1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/profile.h> 30 #include <linux/export.h> 31 #include <linux/mount.h> 32 #include <linux/mempolicy.h> 33 #include <linux/rmap.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/mmdebug.h> 36 #include <linux/perf_event.h> 37 #include <linux/audit.h> 38 #include <linux/khugepaged.h> 39 #include <linux/uprobes.h> 40 #include <linux/rbtree_augmented.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 48 #include <asm/uaccess.h> 49 #include <asm/cacheflush.h> 50 #include <asm/tlb.h> 51 #include <asm/mmu_context.h> 52 53 #include "internal.h" 54 55 #ifndef arch_mmap_check 56 #define arch_mmap_check(addr, len, flags) (0) 57 #endif 58 59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 63 #endif 64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 68 #endif 69 70 static bool ignore_rlimit_data; 71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 72 73 static void unmap_region(struct mm_struct *mm, 74 struct vm_area_struct *vma, struct vm_area_struct *prev, 75 unsigned long start, unsigned long end); 76 77 /* description of effects of mapping type and prot in current implementation. 78 * this is due to the limited x86 page protection hardware. The expected 79 * behavior is in parens: 80 * 81 * map_type prot 82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 84 * w: (no) no w: (no) no w: (yes) yes w: (no) no 85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 86 * 87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 88 * w: (no) no w: (no) no w: (copy) copy w: (no) no 89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 90 * 91 */ 92 pgprot_t protection_map[16] = { 93 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 94 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 95 }; 96 97 pgprot_t vm_get_page_prot(unsigned long vm_flags) 98 { 99 return __pgprot(pgprot_val(protection_map[vm_flags & 100 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 101 pgprot_val(arch_vm_get_page_prot(vm_flags))); 102 } 103 EXPORT_SYMBOL(vm_get_page_prot); 104 105 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 106 { 107 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 108 } 109 110 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 111 void vma_set_page_prot(struct vm_area_struct *vma) 112 { 113 unsigned long vm_flags = vma->vm_flags; 114 115 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 116 if (vma_wants_writenotify(vma)) { 117 vm_flags &= ~VM_SHARED; 118 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, 119 vm_flags); 120 } 121 } 122 123 /* 124 * Requires inode->i_mapping->i_mmap_rwsem 125 */ 126 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 127 struct file *file, struct address_space *mapping) 128 { 129 if (vma->vm_flags & VM_DENYWRITE) 130 atomic_inc(&file_inode(file)->i_writecount); 131 if (vma->vm_flags & VM_SHARED) 132 mapping_unmap_writable(mapping); 133 134 flush_dcache_mmap_lock(mapping); 135 vma_interval_tree_remove(vma, &mapping->i_mmap); 136 flush_dcache_mmap_unlock(mapping); 137 } 138 139 /* 140 * Unlink a file-based vm structure from its interval tree, to hide 141 * vma from rmap and vmtruncate before freeing its page tables. 142 */ 143 void unlink_file_vma(struct vm_area_struct *vma) 144 { 145 struct file *file = vma->vm_file; 146 147 if (file) { 148 struct address_space *mapping = file->f_mapping; 149 i_mmap_lock_write(mapping); 150 __remove_shared_vm_struct(vma, file, mapping); 151 i_mmap_unlock_write(mapping); 152 } 153 } 154 155 /* 156 * Close a vm structure and free it, returning the next. 157 */ 158 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 159 { 160 struct vm_area_struct *next = vma->vm_next; 161 162 might_sleep(); 163 if (vma->vm_ops && vma->vm_ops->close) 164 vma->vm_ops->close(vma); 165 if (vma->vm_file) 166 fput(vma->vm_file); 167 mpol_put(vma_policy(vma)); 168 kmem_cache_free(vm_area_cachep, vma); 169 return next; 170 } 171 172 static int do_brk(unsigned long addr, unsigned long len); 173 174 SYSCALL_DEFINE1(brk, unsigned long, brk) 175 { 176 unsigned long retval; 177 unsigned long newbrk, oldbrk; 178 struct mm_struct *mm = current->mm; 179 unsigned long min_brk; 180 bool populate; 181 182 if (down_write_killable(&mm->mmap_sem)) 183 return -EINTR; 184 185 #ifdef CONFIG_COMPAT_BRK 186 /* 187 * CONFIG_COMPAT_BRK can still be overridden by setting 188 * randomize_va_space to 2, which will still cause mm->start_brk 189 * to be arbitrarily shifted 190 */ 191 if (current->brk_randomized) 192 min_brk = mm->start_brk; 193 else 194 min_brk = mm->end_data; 195 #else 196 min_brk = mm->start_brk; 197 #endif 198 if (brk < min_brk) 199 goto out; 200 201 /* 202 * Check against rlimit here. If this check is done later after the test 203 * of oldbrk with newbrk then it can escape the test and let the data 204 * segment grow beyond its set limit the in case where the limit is 205 * not page aligned -Ram Gupta 206 */ 207 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 208 mm->end_data, mm->start_data)) 209 goto out; 210 211 newbrk = PAGE_ALIGN(brk); 212 oldbrk = PAGE_ALIGN(mm->brk); 213 if (oldbrk == newbrk) 214 goto set_brk; 215 216 /* Always allow shrinking brk. */ 217 if (brk <= mm->brk) { 218 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 219 goto set_brk; 220 goto out; 221 } 222 223 /* Check against existing mmap mappings. */ 224 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 225 goto out; 226 227 /* Ok, looks good - let it rip. */ 228 if (do_brk(oldbrk, newbrk-oldbrk) < 0) 229 goto out; 230 231 set_brk: 232 mm->brk = brk; 233 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 234 up_write(&mm->mmap_sem); 235 if (populate) 236 mm_populate(oldbrk, newbrk - oldbrk); 237 return brk; 238 239 out: 240 retval = mm->brk; 241 up_write(&mm->mmap_sem); 242 return retval; 243 } 244 245 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 246 { 247 unsigned long max, subtree_gap; 248 max = vma->vm_start; 249 if (vma->vm_prev) 250 max -= vma->vm_prev->vm_end; 251 if (vma->vm_rb.rb_left) { 252 subtree_gap = rb_entry(vma->vm_rb.rb_left, 253 struct vm_area_struct, vm_rb)->rb_subtree_gap; 254 if (subtree_gap > max) 255 max = subtree_gap; 256 } 257 if (vma->vm_rb.rb_right) { 258 subtree_gap = rb_entry(vma->vm_rb.rb_right, 259 struct vm_area_struct, vm_rb)->rb_subtree_gap; 260 if (subtree_gap > max) 261 max = subtree_gap; 262 } 263 return max; 264 } 265 266 #ifdef CONFIG_DEBUG_VM_RB 267 static int browse_rb(struct mm_struct *mm) 268 { 269 struct rb_root *root = &mm->mm_rb; 270 int i = 0, j, bug = 0; 271 struct rb_node *nd, *pn = NULL; 272 unsigned long prev = 0, pend = 0; 273 274 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 275 struct vm_area_struct *vma; 276 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 277 if (vma->vm_start < prev) { 278 pr_emerg("vm_start %lx < prev %lx\n", 279 vma->vm_start, prev); 280 bug = 1; 281 } 282 if (vma->vm_start < pend) { 283 pr_emerg("vm_start %lx < pend %lx\n", 284 vma->vm_start, pend); 285 bug = 1; 286 } 287 if (vma->vm_start > vma->vm_end) { 288 pr_emerg("vm_start %lx > vm_end %lx\n", 289 vma->vm_start, vma->vm_end); 290 bug = 1; 291 } 292 spin_lock(&mm->page_table_lock); 293 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 294 pr_emerg("free gap %lx, correct %lx\n", 295 vma->rb_subtree_gap, 296 vma_compute_subtree_gap(vma)); 297 bug = 1; 298 } 299 spin_unlock(&mm->page_table_lock); 300 i++; 301 pn = nd; 302 prev = vma->vm_start; 303 pend = vma->vm_end; 304 } 305 j = 0; 306 for (nd = pn; nd; nd = rb_prev(nd)) 307 j++; 308 if (i != j) { 309 pr_emerg("backwards %d, forwards %d\n", j, i); 310 bug = 1; 311 } 312 return bug ? -1 : i; 313 } 314 315 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 316 { 317 struct rb_node *nd; 318 319 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 320 struct vm_area_struct *vma; 321 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 322 VM_BUG_ON_VMA(vma != ignore && 323 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 324 vma); 325 } 326 } 327 328 static void validate_mm(struct mm_struct *mm) 329 { 330 int bug = 0; 331 int i = 0; 332 unsigned long highest_address = 0; 333 struct vm_area_struct *vma = mm->mmap; 334 335 while (vma) { 336 struct anon_vma *anon_vma = vma->anon_vma; 337 struct anon_vma_chain *avc; 338 339 if (anon_vma) { 340 anon_vma_lock_read(anon_vma); 341 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 342 anon_vma_interval_tree_verify(avc); 343 anon_vma_unlock_read(anon_vma); 344 } 345 346 highest_address = vma->vm_end; 347 vma = vma->vm_next; 348 i++; 349 } 350 if (i != mm->map_count) { 351 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 352 bug = 1; 353 } 354 if (highest_address != mm->highest_vm_end) { 355 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 356 mm->highest_vm_end, highest_address); 357 bug = 1; 358 } 359 i = browse_rb(mm); 360 if (i != mm->map_count) { 361 if (i != -1) 362 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 363 bug = 1; 364 } 365 VM_BUG_ON_MM(bug, mm); 366 } 367 #else 368 #define validate_mm_rb(root, ignore) do { } while (0) 369 #define validate_mm(mm) do { } while (0) 370 #endif 371 372 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 373 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 374 375 /* 376 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 377 * vma->vm_prev->vm_end values changed, without modifying the vma's position 378 * in the rbtree. 379 */ 380 static void vma_gap_update(struct vm_area_struct *vma) 381 { 382 /* 383 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 384 * function that does exacltly what we want. 385 */ 386 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 387 } 388 389 static inline void vma_rb_insert(struct vm_area_struct *vma, 390 struct rb_root *root) 391 { 392 /* All rb_subtree_gap values must be consistent prior to insertion */ 393 validate_mm_rb(root, NULL); 394 395 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 396 } 397 398 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 399 { 400 /* 401 * All rb_subtree_gap values must be consistent prior to erase, 402 * with the possible exception of the vma being erased. 403 */ 404 validate_mm_rb(root, vma); 405 406 /* 407 * Note rb_erase_augmented is a fairly large inline function, 408 * so make sure we instantiate it only once with our desired 409 * augmented rbtree callbacks. 410 */ 411 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 412 } 413 414 /* 415 * vma has some anon_vma assigned, and is already inserted on that 416 * anon_vma's interval trees. 417 * 418 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 419 * vma must be removed from the anon_vma's interval trees using 420 * anon_vma_interval_tree_pre_update_vma(). 421 * 422 * After the update, the vma will be reinserted using 423 * anon_vma_interval_tree_post_update_vma(). 424 * 425 * The entire update must be protected by exclusive mmap_sem and by 426 * the root anon_vma's mutex. 