2575 	else {
2576 		new->vm_start = addr;
2577 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2578 	}
2579 
2580 	err = vma_dup_policy(vma, new);
2581 	if (err)
2582 		goto out_free_vma;
2583 
2584 	err = anon_vma_clone(new, vma);
2585 	if (err)
2586 		goto out_free_mpol;
2587 
2588 	if (new->vm_file)
2589 		get_file(new->vm_file);
2590 
2591 	if (new->vm_ops && new->vm_ops->open)
2592 		new->vm_ops->open(new);
2593 
2594 	if (new_below)
2595 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2596 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2597 	else
2598 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2599 
2600 	/* Success. */
2601 	if (!err)
2602 		return 0;
2603 
2604 	/* Clean everything up if vma_adjust failed. */
2605 	if (new->vm_ops && new->vm_ops->close)
2606 		new->vm_ops->close(new);
2607 	if (new->vm_file)
2608 		fput(new->vm_file);
2609 	unlink_anon_vmas(new);
2610  out_free_mpol:
2611 	mpol_put(vma_policy(new));
2612  out_free_vma:
2613 	kmem_cache_free(vm_area_cachep, new);
2614 	return err;
2615 }
2616 
2617 /*
2618  * Split a vma into two pieces at address 'addr', a new vma is allocated
2619  * either for the first part or the tail.
2620  */
2621 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2622 	      unsigned long addr, int new_below)
2623 {
2624 	if (mm->map_count >= sysctl_max_map_count)
2625 		return -ENOMEM;
2626 
2627 	return __split_vma(mm, vma, addr, new_below);
2628 }
2629 
2630 /* Munmap is split into 2 main parts -- this part which finds
2631  * what needs doing, and the areas themselves, which do the
2632  * work.  This now handles partial unmappings.
2633  * Jeremy Fitzhardinge <jeremy@goop.org>
2634  */
2635 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2636 	      struct list_head *uf)
2637 {
2638 	unsigned long end;
2639 	struct vm_area_struct *vma, *prev, *last;
2640 
2641 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2642 		return -EINVAL;
2643 
2644 	len = PAGE_ALIGN(len);
2645 	if (len == 0)
2646 		return -EINVAL;
2647 
2648 	/* Find the first overlapping VMA */
2649 	vma = find_vma(mm, start);
2650 	if (!vma)
2651 		return 0;
2652 	prev = vma->vm_prev;
2653 	/* we have  start < vma->vm_end  */
2654 
2655 	/* if it doesn't overlap, we have nothing.. */
2656 	end = start + len;
2657 	if (vma->vm_start >= end)
2658 		return 0;
2659 
2660 	/*
2661 	 * If we need to split any vma, do it now to save pain later.
2662 	 *
2663 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2664 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2665 	 * places tmp vma above, and higher split_vma places tmp vma below.
2666 	 */
2667 	if (start > vma->vm_start) {
2668 		int error;
2669 
2670 		/*
2671 		 * Make sure that map_count on return from munmap() will
2672 		 * not exceed its limit; but let map_count go just above
2673 		 * its limit temporarily, to help free resources as expected.
2674 		 */
2675 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2676 			return -ENOMEM;
2677 
2678 		error = __split_vma(mm, vma, start, 0);
2679 		if (error)
2680 			return error;
2681 		prev = vma;
2682 	}
2683 
2684 	/* Does it split the last one? */
2685 	last = find_vma(mm, end);
2686 	if (last && end > last->vm_start) {
2687 		int error = __split_vma(mm, last, end, 1);
2688 		if (error)
2689 			return error;
2690 	}
2691 	vma = prev ? prev->vm_next : mm->mmap;
2692 
2693 	if (unlikely(uf)) {
2694 		/*
2695 		 * If userfaultfd_unmap_prep returns an error the vmas
2696 		 * will remain splitted, but userland will get a
2697 		 * highly unexpected error anyway. This is no
2698 		 * different than the case where the first of the two
2699 		 * __split_vma fails, but we don't undo the first
2700 		 * split, despite we could. This is unlikely enough
2701 		 * failure that it's not worth optimizing it for.
