xref: /openbmc/linux/mm/mmap.c (revision b664e06d)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54 
55 #include "internal.h"
56 
57 #ifndef arch_mmap_check
58 #define arch_mmap_check(addr, len, flags)	(0)
59 #endif
60 
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71 
72 static bool ignore_rlimit_data;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
74 
75 static void unmap_region(struct mm_struct *mm,
76 		struct vm_area_struct *vma, struct vm_area_struct *prev,
77 		unsigned long start, unsigned long end);
78 
79 /* description of effects of mapping type and prot in current implementation.
80  * this is due to the limited x86 page protection hardware.  The expected
81  * behavior is in parens:
82  *
83  * map_type	prot
84  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
85  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
86  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
87  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
88  *
89  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
90  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
91  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
92  *
93  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
94  * MAP_PRIVATE:
95  *								r: (no) no
96  *								w: (no) no
97  *								x: (yes) yes
98  */
99 pgprot_t protection_map[16] __ro_after_init = {
100 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
101 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
102 };
103 
104 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
105 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
106 {
107 	return prot;
108 }
109 #endif
110 
111 pgprot_t vm_get_page_prot(unsigned long vm_flags)
112 {
113 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
114 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
115 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
116 
117 	return arch_filter_pgprot(ret);
118 }
119 EXPORT_SYMBOL(vm_get_page_prot);
120 
121 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
122 {
123 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
124 }
125 
126 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
127 void vma_set_page_prot(struct vm_area_struct *vma)
128 {
129 	unsigned long vm_flags = vma->vm_flags;
130 	pgprot_t vm_page_prot;
131 
132 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
133 	if (vma_wants_writenotify(vma, vm_page_prot)) {
134 		vm_flags &= ~VM_SHARED;
135 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
136 	}
137 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
138 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
139 }
140 
141 /*
142  * Requires inode->i_mapping->i_mmap_rwsem
143  */
144 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
145 		struct file *file, struct address_space *mapping)
146 {
147 	if (vma->vm_flags & VM_DENYWRITE)
148 		atomic_inc(&file_inode(file)->i_writecount);
149 	if (vma->vm_flags & VM_SHARED)
150 		mapping_unmap_writable(mapping);
151 
152 	flush_dcache_mmap_lock(mapping);
153 	vma_interval_tree_remove(vma, &mapping->i_mmap);
154 	flush_dcache_mmap_unlock(mapping);
155 }
156 
157 /*
158  * Unlink a file-based vm structure from its interval tree, to hide
159  * vma from rmap and vmtruncate before freeing its page tables.
160  */
161 void unlink_file_vma(struct vm_area_struct *vma)
162 {
163 	struct file *file = vma->vm_file;
164 
165 	if (file) {
166 		struct address_space *mapping = file->f_mapping;
167 		i_mmap_lock_write(mapping);
168 		__remove_shared_vm_struct(vma, file, mapping);
169 		i_mmap_unlock_write(mapping);
170 	}
171 }
172 
173 /*
174  * Close a vm structure and free it, returning the next.
175  */
176 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
177 {
178 	struct vm_area_struct *next = vma->vm_next;
179 
180 	might_sleep();
181 	if (vma->vm_ops && vma->vm_ops->close)
182 		vma->vm_ops->close(vma);
183 	if (vma->vm_file)
184 		fput(vma->vm_file);
185 	mpol_put(vma_policy(vma));
186 	vm_area_free(vma);
187 	return next;
188 }
189 
190 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
191 		struct list_head *uf);
192 SYSCALL_DEFINE1(brk, unsigned long, brk)
193 {
194 	unsigned long retval;
195 	unsigned long newbrk, oldbrk, origbrk;
196 	struct mm_struct *mm = current->mm;
197 	struct vm_area_struct *next;
198 	unsigned long min_brk;
199 	bool populate;
200 	bool downgraded = false;
201 	LIST_HEAD(uf);
202 
203 	if (down_write_killable(&mm->mmap_sem))
204 		return -EINTR;
205 
206 	origbrk = mm->brk;
207 
208 #ifdef CONFIG_COMPAT_BRK
209 	/*
210 	 * CONFIG_COMPAT_BRK can still be overridden by setting
211 	 * randomize_va_space to 2, which will still cause mm->start_brk
212 	 * to be arbitrarily shifted
213 	 */
214 	if (current->brk_randomized)
215 		min_brk = mm->start_brk;
216 	else
217 		min_brk = mm->end_data;
218 #else
219 	min_brk = mm->start_brk;
220 #endif
221 	if (brk < min_brk)
222 		goto out;
223 
224 	/*
225 	 * Check against rlimit here. If this check is done later after the test
226 	 * of oldbrk with newbrk then it can escape the test and let the data
227 	 * segment grow beyond its set limit the in case where the limit is
228 	 * not page aligned -Ram Gupta
229 	 */
230 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
231 			      mm->end_data, mm->start_data))
232 		goto out;
233 
234 	newbrk = PAGE_ALIGN(brk);
235 	oldbrk = PAGE_ALIGN(mm->brk);
236 	if (oldbrk == newbrk) {
237 		mm->brk = brk;
238 		goto success;
239 	}
240 
241 	/*
242 	 * Always allow shrinking brk.