427 */ 428 static inline void 429 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 430 { 431 struct anon_vma_chain *avc; 432 433 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 434 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 435 } 436 437 static inline void 438 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 439 { 440 struct anon_vma_chain *avc; 441 442 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 443 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 444 } 445 446 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 447 unsigned long end, struct vm_area_struct **pprev, 448 struct rb_node ***rb_link, struct rb_node **rb_parent) 449 { 450 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 451 452 __rb_link = &mm->mm_rb.rb_node; 453 rb_prev = __rb_parent = NULL; 454 455 while (*__rb_link) { 456 struct vm_area_struct *vma_tmp; 457 458 __rb_parent = *__rb_link; 459 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 460 461 if (vma_tmp->vm_end > addr) { 462 /* Fail if an existing vma overlaps the area */ 463 if (vma_tmp->vm_start < end) 464 return -ENOMEM; 465 __rb_link = &__rb_parent->rb_left; 466 } else { 467 rb_prev = __rb_parent; 468 __rb_link = &__rb_parent->rb_right; 469 } 470 } 471 472 *pprev = NULL; 473 if (rb_prev) 474 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 475 *rb_link = __rb_link; 476 *rb_parent = __rb_parent; 477 return 0; 478 } 479 480 static unsigned long count_vma_pages_range(struct mm_struct *mm, 481 unsigned long addr, unsigned long end) 482 { 483 unsigned long nr_pages = 0; 484 struct vm_area_struct *vma; 485 486 /* Find first overlaping mapping */ 487 vma = find_vma_intersection(mm, addr, end); 488 if (!vma) 489 return 0; 490 491 nr_pages = (min(end, vma->vm_end) - 492 max(addr, vma->vm_start)) >> PAGE_SHIFT; 493 494 /* Iterate over the rest of the overlaps */ 495 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 496 unsigned long overlap_len; 497 498 if (vma->vm_start > end) 499 break; 500 501 overlap_len = min(end, vma->vm_end) - vma->vm_start; 502 nr_pages += overlap_len >> PAGE_SHIFT; 503 } 504 505 return nr_pages; 506 } 507 508 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 509 struct rb_node **rb_link, struct rb_node *rb_parent) 510 { 511 /* Update tracking information for the gap following the new vma. */ 512 if (vma->vm_next) 513 vma_gap_update(vma->vm_next); 514 else 515 mm->highest_vm_end = vma->vm_end; 516 517 /* 518 * vma->vm_prev wasn't known when we followed the rbtree to find the 519 * correct insertion point for that vma. As a result, we could not 520 * update the vma vm_rb parents rb_subtree_gap values on the way down. 521 * So, we first insert the vma with a zero rb_subtree_gap value 522 * (to be consistent with what we did on the way down), and then 523 * immediately update the gap to the correct value. Finally we 524 * rebalance the rbtree after all augmented values have been set. 525 */ 526 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 527 vma->rb_subtree_gap = 0; 528 vma_gap_update(vma); 529 vma_rb_insert(vma, &mm->mm_rb); 530 } 531 532 static void __vma_link_file(struct vm_area_struct *vma) 533 { 534 struct file *file; 535 536 file = vma->vm_file; 537 if (file) { 538 struct address_space *mapping = file->f_mapping; 539 540 if (vma->vm_flags & VM_DENYWRITE) 541 atomic_dec(&file_inode(file)->i_writecount); 542 if (vma->vm_flags & VM_SHARED) 543 atomic_inc(&mapping->i_mmap_writable); 544 545 flush_dcache_mmap_lock(mapping); 546 vma_interval_tree_insert(vma, &mapping->i_mmap); 547 flush_dcache_mmap_unlock(mapping); 548 } 549 } 550 551 static void 552 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 553 struct vm_area_struct *prev, struct rb_node **rb_link, 554 struct rb_node *rb_parent) 555 { 556 __vma_link_list(mm, vma, prev, rb_parent); 557 __vma_link_rb(mm, vma, rb_link, rb_parent); 558 } 559 560 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 561 struct vm_area_struct *prev, struct rb_node **rb_link, 562 struct rb_node *rb_parent) 563 { 564 struct address_space *mapping = NULL; 565 566 if (vma->vm_file) { 567 mapping = vma->vm_file->f_mapping; 568 i_mmap_lock_write(mapping); 569 } 570 571 __vma_link(mm, vma, prev, rb_link, rb_parent); 572 __vma_link_file(vma); 573 574 if (mapping) 575 i_mmap_unlock_write(mapping); 576 577 mm->map_count++; 578 validate_mm(mm); 579 } 580 581 /* 582 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 583 * mm's list and rbtree. It has already been inserted into the interval tree. 584 */ 585 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 586 { 587 struct vm_area_struct *prev; 588 struct rb_node **rb_link, *rb_parent; 589 590 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 591 &prev, &rb_link, &rb_parent)) 592 BUG(); 593 __vma_link(mm, vma, prev, rb_link, rb_parent); 594 mm->map_count++; 595 } 596 597 static inline void 598 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 599 struct vm_area_struct *prev) 600 { 601 struct vm_area_struct *next; 602 603 vma_rb_erase(vma, &mm->mm_rb); 604 prev->vm_next = next = vma->vm_next; 605 if (next) 606 next->vm_prev = prev; 607 608 /* Kill the cache */ 609 vmacache_invalidate(mm); 610 } 611 612 /* 613 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 614 * is already present in an i_mmap tree without adjusting the tree. 615 * The following helper function should be used when such adjustments 616 * are necessary. The "insert" vma (if any) is to be inserted 617 * before we drop the necessary locks. 618 */ 619 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 620 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 621 { 622 struct mm_struct *mm = vma->vm_mm; 623 struct vm_area_struct *next = vma->vm_next; 624 struct address_space *mapping = NULL; 625 struct rb_root *root = NULL; 626 struct anon_vma *anon_vma = NULL; 627 struct file *file = vma->vm_file; 628 bool start_changed = false, end_changed = false; 629 long adjust_next = 0; 630 int remove_next = 0; 631 632 if (next && !insert) { 633 struct vm_area_struct *exporter = NULL, *importer = NULL; 634 635 if (end >= next->vm_end) { 636 /* 637 * vma expands, overlapping all the next, and 638 * perhaps the one after too (mprotect case 6). 639 */ 640 remove_next = 1 + (end > next->vm_end); 641 end = next->vm_end; 642 exporter = next; 643 importer = vma; 644 645 /* 646 * If next doesn't have anon_vma, import from vma after 647 * next, if the vma overlaps with it. 648 */ 649 if (remove_next == 2 && next && !next->anon_vma) 650 exporter = next->vm_next; 651 652 } else if (end > next->vm_start) { 653 /* 654 * vma expands, overlapping part of the next: 655 * mprotect case 5 shifting the boundary up. 656 */ 657 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 658 exporter = next; 659 importer = vma; 660 } else if (end < vma->vm_end) { 661 /* 662 * vma shrinks, and !insert tells it's not 663 * split_vma inserting another: so it must be 664 * mprotect case 4 shifting the boundary down. 665 */ 666 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 667 exporter = vma; 668 importer = next; 669 } 670 671 /* 672 * Easily overlooked: when mprotect shifts the boundary, 673 * make sure the expanding vma has anon_vma set if the 674 * shrinking vma had, to cover any anon pages imported. 675 */ 676 if (exporter && exporter->anon_vma && !importer->anon_vma) { 677 int error; 678 679 importer->anon_vma = exporter->anon_vma; 680 error = anon_vma_clone(importer, exporter); 681 if (error) 682 return error; 683 } 684 } 685 again: 686 vma_adjust_trans_huge(vma, start, end, adjust_next); 687 688 if (file) { 689 mapping = file->f_mapping; 690 root = &mapping->i_mmap; 691 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 692 693 if (adjust_next) 694 uprobe_munmap(next, next->vm_start, next->vm_end); 695 696 i_mmap_lock_write(mapping); 697 if (insert) { 698 /* 699 * Put into interval tree now, so instantiated pages 700 * are visible to arm/parisc __flush_dcache_page 701 * throughout; but we cannot insert into address 702 * space until vma start or end is updated. 703 */ 704 __vma_link_file(insert); 705 } 706 } 707 708 anon_vma = vma->anon_vma; 709 if (!anon_vma && adjust_next) 710 anon_vma = next->anon_vma; 711 if (anon_vma) { 712 VM_BUG_ON_VMA(adjust_next && next->anon_vma && 713 anon_vma != next->anon_vma, next); 714 anon_vma_lock_write(anon_vma); 715 anon_vma_interval_tree_pre_update_vma(vma); 716 if (adjust_next) 717 anon_vma_interval_tree_pre_update_vma(next); 718 } 719 720 if (root) { 721 flush_dcache_mmap_lock(mapping); 722 vma_interval_tree_remove(vma, root); 723 if (adjust_next) 724 vma_interval_tree_remove(next, root); 725 } 726 727 if (start != vma->vm_start) { 728 vma->vm_start = start; 729 start_changed = true; 730 } 731 if (end != vma->vm_end) { 732 vma->vm_end = end; 733 end_changed = true; 734 } 735 vma->vm_pgoff = pgoff; 736 if (adjust_next) { 737 next->vm_start += adjust_next << PAGE_SHIFT; 738 next->vm_pgoff += adjust_next; 739 } 740 741 if (root) { 742 if (adjust_next) 743 vma_interval_tree_insert(next, root); 744 vma_interval_tree_insert(vma, root); 745 flush_dcache_mmap_unlock(mapping); 746 } 747 748 if (remove_next) { 749 /* 750 * vma_merge has merged next into vma, and needs 751 * us to remove next before dropping the locks. 752 */ 753 __vma_unlink(mm, next, vma); 754 if (file) 755 __remove_shared_vm_struct(next, file, mapping); 756 } else if (insert) { 757 /* 758 * split_vma has split insert from vma, and needs 759 * us to insert it before dropping the locks 760 * (it may either follow vma or precede it). 761 */ 762 __insert_vm_struct(mm, insert); 763 } else { 764 if (start_changed) 765 vma_gap_update(vma); 766 if (end_changed) { 767 if (!next) 768 mm->highest_vm_end = end; 769 else if (!adjust_next) 770 vma_gap_update(next); 771 } 772 } 773 774 if (anon_vma) { 775 anon_vma_interval_tree_post_update_vma(vma); 776 if (adjust_next) 777 anon_vma_interval_tree_post_update_vma(next); 778 anon_vma_unlock_write(anon_vma); 779 } 780 if (mapping) 781 i_mmap_unlock_write(mapping); 782 783 if (root) { 784 uprobe_mmap(vma); 785 786 if (adjust_next) 787 uprobe_mmap(next); 788 } 789 790 if (remove_next) { 791 if (file) { 792 uprobe_munmap(next, next->vm_start, next->vm_end); 793 fput(file); 794 } 795 if (next->anon_vma) 796 anon_vma_merge(vma, next); 797 mm->map_count--; 798 mpol_put(vma_policy(next)); 799 kmem_cache_free(vm_area_cachep, next); 800 /* 801 * In mprotect's case 6 (see comments on vma_merge), 802 * we must remove another next too. It would clutter 803 * up the code too much to do both in one go. 804 */ 805 next = vma->vm_next; 806 if (remove_next == 2) { 807 remove_next = 1; 808 end = next->vm_end; 809 goto again; 810 } 811 else if (next) 812 vma_gap_update(next); 813 else 814 mm->highest_vm_end = end; 815 } 816 if (insert && file) 817 uprobe_mmap(insert); 818 819 validate_mm(mm); 820 821 return 0; 822 } 823 824 /* 825 * If the vma has a ->close operation then the driver probably needs to release 826 * per-vma resources, so we don't attempt to merge those. 827 */ 828 static inline int is_mergeable_vma(struct vm_area_struct *vma, 829 struct file *file, unsigned long vm_flags, 830 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 831 { 832 /* 833 * VM_SOFTDIRTY should not prevent from VMA merging, if we 834 * match the flags but dirty bit -- the caller should mark 835 * merged VMA as dirty. If dirty bit won't be excluded from 836 * comparison, we increase pressue on the memory system forcing 837 * the kernel to generate new VMAs when old one could be 838 * extended instead. 839 */ 840 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 841 return 0; 842 if (vma->vm_file != file) 843 return 0; 844 if (vma->vm_ops && vma->vm_ops->close) 845 return 0; 846 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 847 return 0; 848 return 1; 849 } 850 851 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 852 struct anon_vma *anon_vma2, 853 struct vm_area_struct *vma) 854 { 855 /* 856 * The list_is_singular() test is to avoid merging VMA cloned from 857 * parents. This can improve scalability caused by anon_vma lock. 858 */ 859 if ((!anon_vma1 || !anon_vma2) && (!vma || 860 list_is_singular(&vma->anon_vma_chain))) 861 return 1; 862 return anon_vma1 == anon_vma2; 863 } 864 865 /* 866 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 867 * in front of (at a lower virtual address and file offset than) the vma. 868 * 869 * We cannot merge two vmas if they have differently assigned (non-NULL) 870 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 871 * 872 * We don't check here for the merged mmap wrapping around the end of pagecache 873 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 874 * wrap, nor mmaps which cover the final page at index -1UL. 875 */ 876 static int 877 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 878 struct anon_vma *anon_vma, struct file *file, 879 pgoff_t vm_pgoff, 880 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 881 { 882 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 883 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 884 if (vma->vm_pgoff == vm_pgoff) 885 return 1; 886 } 887 return 0; 888 } 889 890 /* 891 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 892 * beyond (at a higher virtual address and file offset than) the vma. 893 * 894 * We cannot merge two vmas if they have differently assigned (non-NULL) 895 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 896 */ 897 static int 898 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 899 struct anon_vma *anon_vma, struct file *file, 900 pgoff_t vm_pgoff, 901 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 902 { 903 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 904 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 905 pgoff_t vm_pglen; 906 vm_pglen = vma_pages(vma); 907 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 908 return 1; 909 } 910 return 0; 911 } 912 913 /* 914 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 915 * whether that can be merged with its predecessor or its successor. 