2702 		 */
2703 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2704 		if (error)
2705 			return error;
2706 	}
2707 
2708 	/*
2709 	 * unlock any mlock()ed ranges before detaching vmas
2710 	 */
2711 	if (mm->locked_vm) {
2712 		struct vm_area_struct *tmp = vma;
2713 		while (tmp && tmp->vm_start < end) {
2714 			if (tmp->vm_flags & VM_LOCKED) {
2715 				mm->locked_vm -= vma_pages(tmp);
2716 				munlock_vma_pages_all(tmp);
2717 			}
2718 			tmp = tmp->vm_next;
2719 		}
2720 	}
2721 
2722 	/*
2723 	 * Remove the vma's, and unmap the actual pages
2724 	 */
2725 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2726 	unmap_region(mm, vma, prev, start, end);
2727 
2728 	arch_unmap(mm, vma, start, end);
2729 
2730 	/* Fix up all other VM information */
2731 	remove_vma_list(mm, vma);
2732 
2733 	return 0;
2734 }
2735 
2736 int vm_munmap(unsigned long start, size_t len)
2737 {
2738 	int ret;
2739 	struct mm_struct *mm = current->mm;
2740 	LIST_HEAD(uf);
2741 
2742 	if (down_write_killable(&mm->mmap_sem))
2743 		return -EINTR;
2744 
2745 	ret = do_munmap(mm, start, len, &uf);
2746 	up_write(&mm->mmap_sem);
2747 	userfaultfd_unmap_complete(mm, &uf);
2748 	return ret;
2749 }
2750 EXPORT_SYMBOL(vm_munmap);
2751 
2752 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2753 {
2754 	profile_munmap(addr);
2755 	return vm_munmap(addr, len);
2756 }
2757 
2758 
2759 /*
2760  * Emulation of deprecated remap_file_pages() syscall.
2761  */
2762 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2763 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2764 {
2765 
2766 	struct mm_struct *mm = current->mm;
2767 	struct vm_area_struct *vma;
2768 	unsigned long populate = 0;
2769 	unsigned long ret = -EINVAL;
2770 	struct file *file;
2771 
2772 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2773 		     current->comm, current->pid);
2774 
2775 	if (prot)
2776 		return ret;
2777 	start = start & PAGE_MASK;
2778 	size = size & PAGE_MASK;
2779 
2780 	if (start + size <= start)
2781 		return ret;
2782 
2783 	/* Does pgoff wrap? */
2784 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2785 		return ret;
2786 
2787 	if (down_write_killable(&mm->mmap_sem))
2788 		return -EINTR;
2789 
2790 	vma = find_vma(mm, start);
2791 
2792 	if (!vma || !(vma->vm_flags & VM_SHARED))
2793 		goto out;
2794 
2795 	if (start < vma->vm_start)
2796 		goto out;
2797 
2798 	if (start + size > vma->vm_end) {
2799 		struct vm_area_struct *next;
2800 
2801 		for (next = vma->vm_next; next; next = next->vm_next) {
2802 			/* hole between vmas ? */
2803 			if (next->vm_start != next->vm_prev->vm_end)
2804 				goto out;
2805 
2806 			if (next->vm_file != vma->vm_file)
2807 				goto out;
2808 
2809 			if (next->vm_flags != vma->vm_flags)
2810 				goto out;
2811 
2812 			if (start + size <= next->vm_end)
2813 				break;
2814 		}
2815 
2816 		if (!next)
2817 			goto out;
2818 	}
2819 
2820 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2821 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2822 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2823 
2824 	flags &= MAP_NONBLOCK;
2825 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2826 	if (vma->vm_flags & VM_LOCKED) {
2827 		struct vm_area_struct *tmp;
2828 		flags |= MAP_LOCKED;
2829 
2830 		/* drop PG_Mlocked flag for over-mapped range */
2831 		for (tmp = vma; tmp->vm_start >= start + size;
2832 				tmp = tmp->vm_next) {
2833 			/*
2834 			 * Split pmd and munlock page on the border
2835 			 * of the range.
