1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/module.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 #include <linux/audit.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlb.h> 36 #include <asm/mmu_context.h> 37 38 #include "internal.h" 39 40 #ifndef arch_mmap_check 41 #define arch_mmap_check(addr, len, flags) (0) 42 #endif 43 44 #ifndef arch_rebalance_pgtables 45 #define arch_rebalance_pgtables(addr, len) (addr) 46 #endif 47 48 static void unmap_region(struct mm_struct *mm, 49 struct vm_area_struct *vma, struct vm_area_struct *prev, 50 unsigned long start, unsigned long end); 51 52 /* 53 * WARNING: the debugging will use recursive algorithms so never enable this 54 * unless you know what you are doing. 55 */ 56 #undef DEBUG_MM_RB 57 58 /* description of effects of mapping type and prot in current implementation. 59 * this is due to the limited x86 page protection hardware. The expected 60 * behavior is in parens: 61 * 62 * map_type prot 63 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 64 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 65 * w: (no) no w: (no) no w: (yes) yes w: (no) no 66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 67 * 68 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 69 * w: (no) no w: (no) no w: (copy) copy w: (no) no 70 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 71 * 72 */ 73 pgprot_t protection_map[16] = { 74 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 75 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 76 }; 77 78 pgprot_t vm_get_page_prot(unsigned long vm_flags) 79 { 80 return __pgprot(pgprot_val(protection_map[vm_flags & 81 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 82 pgprot_val(arch_vm_get_page_prot(vm_flags))); 83 } 84 EXPORT_SYMBOL(vm_get_page_prot); 85 86 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 87 int sysctl_overcommit_ratio = 50; /* default is 50% */ 88 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 89 struct percpu_counter vm_committed_as; 90 91 /* 92 * Check that a process has enough memory to allocate a new virtual 93 * mapping. 0 means there is enough memory for the allocation to 94 * succeed and -ENOMEM implies there is not. 95 * 96 * We currently support three overcommit policies, which are set via the 97 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 98 * 99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 100 * Additional code 2002 Jul 20 by Robert Love. 101 * 102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 103 * 104 * Note this is a helper function intended to be used by LSMs which 105 * wish to use this logic. 106 */ 107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 108 { 109 unsigned long free, allowed; 110 111 vm_acct_memory(pages); 112 113 /* 114 * Sometimes we want to use more memory than we have 115 */ 116 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 117 return 0; 118 119 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 120 unsigned long n; 121 122 free = global_page_state(NR_FILE_PAGES); 123 free += nr_swap_pages; 124 125 /* 126 * Any slabs which are created with the 127 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 128 * which are reclaimable, under pressure. The dentry 129 * cache and most inode caches should fall into this 130 */ 131 free += global_page_state(NR_SLAB_RECLAIMABLE); 132 133 /* 134 * Leave the last 3% for root 135 */ 136 if (!cap_sys_admin) 137 free -= free / 32; 138 139 if (free > pages) 140 return 0; 141 142 /* 143 * nr_free_pages() is very expensive on large systems, 144 * only call if we're about to fail. 145 */ 146 n = nr_free_pages(); 147 148 /* 149 * Leave reserved pages. The pages are not for anonymous pages. 150 */ 151 if (n <= totalreserve_pages) 152 goto error; 153 else 154 n -= totalreserve_pages; 155 156 /* 157 * Leave the last 3% for root 158 */ 159 if (!cap_sys_admin) 160 n -= n / 32; 161 free += n; 162 163 if (free > pages) 164 return 0; 165 166 goto error; 167 } 168 169 allowed = (totalram_pages - hugetlb_total_pages()) 170 * sysctl_overcommit_ratio / 100; 171 /* 172 * Leave the last 3% for root 173 */ 174 if (!cap_sys_admin) 175 allowed -= allowed / 32; 176 allowed += total_swap_pages; 177 178 /* Don't let a single process grow too big: 179 leave 3% of the size of this process for other processes */ 180 if (mm) 181 allowed -= mm->total_vm / 32; 182 183 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 184 return 0; 185 error: 186 vm_unacct_memory(pages); 187 188 return -ENOMEM; 189 } 190 191 /* 192 * Requires inode->i_mapping->i_mmap_lock 193 */ 194 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 195 struct file *file, struct address_space *mapping) 196 { 197 if (vma->vm_flags & VM_DENYWRITE) 198 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 199 if (vma->vm_flags & VM_SHARED) 200 mapping->i_mmap_writable--; 201 202 flush_dcache_mmap_lock(mapping); 203 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 204 list_del_init(&vma->shared.vm_set.list); 205 else 206 vma_prio_tree_remove(vma, &mapping->i_mmap); 207 flush_dcache_mmap_unlock(mapping); 208 } 209 210 /* 211 * Unlink a file-based vm structure from its prio_tree, to hide 212 * vma from rmap and vmtruncate before freeing its page tables. 213 */ 214 void unlink_file_vma(struct vm_area_struct *vma) 215 { 216 struct file *file = vma->vm_file; 217 218 if (file) { 219 struct address_space *mapping = file->f_mapping; 220 spin_lock(&mapping->i_mmap_lock); 221 __remove_shared_vm_struct(vma, file, mapping); 222 spin_unlock(&mapping->i_mmap_lock); 223 } 224 } 225 226 /* 227 * Close a vm structure and free it, returning the next. 228 */ 229 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 230 { 231 struct vm_area_struct *next = vma->vm_next; 232 233 might_sleep(); 234 if (vma->vm_ops && vma->vm_ops->close) 235 vma->vm_ops->close(vma); 236 if (vma->vm_file) { 237 fput(vma->vm_file); 238 if (vma->vm_flags & VM_EXECUTABLE) 239 removed_exe_file_vma(vma->vm_mm); 240 } 241 mpol_put(vma_policy(vma)); 242 kmem_cache_free(vm_area_cachep, vma); 243 return next; 244 } 245 246 SYSCALL_DEFINE1(brk, unsigned long, brk) 247 { 248 unsigned long rlim, retval; 249 unsigned long newbrk, oldbrk; 250 struct mm_struct *mm = current->mm; 251 unsigned long min_brk; 252 253 down_write(&mm->mmap_sem); 254 255 #ifdef CONFIG_COMPAT_BRK 256 min_brk = mm->end_code; 257 #else 258 min_brk = mm->start_brk; 259 #endif 260 if (brk < min_brk) 261 goto out; 262 263 /* 264 * Check against rlimit here. If this check is done later after the test 265 * of oldbrk with newbrk then it can escape the test and let the data 266 * segment grow beyond its set limit the in case where the limit is 267 * not page aligned -Ram Gupta 268 */ 269 rlim = rlimit(RLIMIT_DATA); 270 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 271 (mm->end_data - mm->start_data) > rlim) 272 goto out; 273 274 newbrk = PAGE_ALIGN(brk); 275 oldbrk = PAGE_ALIGN(mm->brk); 276 if (oldbrk == newbrk) 277 goto set_brk; 278 279 /* Always allow shrinking brk. */ 280 if (brk <= mm->brk) { 281 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 282 goto set_brk; 283 goto out; 284 } 285 286 /* Check against existing mmap mappings. */ 287 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 288 goto out; 289 290 /* Ok, looks good - let it rip. */ 291 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 292 goto out; 293 set_brk: 294 mm->brk = brk; 295 out: 296 retval = mm->brk; 297 up_write(&mm->mmap_sem); 298 return retval; 299 } 300 301 #ifdef DEBUG_MM_RB 302 static int browse_rb(struct rb_root *root) 303 { 304 int i = 0, j; 305 struct rb_node *nd, *pn = NULL; 306 unsigned long prev = 0, pend = 0; 307 308 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 309 struct vm_area_struct *vma; 310 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 311 if (vma->vm_start < prev) 312 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 313 if (vma->vm_start < pend) 314 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 315 if (vma->vm_start > vma->vm_end) 316 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 317 i++; 318 pn = nd; 319 prev = vma->vm_start; 320 pend = vma->vm_end; 321 } 322 j = 0; 323 for (nd = pn; nd; nd = rb_prev(nd)) { 324 j++; 325 } 326 if (i != j) 327 printk("backwards %d, forwards %d\n", j, i), i = 0; 328 return i; 329 } 330 331 void validate_mm(struct mm_struct *mm) 332 { 333 int bug = 0; 334 int i = 0; 335 struct vm_area_struct *tmp = mm->mmap; 336 while (tmp) { 337 tmp = tmp->vm_next; 338 i++; 339 } 340 if (i != mm->map_count) 341 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 342 i = browse_rb(&mm->mm_rb); 343 if (i != mm->map_count) 344 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 345 BUG_ON(bug); 346 } 347 #else 348 #define validate_mm(mm) do { } while (0) 349 #endif 350 351 static struct vm_area_struct * 352 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 353 struct vm_area_struct **pprev, struct rb_node ***rb_link, 354 struct rb_node ** rb_parent) 355 { 356 struct vm_area_struct * vma; 357 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 358 359 __rb_link = &mm->mm_rb.rb_node; 360 rb_prev = __rb_parent = NULL; 361 vma = NULL; 362 363 while (*__rb_link) { 364 struct vm_area_struct *vma_tmp; 365 366 __rb_parent = *__rb_link; 367 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 368 369 if (vma_tmp->vm_end > addr) { 370 vma = vma_tmp; 371 if (vma_tmp->vm_start <= addr) 372 break; 373 __rb_link = &__rb_parent->rb_left; 374 } else { 375 rb_prev = __rb_parent; 376 __rb_link = &__rb_parent->rb_right; 377 } 378 } 379 380 *pprev = NULL; 381 if (rb_prev) 382 