xref: /openbmc/linux/mm/mmap.c (revision bc5aa3a0)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52 
53 #include "internal.h"
54 
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags)	(0)
57 #endif
58 
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69 
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72 
73 static void unmap_region(struct mm_struct *mm,
74 		struct vm_area_struct *vma, struct vm_area_struct *prev,
75 		unsigned long start, unsigned long end);
76 
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type	prot
82  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
83  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
84  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
85  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
86  *
87  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
88  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
89  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
90  *
91  */
92 pgprot_t protection_map[16] = {
93 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
94 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
95 };
96 
97 pgprot_t vm_get_page_prot(unsigned long vm_flags)
98 {
99 	return __pgprot(pgprot_val(protection_map[vm_flags &
100 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
101 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
102 }
103 EXPORT_SYMBOL(vm_get_page_prot);
104 
105 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
106 {
107 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
108 }
109 
110 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
111 void vma_set_page_prot(struct vm_area_struct *vma)
112 {
113 	unsigned long vm_flags = vma->vm_flags;
114 
115 	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
116 	if (vma_wants_writenotify(vma)) {
117 		vm_flags &= ~VM_SHARED;
118 		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
119 						     vm_flags);
120 	}
121 }
122 
123 /*
124  * Requires inode->i_mapping->i_mmap_rwsem
125  */
126 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
127 		struct file *file, struct address_space *mapping)
128 {
129 	if (vma->vm_flags & VM_DENYWRITE)
130 		atomic_inc(&file_inode(file)->i_writecount);
131 	if (vma->vm_flags & VM_SHARED)
132 		mapping_unmap_writable(mapping);
133 
134 	flush_dcache_mmap_lock(mapping);
135 	vma_interval_tree_remove(vma, &mapping->i_mmap);
136 	flush_dcache_mmap_unlock(mapping);
137 }
138 
139 /*
140  * Unlink a file-based vm structure from its interval tree, to hide
141  * vma from rmap and vmtruncate before freeing its page tables.
142  */
143 void unlink_file_vma(struct vm_area_struct *vma)
144 {
145 	struct file *file = vma->vm_file;
146 
147 	if (file) {
148 		struct address_space *mapping = file->f_mapping;
149 		i_mmap_lock_write(mapping);
150 		__remove_shared_vm_struct(vma, file, mapping);
151 		i_mmap_unlock_write(mapping);
152 	}
153 }
154 
155 /*
156  * Close a vm structure and free it, returning the next.
157  */
158 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
159 {
160 	struct vm_area_struct *next = vma->vm_next;
161 
162 	might_sleep();
163 	if (vma->vm_ops && vma->vm_ops->close)
164 		vma->vm_ops->close(vma);
165 	if (vma->vm_file)
166 		fput(vma->vm_file);
167 	mpol_put(vma_policy(vma));
168 	kmem_cache_free(vm_area_cachep, vma);
169 	return next;
170 }
171 
172 static int do_brk(unsigned long addr, unsigned long len);
173 
174 SYSCALL_DEFINE1(brk, unsigned long, brk)
175 {
176 	unsigned long retval;
177 	unsigned long newbrk, oldbrk;
178 	struct mm_struct *mm = current->mm;
179 	unsigned long min_brk;
180 	bool populate;
181 
182 	if (down_write_killable(&mm->mmap_sem))
183 		return -EINTR;
184 
185 #ifdef CONFIG_COMPAT_BRK
186 	/*
187 	 * CONFIG_COMPAT_BRK can still be overridden by setting
188 	 * randomize_va_space to 2, which will still cause mm->start_brk
189 	 * to be arbitrarily shifted
190 	 */
191 	if (current->brk_randomized)
192 		min_brk = mm->start_brk;
193 	else
194 		min_brk = mm->end_data;
195 #else
196 	min_brk = mm->start_brk;
197 #endif
198 	if (brk < min_brk)
199 		goto out;
200 
201 	/*
202 	 * Check against rlimit here. If this check is done later after the test
203 	 * of oldbrk with newbrk then it can escape the test and let the data
204 	 * segment grow beyond its set limit the in case where the limit is
205 	 * not page aligned -Ram Gupta
206 	 */
207 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
208 			      mm->end_data, mm->start_data))
209 		goto out;
210 
211 	newbrk = PAGE_ALIGN(brk);
212 	oldbrk = PAGE_ALIGN(mm->brk);
213 	if (oldbrk == newbrk)
214 		goto set_brk;
215 
216 	/* Always allow shrinking brk. */
217 	if (brk <= mm->brk) {
218 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
219 			goto set_brk;
220 		goto out;
221 	}
222 
223 	/* Check against existing mmap mappings. */
224 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
225 		goto out;
226 
227 	/* Ok, looks good - let it rip. */
228 	if (do_brk(oldbrk, newbrk-oldbrk) < 0)
229 		goto out;
230 
231 set_brk:
232 	mm->brk = brk;
233 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
234 	up_write(&mm->mmap_sem);
235 	if (populate)
236 		mm_populate(oldbrk, newbrk - oldbrk);
237 	return brk;
238 
239 out:
240 	retval = mm->brk;
241 	up_write(&mm->mmap_sem);
242 	return retval;
243 }
244 
245 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
246 {
247 	unsigned long max, subtree_gap;
248 	max = vma->vm_start;
249 	if (vma->vm_prev)
250 		max -= vma->vm_prev->vm_end;
251 	if (vma->vm_rb.rb_left) {
252 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
253 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
254 		if (subtree_gap > max)
255 			max = subtree_gap;
256 	}
257 	if (vma->vm_rb.rb_right) {
258 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
259 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
260 		if (subtree_gap > max)
261 			max = subtree_gap;
262 	}
263 	return max;
264 }
265 
266 #ifdef CONFIG_DEBUG_VM_RB
267 static int browse_rb(struct mm_struct *mm)
268 {
269 	struct rb_root *root = &mm->mm_rb;
270 	int i = 0, j, bug = 0;
271 	struct rb_node *nd, *pn = NULL;
272 	unsigned long prev = 0, pend = 0;
273 
274 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
275 		struct vm_area_struct *vma;
276 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
277 		if (vma->vm_start < prev) {
278 			pr_emerg("vm_start %lx < prev %lx\n",
279 				  vma->vm_start, prev);
280 			bug = 1;
281 		}
282 		if (vma->vm_start < pend) {
283 			pr_emerg("vm_start %lx < pend %lx\n",
284 				  vma->vm_start, pend);
285 			bug = 1;
286 		}
287 		if (vma->vm_start > vma->vm_end) {
288 			pr_emerg("vm_start %lx > vm_end %lx\n",
289 				  vma->vm_start, vma->vm_end);
290 			bug = 1;
291 		}
292 		spin_lock(&mm->page_table_lock);
293 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
294 			pr_emerg("free gap %lx, correct %lx\n",
295 			       vma->rb_subtree_gap,
296 			       vma_compute_subtree_gap(vma));
297 			bug = 1;
298 		}
299 		spin_unlock(&mm->page_table_lock);
300 		i++;
301 		pn = nd;
302 		prev = vma->vm_start;
303 		pend = vma->vm_end;
304 	}
305 	j = 0;
306 	for (nd = pn; nd; nd = rb_prev(nd))
307 		j++;
308 	if (i != j) {
309 		pr_emerg("backwards %d, forwards %d\n", j, i);
310 		bug = 1;
311 	}
312 	return bug ? -1 : i;
313 }
314 
315 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
316 {
317 	struct rb_node *nd;
318 
319 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
320 		struct vm_area_struct *vma;
321 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
322 		VM_BUG_ON_VMA(vma != ignore &&
323 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
324 			vma);
325 	}
326 }
327 
328 static void validate_mm(struct mm_struct *mm)
329 {
330 	int bug = 0;
331 	int i = 0;
332 	unsigned long highest_address = 0;
333 	struct vm_area_struct *vma = mm->mmap;
334 
335 	while (vma) {
336 		struct anon_vma *anon_vma = vma->anon_vma;
337 		struct anon_vma_chain *avc;
338 
339 		if (anon_vma) {
340 			anon_vma_lock_read(anon_vma);
341 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
342 				anon_vma_interval_tree_verify(avc);
343 			anon_vma_unlock_read(anon_vma);
344 		}
345 
346 		highest_address = vma->vm_end;
347 		vma = vma->vm_next;
348 		i++;
349 	}
350 	if (i != mm->map_count) {
351 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
352 		bug = 1;
353 	}
354 	if (highest_address != mm->highest_vm_end) {
355 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
356 			  mm->highest_vm_end, highest_address);
357 		bug = 1;
358 	}
359 	i = browse_rb(mm);
360 	if (i != mm->map_count) {
361 		if (i != -1)
362 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
363 		bug = 1;
364 	}
365 	VM_BUG_ON_MM(bug, mm);
366 }
367 #else
368 #define validate_mm_rb(root, ignore) do { } while (0)
369 #define validate_mm(mm) do { } while (0)
370 #endif
371 
372 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
373 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
374 
375 /*
376  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
377  * vma->vm_prev->vm_end values changed, without modifying the vma's position
378  * in the rbtree.
379  */
380 static void vma_gap_update(struct vm_area_struct *vma)
381 {
382 	/*
383 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
384 	 * function that does exacltly what we want.
385 	 */
386 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
387 }
388 
389 static inline void vma_rb_insert(struct vm_area_struct *vma,
390 				 struct rb_root *root)
391 {
392 	/* All rb_subtree_gap values must be consistent prior to insertion */
393 	validate_mm_rb(root, NULL);
394 
395 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
396 }
397 
398 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
399 {
400 	/*
401 	 * All rb_subtree_gap values must be consistent prior to erase,
402 	 * with the possible exception of the vma being erased.
403 	 */
404 	validate_mm_rb(root, vma);
405 
406 	/*
407 	 * Note rb_erase_augmented is a fairly large inline function,
408 	 * so make sure we instantiate it only once with our desired
409 	 * augmented rbtree callbacks.
410 	 */
411 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
412 }
413 
414 /*
415  * vma has some anon_vma assigned, and is already inserted on that
416  * anon_vma's interval trees.
417  *
418  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
419  * vma must be removed from the anon_vma's interval trees using
420  * anon_vma_interval_tree_pre_update_vma().
421  *
422  * After the update, the vma will be reinserted using
423  * anon_vma_interval_tree_post_update_vma().
424  *
425  * The entire update must be protected by exclusive mmap_sem and by
426  * the root anon_vma's mutex.
427  */
428 static inline void
429 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
430 {
431 	struct anon_vma_chain *avc;
432 
433 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
434 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
435 }
436 
437 static inline void
438 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
439 {
440 	struct anon_vma_chain *avc;
441 
442 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
443 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
444 }
445 
446 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
447 		unsigned long end, struct vm_area_struct **pprev,
448 		struct rb_node ***rb_link, struct rb_node **rb_parent)
449 {
450 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
451 
452 	__rb_link = &mm->mm_rb.rb_node;
453 	rb_prev = __rb_parent = NULL;
454 
455 	while (*__rb_link) {
456 		struct vm_area_struct *vma_tmp;
457 
458 		__rb_parent = *__rb_link;
459 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
460 
461 		if (vma_tmp->vm_end > addr) {
462 			/* Fail if an existing vma overlaps the area */
463 			if (vma_tmp->vm_start < end)
464 				return -ENOMEM;
465 			__rb_link = &__rb_parent->rb_left;
466 		} else {
467 			rb_prev = __rb_parent;
468 			__rb_link = &__rb_parent->rb_right;
469 		}
470 	}
471 
472 	*pprev = NULL;
473 	if (rb_prev)
474 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
475 	*rb_link = __rb_link;
476 	*rb_parent = __rb_parent;
477 	return 0;
478 }
479 
480 static unsigned long count_vma_pages_range(struct mm_struct *mm,
481 		unsigned long addr, unsigned long end)
482 {
483 	unsigned long nr_pages = 0;
484 	struct vm_area_struct *vma;
485 
486 	/* Find first overlaping mapping */
487 	vma = find_vma_intersection(mm, addr, end);
488 	if (!vma)
489 		return 0;
490 
491 	nr_pages = (min(end, vma->vm_end) -
492 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
493 
494 	/* Iterate over the rest of the overlaps */
495 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
496 		unsigned long overlap_len;
497 
498 		if (vma->vm_start > end)
499 			break;
500 
501 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
502 		nr_pages += overlap_len >> PAGE_SHIFT;
503 	}
504 
505 	return nr_pages;
506 }
507 
508 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
509 		struct rb_node **rb_link, struct rb_node *rb_parent)
510 {
511 	/* Update tracking information for the gap following the new vma. */
512 	if (vma->vm_next)
513 		vma_gap_update(vma->vm_next);
514 	else
515 		mm->highest_vm_end = vma->vm_end;
516 
517 	/*
518 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
519 	 * correct insertion point for that vma. As a result, we could not
520 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
521 	 * So, we first insert the vma with a zero rb_subtree_gap value
522 	 * (to be consistent with what we did on the way down), and then
523 	 * immediately update the gap to the correct value. Finally we
524 	 * rebalance the rbtree after all augmented values have been set.
