xref: /openbmc/linux/mm/mmap.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlb.h>
36 #include <asm/mmu_context.h>
37 
38 #include "internal.h"
39 
40 #ifndef arch_mmap_check
41 #define arch_mmap_check(addr, len, flags)	(0)
42 #endif
43 
44 #ifndef arch_rebalance_pgtables
45 #define arch_rebalance_pgtables(addr, len)		(addr)
46 #endif
47 
48 static void unmap_region(struct mm_struct *mm,
49 		struct vm_area_struct *vma, struct vm_area_struct *prev,
50 		unsigned long start, unsigned long end);
51 
52 /*
53  * WARNING: the debugging will use recursive algorithms so never enable this
54  * unless you know what you are doing.
55  */
56 #undef DEBUG_MM_RB
57 
58 /* description of effects of mapping type and prot in current implementation.
59  * this is due to the limited x86 page protection hardware.  The expected
60  * behavior is in parens:
61  *
62  * map_type	prot
63  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
64  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
65  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
66  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
67  *
68  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
69  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
70  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
71  *
72  */
73 pgprot_t protection_map[16] = {
74 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
75 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
76 };
77 
78 pgprot_t vm_get_page_prot(unsigned long vm_flags)
79 {
80 	return __pgprot(pgprot_val(protection_map[vm_flags &
81 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
82 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
83 }
84 EXPORT_SYMBOL(vm_get_page_prot);
85 
86 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
87 int sysctl_overcommit_ratio = 50;	/* default is 50% */
88 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
89 struct percpu_counter vm_committed_as;
90 
91 /*
92  * Check that a process has enough memory to allocate a new virtual
93  * mapping. 0 means there is enough memory for the allocation to
94  * succeed and -ENOMEM implies there is not.
95  *
96  * We currently support three overcommit policies, which are set via the
97  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
98  *
99  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100  * Additional code 2002 Jul 20 by Robert Love.
101  *
102  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103  *
104  * Note this is a helper function intended to be used by LSMs which
105  * wish to use this logic.
106  */
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 {
109 	unsigned long free, allowed;
110 
111 	vm_acct_memory(pages);
112 
113 	/*
114 	 * Sometimes we want to use more memory than we have
115 	 */
116 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117 		return 0;
118 
119 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120 		unsigned long n;
121 
122 		free = global_page_state(NR_FILE_PAGES);
123 		free += nr_swap_pages;
124 
125 		/*
126 		 * Any slabs which are created with the
127 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
128 		 * which are reclaimable, under pressure.  The dentry
129 		 * cache and most inode caches should fall into this
130 		 */
131 		free += global_page_state(NR_SLAB_RECLAIMABLE);
132 
133 		/*
134 		 * Leave the last 3% for root
135 		 */
136 		if (!cap_sys_admin)
137 			free -= free / 32;
138 
139 		if (free > pages)
140 			return 0;
141 
142 		/*
143 		 * nr_free_pages() is very expensive on large systems,
144 		 * only call if we're about to fail.
145 		 */
146 		n = nr_free_pages();
147 
148 		/*
149 		 * Leave reserved pages. The pages are not for anonymous pages.
150 		 */
151 		if (n <= totalreserve_pages)
152 			goto error;
153 		else
154 			n -= totalreserve_pages;
155 
156 		/*
157 		 * Leave the last 3% for root
158 		 */
159 		if (!cap_sys_admin)
160 			n -= n / 32;
161 		free += n;
162 
163 		if (free > pages)
164 			return 0;
165 
166 		goto error;
167 	}
168 
169 	allowed = (totalram_pages - hugetlb_total_pages())
170 	       	* sysctl_overcommit_ratio / 100;
171 	/*
172 	 * Leave the last 3% for root
173 	 */
174 	if (!cap_sys_admin)
175 		allowed -= allowed / 32;
176 	allowed += total_swap_pages;
177 
178 	/* Don't let a single process grow too big:
179 	   leave 3% of the size of this process for other processes */
180 	if (mm)
181 		allowed -= mm->total_vm / 32;
182 
183 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
184 		return 0;
185 error:
186 	vm_unacct_memory(pages);
187 
188 	return -ENOMEM;
189 }
190 
191 /*
192  * Requires inode->i_mapping->i_mmap_lock
193  */
194 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
195 		struct file *file, struct address_space *mapping)
196 {
197 	if (vma->vm_flags & VM_DENYWRITE)
198 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
199 	if (vma->vm_flags & VM_SHARED)
200 		mapping->i_mmap_writable--;
201 
202 	flush_dcache_mmap_lock(mapping);
203 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
204 		list_del_init(&vma->shared.vm_set.list);
205 	else
206 		vma_prio_tree_remove(vma, &mapping->i_mmap);
207 	flush_dcache_mmap_unlock(mapping);
208 }
209 
210 /*
211  * Unlink a file-based vm structure from its prio_tree, to hide
212  * vma from rmap and vmtruncate before freeing its page tables.
213  */
214 void unlink_file_vma(struct vm_area_struct *vma)
215 {
216 	struct file *file = vma->vm_file;
217 
218 	if (file) {
219 		struct address_space *mapping = file->f_mapping;
220 		spin_lock(&mapping->i_mmap_lock);
221 		__remove_shared_vm_struct(vma, file, mapping);
222 		spin_unlock(&mapping->i_mmap_lock);
223 	}
224 }
225 
226 /*
227  * Close a vm structure and free it, returning the next.
228  */
229 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
230 {
231 	struct vm_area_struct *next = vma->vm_next;
232 
233 	might_sleep();
234 	if (vma->vm_ops && vma->vm_ops->close)
235 		vma->vm_ops->close(vma);
236 	if (vma->vm_file) {
237 		fput(vma->vm_file);
238 		if (vma->vm_flags & VM_EXECUTABLE)
239 			removed_exe_file_vma(vma->vm_mm);
240 	}
241 	mpol_put(vma_policy(vma));
242 	kmem_cache_free(vm_area_cachep, vma);
243 	return next;
244 }
245 
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248 	unsigned long rlim, retval;
249 	unsigned long newbrk, oldbrk;
250 	struct mm_struct *mm = current->mm;
251 	unsigned long min_brk;
252 
253 	down_write(&mm->mmap_sem);
254 
255 #ifdef CONFIG_COMPAT_BRK
256 	min_brk = mm->end_code;
257 #else
258 	min_brk = mm->start_brk;
259 #endif
260 	if (brk < min_brk)
261 		goto out;
262 
263 	/*
264 	 * Check against rlimit here. If this check is done later after the test
265 	 * of oldbrk with newbrk then it can escape the test and let the data
266 	 * segment grow beyond its set limit the in case where the limit is
267 	 * not page aligned -Ram Gupta
268 	 */
269 	rlim = rlimit(RLIMIT_DATA);
270 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
271 			(mm->end_data - mm->start_data) > rlim)
272 		goto out;
273 
274 	newbrk = PAGE_ALIGN(brk);
275 	oldbrk = PAGE_ALIGN(mm->brk);
276 	if (oldbrk == newbrk)
277 		goto set_brk;
278 
279 	/* Always allow shrinking brk. */
280 	if (brk <= mm->brk) {
281 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
282 			goto set_brk;
283 		goto out;
284 	}
285 
286 	/* Check against existing mmap mappings. */
287 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
288 		goto out;
289 
290 	/* Ok, looks good - let it rip. */
291 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
292 		goto out;
293 set_brk:
294 	mm->brk = brk;
295 out:
296 	retval = mm->brk;
297 	up_write(&mm->mmap_sem);
298 	return retval;
299 }
300 
301 #ifdef DEBUG_MM_RB
302 static int browse_rb(struct rb_root *root)
303 {
304 	int i = 0, j;
305 	struct rb_node *nd, *pn = NULL;
306 	unsigned long prev = 0, pend = 0;
307 
308 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
309 		struct vm_area_struct *vma;
310 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
311 		if (vma->vm_start < prev)
312 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
313 		if (vma->vm_start < pend)
314 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
315 		if (vma->vm_start > vma->vm_end)
316 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
317 		i++;
318 		pn = nd;
319 		prev = vma->vm_start;
320 		pend = vma->vm_end;
321 	}
322 	j = 0;
323 	for (nd = pn; nd; nd = rb_prev(nd)) {
324 		j++;
325 	}
326 	if (i != j)
327 		printk("backwards %d, forwards %d\n", j, i), i = 0;
328 	return i;
329 }
330 
331 void validate_mm(struct mm_struct *mm)
332 {
333 	int bug = 0;
334 	int i = 0;
335 	struct vm_area_struct *tmp = mm->mmap;
336 	while (tmp) {
337 		tmp = tmp->vm_next;
338 		i++;
339 	}
340 	if (i != mm->map_count)
341 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
342 	i = browse_rb(&mm->mm_rb);
343 	if (i != mm->map_count)
344 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
345 	BUG_ON(bug);
346 }
347 #else
348 #define validate_mm(mm) do { } while (0)
349 #endif
350 
351 static struct vm_area_struct *
352 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
353 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
354 		struct rb_node ** rb_parent)
355 {
356 	struct vm_area_struct * vma;
357 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
358 
359 	__rb_link = &mm->mm_rb.rb_node;
360 	rb_prev = __rb_parent = NULL;
361 	vma = NULL;
362 
363 	while (*__rb_link) {
364 		struct vm_area_struct *vma_tmp;
365 
366 		__rb_parent = *__rb_link;
367 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
368 
369 		if (vma_tmp->vm_end > addr) {
370 			vma = vma_tmp;
371 			if (vma_tmp->vm_start <= addr)
372 				break;
373 			__rb_link = &__rb_parent->rb_left;
374 		} else {
375 			rb_prev = __rb_parent;
376 			__rb_link = &__rb_parent->rb_right;
377 		}
378 	}
379 
380 	*pprev = NULL;
381 	if (rb_prev)
382 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
383 	*rb_link = __rb_link;
384 	*rb_parent = __rb_parent;
385 	return vma;
386 }
387 
388 static inline void
389 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
390 		struct vm_area_struct *prev, struct rb_node *rb_parent)
391 {
392 	struct vm_area_struct *next;
393 
394 	vma->vm_prev = prev;
395 	if (prev) {
396 		next = prev->vm_next;
397 		prev->vm_next = vma;
398 	} else {
399 		mm->mmap = vma;
400 		if (rb_parent)
401 			next = rb_entry(rb_parent,
402 					struct vm_area_struct, vm_rb);
403 		else
404 			next = NULL;
405 	}
406 	vma->vm_next = next;
407 	if (next)
408 		next->vm_prev = vma;
409 }
410 
411 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
412 		struct rb_node **rb_link, struct rb_node *rb_parent)
413 {
414 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
415 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
416 }
417 
418 static void __vma_link_file(struct vm_area_struct *vma)
419 {
420 	struct file *file;
421 
422 	file = vma->vm_file;
423 	if (file) {
424 		struct address_space *mapping = file->f_mapping;
425 
426 		if (vma->vm_flags & VM_DENYWRITE)
427 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
428 		if (vma->vm_flags & VM_SHARED)
429 			mapping->i_mmap_writable++;
430 
431 		flush_dcache_mmap_lock(mapping);
432 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
433 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
434 		else
435 			vma_prio_tree_insert(vma, &mapping->i_mmap);
436 		flush_dcache_mmap_unlock(mapping);
437 	}
438 }
439 
440 static void
441 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
442 	struct vm_area_struct *prev, struct rb_node **rb_link,
443 	struct rb_node *rb_parent)
444 {
445 	__vma_link_list(mm, vma, prev, rb_parent);
446 	__vma_link_rb(mm, vma, rb_link, rb_parent);
447 }
448 
449 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
450 			struct vm_area_struct *prev, struct rb_node **rb_link,
451 			struct rb_node *rb_parent)
452 {
453 	struct address_space *mapping = NULL;
454 
455 	if (vma->vm_file)
456 		mapping = vma->vm_file->f_mapping;
457 
458 	if (mapping) {
459 		spin_lock(&mapping->i_mmap_lock);
460 		vma->vm_truncate_count = mapping->truncate_count;
461 	}
462 
463 	__vma_link(mm, vma, prev, rb_link, rb_parent);
464 	__vma_link_file(vma);
465 
466 	if (mapping)
467 		spin_unlock(&mapping->i_mmap_lock);
468 
469 	mm->map_count++;
470 	validate_mm(mm);
471 }
472 
473 /*
474  * Helper for vma_adjust in the split_vma insert case:
475  * insert vm structure into list and rbtree and anon_vma,
476  * but it has already been inserted into prio_tree earlier.