2836 			 */
2837 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2838 
2839 			munlock_vma_pages_range(tmp,
2840 					max(tmp->vm_start, start),
2841 					min(tmp->vm_end, start + size));
2842 		}
2843 	}
2844 
2845 	file = get_file(vma->vm_file);
2846 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2847 			prot, flags, pgoff, &populate, NULL);
2848 	fput(file);
2849 out:
2850 	up_write(&mm->mmap_sem);
2851 	if (populate)
2852 		mm_populate(ret, populate);
2853 	if (!IS_ERR_VALUE(ret))
2854 		ret = 0;
2855 	return ret;
2856 }
2857 
2858 static inline void verify_mm_writelocked(struct mm_struct *mm)
2859 {
2860 #ifdef CONFIG_DEBUG_VM
2861 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2862 		WARN_ON(1);
2863 		up_read(&mm->mmap_sem);
2864 	}
2865 #endif
2866 }
2867 
2868 /*
2869  *  this is really a simplified "do_mmap".  it only handles
2870  *  anonymous maps.  eventually we may be able to do some
2871  *  brk-specific accounting here.
2872  */
2873 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
2874 {
2875 	struct mm_struct *mm = current->mm;
2876 	struct vm_area_struct *vma, *prev;
2877 	unsigned long len;
2878 	struct rb_node **rb_link, *rb_parent;
2879 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2880 	int error;
2881 
2882 	len = PAGE_ALIGN(request);
2883 	if (len < request)
2884 		return -ENOMEM;
2885 	if (!len)
2886 		return 0;
2887 
2888 	/* Until we need other flags, refuse anything except VM_EXEC. */
2889 	if ((flags & (~VM_EXEC)) != 0)
2890 		return -EINVAL;
2891 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2892 
2893 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2894 	if (offset_in_page(error))
2895 		return error;
2896 
2897 	error = mlock_future_check(mm, mm->def_flags, len);
2898 	if (error)
2899 		return error;
2900 
2901 	/*
2902 	 * mm->mmap_sem is required to protect against another thread
2903 	 * changing the mappings in case we sleep.
2904 	 */
2905 	verify_mm_writelocked(mm);
2906 
2907 	/*
2908 	 * Clear old maps.  this also does some error checking for us
2909 	 */
2910 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2911 			      &rb_parent)) {
2912 		if (do_munmap(mm, addr, len, uf))
2913 			return -ENOMEM;
2914 	}
2915 
2916 	/* Check against address space limits *after* clearing old maps... */
2917 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2918 		return -ENOMEM;
2919 
2920 	if (mm->map_count > sysctl_max_map_count)
2921 		return -ENOMEM;
2922 
2923 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2924 		return -ENOMEM;
2925 
2926 	/* Can we just expand an old private anonymous mapping? */
2927 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2928 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2929 	if (vma)
2930 		goto out;
2931 
2932 	/*
2933 	 * create a vma struct for an anonymous mapping
2934 	 */
2935 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2936 	if (!vma) {
2937 		vm_unacct_memory(len >> PAGE_SHIFT);
2938 		return -ENOMEM;
2939 	}
2940 
2941 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2942 	vma->vm_mm = mm;
2943 	vma->vm_start = addr;
2944 	vma->vm_end = addr + len;
2945 	vma->vm_pgoff = pgoff;
2946 	vma->vm_flags = flags;
2947 	vma->vm_page_prot = vm_get_page_prot(flags);
2948 	vma_link(mm, vma, prev, rb_link, rb_parent);
2949 out:
2950 	perf_event_mmap(vma);
2951 	mm->total_vm += len >> PAGE_SHIFT;
2952 	mm->data_vm += len >> PAGE_SHIFT;
2953 	if (flags & VM_LOCKED)
2954 		mm->locked_vm += (len >> PAGE_SHIFT);
2955 	vma->vm_flags |= VM_SOFTDIRTY;
2956 	return 0;
2957 }
2958 
2959 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
2960 {
2961 	return do_brk_flags(addr, len, 0, uf);
2962 }
2963 
2964 int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags)
2965 {
2966 	struct mm_struct *mm = current->mm;
2967 	int ret;
2968 	bool populate;
2969 	LIST_HEAD(uf);
2970 
2971 	if (down_write_killable(&mm->mmap_sem))
2972 		return -EINTR;
2973 
2974 	ret = do_brk_flags(addr, len, flags, &uf);
2975 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2976 	up_write(&mm->mmap_sem);
2977 	userfaultfd_unmap_complete(mm, &uf);
2978 	if (populate && !ret)
2979 		mm_populate(addr, len);
2980 	return ret;
2981 }
2982 EXPORT_SYMBOL(vm_brk_flags);
2983 