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 383 *rb_link = __rb_link; 384 *rb_parent = __rb_parent; 385 return vma; 386 } 387 388 static inline void 389 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 390 struct vm_area_struct *prev, struct rb_node *rb_parent) 391 { 392 struct vm_area_struct *next; 393 394 vma->vm_prev = prev; 395 if (prev) { 396 next = prev->vm_next; 397 prev->vm_next = vma; 398 } else { 399 mm->mmap = vma; 400 if (rb_parent) 401 next = rb_entry(rb_parent, 402 struct vm_area_struct, vm_rb); 403 else 404 next = NULL; 405 } 406 vma->vm_next = next; 407 if (next) 408 next->vm_prev = vma; 409 } 410 411 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 412 struct rb_node **rb_link, struct rb_node *rb_parent) 413 { 414 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 415 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 416 } 417 418 static void __vma_link_file(struct vm_area_struct *vma) 419 { 420 struct file *file; 421 422 file = vma->vm_file; 423 if (file) { 424 struct address_space *mapping = file->f_mapping; 425 426 if (vma->vm_flags & VM_DENYWRITE) 427 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 428 if (vma->vm_flags & VM_SHARED) 429 mapping->i_mmap_writable++; 430 431 flush_dcache_mmap_lock(mapping); 432 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 433 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 434 else 435 vma_prio_tree_insert(vma, &mapping->i_mmap); 436 flush_dcache_mmap_unlock(mapping); 437 } 438 } 439 440 static void 441 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 442 struct vm_area_struct *prev, struct rb_node **rb_link, 443 struct rb_node *rb_parent) 444 { 445 __vma_link_list(mm, vma, prev, rb_parent); 446 __vma_link_rb(mm, vma, rb_link, rb_parent); 447 } 448 449 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 450 struct vm_area_struct *prev, struct rb_node **rb_link, 451 struct rb_node *rb_parent) 452 { 453 struct address_space *mapping = NULL; 454 455 if (vma->vm_file) 456 mapping = vma->vm_file->f_mapping; 457 458 if (mapping) { 459 spin_lock(&mapping->i_mmap_lock); 460 vma->vm_truncate_count = mapping->truncate_count; 461 } 462 463 __vma_link(mm, vma, prev, rb_link, rb_parent); 464 __vma_link_file(vma); 465 466 if (mapping) 467 spin_unlock(&mapping->i_mmap_lock); 468 469 mm->map_count++; 470 validate_mm(mm); 471 } 472 473 /* 474 * Helper for vma_adjust in the split_vma insert case: 475 * insert vm structure into list and rbtree and anon_vma, 476 * but it has already been inserted into prio_tree earlier. 477 */ 478 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 479 { 480 struct vm_area_struct *__vma, *prev; 481 struct rb_node **rb_link, *rb_parent; 482 483 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 484 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 485 __vma_link(mm, vma, prev, rb_link, rb_parent); 486 mm->map_count++; 487 } 488 489 static inline void 490 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 491 struct vm_area_struct *prev) 492 { 493 struct vm_area_struct *next = vma->vm_next; 494 495 prev->vm_next = next; 496 if (next) 497 next->vm_prev = prev; 498 rb_erase(&vma->vm_rb, &mm->mm_rb); 499 if (mm->mmap_cache == vma) 500 mm->mmap_cache = prev; 501 } 502 503 /* 504 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 505 * is already present in an i_mmap tree without adjusting the tree. 506 * The following helper function should be used when such adjustments 507 * are necessary. The "insert" vma (if any) is to be inserted 508 * before we drop the necessary locks. 509 */ 510 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 511 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 512 { 513 struct mm_struct *mm = vma->vm_mm; 514 struct vm_area_struct *next = vma->vm_next; 515 struct vm_area_struct *importer = NULL; 516 struct address_space *mapping = NULL; 517 struct prio_tree_root *root = NULL; 518 struct anon_vma *anon_vma = NULL; 519 struct file *file = vma->vm_file; 520 long adjust_next = 0; 521 int remove_next = 0; 522 523 if (next && !insert) { 524 struct vm_area_struct *exporter = NULL; 525 526 if (end >= next->vm_end) { 527 /* 528 * vma expands, overlapping all the next, and 529 * perhaps the one after too (mprotect case 6). 530 */ 531 again: remove_next = 1 + (end > next->vm_end); 532 end = next->vm_end; 533 exporter = next; 534 importer = vma; 535 } else if (end > next->vm_start) { 536 /* 537 * vma expands, overlapping part of the next: 538 * mprotect case 5 shifting the boundary up. 539 */ 540 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 541 exporter = next; 542 importer = vma; 543 } else if (end < vma->vm_end) { 544 /* 545 * vma shrinks, and !insert tells it's not 546 * split_vma inserting another: so it must be 547 * mprotect case 4 shifting the boundary down. 548 */ 549 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 550 exporter = vma; 551 importer = next; 552 } 553 554 /* 555 * Easily overlooked: when mprotect shifts the boundary, 556 * make sure the expanding vma has anon_vma set if the 557 * shrinking vma had, to cover any anon pages imported. 558 */ 559 if (exporter && exporter->anon_vma && !importer->anon_vma) { 560 if (anon_vma_clone(importer, exporter)) 561 return -ENOMEM; 562 importer->anon_vma = exporter->anon_vma; 563 } 564 } 565 566 if (file) { 567 mapping = file->f_mapping; 568 if (!(vma->vm_flags & VM_NONLINEAR)) 569 root = &mapping->i_mmap; 570 spin_lock(&mapping->i_mmap_lock); 571 if (importer && 572 vma->vm_truncate_count != next->vm_truncate_count) { 573 /* 574 * unmap_mapping_range might be in progress: 575 * ensure that the expanding vma is rescanned. 576 */ 577 importer->vm_truncate_count = 0; 578 } 579 if (insert) { 580 insert->vm_truncate_count = vma->vm_truncate_count; 581 /* 582 * Put into prio_tree now, so instantiated pages 583 * are visible to arm/parisc __flush_dcache_page 584 * throughout; but we cannot insert into address 585 * space until vma start or end is updated. 586 */ 587 __vma_link_file(insert); 588 } 589 } 590 591 /* 592 * When changing only vma->vm_end, we don't really need anon_vma 593 * lock. This is a fairly rare case by itself, but the anon_vma 594 * lock may be shared between many sibling processes. Skipping 595 * the lock for brk adjustments makes a difference sometimes. 596 */ 597 if (vma->anon_vma && (insert || importer || start != vma->vm_start)) { 598 anon_vma = vma->anon_vma; 599 anon_vma_lock(anon_vma); 600 } 601 602 if (root) { 603 flush_dcache_mmap_lock(mapping); 604 vma_prio_tree_remove(vma, root); 605 if (adjust_next) 606 vma_prio_tree_remove(next, root); 607 } 608 609 vma->vm_start = start; 610 vma->vm_end = end; 611 vma->vm_pgoff = pgoff; 612 if (adjust_next) { 613 next->vm_start += adjust_next << PAGE_SHIFT; 614 next->vm_pgoff += adjust_next; 615 } 616 617 if (root) { 618 if (adjust_next) 619 vma_prio_tree_insert(next, root); 620 vma_prio_tree_insert(vma, root); 621 flush_dcache_mmap_unlock(mapping); 622 } 623 624 if (remove_next) { 625 /* 626 * vma_merge has merged next into vma, and needs 627 * us to remove next before dropping the locks. 628 */ 629 __vma_unlink(mm, next, vma); 630 if (file) 631 __remove_shared_vm_struct(next, file, mapping); 632 } else if (insert) { 633 /* 634 * split_vma has split insert from vma, and needs 635 * us to insert it before dropping the locks 636 * (it may either follow vma or precede it). 637 */ 638 __insert_vm_struct(mm, insert); 639 } 640 641 if (anon_vma) 642 anon_vma_unlock(anon_vma); 643 if (mapping) 644 spin_unlock(&mapping->i_mmap_lock); 645 646 if (remove_next) { 647 if (file) { 648 fput(file); 649 if (next->vm_flags & VM_EXECUTABLE) 650 removed_exe_file_vma(mm); 651 } 652 if (next->anon_vma) 653 anon_vma_merge(vma, next); 654 mm->map_count--; 655 mpol_put(vma_policy(next)); 656 kmem_cache_free(vm_area_cachep, next); 657 /* 658 * In mprotect's case 6 (see comments on vma_merge), 659 * we must remove another next too. It would clutter 660 * up the code too much to do both in one go. 661 */ 662 if (remove_next == 2) { 663 next = vma->vm_next; 664 goto again; 665 } 666 } 667 668 validate_mm(mm); 669 670 return 0; 671 } 672 673 /* 674 * If the vma has a ->close operation then the driver probably needs to release 675 * per-vma resources, so we don't attempt to merge those. 676 */ 677 static inline int is_mergeable_vma(struct vm_area_struct *vma, 678 struct file *file, unsigned long vm_flags) 679 { 680 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 681 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 682 return 0; 683 if (vma->vm_file != file) 684 return 0; 685 if (vma->vm_ops && vma->vm_ops->close) 686 return 0; 687 return 1; 688 } 689 690 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 691 struct anon_vma *anon_vma2) 692 { 693 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 694 } 695 696 /* 697 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 698 * in front of (at a lower virtual address and file offset than) the vma. 699 * 700 * We cannot merge two vmas if they have differently assigned (non-NULL) 701 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 702 * 703 * We don't check here for the merged mmap wrapping around the end of pagecache 704 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 705 * wrap, nor mmaps which cover the final page at index -1UL. 706 */ 707 static int 708 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 709 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 710 { 711 if (is_mergeable_vma(vma, file, vm_flags) && 712 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 713 if (vma->vm_pgoff == vm_pgoff) 714 return 1; 715 } 716 return 0; 717 } 718 719 /* 720 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 721 * beyond (at a higher virtual address and file offset than) the vma. 722 * 723 * We cannot merge two vmas if they have differently assigned (non-NULL) 724 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 725 */ 726 static int 727 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 728 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 729 { 730 if (is_mergeable_vma(vma, file, vm_flags) && 731 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 732 pgoff_t vm_pglen; 733 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 734 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 735 return 1; 736 } 737 return 0; 738 } 739 740 /* 741 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 742 * whether that can be merged with its predecessor or its successor. 