477  */
478 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
479 {
480 	struct vm_area_struct *__vma, *prev;
481 	struct rb_node **rb_link, *rb_parent;
482 
483 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
484 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
485 	__vma_link(mm, vma, prev, rb_link, rb_parent);
486 	mm->map_count++;
487 }
488 
489 static inline void
490 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
491 		struct vm_area_struct *prev)
492 {
493 	struct vm_area_struct *next = vma->vm_next;
494 
495 	prev->vm_next = next;
496 	if (next)
497 		next->vm_prev = prev;
498 	rb_erase(&vma->vm_rb, &mm->mm_rb);
499 	if (mm->mmap_cache == vma)
500 		mm->mmap_cache = prev;
501 }
502 
503 /*
504  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
505  * is already present in an i_mmap tree without adjusting the tree.
506  * The following helper function should be used when such adjustments
507  * are necessary.  The "insert" vma (if any) is to be inserted
508  * before we drop the necessary locks.
509  */
510 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
511 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
512 {
513 	struct mm_struct *mm = vma->vm_mm;
514 	struct vm_area_struct *next = vma->vm_next;
515 	struct vm_area_struct *importer = NULL;
516 	struct address_space *mapping = NULL;
517 	struct prio_tree_root *root = NULL;
518 	struct anon_vma *anon_vma = NULL;
519 	struct file *file = vma->vm_file;
520 	long adjust_next = 0;
521 	int remove_next = 0;
522 
523 	if (next && !insert) {
524 		struct vm_area_struct *exporter = NULL;
525 
526 		if (end >= next->vm_end) {
527 			/*
528 			 * vma expands, overlapping all the next, and
529 			 * perhaps the one after too (mprotect case 6).
530 			 */
531 again:			remove_next = 1 + (end > next->vm_end);
532 			end = next->vm_end;
533 			exporter = next;
534 			importer = vma;
535 		} else if (end > next->vm_start) {
536 			/*
537 			 * vma expands, overlapping part of the next:
538 			 * mprotect case 5 shifting the boundary up.
539 			 */
540 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
541 			exporter = next;
542 			importer = vma;
543 		} else if (end < vma->vm_end) {
544 			/*
545 			 * vma shrinks, and !insert tells it's not
546 			 * split_vma inserting another: so it must be
547 			 * mprotect case 4 shifting the boundary down.
548 			 */
549 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
550 			exporter = vma;
551 			importer = next;
552 		}
553 
554 		/*
555 		 * Easily overlooked: when mprotect shifts the boundary,
556 		 * make sure the expanding vma has anon_vma set if the
557 		 * shrinking vma had, to cover any anon pages imported.
558 		 */
559 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
560 			if (anon_vma_clone(importer, exporter))
561 				return -ENOMEM;
562 			importer->anon_vma = exporter->anon_vma;
563 		}
564 	}
565 
566 	if (file) {
567 		mapping = file->f_mapping;
568 		if (!(vma->vm_flags & VM_NONLINEAR))
569 			root = &mapping->i_mmap;
570 		spin_lock(&mapping->i_mmap_lock);
571 		if (importer &&
572 		    vma->vm_truncate_count != next->vm_truncate_count) {
573 			/*
574 			 * unmap_mapping_range might be in progress:
575 			 * ensure that the expanding vma is rescanned.
576 			 */
577 			importer->vm_truncate_count = 0;
578 		}
579 		if (insert) {
580 			insert->vm_truncate_count = vma->vm_truncate_count;
581 			/*
582 			 * Put into prio_tree now, so instantiated pages
583 			 * are visible to arm/parisc __flush_dcache_page
584 			 * throughout; but we cannot insert into address
585 			 * space until vma start or end is updated.
586 			 */
587 			__vma_link_file(insert);
588 		}
589 	}
590 
591 	/*
592 	 * When changing only vma->vm_end, we don't really need anon_vma
593 	 * lock. This is a fairly rare case by itself, but the anon_vma
594 	 * lock may be shared between many sibling processes.  Skipping
595 	 * the lock for brk adjustments makes a difference sometimes.
596 	 */
597 	if (vma->anon_vma && (insert || importer || start != vma->vm_start)) {
598 		anon_vma = vma->anon_vma;
599 		anon_vma_lock(anon_vma);
600 	}
601 
602 	if (root) {
603 		flush_dcache_mmap_lock(mapping);
604 		vma_prio_tree_remove(vma, root);
605 		if (adjust_next)
606 			vma_prio_tree_remove(next, root);
607 	}
608 
609 	vma->vm_start = start;
610 	vma->vm_end = end;
611 	vma->vm_pgoff = pgoff;
612 	if (adjust_next) {
613 		next->vm_start += adjust_next << PAGE_SHIFT;
614 		next->vm_pgoff += adjust_next;
615 	}
616 
617 	if (root) {
618 		if (adjust_next)
619 			vma_prio_tree_insert(next, root);
620 		vma_prio_tree_insert(vma, root);
621 		flush_dcache_mmap_unlock(mapping);
622 	}
623 
624 	if (remove_next) {
625 		/*
626 		 * vma_merge has merged next into vma, and needs
627 		 * us to remove next before dropping the locks.
628 		 */
629 		__vma_unlink(mm, next, vma);
630 		if (file)
631 			__remove_shared_vm_struct(next, file, mapping);
632 	} else if (insert) {
633 		/*
634 		 * split_vma has split insert from vma, and needs
635 		 * us to insert it before dropping the locks
636 		 * (it may either follow vma or precede it).
637 		 */
638 		__insert_vm_struct(mm, insert);
639 	}
640 
641 	if (anon_vma)
642 		anon_vma_unlock(anon_vma);
643 	if (mapping)
644 		spin_unlock(&mapping->i_mmap_lock);
645 
646 	if (remove_next) {
647 		if (file) {
648 			fput(file);
649 			if (next->vm_flags & VM_EXECUTABLE)
650 				removed_exe_file_vma(mm);
651 		}
652 		if (next->anon_vma)
653 			anon_vma_merge(vma, next);
654 		mm->map_count--;
655 		mpol_put(vma_policy(next));
656 		kmem_cache_free(vm_area_cachep, next);
657 		/*
658 		 * In mprotect's case 6 (see comments on vma_merge),
659 		 * we must remove another next too. It would clutter
660 		 * up the code too much to do both in one go.
661 		 */
662 		if (remove_next == 2) {
663 			next = vma->vm_next;
664 			goto again;
665 		}
666 	}
667 
668 	validate_mm(mm);
669 
670 	return 0;
671 }
672 
673 /*
674  * If the vma has a ->close operation then the driver probably needs to release
675  * per-vma resources, so we don't attempt to merge those.
676  */
677 static inline int is_mergeable_vma(struct vm_area_struct *vma,
678 			struct file *file, unsigned long vm_flags)
679 {
680 	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
681 	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
682 		return 0;
683 	if (vma->vm_file != file)
684 		return 0;
685 	if (vma->vm_ops && vma->vm_ops->close)
686 		return 0;
687 	return 1;
688 }
689 
690 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
691 					struct anon_vma *anon_vma2)
692 {
693 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
694 }
695 
696 /*
697  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
698  * in front of (at a lower virtual address and file offset than) the vma.
699  *
700  * We cannot merge two vmas if they have differently assigned (non-NULL)
701  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
702  *
703  * We don't check here for the merged mmap wrapping around the end of pagecache
704  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
705  * wrap, nor mmaps which cover the final page at index -1UL.
706  */
707 static int
708 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
709 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
710 {
711 	if (is_mergeable_vma(vma, file, vm_flags) &&
712 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
713 		if (vma->vm_pgoff == vm_pgoff)
714 			return 1;
715 	}
716 	return 0;
717 }
718 
719 /*
720  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
721  * beyond (at a higher virtual address and file offset than) the vma.