916 * Or both (it neatly fills a hole). 917 * 918 * In most cases - when called for mmap, brk or mremap - [addr,end) is 919 * certain not to be mapped by the time vma_merge is called; but when 920 * called for mprotect, it is certain to be already mapped (either at 921 * an offset within prev, or at the start of next), and the flags of 922 * this area are about to be changed to vm_flags - and the no-change 923 * case has already been eliminated. 924 * 925 * The following mprotect cases have to be considered, where AAAA is 926 * the area passed down from mprotect_fixup, never extending beyond one 927 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 928 * 929 * AAAA AAAA AAAA AAAA 930 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 931 * cannot merge might become might become might become 932 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 933 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 934 * mremap move: PPPPNNNNNNNN 8 935 * AAAA 936 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 937 * might become case 1 below case 2 below case 3 below 938 * 939 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 940 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 941 */ 942 struct vm_area_struct *vma_merge(struct mm_struct *mm, 943 struct vm_area_struct *prev, unsigned long addr, 944 unsigned long end, unsigned long vm_flags, 945 struct anon_vma *anon_vma, struct file *file, 946 pgoff_t pgoff, struct mempolicy *policy, 947 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 948 { 949 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 950 struct vm_area_struct *area, *next; 951 int err; 952 953 /* 954 * We later require that vma->vm_flags == vm_flags, 955 * so this tests vma->vm_flags & VM_SPECIAL, too. 956 */ 957 if (vm_flags & VM_SPECIAL) 958 return NULL; 959 960 if (prev) 961 next = prev->vm_next; 962 else 963 next = mm->mmap; 964 area = next; 965 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 966 next = next->vm_next; 967 968 /* 969 * Can it merge with the predecessor? 970 */ 971 if (prev && prev->vm_end == addr && 972 mpol_equal(vma_policy(prev), policy) && 973 can_vma_merge_after(prev, vm_flags, 974 anon_vma, file, pgoff, 975 vm_userfaultfd_ctx)) { 976 /* 977 * OK, it can. Can we now merge in the successor as well? 978 */ 979 if (next && end == next->vm_start && 980 mpol_equal(policy, vma_policy(next)) && 981 can_vma_merge_before(next, vm_flags, 982 anon_vma, file, 983 pgoff+pglen, 984 vm_userfaultfd_ctx) && 985 is_mergeable_anon_vma(prev->anon_vma, 986 next->anon_vma, NULL)) { 987 /* cases 1, 6 */ 988 err = vma_adjust(prev, prev->vm_start, 989 next->vm_end, prev->vm_pgoff, NULL); 990 } else /* cases 2, 5, 7 */ 991 err = vma_adjust(prev, prev->vm_start, 992 end, prev->vm_pgoff, NULL); 993 if (err) 994 return NULL; 995 khugepaged_enter_vma_merge(prev, vm_flags); 996 return prev; 997 } 998 999 /* 1000 * Can this new request be merged in front of next? 1001 */ 1002 if (next && end == next->vm_start && 1003 mpol_equal(policy, vma_policy(next)) && 1004 can_vma_merge_before(next, vm_flags, 1005 anon_vma, file, pgoff+pglen, 1006 vm_userfaultfd_ctx)) { 1007 if (prev && addr < prev->vm_end) /* case 4 */ 1008 err = vma_adjust(prev, prev->vm_start, 1009 addr, prev->vm_pgoff, NULL); 1010 else /* cases 3, 8 */ 1011 err = vma_adjust(area, addr, next->vm_end, 1012 next->vm_pgoff - pglen, NULL); 1013 if (err) 1014 return NULL; 1015 khugepaged_enter_vma_merge(area, vm_flags); 1016 return area; 1017 } 1018 1019 return NULL; 1020 } 1021 1022 /* 1023 * Rough compatbility check to quickly see if it's even worth looking 1024 * at sharing an anon_vma. 1025 * 1026 * They need to have the same vm_file, and the flags can only differ 1027 * in things that mprotect may change. 1028 * 1029 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1030 * we can merge the two vma's. For example, we refuse to merge a vma if 1031 * there is a vm_ops->close() function, because that indicates that the 1032 * driver is doing some kind of reference counting. But that doesn't 1033 * really matter for the anon_vma sharing case. 1034 */ 1035 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1036 { 1037 return a->vm_end == b->vm_start && 1038 mpol_equal(vma_policy(a), vma_policy(b)) && 1039 a->vm_file == b->vm_file && 1040 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1041 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1042 } 1043 1044 /* 1045 * Do some basic sanity checking to see if we can re-use the anon_vma 1046 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1047 * the same as 'old', the other will be the new one that is trying 1048 * to share the anon_vma. 1049 * 1050 * NOTE! This runs with mm_sem held for reading, so it is possible that 1051 * the anon_vma of 'old' is concurrently in the process of being set up 1052 * by another page fault trying to merge _that_. But that's ok: if it 1053 * is being set up, that automatically means that it will be a singleton 1054 * acceptable for merging, so we can do all of this optimistically. But 1055 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1056 * 1057 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1058 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1059 * is to return an anon_vma that is "complex" due to having gone through 1060 * a fork). 1061 * 1062 * We also make sure that the two vma's are compatible (adjacent, 1063 * and with the same memory policies). That's all stable, even with just 1064 * a read lock on the mm_sem. 1065 */ 1066 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1067 { 1068 if (anon_vma_compatible(a, b)) { 1069 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1070 1071 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1072 return anon_vma; 1073 } 1074 return NULL; 1075 } 1076 1077 /* 1078 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1079 * neighbouring vmas for a suitable anon_vma, before it goes off 1080 * to allocate a new anon_vma. It checks because a repetitive 1081 * sequence of mprotects and faults may otherwise lead to distinct 1082 * anon_vmas being allocated, preventing vma merge in subsequent 1083 * mprotect. 1084 */ 1085 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1086 { 1087 struct anon_vma *anon_vma; 1088 struct vm_area_struct *near; 1089 1090 near = vma->vm_next; 1091 if (!near) 1092 goto try_prev; 1093 1094 anon_vma = reusable_anon_vma(near, vma, near); 1095 if (anon_vma) 1096 return anon_vma; 1097 try_prev: 1098 near = vma->vm_prev; 1099 if (!near) 1100 goto none; 1101 1102 anon_vma = reusable_anon_vma(near, near, vma); 1103 if (anon_vma) 1104 return anon_vma; 1105 none: 1106 /* 1107 * There's no absolute need to look only at touching neighbours: 1108 * we could search further afield for "compatible" anon_vmas. 1109 * But it would probably just be a waste of time searching, 1110 * or lead to too many vmas hanging off the same anon_vma. 1111 * We're trying to allow mprotect remerging later on, 1112 * not trying to minimize memory used for anon_vmas. 1113 */ 1114 return NULL; 1115 } 1116 1117 /* 1118 * If a hint addr is less than mmap_min_addr change hint to be as 1119 * low as possible but still greater than mmap_min_addr 1120 */ 1121 static inline unsigned long round_hint_to_min(unsigned long hint) 1122 { 1123 hint &= PAGE_MASK; 1124 if (((void *)hint != NULL) && 1125 (hint < mmap_min_addr)) 1126 return PAGE_ALIGN(mmap_min_addr); 1127 return hint; 1128 } 1129 1130 static inline int mlock_future_check(struct mm_struct *mm, 1131 unsigned long flags, 1132 unsigned long len) 1133 { 1134 unsigned long locked, lock_limit; 1135 1136 /* mlock MCL_FUTURE? */ 1137 if (flags & VM_LOCKED) { 1138 locked = len >> PAGE_SHIFT; 1139 locked += mm->locked_vm; 1140 lock_limit = rlimit(RLIMIT_MEMLOCK); 1141 lock_limit >>= PAGE_SHIFT; 1142 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1143 return -EAGAIN; 1144 } 1145 return 0; 1146 } 1147 1148 /* 1149 * The caller must hold down_write(¤t->mm->mmap_sem). 1150 */ 1151 unsigned long do_mmap(struct file *file, unsigned long addr, 1152 unsigned long len, unsigned long prot, 1153 unsigned long flags, vm_flags_t vm_flags, 1154 unsigned long pgoff, unsigned long *populate) 1155 { 1156 struct mm_struct *mm = current->mm; 1157 int pkey = 0; 1158 1159 *populate = 0; 1160 1161 if (!len) 1162 return -EINVAL; 1163 1164 /* 1165 * Does the application expect PROT_READ to imply PROT_EXEC? 1166 * 1167 * (the exception is when the underlying filesystem is noexec 1168 * mounted, in which case we dont add PROT_EXEC.) 1169 */ 1170 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1171 if (!(file && path_noexec(&file->f_path))) 1172 prot |= PROT_EXEC; 1173 1174 if (!(flags & MAP_FIXED)) 1175 addr = round_hint_to_min(addr); 1176 1177 /* Careful about overflows.. */ 1178 len = PAGE_ALIGN(len); 1179 if (!len) 1180 return -ENOMEM; 1181 1182 /* offset overflow? */ 1183 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1184 return -EOVERFLOW; 1185 1186 /* Too many mappings? */ 1187 if (mm->map_count > sysctl_max_map_count) 1188 return -ENOMEM; 1189 1190 /* Obtain the address to map to. we verify (or select) it and ensure 1191 * that it represents a valid section of the address space. 1192 */ 1193 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1194 if (offset_in_page(addr)) 1195 return addr; 1196 1197 if (prot == PROT_EXEC) { 1198 pkey = execute_only_pkey(mm); 1199 if (pkey < 0) 1200 pkey = 0; 1201 } 1202 1203 /* Do simple checking here so the lower-level routines won't have 1204 * to. we assume access permissions have been handled by the open 1205 * of the memory object, so we don't do any here. 1206 */ 1207 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1208 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1209 1210 if (flags & MAP_LOCKED) 1211 if (!can_do_mlock()) 1212 return -EPERM; 1213 1214 if (mlock_future_check(mm, vm_flags, len)) 1215 return -EAGAIN; 1216 1217 if (file) { 1218 struct inode *inode = file_inode(file); 1219 1220 switch (flags & MAP_TYPE) { 1221 case MAP_SHARED: 1222 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1223 return -EACCES; 1224 1225 /* 1226 * Make sure we don't allow writing to an append-only 1227 * file.. 1228 */ 1229 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1230 return -EACCES; 1231 1232 /* 1233 * Make sure there are no mandatory locks on the file. 1234 */ 1235 if (locks_verify_locked(file)) 1236 return -EAGAIN; 1237 1238 vm_flags |= VM_SHARED | VM_MAYSHARE; 1239 if (!(file->f_mode & FMODE_WRITE)) 1240 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1241 1242 /* fall through */ 1243 case MAP_PRIVATE: 1244 if (!(file->f_mode & FMODE_READ)) 1245 return -EACCES; 1246 if (path_noexec(&file->f_path)) { 1247 if (vm_flags & VM_EXEC) 1248 return -EPERM; 1249 vm_flags &= ~VM_MAYEXEC; 1250 } 1251 1252 if (!file->f_op->mmap) 1253 return -ENODEV; 1254 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1255 return -EINVAL; 1256 break; 1257 1258 default: 1259 return -EINVAL; 1260 } 1261 } else { 1262 switch (flags & MAP_TYPE) { 1263 case MAP_SHARED: 1264 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1265 return -EINVAL; 1266 /* 1267 * Ignore pgoff. 1268 */ 1269 pgoff = 0; 1270 vm_flags |= VM_SHARED | VM_MAYSHARE; 1271 break; 1272 case MAP_PRIVATE: 1273 /* 1274 * Set pgoff according to addr for anon_vma. 1275 */ 1276 pgoff = addr >> PAGE_SHIFT; 1277 break; 1278 default: 1279 return -EINVAL; 1280 } 1281 } 1282 1283 /* 1284 * Set 'VM_NORESERVE' if we should not account for the 1285 * memory use of this mapping. 1286 */ 1287 if (flags & MAP_NORESERVE) { 1288 /* We honor MAP_NORESERVE if allowed to overcommit */ 1289 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1290 vm_flags |= VM_NORESERVE; 1291 1292 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1293 if (file && is_file_hugepages(file)) 1294 vm_flags |= VM_NORESERVE; 1295 } 1296 1297 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1298 if (!IS_ERR_VALUE(addr) && 1299 ((vm_flags & VM_LOCKED) || 1300 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1301 *populate = len; 1302 return addr; 1303 } 1304 1305 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1306 unsigned long, prot, unsigned long, flags, 1307 unsigned long, fd, unsigned long, pgoff) 1308 { 1309 struct file *file = NULL; 1310 unsigned long retval; 1311 1312 if (!