743 * Or both (it neatly fills a hole). 744 * 745 * In most cases - when called for mmap, brk or mremap - [addr,end) is 746 * certain not to be mapped by the time vma_merge is called; but when 747 * called for mprotect, it is certain to be already mapped (either at 748 * an offset within prev, or at the start of next), and the flags of 749 * this area are about to be changed to vm_flags - and the no-change 750 * case has already been eliminated. 751 * 752 * The following mprotect cases have to be considered, where AAAA is 753 * the area passed down from mprotect_fixup, never extending beyond one 754 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 755 * 756 * AAAA AAAA AAAA AAAA 757 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 758 * cannot merge might become might become might become 759 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 760 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 761 * mremap move: PPPPNNNNNNNN 8 762 * AAAA 763 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 764 * might become case 1 below case 2 below case 3 below 765 * 766 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 767 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 768 */ 769 struct vm_area_struct *vma_merge(struct mm_struct *mm, 770 struct vm_area_struct *prev, unsigned long addr, 771 unsigned long end, unsigned long vm_flags, 772 struct anon_vma *anon_vma, struct file *file, 773 pgoff_t pgoff, struct mempolicy *policy) 774 { 775 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 776 struct vm_area_struct *area, *next; 777 int err; 778 779 /* 780 * We later require that vma->vm_flags == vm_flags, 781 * so this tests vma->vm_flags & VM_SPECIAL, too. 782 */ 783 if (vm_flags & VM_SPECIAL) 784 return NULL; 785 786 if (prev) 787 next = prev->vm_next; 788 else 789 next = mm->mmap; 790 area = next; 791 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 792 next = next->vm_next; 793 794 /* 795 * Can it merge with the predecessor? 796 */ 797 if (prev && prev->vm_end == addr && 798 mpol_equal(vma_policy(prev), policy) && 799 can_vma_merge_after(prev, vm_flags, 800 anon_vma, file, pgoff)) { 801 /* 802 * OK, it can. Can we now merge in the successor as well? 803 */ 804 if (next && end == next->vm_start && 805 mpol_equal(policy, vma_policy(next)) && 806 can_vma_merge_before(next, vm_flags, 807 anon_vma, file, pgoff+pglen) && 808 is_mergeable_anon_vma(prev->anon_vma, 809 next->anon_vma)) { 810 /* cases 1, 6 */ 811 err = vma_adjust(prev, prev->vm_start, 812 next->vm_end, prev->vm_pgoff, NULL); 813 } else /* cases 2, 5, 7 */ 814 err = vma_adjust(prev, prev->vm_start, 815 end, prev->vm_pgoff, NULL); 816 if (err) 817 return NULL; 818 return prev; 819 } 820 821 /* 822 * Can this new request be merged in front of next? 823 */ 824 if (next && end == next->vm_start && 825 mpol_equal(policy, vma_policy(next)) && 826 can_vma_merge_before(next, vm_flags, 827 anon_vma, file, pgoff+pglen)) { 828 if (prev && addr < prev->vm_end) /* case 4 */ 829 err = vma_adjust(prev, prev->vm_start, 830 addr, prev->vm_pgoff, NULL); 831 else /* cases 3, 8 */ 832 err = vma_adjust(area, addr, next->vm_end, 833 next->vm_pgoff - pglen, NULL); 834 if (err) 835 return NULL; 836 return area; 837 } 838 839 return NULL; 840 } 841 842 /* 843 * Rough compatbility check to quickly see if it's even worth looking 844 * at sharing an anon_vma. 845 * 846 * They need to have the same vm_file, and the flags can only differ 847 * in things that mprotect may change. 848 * 849 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 850 * we can merge the two vma's. For example, we refuse to merge a vma if 851 * there is a vm_ops->close() function, because that indicates that the 852 * driver is doing some kind of reference counting. But that doesn't 853 * really matter for the anon_vma sharing case. 854 */ 855 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 856 { 857 return a->vm_end == b->vm_start && 858 mpol_equal(vma_policy(a), vma_policy(b)) && 859 a->vm_file == b->vm_file && 860 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 861 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 862 } 863 864 /* 865 * Do some basic sanity checking to see if we can re-use the anon_vma 866 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 867 * the same as 'old', the other will be the new one that is trying 868 * to share the anon_vma. 869 * 870 * NOTE! This runs with mm_sem held for reading, so it is possible that 871 * the anon_vma of 'old' is concurrently in the process of being set up 872 * by another page fault trying to merge _that_. But that's ok: if it 873 * is being set up, that automatically means that it will be a singleton 874 * acceptable for merging, so we can do all of this optimistically. But 875 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 876 * 877 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 878 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 879 * is to return an anon_vma that is "complex" due to having gone through 880 * a fork). 881 * 882 * We also make sure that the two vma's are compatible (adjacent, 883 * and with the same memory policies). That's all stable, even with just 884 * a read lock on the mm_sem. 885 */ 886 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 887 { 888 if (anon_vma_compatible(a, b)) { 889 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 890 891 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 892 return anon_vma; 893 } 894 return NULL; 895 } 896 897 /* 898 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 899 * neighbouring vmas for a suitable anon_vma, before it goes off 900 * to allocate a new anon_vma. It checks because a repetitive 901 * sequence of mprotects and faults may otherwise lead to distinct 902 * anon_vmas being allocated, preventing vma merge in subsequent 903 * mprotect. 904 */ 905 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 906 { 907 struct anon_vma *anon_vma; 908 struct vm_area_struct *near; 909 910 near = vma->vm_next; 911 if (!near) 912 goto try_prev; 913 914 anon_vma = reusable_anon_vma(near, vma, near); 915 if (anon_vma) 916 return anon_vma; 917 try_prev: 918 /* 919 * It is potentially slow to have to call find_vma_prev here. 920 * But it's only on the first write fault on the vma, not 921 * every time, and we could devise a way to avoid it later 922 * (e.g. stash info in next's anon_vma_node when assigning 923 * an anon_vma, or when trying vma_merge). Another time. 924 */ 925 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 926 if (!near) 927 goto none; 928 929 anon_vma = reusable_anon_vma(near, near, vma); 930 if (anon_vma) 931 return anon_vma; 932 none: 933 /* 934 * There's no absolute need to look only at touching neighbours: 935 * we could search further afield for "compatible" anon_vmas. 936 * But it would probably just be a waste of time searching, 937 * or lead to too many vmas hanging off the same anon_vma. 938 * We're trying to allow mprotect remerging later on, 939 * not trying to minimize memory used for anon_vmas. 940 */ 941 return NULL; 942 } 943 944 #ifdef CONFIG_PROC_FS 945 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 946 struct file *file, long pages) 947 { 948 const unsigned long stack_flags 949 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 950 951 if (file) { 952 mm->shared_vm += pages; 953 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 954 mm->exec_vm += pages; 955 } else if (flags & stack_flags) 956 mm->stack_vm += pages; 957 if (flags & (VM_RESERVED|VM_IO)) 958 mm->reserved_vm += pages; 959 } 960 #endif /* CONFIG_PROC_FS */ 961 962 /* 963 * The caller must hold down_write(¤t->mm->mmap_sem). 964 */ 965 966 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 967 unsigned long len, unsigned long prot, 968 unsigned long flags, unsigned long pgoff) 969 { 970 struct mm_struct * mm = current->mm; 971 struct inode *inode; 972 unsigned int vm_flags; 973 int error; 974 unsigned long reqprot = prot; 975 976 /* 977 * Does the application expect PROT_READ to imply PROT_EXEC? 978 * 979 * (the exception is when the underlying filesystem is noexec 980 * mounted, in which case we dont add PROT_EXEC.) 981 */ 982 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 983 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 984 prot |= PROT_EXEC; 985 986 if (!len) 987 return -EINVAL; 988 989 if (!(flags & MAP_FIXED)) 990 addr = round_hint_to_min(addr); 991 992 /* Careful about overflows.. */ 993 len = PAGE_ALIGN(len); 994 if (!len) 995 return -ENOMEM; 996 997 /* offset overflow? */ 998 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 999 return -EOVERFLOW; 1000 1001 /* Too many mappings? */ 1002 if (mm->map_count > sysctl_max_map_count) 1003 return -ENOMEM; 1004 1005 /* Obtain the address to map to. we verify (or select) it and ensure 1006 * that it represents a valid section of the address space. 