722  *
723  * We cannot merge two vmas if they have differently assigned (non-NULL)
724  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
725  */
726 static int
727 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
728 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
729 {
730 	if (is_mergeable_vma(vma, file, vm_flags) &&
731 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
732 		pgoff_t vm_pglen;
733 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
734 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
735 			return 1;
736 	}
737 	return 0;
738 }
739 
740 /*
741  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
742  * whether that can be merged with its predecessor or its successor.
743  * Or both (it neatly fills a hole).
744  *
745  * In most cases - when called for mmap, brk or mremap - [addr,end) is
746  * certain not to be mapped by the time vma_merge is called; but when
747  * called for mprotect, it is certain to be already mapped (either at
748  * an offset within prev, or at the start of next), and the flags of
749  * this area are about to be changed to vm_flags - and the no-change
750  * case has already been eliminated.
751  *
752  * The following mprotect cases have to be considered, where AAAA is
753  * the area passed down from mprotect_fixup, never extending beyond one
754  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
755  *
756  *     AAAA             AAAA                AAAA          AAAA
757  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
758  *    cannot merge    might become    might become    might become
759  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
760  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
761  *    mremap move:                                    PPPPNNNNNNNN 8
762  *        AAAA
763  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
764  *    might become    case 1 below    case 2 below    case 3 below
765  *
766  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
767  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
768  */
769 struct vm_area_struct *vma_merge(struct mm_struct *mm,
770 			struct vm_area_struct *prev, unsigned long addr,
771 			unsigned long end, unsigned long vm_flags,
772 		     	struct anon_vma *anon_vma, struct file *file,
773 			pgoff_t pgoff, struct mempolicy *policy)
774 {
775 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
776 	struct vm_area_struct *area, *next;
777 	int err;
778 
779 	/*
780 	 * We later require that vma->vm_flags == vm_flags,
781 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
782 	 */
783 	if (vm_flags & VM_SPECIAL)
784 		return NULL;
785 
786 	if (prev)
787 		next = prev->vm_next;
788 	else
789 		next = mm->mmap;
790 	area = next;
791 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
792 		next = next->vm_next;
793 
794 	/*
795 	 * Can it merge with the predecessor?
796 	 */
797 	if (prev && prev->vm_end == addr &&
798   			mpol_equal(vma_policy(prev), policy) &&
799 			can_vma_merge_after(prev, vm_flags,
800 						anon_vma, file, pgoff)) {
801 		/*
802 		 * OK, it can.  Can we now merge in the successor as well?
803 		 */
804 		if (next && end == next->vm_start &&
805 				mpol_equal(policy, vma_policy(next)) &&
806 				can_vma_merge_before(next, vm_flags,
807 					anon_vma, file, pgoff+pglen) &&
808 				is_mergeable_anon_vma(prev->anon_vma,
809 						      next->anon_vma)) {
810 							/* cases 1, 6 */
811 			err = vma_adjust(prev, prev->vm_start,
812 				next->vm_end, prev->vm_pgoff, NULL);
813 		} else					/* cases 2, 5, 7 */
814 			err = vma_adjust(prev, prev->vm_start,
815 				end, prev->vm_pgoff, NULL);
816 		if (err)
817 			return NULL;
818 		return prev;
819 	}
820 
821 	/*
822 	 * Can this new request be merged in front of next?
823 	 */
824 	if (next && end == next->vm_start &&
825  			mpol_equal(policy, vma_policy(next)) &&
826 			can_vma_merge_before(next, vm_flags,
827 					anon_vma, file, pgoff+pglen)) {
828 		if (prev && addr < prev->vm_end)	/* case 4 */
829 			err = vma_adjust(prev, prev->vm_start,
830 				addr, prev->vm_pgoff, NULL);
831 		else					/* cases 3, 8 */
832 			err = vma_adjust(area, addr, next->vm_end,
833 				next->vm_pgoff - pglen, NULL);
834 		if (err)
835 			return NULL;
836 		return area;
837 	}
838 
839 	return NULL;
840 }
841 
842 /*
843  * Rough compatbility check to quickly see if it's even worth looking
844  * at sharing an anon_vma.
845  *
846  * They need to have the same vm_file, and the flags can only differ
847  * in things that mprotect may change.
848  *
849  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
850  * we can merge the two vma's. For example, we refuse to merge a vma if
851  * there is a vm_ops->close() function, because that indicates that the
852  * driver is doing some kind of reference counting. But that doesn't
853  * really matter for the anon_vma sharing case.
854  */
855 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
856 {
857 	return a->vm_end == b->vm_start &&
858 		mpol_equal(vma_policy(a), vma_policy(b)) &&
859 		a->vm_file == b->vm_file &&
860 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
861 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
862 }
863 
864 /*
865  * Do some basic sanity checking to see if we can re-use the anon_vma
866  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
867  * the same as 'old', the other will be the new one that is trying
868  * to share the anon_vma.
869  *
870  * NOTE! This runs with mm_sem held for reading, so it is possible that
871  * the anon_vma of 'old' is concurrently in the process of being set up
872  * by another page fault trying to merge _that_. But that's ok: if it
873  * is being set up, that automatically means that it will be a singleton
874  * acceptable for merging, so we can do all of this optimistically. But
875  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
876  *
877  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
878  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
879  * is to return an anon_vma that is "complex" due to having gone through
880  * a fork).
881  *
882  * We also make sure that the two vma's are compatible (adjacent,
883  * and with the same memory policies). That's all stable, even with just
884  * a read lock on the mm_sem.
885  */
886 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
887 {
888 	if (anon_vma_compatible(a, b)) {
889 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
890 
891 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
892 			return anon_vma;
893 	}
894 	return NULL;
895 }
896 
897 /*
898  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
899  * neighbouring vmas for a suitable anon_vma, before it goes off
900  * to allocate a new anon_vma.  It checks because a repetitive
901  * sequence of mprotects and faults may otherwise lead to distinct
902  * anon_vmas being allocated, preventing vma merge in subsequent
903  * mprotect.
904  */
905 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
906 {
907 	struct anon_vma *anon_vma;
908 	struct vm_area_struct *near;
909 
910 	near = vma->vm_next;
911 	if (!near)
912 		goto try_prev;
913 
914 	anon_vma = reusable_anon_vma(near, vma, near);
915 	if (anon_vma)
916 		return anon_vma;
917 try_prev:
918 	/*
919 	 * It is potentially slow to have to call find_vma_prev here.
920 	 * But it's only on the first write fault on the vma, not
921 	 * every time, and we could devise a way to avoid it later
922 	 * (e.g. stash info in next's anon_vma_node when assigning
923 	 * an anon_vma, or when trying vma_merge).  Another time.
924 	 */
925 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
926 	if (!near)
927 		goto none;
928 
929 	anon_vma = reusable_anon_vma(near, near, vma);
930 	if (anon_vma)
931 		return anon_vma;
932 none:
933 	/*
934 	 * There's no absolute need to look only at touching neighbours:
935 	 * we could search further afield for "compatible" anon_vmas.
936 	 * But it would probably just be a waste of time searching,
937 	 * or lead to too many vmas hanging off the same anon_vma.
938 	 * We're trying to allow mprotect remerging later on,
939 	 * not trying to minimize memory used for anon_vmas.
940 	 */
941 	return NULL;
942 }
943 
944 #ifdef CONFIG_PROC_FS
945 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
946 						struct file *file, long pages)
947 {
948 	const unsigned long stack_flags
949 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
950 
951 	if (file) {
952 		mm->shared_vm += pages;
953 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
954 			mm->exec_vm += pages;
955 	} else if (flags & stack_flags)
956 		mm->stack_vm += pages;
957 	if (flags & (VM_RESERVED|VM_IO))
958 		mm->reserved_vm += pages;
959 }
960 #endif /* CONFIG_PROC_FS */
961 
962 /*
963  * The caller must hold down_write(&current->mm->mmap_sem).
964  */
965 
966 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
967 			unsigned long len, unsigned long prot,
968 			unsigned long flags, unsigned long pgoff)
969 {
970 	struct mm_struct * mm = current->mm;
971 	struct inode *inode;
972 	unsigned int vm_flags;
973 	int error;
974 	unsigned long reqprot = prot;
975 
976 	/*
977 	 * Does the application expect PROT_READ to imply PROT_EXEC?
978 	 *
979 	 * (the exception is when the underlying filesystem is noexec
980 	 *  mounted, in which case we dont add PROT_EXEC.)
981 	 */
982 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
983 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
984 			prot |= PROT_EXEC;
985 
986 	if (!len)
987 		return -EINVAL;
988 
989 	if (!(flags & MAP_FIXED))
990 		addr = round_hint_to_min(addr);
991 
992 	/* Careful about overflows.. */
993 	len = PAGE_ALIGN(len);
994 	if (!len)
995 		return -ENOMEM;
996 
997 	/* offset overflow? */
998 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
999                return -EOVERFLOW;
1000 
1001 	/* Too many mappings? */
1002 	if (mm->map_count > sysctl_max_map_count)
1003 		return -ENOMEM;
1004 
1005 	/* Obtain the address to map to. we verify (or select) it and ensure
1006 	 * that it represents a valid section of the address space.
1007 	 */
1008 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1009 	if (addr & ~PAGE_MASK)
1010 		return addr;
1011 
1012 	/* Do simple checking here so the lower-level routines won't have
1013 	 * to. we assume access permissions have been handled by the open
1014 	 * of the memory object, so we don't do any here.
1015 	 */
1016 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1017 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1018 
1019 	if (flags & MAP_LOCKED)
1020 		if (!can_do_mlock())
1021 			return -EPERM;
1022 
1023 	/* mlock MCL_FUTURE? */
1024 	if (vm_flags & VM_LOCKED) {
1025 		unsigned long locked, lock_limit;
1026 		locked = len >> PAGE_SHIFT;
1027 		locked += mm->locked_vm;
1028 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1029 		lock_limit >>= PAGE_SHIFT;
1030 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1031 			return -EAGAIN;
1032 	}
1033 
1034 	inode = file ? file->f_path.dentry->d_inode : NULL;
1035 
1036 	if (file) {
1037 		switch (flags & MAP_TYPE) {
1038 		case MAP_SHARED:
1039 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1040 				return -EACCES;
1041 
1042 			/*
1043 			 * Make sure we don't allow writing to an append-only
1044 			 * file..
1045 			 */
1046 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1047 				return -EACCES;
1048 
1049 			/*
1050 			 * Make sure there are no mandatory locks on the file.