2984 int vm_brk(unsigned long addr, unsigned long len)
2985 {
2986 	return vm_brk_flags(addr, len, 0);
2987 }
2988 EXPORT_SYMBOL(vm_brk);
2989 
2990 /* Release all mmaps. */
2991 void exit_mmap(struct mm_struct *mm)
2992 {
2993 	struct mmu_gather tlb;
2994 	struct vm_area_struct *vma;
2995 	unsigned long nr_accounted = 0;
2996 
2997 	/* mm's last user has gone, and its about to be pulled down */
2998 	mmu_notifier_release(mm);
2999 
3000 	if (mm->locked_vm) {
3001 		vma = mm->mmap;
3002 		while (vma) {
3003 			if (vma->vm_flags & VM_LOCKED)
3004 				munlock_vma_pages_all(vma);
3005 			vma = vma->vm_next;
3006 		}
3007 	}
3008 
3009 	arch_exit_mmap(mm);
3010 
3011 	vma = mm->mmap;
3012 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3013 		return;
3014 
3015 	lru_add_drain();
3016 	flush_cache_mm(mm);
3017 	tlb_gather_mmu(&tlb, mm, 0, -1);
3018 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3019 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3020 	unmap_vmas(&tlb, vma, 0, -1);
3021 
3022 	if (unlikely(mm_is_oom_victim(mm))) {
3023 		/*
3024 		 * Wait for oom_reap_task() to stop working on this
3025 		 * mm. Because MMF_OOM_SKIP is already set before
3026 		 * calling down_read(), oom_reap_task() will not run
3027 		 * on this "mm" post up_write().
3028 		 *
3029 		 * mm_is_oom_victim() cannot be set from under us
3030 		 * either because victim->mm is already set to NULL
3031 		 * under task_lock before calling mmput and oom_mm is
3032 		 * set not NULL by the OOM killer only if victim->mm
3033 		 * is found not NULL while holding the task_lock.
3034 		 */
3035 		set_bit(MMF_OOM_SKIP, &mm->flags);
3036 		down_write(&mm->mmap_sem);
3037 		up_write(&mm->mmap_sem);
3038 	}
3039 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3040 	tlb_finish_mmu(&tlb, 0, -1);
3041 
3042 	/*
3043 	 * Walk the list again, actually closing and freeing it,
3044 	 * with preemption enabled, without holding any MM locks.
3045 	 */
3046 	while (vma) {
3047 		if (vma->vm_flags & VM_ACCOUNT)
3048 			nr_accounted += vma_pages(vma);
3049 		vma = remove_vma(vma);
3050 	}
3051 	vm_unacct_memory(nr_accounted);
3052 }
3053 
3054 /* Insert vm structure into process list sorted by address
3055  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3056  * then i_mmap_rwsem is taken here.
3057  */
3058 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3059 {
3060 	struct vm_area_struct *prev;
3061 	struct rb_node **rb_link, *rb_parent;
3062 
3063 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3064 			   &prev, &rb_link, &rb_parent))
3065 		return -ENOMEM;
3066 	if ((vma->vm_flags & VM_ACCOUNT) &&
3067 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3068 		return -ENOMEM;
3069 
3070 	/*
3071 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3072 	 * until its first write fault, when page's anon_vma and index
3073 	 * are set.  But now set the vm_pgoff it will almost certainly
3074 	 * end up with (unless mremap moves it elsewhere before that
3075 	 * first wfault), so /proc/pid/maps tells a consistent story.
3076 	 *
3077 	 * By setting it to reflect the virtual start address of the
3078 	 * vma, merges and splits can happen in a seamless way, just
3079 	 * using the existing file pgoff checks and manipulations.
3080 	 * Similarly in do_mmap_pgoff and in do_brk.
3081 	 */
3082 	if (vma_is_anonymous(vma)) {
3083 		BUG_ON(vma->anon_vma);
3084 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3085 	}
3086 
3087 	vma_link(mm, vma, prev, rb_link, rb_parent);
3088 	return 0;
3089 }
3090 
3091 /*
3092  * Copy the vma structure to a new location in the same mm,
3093  * prior to moving page table entries, to effect an mremap move.
3094  */
3095 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3096 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3097 	bool *need_rmap_locks)
3098 {
3099 	struct vm_area_struct *vma = *vmap;
3100 	unsigned long vma_start = vma->vm_start;
3101 	struct mm_struct *mm = vma->vm_mm;
3102 	struct vm_area_struct *new_vma, *prev;
3103 	struct rb_node **rb_link, *rb_parent;
3104 	bool faulted_in_anon_vma = true;
3105 
3106 	/*
3107 	 * If anonymous vma has not yet been faulted, update new pgoff
3108 	 * to match new location, to increase its chance of merging.