1007 */ 1008 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1009 if (addr & ~PAGE_MASK) 1010 return addr; 1011 1012 /* Do simple checking here so the lower-level routines won't have 1013 * to. we assume access permissions have been handled by the open 1014 * of the memory object, so we don't do any here. 1015 */ 1016 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1017 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1018 1019 if (flags & MAP_LOCKED) 1020 if (!can_do_mlock()) 1021 return -EPERM; 1022 1023 /* mlock MCL_FUTURE? */ 1024 if (vm_flags & VM_LOCKED) { 1025 unsigned long locked, lock_limit; 1026 locked = len >> PAGE_SHIFT; 1027 locked += mm->locked_vm; 1028 lock_limit = rlimit(RLIMIT_MEMLOCK); 1029 lock_limit >>= PAGE_SHIFT; 1030 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1031 return -EAGAIN; 1032 } 1033 1034 inode = file ? file->f_path.dentry->d_inode : NULL; 1035 1036 if (file) { 1037 switch (flags & MAP_TYPE) { 1038 case MAP_SHARED: 1039 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1040 return -EACCES; 1041 1042 /* 1043 * Make sure we don't allow writing to an append-only 1044 * file.. 1045 */ 1046 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1047 return -EACCES; 1048 1049 /* 1050 * Make sure there are no mandatory locks on the file. 1051 */ 1052 if (locks_verify_locked(inode)) 1053 return -EAGAIN; 1054 1055 vm_flags |= VM_SHARED | VM_MAYSHARE; 1056 if (!(file->f_mode & FMODE_WRITE)) 1057 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1058 1059 /* fall through */ 1060 case MAP_PRIVATE: 1061 if (!(file->f_mode & FMODE_READ)) 1062 return -EACCES; 1063 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1064 if (vm_flags & VM_EXEC) 1065 return -EPERM; 1066 vm_flags &= ~VM_MAYEXEC; 1067 } 1068 1069 if (!file->f_op || !file->f_op->mmap) 1070 return -ENODEV; 1071 break; 1072 1073 default: 1074 return -EINVAL; 1075 } 1076 } else { 1077 switch (flags & MAP_TYPE) { 1078 case MAP_SHARED: 1079 /* 1080 * Ignore pgoff. 1081 */ 1082 pgoff = 0; 1083 vm_flags |= VM_SHARED | VM_MAYSHARE; 1084 break; 1085 case MAP_PRIVATE: 1086 /* 1087 * Set pgoff according to addr for anon_vma. 1088 */ 1089 pgoff = addr >> PAGE_SHIFT; 1090 break; 1091 default: 1092 return -EINVAL; 1093 } 1094 } 1095 1096 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1097 if (error) 1098 return error; 1099 1100 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1101 } 1102 EXPORT_SYMBOL(do_mmap_pgoff); 1103 1104 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1105 unsigned long, prot, unsigned long, flags, 1106 unsigned long, fd, unsigned long, pgoff) 1107 { 1108 struct file *file = NULL; 1109 unsigned long retval = -EBADF; 1110 1111 if (!(flags & MAP_ANONYMOUS)) { 1112 audit_mmap_fd(fd, flags); 1113 if (unlikely(flags & MAP_HUGETLB)) 1114 return -EINVAL; 1115 file = fget(fd); 1116 if (!file) 1117 goto out; 1118 } else if (flags & MAP_HUGETLB) { 1119 struct user_struct *user = NULL; 1120 /* 1121 * VM_NORESERVE is used because the reservations will be 1122 * taken when vm_ops->mmap() is called 1123 * A dummy user value is used because we are not locking 1124 * memory so no accounting is necessary 1125 */ 1126 len = ALIGN(len, huge_page_size(&default_hstate)); 1127 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE, 1128 &user, HUGETLB_ANONHUGE_INODE); 1129 if (IS_ERR(file)) 1130 return PTR_ERR(file); 1131 } 1132 1133 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1134 1135 down_write(¤t->mm->mmap_sem); 1136 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1137 up_write(¤t->mm->mmap_sem); 1138 1139 if (file) 1140 fput(file); 1141 out: 1142 return retval; 1143 } 1144 1145 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1146 struct mmap_arg_struct { 1147 unsigned long addr; 1148 unsigned long len; 1149 unsigned long prot; 1150 unsigned long flags; 1151 unsigned long fd; 1152 unsigned long offset; 1153 }; 1154 1155 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1156 { 1157 struct mmap_arg_struct a; 1158 1159 if (copy_from_user(&a, arg, sizeof(a))) 1160 return -EFAULT; 1161 if (a.offset & ~PAGE_MASK) 1162 return -EINVAL; 1163 1164 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1165 a.offset >> PAGE_SHIFT); 1166 } 1167 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1168 1169 /* 1170 * Some shared mappigns will want the pages marked read-only 1171 * to track write events. If so, we'll downgrade vm_page_prot 1172 * to the private version (using protection_map[] without the 1173 * VM_SHARED bit). 1174 */ 1175 int vma_wants_writenotify(struct vm_area_struct *vma) 1176 { 1177 unsigned int vm_flags = vma->vm_flags; 1178 1179 /* If it was private or non-writable, the write bit is already clear */ 1180 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1181 return 0; 1182 1183 /* The backer wishes to know when pages are first written to? */ 1184 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1185 return 1; 1186 1187 /* The open routine did something to the protections already? */ 1188 if (pgprot_val(vma->vm_page_prot) != 1189 pgprot_val(vm_get_page_prot(vm_flags))) 1190 return 0; 1191 1192 /* Specialty mapping? */ 1193 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1194 return 0; 1195 1196 /* Can the mapping track the dirty pages? */ 1197 return vma->vm_file && vma->vm_file->f_mapping && 1198 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1199 } 1200 1201 /* 1202 * We account for memory if it's a private writeable mapping, 1203 * not hugepages and VM_NORESERVE wasn't set. 1204 */ 1205 static inline int accountable_mapping(struct file *file, unsigned int vm_flags) 1206 { 1207 /* 1208 * hugetlb has its own accounting separate from the core VM 1209 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1210 */ 1211 if (file && is_file_hugepages(file)) 1212 return 0; 1213 1214 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1215 } 1216 1217 unsigned long mmap_region(struct file *file, unsigned long addr, 1218 unsigned long len, unsigned long flags, 1219 unsigned int vm_flags, unsigned long pgoff) 1220 { 1221 struct mm_struct *mm = current->mm; 1222 struct vm_area_struct *vma, *prev; 1223 int correct_wcount = 0; 1224 int error; 1225 struct rb_node **rb_link, *rb_parent; 1226 unsigned long charged = 0; 1227 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1228 1229 /* Clear old maps */ 1230 error = -ENOMEM; 1231 munmap_back: 1232 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1233 if (vma && vma->vm_start < addr + len) { 1234 if (do_munmap(mm, addr, len)) 1235 return -ENOMEM; 1236 goto munmap_back; 1237 } 1238 1239 /* Check against address space limit. */ 1240 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1241 return -ENOMEM; 1242 1243 /* 1244 * Set 'VM_NORESERVE' if we should not account for the 1245 * memory use of this mapping. 1246 */ 1247 if ((flags & MAP_NORESERVE)) { 1248 /* We honor MAP_NORESERVE if allowed to overcommit */ 1249 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1250 vm_flags |= VM_NORESERVE; 1251 1252 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1253 if (file && is_file_hugepages(file)) 1254 vm_flags |= VM_NORESERVE; 1255 } 1256 1257 /* 1258 * Private writable mapping: check memory availability 1259 */ 1260 if (accountable_mapping(file, vm_flags)) { 1261 charged = len >> PAGE_SHIFT; 1262 if (security_vm_enough_memory(charged)) 1263 return -ENOMEM; 1264 vm_flags |= VM_ACCOUNT; 1265 } 1266 1267 /* 1268 * Can we just expand an old mapping? 1269 */ 1270 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1271 if (vma) 1272 goto out; 1273 1274 /* 1275 * Determine the object being mapped and call the appropriate 1276 * specific mapper. the address has already been validated, but 1277 * not unmapped, but the maps are removed from the list. 1278 */ 1279 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1280 if (!vma) { 1281 error = -ENOMEM; 1282 goto unacct_error; 1283 } 1284 1285 vma->vm_mm = mm; 1286 vma->vm_start = addr; 1287 vma->vm_end = addr + len; 1288 vma->vm_flags = vm_flags; 1289 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1290 vma->vm_pgoff = pgoff; 1291 INIT_LIST_HEAD(&vma->anon_vma_chain); 1292 1293 if (file) { 1294 error = -EINVAL; 1295 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1296 goto free_vma; 1297 if (vm_flags & VM_DENYWRITE) { 1298 error = deny_write_access(file); 1299 if (error) 1300 goto free_vma; 1301 correct_wcount = 1; 1302 } 1303 vma->vm_file = file; 1304 get_file(file); 1305 error = file->f_op->mmap(file, vma); 1306 if (error) 1307 goto unmap_and_free_vma; 1308 if (vm_flags & VM_EXECUTABLE) 1309 added_exe_file_vma(mm); 1310 1311 /* Can addr have changed?? 1312 * 1313 * Answer: Yes, several device drivers can do it in their 1314 * f_op->mmap method. -DaveM 1315 */ 1316 addr = vma->vm_start; 1317 pgoff = vma->vm_pgoff; 1318 vm_flags = vma->vm_flags; 1319 } else if (vm_flags & VM_SHARED) { 1320 error = shmem_zero_setup(vma); 1321 if (error) 1322 goto free_vma; 1323 } 1324 1325 if (vma_wants_writenotify(vma)) { 1326 pgprot_t pprot = vma->vm_page_prot; 1327 1328 /* Can vma->vm_page_prot have changed?? 1329 * 1330 * Answer: Yes, drivers may have changed it in their 1331 * f_op->mmap method. 