243 	 * __do_munmap() may downgrade mmap_sem to read.
244 	 */
245 	if (brk <= mm->brk) {
246 		int ret;
247 
248 		/*
249 		 * mm->brk must to be protected by write mmap_sem so update it
250 		 * before downgrading mmap_sem. When __do_munmap() fails,
251 		 * mm->brk will be restored from origbrk.
252 		 */
253 		mm->brk = brk;
254 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
255 		if (ret < 0) {
256 			mm->brk = origbrk;
257 			goto out;
258 		} else if (ret == 1) {
259 			downgraded = true;
260 		}
261 		goto success;
262 	}
263 
264 	/* Check against existing mmap mappings. */
265 	next = find_vma(mm, oldbrk);
266 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
267 		goto out;
268 
269 	/* Ok, looks good - let it rip. */
270 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
271 		goto out;
272 	mm->brk = brk;
273 
274 success:
275 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
276 	if (downgraded)
277 		up_read(&mm->mmap_sem);
278 	else
279 		up_write(&mm->mmap_sem);
280 	userfaultfd_unmap_complete(mm, &uf);
281 	if (populate)
282 		mm_populate(oldbrk, newbrk - oldbrk);
283 	return brk;
284 
285 out:
286 	retval = origbrk;
287 	up_write(&mm->mmap_sem);
288 	return retval;
289 }
290 
291 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
292 {
293 	unsigned long max, prev_end, subtree_gap;
294 
295 	/*
296 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
297 	 * allow two stack_guard_gaps between them here, and when choosing
298 	 * an unmapped area; whereas when expanding we only require one.
299 	 * That's a little inconsistent, but keeps the code here simpler.
300 	 */
301 	max = vm_start_gap(vma);
302 	if (vma->vm_prev) {
303 		prev_end = vm_end_gap(vma->vm_prev);
304 		if (max > prev_end)
305 			max -= prev_end;
306 		else
307 			max = 0;
308 	}
309 	if (vma->vm_rb.rb_left) {
310 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
311 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
312 		if (subtree_gap > max)
313 			max = subtree_gap;
314 	}
315 	if (vma->vm_rb.rb_right) {
316 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
317 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
318 		if (subtree_gap > max)
319 			max = subtree_gap;
320 	}
321 	return max;
322 }
323 
324 #ifdef CONFIG_DEBUG_VM_RB
325 static int browse_rb(struct mm_struct *mm)
326 {
327 	struct rb_root *root = &mm->mm_rb;
328 	int i = 0, j, bug = 0;
329 	struct rb_node *nd, *pn = NULL;
330 	unsigned long prev = 0, pend = 0;
331 
332 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
333 		struct vm_area_struct *vma;
334 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
335 		if (vma->vm_start < prev) {
336 			pr_emerg("vm_start %lx < prev %lx\n",
337 				  vma->vm_start, prev);
338 			bug = 1;
339 		}
340 		if (vma->vm_start < pend) {
341 			pr_emerg("vm_start %lx < pend %lx\n",
342 				  vma->vm_start, pend);
343 			bug = 1;
344 		}
345 		if (vma->vm_start > vma->vm_end) {
346 			pr_emerg("vm_start %lx > vm_end %lx\n",
347 				  vma->vm_start, vma->vm_end);
348 			bug = 1;
349 		}
350 		spin_lock(&mm->page_table_lock);
351 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
352 			pr_emerg("free gap %lx, correct %lx\n",
353 			       vma->rb_subtree_gap,
354 			       vma_compute_subtree_gap(vma));
355 			bug = 1;
356 		}
357 		spin_unlock(&mm->page_table_lock);
358 		i++;
359 		pn = nd;
360 		prev = vma->vm_start;
361 		pend = vma->vm_end;
362 	}
363 	j = 0;
364 	for (nd = pn; nd; nd = rb_prev(nd))
365 		j++;
366 	if (i != j) {
367 		pr_emerg("backwards %d, forwards %d\n", j, i);
368 		bug = 1;
369 	}
370 	return bug ? -1 : i;
371 }
372 
373 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
374 {
375 	struct rb_node *nd;
376 
377 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