525 	 */
526 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
527 	vma->rb_subtree_gap = 0;
528 	vma_gap_update(vma);
529 	vma_rb_insert(vma, &mm->mm_rb);
530 }
531 
532 static void __vma_link_file(struct vm_area_struct *vma)
533 {
534 	struct file *file;
535 
536 	file = vma->vm_file;
537 	if (file) {
538 		struct address_space *mapping = file->f_mapping;
539 
540 		if (vma->vm_flags & VM_DENYWRITE)
541 			atomic_dec(&file_inode(file)->i_writecount);
542 		if (vma->vm_flags & VM_SHARED)
543 			atomic_inc(&mapping->i_mmap_writable);
544 
545 		flush_dcache_mmap_lock(mapping);
546 		vma_interval_tree_insert(vma, &mapping->i_mmap);
547 		flush_dcache_mmap_unlock(mapping);
548 	}
549 }
550 
551 static void
552 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
553 	struct vm_area_struct *prev, struct rb_node **rb_link,
554 	struct rb_node *rb_parent)
555 {
556 	__vma_link_list(mm, vma, prev, rb_parent);
557 	__vma_link_rb(mm, vma, rb_link, rb_parent);
558 }
559 
560 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
561 			struct vm_area_struct *prev, struct rb_node **rb_link,
562 			struct rb_node *rb_parent)
563 {
564 	struct address_space *mapping = NULL;
565 
566 	if (vma->vm_file) {
567 		mapping = vma->vm_file->f_mapping;
568 		i_mmap_lock_write(mapping);
569 	}
570 
571 	__vma_link(mm, vma, prev, rb_link, rb_parent);
572 	__vma_link_file(vma);
573 
574 	if (mapping)
575 		i_mmap_unlock_write(mapping);
576 
577 	mm->map_count++;
578 	validate_mm(mm);
579 }
580 
581 /*
582  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
583  * mm's list and rbtree.  It has already been inserted into the interval tree.
584  */
585 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
586 {
587 	struct vm_area_struct *prev;
588 	struct rb_node **rb_link, *rb_parent;
589 
590 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
591 			   &prev, &rb_link, &rb_parent))
592 		BUG();
593 	__vma_link(mm, vma, prev, rb_link, rb_parent);
594 	mm->map_count++;
595 }
596 
597 static inline void
598 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
599 		struct vm_area_struct *prev)
600 {
601 	struct vm_area_struct *next;
602 
603 	vma_rb_erase(vma, &mm->mm_rb);
604 	prev->vm_next = next = vma->vm_next;
605 	if (next)
606 		next->vm_prev = prev;
607 
608 	/* Kill the cache */
609 	vmacache_invalidate(mm);
610 }
611 
612 /*
613  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
614  * is already present in an i_mmap tree without adjusting the tree.
615  * The following helper function should be used when such adjustments
616  * are necessary.  The "insert" vma (if any) is to be inserted
617  * before we drop the necessary locks.
618  */
619 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
620 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
621 {
622 	struct mm_struct *mm = vma->vm_mm;
623 	struct vm_area_struct *next = vma->vm_next;
624 	struct address_space *mapping = NULL;
625 	struct rb_root *root = NULL;
626 	struct anon_vma *anon_vma = NULL;
627 	struct file *file = vma->vm_file;
628 	bool start_changed = false, end_changed = false;
629 	long adjust_next = 0;
630 	int remove_next = 0;
631 
632 	if (next && !insert) {
633 		struct vm_area_struct *exporter = NULL, *importer = NULL;
634 
635 		if (end >= next->vm_end) {
636 			/*
637 			 * vma expands, overlapping all the next, and
638 			 * perhaps the one after too (mprotect case 6).
639 			 */
640 			remove_next = 1 + (end > next->vm_end);
641 			end = next->vm_end;
642 			exporter = next;
643 			importer = vma;
644 
645 			/*
646 			 * If next doesn't have anon_vma, import from vma after
647 			 * next, if the vma overlaps with it.
648 			 */
649 			if (remove_next == 2 && next && !next->anon_vma)
650 				exporter = next->vm_next;
651 
652 		} else if (end > next->vm_start) {
653 			/*
654 			 * vma expands, overlapping part of the next:
655 			 * mprotect case 5 shifting the boundary up.
656 			 */
657 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
658 			exporter = next;
659 			importer = vma;
660 		} else if (end < vma->vm_end) {
661 			/*
662 			 * vma shrinks, and !insert tells it's not
663 			 * split_vma inserting another: so it must be
664 			 * mprotect case 4 shifting the boundary down.
665 			 */
666 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
667 			exporter = vma;
668 			importer = next;
669 		}
670 
671 		/*
672 		 * Easily overlooked: when mprotect shifts the boundary,
673 		 * make sure the expanding vma has anon_vma set if the
674 		 * shrinking vma had, to cover any anon pages imported.
675 		 */
676 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
677 			int error;
678 
679 			importer->anon_vma = exporter->anon_vma;
680 			error = anon_vma_clone(importer, exporter);
681 			if (error)
682 				return error;
683 		}
684 	}
685 again:
686 	vma_adjust_trans_huge(vma, start, end, adjust_next);
687 
688 	if (file) {
689 		mapping = file->f_mapping;
690 		root = &mapping->i_mmap;
691 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
692 
693 		if (adjust_next)
694 			uprobe_munmap(next, next->vm_start, next->vm_end);
695 
696 		i_mmap_lock_write(mapping);
697 		if (insert) {
698 			/*
699 			 * Put into interval tree now, so instantiated pages
700 			 * are visible to arm/parisc __flush_dcache_page
701 			 * throughout; but we cannot insert into address
702 			 * space until vma start or end is updated.
703 			 */
704 			__vma_link_file(insert);
705 		}
706 	}
707 
708 	anon_vma = vma->anon_vma;
709 	if (!anon_vma && adjust_next)
710 		anon_vma = next->anon_vma;
711 	if (anon_vma) {
712 		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
713 			  anon_vma != next->anon_vma, next);
714 		anon_vma_lock_write(anon_vma);
715 		anon_vma_interval_tree_pre_update_vma(vma);
716 		if (adjust_next)
717 			anon_vma_interval_tree_pre_update_vma(next);
718 	}
719 
720 	if (root) {
721 		flush_dcache_mmap_lock(mapping);
722 		vma_interval_tree_remove(vma, root);
723 		if (adjust_next)
724 			vma_interval_tree_remove(next, root);
725 	}
726 
727 	if (start != vma->vm_start) {
728 		vma->vm_start = start;
729 		start_changed = true;
730 	}
731 	if (end != vma->vm_end) {
732 		vma->vm_end = end;
733 		end_changed = true;
734 	}
735 	vma->vm_pgoff = pgoff;
736 	if (adjust_next) {
737 		next->vm_start += adjust_next << PAGE_SHIFT;
738 		next->vm_pgoff += adjust_next;
739 	}
740 
741 	if (root) {
742 		if (adjust_next)
743 			vma_interval_tree_insert(next, root);
744 		vma_interval_tree_insert(vma, root);
745 		flush_dcache_mmap_unlock(mapping);
746 	}
747 
748 	if (remove_next) {
749 		/*
750 		 * vma_merge has merged next into vma, and needs
751 		 * us to remove next before dropping the locks.
752 		 */
753 		__vma_unlink(mm, next, vma);
754 		if (file)
755 			__remove_shared_vm_struct(next, file, mapping);
756 	} else if (insert) {
757 		/*
758 		 * split_vma has split insert from vma, and needs
759 		 * us to insert it before dropping the locks
760 		 * (it may either follow vma or precede it).
761 		 */
762 		__insert_vm_struct(mm, insert);
763 	} else {
764 		if (start_changed)
765 			vma_gap_update(vma);
766 		if (end_changed) {
767 			if (!next)
768 				mm->highest_vm_end = end;
769 			else if (!adjust_next)
770 				vma_gap_update(next);
771 		}
772 	}
773 
774 	if (anon_vma) {
775 		anon_vma_interval_tree_post_update_vma(vma);
776 		if (adjust_next)
777 			anon_vma_interval_tree_post_update_vma(next);
778 		anon_vma_unlock_write(anon_vma);
779 	}
780 	if (mapping)
781 		i_mmap_unlock_write(mapping);
782 
783 	if (root) {
784 		uprobe_mmap(vma);
785 
786 		if (adjust_next)
787 			uprobe_mmap(next);
788 	}
789 
790 	if (remove_next) {
791 		if (file) {
792 			uprobe_munmap(next, next->vm_start, next->vm_end);
793 			fput(file);
794 		}
795 		if (next->anon_vma)
796 			anon_vma_merge(vma, next);
797 		mm->map_count--;
798 		mpol_put(vma_policy(next));
799 		kmem_cache_free(vm_area_cachep, next);
800 		/*
801 		 * In mprotect's case 6 (see comments on vma_merge),
802 		 * we must remove another next too. It would clutter
803 		 * up the code too much to do both in one go.
804 		 */
805 		next = vma->vm_next;
806 		if (remove_next == 2) {
807 			remove_next = 1;
808 			end = next->vm_end;
809 			goto again;
810 		}
811 		else if (next)
812 			vma_gap_update(next);
813 		else
814 			mm->highest_vm_end = end;
815 	}
816 	if (insert && file)
817 		uprobe_mmap(insert);
818 
819 	validate_mm(mm);
820 
821 	return 0;
822 }
823 
824 /*
825  * If the vma has a ->close operation then the driver probably needs to release
826  * per-vma resources, so we don't attempt to merge those.
827  */
828 static inline int is_mergeable_vma(struct vm_area_struct *vma,
829 				struct file *file, unsigned long vm_flags,
830 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
831 {
832 	/*
833 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
834 	 * match the flags but dirty bit -- the caller should mark
835 	 * merged VMA as dirty. If dirty bit won't be excluded from
836 	 * comparison, we increase pressue on the memory system forcing
837 	 * the kernel to generate new VMAs when old one could be
838 	 * extended instead.
839 	 */
840 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
841 		return 0;
842 	if (vma->vm_file != file)
843 		return 0;
844 	if (vma->vm_ops && vma->vm_ops->close)
845 		return 0;
846 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
847 		return 0;
848 	return 1;
849 }
850 
851 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
852 					struct anon_vma *anon_vma2,
853 					struct vm_area_struct *vma)
854 {
855 	/*
856 	 * The list_is_singular() test is to avoid merging VMA cloned from
857 	 * parents. This can improve scalability caused by anon_vma lock.
858 	 */
859 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
860 		list_is_singular(&vma->anon_vma_chain)))
861 		return 1;
862 	return anon_vma1 == anon_vma2;
863 }
864 
865 /*
866  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
867  * in front of (at a lower virtual address and file offset than) the vma.
868  *
869  * We cannot merge two vmas if they have differently assigned (non-NULL)
870  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
871  *
872  * We don't check here for the merged mmap wrapping around the end of pagecache
873  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
874  * wrap, nor mmaps which cover the final page at index -1UL.
875  */
876 static int
877 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
878 		     struct anon_vma *anon_vma, struct file *file,
879 		     pgoff_t vm_pgoff,
880 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
881 {
882 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
883 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
884 		if (vma->vm_pgoff == vm_pgoff)
885 			return 1;
886 	}
887 	return 0;
888 }
889 
890 /*
891  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
892  * beyond (at a higher virtual address and file offset than) the vma.
893  *
894  * We cannot merge two vmas if they have differently assigned (non-NULL)
895  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
896  */
897 static int
898 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
899 		    struct anon_vma *anon_vma, struct file *file,
900 		    pgoff_t vm_pgoff,
901 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
902 {
903 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
904 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
905 		pgoff_t vm_pglen;
906 		vm_pglen = vma_pages(vma);
907 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
908 			return 1;
909 	}
910 	return 0;
911 }
912 
913 /*
914  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
915  * whether that can be merged with its predecessor or its successor.
916  * Or both (it neatly fills a hole).
917  *
918  * In most cases - when called for mmap, brk or mremap - [addr,end) is
919  * certain not to be mapped by the time vma_merge is called; but when
920  * called for mprotect, it is certain to be already mapped (either at
921  * an offset within prev, or at the start of next), and the flags of
922  * this area are about to be changed to vm_flags - and the no-change
923  * case has already been eliminated.
924  *
925  * The following mprotect cases have to be considered, where AAAA is
926  * the area passed down from mprotect_fixup, never extending beyond one
927  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
928  *
929  *     AAAA             AAAA                AAAA          AAAA
930  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
931  *    cannot merge    might become    might become    might become
932  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
933  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
934  *    mremap move:                                    PPPPNNNNNNNN 8
935  *        AAAA
936  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
937  *    might become    case 1 below    case 2 below    case 3 below
938  *
939  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
940  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
941  */
942 struct vm_area_struct *vma_merge(struct mm_struct *mm,
943 			struct vm_area_struct *prev, unsigned long addr,
944 			unsigned long end, unsigned long vm_flags,
945 			struct anon_vma *anon_vma, struct file *file,
946 			pgoff_t pgoff, struct mempolicy *policy,
947 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
948 {
949 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
950 	struct vm_area_struct *area, *next;
951 	int err;
952 
953 	/*
954 	 * We later require that vma->vm_flags == vm_flags,
955 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
956 	 */
957 	if (vm_flags & VM_SPECIAL)
958 		return NULL;
959 
960 	if (prev)
961 		next = prev->vm_next;
962 	else
963 		next = mm->mmap;
964 	area = next;
965 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
966 		next = next->vm_next;
967 
968 	/*
969 	 * Can it merge with the predecessor?