1332 * 1333 * Ensures that vmas marked as uncached stay that way. 1334 */ 1335 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1336 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1337 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1338 } 1339 1340 vma_link(mm, vma, prev, rb_link, rb_parent); 1341 file = vma->vm_file; 1342 1343 /* Once vma denies write, undo our temporary denial count */ 1344 if (correct_wcount) 1345 atomic_inc(&inode->i_writecount); 1346 out: 1347 perf_event_mmap(vma); 1348 1349 mm->total_vm += len >> PAGE_SHIFT; 1350 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1351 if (vm_flags & VM_LOCKED) { 1352 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1353 mm->locked_vm += (len >> PAGE_SHIFT); 1354 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1355 make_pages_present(addr, addr + len); 1356 return addr; 1357 1358 unmap_and_free_vma: 1359 if (correct_wcount) 1360 atomic_inc(&inode->i_writecount); 1361 vma->vm_file = NULL; 1362 fput(file); 1363 1364 /* Undo any partial mapping done by a device driver. */ 1365 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1366 charged = 0; 1367 free_vma: 1368 kmem_cache_free(vm_area_cachep, vma); 1369 unacct_error: 1370 if (charged) 1371 vm_unacct_memory(charged); 1372 return error; 1373 } 1374 1375 /* Get an address range which is currently unmapped. 1376 * For shmat() with addr=0. 1377 * 1378 * Ugly calling convention alert: 1379 * Return value with the low bits set means error value, 1380 * ie 1381 * if (ret & ~PAGE_MASK) 1382 * error = ret; 1383 * 1384 * This function "knows" that -ENOMEM has the bits set. 1385 */ 1386 #ifndef HAVE_ARCH_UNMAPPED_AREA 1387 unsigned long 1388 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1389 unsigned long len, unsigned long pgoff, unsigned long flags) 1390 { 1391 struct mm_struct *mm = current->mm; 1392 struct vm_area_struct *vma; 1393 unsigned long start_addr; 1394 1395 if (len > TASK_SIZE) 1396 return -ENOMEM; 1397 1398 if (flags & MAP_FIXED) 1399 return addr; 1400 1401 if (addr) { 1402 addr = PAGE_ALIGN(addr); 1403 vma = find_vma(mm, addr); 1404 if (TASK_SIZE - len >= addr && 1405 (!vma || addr + len <= vma->vm_start)) 1406 return addr; 1407 } 1408 if (len > mm->cached_hole_size) { 1409 start_addr = addr = mm->free_area_cache; 1410 } else { 1411 start_addr = addr = TASK_UNMAPPED_BASE; 1412 mm->cached_hole_size = 0; 1413 } 1414 1415 full_search: 1416 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1417 /* At this point: (!vma || addr < vma->vm_end). */ 1418 if (TASK_SIZE - len < addr) { 1419 /* 1420 * Start a new search - just in case we missed 1421 * some holes. 1422 */ 1423 if (start_addr != TASK_UNMAPPED_BASE) { 1424 addr = TASK_UNMAPPED_BASE; 1425 start_addr = addr; 1426 mm->cached_hole_size = 0; 1427 goto full_search; 1428 } 1429 return -ENOMEM; 1430 } 1431 if (!vma || addr + len <= vma->vm_start) { 1432 /* 1433 * Remember the place where we stopped the search: 1434 */ 1435 mm->free_area_cache = addr + len; 1436 return addr; 1437 } 1438 if (addr + mm->cached_hole_size < vma->vm_start) 1439 mm->cached_hole_size = vma->vm_start - addr; 1440 addr = vma->vm_end; 1441 } 1442 } 1443 #endif 1444 1445 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1446 { 1447 /* 1448 * Is this a new hole at the lowest possible address? 1449 */ 1450 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1451 mm->free_area_cache = addr; 1452 mm->cached_hole_size = ~0UL; 1453 } 1454 } 1455 1456 /* 1457 * This mmap-allocator allocates new areas top-down from below the 1458 * stack's low limit (the base): 1459 */ 1460 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1461 unsigned long 1462 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1463 const unsigned long len, const unsigned long pgoff, 1464 const unsigned long flags) 1465 { 1466 struct vm_area_struct *vma; 1467 struct mm_struct *mm = current->mm; 1468 unsigned long addr = addr0; 1469 1470 /* requested length too big for entire address space */ 1471 if (len > TASK_SIZE) 1472 return -ENOMEM; 1473 1474 if (flags & MAP_FIXED) 1475 return addr; 1476 1477 /* requesting a specific address */ 1478 if (addr) { 1479 addr = PAGE_ALIGN(addr); 1480 vma = find_vma(mm, addr); 1481 if (TASK_SIZE - len >= addr && 1482 (!vma || addr + len <= vma->vm_start)) 1483 return addr; 1484 } 1485 1486 /* check if free_area_cache is useful for us */ 1487 if (len <= mm->cached_hole_size) { 1488 mm->cached_hole_size = 0; 1489 mm->free_area_cache = mm->mmap_base; 1490 } 1491 1492 /* either no address requested or can't fit in requested address hole */ 1493 addr = mm->free_area_cache; 1494 1495 /* make sure it can fit in the remaining address space */ 1496 if (addr > len) { 1497 vma = find_vma(mm, addr-len); 1498 if (!vma || addr <= vma->vm_start) 1499 /* remember the address as a hint for next time */ 1500 return (mm->free_area_cache = addr-len); 1501 } 1502 1503 if (mm->mmap_base < len) 1504 goto bottomup; 1505 1506 addr = mm->mmap_base-len; 1507 1508 do { 1509 /* 1510 * Lookup failure means no vma is above this address, 1511 * else if new region fits below vma->vm_start, 1512 * return with success: 1513 */ 1514 vma = find_vma(mm, addr); 1515 if (!vma || addr+len <= vma->vm_start) 1516 /* remember the address as a hint for next time */ 1517 return (mm->free_area_cache = addr); 1518 1519 /* remember the largest hole we saw so far */ 1520 if (addr + mm->cached_hole_size < vma->vm_start) 1521 mm->cached_hole_size = vma->vm_start - addr; 1522 1523 /* try just below the current vma->vm_start */ 1524 addr = vma->vm_start-len; 1525 } while (len < vma->vm_start); 1526 1527 bottomup: 1528 /* 1529 * A failed mmap() very likely causes application failure, 1530 * so fall back to the bottom-up function here. This scenario 1531 * can happen with large stack limits and large mmap() 1532 * allocations. 1533 */ 1534 mm->cached_hole_size = ~0UL; 1535 mm->free_area_cache = TASK_UNMAPPED_BASE; 1536 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1537 /* 1538 * Restore the topdown base: 1539 */ 1540 mm->free_area_cache = mm->mmap_base; 1541 mm->cached_hole_size = ~0UL; 1542 1543 return addr; 1544 } 1545 #endif 1546 1547 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1548 { 1549 /* 1550 * Is this a new hole at the highest possible address? 1551 */ 1552 if (addr > mm->free_area_cache) 1553 mm->free_area_cache = addr; 1554 1555 /* dont allow allocations above current base */ 1556 if (mm->free_area_cache > mm->mmap_base) 1557 mm->free_area_cache = mm->mmap_base; 1558 } 1559 1560 unsigned long 1561 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1562 unsigned long pgoff, unsigned long flags) 1563 { 1564 unsigned long (*get_area)(struct file *, unsigned long, 1565 unsigned long, unsigned long, unsigned long); 1566 1567 unsigned long error = arch_mmap_check(addr, len, flags); 1568 if (error) 1569 return error; 1570 1571 /* Careful about overflows.. */ 1572 if (len > TASK_SIZE) 1573 return -ENOMEM; 1574 1575 get_area = current->mm->get_unmapped_area; 1576 if (file && file->f_op && file->f_op->get_unmapped_area) 1577 get_area = file->f_op->get_unmapped_area; 1578 addr = get_area(file, addr, len, pgoff, flags); 1579 if (IS_ERR_VALUE(addr)) 1580 return addr; 1581 1582 if (addr > TASK_SIZE - len) 1583 return -ENOMEM; 1584 if (addr & ~PAGE_MASK) 1585 return -EINVAL; 1586 1587 return arch_rebalance_pgtables(addr, len); 1588 } 1589 1590 EXPORT_SYMBOL(get_unmapped_area); 1591 1592 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1593 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1594 { 1595 struct vm_area_struct *vma = NULL; 1596 1597 if (mm) { 1598 /* Check the cache first. */ 1599 /* (Cache hit rate is typically around 35%.) */ 1600 vma = mm->mmap_cache; 1601 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1602 struct rb_node * rb_node; 1603 1604 rb_node = mm->mm_rb.rb_node; 1605 vma = NULL; 1606 1607 while (rb_node) { 1608 struct vm_area_struct * vma_tmp; 1609 1610 vma_tmp = rb_entry(rb_node, 1611 struct vm_area_struct, vm_rb); 1612 1613 if (vma_tmp->vm_end > addr) { 1614 vma = vma_tmp; 1615 if (vma_tmp->vm_start <= addr) 1616 break; 1617 rb_node = rb_node->rb_left; 1618 } else 1619 rb_node = rb_node->rb_right; 1620 } 1621 if (vma) 1622 mm->mmap_cache = vma; 1623 } 1624 } 1625 return vma; 1626 } 1627 1628 EXPORT_SYMBOL(find_vma); 1629 1630 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1631 struct vm_area_struct * 1632 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1633 struct vm_area_struct **pprev) 1634 { 1635 struct vm_area_struct *vma = NULL, *prev = NULL; 1636 struct rb_node *rb_node; 1637 if (!mm) 1638 goto out; 1639 1640 /* Guard against addr being lower than the first VMA */ 1641 vma = mm->mmap; 1642 1643 /* Go through the RB tree quickly. */ 1644 rb_node = mm->mm_rb.rb_node; 1645 1646 while (rb_node) { 1647 struct vm_area_struct *vma_tmp; 1648 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1649 1650 if (addr < vma_tmp->vm_end) { 1651 rb_node = rb_node->rb_left; 1652 } else { 1653 prev = vma_tmp; 1654 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1655 break; 1656 rb_node = rb_node->rb_right; 1657 } 1658 } 1659 1660 out: 1661 *pprev = prev; 1662 return prev ? prev->vm_next : vma; 1663 } 1664 1665 /* 1666 * Verify that the stack growth is acceptable and 1667 * update accounting. This is shared with both the 1668 * grow-up and grow-down cases. 