378 		struct vm_area_struct *vma;
379 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
380 		VM_BUG_ON_VMA(vma != ignore &&
381 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
382 			vma);
383 	}
384 }
385 
386 static void validate_mm(struct mm_struct *mm)
387 {
388 	int bug = 0;
389 	int i = 0;
390 	unsigned long highest_address = 0;
391 	struct vm_area_struct *vma = mm->mmap;
392 
393 	while (vma) {
394 		struct anon_vma *anon_vma = vma->anon_vma;
395 		struct anon_vma_chain *avc;
396 
397 		if (anon_vma) {
398 			anon_vma_lock_read(anon_vma);
399 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
400 				anon_vma_interval_tree_verify(avc);
401 			anon_vma_unlock_read(anon_vma);
402 		}
403 
404 		highest_address = vm_end_gap(vma);
405 		vma = vma->vm_next;
406 		i++;
407 	}
408 	if (i != mm->map_count) {
409 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
410 		bug = 1;
411 	}
412 	if (highest_address != mm->highest_vm_end) {
413 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
414 			  mm->highest_vm_end, highest_address);
415 		bug = 1;
416 	}
417 	i = browse_rb(mm);
418 	if (i != mm->map_count) {
419 		if (i != -1)
420 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
421 		bug = 1;
422 	}
423 	VM_BUG_ON_MM(bug, mm);
424 }
425 #else
426 #define validate_mm_rb(root, ignore) do { } while (0)
427 #define validate_mm(mm) do { } while (0)
428 #endif
429 
430 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
431 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
432 
433 /*
434  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
435  * vma->vm_prev->vm_end values changed, without modifying the vma's position
436  * in the rbtree.
437  */
438 static void vma_gap_update(struct vm_area_struct *vma)
439 {
440 	/*
441 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
442 	 * function that does exactly what we want.
443 	 */
444 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
445 }
446 
447 static inline void vma_rb_insert(struct vm_area_struct *vma,
448 				 struct rb_root *root)
449 {
450 	/* All rb_subtree_gap values must be consistent prior to insertion */
451 	validate_mm_rb(root, NULL);
452 
453 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
454 }
455 
456 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
457 {
458 	/*
459 	 * Note rb_erase_augmented is a fairly large inline function,
460 	 * so make sure we instantiate it only once with our desired
461 	 * augmented rbtree callbacks.
462 	 */
463 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
464 }
465 
466 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
467 						struct rb_root *root,
468 						struct vm_area_struct *ignore)
469 {
470 	/*
471 	 * All rb_subtree_gap values must be consistent prior to erase,
472 	 * with the possible exception of the "next" vma being erased if
473 	 * next->vm_start was reduced.
474 	 */
475 	validate_mm_rb(root, ignore);
476 
477 	__vma_rb_erase(vma, root);
478 }
479 
480 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
481 					 struct rb_root *root)
482 {
483 	/*
484 	 * All rb_subtree_gap values must be consistent prior to erase,
485 	 * with the possible exception of the vma being erased.
486 	 */
487 	validate_mm_rb(root, vma);
488 
489 	__vma_rb_erase(vma, root);
490 }
491 
492 /*
493  * vma has some anon_vma assigned, and is already inserted on that
494  * anon_vma's interval trees.
495  *
496  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
497  * vma must be removed from the anon_vma's interval trees using
498  * anon_vma_interval_tree_pre_update_vma().
499  *
500  * After the update, the vma will be reinserted using
501  * anon_vma_interval_tree_post_update_vma().
502  *
503  * The entire update must be protected by exclusive mmap_sem and by
504  * the root anon_vma's mutex.