(flags & MAP_ANONYMOUS)) { 1313 audit_mmap_fd(fd, flags); 1314 file = fget(fd); 1315 if (!file) 1316 return -EBADF; 1317 if (is_file_hugepages(file)) 1318 len = ALIGN(len, huge_page_size(hstate_file(file))); 1319 retval = -EINVAL; 1320 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1321 goto out_fput; 1322 } else if (flags & MAP_HUGETLB) { 1323 struct user_struct *user = NULL; 1324 struct hstate *hs; 1325 1326 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1327 if (!hs) 1328 return -EINVAL; 1329 1330 len = ALIGN(len, huge_page_size(hs)); 1331 /* 1332 * VM_NORESERVE is used because the reservations will be 1333 * taken when vm_ops->mmap() is called 1334 * A dummy user value is used because we are not locking 1335 * memory so no accounting is necessary 1336 */ 1337 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1338 VM_NORESERVE, 1339 &user, HUGETLB_ANONHUGE_INODE, 1340 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1341 if (IS_ERR(file)) 1342 return PTR_ERR(file); 1343 } 1344 1345 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1346 1347 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1348 out_fput: 1349 if (file) 1350 fput(file); 1351 return retval; 1352 } 1353 1354 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1355 struct mmap_arg_struct { 1356 unsigned long addr; 1357 unsigned long len; 1358 unsigned long prot; 1359 unsigned long flags; 1360 unsigned long fd; 1361 unsigned long offset; 1362 }; 1363 1364 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1365 { 1366 struct mmap_arg_struct a; 1367 1368 if (copy_from_user(&a, arg, sizeof(a))) 1369 return -EFAULT; 1370 if (offset_in_page(a.offset)) 1371 return -EINVAL; 1372 1373 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1374 a.offset >> PAGE_SHIFT); 1375 } 1376 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1377 1378 /* 1379 * Some shared mappigns will want the pages marked read-only 1380 * to track write events. If so, we'll downgrade vm_page_prot 1381 * to the private version (using protection_map[] without the 1382 * VM_SHARED bit). 1383 */ 1384 int vma_wants_writenotify(struct vm_area_struct *vma) 1385 { 1386 vm_flags_t vm_flags = vma->vm_flags; 1387 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1388 1389 /* If it was private or non-writable, the write bit is already clear */ 1390 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1391 return 0; 1392 1393 /* The backer wishes to know when pages are first written to? */ 1394 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1395 return 1; 1396 1397 /* The open routine did something to the protections that pgprot_modify 1398 * won't preserve? */ 1399 if (pgprot_val(vma->vm_page_prot) != 1400 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags))) 1401 return 0; 1402 1403 /* Do we need to track softdirty? */ 1404 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1405 return 1; 1406 1407 /* Specialty mapping? */ 1408 if (vm_flags & VM_PFNMAP) 1409 return 0; 1410 1411 /* Can the mapping track the dirty pages? */ 1412 return vma->vm_file && vma->vm_file->f_mapping && 1413 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1414 } 1415 1416 /* 1417 * We account for memory if it's a private writeable mapping, 1418 * not hugepages and VM_NORESERVE wasn't set. 1419 */ 1420 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1421 { 1422 /* 1423 * hugetlb has its own accounting separate from the core VM 1424 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1425 */ 1426 if (file && is_file_hugepages(file)) 1427 return 0; 1428 1429 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1430 } 1431 1432 unsigned long mmap_region(struct file *file, unsigned long addr, 1433 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1434 { 1435 struct mm_struct *mm = current->mm; 1436 struct vm_area_struct *vma, *prev; 1437 int error; 1438 struct rb_node **rb_link, *rb_parent; 1439 unsigned long charged = 0; 1440 1441 /* Check against address space limit. */ 1442 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1443 unsigned long nr_pages; 1444 1445 /* 1446 * MAP_FIXED may remove pages of mappings that intersects with 1447 * requested mapping. Account for the pages it would unmap. 1448 */ 1449 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1450 1451 if (!may_expand_vm(mm, vm_flags, 1452 (len >> PAGE_SHIFT) - nr_pages)) 1453 return -ENOMEM; 1454 } 1455 1456 /* Clear old maps */ 1457 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1458 &rb_parent)) { 1459 if (do_munmap(mm, addr, len)) 1460 return -ENOMEM; 1461 } 1462 1463 /* 1464 * Private writable mapping: check memory availability 1465 */ 1466 if (accountable_mapping(file, vm_flags)) { 1467 charged = len >> PAGE_SHIFT; 1468 if (security_vm_enough_memory_mm(mm, charged)) 1469 return -ENOMEM; 1470 vm_flags |= VM_ACCOUNT; 1471 } 1472 1473 /* 1474 * Can we just expand an old mapping? 1475 */ 1476 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1477 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1478 if (vma) 1479 goto out; 1480 1481 /* 1482 * Determine the object being mapped and call the appropriate 1483 * specific mapper. the address has already been validated, but 1484 * not unmapped, but the maps are removed from the list. 1485 */ 1486 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1487 if (!vma) { 1488 error = -ENOMEM; 1489 goto unacct_error; 1490 } 1491 1492 vma->vm_mm = mm; 1493 vma->vm_start = addr; 1494 vma->vm_end = addr + len; 1495 vma->vm_flags = vm_flags; 1496 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1497 vma->vm_pgoff = pgoff; 1498 INIT_LIST_HEAD(&vma->anon_vma_chain); 1499 1500 if (file) { 1501 if (vm_flags & VM_DENYWRITE) { 1502 error = deny_write_access(file); 1503 if (error) 1504 goto free_vma; 1505 } 1506 if (vm_flags & VM_SHARED) { 1507 error = mapping_map_writable(file->f_mapping); 1508 if (error) 1509 goto allow_write_and_free_vma; 1510 } 1511 1512 /* ->mmap() can change vma->vm_file, but must guarantee that 1513 * vma_link() below can deny write-access if VM_DENYWRITE is set 1514 * and map writably if VM_SHARED is set. This usually means the 1515 * new file must not have been exposed to user-space, yet. 1516 */ 1517 vma->vm_file = get_file(file); 1518 error = file->f_op->mmap(file, vma); 1519 if (error) 1520 goto unmap_and_free_vma; 1521 1522 /* Can addr have changed?? 1523 * 1524 * Answer: Yes, several device drivers can do it in their 1525 * f_op->mmap method. -DaveM 1526 * Bug: If addr is changed, prev, rb_link, rb_parent should 1527 * be updated for vma_link() 1528 */ 1529 WARN_ON_ONCE(addr != vma->vm_start); 1530 1531 addr = vma->vm_start; 1532 vm_flags = vma->vm_flags; 1533 } else if (vm_flags & VM_SHARED) { 1534 error = shmem_zero_setup(vma); 1535 if (error) 1536 goto free_vma; 1537 } 1538 1539 vma_link(mm, vma, prev, rb_link, rb_parent); 1540 /* Once vma denies write, undo our temporary denial count */ 1541 if (file) { 1542 if (vm_flags & VM_SHARED) 1543 mapping_unmap_writable(file->f_mapping); 1544 if (vm_flags & VM_DENYWRITE) 1545 allow_write_access(file); 1546 } 1547 file = vma->vm_file; 1548 out: 1549 perf_event_mmap(vma); 1550 1551 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1552 if (vm_flags & VM_LOCKED) { 1553 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1554 vma == get_gate_vma(current->mm))) 1555 mm->locked_vm += (len >> PAGE_SHIFT); 1556 else 1557 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1558 } 1559 1560 if (file) 1561 uprobe_mmap(vma); 1562 1563 /* 1564 * New (or expanded) vma always get soft dirty status. 1565 * Otherwise user-space soft-dirty page tracker won't 1566 * be able to distinguish situation when vma area unmapped, 1567 * then new mapped in-place (which must be aimed as 1568 * a completely new data area). 1569 */ 1570 vma->vm_flags |= VM_SOFTDIRTY; 1571 1572 vma_set_page_prot(vma); 1573 1574 return addr; 1575 1576 unmap_and_free_vma: 1577 vma->vm_file = NULL; 1578 fput(file); 1579 1580 /* Undo any partial mapping done by a device driver. */ 1581 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1582 charged = 0; 1583 if (vm_flags & VM_SHARED) 1584 mapping_unmap_writable(file->f_mapping); 1585 allow_write_and_free_vma: 1586 if (vm_flags & VM_DENYWRITE) 1587 allow_write_access(file); 1588 free_vma: 1589 kmem_cache_free(vm_area_cachep, vma); 1590 unacct_error: 1591 if (charged) 1592 vm_unacct_memory(charged); 1593 return error; 1594 } 1595 1596 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1597 { 1598 /* 1599 * We implement the search by looking for an rbtree node that 1600 * immediately follows a suitable gap. That is, 1601 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1602 * - gap_end = vma->vm_start >= info->low_limit + length; 1603 * - gap_end - gap_start >= length 1604 */ 1605 1606 struct mm_struct *mm = current->mm; 1607 struct vm_area_struct *vma; 1608 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1609 1610 /* Adjust search length to account for worst case alignment overhead */ 1611 length = info->length + info->align_mask; 1612 if (length < info->length) 1613 return -ENOMEM; 1614 1615 /* Adjust search limits by the desired length */ 1616 if (info->high_limit < length) 1617 return -ENOMEM; 1618 high_limit = info->high_limit - length; 1619 1620 if (info->low_limit > high_limit) 1621 return -ENOMEM; 1622 low_limit = info->low_limit + length; 1623 1624 /* Check if rbtree root looks promising */ 1625 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1626 goto check_highest; 1627 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1628 if (vma->rb_subtree_gap < length) 1629 goto check_highest; 1630 1631 while (true) { 1632 /* Visit left subtree if it looks promising */ 1633 gap_end = vma->vm_start; 1634 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1635 struct vm_area_struct *left = 1636 rb_entry(vma->vm_rb.rb_left, 1637 struct vm_area_struct, vm_rb); 1638 if (left->rb_subtree_gap >= length) { 1639 vma = left; 1640 continue; 1641 } 1642 } 1643 1644 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1645 check_current: 1646 /* Check if current node has a suitable gap */ 1647 if (gap_start > high_limit) 1648 return -ENOMEM; 1649 if (gap_end >= low_limit && gap_end - gap_start >= length) 1650 goto found; 1651 1652 /* Visit right subtree if it looks promising */ 1653 if (vma->vm_rb.rb_right) { 1654 struct vm_area_struct *right = 1655 rb_entry(vma->vm_rb.rb_right, 1656 struct vm_area_struct, vm_rb); 1657 if (right->rb_subtree_gap >= length) { 1658 vma = right; 1659 continue; 1660 } 1661 } 1662 1663 /* Go back up the rbtree to find next candidate node */ 1664 while (true) { 1665 struct rb_node *prev = &vma->vm_rb; 1666 if (!rb_parent(prev)) 1667 goto check_highest; 1668 vma = rb_entry(rb_parent(prev), 1669 struct vm_area_struct, vm_rb); 1670 if (prev == vma->vm_rb.rb_left) { 1671 gap_start = vma->vm_prev->vm_end; 1672 gap_end = vma->vm_start; 1673 goto check_current; 1674 } 1675 } 1676 } 1677 1678 check_highest: 1679 /* Check highest gap, which does not precede any rbtree node */ 1680 gap_start = mm->highest_vm_end; 1681 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1682 if (gap_start > high_limit) 1683 return -ENOMEM; 1684 1685 found: 1686 /* We found a suitable gap. Clip it with the original low_limit. */ 1687 if (gap_start < info->low_limit) 1688 gap_start = info->low_limit; 1689 1690 /* Adjust gap address to the desired alignment */ 1691 gap_start += (info->align_offset - gap_start) & info->align_mask; 1692 1693 VM_BUG_ON(gap_start + info->length > info->high_limit); 1694 VM_BUG_ON(gap_start + info->length > gap_end); 1695 return gap_start; 1696 } 1697 1698 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1699 { 1700 struct mm_struct *mm = current->mm; 1701 struct vm_area_struct *vma; 1702 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1703 1704 /* Adjust search length to account for worst case alignment overhead */ 1705 length = info->length + info->align_mask; 1706 if (length < info->length) 1707 return -ENOMEM; 1708 1709 /* 1710 * Adjust search limits by the desired length. 