3109 	 */
3110 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3111 		pgoff = addr >> PAGE_SHIFT;
3112 		faulted_in_anon_vma = false;
3113 	}
3114 
3115 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3116 		return NULL;	/* should never get here */
3117 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3118 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3119 			    vma->vm_userfaultfd_ctx);
3120 	if (new_vma) {
3121 		/*
3122 		 * Source vma may have been merged into new_vma
3123 		 */
3124 		if (unlikely(vma_start >= new_vma->vm_start &&
3125 			     vma_start < new_vma->vm_end)) {
3126 			/*
3127 			 * The only way we can get a vma_merge with
3128 			 * self during an mremap is if the vma hasn't
3129 			 * been faulted in yet and we were allowed to
3130 			 * reset the dst vma->vm_pgoff to the
3131 			 * destination address of the mremap to allow
3132 			 * the merge to happen. mremap must change the
3133 			 * vm_pgoff linearity between src and dst vmas
3134 			 * (in turn preventing a vma_merge) to be
3135 			 * safe. It is only safe to keep the vm_pgoff
3136 			 * linear if there are no pages mapped yet.
3137 			 */
3138 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3139 			*vmap = vma = new_vma;
3140 		}
3141 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3142 	} else {
3143 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3144 		if (!new_vma)
3145 			goto out;
3146 		*new_vma = *vma;
3147 		new_vma->vm_start = addr;
3148 		new_vma->vm_end = addr + len;
3149 		new_vma->vm_pgoff = pgoff;
3150 		if (vma_dup_policy(vma, new_vma))
3151 			goto out_free_vma;
3152 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3153 		if (anon_vma_clone(new_vma, vma))
3154 			goto out_free_mempol;
3155 		if (new_vma->vm_file)
3156 			get_file(new_vma->vm_file);
3157 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3158 			new_vma->vm_ops->open(new_vma);
3159 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3160 		*need_rmap_locks = false;
3161 	}
3162 	return new_vma;
3163 
3164 out_free_mempol:
3165 	mpol_put(vma_policy(new_vma));
3166 out_free_vma:
3167 	kmem_cache_free(vm_area_cachep, new_vma);
3168 out:
3169 	return NULL;
3170 }
3171 
3172 /*
3173  * Return true if the calling process may expand its vm space by the passed
3174  * number of pages
3175  */
3176 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3177 {
3178 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3179 		return false;
3180 
3181 	if (is_data_mapping(flags) &&
3182 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3183 		/* Workaround for Valgrind */
3184 		if (rlimit(RLIMIT_DATA) == 0 &&
3185 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3186 			return true;
3187 		if (!ignore_rlimit_data) {
3188 			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3189 				     current->comm, current->pid,
3190 				     (mm->data_vm + npages) << PAGE_SHIFT,
3191 				     rlimit(RLIMIT_DATA));
3192 			return false;
3193 		}
3194 	}
3195 
3196 	return true;
3197 }
3198 
3199 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3200 {
3201 	mm->total_vm += npages;
3202 
3203 	if (is_exec_mapping(flags))
3204 		mm->exec_vm += npages;
3205 	else if (is_stack_mapping(flags))
3206 		mm->stack_vm += npages;
3207 	else if (is_data_mapping(flags))
3208 		mm->data_vm += npages;
3209 }
3210 
3211 static int special_mapping_fault(struct vm_fault *vmf);
3212 
3213 /*
3214  * Having a close hook prevents vma merging regardless of flags.