505  */
506 static inline void
507 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
508 {
509 	struct anon_vma_chain *avc;
510 
511 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
512 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
513 }
514 
515 static inline void
516 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
517 {
518 	struct anon_vma_chain *avc;
519 
520 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
521 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
522 }
523 
524 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
525 		unsigned long end, struct vm_area_struct **pprev,
526 		struct rb_node ***rb_link, struct rb_node **rb_parent)
527 {
528 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
529 
530 	__rb_link = &mm->mm_rb.rb_node;
531 	rb_prev = __rb_parent = NULL;
532 
533 	while (*__rb_link) {
534 		struct vm_area_struct *vma_tmp;
535 
536 		__rb_parent = *__rb_link;
537 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
538 
539 		if (vma_tmp->vm_end > addr) {
540 			/* Fail if an existing vma overlaps the area */
541 			if (vma_tmp->vm_start < end)
542 				return -ENOMEM;
543 			__rb_link = &__rb_parent->rb_left;
544 		} else {
545 			rb_prev = __rb_parent;
546 			__rb_link = &__rb_parent->rb_right;
547 		}
548 	}
549 
550 	*pprev = NULL;
551 	if (rb_prev)
552 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
553 	*rb_link = __rb_link;
554 	*rb_parent = __rb_parent;
555 	return 0;
556 }
557 
558 static unsigned long count_vma_pages_range(struct mm_struct *mm,
559 		unsigned long addr, unsigned long end)
560 {
561 	unsigned long nr_pages = 0;
562 	struct vm_area_struct *vma;
563 
564 	/* Find first overlaping mapping */
565 	vma = find_vma_intersection(mm, addr, end);
566 	if (!vma)
567 		return 0;
568 
569 	nr_pages = (min(end, vma->vm_end) -
570 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
571 
572 	/* Iterate over the rest of the overlaps */
573 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
574 		unsigned long overlap_len;
575 
576 		if (vma->vm_start > end)
577 			break;
578 
579 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
580 		nr_pages += overlap_len >> PAGE_SHIFT;
581 	}
582 
583 	return nr_pages;
584 }
585 
586 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
587 		struct rb_node **rb_link, struct rb_node *rb_parent)
588 {
589 	/* Update tracking information for the gap following the new vma. */
590 	if (vma->vm_next)
591 		vma_gap_update(vma->vm_next);
592 	else
593 		mm->highest_vm_end = vm_end_gap(vma);
594 
595 	/*
596 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
597 	 * correct insertion point for that vma. As a result, we could not
598 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
599 	 * So, we first insert the vma with a zero rb_subtree_gap value
600 	 * (to be consistent with what we did on the way down), and then
601 	 * immediately update the gap to the correct value. Finally we
602 	 * rebalance the rbtree after all augmented values have been set.
603 	 */
604 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
605 	vma->rb_subtree_gap = 0;
606 	vma_gap_update(vma);
607 	vma_rb_insert(vma, &mm->mm_rb);
608 }
609 
610 static void __vma_link_file(struct vm_area_struct *vma)
611 {
612 	struct file *file;
613 
614 	file = vma->vm_file;
615 	if (file) {
616 		struct address_space *mapping = file->f_mapping;
617 
618 		if (vma->vm_flags & VM_DENYWRITE)
619 			atomic_dec(&file_inode(file)->i_writecount);
620 		if (vma->vm_flags & VM_SHARED)
621 			atomic_inc(&mapping->i_mmap_writable);
622 
623 		flush_dcache_mmap_lock(mapping);
624 		vma_interval_tree_insert(vma, &mapping->i_mmap);
625 		flush_dcache_mmap_unlock(mapping);
626 	}
627 }
628 
629 static void
630 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
631 	struct vm_area_struct *prev, struct rb_node **rb_link,
632 	struct rb_node *rb_parent)
633 {
634 	__vma_link_list(mm, vma, prev, rb_parent);
635 	__vma_link_rb(mm, vma, rb_link, rb_parent);
636 }
637 
638 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
639 			struct vm_area_struct *prev, struct rb_node **rb_link,
640 			struct rb_node *rb_parent)
641 {
642 	struct address_space *mapping = NULL;
643 
644 	if (vma->vm_file) {
645 		mapping = vma->vm_file->f_mapping;
646 		i_mmap_lock_write(mapping);
647 	}
648 
649 	__vma_link(mm, vma, prev, rb_link, rb_parent);
650 	__vma_link_file(vma);
651 
652 	if (mapping)
653 		i_mmap_unlock_write(mapping);
654 
655 	mm->map_count++;
656 	validate_mm(mm);
657 }
658 
659 /*
660  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661  * mm's list and rbtree.  It has already been inserted into the interval tree.