970 	 */
971 	if (prev && prev->vm_end == addr &&
972 			mpol_equal(vma_policy(prev), policy) &&
973 			can_vma_merge_after(prev, vm_flags,
974 					    anon_vma, file, pgoff,
975 					    vm_userfaultfd_ctx)) {
976 		/*
977 		 * OK, it can.  Can we now merge in the successor as well?
978 		 */
979 		if (next && end == next->vm_start &&
980 				mpol_equal(policy, vma_policy(next)) &&
981 				can_vma_merge_before(next, vm_flags,
982 						     anon_vma, file,
983 						     pgoff+pglen,
984 						     vm_userfaultfd_ctx) &&
985 				is_mergeable_anon_vma(prev->anon_vma,
986 						      next->anon_vma, NULL)) {
987 							/* cases 1, 6 */
988 			err = vma_adjust(prev, prev->vm_start,
989 				next->vm_end, prev->vm_pgoff, NULL);
990 		} else					/* cases 2, 5, 7 */
991 			err = vma_adjust(prev, prev->vm_start,
992 				end, prev->vm_pgoff, NULL);
993 		if (err)
994 			return NULL;
995 		khugepaged_enter_vma_merge(prev, vm_flags);
996 		return prev;
997 	}
998 
999 	/*
1000 	 * Can this new request be merged in front of next?
1001 	 */
1002 	if (next && end == next->vm_start &&
1003 			mpol_equal(policy, vma_policy(next)) &&
1004 			can_vma_merge_before(next, vm_flags,
1005 					     anon_vma, file, pgoff+pglen,
1006 					     vm_userfaultfd_ctx)) {
1007 		if (prev && addr < prev->vm_end)	/* case 4 */
1008 			err = vma_adjust(prev, prev->vm_start,
1009 				addr, prev->vm_pgoff, NULL);
1010 		else					/* cases 3, 8 */
1011 			err = vma_adjust(area, addr, next->vm_end,
1012 				next->vm_pgoff - pglen, NULL);
1013 		if (err)
1014 			return NULL;
1015 		khugepaged_enter_vma_merge(area, vm_flags);
1016 		return area;
1017 	}
1018 
1019 	return NULL;
1020 }
1021 
1022 /*
1023  * Rough compatbility check to quickly see if it's even worth looking
1024  * at sharing an anon_vma.
1025  *
1026  * They need to have the same vm_file, and the flags can only differ
1027  * in things that mprotect may change.
1028  *
1029  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1030  * we can merge the two vma's. For example, we refuse to merge a vma if
1031  * there is a vm_ops->close() function, because that indicates that the
1032  * driver is doing some kind of reference counting. But that doesn't
1033  * really matter for the anon_vma sharing case.
1034  */
1035 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1036 {
1037 	return a->vm_end == b->vm_start &&
1038 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1039 		a->vm_file == b->vm_file &&
1040 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1041 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1042 }
1043 
1044 /*
1045  * Do some basic sanity checking to see if we can re-use the anon_vma
1046  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1047  * the same as 'old', the other will be the new one that is trying
1048  * to share the anon_vma.
1049  *
1050  * NOTE! This runs with mm_sem held for reading, so it is possible that
1051  * the anon_vma of 'old' is concurrently in the process of being set up
1052  * by another page fault trying to merge _that_. But that's ok: if it
1053  * is being set up, that automatically means that it will be a singleton
1054  * acceptable for merging, so we can do all of this optimistically. But
1055  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1056  *
1057  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1058  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1059  * is to return an anon_vma that is "complex" due to having gone through
1060  * a fork).
1061  *
1062  * We also make sure that the two vma's are compatible (adjacent,
1063  * and with the same memory policies). That's all stable, even with just
1064  * a read lock on the mm_sem.
1065  */
1066 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1067 {
1068 	if (anon_vma_compatible(a, b)) {
1069 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1070 
1071 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1072 			return anon_vma;
1073 	}
1074 	return NULL;
1075 }
1076 
1077 /*
1078  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1079  * neighbouring vmas for a suitable anon_vma, before it goes off
1080  * to allocate a new anon_vma.  It checks because a repetitive
1081  * sequence of mprotects and faults may otherwise lead to distinct
1082  * anon_vmas being allocated, preventing vma merge in subsequent
1083  * mprotect.
1084  */
1085 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1086 {
1087 	struct anon_vma *anon_vma;
1088 	struct vm_area_struct *near;
1089 
1090 	near = vma->vm_next;
1091 	if (!near)
1092 		goto try_prev;
1093 
1094 	anon_vma = reusable_anon_vma(near, vma, near);
1095 	if (anon_vma)
1096 		return anon_vma;
1097 try_prev:
1098 	near = vma->vm_prev;
1099 	if (!near)
1100 		goto none;
1101 
1102 	anon_vma = reusable_anon_vma(near, near, vma);
1103 	if (anon_vma)
1104 		return anon_vma;
1105 none:
1106 	/*
1107 	 * There's no absolute need to look only at touching neighbours:
1108 	 * we could search further afield for "compatible" anon_vmas.
1109 	 * But it would probably just be a waste of time searching,
1110 	 * or lead to too many vmas hanging off the same anon_vma.
1111 	 * We're trying to allow mprotect remerging later on,
1112 	 * not trying to minimize memory used for anon_vmas.
1113 	 */
1114 	return NULL;
1115 }
1116 
1117 /*
1118  * If a hint addr is less than mmap_min_addr change hint to be as
1119  * low as possible but still greater than mmap_min_addr
1120  */
1121 static inline unsigned long round_hint_to_min(unsigned long hint)
1122 {
1123 	hint &= PAGE_MASK;
1124 	if (((void *)hint != NULL) &&
1125 	    (hint < mmap_min_addr))
1126 		return PAGE_ALIGN(mmap_min_addr);
1127 	return hint;
1128 }
1129 
1130 static inline int mlock_future_check(struct mm_struct *mm,
1131 				     unsigned long flags,
1132 				     unsigned long len)
1133 {
1134 	unsigned long locked, lock_limit;
1135 
1136 	/*  mlock MCL_FUTURE? */
1137 	if (flags & VM_LOCKED) {
1138 		locked = len >> PAGE_SHIFT;
1139 		locked += mm->locked_vm;
1140 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1141 		lock_limit >>= PAGE_SHIFT;
1142 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1143 			return -EAGAIN;
1144 	}
1145 	return 0;
1146 }
1147 
1148 /*
1149  * The caller must hold down_write(&current->mm->mmap_sem).
1150  */
1151 unsigned long do_mmap(struct file *file, unsigned long addr,
1152 			unsigned long len, unsigned long prot,
1153 			unsigned long flags, vm_flags_t vm_flags,
1154 			unsigned long pgoff, unsigned long *populate)
1155 {
1156 	struct mm_struct *mm = current->mm;
1157 	int pkey = 0;
1158 
1159 	*populate = 0;
1160 
1161 	if (!len)
1162 		return -EINVAL;
1163 
1164 	/*
1165 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1166 	 *
1167 	 * (the exception is when the underlying filesystem is noexec
1168 	 *  mounted, in which case we dont add PROT_EXEC.)
1169 	 */
1170 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1171 		if (!(file && path_noexec(&file->f_path)))
1172 			prot |= PROT_EXEC;
1173 
1174 	if (!(flags & MAP_FIXED))
1175 		addr = round_hint_to_min(addr);
1176 
1177 	/* Careful about overflows.. */
1178 	len = PAGE_ALIGN(len);
1179 	if (!len)
1180 		return -ENOMEM;
1181 
1182 	/* offset overflow? */
1183 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1184 		return -EOVERFLOW;
1185 
1186 	/* Too many mappings? */
1187 	if (mm->map_count > sysctl_max_map_count)
1188 		return -ENOMEM;
1189 
1190 	/* Obtain the address to map to. we verify (or select) it and ensure
1191 	 * that it represents a valid section of the address space.
1192 	 */
1193 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1194 	if (offset_in_page(addr))
1195 		return addr;
1196 
1197 	if (prot == PROT_EXEC) {
1198 		pkey = execute_only_pkey(mm);
1199 		if (pkey < 0)
1200 			pkey = 0;
1201 	}
1202 
1203 	/* Do simple checking here so the lower-level routines won't have
1204 	 * to. we assume access permissions have been handled by the open
1205 	 * of the memory object, so we don't do any here.
1206 	 */
1207 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1208 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1209 
1210 	if (flags & MAP_LOCKED)
1211 		if (!can_do_mlock())
1212 			return -EPERM;
1213 
1214 	if (mlock_future_check(mm, vm_flags, len))
1215 		return -EAGAIN;
1216 
1217 	if (file) {
1218 		struct inode *inode = file_inode(file);
1219 
1220 		switch (flags & MAP_TYPE) {
1221 		case MAP_SHARED:
1222 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1223 				return -EACCES;
1224 
1225 			/*
1226 			 * Make sure we don't allow writing to an append-only
1227 			 * file..
1228 			 */
1229 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1230 				return -EACCES;
1231 
1232 			/*
1233 			 * Make sure there are no mandatory locks on the file.
1234 			 */
1235 			if (locks_verify_locked(file))
1236 				return -EAGAIN;
1237 
1238 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1239 			if (!(file->f_mode & FMODE_WRITE))
1240 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1241 
1242 			/* fall through */
1243 		case MAP_PRIVATE:
1244 			if (!(file->f_mode & FMODE_READ))
1245 				return -EACCES;
1246 			if (path_noexec(&file->f_path)) {
1247 				if (vm_flags & VM_EXEC)
1248 					return -EPERM;
1249 				vm_flags &= ~VM_MAYEXEC;
1250 			}
1251 
1252 			if (!file->f_op->mmap)
1253 				return -ENODEV;
1254 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1255 				return -EINVAL;
1256 			break;
1257 
1258 		default:
1259 			return -EINVAL;
1260 		}
1261 	} else {
1262 		switch (flags & MAP_TYPE) {
1263 		case MAP_SHARED:
1264 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1265 				return -EINVAL;
1266 			/*
1267 			 * Ignore pgoff.
1268 			 */
1269 			pgoff = 0;
1270 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1271 			break;
1272 		case MAP_PRIVATE:
1273 			/*
1274 			 * Set pgoff according to addr for anon_vma.
1275 			 */
1276 			pgoff = addr >> PAGE_SHIFT;
1277 			break;
1278 		default:
1279 			return -EINVAL;
1280 		}
1281 	}
1282 
1283 	/*
1284 	 * Set 'VM_NORESERVE' if we should not account for the
1285 	 * memory use of this mapping.
1286 	 */
1287 	if (flags & MAP_NORESERVE) {
1288 		/* We honor MAP_NORESERVE if allowed to overcommit */
1289 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1290 			vm_flags |= VM_NORESERVE;
1291 
1292 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1293 		if (file && is_file_hugepages(file))
1294 			vm_flags |= VM_NORESERVE;
1295 	}
1296 
1297 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1298 	if (!IS_ERR_VALUE(addr) &&
1299 	    ((vm_flags & VM_LOCKED) ||
1300 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1301 		*populate = len;
1302 	return addr;
1303 }
1304 
1305 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1306 		unsigned long, prot, unsigned long, flags,
1307 		unsigned long, fd, unsigned long, pgoff)
1308 {
1309 	struct file *file = NULL;
1310 	unsigned long retval;
1311 
1312 	if (!(flags & MAP_ANONYMOUS)) {
1313 		audit_mmap_fd(fd, flags);
1314 		file = fget(fd);
1315 		if (!file)
1316 			return -EBADF;
1317 		if (is_file_hugepages(file))
1318 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1319 		retval = -EINVAL;
1320 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1321 			goto out_fput;
1322 	} else if (flags & MAP_HUGETLB) {
1323 		struct user_struct *user = NULL;
1324 		struct hstate *hs;
1325 
1326 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1327 		if (!hs)
1328 			return -EINVAL;
1329 
1330 		len = ALIGN(len, huge_page_size(hs));
1331 		/*
1332 		 * VM_NORESERVE is used because the reservations will be
1333 		 * taken when vm_ops->mmap() is called
1334 		 * A dummy user value is used because we are not locking
1335 		 * memory so no accounting is necessary
1336 		 */
1337 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1338 				VM_NORESERVE,
1339 				&user, HUGETLB_ANONHUGE_INODE,
1340 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1341 		if (IS_ERR(file))
1342 			return PTR_ERR(file);
1343 	}
1344 
1345 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1346 
1347 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1348 out_fput:
1349 	if (file)
1350 		fput(file);
1351 	return retval;
1352 }
1353 
1354 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1355 struct mmap_arg_struct {
1356 	unsigned long addr;
1357 	unsigned long len;
1358 	unsigned long prot;
1359 	unsigned long flags;
1360 	unsigned long fd;
1361 	unsigned long offset;
1362 };
1363 
1364 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1365 {
1366 	struct mmap_arg_struct a;
1367 
1368 	if (copy_from_user(&a, arg, sizeof(a)))
1369 		return -EFAULT;
1370 	if (offset_in_page(a.offset))
1371 		return -EINVAL;
1372 
1373 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1374 			      a.offset >> PAGE_SHIFT);
1375 }
1376 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1377 
1378 /*
1379  * Some shared mappigns will want the pages marked read-only
1380  * to track write events. If so, we'll downgrade vm_page_prot
1381  * to the private version (using protection_map[] without the
1382  * VM_SHARED bit).