1711 * See implementation comment at top of unmapped_area(). 1712 */ 1713 gap_end = info->high_limit; 1714 if (gap_end < length) 1715 return -ENOMEM; 1716 high_limit = gap_end - length; 1717 1718 if (info->low_limit > high_limit) 1719 return -ENOMEM; 1720 low_limit = info->low_limit + length; 1721 1722 /* Check highest gap, which does not precede any rbtree node */ 1723 gap_start = mm->highest_vm_end; 1724 if (gap_start <= high_limit) 1725 goto found_highest; 1726 1727 /* Check if rbtree root looks promising */ 1728 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1729 return -ENOMEM; 1730 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1731 if (vma->rb_subtree_gap < length) 1732 return -ENOMEM; 1733 1734 while (true) { 1735 /* Visit right subtree if it looks promising */ 1736 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1737 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1738 struct vm_area_struct *right = 1739 rb_entry(vma->vm_rb.rb_right, 1740 struct vm_area_struct, vm_rb); 1741 if (right->rb_subtree_gap >= length) { 1742 vma = right; 1743 continue; 1744 } 1745 } 1746 1747 check_current: 1748 /* Check if current node has a suitable gap */ 1749 gap_end = vma->vm_start; 1750 if (gap_end < low_limit) 1751 return -ENOMEM; 1752 if (gap_start <= high_limit && gap_end - gap_start >= length) 1753 goto found; 1754 1755 /* Visit left subtree if it looks promising */ 1756 if (vma->vm_rb.rb_left) { 1757 struct vm_area_struct *left = 1758 rb_entry(vma->vm_rb.rb_left, 1759 struct vm_area_struct, vm_rb); 1760 if (left->rb_subtree_gap >= length) { 1761 vma = left; 1762 continue; 1763 } 1764 } 1765 1766 /* Go back up the rbtree to find next candidate node */ 1767 while (true) { 1768 struct rb_node *prev = &vma->vm_rb; 1769 if (!rb_parent(prev)) 1770 return -ENOMEM; 1771 vma = rb_entry(rb_parent(prev), 1772 struct vm_area_struct, vm_rb); 1773 if (prev == vma->vm_rb.rb_right) { 1774 gap_start = vma->vm_prev ? 1775 vma->vm_prev->vm_end : 0; 1776 goto check_current; 1777 } 1778 } 1779 } 1780 1781 found: 1782 /* We found a suitable gap. Clip it with the original high_limit. */ 1783 if (gap_end > info->high_limit) 1784 gap_end = info->high_limit; 1785 1786 found_highest: 1787 /* Compute highest gap address at the desired alignment */ 1788 gap_end -= info->length; 1789 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1790 1791 VM_BUG_ON(gap_end < info->low_limit); 1792 VM_BUG_ON(gap_end < gap_start); 1793 return gap_end; 1794 } 1795 1796 /* Get an address range which is currently unmapped. 1797 * For shmat() with addr=0. 1798 * 1799 * Ugly calling convention alert: 1800 * Return value with the low bits set means error value, 1801 * ie 1802 * if (ret & ~PAGE_MASK) 1803 * error = ret; 1804 * 1805 * This function "knows" that -ENOMEM has the bits set. 1806 */ 1807 #ifndef HAVE_ARCH_UNMAPPED_AREA 1808 unsigned long 1809 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1810 unsigned long len, unsigned long pgoff, unsigned long flags) 1811 { 1812 struct mm_struct *mm = current->mm; 1813 struct vm_area_struct *vma; 1814 struct vm_unmapped_area_info info; 1815 1816 if (len > TASK_SIZE - mmap_min_addr) 1817 return -ENOMEM; 1818 1819 if (flags & MAP_FIXED) 1820 return addr; 1821 1822 if (addr) { 1823 addr = PAGE_ALIGN(addr); 1824 vma = find_vma(mm, addr); 1825 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1826 (!vma || addr + len <= vma->vm_start)) 1827 return addr; 1828 } 1829 1830 info.flags = 0; 1831 info.length = len; 1832 info.low_limit = mm->mmap_base; 1833 info.high_limit = TASK_SIZE; 1834 info.align_mask = 0; 1835 return vm_unmapped_area(&info); 1836 } 1837 #endif 1838 1839 /* 1840 * This mmap-allocator allocates new areas top-down from below the 1841 * stack's low limit (the base): 1842 */ 1843 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1844 unsigned long 1845 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1846 const unsigned long len, const unsigned long pgoff, 1847 const unsigned long flags) 1848 { 1849 struct vm_area_struct *vma; 1850 struct mm_struct *mm = current->mm; 1851 unsigned long addr = addr0; 1852 struct vm_unmapped_area_info info; 1853 1854 /* requested length too big for entire address space */ 1855 if (len > TASK_SIZE - mmap_min_addr) 1856 return -ENOMEM; 1857 1858 if (flags & MAP_FIXED) 1859 return addr; 1860 1861 /* requesting a specific address */ 1862 if (addr) { 1863 addr = PAGE_ALIGN(addr); 1864 vma = find_vma(mm, addr); 1865 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1866 (!vma || addr + len <= vma->vm_start)) 1867 return addr; 1868 } 1869 1870 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1871 info.length = len; 1872 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1873 info.high_limit = mm->mmap_base; 1874 info.align_mask = 0; 1875 addr = vm_unmapped_area(&info); 1876 1877 /* 1878 * A failed mmap() very likely causes application failure, 1879 * so fall back to the bottom-up function here. This scenario 1880 * can happen with large stack limits and large mmap() 1881 * allocations. 1882 */ 1883 if (offset_in_page(addr)) { 1884 VM_BUG_ON(addr != -ENOMEM); 1885 info.flags = 0; 1886 info.low_limit = TASK_UNMAPPED_BASE; 1887 info.high_limit = TASK_SIZE; 1888 addr = vm_unmapped_area(&info); 1889 } 1890 1891 return addr; 1892 } 1893 #endif 1894 1895 unsigned long 1896 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1897 unsigned long pgoff, unsigned long flags) 1898 { 1899 unsigned long (*get_area)(struct file *, unsigned long, 1900 unsigned long, unsigned long, unsigned long); 1901 1902 unsigned long error = arch_mmap_check(addr, len, flags); 1903 if (error) 1904 return error; 1905 1906 /* Careful about overflows.. */ 1907 if (len > TASK_SIZE) 1908 return -ENOMEM; 1909 1910 get_area = current->mm->get_unmapped_area; 1911 if (file) { 1912 if (file->f_op->get_unmapped_area) 1913 get_area = file->f_op->get_unmapped_area; 1914 } else if (flags & MAP_SHARED) { 1915 /* 1916 * mmap_region() will call shmem_zero_setup() to create a file, 1917 * so use shmem's get_unmapped_area in case it can be huge. 1918 * do_mmap_pgoff() will clear pgoff, so match alignment. 1919 */ 1920 pgoff = 0; 1921 get_area = shmem_get_unmapped_area; 1922 } 1923 1924 addr = get_area(file, addr, len, pgoff, flags); 1925 if (IS_ERR_VALUE(addr)) 1926 return addr; 1927 1928 if (addr > TASK_SIZE - len) 1929 return -ENOMEM; 1930 if (offset_in_page(addr)) 1931 return -EINVAL; 1932 1933 error = security_mmap_addr(addr); 1934 return error ? error : addr; 1935 } 1936 1937 EXPORT_SYMBOL(get_unmapped_area); 1938 1939 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1940 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1941 { 1942 struct rb_node *rb_node; 1943 struct vm_area_struct *vma; 1944 1945 /* Check the cache first. */ 1946 vma = vmacache_find(mm, addr); 1947 if (likely(vma)) 1948 return vma; 1949 1950 rb_node = mm->mm_rb.rb_node; 1951 1952 while (rb_node) { 1953 struct vm_area_struct *tmp; 1954 1955 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1956 1957 if (tmp->vm_end > addr) { 1958 vma = tmp; 1959 if (tmp->vm_start <= addr) 1960 break; 1961 rb_node = rb_node->rb_left; 1962 } else 1963 rb_node = rb_node->rb_right; 1964 } 1965 1966 if (vma) 1967 vmacache_update(addr, vma); 1968 return vma; 1969 } 1970 1971 EXPORT_SYMBOL(find_vma); 1972 1973 /* 1974 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 1975 */ 1976 struct vm_area_struct * 1977 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1978 struct vm_area_struct **pprev) 1979 { 1980 struct vm_area_struct *vma; 1981 1982 vma = find_vma(mm, addr); 1983 if (vma) { 1984 *pprev = vma->vm_prev; 1985 } else { 1986 struct rb_node *rb_node = mm->mm_rb.rb_node; 1987 *pprev = NULL; 1988 while (rb_node) { 1989 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1990 rb_node = rb_node->rb_right; 1991 } 1992 } 1993 return vma; 1994 } 1995 1996 /* 1997 * Verify that the stack growth is acceptable and 1998 * update accounting. This is shared with both the 1999 * grow-up and grow-down cases. 2000 */ 2001 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2002 { 2003 struct mm_struct *mm = vma->vm_mm; 2004 struct rlimit *rlim = current->signal->rlim; 2005 unsigned long new_start, actual_size; 2006 2007 /* address space limit tests */ 2008 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2009 return -ENOMEM; 2010 2011 /* Stack limit test */ 2012 actual_size = size; 2013 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN))) 2014 actual_size -= PAGE_SIZE; 2015 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2016 return -ENOMEM; 2017 2018 /* mlock limit tests */ 2019 if (vma->vm_flags & VM_LOCKED) { 2020 unsigned long locked; 2021 unsigned long limit; 2022 locked = mm->locked_vm + grow; 2023 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2024 limit >>= PAGE_SHIFT; 2025 if (locked > limit && !capable(CAP_IPC_LOCK)) 2026 return -ENOMEM; 2027 } 2028 2029 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2030 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2031 vma->vm_end - size; 2032 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2033 return -EFAULT; 2034 2035 /* 2036 * Overcommit.. This must be the final test, as it will 2037 * update security statistics. 2038 */ 2039 if (security_vm_enough_memory_mm(mm, grow)) 2040 return -ENOMEM; 2041 2042 return 0; 2043 } 2044 2045 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2046 /* 2047 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2048 * vma is the last one with address > vma->vm_end. Have to extend vma. 2049 */ 2050 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2051 { 2052 struct mm_struct *mm = vma->vm_mm; 2053 int error = 0; 2054 2055 if (!(vma->vm_flags & VM_GROWSUP)) 2056 return -EFAULT; 2057 2058 /* Guard against wrapping around to address 0. */ 2059 if (address < PAGE_ALIGN(address+4)) 2060 address = PAGE_ALIGN(address+4); 2061 else 2062 return -ENOMEM; 2063 2064 /* We must make sure the anon_vma is allocated. */ 2065 if (unlikely(anon_vma_prepare(vma))) 2066 return -ENOMEM; 2067 2068 /* 2069 * vma->vm_start/vm_end cannot change under us because the caller 2070 * is required to hold the mmap_sem in read mode. We need the 2071 * anon_vma lock to serialize against concurrent expand_stacks. 2072 */ 2073 anon_vma_lock_write(vma->anon_vma); 2074 2075 /* Somebody else might have raced and expanded it already */ 2076 if (address > vma->vm_end) { 2077 unsigned long size, grow; 2078 2079 size = address - vma->vm_start; 2080 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2081 2082 error = -ENOMEM; 2083 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2084 error = acct_stack_growth(vma, size, grow); 2085 if (!error) { 2086 /* 2087 * vma_gap_update() doesn't support concurrent 2088 * updates, but we only hold a shared mmap_sem 2089 * lock here, so we need to protect against 2090 * concurrent vma expansions. 2091 * anon_vma_lock_write() doesn't help here, as 2092 * we don't guarantee that all growable vmas 2093 * in a mm share the same root anon vma. 2094 * So, we reuse mm->page_table_lock to guard 2095 * against concurrent vma expansions. 2096 */ 2097 spin_lock(&mm->page_table_lock); 2098 if (vma->vm_flags & VM_LOCKED) 2099 mm->locked_vm += grow; 2100 vm_stat_account(mm, vma->vm_flags, grow); 2101 anon_vma_interval_tree_pre_update_vma(vma); 2102 vma->vm_end = address; 2103 anon_vma_interval_tree_post_update_vma(vma); 2104 if (vma->vm_next) 2105 vma_gap_update(vma->vm_next); 2106 else 2107 mm->highest_vm_end = address; 2108 spin_unlock(&mm->page_table_lock); 2109 2110 perf_event_mmap(vma); 2111 } 2112 } 2113 } 2114 anon_vma_unlock_write(vma->anon_vma); 2115 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2116 validate_mm(mm); 2117 return error; 2118 } 2119 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2120 2121 /* 2122 * vma is the first one with address < vma->vm_start. Have to extend vma. 2123 */ 2124 int expand_downwards(struct vm_area_struct *vma, 2125 unsigned long address) 2126 { 2127 struct mm_struct *mm = vma->vm_mm; 2128 int error; 2129 2130 address &= PAGE_MASK; 2131 error = security_mmap_addr(address); 2132 if (error) 2133 return error; 2134 2135 /* We must make sure the anon_vma is allocated. */ 2136 if (unlikely(anon_vma_prepare(vma))) 2137 return -ENOMEM; 2138 2139 /* 2140 * vma->vm_start/vm_end cannot change under us because the caller 2141 * is required to hold the mmap_sem in read mode. We need the 2142 * anon_vma lock to serialize against concurrent expand_stacks. 