662  */
663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665 	struct vm_area_struct *prev;
666 	struct rb_node **rb_link, *rb_parent;
667 
668 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669 			   &prev, &rb_link, &rb_parent))
670 		BUG();
671 	__vma_link(mm, vma, prev, rb_link, rb_parent);
672 	mm->map_count++;
673 }
674 
675 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
676 						struct vm_area_struct *vma,
677 						struct vm_area_struct *prev,
678 						bool has_prev,
679 						struct vm_area_struct *ignore)
680 {
681 	struct vm_area_struct *next;
682 
683 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
684 	next = vma->vm_next;
685 	if (has_prev)
686 		prev->vm_next = next;
687 	else {
688 		prev = vma->vm_prev;
689 		if (prev)
690 			prev->vm_next = next;
691 		else
692 			mm->mmap = next;
693 	}
694 	if (next)
695 		next->vm_prev = prev;
696 
697 	/* Kill the cache */
698 	vmacache_invalidate(mm);
699 }
700 
701 static inline void __vma_unlink_prev(struct mm_struct *mm,
702 				     struct vm_area_struct *vma,
703 				     struct vm_area_struct *prev)
704 {
705 	__vma_unlink_common(mm, vma, prev, true, vma);
706 }
707 
708 /*
709  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
710  * is already present in an i_mmap tree without adjusting the tree.
711  * The following helper function should be used when such adjustments
712  * are necessary.  The "insert" vma (if any) is to be inserted
713  * before we drop the necessary locks.
714  */
715 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
716 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
717 	struct vm_area_struct *expand)
718 {
719 	struct mm_struct *mm = vma->vm_mm;
720 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
721 	struct address_space *mapping = NULL;
722 	struct rb_root_cached *root = NULL;
723 	struct anon_vma *anon_vma = NULL;
724 	struct file *file = vma->vm_file;
725 	bool start_changed = false, end_changed = false;
726 	long adjust_next = 0;
727 	int remove_next = 0;
728 
729 	if (next && !insert) {
730 		struct vm_area_struct *exporter = NULL, *importer = NULL;
731 
732 		if (end >= next->vm_end) {
733 			/*
734 			 * vma expands, overlapping all the next, and
735 			 * perhaps the one after too (mprotect case 6).
736 			 * The only other cases that gets here are
737 			 * case 1, case 7 and case 8.
738 			 */
739 			if (next == expand) {
740 				/*
741 				 * The only case where we don't expand "vma"
742 				 * and we expand "next" instead is case 8.
743 				 */
744 				VM_WARN_ON(end != next->vm_end);
745 				/*
746 				 * remove_next == 3 means we're
747 				 * removing "vma" and that to do so we
748 				 * swapped "vma" and "next".
749 				 */
750 				remove_next = 3;
751 				VM_WARN_ON(file != next->vm_file);
752 				swap(vma, next);
753 			} else {
754 				VM_WARN_ON(expand != vma);
755 				/*
756 				 * case 1, 6, 7, remove_next == 2 is case 6,
757 				 * remove_next == 1 is case 1 or 7.
758 				 */
759 				remove_next = 1 + (end > next->vm_end);
760 				VM_WARN_ON(remove_next == 2 &&
761 					   end != next->vm_next->vm_end);
762 				VM_WARN_ON(remove_next == 1 &&
763 					   end != next->vm_end);
764 				/* trim end to next, for case 6 first pass */
765 				end = next->vm_end;
766 			}
767 
768 			exporter = next;
769 			importer = vma;
770 
771 			/*
772 			 * If next doesn't have anon_vma, import from vma after
773 			 * next, if the vma overlaps with it.
774 			 */
775 			if (remove_next == 2 && !next->anon_vma)
776 				exporter = next->vm_next;
777 
778 		} else if (end > next->vm_start) {
779 			/*
780 			 * vma expands, overlapping part of the next:
781 			 * mprotect case 5 shifting the boundary up.
782 			 */
783 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
784 			exporter = next;
785 			importer = vma;
786 			VM_WARN_ON(expand != importer);
787 		} else if (end < vma->vm_end) {
788 			/*
789 			 * vma shrinks, and !insert tells it's not
790 			 * split_vma inserting another: so it must be
791 			 * mprotect case 4 shifting the boundary down.
792 			 */
793 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
794 			exporter = vma;
795 			importer = next;
796 			VM_WARN_ON(expand != importer);
797 		}
798 
799 		/*
800 		 * Easily overlooked: when mprotect shifts the boundary,
801 		 * make sure the expanding vma has anon_vma set if the
802 		 * shrinking vma had, to cover any anon pages imported.
803 		 */
804 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
805 			int error;
806 
807 			importer->anon_vma = exporter->anon_vma;
808 			error = anon_vma_clone(importer, exporter);
809 			if (error)
810 				return error;
811 		}
812 	}
813 again:
814 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
815 
816 	if (file) {
817 		mapping = file->f_mapping;
818 		root = &mapping->i_mmap;
819 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
820 
821 		if (adjust_next)
822 			uprobe_munmap(next, next->vm_start, next->vm_end);
823 
824 		i_mmap_lock_write(mapping);
825 		if (insert) {
826 			/*
827 			 * Put into interval tree now, so instantiated pages
828 			 * are visible to arm/parisc __flush_dcache_page
829 			 * throughout; but we cannot insert into address
830 			 * space until vma start or end is updated.