1051 			 */
1052 			if (locks_verify_locked(inode))
1053 				return -EAGAIN;
1054 
1055 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1056 			if (!(file->f_mode & FMODE_WRITE))
1057 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1058 
1059 			/* fall through */
1060 		case MAP_PRIVATE:
1061 			if (!(file->f_mode & FMODE_READ))
1062 				return -EACCES;
1063 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1064 				if (vm_flags & VM_EXEC)
1065 					return -EPERM;
1066 				vm_flags &= ~VM_MAYEXEC;
1067 			}
1068 
1069 			if (!file->f_op || !file->f_op->mmap)
1070 				return -ENODEV;
1071 			break;
1072 
1073 		default:
1074 			return -EINVAL;
1075 		}
1076 	} else {
1077 		switch (flags & MAP_TYPE) {
1078 		case MAP_SHARED:
1079 			/*
1080 			 * Ignore pgoff.
1081 			 */
1082 			pgoff = 0;
1083 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1084 			break;
1085 		case MAP_PRIVATE:
1086 			/*
1087 			 * Set pgoff according to addr for anon_vma.
1088 			 */
1089 			pgoff = addr >> PAGE_SHIFT;
1090 			break;
1091 		default:
1092 			return -EINVAL;
1093 		}
1094 	}
1095 
1096 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1097 	if (error)
1098 		return error;
1099 
1100 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1101 }
1102 EXPORT_SYMBOL(do_mmap_pgoff);
1103 
1104 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1105 		unsigned long, prot, unsigned long, flags,
1106 		unsigned long, fd, unsigned long, pgoff)
1107 {
1108 	struct file *file = NULL;
1109 	unsigned long retval = -EBADF;
1110 
1111 	if (!(flags & MAP_ANONYMOUS)) {
1112 		audit_mmap_fd(fd, flags);
1113 		if (unlikely(flags & MAP_HUGETLB))
1114 			return -EINVAL;
1115 		file = fget(fd);
1116 		if (!file)
1117 			goto out;
1118 	} else if (flags & MAP_HUGETLB) {
1119 		struct user_struct *user = NULL;
1120 		/*
1121 		 * VM_NORESERVE is used because the reservations will be
1122 		 * taken when vm_ops->mmap() is called
1123 		 * A dummy user value is used because we are not locking
1124 		 * memory so no accounting is necessary
1125 		 */
1126 		len = ALIGN(len, huge_page_size(&default_hstate));
1127 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1128 						&user, HUGETLB_ANONHUGE_INODE);
1129 		if (IS_ERR(file))
1130 			return PTR_ERR(file);
1131 	}
1132 
1133 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1134 
1135 	down_write(&current->mm->mmap_sem);
1136 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1137 	up_write(&current->mm->mmap_sem);
1138 
1139 	if (file)
1140 		fput(file);
1141 out:
1142 	return retval;
1143 }
1144 
1145 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1146 struct mmap_arg_struct {
1147 	unsigned long addr;
1148 	unsigned long len;
1149 	unsigned long prot;
1150 	unsigned long flags;
1151 	unsigned long fd;
1152 	unsigned long offset;
1153 };
1154 
1155 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1156 {
1157 	struct mmap_arg_struct a;
1158 
1159 	if (copy_from_user(&a, arg, sizeof(a)))
1160 		return -EFAULT;
1161 	if (a.offset & ~PAGE_MASK)
1162 		return -EINVAL;
1163 
1164 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1165 			      a.offset >> PAGE_SHIFT);
1166 }
1167 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1168 
1169 /*
1170  * Some shared mappigns will want the pages marked read-only
1171  * to track write events. If so, we'll downgrade vm_page_prot
1172  * to the private version (using protection_map[] without the
1173  * VM_SHARED bit).
1174  */
1175 int vma_wants_writenotify(struct vm_area_struct *vma)
1176 {
1177 	unsigned int vm_flags = vma->vm_flags;
1178 
1179 	/* If it was private or non-writable, the write bit is already clear */
1180 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1181 		return 0;
1182 
1183 	/* The backer wishes to know when pages are first written to? */
1184 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1185 		return 1;
1186 
1187 	/* The open routine did something to the protections already? */
1188 	if (pgprot_val(vma->vm_page_prot) !=
1189 	    pgprot_val(vm_get_page_prot(vm_flags)))
1190 		return 0;
1191 
1192 	/* Specialty mapping? */
1193 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1194 		return 0;
1195 
1196 	/* Can the mapping track the dirty pages? */
1197 	return vma->vm_file && vma->vm_file->f_mapping &&
1198 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1199 }
1200 
1201 /*
1202  * We account for memory if it's a private writeable mapping,
1203  * not hugepages and VM_NORESERVE wasn't set.
1204  */
1205 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1206 {
1207 	/*
1208 	 * hugetlb has its own accounting separate from the core VM
1209 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1210 	 */
1211 	if (file && is_file_hugepages(file))
1212 		return 0;
1213 
1214 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1215 }
1216 
1217 unsigned long mmap_region(struct file *file, unsigned long addr,
1218 			  unsigned long len, unsigned long flags,
1219 			  unsigned int vm_flags, unsigned long pgoff)
1220 {
1221 	struct mm_struct *mm = current->mm;
1222 	struct vm_area_struct *vma, *prev;
1223 	int correct_wcount = 0;
1224 	int error;
1225 	struct rb_node **rb_link, *rb_parent;
1226 	unsigned long charged = 0;
1227 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1228 
1229 	/* Clear old maps */
1230 	error = -ENOMEM;
1231 munmap_back:
1232 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1233 	if (vma && vma->vm_start < addr + len) {
1234 		if (do_munmap(mm, addr, len))
1235 			return -ENOMEM;
1236 		goto munmap_back;
1237 	}
1238 
1239 	/* Check against address space limit. */
1240 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1241 		return -ENOMEM;
1242 
1243 	/*
1244 	 * Set 'VM_NORESERVE' if we should not account for the
1245 	 * memory use of this mapping.
1246 	 */
1247 	if ((flags & MAP_NORESERVE)) {
1248 		/* We honor MAP_NORESERVE if allowed to overcommit */
1249 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1250 			vm_flags |= VM_NORESERVE;
1251 
1252 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1253 		if (file && is_file_hugepages(file))
1254 			vm_flags |= VM_NORESERVE;
1255 	}
1256 
1257 	/*
1258 	 * Private writable mapping: check memory availability
1259 	 */
1260 	if (accountable_mapping(file, vm_flags)) {
1261 		charged = len >> PAGE_SHIFT;
1262 		if (security_vm_enough_memory(charged))
1263 			return -ENOMEM;
1264 		vm_flags |= VM_ACCOUNT;
1265 	}
1266 
1267 	/*
1268 	 * Can we just expand an old mapping?
1269 	 */
1270 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1271 	if (vma)
1272 		goto out;
1273 
1274 	/*
1275 	 * Determine the object being mapped and call the appropriate
1276 	 * specific mapper. the address has already been validated, but
1277 	 * not unmapped, but the maps are removed from the list.
1278 	 */
1279 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1280 	if (!vma) {
1281 		error = -ENOMEM;
1282 		goto unacct_error;
1283 	}
1284 
1285 	vma->vm_mm = mm;
1286 	vma->vm_start = addr;
1287 	vma->vm_end = addr + len;
1288 	vma->vm_flags = vm_flags;
1289 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1290 	vma->vm_pgoff = pgoff;
1291 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1292 
1293 	if (file) {
1294 		error = -EINVAL;
1295 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1296 			goto free_vma;
1297 		if (vm_flags & VM_DENYWRITE) {
1298 			error = deny_write_access(file);
1299 			if (error)
1300 				goto free_vma;
1301 			correct_wcount = 1;
1302 		}
1303 		vma->vm_file = file;
1304 		get_file(file);
1305 		error = file->f_op->mmap(file, vma);
1306 		if (error)
1307 			goto unmap_and_free_vma;
1308 		if (vm_flags & VM_EXECUTABLE)
1309 			added_exe_file_vma(mm);
1310 
1311 		/* Can addr have changed??
1312 		 *
1313 		 * Answer: Yes, several device drivers can do it in their
1314 		 *         f_op->mmap method. -DaveM
1315 		 */
1316 		addr = vma->vm_start;
1317 		pgoff = vma->vm_pgoff;
1318 		vm_flags = vma->vm_flags;
1319 	} else if (vm_flags & VM_SHARED) {
1320 		error = shmem_zero_setup(vma);
1321 		if (error)
1322 			goto free_vma;
1323 	}
1324 
1325 	if (vma_wants_writenotify(vma)) {
1326 		pgprot_t pprot = vma->vm_page_prot;
1327 
1328 		/* Can vma->vm_page_prot have changed??
1329 		 *
1330 		 * Answer: Yes, drivers may have changed it in their
1331 		 *         f_op->mmap method.
1332 		 *
1333 		 * Ensures that vmas marked as uncached stay that way.
1334 		 */
1335 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1336 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1337 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1338 	}
1339 
1340 	vma_link(mm, vma, prev, rb_link, rb_parent);
1341 	file = vma->vm_file;
1342 
1343 	/* Once vma denies write, undo our temporary denial count */
1344 	if (correct_wcount)
1345 		atomic_inc(&inode->i_writecount);
1346 out:
1347 	perf_event_mmap(vma);
1348 
1349 	mm->total_vm += len >> PAGE_SHIFT;
1350 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1351 	if (vm_flags & VM_LOCKED) {
1352 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1353 			mm->locked_vm += (len >> PAGE_SHIFT);
1354 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1355 		make_pages_present(addr, addr + len);
1356 	return addr;
1357 
1358 unmap_and_free_vma:
1359 	if (correct_wcount)
1360 		atomic_inc(&inode->i_writecount);
1361 	vma->vm_file = NULL;
1362 	fput(file);
1363 
1364 	/* Undo any partial mapping done by a device driver. */
1365 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1366 	charged = 0;
1367 free_vma:
1368 	kmem_cache_free(vm_area_cachep, vma);
1369 unacct_error:
1370 	if (charged)
1371 		vm_unacct_memory(charged);
1372 	return error;
1373 }
1374 
1375 /* Get an address range which is currently unmapped.
1376  * For shmat() with addr=0.