1383  */
1384 int vma_wants_writenotify(struct vm_area_struct *vma)
1385 {
1386 	vm_flags_t vm_flags = vma->vm_flags;
1387 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1388 
1389 	/* If it was private or non-writable, the write bit is already clear */
1390 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1391 		return 0;
1392 
1393 	/* The backer wishes to know when pages are first written to? */
1394 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1395 		return 1;
1396 
1397 	/* The open routine did something to the protections that pgprot_modify
1398 	 * won't preserve? */
1399 	if (pgprot_val(vma->vm_page_prot) !=
1400 	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1401 		return 0;
1402 
1403 	/* Do we need to track softdirty? */
1404 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1405 		return 1;
1406 
1407 	/* Specialty mapping? */
1408 	if (vm_flags & VM_PFNMAP)
1409 		return 0;
1410 
1411 	/* Can the mapping track the dirty pages? */
1412 	return vma->vm_file && vma->vm_file->f_mapping &&
1413 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1414 }
1415 
1416 /*
1417  * We account for memory if it's a private writeable mapping,
1418  * not hugepages and VM_NORESERVE wasn't set.
1419  */
1420 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1421 {
1422 	/*
1423 	 * hugetlb has its own accounting separate from the core VM
1424 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1425 	 */
1426 	if (file && is_file_hugepages(file))
1427 		return 0;
1428 
1429 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1430 }
1431 
1432 unsigned long mmap_region(struct file *file, unsigned long addr,
1433 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1434 {
1435 	struct mm_struct *mm = current->mm;
1436 	struct vm_area_struct *vma, *prev;
1437 	int error;
1438 	struct rb_node **rb_link, *rb_parent;
1439 	unsigned long charged = 0;
1440 
1441 	/* Check against address space limit. */
1442 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1443 		unsigned long nr_pages;
1444 
1445 		/*
1446 		 * MAP_FIXED may remove pages of mappings that intersects with
1447 		 * requested mapping. Account for the pages it would unmap.
1448 		 */
1449 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1450 
1451 		if (!may_expand_vm(mm, vm_flags,
1452 					(len >> PAGE_SHIFT) - nr_pages))
1453 			return -ENOMEM;
1454 	}
1455 
1456 	/* Clear old maps */
1457 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1458 			      &rb_parent)) {
1459 		if (do_munmap(mm, addr, len))
1460 			return -ENOMEM;
1461 	}
1462 
1463 	/*
1464 	 * Private writable mapping: check memory availability
1465 	 */
1466 	if (accountable_mapping(file, vm_flags)) {
1467 		charged = len >> PAGE_SHIFT;
1468 		if (security_vm_enough_memory_mm(mm, charged))
1469 			return -ENOMEM;
1470 		vm_flags |= VM_ACCOUNT;
1471 	}
1472 
1473 	/*
1474 	 * Can we just expand an old mapping?
1475 	 */
1476 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1477 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1478 	if (vma)
1479 		goto out;
1480 
1481 	/*
1482 	 * Determine the object being mapped and call the appropriate
1483 	 * specific mapper. the address has already been validated, but
1484 	 * not unmapped, but the maps are removed from the list.
1485 	 */
1486 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1487 	if (!vma) {
1488 		error = -ENOMEM;
1489 		goto unacct_error;
1490 	}
1491 
1492 	vma->vm_mm = mm;
1493 	vma->vm_start = addr;
1494 	vma->vm_end = addr + len;
1495 	vma->vm_flags = vm_flags;
1496 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1497 	vma->vm_pgoff = pgoff;
1498 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1499 
1500 	if (file) {
1501 		if (vm_flags & VM_DENYWRITE) {
1502 			error = deny_write_access(file);
1503 			if (error)
1504 				goto free_vma;
1505 		}
1506 		if (vm_flags & VM_SHARED) {
1507 			error = mapping_map_writable(file->f_mapping);
1508 			if (error)
1509 				goto allow_write_and_free_vma;
1510 		}
1511 
1512 		/* ->mmap() can change vma->vm_file, but must guarantee that
1513 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1514 		 * and map writably if VM_SHARED is set. This usually means the
1515 		 * new file must not have been exposed to user-space, yet.
1516 		 */
1517 		vma->vm_file = get_file(file);
1518 		error = file->f_op->mmap(file, vma);
1519 		if (error)
1520 			goto unmap_and_free_vma;
1521 
1522 		/* Can addr have changed??
1523 		 *
1524 		 * Answer: Yes, several device drivers can do it in their
1525 		 *         f_op->mmap method. -DaveM
1526 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1527 		 *      be updated for vma_link()
1528 		 */
1529 		WARN_ON_ONCE(addr != vma->vm_start);
1530 
1531 		addr = vma->vm_start;
1532 		vm_flags = vma->vm_flags;
1533 	} else if (vm_flags & VM_SHARED) {
1534 		error = shmem_zero_setup(vma);
1535 		if (error)
1536 			goto free_vma;
1537 	}
1538 
1539 	vma_link(mm, vma, prev, rb_link, rb_parent);
1540 	/* Once vma denies write, undo our temporary denial count */
1541 	if (file) {
1542 		if (vm_flags & VM_SHARED)
1543 			mapping_unmap_writable(file->f_mapping);
1544 		if (vm_flags & VM_DENYWRITE)
1545 			allow_write_access(file);
1546 	}
1547 	file = vma->vm_file;
1548 out:
1549 	perf_event_mmap(vma);
1550 
1551 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1552 	if (vm_flags & VM_LOCKED) {
1553 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1554 					vma == get_gate_vma(current->mm)))
1555 			mm->locked_vm += (len >> PAGE_SHIFT);
1556 		else
1557 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1558 	}
1559 
1560 	if (file)
1561 		uprobe_mmap(vma);
1562 
1563 	/*
1564 	 * New (or expanded) vma always get soft dirty status.
1565 	 * Otherwise user-space soft-dirty page tracker won't
1566 	 * be able to distinguish situation when vma area unmapped,
1567 	 * then new mapped in-place (which must be aimed as
1568 	 * a completely new data area).
1569 	 */
1570 	vma->vm_flags |= VM_SOFTDIRTY;
1571 
1572 	vma_set_page_prot(vma);
1573 
1574 	return addr;
1575 
1576 unmap_and_free_vma:
1577 	vma->vm_file = NULL;
1578 	fput(file);
1579 
1580 	/* Undo any partial mapping done by a device driver. */
1581 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1582 	charged = 0;
1583 	if (vm_flags & VM_SHARED)
1584 		mapping_unmap_writable(file->f_mapping);
1585 allow_write_and_free_vma:
1586 	if (vm_flags & VM_DENYWRITE)
1587 		allow_write_access(file);
1588 free_vma:
1589 	kmem_cache_free(vm_area_cachep, vma);
1590 unacct_error:
1591 	if (charged)
1592 		vm_unacct_memory(charged);
1593 	return error;
1594 }
1595 
1596 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1597 {
1598 	/*
1599 	 * We implement the search by looking for an rbtree node that
1600 	 * immediately follows a suitable gap. That is,
1601 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1602 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1603 	 * - gap_end - gap_start >= length
1604 	 */
1605 
1606 	struct mm_struct *mm = current->mm;
1607 	struct vm_area_struct *vma;
1608 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1609 
1610 	/* Adjust search length to account for worst case alignment overhead */
1611 	length = info->length + info->align_mask;
1612 	if (length < info->length)
1613 		return -ENOMEM;
1614 
1615 	/* Adjust search limits by the desired length */
1616 	if (info->high_limit < length)
1617 		return -ENOMEM;
1618 	high_limit = info->high_limit - length;
1619 
1620 	if (info->low_limit > high_limit)
1621 		return -ENOMEM;
1622 	low_limit = info->low_limit + length;
1623 
1624 	/* Check if rbtree root looks promising */
1625 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1626 		goto check_highest;
1627 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1628 	if (vma->rb_subtree_gap < length)
1629 		goto check_highest;
1630 
1631 	while (true) {
1632 		/* Visit left subtree if it looks promising */
1633 		gap_end = vma->vm_start;
1634 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1635 			struct vm_area_struct *left =
1636 				rb_entry(vma->vm_rb.rb_left,
1637 					 struct vm_area_struct, vm_rb);
1638 			if (left->rb_subtree_gap >= length) {
1639 				vma = left;
1640 				continue;
1641 			}
1642 		}
1643 
1644 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1645 check_current:
1646 		/* Check if current node has a suitable gap */
1647 		if (gap_start > high_limit)
1648 			return -ENOMEM;
1649 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1650 			goto found;
1651 
1652 		/* Visit right subtree if it looks promising */
1653 		if (vma->vm_rb.rb_right) {
1654 			struct vm_area_struct *right =
1655 				rb_entry(vma->vm_rb.rb_right,
1656 					 struct vm_area_struct, vm_rb);
1657 			if (right->rb_subtree_gap >= length) {
1658 				vma = right;
1659 				continue;
1660 			}
1661 		}
1662 
1663 		/* Go back up the rbtree to find next candidate node */
1664 		while (true) {
1665 			struct rb_node *prev = &vma->vm_rb;
1666 			if (!rb_parent(prev))
1667 				goto check_highest;
1668 			vma = rb_entry(rb_parent(prev),
1669 				       struct vm_area_struct, vm_rb);
1670 			if (prev == vma->vm_rb.rb_left) {
1671 				gap_start = vma->vm_prev->vm_end;
1672 				gap_end = vma->vm_start;
1673 				goto check_current;
1674 			}
1675 		}
1676 	}
1677 
1678 check_highest:
1679 	/* Check highest gap, which does not precede any rbtree node */
1680 	gap_start = mm->highest_vm_end;
1681 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1682 	if (gap_start > high_limit)
1683 		return -ENOMEM;
1684 
1685 found:
1686 	/* We found a suitable gap. Clip it with the original low_limit. */
1687 	if (gap_start < info->low_limit)
1688 		gap_start = info->low_limit;
1689 
1690 	/* Adjust gap address to the desired alignment */
1691 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1692 
1693 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1694 	VM_BUG_ON(gap_start + info->length > gap_end);
1695 	return gap_start;
1696 }
1697 
1698 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1699 {
1700 	struct mm_struct *mm = current->mm;
1701 	struct vm_area_struct *vma;
1702 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1703 
1704 	/* Adjust search length to account for worst case alignment overhead */
1705 	length = info->length + info->align_mask;
1706 	if (length < info->length)
1707 		return -ENOMEM;
1708 
1709 	/*
1710 	 * Adjust search limits by the desired length.
1711 	 * See implementation comment at top of unmapped_area().
1712 	 */
1713 	gap_end = info->high_limit;
1714 	if (gap_end < length)
1715 		return -ENOMEM;
1716 	high_limit = gap_end - length;
1717 
1718 	if (info->low_limit > high_limit)
1719 		return -ENOMEM;
1720 	low_limit = info->low_limit + length;
1721 
1722 	/* Check highest gap, which does not precede any rbtree node */
1723 	gap_start = mm->highest_vm_end;
1724 	if (gap_start <= high_limit)
1725 		goto found_highest;
1726 
1727 	/* Check if rbtree root looks promising */
1728 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1729 		return -ENOMEM;
1730 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1731 	if (vma->rb_subtree_gap < length)
1732 		return -ENOMEM;
1733 
1734 	while (true) {
1735 		/* Visit right subtree if it looks promising */
1736 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1737 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1738 			struct vm_area_struct *right =
1739 				rb_entry(vma->vm_rb.rb_right,
1740 					 struct vm_area_struct, vm_rb);
1741 			if (right->rb_subtree_gap >= length) {
1742 				vma = right;
1743 				continue;
1744 			}
1745 		}
1746 
1747 check_current:
1748 		/* Check if current node has a suitable gap */
1749 		gap_end = vma->vm_start;
1750 		if (gap_end < low_limit)
1751 			return -ENOMEM;
1752 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1753 			goto found;
1754 
1755 		/* Visit left subtree if it looks promising */
1756 		if (vma->vm_rb.rb_left) {
1757 			struct vm_area_struct *left =
1758 				rb_entry(vma->vm_rb.rb_left,
1759 					 struct vm_area_struct, vm_rb);
1760 			if (left->rb_subtree_gap >= length) {
1761 				vma = left;
1762 				continue;
1763 			}
1764 		}
1765 
1766 		/* Go back up the rbtree to find next candidate node */
1767 		while (true) {
1768 			struct rb_node *prev = &vma->vm_rb;
1769 			if (!rb_parent(prev))
1770 				return -ENOMEM;
1771 			vma = rb_entry(rb_parent(prev),
1772 				       struct vm_area_struct, vm_rb);
1773 			if (prev == vma->vm_rb.rb_right) {
1774 				gap_start = vma->vm_prev ?