3215  */
3216 static void special_mapping_close(struct vm_area_struct *vma)
3217 {
3218 }
3219 
3220 static const char *special_mapping_name(struct vm_area_struct *vma)
3221 {
3222 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3223 }
3224 
3225 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3226 {
3227 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3228 
3229 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3230 		return -EFAULT;
3231 
3232 	if (sm->mremap)
3233 		return sm->mremap(sm, new_vma);
3234 
3235 	return 0;
3236 }
3237 
3238 static const struct vm_operations_struct special_mapping_vmops = {
3239 	.close = special_mapping_close,
3240 	.fault = special_mapping_fault,
3241 	.mremap = special_mapping_mremap,
3242 	.name = special_mapping_name,
3243 };
3244 
3245 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3246 	.close = special_mapping_close,
3247 	.fault = special_mapping_fault,
3248 };
3249 
3250 static int special_mapping_fault(struct vm_fault *vmf)
3251 {
3252 	struct vm_area_struct *vma = vmf->vma;
3253 	pgoff_t pgoff;
3254 	struct page **pages;
3255 
3256 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3257 		pages = vma->vm_private_data;
3258 	} else {
3259 		struct vm_special_mapping *sm = vma->vm_private_data;
3260 
3261 		if (sm->fault)
3262 			return sm->fault(sm, vmf->vma, vmf);
3263 
3264 		pages = sm->pages;
3265 	}
3266 
3267 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3268 		pgoff--;
3269 
3270 	if (*pages) {
3271 		struct page *page = *pages;
3272 		get_page(page);
3273 		vmf->page = page;
3274 		return 0;
3275 	}
3276 
3277 	return VM_FAULT_SIGBUS;
3278 }
3279 
3280 static struct vm_area_struct *__install_special_mapping(
3281 	struct mm_struct *mm,
3282 	unsigned long addr, unsigned long len,
3283 	unsigned long vm_flags, void *priv,
3284 	const struct vm_operations_struct *ops)
3285 {
3286 	int ret;
3287 	struct vm_area_struct *vma;
3288 
3289 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3290 	if (unlikely(vma == NULL))
3291 		return ERR_PTR(-ENOMEM);
3292 
3293 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3294 	vma->vm_mm = mm;
3295 	vma->vm_start = addr;
3296 	vma->vm_end = addr + len;
3297 
3298 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3299 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3300 
3301 	vma->vm_ops = ops;
3302 	vma->vm_private_data = priv;
3303 
3304 	ret = insert_vm_struct(mm, vma);
3305 	if (ret)
3306 		goto out;
3307 
3308 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3309 
3310 	perf_event_mmap(vma);
3311 
3312 	return vma;
3313 
3314 out:
3315 	kmem_cache_free(vm_area_cachep, vma);
3316 	return ERR_PTR(ret);
3317 }
3318 
3319 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3320 	const struct vm_special_mapping *sm)
3321 {
3322 	return vma->vm_private_data == sm &&
3323 		(vma->vm_ops == &special_mapping_vmops ||
3324 		 vma->vm_ops == &legacy_special_mapping_vmops);
3325 }
3326 
3327 /*
3328  * Called with mm->mmap_sem held for writing.
3329  * Insert a new vma covering the given region, with the given flags.
3330  * Its pages are supplied by the given array of struct page *.
3331  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3332  * The region past the last page supplied will always produce SIGBUS.
3333  * The array pointer and the pages it points to are assumed to stay alive
3334  * for as long as this mapping might exist.
3335  */
3336 struct vm_area_struct *_install_special_mapping(
3337 	struct mm_struct *mm,
3338 	unsigned long addr, unsigned long len,
3339 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3340 {
3341 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3342 					&special_mapping_vmops);
3343 }
3344 
3345 int install_special_mapping(struct mm_struct *mm,
3346 			    unsigned long addr, unsigned long len,
3347 			    unsigned long vm_flags, struct page **pages)
3348 {
3349 	struct vm_area_struct *vma = __install_special_mapping(
3350 		mm, addr, len, vm_flags, (void *)pages,
3351 		&legacy_special_mapping_vmops);
3352 
3353 	return PTR_ERR_OR_ZERO(vma);
3354 }
3355 
3356 static DEFINE_MUTEX(mm_all_locks_mutex);
3357 
3358 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3359 {
3360 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3361 		/*
3362 		 * The LSB of head.next can't change from under us
3363 		 * because we hold the mm_all_locks_mutex.
3364 		 */
3365 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3366 		/*
3367 		 * We can safely modify head.next after taking the
3368 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3369 		 * the same anon_vma we won't take it again.
3370 		 *
3371 		 * No need of atomic instructions here, head.next
3372 		 * can't change from under us thanks to the
3373 		 * anon_vma->root->rwsem.
3374 		 */
3375 		if (__test_and_set_bit(0, (unsigned long *)
3376 				       &anon_vma->root->rb_root.rb_root.rb_node))
3377 			BUG();
3378 	}
3379 }
3380 
3381 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3382 {
3383 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3384 		/*
3385 		 * AS_MM_ALL_LOCKS can't change from under us because
3386 		 * we hold the mm_all_locks_mutex.