1377  *
1378  * Ugly calling convention alert:
1379  * Return value with the low bits set means error value,
1380  * ie
1381  *	if (ret & ~PAGE_MASK)
1382  *		error = ret;
1383  *
1384  * This function "knows" that -ENOMEM has the bits set.
1385  */
1386 #ifndef HAVE_ARCH_UNMAPPED_AREA
1387 unsigned long
1388 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1389 		unsigned long len, unsigned long pgoff, unsigned long flags)
1390 {
1391 	struct mm_struct *mm = current->mm;
1392 	struct vm_area_struct *vma;
1393 	unsigned long start_addr;
1394 
1395 	if (len > TASK_SIZE)
1396 		return -ENOMEM;
1397 
1398 	if (flags & MAP_FIXED)
1399 		return addr;
1400 
1401 	if (addr) {
1402 		addr = PAGE_ALIGN(addr);
1403 		vma = find_vma(mm, addr);
1404 		if (TASK_SIZE - len >= addr &&
1405 		    (!vma || addr + len <= vma->vm_start))
1406 			return addr;
1407 	}
1408 	if (len > mm->cached_hole_size) {
1409 	        start_addr = addr = mm->free_area_cache;
1410 	} else {
1411 	        start_addr = addr = TASK_UNMAPPED_BASE;
1412 	        mm->cached_hole_size = 0;
1413 	}
1414 
1415 full_search:
1416 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1417 		/* At this point:  (!vma || addr < vma->vm_end). */
1418 		if (TASK_SIZE - len < addr) {
1419 			/*
1420 			 * Start a new search - just in case we missed
1421 			 * some holes.
1422 			 */
1423 			if (start_addr != TASK_UNMAPPED_BASE) {
1424 				addr = TASK_UNMAPPED_BASE;
1425 			        start_addr = addr;
1426 				mm->cached_hole_size = 0;
1427 				goto full_search;
1428 			}
1429 			return -ENOMEM;
1430 		}
1431 		if (!vma || addr + len <= vma->vm_start) {
1432 			/*
1433 			 * Remember the place where we stopped the search:
1434 			 */
1435 			mm->free_area_cache = addr + len;
1436 			return addr;
1437 		}
1438 		if (addr + mm->cached_hole_size < vma->vm_start)
1439 		        mm->cached_hole_size = vma->vm_start - addr;
1440 		addr = vma->vm_end;
1441 	}
1442 }
1443 #endif
1444 
1445 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1446 {
1447 	/*
1448 	 * Is this a new hole at the lowest possible address?
1449 	 */
1450 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1451 		mm->free_area_cache = addr;
1452 		mm->cached_hole_size = ~0UL;
1453 	}
1454 }
1455 
1456 /*
1457  * This mmap-allocator allocates new areas top-down from below the
1458  * stack's low limit (the base):
1459  */
1460 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1461 unsigned long
1462 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1463 			  const unsigned long len, const unsigned long pgoff,
1464 			  const unsigned long flags)
1465 {
1466 	struct vm_area_struct *vma;
1467 	struct mm_struct *mm = current->mm;
1468 	unsigned long addr = addr0;
1469 
1470 	/* requested length too big for entire address space */
1471 	if (len > TASK_SIZE)
1472 		return -ENOMEM;
1473 
1474 	if (flags & MAP_FIXED)
1475 		return addr;
1476 
1477 	/* requesting a specific address */
1478 	if (addr) {
1479 		addr = PAGE_ALIGN(addr);
1480 		vma = find_vma(mm, addr);
1481 		if (TASK_SIZE - len >= addr &&
1482 				(!vma || addr + len <= vma->vm_start))
1483 			return addr;
1484 	}
1485 
1486 	/* check if free_area_cache is useful for us */
1487 	if (len <= mm->cached_hole_size) {
1488  	        mm->cached_hole_size = 0;
1489  		mm->free_area_cache = mm->mmap_base;
1490  	}
1491 
1492 	/* either no address requested or can't fit in requested address hole */
1493 	addr = mm->free_area_cache;
1494 
1495 	/* make sure it can fit in the remaining address space */
1496 	if (addr > len) {
1497 		vma = find_vma(mm, addr-len);
1498 		if (!vma || addr <= vma->vm_start)
1499 			/* remember the address as a hint for next time */
1500 			return (mm->free_area_cache = addr-len);
1501 	}
1502 
1503 	if (mm->mmap_base < len)
1504 		goto bottomup;
1505 
1506 	addr = mm->mmap_base-len;
1507 
1508 	do {
1509 		/*
1510 		 * Lookup failure means no vma is above this address,
1511 		 * else if new region fits below vma->vm_start,
1512 		 * return with success:
1513 		 */
1514 		vma = find_vma(mm, addr);
1515 		if (!vma || addr+len <= vma->vm_start)
1516 			/* remember the address as a hint for next time */
1517 			return (mm->free_area_cache = addr);
1518 
1519  		/* remember the largest hole we saw so far */
1520  		if (addr + mm->cached_hole_size < vma->vm_start)
1521  		        mm->cached_hole_size = vma->vm_start - addr;
1522 
1523 		/* try just below the current vma->vm_start */
1524 		addr = vma->vm_start-len;
1525 	} while (len < vma->vm_start);
1526 
1527 bottomup:
1528 	/*
1529 	 * A failed mmap() very likely causes application failure,
1530 	 * so fall back to the bottom-up function here. This scenario
1531 	 * can happen with large stack limits and large mmap()
1532 	 * allocations.
1533 	 */
1534 	mm->cached_hole_size = ~0UL;
1535   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1536 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1537 	/*
1538 	 * Restore the topdown base:
1539 	 */
1540 	mm->free_area_cache = mm->mmap_base;
1541 	mm->cached_hole_size = ~0UL;
1542 
1543 	return addr;
1544 }
1545 #endif
1546 
1547 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1548 {
1549 	/*
1550 	 * Is this a new hole at the highest possible address?
1551 	 */
1552 	if (addr > mm->free_area_cache)
1553 		mm->free_area_cache = addr;
1554 
1555 	/* dont allow allocations above current base */
1556 	if (mm->free_area_cache > mm->mmap_base)
1557 		mm->free_area_cache = mm->mmap_base;
1558 }
1559 
1560 unsigned long
1561 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1562 		unsigned long pgoff, unsigned long flags)
1563 {
1564 	unsigned long (*get_area)(struct file *, unsigned long,
1565 				  unsigned long, unsigned long, unsigned long);
1566 
1567 	unsigned long error = arch_mmap_check(addr, len, flags);
1568 	if (error)
1569 		return error;
1570 
1571 	/* Careful about overflows.. */
1572 	if (len > TASK_SIZE)
1573 		return -ENOMEM;
1574 
1575 	get_area = current->mm->get_unmapped_area;
1576 	if (file && file->f_op && file->f_op->get_unmapped_area)
1577 		get_area = file->f_op->get_unmapped_area;
1578 	addr = get_area(file, addr, len, pgoff, flags);
1579 	if (IS_ERR_VALUE(addr))
1580 		return addr;
1581 
1582 	if (addr > TASK_SIZE - len)
1583 		return -ENOMEM;
1584 	if (addr & ~PAGE_MASK)
1585 		return -EINVAL;
1586 
1587 	return arch_rebalance_pgtables(addr, len);
1588 }
1589 
1590 EXPORT_SYMBOL(get_unmapped_area);
1591 
1592 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1593 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1594 {
1595 	struct vm_area_struct *vma = NULL;
1596 
1597 	if (mm) {
1598 		/* Check the cache first. */
1599 		/* (Cache hit rate is typically around 35%.) */
1600 		vma = mm->mmap_cache;
1601 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1602 			struct rb_node * rb_node;
1603 
1604 			rb_node = mm->mm_rb.rb_node;
1605 			vma = NULL;
1606 
1607 			while (rb_node) {
1608 				struct vm_area_struct * vma_tmp;
1609 
1610 				vma_tmp = rb_entry(rb_node,
1611 						struct vm_area_struct, vm_rb);
1612 
1613 				if (vma_tmp->vm_end > addr) {
1614 					vma = vma_tmp;
1615 					if (vma_tmp->vm_start <= addr)
1616 						break;
1617 					rb_node = rb_node->rb_left;
1618 				} else
1619 					rb_node = rb_node->rb_right;
1620 			}
1621 			if (vma)
1622 				mm->mmap_cache = vma;
1623 		}
1624 	}
1625 	return vma;
1626 }
1627 
1628 EXPORT_SYMBOL(find_vma);
1629 
1630 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1631 struct vm_area_struct *
1632 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1633 			struct vm_area_struct **pprev)
1634 {
1635 	struct vm_area_struct *vma = NULL, *prev = NULL;
1636 	struct rb_node *rb_node;
1637 	if (!mm)
1638 		goto out;
1639 
1640 	/* Guard against addr being lower than the first VMA */
1641 	vma = mm->mmap;
1642 
1643 	/* Go through the RB tree quickly. */
1644 	rb_node = mm->mm_rb.rb_node;
1645 
1646 	while (rb_node) {
1647 		struct vm_area_struct *vma_tmp;
1648 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1649 
1650 		if (addr < vma_tmp->vm_end) {
1651 			rb_node = rb_node->rb_left;
1652 		} else {
1653 			prev = vma_tmp;
1654 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1655 				break;
1656 			rb_node = rb_node->rb_right;
1657 		}
1658 	}
1659 
1660 out:
1661 	*pprev = prev;
1662 	return prev ? prev->vm_next : vma;
1663 }
1664 
1665 /*
1666  * Verify that the stack growth is acceptable and
1667  * update accounting. This is shared with both the
1668  * grow-up and grow-down cases.
1669  */
1670 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1671 {
1672 	struct mm_struct *mm = vma->vm_mm;
1673 	struct rlimit *rlim = current->signal->rlim;
1674 	unsigned long new_start;
1675 
1676 	/* address space limit tests */
1677 	if (!may_expand_vm(mm, grow))
1678 		return -ENOMEM;
1679 
1680 	/* Stack limit test */
1681 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1682 		return -ENOMEM;
1683 
1684 	/* mlock limit tests */
1685 	if (vma->vm_flags & VM_LOCKED) {
1686 		unsigned long locked;
1687 		unsigned long limit;
1688 		locked = mm->locked_vm + grow;
1689 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1690 		limit >>= PAGE_SHIFT;
1691 		if (locked > limit && !capable(CAP_IPC_LOCK))
1692 			return -ENOMEM;
1693 	}
1694 
1695 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1696 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1697 			vma->vm_end - size;
1698 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1699 		return -EFAULT;
1700 
1701 	/*
1702 	 * Overcommit..  This must be the final test, as it will
1703 	 * update security statistics.