2143 */ 2144 anon_vma_lock_write(vma->anon_vma); 2145 2146 /* Somebody else might have raced and expanded it already */ 2147 if (address < vma->vm_start) { 2148 unsigned long size, grow; 2149 2150 size = vma->vm_end - address; 2151 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2152 2153 error = -ENOMEM; 2154 if (grow <= vma->vm_pgoff) { 2155 error = acct_stack_growth(vma, size, grow); 2156 if (!error) { 2157 /* 2158 * vma_gap_update() doesn't support concurrent 2159 * updates, but we only hold a shared mmap_sem 2160 * lock here, so we need to protect against 2161 * concurrent vma expansions. 2162 * anon_vma_lock_write() doesn't help here, as 2163 * we don't guarantee that all growable vmas 2164 * in a mm share the same root anon vma. 2165 * So, we reuse mm->page_table_lock to guard 2166 * against concurrent vma expansions. 2167 */ 2168 spin_lock(&mm->page_table_lock); 2169 if (vma->vm_flags & VM_LOCKED) 2170 mm->locked_vm += grow; 2171 vm_stat_account(mm, vma->vm_flags, grow); 2172 anon_vma_interval_tree_pre_update_vma(vma); 2173 vma->vm_start = address; 2174 vma->vm_pgoff -= grow; 2175 anon_vma_interval_tree_post_update_vma(vma); 2176 vma_gap_update(vma); 2177 spin_unlock(&mm->page_table_lock); 2178 2179 perf_event_mmap(vma); 2180 } 2181 } 2182 } 2183 anon_vma_unlock_write(vma->anon_vma); 2184 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2185 validate_mm(mm); 2186 return error; 2187 } 2188 2189 /* 2190 * Note how expand_stack() refuses to expand the stack all the way to 2191 * abut the next virtual mapping, *unless* that mapping itself is also 2192 * a stack mapping. We want to leave room for a guard page, after all 2193 * (the guard page itself is not added here, that is done by the 2194 * actual page faulting logic) 2195 * 2196 * This matches the behavior of the guard page logic (see mm/memory.c: 2197 * check_stack_guard_page()), which only allows the guard page to be 2198 * removed under these circumstances. 2199 */ 2200 #ifdef CONFIG_STACK_GROWSUP 2201 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2202 { 2203 struct vm_area_struct *next; 2204 2205 address &= PAGE_MASK; 2206 next = vma->vm_next; 2207 if (next && next->vm_start == address + PAGE_SIZE) { 2208 if (!(next->vm_flags & VM_GROWSUP)) 2209 return -ENOMEM; 2210 } 2211 return expand_upwards(vma, address); 2212 } 2213 2214 struct vm_area_struct * 2215 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2216 { 2217 struct vm_area_struct *vma, *prev; 2218 2219 addr &= PAGE_MASK; 2220 vma = find_vma_prev(mm, addr, &prev); 2221 if (vma && (vma->vm_start <= addr)) 2222 return vma; 2223 if (!prev || expand_stack(prev, addr)) 2224 return NULL; 2225 if (prev->vm_flags & VM_LOCKED) 2226 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2227 return prev; 2228 } 2229 #else 2230 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2231 { 2232 struct vm_area_struct *prev; 2233 2234 address &= PAGE_MASK; 2235 prev = vma->vm_prev; 2236 if (prev && prev->vm_end == address) { 2237 if (!(prev->vm_flags & VM_GROWSDOWN)) 2238 return -ENOMEM; 2239 } 2240 return expand_downwards(vma, address); 2241 } 2242 2243 struct vm_area_struct * 2244 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2245 { 2246 struct vm_area_struct *vma; 2247 unsigned long start; 2248 2249 addr &= PAGE_MASK; 2250 vma = find_vma(mm, addr); 2251 if (!vma) 2252 return NULL; 2253 if (vma->vm_start <= addr) 2254 return vma; 2255 if (!(vma->vm_flags & VM_GROWSDOWN)) 2256 return NULL; 2257 start = vma->vm_start; 2258 if (expand_stack(vma, addr)) 2259 return NULL; 2260 if (vma->vm_flags & VM_LOCKED) 2261 populate_vma_page_range(vma, addr, start, NULL); 2262 return vma; 2263 } 2264 #endif 2265 2266 EXPORT_SYMBOL_GPL(find_extend_vma); 2267 2268 /* 2269 * Ok - we have the memory areas we should free on the vma list, 2270 * so release them, and do the vma updates. 2271 * 2272 * Called with the mm semaphore held. 2273 */ 2274 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2275 { 2276 unsigned long nr_accounted = 0; 2277 2278 /* Update high watermark before we lower total_vm */ 2279 update_hiwater_vm(mm); 2280 do { 2281 long nrpages = vma_pages(vma); 2282 2283 if (vma->vm_flags & VM_ACCOUNT) 2284 nr_accounted += nrpages; 2285 vm_stat_account(mm, vma->vm_flags, -nrpages); 2286 vma = remove_vma(vma); 2287 } while (vma); 2288 vm_unacct_memory(nr_accounted); 2289 validate_mm(mm); 2290 } 2291 2292 /* 2293 * Get rid of page table information in the indicated region. 2294 * 2295 * Called with the mm semaphore held. 2296 */ 2297 static void unmap_region(struct mm_struct *mm, 2298 struct vm_area_struct *vma, struct vm_area_struct *prev, 2299 unsigned long start, unsigned long end) 2300 { 2301 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2302 struct mmu_gather tlb; 2303 2304 lru_add_drain(); 2305 tlb_gather_mmu(&tlb, mm, start, end); 2306 update_hiwater_rss(mm); 2307 unmap_vmas(&tlb, vma, start, end); 2308 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2309 next ? next->vm_start : USER_PGTABLES_CEILING); 2310 tlb_finish_mmu(&tlb, start, end); 2311 } 2312 2313 /* 2314 * Create a list of vma's touched by the unmap, removing them from the mm's 2315 * vma list as we go.. 2316 */ 2317 static void 2318 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2319 struct vm_area_struct *prev, unsigned long end) 2320 { 2321 struct vm_area_struct **insertion_point; 2322 struct vm_area_struct *tail_vma = NULL; 2323 2324 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2325 vma->vm_prev = NULL; 2326 do { 2327 vma_rb_erase(vma, &mm->mm_rb); 2328 mm->map_count--; 2329 tail_vma = vma; 2330 vma = vma->vm_next; 2331 } while (vma && vma->vm_start < end); 2332 *insertion_point = vma; 2333 if (vma) { 2334 vma->vm_prev = prev; 2335 vma_gap_update(vma); 2336 } else 2337 mm->highest_vm_end = prev ? prev->vm_end : 0; 2338 tail_vma->vm_next = NULL; 2339 2340 /* Kill the cache */ 2341 vmacache_invalidate(mm); 2342 } 2343 2344 /* 2345 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2346 * munmap path where it doesn't make sense to fail. 2347 */ 2348 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2349 unsigned long addr, int new_below) 2350 { 2351 struct vm_area_struct *new; 2352 int err; 2353 2354 if (is_vm_hugetlb_page(vma) && (addr & 2355 ~(huge_page_mask(hstate_vma(vma))))) 2356 return -EINVAL; 2357 2358 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2359 if (!new) 2360 return -ENOMEM; 2361 2362 /* most fields are the same, copy all, and then fixup */ 2363 *new = *vma; 2364 2365 INIT_LIST_HEAD(&new->anon_vma_chain); 2366 2367 if (new_below) 2368 new->vm_end = addr; 2369 else { 2370 new->vm_start = addr; 2371 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2372 } 2373 2374 err = vma_dup_policy(vma, new); 2375 if (err) 2376 goto out_free_vma; 2377 2378 err = anon_vma_clone(new, vma); 2379 if (err) 2380 goto out_free_mpol; 2381 2382 if (new->vm_file) 2383 get_file(new->vm_file); 2384 2385 if (new->vm_ops && new->vm_ops->open) 2386 new->vm_ops->open(new); 2387 2388 if (new_below) 2389 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2390 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2391 else 2392 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2393 2394 /* Success. */ 2395 if (!err) 2396 return 0; 2397 2398 /* Clean everything up if vma_adjust failed. */ 2399 if (new->vm_ops && new->vm_ops->close) 2400 new->vm_ops->close(new); 2401 if (new->vm_file) 2402 fput(new->vm_file); 2403 unlink_anon_vmas(new); 2404 out_free_mpol: 2405 mpol_put(vma_policy(new)); 2406 out_free_vma: 2407 kmem_cache_free(vm_area_cachep, new); 2408 return err; 2409 } 2410 2411 /* 2412 * Split a vma into two pieces at address 'addr', a new vma is allocated 2413 * either for the first part or the tail. 2414 */ 2415 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2416 unsigned long addr, int new_below) 2417 { 2418 if (mm->map_count >= sysctl_max_map_count) 2419 return -ENOMEM; 2420 2421 return __split_vma(mm, vma, addr, new_below); 2422 } 2423 2424 /* Munmap is split into 2 main parts -- this part which finds 2425 * what needs doing, and the areas themselves, which do the 2426 * work. This now handles partial unmappings. 2427 * Jeremy Fitzhardinge <jeremy@goop.org> 2428 */ 2429 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2430 { 2431 unsigned long end; 2432 struct vm_area_struct *vma, *prev, *last; 2433 2434 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2435 return -EINVAL; 2436 2437 len = PAGE_ALIGN(len); 2438 if (len == 0) 2439 return -EINVAL; 2440 2441 /* Find the first overlapping VMA */ 2442 vma = find_vma(mm, start); 2443 if (!vma) 2444 return 0; 2445 prev = vma->vm_prev; 2446 /* we have start < vma->vm_end */ 2447 2448 /* if it doesn't overlap, we have nothing.. */ 2449 end = start + len; 2450 if (vma->vm_start >= end) 2451 return 0; 2452 2453 /* 2454 * If we need to split any vma, do it now to save pain later. 2455 * 2456 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2457 * unmapped vm_area_struct will remain in use: so lower split_vma 2458 * places tmp vma above, and higher split_vma places tmp vma below. 2459 */ 2460 if (start > vma->vm_start) { 2461 int error; 2462 2463 /* 2464 * Make sure that map_count on return from munmap() will 2465 * not exceed its limit; but let map_count go just above 2466 * its limit temporarily, to help free resources as expected. 2467 */ 2468 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2469 return -ENOMEM; 2470 2471 error = __split_vma(mm, vma, start, 0); 2472 if (error) 2473 return error; 2474 prev = vma; 2475 } 2476 2477 /* Does it split the last one? */ 2478 last = find_vma(mm, end); 2479 if (last && end > last->vm_start) { 2480 int error = __split_vma(mm, last, end, 1); 2481 if (error) 2482 return error; 2483 } 2484 vma = prev ? prev->vm_next : mm->mmap; 2485 2486 /* 2487 * unlock any mlock()ed ranges before detaching vmas 2488 */ 2489 if (mm->locked_vm) { 2490 struct vm_area_struct *tmp = vma; 2491 while (tmp && tmp->vm_start < end) { 2492 if (tmp->vm_flags & VM_LOCKED) { 2493 mm->locked_vm -= vma_pages(tmp); 2494 munlock_vma_pages_all(tmp); 2495 } 2496 tmp = tmp->vm_next; 2497 } 2498 } 2499 2500 /* 2501 * Remove the vma's, and unmap the actual pages 2502 */ 2503 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2504 unmap_region(mm, vma, prev, start, end); 2505 2506 arch_unmap(mm, vma, start, end); 2507 2508 /* Fix up all other VM information */ 2509 remove_vma_list(mm, vma); 2510 2511 return 0; 2512 } 2513 2514 int vm_munmap(unsigned long start, size_t len) 2515 { 2516 int ret; 2517 struct mm_struct *mm = current->mm; 2518 2519 if (down_write_killable(&mm->mmap_sem)) 2520 return -EINTR; 2521 2522 ret = do_munmap(mm, start, len); 2523 up_write(&mm->mmap_sem); 2524 return ret; 2525 } 2526 EXPORT_SYMBOL(vm_munmap); 2527 2528 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2529 { 2530 int ret; 2531 struct mm_struct *mm = current->mm; 2532 2533 profile_munmap(addr); 2534 if (down_write_killable(&mm->mmap_sem)) 2535 return -EINTR; 2536 ret = do_munmap(mm, addr, len); 2537 up_write(&mm->mmap_sem); 2538 return ret; 2539 } 2540 2541 2542 /* 2543 * Emulation of deprecated remap_file_pages() syscall. 2544 */ 2545 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2546 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2547 { 2548 2549 struct mm_struct *mm = current->mm; 2550 struct vm_area_struct *vma; 2551 unsigned long populate = 0; 2552 unsigned long ret = -EINVAL; 2553 struct file *file; 2554 2555 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n", 2556 current->comm, current->pid); 2557 2558 if (prot) 2559 return ret; 2560 start = start & PAGE_MASK; 2561 size = size & PAGE_MASK; 2562 2563 if (start + size <= start) 2564 return ret; 2565 2566 /* Does pgoff wrap? */ 2567 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2568 return ret; 2569 2570 if (down_write_killable(&mm->mmap_sem)) 2571 return -EINTR; 2572 2573 vma = find_vma(mm, start); 2574 2575 if (!vma || !