1669 */ 1670 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1671 { 1672 struct mm_struct *mm = vma->vm_mm; 1673 struct rlimit *rlim = current->signal->rlim; 1674 unsigned long new_start; 1675 1676 /* address space limit tests */ 1677 if (!may_expand_vm(mm, grow)) 1678 return -ENOMEM; 1679 1680 /* Stack limit test */ 1681 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1682 return -ENOMEM; 1683 1684 /* mlock limit tests */ 1685 if (vma->vm_flags & VM_LOCKED) { 1686 unsigned long locked; 1687 unsigned long limit; 1688 locked = mm->locked_vm + grow; 1689 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1690 limit >>= PAGE_SHIFT; 1691 if (locked > limit && !capable(CAP_IPC_LOCK)) 1692 return -ENOMEM; 1693 } 1694 1695 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1696 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1697 vma->vm_end - size; 1698 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1699 return -EFAULT; 1700 1701 /* 1702 * Overcommit.. This must be the final test, as it will 1703 * update security statistics. 1704 */ 1705 if (security_vm_enough_memory_mm(mm, grow)) 1706 return -ENOMEM; 1707 1708 /* Ok, everything looks good - let it rip */ 1709 mm->total_vm += grow; 1710 if (vma->vm_flags & VM_LOCKED) 1711 mm->locked_vm += grow; 1712 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1713 return 0; 1714 } 1715 1716 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1717 /* 1718 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1719 * vma is the last one with address > vma->vm_end. Have to extend vma. 1720 */ 1721 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1722 { 1723 int error; 1724 1725 if (!(vma->vm_flags & VM_GROWSUP)) 1726 return -EFAULT; 1727 1728 /* 1729 * We must make sure the anon_vma is allocated 1730 * so that the anon_vma locking is not a noop. 1731 */ 1732 if (unlikely(anon_vma_prepare(vma))) 1733 return -ENOMEM; 1734 vma_lock_anon_vma(vma); 1735 1736 /* 1737 * vma->vm_start/vm_end cannot change under us because the caller 1738 * is required to hold the mmap_sem in read mode. We need the 1739 * anon_vma lock to serialize against concurrent expand_stacks. 1740 * Also guard against wrapping around to address 0. 1741 */ 1742 if (address < PAGE_ALIGN(address+4)) 1743 address = PAGE_ALIGN(address+4); 1744 else { 1745 vma_unlock_anon_vma(vma); 1746 return -ENOMEM; 1747 } 1748 error = 0; 1749 1750 /* Somebody else might have raced and expanded it already */ 1751 if (address > vma->vm_end) { 1752 unsigned long size, grow; 1753 1754 size = address - vma->vm_start; 1755 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1756 1757 error = acct_stack_growth(vma, size, grow); 1758 if (!error) { 1759 vma->vm_end = address; 1760 perf_event_mmap(vma); 1761 } 1762 } 1763 vma_unlock_anon_vma(vma); 1764 return error; 1765 } 1766 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1767 1768 /* 1769 * vma is the first one with address < vma->vm_start. Have to extend vma. 1770 */ 1771 static int expand_downwards(struct vm_area_struct *vma, 1772 unsigned long address) 1773 { 1774 int error; 1775 1776 /* 1777 * We must make sure the anon_vma is allocated 1778 * so that the anon_vma locking is not a noop. 1779 */ 1780 if (unlikely(anon_vma_prepare(vma))) 1781 return -ENOMEM; 1782 1783 address &= PAGE_MASK; 1784 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1785 if (error) 1786 return error; 1787 1788 vma_lock_anon_vma(vma); 1789 1790 /* 1791 * vma->vm_start/vm_end cannot change under us because the caller 1792 * is required to hold the mmap_sem in read mode. We need the 1793 * anon_vma lock to serialize against concurrent expand_stacks. 1794 */ 1795 1796 /* Somebody else might have raced and expanded it already */ 1797 if (address < vma->vm_start) { 1798 unsigned long size, grow; 1799 1800 size = vma->vm_end - address; 1801 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1802 1803 error = acct_stack_growth(vma, size, grow); 1804 if (!error) { 1805 vma->vm_start = address; 1806 vma->vm_pgoff -= grow; 1807 perf_event_mmap(vma); 1808 } 1809 } 1810 vma_unlock_anon_vma(vma); 1811 return error; 1812 } 1813 1814 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address) 1815 { 1816 return expand_downwards(vma, address); 1817 } 1818 1819 #ifdef CONFIG_STACK_GROWSUP 1820 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1821 { 1822 return expand_upwards(vma, address); 1823 } 1824 1825 struct vm_area_struct * 1826 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1827 { 1828 struct vm_area_struct *vma, *prev; 1829 1830 addr &= PAGE_MASK; 1831 vma = find_vma_prev(mm, addr, &prev); 1832 if (vma && (vma->vm_start <= addr)) 1833 return vma; 1834 if (!prev || expand_stack(prev, addr)) 1835 return NULL; 1836 if (prev->vm_flags & VM_LOCKED) { 1837 mlock_vma_pages_range(prev, addr, prev->vm_end); 1838 } 1839 return prev; 1840 } 1841 #else 1842 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1843 { 1844 return expand_downwards(vma, address); 1845 } 1846 1847 struct vm_area_struct * 1848 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1849 { 1850 struct vm_area_struct * vma; 1851 unsigned long start; 1852 1853 addr &= PAGE_MASK; 1854 vma = find_vma(mm,addr); 1855 if (!vma) 1856 return NULL; 1857 if (vma->vm_start <= addr) 1858 return vma; 1859 if (!(vma->vm_flags & VM_GROWSDOWN)) 1860 return NULL; 1861 start = vma->vm_start; 1862 if (expand_stack(vma, addr)) 1863 return NULL; 1864 if (vma->vm_flags & VM_LOCKED) { 1865 mlock_vma_pages_range(vma, addr, start); 1866 } 1867 return vma; 1868 } 1869 #endif 1870 1871 /* 1872 * Ok - we have the memory areas we should free on the vma list, 1873 * so release them, and do the vma updates. 1874 * 1875 * Called with the mm semaphore held. 1876 */ 1877 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1878 { 1879 /* Update high watermark before we lower total_vm */ 1880 update_hiwater_vm(mm); 1881 do { 1882 long nrpages = vma_pages(vma); 1883 1884 mm->total_vm -= nrpages; 1885 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1886 vma = remove_vma(vma); 1887 } while (vma); 1888 validate_mm(mm); 1889 } 1890 1891 /* 1892 * Get rid of page table information in the indicated region. 1893 * 1894 * Called with the mm semaphore held. 1895 */ 1896 static void unmap_region(struct mm_struct *mm, 1897 struct vm_area_struct *vma, struct vm_area_struct *prev, 1898 unsigned long start, unsigned long end) 1899 { 1900 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1901 struct mmu_gather *tlb; 1902 unsigned long nr_accounted = 0; 1903 1904 lru_add_drain(); 1905 tlb = tlb_gather_mmu(mm, 0); 1906 update_hiwater_rss(mm); 1907 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1908 vm_unacct_memory(nr_accounted); 1909 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1910 next? next->vm_start: 0); 1911 tlb_finish_mmu(tlb, start, end); 1912 } 1913 1914 /* 1915 * Create a list of vma's touched by the unmap, removing them from the mm's 1916 * vma list as we go.. 1917 */ 1918 static void 1919 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1920 struct vm_area_struct *prev, unsigned long end) 1921 { 1922 struct vm_area_struct **insertion_point; 1923 struct vm_area_struct *tail_vma = NULL; 1924 unsigned long addr; 1925 1926 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1927 vma->vm_prev = NULL; 1928 do { 1929 rb_erase(&vma->vm_rb, &mm->mm_rb); 1930 mm->map_count--; 1931 tail_vma = vma; 1932 vma = vma->vm_next; 1933 } while (vma && vma->vm_start < end); 1934 *insertion_point = vma; 1935 if (vma) 1936 vma->vm_prev = prev; 1937 tail_vma->vm_next = NULL; 1938 if (mm->unmap_area == arch_unmap_area) 1939 addr = prev ? prev->vm_end : mm->mmap_base; 1940 else 1941 addr = vma ? vma->vm_start : mm->mmap_base; 1942 mm->unmap_area(mm, addr); 1943 mm->mmap_cache = NULL; /* Kill the cache. */ 1944 } 1945 1946 /* 1947 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1948 * munmap path where it doesn't make sense to fail. 1949 */ 1950 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1951 unsigned long addr, int new_below) 1952 { 1953 struct mempolicy *pol; 1954 struct vm_area_struct *new; 1955 int err = -ENOMEM; 1956 1957 if (is_vm_hugetlb_page(vma) && (addr & 1958 ~(huge_page_mask(hstate_vma(vma))))) 1959 return -EINVAL; 1960 1961 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1962 if (!new) 1963 goto out_err; 1964 1965 /* most fields are the same, copy all, and then fixup */ 1966 *new = *vma; 1967 1968 INIT_LIST_HEAD(&new->anon_vma_chain); 1969 1970 if (new_below) 1971 new->vm_end = addr; 1972 else { 1973 new->vm_start = addr; 1974 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1975 } 1976 1977 pol = mpol_dup(vma_policy(vma)); 1978 if (IS_ERR(pol)) { 1979 err = PTR_ERR(pol); 1980 goto out_free_vma; 1981 } 1982 vma_set_policy(new, pol); 1983 1984 if (anon_vma_clone(new, vma)) 1985 goto out_free_mpol; 1986 1987 if (new->vm_file) { 1988 get_file(new->vm_file); 1989 if (vma->vm_flags & VM_EXECUTABLE) 1990 added_exe_file_vma(mm); 1991 } 1992 1993 if (new->vm_ops && new->vm_ops->open) 1994 new->vm_ops->open(new); 1995 1996 if (new_below) 1997 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1998 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1999 else 2000 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2001 2002 /* Success. */ 2003 if (!err) 2004 return 0; 2005 2006 /* Clean everything up if vma_adjust failed. */ 2007 if (new->vm_ops && new->vm_ops->close) 2008 new->vm_ops->close(new); 2009 if (new->vm_file) { 2010 if (vma->vm_flags & VM_EXECUTABLE) 2011 removed_exe_file_vma(mm); 2012 fput(new->vm_file); 2013 } 2014 unlink_anon_vmas(new); 2015 out_free_mpol: 2016 mpol_put(pol); 2017 out_free_vma: 2018 kmem_cache_free(vm_area_cachep, new); 2019 out_err: 2020 return err; 2021 } 2022 2023 /* 2024 * Split a vma into two pieces at address 'addr', a new vma is allocated 2025 * either for the first part or the tail. 2026 */ 2027 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2028 unsigned long addr, int new_below) 2029 { 2030 if (mm->map_count >= sysctl_max_map_count) 2031 return -ENOMEM; 2032 2033 return __split_vma(mm, vma, addr, new_below); 2034 } 2035 2036 /* Munmap is split into 2 main parts -- this part which finds 2037 * what needs doing, and the areas themselves, which do the 2038 * work. This now handles partial unmappings. 