1704 	 */
1705 	if (security_vm_enough_memory_mm(mm, grow))
1706 		return -ENOMEM;
1707 
1708 	/* Ok, everything looks good - let it rip */
1709 	mm->total_vm += grow;
1710 	if (vma->vm_flags & VM_LOCKED)
1711 		mm->locked_vm += grow;
1712 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1713 	return 0;
1714 }
1715 
1716 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1717 /*
1718  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1719  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1720  */
1721 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1722 {
1723 	int error;
1724 
1725 	if (!(vma->vm_flags & VM_GROWSUP))
1726 		return -EFAULT;
1727 
1728 	/*
1729 	 * We must make sure the anon_vma is allocated
1730 	 * so that the anon_vma locking is not a noop.
1731 	 */
1732 	if (unlikely(anon_vma_prepare(vma)))
1733 		return -ENOMEM;
1734 	vma_lock_anon_vma(vma);
1735 
1736 	/*
1737 	 * vma->vm_start/vm_end cannot change under us because the caller
1738 	 * is required to hold the mmap_sem in read mode.  We need the
1739 	 * anon_vma lock to serialize against concurrent expand_stacks.
1740 	 * Also guard against wrapping around to address 0.
1741 	 */
1742 	if (address < PAGE_ALIGN(address+4))
1743 		address = PAGE_ALIGN(address+4);
1744 	else {
1745 		vma_unlock_anon_vma(vma);
1746 		return -ENOMEM;
1747 	}
1748 	error = 0;
1749 
1750 	/* Somebody else might have raced and expanded it already */
1751 	if (address > vma->vm_end) {
1752 		unsigned long size, grow;
1753 
1754 		size = address - vma->vm_start;
1755 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1756 
1757 		error = acct_stack_growth(vma, size, grow);
1758 		if (!error) {
1759 			vma->vm_end = address;
1760 			perf_event_mmap(vma);
1761 		}
1762 	}
1763 	vma_unlock_anon_vma(vma);
1764 	return error;
1765 }
1766 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1767 
1768 /*
1769  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1770  */
1771 static int expand_downwards(struct vm_area_struct *vma,
1772 				   unsigned long address)
1773 {
1774 	int error;
1775 
1776 	/*
1777 	 * We must make sure the anon_vma is allocated
1778 	 * so that the anon_vma locking is not a noop.
1779 	 */
1780 	if (unlikely(anon_vma_prepare(vma)))
1781 		return -ENOMEM;
1782 
1783 	address &= PAGE_MASK;
1784 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1785 	if (error)
1786 		return error;
1787 
1788 	vma_lock_anon_vma(vma);
1789 
1790 	/*
1791 	 * vma->vm_start/vm_end cannot change under us because the caller
1792 	 * is required to hold the mmap_sem in read mode.  We need the
1793 	 * anon_vma lock to serialize against concurrent expand_stacks.
1794 	 */
1795 
1796 	/* Somebody else might have raced and expanded it already */
1797 	if (address < vma->vm_start) {
1798 		unsigned long size, grow;
1799 
1800 		size = vma->vm_end - address;
1801 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1802 
1803 		error = acct_stack_growth(vma, size, grow);
1804 		if (!error) {
1805 			vma->vm_start = address;
1806 			vma->vm_pgoff -= grow;
1807 			perf_event_mmap(vma);
1808 		}
1809 	}
1810 	vma_unlock_anon_vma(vma);
1811 	return error;
1812 }
1813 
1814 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1815 {
1816 	return expand_downwards(vma, address);
1817 }
1818 
1819 #ifdef CONFIG_STACK_GROWSUP
1820 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1821 {
1822 	return expand_upwards(vma, address);
1823 }
1824 
1825 struct vm_area_struct *
1826 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1827 {
1828 	struct vm_area_struct *vma, *prev;
1829 
1830 	addr &= PAGE_MASK;
1831 	vma = find_vma_prev(mm, addr, &prev);
1832 	if (vma && (vma->vm_start <= addr))
1833 		return vma;
1834 	if (!prev || expand_stack(prev, addr))
1835 		return NULL;
1836 	if (prev->vm_flags & VM_LOCKED) {
1837 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1838 	}
1839 	return prev;
1840 }
1841 #else
1842 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1843 {
1844 	return expand_downwards(vma, address);
1845 }
1846 
1847 struct vm_area_struct *
1848 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1849 {
1850 	struct vm_area_struct * vma;
1851 	unsigned long start;
1852 
1853 	addr &= PAGE_MASK;
1854 	vma = find_vma(mm,addr);
1855 	if (!vma)
1856 		return NULL;
1857 	if (vma->vm_start <= addr)
1858 		return vma;
1859 	if (!(vma->vm_flags & VM_GROWSDOWN))
1860 		return NULL;
1861 	start = vma->vm_start;
1862 	if (expand_stack(vma, addr))
1863 		return NULL;
1864 	if (vma->vm_flags & VM_LOCKED) {
1865 		mlock_vma_pages_range(vma, addr, start);
1866 	}
1867 	return vma;
1868 }
1869 #endif
1870 
1871 /*
1872  * Ok - we have the memory areas we should free on the vma list,
1873  * so release them, and do the vma updates.
1874  *
1875  * Called with the mm semaphore held.
1876  */
1877 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1878 {
1879 	/* Update high watermark before we lower total_vm */
1880 	update_hiwater_vm(mm);
1881 	do {
1882 		long nrpages = vma_pages(vma);
1883 
1884 		mm->total_vm -= nrpages;
1885 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1886 		vma = remove_vma(vma);
1887 	} while (vma);
1888 	validate_mm(mm);
1889 }
1890 
1891 /*
1892  * Get rid of page table information in the indicated region.
1893  *
1894  * Called with the mm semaphore held.
1895  */
1896 static void unmap_region(struct mm_struct *mm,
1897 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1898 		unsigned long start, unsigned long end)
1899 {
1900 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1901 	struct mmu_gather *tlb;
1902 	unsigned long nr_accounted = 0;
1903 
1904 	lru_add_drain();
1905 	tlb = tlb_gather_mmu(mm, 0);
1906 	update_hiwater_rss(mm);
1907 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1908 	vm_unacct_memory(nr_accounted);
1909 	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1910 				 next? next->vm_start: 0);
1911 	tlb_finish_mmu(tlb, start, end);
1912 }
1913 
1914 /*
1915  * Create a list of vma's touched by the unmap, removing them from the mm's
1916  * vma list as we go..
1917  */
1918 static void
1919 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1920 	struct vm_area_struct *prev, unsigned long end)
1921 {
1922 	struct vm_area_struct **insertion_point;
1923 	struct vm_area_struct *tail_vma = NULL;
1924 	unsigned long addr;
1925 
1926 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1927 	vma->vm_prev = NULL;
1928 	do {
1929 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1930 		mm->map_count--;
1931 		tail_vma = vma;
1932 		vma = vma->vm_next;
1933 	} while (vma && vma->vm_start < end);
1934 	*insertion_point = vma;
1935 	if (vma)
1936 		vma->vm_prev = prev;
1937 	tail_vma->vm_next = NULL;
1938 	if (mm->unmap_area == arch_unmap_area)
1939 		addr = prev ? prev->vm_end : mm->mmap_base;
1940 	else
1941 		addr = vma ?  vma->vm_start : mm->mmap_base;
1942 	mm->unmap_area(mm, addr);
1943 	mm->mmap_cache = NULL;		/* Kill the cache. */
1944 }
1945 
1946 /*
1947  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1948  * munmap path where it doesn't make sense to fail.
1949  */
1950 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1951 	      unsigned long addr, int new_below)
1952 {
1953 	struct mempolicy *pol;
1954 	struct vm_area_struct *new;
1955 	int err = -ENOMEM;
1956 
1957 	if (is_vm_hugetlb_page(vma) && (addr &
1958 					~(huge_page_mask(hstate_vma(vma)))))
1959 		return -EINVAL;
1960 
1961 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1962 	if (!new)
1963 		goto out_err;
1964 
1965 	/* most fields are the same, copy all, and then fixup */
1966 	*new = *vma;
1967 
1968 	INIT_LIST_HEAD(&new->anon_vma_chain);
1969 
1970 	if (new_below)
1971 		new->vm_end = addr;
1972 	else {
1973 		new->vm_start = addr;
1974 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1975 	}
1976 
1977 	pol = mpol_dup(vma_policy(vma));
1978 	if (IS_ERR(pol)) {
1979 		err = PTR_ERR(pol);
1980 		goto out_free_vma;
1981 	}
1982 	vma_set_policy(new, pol);
1983 
1984 	if (anon_vma_clone(new, vma))
1985 		goto out_free_mpol;
1986 
1987 	if (new->vm_file) {
1988 		get_file(new->vm_file);
1989 		if (vma->vm_flags & VM_EXECUTABLE)
1990 			added_exe_file_vma(mm);
1991 	}
1992 
1993 	if (new->vm_ops && new->vm_ops->open)
1994 		new->vm_ops->open(new);
1995 
1996 	if (new_below)
1997 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1998 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1999 	else
2000 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2001 
2002 	/* Success. */
2003 	if (!err)
2004 		return 0;
2005 
2006 	/* Clean everything up if vma_adjust failed. */
2007 	if (new->vm_ops && new->vm_ops->close)
2008 		new->vm_ops->close(new);
2009 	if (new->vm_file) {
2010 		if (vma->vm_flags & VM_EXECUTABLE)
2011 			removed_exe_file_vma(mm);
2012 		fput(new->vm_file);
2013 	}
2014 	unlink_anon_vmas(new);
2015  out_free_mpol:
2016 	mpol_put(pol);
2017  out_free_vma:
2018 	kmem_cache_free(vm_area_cachep, new);
2019  out_err:
2020 	return err;
2021 }
2022 
2023 /*
2024  * Split a vma into two pieces at address 'addr', a new vma is allocated
2025  * either for the first part or the tail.