1775 					vma->vm_prev->vm_end : 0;
1776 				goto check_current;
1777 			}
1778 		}
1779 	}
1780 
1781 found:
1782 	/* We found a suitable gap. Clip it with the original high_limit. */
1783 	if (gap_end > info->high_limit)
1784 		gap_end = info->high_limit;
1785 
1786 found_highest:
1787 	/* Compute highest gap address at the desired alignment */
1788 	gap_end -= info->length;
1789 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1790 
1791 	VM_BUG_ON(gap_end < info->low_limit);
1792 	VM_BUG_ON(gap_end < gap_start);
1793 	return gap_end;
1794 }
1795 
1796 /* Get an address range which is currently unmapped.
1797  * For shmat() with addr=0.
1798  *
1799  * Ugly calling convention alert:
1800  * Return value with the low bits set means error value,
1801  * ie
1802  *	if (ret & ~PAGE_MASK)
1803  *		error = ret;
1804  *
1805  * This function "knows" that -ENOMEM has the bits set.
1806  */
1807 #ifndef HAVE_ARCH_UNMAPPED_AREA
1808 unsigned long
1809 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1810 		unsigned long len, unsigned long pgoff, unsigned long flags)
1811 {
1812 	struct mm_struct *mm = current->mm;
1813 	struct vm_area_struct *vma;
1814 	struct vm_unmapped_area_info info;
1815 
1816 	if (len > TASK_SIZE - mmap_min_addr)
1817 		return -ENOMEM;
1818 
1819 	if (flags & MAP_FIXED)
1820 		return addr;
1821 
1822 	if (addr) {
1823 		addr = PAGE_ALIGN(addr);
1824 		vma = find_vma(mm, addr);
1825 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1826 		    (!vma || addr + len <= vma->vm_start))
1827 			return addr;
1828 	}
1829 
1830 	info.flags = 0;
1831 	info.length = len;
1832 	info.low_limit = mm->mmap_base;
1833 	info.high_limit = TASK_SIZE;
1834 	info.align_mask = 0;
1835 	return vm_unmapped_area(&info);
1836 }
1837 #endif
1838 
1839 /*
1840  * This mmap-allocator allocates new areas top-down from below the
1841  * stack's low limit (the base):
1842  */
1843 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1844 unsigned long
1845 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1846 			  const unsigned long len, const unsigned long pgoff,
1847 			  const unsigned long flags)
1848 {
1849 	struct vm_area_struct *vma;
1850 	struct mm_struct *mm = current->mm;
1851 	unsigned long addr = addr0;
1852 	struct vm_unmapped_area_info info;
1853 
1854 	/* requested length too big for entire address space */
1855 	if (len > TASK_SIZE - mmap_min_addr)
1856 		return -ENOMEM;
1857 
1858 	if (flags & MAP_FIXED)
1859 		return addr;
1860 
1861 	/* requesting a specific address */
1862 	if (addr) {
1863 		addr = PAGE_ALIGN(addr);
1864 		vma = find_vma(mm, addr);
1865 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1866 				(!vma || addr + len <= vma->vm_start))
1867 			return addr;
1868 	}
1869 
1870 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1871 	info.length = len;
1872 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1873 	info.high_limit = mm->mmap_base;
1874 	info.align_mask = 0;
1875 	addr = vm_unmapped_area(&info);
1876 
1877 	/*
1878 	 * A failed mmap() very likely causes application failure,
1879 	 * so fall back to the bottom-up function here. This scenario
1880 	 * can happen with large stack limits and large mmap()
1881 	 * allocations.
1882 	 */
1883 	if (offset_in_page(addr)) {
1884 		VM_BUG_ON(addr != -ENOMEM);
1885 		info.flags = 0;
1886 		info.low_limit = TASK_UNMAPPED_BASE;
1887 		info.high_limit = TASK_SIZE;
1888 		addr = vm_unmapped_area(&info);
1889 	}
1890 
1891 	return addr;
1892 }
1893 #endif
1894 
1895 unsigned long
1896 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1897 		unsigned long pgoff, unsigned long flags)
1898 {
1899 	unsigned long (*get_area)(struct file *, unsigned long,
1900 				  unsigned long, unsigned long, unsigned long);
1901 
1902 	unsigned long error = arch_mmap_check(addr, len, flags);
1903 	if (error)
1904 		return error;
1905 
1906 	/* Careful about overflows.. */
1907 	if (len > TASK_SIZE)
1908 		return -ENOMEM;
1909 
1910 	get_area = current->mm->get_unmapped_area;
1911 	if (file) {
1912 		if (file->f_op->get_unmapped_area)
1913 			get_area = file->f_op->get_unmapped_area;
1914 	} else if (flags & MAP_SHARED) {
1915 		/*
1916 		 * mmap_region() will call shmem_zero_setup() to create a file,
1917 		 * so use shmem's get_unmapped_area in case it can be huge.
1918 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
1919 		 */
1920 		pgoff = 0;
1921 		get_area = shmem_get_unmapped_area;
1922 	}
1923 
1924 	addr = get_area(file, addr, len, pgoff, flags);
1925 	if (IS_ERR_VALUE(addr))
1926 		return addr;
1927 
1928 	if (addr > TASK_SIZE - len)
1929 		return -ENOMEM;
1930 	if (offset_in_page(addr))
1931 		return -EINVAL;
1932 
1933 	error = security_mmap_addr(addr);
1934 	return error ? error : addr;
1935 }
1936 
1937 EXPORT_SYMBOL(get_unmapped_area);
1938 
1939 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1940 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1941 {
1942 	struct rb_node *rb_node;
1943 	struct vm_area_struct *vma;
1944 
1945 	/* Check the cache first. */
1946 	vma = vmacache_find(mm, addr);
1947 	if (likely(vma))
1948 		return vma;
1949 
1950 	rb_node = mm->mm_rb.rb_node;
1951 
1952 	while (rb_node) {
1953 		struct vm_area_struct *tmp;
1954 
1955 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1956 
1957 		if (tmp->vm_end > addr) {
1958 			vma = tmp;
1959 			if (tmp->vm_start <= addr)
1960 				break;
1961 			rb_node = rb_node->rb_left;
1962 		} else
1963 			rb_node = rb_node->rb_right;
1964 	}
1965 
1966 	if (vma)
1967 		vmacache_update(addr, vma);
1968 	return vma;
1969 }
1970 
1971 EXPORT_SYMBOL(find_vma);
1972 
1973 /*
1974  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1975  */
1976 struct vm_area_struct *
1977 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1978 			struct vm_area_struct **pprev)
1979 {
1980 	struct vm_area_struct *vma;
1981 
1982 	vma = find_vma(mm, addr);
1983 	if (vma) {
1984 		*pprev = vma->vm_prev;
1985 	} else {
1986 		struct rb_node *rb_node = mm->mm_rb.rb_node;
1987 		*pprev = NULL;
1988 		while (rb_node) {
1989 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1990 			rb_node = rb_node->rb_right;
1991 		}
1992 	}
1993 	return vma;
1994 }
1995 
1996 /*
1997  * Verify that the stack growth is acceptable and
1998  * update accounting. This is shared with both the
1999  * grow-up and grow-down cases.
2000  */
2001 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2002 {
2003 	struct mm_struct *mm = vma->vm_mm;
2004 	struct rlimit *rlim = current->signal->rlim;
2005 	unsigned long new_start, actual_size;
2006 
2007 	/* address space limit tests */
2008 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2009 		return -ENOMEM;
2010 
2011 	/* Stack limit test */
2012 	actual_size = size;
2013 	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2014 		actual_size -= PAGE_SIZE;
2015 	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2016 		return -ENOMEM;
2017 
2018 	/* mlock limit tests */
2019 	if (vma->vm_flags & VM_LOCKED) {
2020 		unsigned long locked;
2021 		unsigned long limit;
2022 		locked = mm->locked_vm + grow;
2023 		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2024 		limit >>= PAGE_SHIFT;
2025 		if (locked > limit && !capable(CAP_IPC_LOCK))
2026 			return -ENOMEM;
2027 	}
2028 
2029 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2030 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2031 			vma->vm_end - size;
2032 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2033 		return -EFAULT;
2034 
2035 	/*
2036 	 * Overcommit..  This must be the final test, as it will
2037 	 * update security statistics.
2038 	 */
2039 	if (security_vm_enough_memory_mm(mm, grow))
2040 		return -ENOMEM;
2041 
2042 	return 0;
2043 }
2044 
2045 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2046 /*
2047  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2048  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2049  */
2050 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2051 {
2052 	struct mm_struct *mm = vma->vm_mm;
2053 	int error = 0;
2054 
2055 	if (!(vma->vm_flags & VM_GROWSUP))
2056 		return -EFAULT;
2057 
2058 	/* Guard against wrapping around to address 0. */
2059 	if (address < PAGE_ALIGN(address+4))
2060 		address = PAGE_ALIGN(address+4);
2061 	else
2062 		return -ENOMEM;
2063 
2064 	/* We must make sure the anon_vma is allocated. */
2065 	if (unlikely(anon_vma_prepare(vma)))
2066 		return -ENOMEM;
2067 
2068 	/*
2069 	 * vma->vm_start/vm_end cannot change under us because the caller
2070 	 * is required to hold the mmap_sem in read mode.  We need the
2071 	 * anon_vma lock to serialize against concurrent expand_stacks.
2072 	 */
2073 	anon_vma_lock_write(vma->anon_vma);
2074 
2075 	/* Somebody else might have raced and expanded it already */
2076 	if (address > vma->vm_end) {
2077 		unsigned long size, grow;
2078 
2079 		size = address - vma->vm_start;
2080 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2081 
2082 		error = -ENOMEM;
2083 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2084 			error = acct_stack_growth(vma, size, grow);
2085 			if (!error) {
2086 				/*
2087 				 * vma_gap_update() doesn't support concurrent
2088 				 * updates, but we only hold a shared mmap_sem
2089 				 * lock here, so we need to protect against
2090 				 * concurrent vma expansions.
2091 				 * anon_vma_lock_write() doesn't help here, as
2092 				 * we don't guarantee that all growable vmas
2093 				 * in a mm share the same root anon vma.
2094 				 * So, we reuse mm->page_table_lock to guard
2095 				 * against concurrent vma expansions.
2096 				 */
2097 				spin_lock(&mm->page_table_lock);
2098 				if (vma->vm_flags & VM_LOCKED)
2099 					mm->locked_vm += grow;
2100 				vm_stat_account(mm, vma->vm_flags, grow);
2101 				anon_vma_interval_tree_pre_update_vma(vma);
2102 				vma->vm_end = address;
2103 				anon_vma_interval_tree_post_update_vma(vma);
2104 				if (vma->vm_next)
2105 					vma_gap_update(vma->vm_next);
2106 				else
2107 					mm->highest_vm_end = address;
2108 				spin_unlock(&mm->page_table_lock);
2109 
2110 				perf_event_mmap(vma);
2111 			}
2112 		}
2113 	}
2114 	anon_vma_unlock_write(vma->anon_vma);
2115 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2116 	validate_mm(mm);
2117 	return error;
2118 }
2119 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2120 
2121 /*
2122  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2123  */
2124 int expand_downwards(struct vm_area_struct *vma,
2125 				   unsigned long address)
2126 {
2127 	struct mm_struct *mm = vma->vm_mm;
2128 	int error;
2129 
2130 	address &= PAGE_MASK;
2131 	error = security_mmap_addr(address);
2132 	if (error)
2133 		return error;
2134 
2135 	/* We must make sure the anon_vma is allocated. */
2136 	if (unlikely(anon_vma_prepare(vma)))
2137 		return -ENOMEM;
2138 
2139 	/*
2140 	 * vma->vm_start/vm_end cannot change under us because the caller
2141 	 * is required to hold the mmap_sem in read mode.  We need the
2142 	 * anon_vma lock to serialize against concurrent expand_stacks.
2143 	 */
2144 	anon_vma_lock_write(vma->anon_vma);
2145 
2146 	/* Somebody else might have raced and expanded it already */
2147 	if (address < vma->vm_start) {
2148 		unsigned long size, grow;
2149 
2150 		size = vma->vm_end - address;
2151 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2152 
2153 		error = -ENOMEM;
2154 		if (grow <= vma->vm_pgoff) {
2155 			error = acct_stack_growth(vma, size, grow);
2156 			if (!error) {
2157 				/*
2158 				 * vma_gap_update() doesn't support concurrent
2159 				 * updates, but we only hold a shared mmap_sem
2160 				 * lock here, so we need to protect against
2161 				 * concurrent vma expansions.