(vma->vm_flags & VM_SHARED)) 2576 goto out; 2577 2578 if (start < vma->vm_start) 2579 goto out; 2580 2581 if (start + size > vma->vm_end) { 2582 struct vm_area_struct *next; 2583 2584 for (next = vma->vm_next; next; next = next->vm_next) { 2585 /* hole between vmas ? */ 2586 if (next->vm_start != next->vm_prev->vm_end) 2587 goto out; 2588 2589 if (next->vm_file != vma->vm_file) 2590 goto out; 2591 2592 if (next->vm_flags != vma->vm_flags) 2593 goto out; 2594 2595 if (start + size <= next->vm_end) 2596 break; 2597 } 2598 2599 if (!next) 2600 goto out; 2601 } 2602 2603 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2604 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2605 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2606 2607 flags &= MAP_NONBLOCK; 2608 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2609 if (vma->vm_flags & VM_LOCKED) { 2610 struct vm_area_struct *tmp; 2611 flags |= MAP_LOCKED; 2612 2613 /* drop PG_Mlocked flag for over-mapped range */ 2614 for (tmp = vma; tmp->vm_start >= start + size; 2615 tmp = tmp->vm_next) { 2616 /* 2617 * Split pmd and munlock page on the border 2618 * of the range. 2619 */ 2620 vma_adjust_trans_huge(tmp, start, start + size, 0); 2621 2622 munlock_vma_pages_range(tmp, 2623 max(tmp->vm_start, start), 2624 min(tmp->vm_end, start + size)); 2625 } 2626 } 2627 2628 file = get_file(vma->vm_file); 2629 ret = do_mmap_pgoff(vma->vm_file, start, size, 2630 prot, flags, pgoff, &populate); 2631 fput(file); 2632 out: 2633 up_write(&mm->mmap_sem); 2634 if (populate) 2635 mm_populate(ret, populate); 2636 if (!IS_ERR_VALUE(ret)) 2637 ret = 0; 2638 return ret; 2639 } 2640 2641 static inline void verify_mm_writelocked(struct mm_struct *mm) 2642 { 2643 #ifdef CONFIG_DEBUG_VM 2644 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2645 WARN_ON(1); 2646 up_read(&mm->mmap_sem); 2647 } 2648 #endif 2649 } 2650 2651 /* 2652 * this is really a simplified "do_mmap". it only handles 2653 * anonymous maps. eventually we may be able to do some 2654 * brk-specific accounting here. 2655 */ 2656 static int do_brk(unsigned long addr, unsigned long request) 2657 { 2658 struct mm_struct *mm = current->mm; 2659 struct vm_area_struct *vma, *prev; 2660 unsigned long flags, len; 2661 struct rb_node **rb_link, *rb_parent; 2662 pgoff_t pgoff = addr >> PAGE_SHIFT; 2663 int error; 2664 2665 len = PAGE_ALIGN(request); 2666 if (len < request) 2667 return -ENOMEM; 2668 if (!len) 2669 return 0; 2670 2671 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2672 2673 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2674 if (offset_in_page(error)) 2675 return error; 2676 2677 error = mlock_future_check(mm, mm->def_flags, len); 2678 if (error) 2679 return error; 2680 2681 /* 2682 * mm->mmap_sem is required to protect against another thread 2683 * changing the mappings in case we sleep. 2684 */ 2685 verify_mm_writelocked(mm); 2686 2687 /* 2688 * Clear old maps. this also does some error checking for us 2689 */ 2690 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2691 &rb_parent)) { 2692 if (do_munmap(mm, addr, len)) 2693 return -ENOMEM; 2694 } 2695 2696 /* Check against address space limits *after* clearing old maps... */ 2697 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2698 return -ENOMEM; 2699 2700 if (mm->map_count > sysctl_max_map_count) 2701 return -ENOMEM; 2702 2703 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2704 return -ENOMEM; 2705 2706 /* Can we just expand an old private anonymous mapping? */ 2707 vma = vma_merge(mm, prev, addr, addr + len, flags, 2708 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 2709 if (vma) 2710 goto out; 2711 2712 /* 2713 * create a vma struct for an anonymous mapping 2714 */ 2715 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2716 if (!vma) { 2717 vm_unacct_memory(len >> PAGE_SHIFT); 2718 return -ENOMEM; 2719 } 2720 2721 INIT_LIST_HEAD(&vma->anon_vma_chain); 2722 vma->vm_mm = mm; 2723 vma->vm_start = addr; 2724 vma->vm_end = addr + len; 2725 vma->vm_pgoff = pgoff; 2726 vma->vm_flags = flags; 2727 vma->vm_page_prot = vm_get_page_prot(flags); 2728 vma_link(mm, vma, prev, rb_link, rb_parent); 2729 out: 2730 perf_event_mmap(vma); 2731 mm->total_vm += len >> PAGE_SHIFT; 2732 mm->data_vm += len >> PAGE_SHIFT; 2733 if (flags & VM_LOCKED) 2734 mm->locked_vm += (len >> PAGE_SHIFT); 2735 vma->vm_flags |= VM_SOFTDIRTY; 2736 return 0; 2737 } 2738 2739 int vm_brk(unsigned long addr, unsigned long len) 2740 { 2741 struct mm_struct *mm = current->mm; 2742 int ret; 2743 bool populate; 2744 2745 if (down_write_killable(&mm->mmap_sem)) 2746 return -EINTR; 2747 2748 ret = do_brk(addr, len); 2749 populate = ((mm->def_flags & VM_LOCKED) != 0); 2750 up_write(&mm->mmap_sem); 2751 if (populate && !ret) 2752 mm_populate(addr, len); 2753 return ret; 2754 } 2755 EXPORT_SYMBOL(vm_brk); 2756 2757 /* Release all mmaps. */ 2758 void exit_mmap(struct mm_struct *mm) 2759 { 2760 struct mmu_gather tlb; 2761 struct vm_area_struct *vma; 2762 unsigned long nr_accounted = 0; 2763 2764 /* mm's last user has gone, and its about to be pulled down */ 2765 mmu_notifier_release(mm); 2766 2767 if (mm->locked_vm) { 2768 vma = mm->mmap; 2769 while (vma) { 2770 if (vma->vm_flags & VM_LOCKED) 2771 munlock_vma_pages_all(vma); 2772 vma = vma->vm_next; 2773 } 2774 } 2775 2776 arch_exit_mmap(mm); 2777 2778 vma = mm->mmap; 2779 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2780 return; 2781 2782 lru_add_drain(); 2783 flush_cache_mm(mm); 2784 tlb_gather_mmu(&tlb, mm, 0, -1); 2785 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2786 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2787 unmap_vmas(&tlb, vma, 0, -1); 2788 2789 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2790 tlb_finish_mmu(&tlb, 0, -1); 2791 2792 /* 2793 * Walk the list again, actually closing and freeing it, 2794 * with preemption enabled, without holding any MM locks. 2795 */ 2796 while (vma) { 2797 if (vma->vm_flags & VM_ACCOUNT) 2798 nr_accounted += vma_pages(vma); 2799 vma = remove_vma(vma); 2800 } 2801 vm_unacct_memory(nr_accounted); 2802 } 2803 2804 /* Insert vm structure into process list sorted by address 2805 * and into the inode's i_mmap tree. If vm_file is non-NULL 2806 * then i_mmap_rwsem is taken here. 2807 */ 2808 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2809 { 2810 struct vm_area_struct *prev; 2811 struct rb_node **rb_link, *rb_parent; 2812 2813 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2814 &prev, &rb_link, &rb_parent)) 2815 return -ENOMEM; 2816 if ((vma->vm_flags & VM_ACCOUNT) && 2817 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2818 return -ENOMEM; 2819 2820 /* 2821 * The vm_pgoff of a purely anonymous vma should be irrelevant 2822 * until its first write fault, when page's anon_vma and index 2823 * are set. But now set the vm_pgoff it will almost certainly 2824 * end up with (unless mremap moves it elsewhere before that 2825 * first wfault), so /proc/pid/maps tells a consistent story. 2826 * 2827 * By setting it to reflect the virtual start address of the 2828 * vma, merges and splits can happen in a seamless way, just 2829 * using the existing file pgoff checks and manipulations. 2830 * Similarly in do_mmap_pgoff and in do_brk. 2831 */ 2832 if (vma_is_anonymous(vma)) { 2833 BUG_ON(vma->anon_vma); 2834 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2835 } 2836 2837 vma_link(mm, vma, prev, rb_link, rb_parent); 2838 return 0; 2839 } 2840 2841 /* 2842 * Copy the vma structure to a new location in the same mm, 2843 * prior to moving page table entries, to effect an mremap move. 2844 */ 2845 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2846 unsigned long addr, unsigned long len, pgoff_t pgoff, 2847 bool *need_rmap_locks) 2848 { 2849 struct vm_area_struct *vma = *vmap; 2850 unsigned long vma_start = vma->vm_start; 2851 struct mm_struct *mm = vma->vm_mm; 2852 struct vm_area_struct *new_vma, *prev; 2853 struct rb_node **rb_link, *rb_parent; 2854 bool faulted_in_anon_vma = true; 2855 2856 /* 2857 * If anonymous vma has not yet been faulted, update new pgoff 2858 * to match new location, to increase its chance of merging. 2859 */ 2860 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 2861 pgoff = addr >> PAGE_SHIFT; 2862 faulted_in_anon_vma = false; 2863 } 2864 2865 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2866 return NULL; /* should never get here */ 2867 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2868 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 2869 vma->vm_userfaultfd_ctx); 2870 if (new_vma) { 2871 /* 2872 * Source vma may have been merged into new_vma 2873 */ 2874 if (unlikely(vma_start >= new_vma->vm_start && 2875 vma_start < new_vma->vm_end)) { 2876 /* 2877 * The only way we can get a vma_merge with 2878 * self during an mremap is if the vma hasn't 2879 * been faulted in yet and we were allowed to 2880 * reset the dst vma->vm_pgoff to the 2881 * destination address of the mremap to allow 2882 * the merge to happen. mremap must change the 2883 * vm_pgoff linearity between src and dst vmas 2884 * (in turn preventing a vma_merge) to be 2885 * safe. It is only safe to keep the vm_pgoff 2886 * linear if there are no pages mapped yet. 2887 */ 2888 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 2889 *vmap = vma = new_vma; 2890 } 2891 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2892 } else { 2893 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2894 if (!new_vma) 2895 goto out; 2896 *new_vma = *vma; 2897 new_vma->vm_start = addr; 2898 new_vma->vm_end = addr + len; 2899 new_vma->vm_pgoff = pgoff; 2900 if (vma_dup_policy(vma, new_vma)) 2901 goto out_free_vma; 2902 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2903 if (anon_vma_clone(new_vma, vma)) 2904 goto out_free_mempol; 2905 if (new_vma->vm_file) 2906 get_file(new_vma->vm_file); 2907 if (new_vma->vm_ops && new_vma->vm_ops->open) 2908 new_vma->vm_ops->open(new_vma); 2909 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2910 *need_rmap_locks = false; 2911 } 2912 return new_vma; 2913 2914 out_free_mempol: 2915 mpol_put(vma_policy(new_vma)); 2916 out_free_vma: 2917 kmem_cache_free(vm_area_cachep, new_vma); 2918 out: 2919 return NULL; 2920 } 2921 2922 /* 2923 * Return true if the calling process may expand its vm space by the passed 2924 * number of pages 2925 */ 2926 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 2927 { 2928 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 2929 return false; 2930 2931 if (is_data_mapping(flags) && 2932 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 2933 /* Workaround for Valgrind */ 2934 if (rlimit(RLIMIT_DATA) == 0 && 2935 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 2936 return true; 2937 if (!ignore_rlimit_data) { 2938 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n", 2939 current->comm, current->pid, 2940 (mm->data_vm + npages) << PAGE_SHIFT, 2941 rlimit(RLIMIT_DATA)); 2942 return false; 2943 } 2944 } 2945 2946 return true; 2947 } 2948 2949 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 2950 { 2951 mm->total_vm += npages; 2952 2953 if (is_exec_mapping(flags)) 2954 mm->exec_vm += npages; 2955 else if (is_stack_mapping(flags)) 2956 mm->stack_vm += npages; 2957 else if (is_data_mapping(flags)) 2958 mm->data_vm += npages; 2959 } 2960 2961 static int special_mapping_fault(struct vm_area_struct *vma, 2962 struct vm_fault *vmf); 2963 2964 /* 2965 * Having a close hook prevents vma merging regardless of flags. 