2026  */
2027 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2028 	      unsigned long addr, int new_below)
2029 {
2030 	if (mm->map_count >= sysctl_max_map_count)
2031 		return -ENOMEM;
2032 
2033 	return __split_vma(mm, vma, addr, new_below);
2034 }
2035 
2036 /* Munmap is split into 2 main parts -- this part which finds
2037  * what needs doing, and the areas themselves, which do the
2038  * work.  This now handles partial unmappings.
2039  * Jeremy Fitzhardinge <jeremy@goop.org>
2040  */
2041 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2042 {
2043 	unsigned long end;
2044 	struct vm_area_struct *vma, *prev, *last;
2045 
2046 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2047 		return -EINVAL;
2048 
2049 	if ((len = PAGE_ALIGN(len)) == 0)
2050 		return -EINVAL;
2051 
2052 	/* Find the first overlapping VMA */
2053 	vma = find_vma_prev(mm, start, &prev);
2054 	if (!vma)
2055 		return 0;
2056 	/* we have  start < vma->vm_end  */
2057 
2058 	/* if it doesn't overlap, we have nothing.. */
2059 	end = start + len;
2060 	if (vma->vm_start >= end)
2061 		return 0;
2062 
2063 	/*
2064 	 * If we need to split any vma, do it now to save pain later.
2065 	 *
2066 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2067 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2068 	 * places tmp vma above, and higher split_vma places tmp vma below.
2069 	 */
2070 	if (start > vma->vm_start) {
2071 		int error;
2072 
2073 		/*
2074 		 * Make sure that map_count on return from munmap() will
2075 		 * not exceed its limit; but let map_count go just above
2076 		 * its limit temporarily, to help free resources as expected.
2077 		 */
2078 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2079 			return -ENOMEM;
2080 
2081 		error = __split_vma(mm, vma, start, 0);
2082 		if (error)
2083 			return error;
2084 		prev = vma;
2085 	}
2086 
2087 	/* Does it split the last one? */
2088 	last = find_vma(mm, end);
2089 	if (last && end > last->vm_start) {
2090 		int error = __split_vma(mm, last, end, 1);
2091 		if (error)
2092 			return error;
2093 	}
2094 	vma = prev? prev->vm_next: mm->mmap;
2095 
2096 	/*
2097 	 * unlock any mlock()ed ranges before detaching vmas
2098 	 */
2099 	if (mm->locked_vm) {
2100 		struct vm_area_struct *tmp = vma;
2101 		while (tmp && tmp->vm_start < end) {
2102 			if (tmp->vm_flags & VM_LOCKED) {
2103 				mm->locked_vm -= vma_pages(tmp);
2104 				munlock_vma_pages_all(tmp);
2105 			}
2106 			tmp = tmp->vm_next;
2107 		}
2108 	}
2109 
2110 	/*
2111 	 * Remove the vma's, and unmap the actual pages
2112 	 */
2113 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2114 	unmap_region(mm, vma, prev, start, end);
2115 
2116 	/* Fix up all other VM information */
2117 	remove_vma_list(mm, vma);
2118 
2119 	return 0;
2120 }
2121 
2122 EXPORT_SYMBOL(do_munmap);
2123 
2124 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2125 {
2126 	int ret;
2127 	struct mm_struct *mm = current->mm;
2128 
2129 	profile_munmap(addr);
2130 
2131 	down_write(&mm->mmap_sem);
2132 	ret = do_munmap(mm, addr, len);
2133 	up_write(&mm->mmap_sem);
2134 	return ret;
2135 }
2136 
2137 static inline void verify_mm_writelocked(struct mm_struct *mm)
2138 {
2139 #ifdef CONFIG_DEBUG_VM
2140 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2141 		WARN_ON(1);
2142 		up_read(&mm->mmap_sem);
2143 	}
2144 #endif
2145 }
2146 
2147 /*
2148  *  this is really a simplified "do_mmap".  it only handles
2149  *  anonymous maps.  eventually we may be able to do some
2150  *  brk-specific accounting here.
2151  */
2152 unsigned long do_brk(unsigned long addr, unsigned long len)
2153 {
2154 	struct mm_struct * mm = current->mm;
2155 	struct vm_area_struct * vma, * prev;
2156 	unsigned long flags;
2157 	struct rb_node ** rb_link, * rb_parent;
2158 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2159 	int error;
2160 
2161 	len = PAGE_ALIGN(len);
2162 	if (!len)
2163 		return addr;
2164 
2165 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2166 	if (error)
2167 		return error;
2168 
2169 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2170 
2171 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2172 	if (error & ~PAGE_MASK)
2173 		return error;
2174 
2175 	/*
2176 	 * mlock MCL_FUTURE?
2177 	 */
2178 	if (mm->def_flags & VM_LOCKED) {
2179 		unsigned long locked, lock_limit;
2180 		locked = len >> PAGE_SHIFT;
2181 		locked += mm->locked_vm;
2182 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2183 		lock_limit >>= PAGE_SHIFT;
2184 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2185 			return -EAGAIN;
2186 	}
2187 
2188 	/*
2189 	 * mm->mmap_sem is required to protect against another thread
2190 	 * changing the mappings in case we sleep.
2191 	 */
2192 	verify_mm_writelocked(mm);
2193 
2194 	/*
2195 	 * Clear old maps.  this also does some error checking for us
2196 	 */
2197  munmap_back:
2198 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2199 	if (vma && vma->vm_start < addr + len) {
2200 		if (do_munmap(mm, addr, len))
2201 			return -ENOMEM;
2202 		goto munmap_back;
2203 	}
2204 
2205 	/* Check against address space limits *after* clearing old maps... */
2206 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2207 		return -ENOMEM;
2208 
2209 	if (mm->map_count > sysctl_max_map_count)
2210 		return -ENOMEM;
2211 
2212 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2213 		return -ENOMEM;
2214 
2215 	/* Can we just expand an old private anonymous mapping? */
2216 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2217 					NULL, NULL, pgoff, NULL);
2218 	if (vma)
2219 		goto out;
2220 
2221 	/*
2222 	 * create a vma struct for an anonymous mapping
2223 	 */
2224 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2225 	if (!vma) {
2226 		vm_unacct_memory(len >> PAGE_SHIFT);
2227 		return -ENOMEM;
2228 	}
2229 
2230 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2231 	vma->vm_mm = mm;
2232 	vma->vm_start = addr;
2233 	vma->vm_end = addr + len;
2234 	vma->vm_pgoff = pgoff;
2235 	vma->vm_flags = flags;
2236 	vma->vm_page_prot = vm_get_page_prot(flags);
2237 	vma_link(mm, vma, prev, rb_link, rb_parent);
2238 out:
2239 	perf_event_mmap(vma);
2240 	mm->total_vm += len >> PAGE_SHIFT;
2241 	if (flags & VM_LOCKED) {
2242 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2243 			mm->locked_vm += (len >> PAGE_SHIFT);
2244 	}
2245 	return addr;
2246 }
2247 
2248 EXPORT_SYMBOL(do_brk);
2249 
2250 /* Release all mmaps. */
2251 void exit_mmap(struct mm_struct *mm)
2252 {
2253 	struct mmu_gather *tlb;
2254 	struct vm_area_struct *vma;
2255 	unsigned long nr_accounted = 0;
2256 	unsigned long end;
2257 
2258 	/* mm's last user has gone, and its about to be pulled down */
2259 	mmu_notifier_release(mm);
2260 
2261 	if (mm->locked_vm) {
2262 		vma = mm->mmap;
2263 		while (vma) {
2264 			if (vma->vm_flags & VM_LOCKED)
2265 				munlock_vma_pages_all(vma);
2266 			vma = vma->vm_next;
2267 		}
2268 	}
2269 
2270 	arch_exit_mmap(mm);
2271 
2272 	vma = mm->mmap;
2273 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2274 		return;
2275 
2276 	lru_add_drain();
2277 	flush_cache_mm(mm);
2278 	tlb = tlb_gather_mmu(mm, 1);
2279 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2280 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2281 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2282 	vm_unacct_memory(nr_accounted);
2283 
2284 	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2285 	tlb_finish_mmu(tlb, 0, end);
2286 
2287 	/*
2288 	 * Walk the list again, actually closing and freeing it,
2289 	 * with preemption enabled, without holding any MM locks.
2290 	 */
2291 	while (vma)
2292 		vma = remove_vma(vma);
2293 
2294 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2295 }
2296 
2297 /* Insert vm structure into process list sorted by address
2298  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2299  * then i_mmap_lock is taken here.
2300  */
2301 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2302 {
2303 	struct vm_area_struct * __vma, * prev;
2304 	struct rb_node ** rb_link, * rb_parent;
2305 
2306 	/*
2307 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2308 	 * until its first write fault, when page's anon_vma and index
2309 	 * are set.  But now set the vm_pgoff it will almost certainly
2310 	 * end up with (unless mremap moves it elsewhere before that
2311 	 * first wfault), so /proc/pid/maps tells a consistent story.
2312 	 *
2313 	 * By setting it to reflect the virtual start address of the
2314 	 * vma, merges and splits can happen in a seamless way, just
2315 	 * using the existing file pgoff checks and manipulations.
2316 	 * Similarly in do_mmap_pgoff and in do_brk.
2317 	 */
2318 	if (!vma->vm_file) {
2319 		BUG_ON(vma->anon_vma);
2320 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2321 	}
2322 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2323 	if (__vma && __vma->vm_start < vma->vm_end)
2324 		return -ENOMEM;
2325 	if ((vma->vm_flags & VM_ACCOUNT) &&
2326 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2327 		return -ENOMEM;
2328 	vma_link(mm, vma, prev, rb_link, rb_parent);
2329 	return 0;
2330 }
2331 
2332 /*
2333  * Copy the vma structure to a new location in the same mm,
2334  * prior to moving page table entries, to effect an mremap move.
2335  */
2336 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2337 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2338 {
2339 	struct vm_area_struct *vma = *vmap;
2340 	unsigned long vma_start = vma->vm_start;
2341 	struct mm_struct *mm = vma->vm_mm;
2342 	struct vm_area_struct *new_vma, *prev;
2343 	struct rb_node **rb_link, *rb_parent;
2344 	struct mempolicy *pol;
2345 
2346 	/*
2347 	 * If anonymous vma has not yet been faulted, update new pgoff
2348 	 * to match new location, to increase its chance of merging.