2162 				 * anon_vma_lock_write() doesn't help here, as
2163 				 * we don't guarantee that all growable vmas
2164 				 * in a mm share the same root anon vma.
2165 				 * So, we reuse mm->page_table_lock to guard
2166 				 * against concurrent vma expansions.
2167 				 */
2168 				spin_lock(&mm->page_table_lock);
2169 				if (vma->vm_flags & VM_LOCKED)
2170 					mm->locked_vm += grow;
2171 				vm_stat_account(mm, vma->vm_flags, grow);
2172 				anon_vma_interval_tree_pre_update_vma(vma);
2173 				vma->vm_start = address;
2174 				vma->vm_pgoff -= grow;
2175 				anon_vma_interval_tree_post_update_vma(vma);
2176 				vma_gap_update(vma);
2177 				spin_unlock(&mm->page_table_lock);
2178 
2179 				perf_event_mmap(vma);
2180 			}
2181 		}
2182 	}
2183 	anon_vma_unlock_write(vma->anon_vma);
2184 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2185 	validate_mm(mm);
2186 	return error;
2187 }
2188 
2189 /*
2190  * Note how expand_stack() refuses to expand the stack all the way to
2191  * abut the next virtual mapping, *unless* that mapping itself is also
2192  * a stack mapping. We want to leave room for a guard page, after all
2193  * (the guard page itself is not added here, that is done by the
2194  * actual page faulting logic)
2195  *
2196  * This matches the behavior of the guard page logic (see mm/memory.c:
2197  * check_stack_guard_page()), which only allows the guard page to be
2198  * removed under these circumstances.
2199  */
2200 #ifdef CONFIG_STACK_GROWSUP
2201 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2202 {
2203 	struct vm_area_struct *next;
2204 
2205 	address &= PAGE_MASK;
2206 	next = vma->vm_next;
2207 	if (next && next->vm_start == address + PAGE_SIZE) {
2208 		if (!(next->vm_flags & VM_GROWSUP))
2209 			return -ENOMEM;
2210 	}
2211 	return expand_upwards(vma, address);
2212 }
2213 
2214 struct vm_area_struct *
2215 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2216 {
2217 	struct vm_area_struct *vma, *prev;
2218 
2219 	addr &= PAGE_MASK;
2220 	vma = find_vma_prev(mm, addr, &prev);
2221 	if (vma && (vma->vm_start <= addr))
2222 		return vma;
2223 	if (!prev || expand_stack(prev, addr))
2224 		return NULL;
2225 	if (prev->vm_flags & VM_LOCKED)
2226 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2227 	return prev;
2228 }
2229 #else
2230 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2231 {
2232 	struct vm_area_struct *prev;
2233 
2234 	address &= PAGE_MASK;
2235 	prev = vma->vm_prev;
2236 	if (prev && prev->vm_end == address) {
2237 		if (!(prev->vm_flags & VM_GROWSDOWN))
2238 			return -ENOMEM;
2239 	}
2240 	return expand_downwards(vma, address);
2241 }
2242 
2243 struct vm_area_struct *
2244 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2245 {
2246 	struct vm_area_struct *vma;
2247 	unsigned long start;
2248 
2249 	addr &= PAGE_MASK;
2250 	vma = find_vma(mm, addr);
2251 	if (!vma)
2252 		return NULL;
2253 	if (vma->vm_start <= addr)
2254 		return vma;
2255 	if (!(vma->vm_flags & VM_GROWSDOWN))
2256 		return NULL;
2257 	start = vma->vm_start;
2258 	if (expand_stack(vma, addr))
2259 		return NULL;
2260 	if (vma->vm_flags & VM_LOCKED)
2261 		populate_vma_page_range(vma, addr, start, NULL);
2262 	return vma;
2263 }
2264 #endif
2265 
2266 EXPORT_SYMBOL_GPL(find_extend_vma);
2267 
2268 /*
2269  * Ok - we have the memory areas we should free on the vma list,
2270  * so release them, and do the vma updates.
2271  *
2272  * Called with the mm semaphore held.
2273  */
2274 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2275 {
2276 	unsigned long nr_accounted = 0;
2277 
2278 	/* Update high watermark before we lower total_vm */
2279 	update_hiwater_vm(mm);
2280 	do {
2281 		long nrpages = vma_pages(vma);
2282 
2283 		if (vma->vm_flags & VM_ACCOUNT)
2284 			nr_accounted += nrpages;
2285 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2286 		vma = remove_vma(vma);
2287 	} while (vma);
2288 	vm_unacct_memory(nr_accounted);
2289 	validate_mm(mm);
2290 }
2291 
2292 /*
2293  * Get rid of page table information in the indicated region.
2294  *
2295  * Called with the mm semaphore held.
2296  */
2297 static void unmap_region(struct mm_struct *mm,
2298 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2299 		unsigned long start, unsigned long end)
2300 {
2301 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2302 	struct mmu_gather tlb;
2303 
2304 	lru_add_drain();
2305 	tlb_gather_mmu(&tlb, mm, start, end);
2306 	update_hiwater_rss(mm);
2307 	unmap_vmas(&tlb, vma, start, end);
2308 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2309 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2310 	tlb_finish_mmu(&tlb, start, end);
2311 }
2312 
2313 /*
2314  * Create a list of vma's touched by the unmap, removing them from the mm's
2315  * vma list as we go..
2316  */
2317 static void
2318 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2319 	struct vm_area_struct *prev, unsigned long end)
2320 {
2321 	struct vm_area_struct **insertion_point;
2322 	struct vm_area_struct *tail_vma = NULL;
2323 
2324 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2325 	vma->vm_prev = NULL;
2326 	do {
2327 		vma_rb_erase(vma, &mm->mm_rb);
2328 		mm->map_count--;
2329 		tail_vma = vma;
2330 		vma = vma->vm_next;
2331 	} while (vma && vma->vm_start < end);
2332 	*insertion_point = vma;
2333 	if (vma) {
2334 		vma->vm_prev = prev;
2335 		vma_gap_update(vma);
2336 	} else
2337 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2338 	tail_vma->vm_next = NULL;
2339 
2340 	/* Kill the cache */
2341 	vmacache_invalidate(mm);
2342 }
2343 
2344 /*
2345  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2346  * munmap path where it doesn't make sense to fail.
2347  */
2348 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2349 	      unsigned long addr, int new_below)
2350 {
2351 	struct vm_area_struct *new;
2352 	int err;
2353 
2354 	if (is_vm_hugetlb_page(vma) && (addr &
2355 					~(huge_page_mask(hstate_vma(vma)))))
2356 		return -EINVAL;
2357 
2358 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2359 	if (!new)
2360 		return -ENOMEM;
2361 
2362 	/* most fields are the same, copy all, and then fixup */
2363 	*new = *vma;
2364 
2365 	INIT_LIST_HEAD(&new->anon_vma_chain);
2366 
2367 	if (new_below)
2368 		new->vm_end = addr;
2369 	else {
2370 		new->vm_start = addr;
2371 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2372 	}
2373 
2374 	err = vma_dup_policy(vma, new);
2375 	if (err)
2376 		goto out_free_vma;
2377 
2378 	err = anon_vma_clone(new, vma);
2379 	if (err)
2380 		goto out_free_mpol;
2381 
2382 	if (new->vm_file)
2383 		get_file(new->vm_file);
2384 
2385 	if (new->vm_ops && new->vm_ops->open)
2386 		new->vm_ops->open(new);
2387 
2388 	if (new_below)
2389 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2390 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2391 	else
2392 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2393 
2394 	/* Success. */
2395 	if (!err)
2396 		return 0;
2397 
2398 	/* Clean everything up if vma_adjust failed. */
2399 	if (new->vm_ops && new->vm_ops->close)
2400 		new->vm_ops->close(new);
2401 	if (new->vm_file)
2402 		fput(new->vm_file);
2403 	unlink_anon_vmas(new);
2404  out_free_mpol:
2405 	mpol_put(vma_policy(new));
2406  out_free_vma:
2407 	kmem_cache_free(vm_area_cachep, new);
2408 	return err;
2409 }
2410 
2411 /*
2412  * Split a vma into two pieces at address 'addr', a new vma is allocated
2413  * either for the first part or the tail.
2414  */
2415 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2416 	      unsigned long addr, int new_below)
2417 {
2418 	if (mm->map_count >= sysctl_max_map_count)
2419 		return -ENOMEM;
2420 
2421 	return __split_vma(mm, vma, addr, new_below);
2422 }
2423 
2424 /* Munmap is split into 2 main parts -- this part which finds
2425  * what needs doing, and the areas themselves, which do the
2426  * work.  This now handles partial unmappings.
2427  * Jeremy Fitzhardinge <jeremy@goop.org>
2428  */
2429 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2430 {
2431 	unsigned long end;
2432 	struct vm_area_struct *vma, *prev, *last;
2433 
2434 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2435 		return -EINVAL;
2436 
2437 	len = PAGE_ALIGN(len);
2438 	if (len == 0)
2439 		return -EINVAL;
2440 
2441 	/* Find the first overlapping VMA */
2442 	vma = find_vma(mm, start);
2443 	if (!vma)
2444 		return 0;
2445 	prev = vma->vm_prev;
2446 	/* we have  start < vma->vm_end  */
2447 
2448 	/* if it doesn't overlap, we have nothing.. */
2449 	end = start + len;
2450 	if (vma->vm_start >= end)
2451 		return 0;
2452 
2453 	/*
2454 	 * If we need to split any vma, do it now to save pain later.
2455 	 *
2456 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2457 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2458 	 * places tmp vma above, and higher split_vma places tmp vma below.
2459 	 */
2460 	if (start > vma->vm_start) {
2461 		int error;
2462 
2463 		/*
2464 		 * Make sure that map_count on return from munmap() will
2465 		 * not exceed its limit; but let map_count go just above
2466 		 * its limit temporarily, to help free resources as expected.
2467 		 */
2468 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2469 			return -ENOMEM;
2470 
2471 		error = __split_vma(mm, vma, start, 0);
2472 		if (error)
2473 			return error;
2474 		prev = vma;
2475 	}
2476 
2477 	/* Does it split the last one? */
2478 	last = find_vma(mm, end);
2479 	if (last && end > last->vm_start) {
2480 		int error = __split_vma(mm, last, end, 1);
2481 		if (error)
2482 			return error;
2483 	}
2484 	vma = prev ? prev->vm_next : mm->mmap;
2485 
2486 	/*
2487 	 * unlock any mlock()ed ranges before detaching vmas
2488 	 */
2489 	if (mm->locked_vm) {
2490 		struct vm_area_struct *tmp = vma;
2491 		while (tmp && tmp->vm_start < end) {
2492 			if (tmp->vm_flags & VM_LOCKED) {
2493 				mm->locked_vm -= vma_pages(tmp);
2494 				munlock_vma_pages_all(tmp);
2495 			}
2496 			tmp = tmp->vm_next;
2497 		}
2498 	}
2499 
2500 	/*
2501 	 * Remove the vma's, and unmap the actual pages
2502 	 */
2503 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2504 	unmap_region(mm, vma, prev, start, end);
2505 
2506 	arch_unmap(mm, vma, start, end);
2507 
2508 	/* Fix up all other VM information */
2509 	remove_vma_list(mm, vma);
2510 
2511 	return 0;
2512 }
2513 
2514 int vm_munmap(unsigned long start, size_t len)
2515 {
2516 	int ret;
2517 	struct mm_struct *mm = current->mm;
2518 
2519 	if (down_write_killable(&mm->mmap_sem))
2520 		return -EINTR;
2521 
2522 	ret = do_munmap(mm, start, len);
2523 	up_write(&mm->mmap_sem);
2524 	return ret;
2525 }
2526 EXPORT_SYMBOL(vm_munmap);
2527 
2528 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2529 {
2530 	int ret;
2531 	struct mm_struct *mm = current->mm;
2532 
2533 	profile_munmap(addr);
2534 	if (down_write_killable(&mm->mmap_sem))
2535 		return -EINTR;
2536 	ret = do_munmap(mm, addr, len);
2537 	up_write(&mm->mmap_sem);
2538 	return ret;
2539 }
2540 
2541 
2542 /*
2543  * Emulation of deprecated remap_file_pages() syscall.