2039 * Jeremy Fitzhardinge <jeremy@goop.org> 2040 */ 2041 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2042 { 2043 unsigned long end; 2044 struct vm_area_struct *vma, *prev, *last; 2045 2046 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2047 return -EINVAL; 2048 2049 if ((len = PAGE_ALIGN(len)) == 0) 2050 return -EINVAL; 2051 2052 /* Find the first overlapping VMA */ 2053 vma = find_vma_prev(mm, start, &prev); 2054 if (!vma) 2055 return 0; 2056 /* we have start < vma->vm_end */ 2057 2058 /* if it doesn't overlap, we have nothing.. */ 2059 end = start + len; 2060 if (vma->vm_start >= end) 2061 return 0; 2062 2063 /* 2064 * If we need to split any vma, do it now to save pain later. 2065 * 2066 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2067 * unmapped vm_area_struct will remain in use: so lower split_vma 2068 * places tmp vma above, and higher split_vma places tmp vma below. 2069 */ 2070 if (start > vma->vm_start) { 2071 int error; 2072 2073 /* 2074 * Make sure that map_count on return from munmap() will 2075 * not exceed its limit; but let map_count go just above 2076 * its limit temporarily, to help free resources as expected. 2077 */ 2078 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2079 return -ENOMEM; 2080 2081 error = __split_vma(mm, vma, start, 0); 2082 if (error) 2083 return error; 2084 prev = vma; 2085 } 2086 2087 /* Does it split the last one? */ 2088 last = find_vma(mm, end); 2089 if (last && end > last->vm_start) { 2090 int error = __split_vma(mm, last, end, 1); 2091 if (error) 2092 return error; 2093 } 2094 vma = prev? prev->vm_next: mm->mmap; 2095 2096 /* 2097 * unlock any mlock()ed ranges before detaching vmas 2098 */ 2099 if (mm->locked_vm) { 2100 struct vm_area_struct *tmp = vma; 2101 while (tmp && tmp->vm_start < end) { 2102 if (tmp->vm_flags & VM_LOCKED) { 2103 mm->locked_vm -= vma_pages(tmp); 2104 munlock_vma_pages_all(tmp); 2105 } 2106 tmp = tmp->vm_next; 2107 } 2108 } 2109 2110 /* 2111 * Remove the vma's, and unmap the actual pages 2112 */ 2113 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2114 unmap_region(mm, vma, prev, start, end); 2115 2116 /* Fix up all other VM information */ 2117 remove_vma_list(mm, vma); 2118 2119 return 0; 2120 } 2121 2122 EXPORT_SYMBOL(do_munmap); 2123 2124 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2125 { 2126 int ret; 2127 struct mm_struct *mm = current->mm; 2128 2129 profile_munmap(addr); 2130 2131 down_write(&mm->mmap_sem); 2132 ret = do_munmap(mm, addr, len); 2133 up_write(&mm->mmap_sem); 2134 return ret; 2135 } 2136 2137 static inline void verify_mm_writelocked(struct mm_struct *mm) 2138 { 2139 #ifdef CONFIG_DEBUG_VM 2140 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2141 WARN_ON(1); 2142 up_read(&mm->mmap_sem); 2143 } 2144 #endif 2145 } 2146 2147 /* 2148 * this is really a simplified "do_mmap". it only handles 2149 * anonymous maps. eventually we may be able to do some 2150 * brk-specific accounting here. 2151 */ 2152 unsigned long do_brk(unsigned long addr, unsigned long len) 2153 { 2154 struct mm_struct * mm = current->mm; 2155 struct vm_area_struct * vma, * prev; 2156 unsigned long flags; 2157 struct rb_node ** rb_link, * rb_parent; 2158 pgoff_t pgoff = addr >> PAGE_SHIFT; 2159 int error; 2160 2161 len = PAGE_ALIGN(len); 2162 if (!len) 2163 return addr; 2164 2165 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2166 if (error) 2167 return error; 2168 2169 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2170 2171 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2172 if (error & ~PAGE_MASK) 2173 return error; 2174 2175 /* 2176 * mlock MCL_FUTURE? 2177 */ 2178 if (mm->def_flags & VM_LOCKED) { 2179 unsigned long locked, lock_limit; 2180 locked = len >> PAGE_SHIFT; 2181 locked += mm->locked_vm; 2182 lock_limit = rlimit(RLIMIT_MEMLOCK); 2183 lock_limit >>= PAGE_SHIFT; 2184 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2185 return -EAGAIN; 2186 } 2187 2188 /* 2189 * mm->mmap_sem is required to protect against another thread 2190 * changing the mappings in case we sleep. 2191 */ 2192 verify_mm_writelocked(mm); 2193 2194 /* 2195 * Clear old maps. this also does some error checking for us 2196 */ 2197 munmap_back: 2198 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2199 if (vma && vma->vm_start < addr + len) { 2200 if (do_munmap(mm, addr, len)) 2201 return -ENOMEM; 2202 goto munmap_back; 2203 } 2204 2205 /* Check against address space limits *after* clearing old maps... */ 2206 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2207 return -ENOMEM; 2208 2209 if (mm->map_count > sysctl_max_map_count) 2210 return -ENOMEM; 2211 2212 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2213 return -ENOMEM; 2214 2215 /* Can we just expand an old private anonymous mapping? */ 2216 vma = vma_merge(mm, prev, addr, addr + len, flags, 2217 NULL, NULL, pgoff, NULL); 2218 if (vma) 2219 goto out; 2220 2221 /* 2222 * create a vma struct for an anonymous mapping 2223 */ 2224 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2225 if (!vma) { 2226 vm_unacct_memory(len >> PAGE_SHIFT); 2227 return -ENOMEM; 2228 } 2229 2230 INIT_LIST_HEAD(&vma->anon_vma_chain); 2231 vma->vm_mm = mm; 2232 vma->vm_start = addr; 2233 vma->vm_end = addr + len; 2234 vma->vm_pgoff = pgoff; 2235 vma->vm_flags = flags; 2236 vma->vm_page_prot = vm_get_page_prot(flags); 2237 vma_link(mm, vma, prev, rb_link, rb_parent); 2238 out: 2239 perf_event_mmap(vma); 2240 mm->total_vm += len >> PAGE_SHIFT; 2241 if (flags & VM_LOCKED) { 2242 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2243 mm->locked_vm += (len >> PAGE_SHIFT); 2244 } 2245 return addr; 2246 } 2247 2248 EXPORT_SYMBOL(do_brk); 2249 2250 /* Release all mmaps. */ 2251 void exit_mmap(struct mm_struct *mm) 2252 { 2253 struct mmu_gather *tlb; 2254 struct vm_area_struct *vma; 2255 unsigned long nr_accounted = 0; 2256 unsigned long end; 2257 2258 /* mm's last user has gone, and its about to be pulled down */ 2259 mmu_notifier_release(mm); 2260 2261 if (mm->locked_vm) { 2262 vma = mm->mmap; 2263 while (vma) { 2264 if (vma->vm_flags & VM_LOCKED) 2265 munlock_vma_pages_all(vma); 2266 vma = vma->vm_next; 2267 } 2268 } 2269 2270 arch_exit_mmap(mm); 2271 2272 vma = mm->mmap; 2273 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2274 return; 2275 2276 lru_add_drain(); 2277 flush_cache_mm(mm); 2278 tlb = tlb_gather_mmu(mm, 1); 2279 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2280 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2281 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2282 vm_unacct_memory(nr_accounted); 2283 2284 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); 2285 tlb_finish_mmu(tlb, 0, end); 2286 2287 /* 2288 * Walk the list again, actually closing and freeing it, 2289 * with preemption enabled, without holding any MM locks. 2290 */ 2291 while (vma) 2292 vma = remove_vma(vma); 2293 2294 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2295 } 2296 2297 /* Insert vm structure into process list sorted by address 2298 * and into the inode's i_mmap tree. If vm_file is non-NULL 2299 * then i_mmap_lock is taken here. 2300 */ 2301 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2302 { 2303 struct vm_area_struct * __vma, * prev; 2304 struct rb_node ** rb_link, * rb_parent; 2305 2306 /* 2307 * The vm_pgoff of a purely anonymous vma should be irrelevant 2308 * until its first write fault, when page's anon_vma and index 2309 * are set. But now set the vm_pgoff it will almost certainly 2310 * end up with (unless mremap moves it elsewhere before that 2311 * first wfault), so /proc/pid/maps tells a consistent story. 2312 * 2313 * By setting it to reflect the virtual start address of the 2314 * vma, merges and splits can happen in a seamless way, just 2315 * using the existing file pgoff checks and manipulations. 2316 * Similarly in do_mmap_pgoff and in do_brk. 2317 */ 2318 if (!vma->vm_file) { 2319 BUG_ON(vma->anon_vma); 2320 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2321 } 2322 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2323 if (__vma && __vma->vm_start < vma->vm_end) 2324 return -ENOMEM; 2325 if ((vma->vm_flags & VM_ACCOUNT) && 2326 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2327 return -ENOMEM; 2328 vma_link(mm, vma, prev, rb_link, rb_parent); 2329 return 0; 2330 } 2331 2332 /* 2333 * Copy the vma structure to a new location in the same mm, 2334 * prior to moving page table entries, to effect an mremap move. 2335 */ 2336 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2337 unsigned long addr, unsigned long len, pgoff_t pgoff) 2338 { 2339 struct vm_area_struct *vma = *vmap; 2340 unsigned long vma_start = vma->vm_start; 2341 struct mm_struct *mm = vma->vm_mm; 2342 struct vm_area_struct *new_vma, *prev; 2343 struct rb_node **rb_link, *rb_parent; 2344 struct mempolicy *pol; 2345 2346 /* 2347 * If anonymous vma has not yet been faulted, update new pgoff 2348 * to match new location, to increase its chance of merging. 