2349 	 */
2350 	if (!vma->vm_file && !vma->anon_vma)
2351 		pgoff = addr >> PAGE_SHIFT;
2352 
2353 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2354 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2355 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2356 	if (new_vma) {
2357 		/*
2358 		 * Source vma may have been merged into new_vma
2359 		 */
2360 		if (vma_start >= new_vma->vm_start &&
2361 		    vma_start < new_vma->vm_end)
2362 			*vmap = new_vma;
2363 	} else {
2364 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2365 		if (new_vma) {
2366 			*new_vma = *vma;
2367 			pol = mpol_dup(vma_policy(vma));
2368 			if (IS_ERR(pol))
2369 				goto out_free_vma;
2370 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2371 			if (anon_vma_clone(new_vma, vma))
2372 				goto out_free_mempol;
2373 			vma_set_policy(new_vma, pol);
2374 			new_vma->vm_start = addr;
2375 			new_vma->vm_end = addr + len;
2376 			new_vma->vm_pgoff = pgoff;
2377 			if (new_vma->vm_file) {
2378 				get_file(new_vma->vm_file);
2379 				if (vma->vm_flags & VM_EXECUTABLE)
2380 					added_exe_file_vma(mm);
2381 			}
2382 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2383 				new_vma->vm_ops->open(new_vma);
2384 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2385 		}
2386 	}
2387 	return new_vma;
2388 
2389  out_free_mempol:
2390 	mpol_put(pol);
2391  out_free_vma:
2392 	kmem_cache_free(vm_area_cachep, new_vma);
2393 	return NULL;
2394 }
2395 
2396 /*
2397  * Return true if the calling process may expand its vm space by the passed
2398  * number of pages
2399  */
2400 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2401 {
2402 	unsigned long cur = mm->total_vm;	/* pages */
2403 	unsigned long lim;
2404 
2405 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2406 
2407 	if (cur + npages > lim)
2408 		return 0;
2409 	return 1;
2410 }
2411 
2412 
2413 static int special_mapping_fault(struct vm_area_struct *vma,
2414 				struct vm_fault *vmf)
2415 {
2416 	pgoff_t pgoff;
2417 	struct page **pages;
2418 
2419 	/*
2420 	 * special mappings have no vm_file, and in that case, the mm
2421 	 * uses vm_pgoff internally. So we have to subtract it from here.
2422 	 * We are allowed to do this because we are the mm; do not copy
2423 	 * this code into drivers!
2424 	 */
2425 	pgoff = vmf->pgoff - vma->vm_pgoff;
2426 
2427 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2428 		pgoff--;
2429 
2430 	if (*pages) {
2431 		struct page *page = *pages;
2432 		get_page(page);
2433 		vmf->page = page;
2434 		return 0;
2435 	}
2436 
2437 	return VM_FAULT_SIGBUS;
2438 }
2439 
2440 /*
2441  * Having a close hook prevents vma merging regardless of flags.
2442  */
2443 static void special_mapping_close(struct vm_area_struct *vma)
2444 {
2445 }
2446 
2447 static const struct vm_operations_struct special_mapping_vmops = {
2448 	.close = special_mapping_close,
2449 	.fault = special_mapping_fault,
2450 };
2451 
2452 /*
2453  * Called with mm->mmap_sem held for writing.
2454  * Insert a new vma covering the given region, with the given flags.
2455  * Its pages are supplied by the given array of struct page *.
2456  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2457  * The region past the last page supplied will always produce SIGBUS.
2458  * The array pointer and the pages it points to are assumed to stay alive
2459  * for as long as this mapping might exist.
2460  */
2461 int install_special_mapping(struct mm_struct *mm,
2462 			    unsigned long addr, unsigned long len,
2463 			    unsigned long vm_flags, struct page **pages)
2464 {
2465 	int ret;
2466 	struct vm_area_struct *vma;
2467 
2468 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2469 	if (unlikely(vma == NULL))
2470 		return -ENOMEM;
2471 
2472 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2473 	vma->vm_mm = mm;
2474 	vma->vm_start = addr;
2475 	vma->vm_end = addr + len;
2476 
2477 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2478 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2479 
2480 	vma->vm_ops = &special_mapping_vmops;
2481 	vma->vm_private_data = pages;
2482 
2483 	ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2484 	if (ret)
2485 		goto out;
2486 
2487 	ret = insert_vm_struct(mm, vma);
2488 	if (ret)
2489 		goto out;
2490 
2491 	mm->total_vm += len >> PAGE_SHIFT;
2492 
2493 	perf_event_mmap(vma);
2494 
2495 	return 0;
2496 
2497 out:
2498 	kmem_cache_free(vm_area_cachep, vma);
2499 	return ret;
2500 }
2501 
2502 static DEFINE_MUTEX(mm_all_locks_mutex);
2503 
2504 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2505 {
2506 	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2507 		/*
2508 		 * The LSB of head.next can't change from under us
2509 		 * because we hold the mm_all_locks_mutex.
2510 		 */
2511 		spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem);
2512 		/*
2513 		 * We can safely modify head.next after taking the
2514 		 * anon_vma->root->lock. If some other vma in this mm shares
2515 		 * the same anon_vma we won't take it again.
2516 		 *
2517 		 * No need of atomic instructions here, head.next
2518 		 * can't change from under us thanks to the
2519 		 * anon_vma->root->lock.
2520 		 */
2521 		if (__test_and_set_bit(0, (unsigned long *)
2522 				       &anon_vma->root->head.next))
2523 			BUG();
2524 	}
2525 }
2526 
2527 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2528 {
2529 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2530 		/*
2531 		 * AS_MM_ALL_LOCKS can't change from under us because
2532 		 * we hold the mm_all_locks_mutex.
2533 		 *
2534 		 * Operations on ->flags have to be atomic because
2535 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2536 		 * mm_all_locks_mutex, there may be other cpus
2537 		 * changing other bitflags in parallel to us.
2538 		 */
2539 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2540 			BUG();
2541 		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2542 	}
2543 }
2544 
2545 /*
2546  * This operation locks against the VM for all pte/vma/mm related
2547  * operations that could ever happen on a certain mm. This includes
2548  * vmtruncate, try_to_unmap, and all page faults.
2549  *
2550  * The caller must take the mmap_sem in write mode before calling
2551  * mm_take_all_locks(). The caller isn't allowed to release the
2552  * mmap_sem until mm_drop_all_locks() returns.
2553  *
2554  * mmap_sem in write mode is required in order to block all operations
2555  * that could modify pagetables and free pages without need of
2556  * altering the vma layout (for example populate_range() with
2557  * nonlinear vmas). It's also needed in write mode to avoid new
2558  * anon_vmas to be associated with existing vmas.
2559  *
2560  * A single task can't take more than one mm_take_all_locks() in a row
2561  * or it would deadlock.
2562  *
2563  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2564  * mapping->flags avoid to take the same lock twice, if more than one
2565  * vma in this mm is backed by the same anon_vma or address_space.
2566  *
2567  * We can take all the locks in random order because the VM code
2568  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2569  * takes more than one of them in a row. Secondly we're protected
2570  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2571  *
2572  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2573  * that may have to take thousand of locks.
2574  *
2575  * mm_take_all_locks() can fail if it's interrupted by signals.
2576  */
2577 int mm_take_all_locks(struct mm_struct *mm)
2578 {
2579 	struct vm_area_struct *vma;
2580 	struct anon_vma_chain *avc;
2581 	int ret = -EINTR;
2582 
2583 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2584 
2585 	mutex_lock(&mm_all_locks_mutex);
2586 
2587 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2588 		if (signal_pending(current))
2589 			goto out_unlock;
2590 		if (vma->vm_file && vma->vm_file->f_mapping)
2591 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2592 	}
2593 
2594 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2595 		if (signal_pending(current))
2596 			goto out_unlock;
2597 		if (vma->anon_vma)
2598 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2599 				vm_lock_anon_vma(mm, avc->anon_vma);
2600 	}
2601 
2602 	ret = 0;
2603 
2604 out_unlock:
2605 	if (ret)
2606 		mm_drop_all_locks(mm);
2607 
2608 	return ret;
2609 }
2610 
2611 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2612 {
2613 	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2614 		/*
2615 		 * The LSB of head.next can't change to 0 from under
2616 		 * us because we hold the mm_all_locks_mutex.
2617 		 *
2618 		 * We must however clear the bitflag before unlocking
2619 		 * the vma so the users using the anon_vma->head will
2620 		 * never see our bitflag.
2621 		 *
2622 		 * No need of atomic instructions here, head.next
2623 		 * can't change from under us until we release the
2624 		 * anon_vma->root->lock.
2625 		 */
2626 		if (!__test_and_clear_bit(0, (unsigned long *)
2627 					  &anon_vma->root->head.next))
2628 			BUG();
2629 		anon_vma_unlock(anon_vma);
2630 	}
2631 }
2632 
2633 static void vm_unlock_mapping(struct address_space *mapping)
2634 {
2635 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2636 		/*
2637 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2638 		 * because we hold the mm_all_locks_mutex.
2639 		 */
2640 		spin_unlock(&mapping->i_mmap_lock);
2641 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2642 					&mapping->flags))
2643 			BUG();
2644 	}
2645 }
2646 
2647 /*
2648  * The mmap_sem cannot be released by the caller until
2649  * mm_drop_all_locks() returns.
2650  */
2651 void mm_drop_all_locks(struct mm_struct *mm)
2652 {
2653 	struct vm_area_struct *vma;
2654 	struct anon_vma_chain *avc;
2655 
2656 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2657 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2658 
2659 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2660 		if (vma->anon_vma)
2661 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2662 				vm_unlock_anon_vma(avc->anon_vma);
2663 		if (vma->vm_file && vma->vm_file->f_mapping)
2664 			vm_unlock_mapping(vma->vm_file->f_mapping);
2665 	}
2666 
2667 	mutex_unlock(&mm_all_locks_mutex);
2668 }
2669 
2670 /*
2671  * initialise the VMA slab
2672  */
2673 void __init mmap_init(void)
2674 {
2675 	int ret;
2676 
2677 	ret = percpu_counter_init(&vm_committed_as, 0);
2678 	VM_BUG_ON(ret);
2679 }
2680