2544  */
2545 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2546 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2547 {
2548 
2549 	struct mm_struct *mm = current->mm;
2550 	struct vm_area_struct *vma;
2551 	unsigned long populate = 0;
2552 	unsigned long ret = -EINVAL;
2553 	struct file *file;
2554 
2555 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2556 		     current->comm, current->pid);
2557 
2558 	if (prot)
2559 		return ret;
2560 	start = start & PAGE_MASK;
2561 	size = size & PAGE_MASK;
2562 
2563 	if (start + size <= start)
2564 		return ret;
2565 
2566 	/* Does pgoff wrap? */
2567 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2568 		return ret;
2569 
2570 	if (down_write_killable(&mm->mmap_sem))
2571 		return -EINTR;
2572 
2573 	vma = find_vma(mm, start);
2574 
2575 	if (!vma || !(vma->vm_flags & VM_SHARED))
2576 		goto out;
2577 
2578 	if (start < vma->vm_start)
2579 		goto out;
2580 
2581 	if (start + size > vma->vm_end) {
2582 		struct vm_area_struct *next;
2583 
2584 		for (next = vma->vm_next; next; next = next->vm_next) {
2585 			/* hole between vmas ? */
2586 			if (next->vm_start != next->vm_prev->vm_end)
2587 				goto out;
2588 
2589 			if (next->vm_file != vma->vm_file)
2590 				goto out;
2591 
2592 			if (next->vm_flags != vma->vm_flags)
2593 				goto out;
2594 
2595 			if (start + size <= next->vm_end)
2596 				break;
2597 		}
2598 
2599 		if (!next)
2600 			goto out;
2601 	}
2602 
2603 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2604 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2605 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2606 
2607 	flags &= MAP_NONBLOCK;
2608 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2609 	if (vma->vm_flags & VM_LOCKED) {
2610 		struct vm_area_struct *tmp;
2611 		flags |= MAP_LOCKED;
2612 
2613 		/* drop PG_Mlocked flag for over-mapped range */
2614 		for (tmp = vma; tmp->vm_start >= start + size;
2615 				tmp = tmp->vm_next) {
2616 			/*
2617 			 * Split pmd and munlock page on the border
2618 			 * of the range.
2619 			 */
2620 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2621 
2622 			munlock_vma_pages_range(tmp,
2623 					max(tmp->vm_start, start),
2624 					min(tmp->vm_end, start + size));
2625 		}
2626 	}
2627 
2628 	file = get_file(vma->vm_file);
2629 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2630 			prot, flags, pgoff, &populate);
2631 	fput(file);
2632 out:
2633 	up_write(&mm->mmap_sem);
2634 	if (populate)
2635 		mm_populate(ret, populate);
2636 	if (!IS_ERR_VALUE(ret))
2637 		ret = 0;
2638 	return ret;
2639 }
2640 
2641 static inline void verify_mm_writelocked(struct mm_struct *mm)
2642 {
2643 #ifdef CONFIG_DEBUG_VM
2644 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2645 		WARN_ON(1);
2646 		up_read(&mm->mmap_sem);
2647 	}
2648 #endif
2649 }
2650 
2651 /*
2652  *  this is really a simplified "do_mmap".  it only handles
2653  *  anonymous maps.  eventually we may be able to do some
2654  *  brk-specific accounting here.
2655  */
2656 static int do_brk(unsigned long addr, unsigned long request)
2657 {
2658 	struct mm_struct *mm = current->mm;
2659 	struct vm_area_struct *vma, *prev;
2660 	unsigned long flags, len;
2661 	struct rb_node **rb_link, *rb_parent;
2662 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2663 	int error;
2664 
2665 	len = PAGE_ALIGN(request);
2666 	if (len < request)
2667 		return -ENOMEM;
2668 	if (!len)
2669 		return 0;
2670 
2671 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2672 
2673 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2674 	if (offset_in_page(error))
2675 		return error;
2676 
2677 	error = mlock_future_check(mm, mm->def_flags, len);
2678 	if (error)
2679 		return error;
2680 
2681 	/*
2682 	 * mm->mmap_sem is required to protect against another thread
2683 	 * changing the mappings in case we sleep.
2684 	 */
2685 	verify_mm_writelocked(mm);
2686 
2687 	/*
2688 	 * Clear old maps.  this also does some error checking for us
2689 	 */
2690 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2691 			      &rb_parent)) {
2692 		if (do_munmap(mm, addr, len))
2693 			return -ENOMEM;
2694 	}
2695 
2696 	/* Check against address space limits *after* clearing old maps... */
2697 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2698 		return -ENOMEM;
2699 
2700 	if (mm->map_count > sysctl_max_map_count)
2701 		return -ENOMEM;
2702 
2703 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2704 		return -ENOMEM;
2705 
2706 	/* Can we just expand an old private anonymous mapping? */
2707 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2708 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2709 	if (vma)
2710 		goto out;
2711 
2712 	/*
2713 	 * create a vma struct for an anonymous mapping
2714 	 */
2715 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2716 	if (!vma) {
2717 		vm_unacct_memory(len >> PAGE_SHIFT);
2718 		return -ENOMEM;
2719 	}
2720 
2721 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2722 	vma->vm_mm = mm;
2723 	vma->vm_start = addr;
2724 	vma->vm_end = addr + len;
2725 	vma->vm_pgoff = pgoff;
2726 	vma->vm_flags = flags;
2727 	vma->vm_page_prot = vm_get_page_prot(flags);
2728 	vma_link(mm, vma, prev, rb_link, rb_parent);
2729 out:
2730 	perf_event_mmap(vma);
2731 	mm->total_vm += len >> PAGE_SHIFT;
2732 	mm->data_vm += len >> PAGE_SHIFT;
2733 	if (flags & VM_LOCKED)
2734 		mm->locked_vm += (len >> PAGE_SHIFT);
2735 	vma->vm_flags |= VM_SOFTDIRTY;
2736 	return 0;
2737 }
2738 
2739 int vm_brk(unsigned long addr, unsigned long len)
2740 {
2741 	struct mm_struct *mm = current->mm;
2742 	int ret;
2743 	bool populate;
2744 
2745 	if (down_write_killable(&mm->mmap_sem))
2746 		return -EINTR;
2747 
2748 	ret = do_brk(addr, len);
2749 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2750 	up_write(&mm->mmap_sem);
2751 	if (populate && !ret)
2752 		mm_populate(addr, len);
2753 	return ret;
2754 }
2755 EXPORT_SYMBOL(vm_brk);
2756 
2757 /* Release all mmaps. */
2758 void exit_mmap(struct mm_struct *mm)
2759 {
2760 	struct mmu_gather tlb;
2761 	struct vm_area_struct *vma;
2762 	unsigned long nr_accounted = 0;
2763 
2764 	/* mm's last user has gone, and its about to be pulled down */
2765 	mmu_notifier_release(mm);
2766 
2767 	if (mm->locked_vm) {
2768 		vma = mm->mmap;
2769 		while (vma) {
2770 			if (vma->vm_flags & VM_LOCKED)
2771 				munlock_vma_pages_all(vma);
2772 			vma = vma->vm_next;
2773 		}
2774 	}
2775 
2776 	arch_exit_mmap(mm);
2777 
2778 	vma = mm->mmap;
2779 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2780 		return;
2781 
2782 	lru_add_drain();
2783 	flush_cache_mm(mm);
2784 	tlb_gather_mmu(&tlb, mm, 0, -1);
2785 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2786 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2787 	unmap_vmas(&tlb, vma, 0, -1);
2788 
2789 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2790 	tlb_finish_mmu(&tlb, 0, -1);
2791 
2792 	/*
2793 	 * Walk the list again, actually closing and freeing it,
2794 	 * with preemption enabled, without holding any MM locks.
2795 	 */
2796 	while (vma) {
2797 		if (vma->vm_flags & VM_ACCOUNT)
2798 			nr_accounted += vma_pages(vma);
2799 		vma = remove_vma(vma);
2800 	}
2801 	vm_unacct_memory(nr_accounted);
2802 }
2803 
2804 /* Insert vm structure into process list sorted by address
2805  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2806  * then i_mmap_rwsem is taken here.
2807  */
2808 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2809 {
2810 	struct vm_area_struct *prev;
2811 	struct rb_node **rb_link, *rb_parent;
2812 
2813 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2814 			   &prev, &rb_link, &rb_parent))
2815 		return -ENOMEM;
2816 	if ((vma->vm_flags & VM_ACCOUNT) &&
2817 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2818 		return -ENOMEM;
2819 
2820 	/*
2821 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2822 	 * until its first write fault, when page's anon_vma and index
2823 	 * are set.  But now set the vm_pgoff it will almost certainly
2824 	 * end up with (unless mremap moves it elsewhere before that
2825 	 * first wfault), so /proc/pid/maps tells a consistent story.
2826 	 *
2827 	 * By setting it to reflect the virtual start address of the
2828 	 * vma, merges and splits can happen in a seamless way, just
2829 	 * using the existing file pgoff checks and manipulations.
2830 	 * Similarly in do_mmap_pgoff and in do_brk.
2831 	 */
2832 	if (vma_is_anonymous(vma)) {
2833 		BUG_ON(vma->anon_vma);
2834 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2835 	}
2836 
2837 	vma_link(mm, vma, prev, rb_link, rb_parent);
2838 	return 0;
2839 }
2840 
2841 /*
2842  * Copy the vma structure to a new location in the same mm,
2843  * prior to moving page table entries, to effect an mremap move.
2844  */
2845 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2846 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2847 	bool *need_rmap_locks)
2848 {
2849 	struct vm_area_struct *vma = *vmap;
2850 	unsigned long vma_start = vma->vm_start;
2851 	struct mm_struct *mm = vma->vm_mm;
2852 	struct vm_area_struct *new_vma, *prev;
2853 	struct rb_node **rb_link, *rb_parent;
2854 	bool faulted_in_anon_vma = true;
2855 
2856 	/*
2857 	 * If anonymous vma has not yet been faulted, update new pgoff
2858 	 * to match new location, to increase its chance of merging.
2859 	 */
2860 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2861 		pgoff = addr >> PAGE_SHIFT;
2862 		faulted_in_anon_vma = false;
2863 	}
2864 
2865 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2866 		return NULL;	/* should never get here */
2867 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2868 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2869 			    vma->vm_userfaultfd_ctx);
2870 	if (new_vma) {
2871 		/*
2872 		 * Source vma may have been merged into new_vma
2873 		 */
2874 		if (unlikely(vma_start >= new_vma->vm_start &&
2875 			     vma_start < new_vma->vm_end)) {
2876 			/*
2877 			 * The only way we can get a vma_merge with
2878 			 * self during an mremap is if the vma hasn't
2879 			 * been faulted in yet and we were allowed to
2880 			 * reset the dst vma->vm_pgoff to the
2881 			 * destination address of the mremap to allow
2882 			 * the merge to happen. mremap must change the
2883 			 * vm_pgoff linearity between src and dst vmas
2884 			 * (in turn preventing a vma_merge) to be
2885 			 * safe. It is only safe to keep the vm_pgoff
2886 			 * linear if there are no pages mapped yet.
2887 			 */
2888 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2889 			*vmap = vma = new_vma;
2890 		}
2891 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2892 	} else {
2893 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2894 		if (!new_vma)
2895 			goto out;
2896 		*new_vma = *vma;
2897 		new_vma->vm_start = addr;
2898 		new_vma->vm_end = addr + len;
2899 		new_vma->vm_pgoff = pgoff;
2900 		if (vma_dup_policy(vma, new_vma))
2901 			goto out_free_vma;
2902 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2903 		if (anon_vma_clone(new_vma, vma))
2904 			goto out_free_mempol;
2905 		if (new_vma->vm_file)
2906 			get_file(new_vma->vm_file);
2907 		if (new_vma->vm_ops && new_vma->vm_ops->open)
2908 			new_vma->vm_ops->open(new_vma);
2909 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
2910 		*need_rmap_locks = false;
2911 	}
2912 	return new_vma;
2913 
2914 out_free_mempol:
2915 	mpol_put(vma_policy(new_vma));
2916 out_free_vma:
2917 	kmem_cache_free(vm_area_cachep, new_vma);
2918 out:
2919 	return NULL;
2920 }
2921 
2922 /*
2923  * Return true if the calling process may expand its vm space by the passed
2924  * number of pages
2925  */
2926 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2927 {
2928 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2929 		return false;
2930 
2931 	if (is_data_mapping(flags) &&
2932 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2933 		/* Workaround for Valgrind */
2934 		if (rlimit(RLIMIT_DATA) == 0 &&
2935 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
2936 			return true;
2937 		if (!ignore_rlimit_data) {
2938 			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
2939 				     current->comm, current->pid,
2940 				     (mm->data_vm + npages) << PAGE_SHIFT,
2941 				     rlimit(RLIMIT_DATA));
2942 			return false;
2943 		}
2944 	}
2945 
2946 	return true;
2947 }
2948 
2949 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2950 {
2951 	mm->total_vm += npages;
2952 
2953 	if (is_exec_mapping(flags))
2954 		mm->exec_vm += npages;
2955 	else if (is_stack_mapping(flags))
2956 		mm->stack_vm += npages;
2957 	else if (is_data_mapping(flags))
2958 		mm->data_vm += npages;
2959 }
2960 
2961 static int special_mapping_fault(struct vm_area_struct *vma,
2962 				 struct vm_fault *vmf);
2963 
2964 /*
2965  * Having a close hook prevents vma merging regardless of flags.