2349 */ 2350 if (!vma->vm_file && !vma->anon_vma) 2351 pgoff = addr >> PAGE_SHIFT; 2352 2353 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2354 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2355 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2356 if (new_vma) { 2357 /* 2358 * Source vma may have been merged into new_vma 2359 */ 2360 if (vma_start >= new_vma->vm_start && 2361 vma_start < new_vma->vm_end) 2362 *vmap = new_vma; 2363 } else { 2364 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2365 if (new_vma) { 2366 *new_vma = *vma; 2367 pol = mpol_dup(vma_policy(vma)); 2368 if (IS_ERR(pol)) 2369 goto out_free_vma; 2370 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2371 if (anon_vma_clone(new_vma, vma)) 2372 goto out_free_mempol; 2373 vma_set_policy(new_vma, pol); 2374 new_vma->vm_start = addr; 2375 new_vma->vm_end = addr + len; 2376 new_vma->vm_pgoff = pgoff; 2377 if (new_vma->vm_file) { 2378 get_file(new_vma->vm_file); 2379 if (vma->vm_flags & VM_EXECUTABLE) 2380 added_exe_file_vma(mm); 2381 } 2382 if (new_vma->vm_ops && new_vma->vm_ops->open) 2383 new_vma->vm_ops->open(new_vma); 2384 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2385 } 2386 } 2387 return new_vma; 2388 2389 out_free_mempol: 2390 mpol_put(pol); 2391 out_free_vma: 2392 kmem_cache_free(vm_area_cachep, new_vma); 2393 return NULL; 2394 } 2395 2396 /* 2397 * Return true if the calling process may expand its vm space by the passed 2398 * number of pages 2399 */ 2400 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2401 { 2402 unsigned long cur = mm->total_vm; /* pages */ 2403 unsigned long lim; 2404 2405 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2406 2407 if (cur + npages > lim) 2408 return 0; 2409 return 1; 2410 } 2411 2412 2413 static int special_mapping_fault(struct vm_area_struct *vma, 2414 struct vm_fault *vmf) 2415 { 2416 pgoff_t pgoff; 2417 struct page **pages; 2418 2419 /* 2420 * special mappings have no vm_file, and in that case, the mm 2421 * uses vm_pgoff internally. So we have to subtract it from here. 2422 * We are allowed to do this because we are the mm; do not copy 2423 * this code into drivers! 2424 */ 2425 pgoff = vmf->pgoff - vma->vm_pgoff; 2426 2427 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2428 pgoff--; 2429 2430 if (*pages) { 2431 struct page *page = *pages; 2432 get_page(page); 2433 vmf->page = page; 2434 return 0; 2435 } 2436 2437 return VM_FAULT_SIGBUS; 2438 } 2439 2440 /* 2441 * Having a close hook prevents vma merging regardless of flags. 2442 */ 2443 static void special_mapping_close(struct vm_area_struct *vma) 2444 { 2445 } 2446 2447 static const struct vm_operations_struct special_mapping_vmops = { 2448 .close = special_mapping_close, 2449 .fault = special_mapping_fault, 2450 }; 2451 2452 /* 2453 * Called with mm->mmap_sem held for writing. 2454 * Insert a new vma covering the given region, with the given flags. 2455 * Its pages are supplied by the given array of struct page *. 2456 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2457 * The region past the last page supplied will always produce SIGBUS. 2458 * The array pointer and the pages it points to are assumed to stay alive 2459 * for as long as this mapping might exist. 2460 */ 2461 int install_special_mapping(struct mm_struct *mm, 2462 unsigned long addr, unsigned long len, 2463 unsigned long vm_flags, struct page **pages) 2464 { 2465 int ret; 2466 struct vm_area_struct *vma; 2467 2468 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2469 if (unlikely(vma == NULL)) 2470 return -ENOMEM; 2471 2472 INIT_LIST_HEAD(&vma->anon_vma_chain); 2473 vma->vm_mm = mm; 2474 vma->vm_start = addr; 2475 vma->vm_end = addr + len; 2476 2477 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2478 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2479 2480 vma->vm_ops = &special_mapping_vmops; 2481 vma->vm_private_data = pages; 2482 2483 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 2484 if (ret) 2485 goto out; 2486 2487 ret = insert_vm_struct(mm, vma); 2488 if (ret) 2489 goto out; 2490 2491 mm->total_vm += len >> PAGE_SHIFT; 2492 2493 perf_event_mmap(vma); 2494 2495 return 0; 2496 2497 out: 2498 kmem_cache_free(vm_area_cachep, vma); 2499 return ret; 2500 } 2501 2502 static DEFINE_MUTEX(mm_all_locks_mutex); 2503 2504 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2505 { 2506 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2507 /* 2508 * The LSB of head.next can't change from under us 2509 * because we hold the mm_all_locks_mutex. 2510 */ 2511 spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem); 2512 /* 2513 * We can safely modify head.next after taking the 2514 * anon_vma->root->lock. If some other vma in this mm shares 2515 * the same anon_vma we won't take it again. 2516 * 2517 * No need of atomic instructions here, head.next 2518 * can't change from under us thanks to the 2519 * anon_vma->root->lock. 2520 */ 2521 if (__test_and_set_bit(0, (unsigned long *) 2522 &anon_vma->root->head.next)) 2523 BUG(); 2524 } 2525 } 2526 2527 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2528 { 2529 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2530 /* 2531 * AS_MM_ALL_LOCKS can't change from under us because 2532 * we hold the mm_all_locks_mutex. 2533 * 2534 * Operations on ->flags have to be atomic because 2535 * even if AS_MM_ALL_LOCKS is stable thanks to the 2536 * mm_all_locks_mutex, there may be other cpus 2537 * changing other bitflags in parallel to us. 2538 */ 2539 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2540 BUG(); 2541 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem); 2542 } 2543 } 2544 2545 /* 2546 * This operation locks against the VM for all pte/vma/mm related 2547 * operations that could ever happen on a certain mm. This includes 2548 * vmtruncate, try_to_unmap, and all page faults. 2549 * 2550 * The caller must take the mmap_sem in write mode before calling 2551 * mm_take_all_locks(). The caller isn't allowed to release the 2552 * mmap_sem until mm_drop_all_locks() returns. 2553 * 2554 * mmap_sem in write mode is required in order to block all operations 2555 * that could modify pagetables and free pages without need of 2556 * altering the vma layout (for example populate_range() with 2557 * nonlinear vmas). It's also needed in write mode to avoid new 2558 * anon_vmas to be associated with existing vmas. 2559 * 2560 * A single task can't take more than one mm_take_all_locks() in a row 2561 * or it would deadlock. 2562 * 2563 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2564 * mapping->flags avoid to take the same lock twice, if more than one 2565 * vma in this mm is backed by the same anon_vma or address_space. 2566 * 2567 * We can take all the locks in random order because the VM code 2568 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never 2569 * takes more than one of them in a row. Secondly we're protected 2570 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2571 * 2572 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2573 * that may have to take thousand of locks. 2574 * 2575 * mm_take_all_locks() can fail if it's interrupted by signals. 2576 */ 2577 int mm_take_all_locks(struct mm_struct *mm) 2578 { 2579 struct vm_area_struct *vma; 2580 struct anon_vma_chain *avc; 2581 int ret = -EINTR; 2582 2583 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2584 2585 mutex_lock(&mm_all_locks_mutex); 2586 2587 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2588 if (signal_pending(current)) 2589 goto out_unlock; 2590 if (vma->vm_file && vma->vm_file->f_mapping) 2591 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2592 } 2593 2594 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2595 if (signal_pending(current)) 2596 goto out_unlock; 2597 if (vma->anon_vma) 2598 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2599 vm_lock_anon_vma(mm, avc->anon_vma); 2600 } 2601 2602 ret = 0; 2603 2604 out_unlock: 2605 if (ret) 2606 mm_drop_all_locks(mm); 2607 2608 return ret; 2609 } 2610 2611 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2612 { 2613 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2614 /* 2615 * The LSB of head.next can't change to 0 from under 2616 * us because we hold the mm_all_locks_mutex. 2617 * 2618 * We must however clear the bitflag before unlocking 2619 * the vma so the users using the anon_vma->head will 2620 * never see our bitflag. 2621 * 2622 * No need of atomic instructions here, head.next 2623 * can't change from under us until we release the 2624 * anon_vma->root->lock. 2625 */ 2626 if (!__test_and_clear_bit(0, (unsigned long *) 2627 &anon_vma->root->head.next)) 2628 BUG(); 2629 anon_vma_unlock(anon_vma); 2630 } 2631 } 2632 2633 static void vm_unlock_mapping(struct address_space *mapping) 2634 { 2635 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2636 /* 2637 * AS_MM_ALL_LOCKS can't change to 0 from under us 2638 * because we hold the mm_all_locks_mutex. 2639 */ 2640 spin_unlock(&mapping->i_mmap_lock); 2641 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2642 &mapping->flags)) 2643 BUG(); 2644 } 2645 } 2646 2647 /* 2648 * The mmap_sem cannot be released by the caller until 2649 * mm_drop_all_locks() returns. 2650 */ 2651 void mm_drop_all_locks(struct mm_struct *mm) 2652 { 2653 struct vm_area_struct *vma; 2654 struct anon_vma_chain *avc; 2655 2656 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2657 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2658 2659 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2660 if (vma->anon_vma) 2661 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2662 vm_unlock_anon_vma(avc->anon_vma); 2663 if (vma->vm_file && vma->vm_file->f_mapping) 2664 vm_unlock_mapping(vma->vm_file->f_mapping); 2665 } 2666 2667 mutex_unlock(&mm_all_locks_mutex); 2668 } 2669 2670 /* 2671 * initialise the VMA slab 2672 */ 2673 void __init mmap_init(void) 2674 { 2675 int ret; 2676 2677 ret = percpu_counter_init(&vm_committed_as, 0); 2678 VM_BUG_ON(ret); 2679 } 2680