831 			 */
832 			__vma_link_file(insert);
833 		}
834 	}
835 
836 	anon_vma = vma->anon_vma;
837 	if (!anon_vma && adjust_next)
838 		anon_vma = next->anon_vma;
839 	if (anon_vma) {
840 		VM_WARN_ON(adjust_next && next->anon_vma &&
841 			   anon_vma != next->anon_vma);
842 		anon_vma_lock_write(anon_vma);
843 		anon_vma_interval_tree_pre_update_vma(vma);
844 		if (adjust_next)
845 			anon_vma_interval_tree_pre_update_vma(next);
846 	}
847 
848 	if (root) {
849 		flush_dcache_mmap_lock(mapping);
850 		vma_interval_tree_remove(vma, root);
851 		if (adjust_next)
852 			vma_interval_tree_remove(next, root);
853 	}
854 
855 	if (start != vma->vm_start) {
856 		vma->vm_start = start;
857 		start_changed = true;
858 	}
859 	if (end != vma->vm_end) {
860 		vma->vm_end = end;
861 		end_changed = true;
862 	}
863 	vma->vm_pgoff = pgoff;
864 	if (adjust_next) {
865 		next->vm_start += adjust_next << PAGE_SHIFT;
866 		next->vm_pgoff += adjust_next;
867 	}
868 
869 	if (root) {
870 		if (adjust_next)
871 			vma_interval_tree_insert(next, root);
872 		vma_interval_tree_insert(vma, root);
873 		flush_dcache_mmap_unlock(mapping);
874 	}
875 
876 	if (remove_next) {
877 		/*
878 		 * vma_merge has merged next into vma, and needs
879 		 * us to remove next before dropping the locks.
880 		 */
881 		if (remove_next != 3)
882 			__vma_unlink_prev(mm, next, vma);
883 		else
884 			/*
885 			 * vma is not before next if they've been
886 			 * swapped.
887 			 *
888 			 * pre-swap() next->vm_start was reduced so
889 			 * tell validate_mm_rb to ignore pre-swap()
890 			 * "next" (which is stored in post-swap()
891 			 * "vma").
892 			 */
893 			__vma_unlink_common(mm, next, NULL, false, vma);
894 		if (file)
895 			__remove_shared_vm_struct(next, file, mapping);
896 	} else if (insert) {
897 		/*
898 		 * split_vma has split insert from vma, and needs
899 		 * us to insert it before dropping the locks
900 		 * (it may either follow vma or precede it).
901 		 */
902 		__insert_vm_struct(mm, insert);
903 	} else {
904 		if (start_changed)
905 			vma_gap_update(vma);
906 		if (end_changed) {
907 			if (!next)
908 				mm->highest_vm_end = vm_end_gap(vma);
909 			else if (!adjust_next)
910 				vma_gap_update(next);
911 		}
912 	}
913 
914 	if (anon_vma) {
915 		anon_vma_interval_tree_post_update_vma(vma);
916 		if (adjust_next)
917 			anon_vma_interval_tree_post_update_vma(next);
918 		anon_vma_unlock_write(anon_vma);
919 	}
920 	if (mapping)
921 		i_mmap_unlock_write(mapping);
922 
923 	if (root) {
924 		uprobe_mmap(vma);
925 
926 		if (adjust_next)
927 			uprobe_mmap(next);
928 	}
929 
930 	if (remove_next) {
931 		if (file) {
932 			uprobe_munmap(next, next->vm_start, next->vm_end);
933 			fput(file);
934 		}
935 		if (next->anon_vma)
936 			anon_vma_merge(vma, next);
937 		mm->map_count--;
938 		mpol_put(vma_policy(next));
939 		vm_area_free(next);
940 		/*
941 		 * In mprotect's case 6 (see comments on vma_merge),
942 		 * we must remove another next too. It would clutter
943 		 * up the code too much to do both in one go.
944 		 */
945 		if (remove_next != 3) {
946 			/*
947 			 * If "next" was removed and vma->vm_end was
948 			 * expanded (up) over it, in turn
949 			 * "next->vm_prev->vm_end" changed and the
950 			 * "vma->vm_next" gap must be updated.