3387 		 *
3388 		 * Operations on ->flags have to be atomic because
3389 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3390 		 * mm_all_locks_mutex, there may be other cpus
3391 		 * changing other bitflags in parallel to us.
3392 		 */
3393 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3394 			BUG();
3395 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3396 	}
3397 }
3398 
3399 /*
3400  * This operation locks against the VM for all pte/vma/mm related
3401  * operations that could ever happen on a certain mm. This includes
3402  * vmtruncate, try_to_unmap, and all page faults.
3403  *
3404  * The caller must take the mmap_sem in write mode before calling
3405  * mm_take_all_locks(). The caller isn't allowed to release the
3406  * mmap_sem until mm_drop_all_locks() returns.
3407  *
3408  * mmap_sem in write mode is required in order to block all operations
3409  * that could modify pagetables and free pages without need of
3410  * altering the vma layout. It's also needed in write mode to avoid new
3411  * anon_vmas to be associated with existing vmas.
3412  *
3413  * A single task can't take more than one mm_take_all_locks() in a row
3414  * or it would deadlock.
3415  *
3416  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3417  * mapping->flags avoid to take the same lock twice, if more than one
3418  * vma in this mm is backed by the same anon_vma or address_space.
3419  *
3420  * We take locks in following order, accordingly to comment at beginning
3421  * of mm/rmap.c:
3422  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3423  *     hugetlb mapping);
3424  *   - all i_mmap_rwsem locks;
3425  *   - all anon_vma->rwseml
3426  *
3427  * We can take all locks within these types randomly because the VM code
3428  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3429  * mm_all_locks_mutex.
3430  *
3431  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3432  * that may have to take thousand of locks.
3433  *
3434  * mm_take_all_locks() can fail if it's interrupted by signals.
3435  */
3436 int mm_take_all_locks(struct mm_struct *mm)
3437 {
3438 	struct vm_area_struct *vma;
3439 	struct anon_vma_chain *avc;
3440 
3441 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3442 
3443 	mutex_lock(&mm_all_locks_mutex);
3444 
3445 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3446 		if (signal_pending(current))
3447 			goto out_unlock;
3448 		if (vma->vm_file && vma->vm_file->f_mapping &&
3449 				is_vm_hugetlb_page(vma))
3450 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3451 	}
3452 
3453 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3454 		if (signal_pending(current))
3455 			goto out_unlock;
3456 		if (vma->vm_file && vma->vm_file->f_mapping &&
3457 				!is_vm_hugetlb_page(vma))
3458 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3459 	}
3460 
3461 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3462 		if (signal_pending(current))
3463 			goto out_unlock;
3464 		if (vma->anon_vma)
3465 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3466 				vm_lock_anon_vma(mm, avc->anon_vma);
3467 	}
3468 
3469 	return 0;
3470 
3471 out_unlock:
3472 	mm_drop_all_locks(mm);
3473 	return -EINTR;
3474 }
3475 
3476 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3477 {
3478 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3479 		/*
3480 		 * The LSB of head.next can't change to 0 from under
3481 		 * us because we hold the mm_all_locks_mutex.
3482 		 *
3483 		 * We must however clear the bitflag before unlocking
3484 		 * the vma so the users using the anon_vma->rb_root will
3485 		 * never see our bitflag.
3486 		 *
3487 		 * No need of atomic instructions here, head.next
3488 		 * can't change from under us until we release the
3489 		 * anon_vma->root->rwsem.
3490 		 */
3491 		if (!__test_and_clear_bit(0, (unsigned long *)
3492 					  &anon_vma->root->rb_root.rb_root.rb_node))
3493 			BUG();
3494 		anon_vma_unlock_write(anon_vma);
3495 	}
3496 }
3497 
3498 static void vm_unlock_mapping(struct address_space *mapping)
3499 {
3500 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3501 		/*
3502 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3503 		 * because we hold the mm_all_locks_mutex.
3504 		 */
3505 		i_mmap_unlock_write(mapping);
3506 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3507 					&mapping->flags))
3508 			BUG();
3509 	}
3510 }
3511 
3512 /*
3513  * The mmap_sem cannot be released by the caller until
3514  * mm_drop_all_locks() returns.