2966  */
2967 static void special_mapping_close(struct vm_area_struct *vma)
2968 {
2969 }
2970 
2971 static const char *special_mapping_name(struct vm_area_struct *vma)
2972 {
2973 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2974 }
2975 
2976 static int special_mapping_mremap(struct vm_area_struct *new_vma)
2977 {
2978 	struct vm_special_mapping *sm = new_vma->vm_private_data;
2979 
2980 	if (sm->mremap)
2981 		return sm->mremap(sm, new_vma);
2982 	return 0;
2983 }
2984 
2985 static const struct vm_operations_struct special_mapping_vmops = {
2986 	.close = special_mapping_close,
2987 	.fault = special_mapping_fault,
2988 	.mremap = special_mapping_mremap,
2989 	.name = special_mapping_name,
2990 };
2991 
2992 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2993 	.close = special_mapping_close,
2994 	.fault = special_mapping_fault,
2995 };
2996 
2997 static int special_mapping_fault(struct vm_area_struct *vma,
2998 				struct vm_fault *vmf)
2999 {
3000 	pgoff_t pgoff;
3001 	struct page **pages;
3002 
3003 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3004 		pages = vma->vm_private_data;
3005 	} else {
3006 		struct vm_special_mapping *sm = vma->vm_private_data;
3007 
3008 		if (sm->fault)
3009 			return sm->fault(sm, vma, vmf);
3010 
3011 		pages = sm->pages;
3012 	}
3013 
3014 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3015 		pgoff--;
3016 
3017 	if (*pages) {
3018 		struct page *page = *pages;
3019 		get_page(page);
3020 		vmf->page = page;
3021 		return 0;
3022 	}
3023 
3024 	return VM_FAULT_SIGBUS;
3025 }
3026 
3027 static struct vm_area_struct *__install_special_mapping(
3028 	struct mm_struct *mm,
3029 	unsigned long addr, unsigned long len,
3030 	unsigned long vm_flags, void *priv,
3031 	const struct vm_operations_struct *ops)
3032 {
3033 	int ret;
3034 	struct vm_area_struct *vma;
3035 
3036 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3037 	if (unlikely(vma == NULL))
3038 		return ERR_PTR(-ENOMEM);
3039 
3040 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3041 	vma->vm_mm = mm;
3042 	vma->vm_start = addr;
3043 	vma->vm_end = addr + len;
3044 
3045 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3046 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3047 
3048 	vma->vm_ops = ops;
3049 	vma->vm_private_data = priv;
3050 
3051 	ret = insert_vm_struct(mm, vma);
3052 	if (ret)
3053 		goto out;
3054 
3055 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3056 
3057 	perf_event_mmap(vma);
3058 
3059 	return vma;
3060 
3061 out:
3062 	kmem_cache_free(vm_area_cachep, vma);
3063 	return ERR_PTR(ret);
3064 }
3065 
3066 /*
3067  * Called with mm->mmap_sem held for writing.
3068  * Insert a new vma covering the given region, with the given flags.
3069  * Its pages are supplied by the given array of struct page *.
3070  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3071  * The region past the last page supplied will always produce SIGBUS.
3072  * The array pointer and the pages it points to are assumed to stay alive
3073  * for as long as this mapping might exist.
3074  */
3075 struct vm_area_struct *_install_special_mapping(
3076 	struct mm_struct *mm,
3077 	unsigned long addr, unsigned long len,
3078 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3079 {
3080 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3081 					&special_mapping_vmops);
3082 }
3083 
3084 int install_special_mapping(struct mm_struct *mm,
3085 			    unsigned long addr, unsigned long len,
3086 			    unsigned long vm_flags, struct page **pages)
3087 {
3088 	struct vm_area_struct *vma = __install_special_mapping(
3089 		mm, addr, len, vm_flags, (void *)pages,
3090 		&legacy_special_mapping_vmops);
3091 
3092 	return PTR_ERR_OR_ZERO(vma);
3093 }
3094 
3095 static DEFINE_MUTEX(mm_all_locks_mutex);
3096 
3097 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3098 {
3099 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3100 		/*
3101 		 * The LSB of head.next can't change from under us
3102 		 * because we hold the mm_all_locks_mutex.
3103 		 */
3104 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3105 		/*
3106 		 * We can safely modify head.next after taking the
3107 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3108 		 * the same anon_vma we won't take it again.
3109 		 *
3110 		 * No need of atomic instructions here, head.next
3111 		 * can't change from under us thanks to the
3112 		 * anon_vma->root->rwsem.
3113 		 */
3114 		if (__test_and_set_bit(0, (unsigned long *)
3115 				       &anon_vma->root->rb_root.rb_node))
3116 			BUG();
3117 	}
3118 }
3119 
3120 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3121 {
3122 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3123 		/*
3124 		 * AS_MM_ALL_LOCKS can't change from under us because
3125 		 * we hold the mm_all_locks_mutex.
3126 		 *
3127 		 * Operations on ->flags have to be atomic because
3128 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3129 		 * mm_all_locks_mutex, there may be other cpus
3130 		 * changing other bitflags in parallel to us.
3131 		 */
3132 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3133 			BUG();
3134 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3135 	}
3136 }
3137 
3138 /*
3139  * This operation locks against the VM for all pte/vma/mm related
3140  * operations that could ever happen on a certain mm. This includes
3141  * vmtruncate, try_to_unmap, and all page faults.
3142  *
3143  * The caller must take the mmap_sem in write mode before calling
3144  * mm_take_all_locks(). The caller isn't allowed to release the
3145  * mmap_sem until mm_drop_all_locks() returns.
3146  *
3147  * mmap_sem in write mode is required in order to block all operations
3148  * that could modify pagetables and free pages without need of
3149  * altering the vma layout. It's also needed in write mode to avoid new
3150  * anon_vmas to be associated with existing vmas.
3151  *
3152  * A single task can't take more than one mm_take_all_locks() in a row
3153  * or it would deadlock.
3154  *
3155  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3156  * mapping->flags avoid to take the same lock twice, if more than one
3157  * vma in this mm is backed by the same anon_vma or address_space.
3158  *
3159  * We take locks in following order, accordingly to comment at beginning
3160  * of mm/rmap.c:
3161  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3162  *     hugetlb mapping);
3163  *   - all i_mmap_rwsem locks;
3164  *   - all anon_vma->rwseml
3165  *
3166  * We can take all locks within these types randomly because the VM code
3167  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3168  * mm_all_locks_mutex.
3169  *
3170  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3171  * that may have to take thousand of locks.
3172  *
3173  * mm_take_all_locks() can fail if it's interrupted by signals.
3174  */
3175 int mm_take_all_locks(struct mm_struct *mm)
3176 {
3177 	struct vm_area_struct *vma;
3178 	struct anon_vma_chain *avc;
3179 
3180 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3181 
3182 	mutex_lock(&mm_all_locks_mutex);
3183 
3184 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3185 		if (signal_pending(current))
3186 			goto out_unlock;
3187 		if (vma->vm_file && vma->vm_file->f_mapping &&
3188 				is_vm_hugetlb_page(vma))
3189 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3190 	}
3191 
3192 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3193 		if (signal_pending(current))
3194 			goto out_unlock;
3195 		if (vma->vm_file && vma->vm_file->f_mapping &&
3196 				!is_vm_hugetlb_page(vma))
3197 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3198 	}
3199 
3200 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3201 		if (signal_pending(current))
3202 			goto out_unlock;
3203 		if (vma->anon_vma)
3204 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3205 				vm_lock_anon_vma(mm, avc->anon_vma);
3206 	}
3207 
3208 	return 0;
3209 
3210 out_unlock:
3211 	mm_drop_all_locks(mm);
3212 	return -EINTR;
3213 }
3214 
3215 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3216 {
3217 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3218 		/*
3219 		 * The LSB of head.next can't change to 0 from under
3220 		 * us because we hold the mm_all_locks_mutex.
3221 		 *
3222 		 * We must however clear the bitflag before unlocking
3223 		 * the vma so the users using the anon_vma->rb_root will
3224 		 * never see our bitflag.
3225 		 *
3226 		 * No need of atomic instructions here, head.next
3227 		 * can't change from under us until we release the
3228 		 * anon_vma->root->rwsem.
3229 		 */
3230 		if (!__test_and_clear_bit(0, (unsigned long *)
3231 					  &anon_vma->root->rb_root.rb_node))
3232 			BUG();
3233 		anon_vma_unlock_write(anon_vma);
3234 	}
3235 }
3236 
3237 static void vm_unlock_mapping(struct address_space *mapping)
3238 {
3239 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3240 		/*
3241 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3242 		 * because we hold the mm_all_locks_mutex.
3243 		 */
3244 		i_mmap_unlock_write(mapping);
3245 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3246 					&mapping->flags))
3247 			BUG();
3248 	}
3249 }
3250 
3251 /*
3252  * The mmap_sem cannot be released by the caller until
3253  * mm_drop_all_locks() returns.
3254  */
3255 void mm_drop_all_locks(struct mm_struct *mm)
3256 {
3257 	struct vm_area_struct *vma;
3258 	struct anon_vma_chain *avc;
3259 
3260 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3261 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3262 
3263 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3264 		if (vma->anon_vma)
3265 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3266 				vm_unlock_anon_vma(avc->anon_vma);
3267 		if (vma->vm_file && vma->vm_file->f_mapping)
3268 			vm_unlock_mapping(vma->vm_file->f_mapping);
3269 	}
3270 
3271 	mutex_unlock(&mm_all_locks_mutex);
3272 }
3273 
3274 /*
3275  * initialise the VMA slab
3276  */
3277 void __init mmap_init(void)
3278 {
3279 	int ret;
3280 
3281 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3282 	VM_BUG_ON(ret);
3283 }
3284 
3285 /*
3286  * Initialise sysctl_user_reserve_kbytes.
3287  *
3288  * This is intended to prevent a user from starting a single memory hogging
3289  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3290  * mode.
3291  *
3292  * The default value is min(3% of free memory, 128MB)
3293  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3294  */
3295 static int init_user_reserve(void)
3296 {
3297 	unsigned long free_kbytes;
3298 
3299 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3300 
3301 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3302 	return 0;
3303 }
3304 subsys_initcall(init_user_reserve);
3305 
3306 /*
3307  * Initialise sysctl_admin_reserve_kbytes.
3308  *
3309  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3310  * to log in and kill a memory hogging process.
3311  *
3312  * Systems with more than 256MB will reserve 8MB, enough to recover
3313  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3314  * only reserve 3% of free pages by default.
3315  */
3316 static int init_admin_reserve(void)
3317 {
3318 	unsigned long free_kbytes;
3319 
3320 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3321 
3322 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3323 	return 0;
3324 }
3325 subsys_initcall(init_admin_reserve);
3326 
3327 /*
3328  * Reinititalise user and admin reserves if memory is added or removed.
3329  *
3330  * The default user reserve max is 128MB, and the default max for the
3331  * admin reserve is 8MB. These are usually, but not always, enough to
3332  * enable recovery from a memory hogging process using login/sshd, a shell,
3333  * and tools like top. It may make sense to increase or even disable the
3334  * reserve depending on the existence of swap or variations in the recovery
3335  * tools. So, the admin may have changed them.
3336  *
3337  * If memory is added and the reserves have been eliminated or increased above
3338  * the default max, then we'll trust the admin.
3339  *
3340  * If memory is removed and there isn't enough free memory, then we
3341  * need to reset the reserves.
3342  *
3343  * Otherwise keep the reserve set by the admin.
3344  */
3345 static int reserve_mem_notifier(struct notifier_block *nb,
3346 			     unsigned long action, void *data)
3347 {
3348 	unsigned long tmp, free_kbytes;
3349 
3350 	switch (action) {
3351 	case MEM_ONLINE:
3352 		/* Default max is 128MB. Leave alone if modified by operator. */
3353 		tmp = sysctl_user_reserve_kbytes;
3354 		if (0 < tmp && tmp < (1UL << 17))
3355 			init_user_reserve();
3356 
3357 		/* Default max is 8MB.  Leave alone if modified by operator. */
3358 		tmp = sysctl_admin_reserve_kbytes;
3359 		if (0 < tmp && tmp < (1UL << 13))
3360 			init_admin_reserve();
3361 
3362 		break;
3363 	case MEM_OFFLINE:
3364 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3365 
3366 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3367 			init_user_reserve();
3368 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3369 				sysctl_user_reserve_kbytes);
3370 		}
3371 
3372 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3373 			init_admin_reserve();
3374 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3375 				sysctl_admin_reserve_kbytes);
3376 		}
3377 		break;
3378 	default:
3379 		break;
3380 	}
3381 	return NOTIFY_OK;
3382 }
3383 
3384 static struct notifier_block reserve_mem_nb = {
3385 	.notifier_call = reserve_mem_notifier,
3386 };
3387 
3388 static int __meminit init_reserve_notifier(void)
3389 {
3390 	if (register_hotmemory_notifier(&reserve_mem_nb))
3391 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3392 
3393 	return 0;
3394 }
3395 subsys_initcall(init_reserve_notifier);
3396