951 			 */
952 			next = vma->vm_next;
953 		} else {
954 			/*
955 			 * For the scope of the comment "next" and
956 			 * "vma" considered pre-swap(): if "vma" was
957 			 * removed, next->vm_start was expanded (down)
958 			 * over it and the "next" gap must be updated.
959 			 * Because of the swap() the post-swap() "vma"
960 			 * actually points to pre-swap() "next"
961 			 * (post-swap() "next" as opposed is now a
962 			 * dangling pointer).
963 			 */
964 			next = vma;
965 		}
966 		if (remove_next == 2) {
967 			remove_next = 1;
968 			end = next->vm_end;
969 			goto again;
970 		}
971 		else if (next)
972 			vma_gap_update(next);
973 		else {
974 			/*
975 			 * If remove_next == 2 we obviously can't
976 			 * reach this path.
977 			 *
978 			 * If remove_next == 3 we can't reach this
979 			 * path because pre-swap() next is always not
980 			 * NULL. pre-swap() "next" is not being
981 			 * removed and its next->vm_end is not altered
982 			 * (and furthermore "end" already matches
983 			 * next->vm_end in remove_next == 3).
984 			 *
985 			 * We reach this only in the remove_next == 1
986 			 * case if the "next" vma that was removed was
987 			 * the highest vma of the mm. However in such
988 			 * case next->vm_end == "end" and the extended
989 			 * "vma" has vma->vm_end == next->vm_end so
990 			 * mm->highest_vm_end doesn't need any update
991 			 * in remove_next == 1 case.
992 			 */
993 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
994 		}
995 	}
996 	if (insert && file)
997 		uprobe_mmap(insert);
998 
999 	validate_mm(mm);
1000 
1001 	return 0;
1002 }
1003 
1004 /*
1005  * If the vma has a ->close operation then the driver probably needs to release
1006  * per-vma resources, so we don't attempt to merge those.
1007  */
1008 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1009 				struct file *file, unsigned long vm_flags,
1010 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1011 {
1012 	/*
1013 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1014 	 * match the flags but dirty bit -- the caller should mark
1015 	 * merged VMA as dirty. If dirty bit won't be excluded from
1016 	 * comparison, we increase pressure on the memory system forcing
1017 	 * the kernel to generate new VMAs when old one could be
1018 	 * extended instead.
1019 	 */
1020 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1021 		return 0;
1022 	if (vma->vm_file != file)
1023 		return 0;
1024 	if (vma->vm_ops && vma->vm_ops->close)
1025 		return 0;
1026 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1027 		return 0;
1028 	return 1;
1029 }
1030 
1031 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1032 					struct anon_vma *anon_vma2,
1033 					struct vm_area_struct *vma)
1034 {
1035 	/*
1036 	 * The list_is_singular() test is to avoid merging VMA cloned from
1037 	 * parents. This can improve scalability caused by anon_vma lock.
1038 	 */
1039 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1040 		list_is_singular(&vma->anon_vma_chain)))
1041 		return 1;
1042 	return anon_vma1 == anon_vma2;
1043 }
1044 
1045 /*
1046  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1047  * in front of (at a lower virtual address and file offset than) the vma.
1048  *
1049  * We cannot merge two vmas if they have differently assigned (non-NULL)
1050  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1051  *
1052  * We don't check here for the merged mmap wrapping around the end of pagecache
1053  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1054  * wrap, nor mmaps which cover the final page at index -1UL.
1055  */
1056 static int
1057 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1058 		     struct anon_vma *anon_vma, struct file *file,
1059 		     pgoff_t vm_pgoff,
1060 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1061 {
1062 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1063 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1064 		if (vma->vm_pgoff == vm_pgoff)
1065 			return 1;
1066 	}
1067 	return 0;
1068 }
1069 
1070 /*
1071  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1072  * beyond (at a higher virtual address and file offset than) the vma.
1073  *
1074  * We cannot merge two vmas if they have differently assigned (non-NULL)
1075  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1076  */
1077 static int
1078 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1079 		    struct anon_vma *anon_vma, struct file *file,
1080 		    pgoff_t vm_pgoff,
1081 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1082 {
1083 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1084 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1085 		pgoff_t vm_pglen;
1086 		vm_pglen = vma_pages(vma);
1087 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1088 			return 1;
1089 	}
1090 	return 0;
1091 }
1092 
1093 /*
1094  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1095  * whether that can be merged with its predecessor or its successor.
1096  * Or both (it neatly fills a hole).