3515  */
3516 void mm_drop_all_locks(struct mm_struct *mm)
3517 {
3518 	struct vm_area_struct *vma;
3519 	struct anon_vma_chain *avc;
3520 
3521 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3522 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3523 
3524 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3525 		if (vma->anon_vma)
3526 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3527 				vm_unlock_anon_vma(avc->anon_vma);
3528 		if (vma->vm_file && vma->vm_file->f_mapping)
3529 			vm_unlock_mapping(vma->vm_file->f_mapping);
3530 	}
3531 
3532 	mutex_unlock(&mm_all_locks_mutex);
3533 }
3534 
3535 /*
3536  * initialise the percpu counter for VM
3537  */
3538 void __init mmap_init(void)
3539 {
3540 	int ret;
3541 
3542 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3543 	VM_BUG_ON(ret);
3544 }
3545 
3546 /*
3547  * Initialise sysctl_user_reserve_kbytes.
3548  *
3549  * This is intended to prevent a user from starting a single memory hogging
3550  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3551  * mode.
3552  *
3553  * The default value is min(3% of free memory, 128MB)
3554  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3555  */
3556 static int init_user_reserve(void)
3557 {
3558 	unsigned long free_kbytes;
3559 
3560 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3561 
3562 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3563 	return 0;
3564 }
3565 subsys_initcall(init_user_reserve);
3566 
3567 /*
3568  * Initialise sysctl_admin_reserve_kbytes.
3569  *
3570  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3571  * to log in and kill a memory hogging process.
3572  *
3573  * Systems with more than 256MB will reserve 8MB, enough to recover
3574  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3575  * only reserve 3% of free pages by default.
3576  */
3577 static int init_admin_reserve(void)
3578 {
3579 	unsigned long free_kbytes;
3580 
3581 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3582 
3583 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3584 	return 0;
3585 }
3586 subsys_initcall(init_admin_reserve);
3587 
3588 /*
3589  * Reinititalise user and admin reserves if memory is added or removed.
3590  *
3591  * The default user reserve max is 128MB, and the default max for the
3592  * admin reserve is 8MB. These are usually, but not always, enough to
3593  * enable recovery from a memory hogging process using login/sshd, a shell,
3594  * and tools like top. It may make sense to increase or even disable the
3595  * reserve depending on the existence of swap or variations in the recovery
3596  * tools. So, the admin may have changed them.
3597  *
3598  * If memory is added and the reserves have been eliminated or increased above
3599  * the default max, then we'll trust the admin.
3600  *
3601  * If memory is removed and there isn't enough free memory, then we
3602  * need to reset the reserves.
3603  *
3604  * Otherwise keep the reserve set by the admin.
3605  */
3606 static int reserve_mem_notifier(struct notifier_block *nb,
3607 			     unsigned long action, void *data)
3608 {
3609 	unsigned long tmp, free_kbytes;
3610 
3611 	switch (action) {
3612 	case MEM_ONLINE:
3613 		/* Default max is 128MB. Leave alone if modified by operator. */
3614 		tmp = sysctl_user_reserve_kbytes;
3615 		if (0 < tmp && tmp < (1UL << 17))
3616 			init_user_reserve();
3617 
3618 		/* Default max is 8MB.  Leave alone if modified by operator. */
3619 		tmp = sysctl_admin_reserve_kbytes;
3620 		if (0 < tmp && tmp < (1UL << 13))
3621 			init_admin_reserve();
3622 
3623 		break;
3624 	case MEM_OFFLINE:
3625 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3626 
3627 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3628 			init_user_reserve();
3629 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3630 				sysctl_user_reserve_kbytes);
3631 		}
3632 
3633 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3634 			init_admin_reserve();
3635 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3636 				sysctl_admin_reserve_kbytes);
3637 		}
3638 		break;
3639 	default:
3640 		break;
3641 	}
3642 	return NOTIFY_OK;
3643 }
3644 
3645 static struct notifier_block reserve_mem_nb = {
3646 	.notifier_call = reserve_mem_notifier,
3647 };
3648 
3649 static int __meminit init_reserve_notifier(void)
3650 {
3651 	if (register_hotmemory_notifier(&reserve_mem_nb))
3652 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3653 
3654 	return 0;
3655 }
3656 subsys_initcall(init_reserve_notifier);
3657