2966 */ 2967 static void special_mapping_close(struct vm_area_struct *vma) 2968 { 2969 } 2970 2971 static const char *special_mapping_name(struct vm_area_struct *vma) 2972 { 2973 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 2974 } 2975 2976 static int special_mapping_mremap(struct vm_area_struct *new_vma) 2977 { 2978 struct vm_special_mapping *sm = new_vma->vm_private_data; 2979 2980 if (sm->mremap) 2981 return sm->mremap(sm, new_vma); 2982 return 0; 2983 } 2984 2985 static const struct vm_operations_struct special_mapping_vmops = { 2986 .close = special_mapping_close, 2987 .fault = special_mapping_fault, 2988 .mremap = special_mapping_mremap, 2989 .name = special_mapping_name, 2990 }; 2991 2992 static const struct vm_operations_struct legacy_special_mapping_vmops = { 2993 .close = special_mapping_close, 2994 .fault = special_mapping_fault, 2995 }; 2996 2997 static int special_mapping_fault(struct vm_area_struct *vma, 2998 struct vm_fault *vmf) 2999 { 3000 pgoff_t pgoff; 3001 struct page **pages; 3002 3003 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3004 pages = vma->vm_private_data; 3005 } else { 3006 struct vm_special_mapping *sm = vma->vm_private_data; 3007 3008 if (sm->fault) 3009 return sm->fault(sm, vma, vmf); 3010 3011 pages = sm->pages; 3012 } 3013 3014 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3015 pgoff--; 3016 3017 if (*pages) { 3018 struct page *page = *pages; 3019 get_page(page); 3020 vmf->page = page; 3021 return 0; 3022 } 3023 3024 return VM_FAULT_SIGBUS; 3025 } 3026 3027 static struct vm_area_struct *__install_special_mapping( 3028 struct mm_struct *mm, 3029 unsigned long addr, unsigned long len, 3030 unsigned long vm_flags, void *priv, 3031 const struct vm_operations_struct *ops) 3032 { 3033 int ret; 3034 struct vm_area_struct *vma; 3035 3036 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 3037 if (unlikely(vma == NULL)) 3038 return ERR_PTR(-ENOMEM); 3039 3040 INIT_LIST_HEAD(&vma->anon_vma_chain); 3041 vma->vm_mm = mm; 3042 vma->vm_start = addr; 3043 vma->vm_end = addr + len; 3044 3045 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3046 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3047 3048 vma->vm_ops = ops; 3049 vma->vm_private_data = priv; 3050 3051 ret = insert_vm_struct(mm, vma); 3052 if (ret) 3053 goto out; 3054 3055 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3056 3057 perf_event_mmap(vma); 3058 3059 return vma; 3060 3061 out: 3062 kmem_cache_free(vm_area_cachep, vma); 3063 return ERR_PTR(ret); 3064 } 3065 3066 /* 3067 * Called with mm->mmap_sem held for writing. 3068 * Insert a new vma covering the given region, with the given flags. 3069 * Its pages are supplied by the given array of struct page *. 3070 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3071 * The region past the last page supplied will always produce SIGBUS. 3072 * The array pointer and the pages it points to are assumed to stay alive 3073 * for as long as this mapping might exist. 3074 */ 3075 struct vm_area_struct *_install_special_mapping( 3076 struct mm_struct *mm, 3077 unsigned long addr, unsigned long len, 3078 unsigned long vm_flags, const struct vm_special_mapping *spec) 3079 { 3080 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3081 &special_mapping_vmops); 3082 } 3083 3084 int install_special_mapping(struct mm_struct *mm, 3085 unsigned long addr, unsigned long len, 3086 unsigned long vm_flags, struct page **pages) 3087 { 3088 struct vm_area_struct *vma = __install_special_mapping( 3089 mm, addr, len, vm_flags, (void *)pages, 3090 &legacy_special_mapping_vmops); 3091 3092 return PTR_ERR_OR_ZERO(vma); 3093 } 3094 3095 static DEFINE_MUTEX(mm_all_locks_mutex); 3096 3097 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3098 { 3099 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3100 /* 3101 * The LSB of head.next can't change from under us 3102 * because we hold the mm_all_locks_mutex. 3103 */ 3104 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3105 /* 3106 * We can safely modify head.next after taking the 3107 * anon_vma->root->rwsem. If some other vma in this mm shares 3108 * the same anon_vma we won't take it again. 3109 * 3110 * No need of atomic instructions here, head.next 3111 * can't change from under us thanks to the 3112 * anon_vma->root->rwsem. 3113 */ 3114 if (__test_and_set_bit(0, (unsigned long *) 3115 &anon_vma->root->rb_root.rb_node)) 3116 BUG(); 3117 } 3118 } 3119 3120 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3121 { 3122 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3123 /* 3124 * AS_MM_ALL_LOCKS can't change from under us because 3125 * we hold the mm_all_locks_mutex. 3126 * 3127 * Operations on ->flags have to be atomic because 3128 * even if AS_MM_ALL_LOCKS is stable thanks to the 3129 * mm_all_locks_mutex, there may be other cpus 3130 * changing other bitflags in parallel to us. 3131 */ 3132 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3133 BUG(); 3134 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3135 } 3136 } 3137 3138 /* 3139 * This operation locks against the VM for all pte/vma/mm related 3140 * operations that could ever happen on a certain mm. This includes 3141 * vmtruncate, try_to_unmap, and all page faults. 3142 * 3143 * The caller must take the mmap_sem in write mode before calling 3144 * mm_take_all_locks(). The caller isn't allowed to release the 3145 * mmap_sem until mm_drop_all_locks() returns. 3146 * 3147 * mmap_sem in write mode is required in order to block all operations 3148 * that could modify pagetables and free pages without need of 3149 * altering the vma layout. It's also needed in write mode to avoid new 3150 * anon_vmas to be associated with existing vmas. 3151 * 3152 * A single task can't take more than one mm_take_all_locks() in a row 3153 * or it would deadlock. 3154 * 3155 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3156 * mapping->flags avoid to take the same lock twice, if more than one 3157 * vma in this mm is backed by the same anon_vma or address_space. 3158 * 3159 * We take locks in following order, accordingly to comment at beginning 3160 * of mm/rmap.c: 3161 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3162 * hugetlb mapping); 3163 * - all i_mmap_rwsem locks; 3164 * - all anon_vma->rwseml 3165 * 3166 * We can take all locks within these types randomly because the VM code 3167 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3168 * mm_all_locks_mutex. 3169 * 3170 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3171 * that may have to take thousand of locks. 3172 * 3173 * mm_take_all_locks() can fail if it's interrupted by signals. 3174 */ 3175 int mm_take_all_locks(struct mm_struct *mm) 3176 { 3177 struct vm_area_struct *vma; 3178 struct anon_vma_chain *avc; 3179 3180 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3181 3182 mutex_lock(&mm_all_locks_mutex); 3183 3184 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3185 if (signal_pending(current)) 3186 goto out_unlock; 3187 if (vma->vm_file && vma->vm_file->f_mapping && 3188 is_vm_hugetlb_page(vma)) 3189 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3190 } 3191 3192 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3193 if (signal_pending(current)) 3194 goto out_unlock; 3195 if (vma->vm_file && vma->vm_file->f_mapping && 3196 !is_vm_hugetlb_page(vma)) 3197 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3198 } 3199 3200 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3201 if (signal_pending(current)) 3202 goto out_unlock; 3203 if (vma->anon_vma) 3204 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3205 vm_lock_anon_vma(mm, avc->anon_vma); 3206 } 3207 3208 return 0; 3209 3210 out_unlock: 3211 mm_drop_all_locks(mm); 3212 return -EINTR; 3213 } 3214 3215 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3216 { 3217 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3218 /* 3219 * The LSB of head.next can't change to 0 from under 3220 * us because we hold the mm_all_locks_mutex. 3221 * 3222 * We must however clear the bitflag before unlocking 3223 * the vma so the users using the anon_vma->rb_root will 3224 * never see our bitflag. 3225 * 3226 * No need of atomic instructions here, head.next 3227 * can't change from under us until we release the 3228 * anon_vma->root->rwsem. 3229 */ 3230 if (!__test_and_clear_bit(0, (unsigned long *) 3231 &anon_vma->root->rb_root.rb_node)) 3232 BUG(); 3233 anon_vma_unlock_write(anon_vma); 3234 } 3235 } 3236 3237 static void vm_unlock_mapping(struct address_space *mapping) 3238 { 3239 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3240 /* 3241 * AS_MM_ALL_LOCKS can't change to 0 from under us 3242 * because we hold the mm_all_locks_mutex. 3243 */ 3244 i_mmap_unlock_write(mapping); 3245 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3246 &mapping->flags)) 3247 BUG(); 3248 } 3249 } 3250 3251 /* 3252 * The mmap_sem cannot be released by the caller until 3253 * mm_drop_all_locks() returns. 3254 */ 3255 void mm_drop_all_locks(struct mm_struct *mm) 3256 { 3257 struct vm_area_struct *vma; 3258 struct anon_vma_chain *avc; 3259 3260 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3261 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3262 3263 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3264 if (vma->anon_vma) 3265 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3266 vm_unlock_anon_vma(avc->anon_vma); 3267 if (vma->vm_file && vma->vm_file->f_mapping) 3268 vm_unlock_mapping(vma->vm_file->f_mapping); 3269 } 3270 3271 mutex_unlock(&mm_all_locks_mutex); 3272 } 3273 3274 /* 3275 * initialise the VMA slab 3276 */ 3277 void __init mmap_init(void) 3278 { 3279 int ret; 3280 3281 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3282 VM_BUG_ON(ret); 3283 } 3284 3285 /* 3286 * Initialise sysctl_user_reserve_kbytes. 3287 * 3288 * This is intended to prevent a user from starting a single memory hogging 3289 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3290 * mode. 3291 * 3292 * The default value is min(3% of free memory, 128MB) 3293 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3294 */ 3295 static int init_user_reserve(void) 3296 { 3297 unsigned long free_kbytes; 3298 3299 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3300 3301 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3302 return 0; 3303 } 3304 subsys_initcall(init_user_reserve); 3305 3306 /* 3307 * Initialise sysctl_admin_reserve_kbytes. 3308 * 3309 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3310 * to log in and kill a memory hogging process. 3311 * 3312 * Systems with more than 256MB will reserve 8MB, enough to recover 3313 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3314 * only reserve 3% of free pages by default. 3315 */ 3316 static int init_admin_reserve(void) 3317 { 3318 unsigned long free_kbytes; 3319 3320 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3321 3322 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3323 return 0; 3324 } 3325 subsys_initcall(init_admin_reserve); 3326 3327 /* 3328 * Reinititalise user and admin reserves if memory is added or removed. 3329 * 3330 * The default user reserve max is 128MB, and the default max for the 3331 * admin reserve is 8MB. These are usually, but not always, enough to 3332 * enable recovery from a memory hogging process using login/sshd, a shell, 3333 * and tools like top. It may make sense to increase or even disable the 3334 * reserve depending on the existence of swap or variations in the recovery 3335 * tools. So, the admin may have changed them. 3336 * 3337 * If memory is added and the reserves have been eliminated or increased above 3338 * the default max, then we'll trust the admin. 3339 * 3340 * If memory is removed and there isn't enough free memory, then we 3341 * need to reset the reserves. 3342 * 3343 * Otherwise keep the reserve set by the admin. 3344 */ 3345 static int reserve_mem_notifier(struct notifier_block *nb, 3346 unsigned long action, void *data) 3347 { 3348 unsigned long tmp, free_kbytes; 3349 3350 switch (action) { 3351 case MEM_ONLINE: 3352 /* Default max is 128MB. Leave alone if modified by operator. */ 3353 tmp = sysctl_user_reserve_kbytes; 3354 if (0 < tmp && tmp < (1UL << 17)) 3355 init_user_reserve(); 3356 3357 /* Default max is 8MB. Leave alone if modified by operator. */ 3358 tmp = sysctl_admin_reserve_kbytes; 3359 if (0 < tmp && tmp < (1UL << 13)) 3360 init_admin_reserve(); 3361 3362 break; 3363 case MEM_OFFLINE: 3364 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3365 3366 if (sysctl_user_reserve_kbytes > free_kbytes) { 3367 init_user_reserve(); 3368 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3369 sysctl_user_reserve_kbytes); 3370 } 3371 3372 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3373 init_admin_reserve(); 3374 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3375 sysctl_admin_reserve_kbytes); 3376 } 3377 break; 3378 default: 3379 break; 3380 } 3381 return NOTIFY_OK; 3382 } 3383 3384 static struct notifier_block reserve_mem_nb = { 3385 .notifier_call = reserve_mem_notifier, 3386 }; 3387 3388 static int __meminit init_reserve_notifier(void) 3389 { 3390 if (register_hotmemory_notifier(&reserve_mem_nb)) 3391 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3392 3393 return 0; 3394 } 3395 subsys_initcall(init_reserve_notifier); 3396