1097  *
1098  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1099  * certain not to be mapped by the time vma_merge is called; but when
1100  * called for mprotect, it is certain to be already mapped (either at
1101  * an offset within prev, or at the start of next), and the flags of
1102  * this area are about to be changed to vm_flags - and the no-change
1103  * case has already been eliminated.
1104  *
1105  * The following mprotect cases have to be considered, where AAAA is
1106  * the area passed down from mprotect_fixup, never extending beyond one
1107  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1108  *
1109  *     AAAA             AAAA                AAAA          AAAA
1110  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1111  *    cannot merge    might become    might become    might become
1112  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1113  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1114  *    mremap move:                                    PPPPXXXXXXXX 8
1115  *        AAAA
1116  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1117  *    might become    case 1 below    case 2 below    case 3 below
1118  *
1119  * It is important for case 8 that the vma NNNN overlapping the
1120  * region AAAA is never going to extended over XXXX. Instead XXXX must
1121  * be extended in region AAAA and NNNN must be removed. This way in
1122  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1123  * rmap_locks, the properties of the merged vma will be already
1124  * correct for the whole merged range. Some of those properties like
1125  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1126  * be correct for the whole merged range immediately after the
1127  * rmap_locks are released. Otherwise if XXXX would be removed and
1128  * NNNN would be extended over the XXXX range, remove_migration_ptes
1129  * or other rmap walkers (if working on addresses beyond the "end"
1130  * parameter) may establish ptes with the wrong permissions of NNNN
1131  * instead of the right permissions of XXXX.
1132  */
1133 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1134 			struct vm_area_struct *prev, unsigned long addr,
1135 			unsigned long end, unsigned long vm_flags,
1136 			struct anon_vma *anon_vma, struct file *file,
1137 			pgoff_t pgoff, struct mempolicy *policy,
1138 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1139 {
1140 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1141 	struct vm_area_struct *area, *next;
1142 	int err;
1143 
1144 	/*
1145 	 * We later require that vma->vm_flags == vm_flags,
1146 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1147 	 */
1148 	if (vm_flags & VM_SPECIAL)
1149 		return NULL;
1150 
1151 	if (prev)
1152 		next = prev->vm_next;
1153 	else
1154 		next = mm->mmap;
1155 	area = next;
1156 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1157 		next = next->vm_next;
1158 
1159 	/* verify some invariant that must be enforced by the caller */
1160 	VM_WARN_ON(prev && addr <= prev->vm_start);
1161 	VM_WARN_ON(area && end > area->vm_end);
1162 	VM_WARN_ON(addr >= end);
1163 
1164 	/*
1165 	 * Can it merge with the predecessor?
1166 	 */
1167 	if (prev && prev->vm_end == addr &&
1168 			mpol_equal(vma_policy(prev), policy) &&
1169 			can_vma_merge_after(prev, vm_flags,
1170 					    anon_vma, file, pgoff,
1171 					    vm_userfaultfd_ctx)) {
1172 		/*
1173 		 * OK, it can.  Can we now merge in the successor as well?
1174 		 */
1175 		if (next && end == next->vm_start &&
1176 				mpol_equal(policy, vma_policy(next)) &&
1177 				can_vma_merge_before(next, vm_flags,
1178 						     anon_vma, file,
1179 						     pgoff+pglen,
1180 						     vm_userfaultfd_ctx) &&
1181 				is_mergeable_anon_vma(prev->anon_vma,
1182 						      next->anon_vma, NULL)) {
1183 							/* cases 1, 6 */
1184 			err = __vma_adjust(prev, prev->vm_start,
1185 					 next->vm_end, prev->vm_pgoff, NULL,
1186 					 prev);
1187 		} else					/* cases 2, 5, 7 */
1188 			err = __vma_adjust(prev, prev->vm_start,
1189 					 end, prev->vm_pgoff, NULL, prev);
1190 		if (err)
1191 			return NULL;
1192 		khugepaged_enter_vma_merge(prev, vm_flags);
1193 		return prev;
1194 	}
1195 
1196 	/*
1197 	 * Can this new request be merged in front of next?
1198 	 */
1199 	if (next && end == next->vm_start &&
1200 			mpol_equal(policy, vma_policy(next)) &&
1201 			can_vma_merge_before(next, vm_flags,
1202 					     anon_vma, file, pgoff+pglen,
1203 					     vm_userfaultfd_ctx)) {
1204 		if (prev && addr < prev->vm_end)	/* case 4 */
1205 			err = __vma_adjust(prev, prev->vm_start,
1206 					 addr, prev->vm_pgoff, NULL, next);
1207 		else {					/* cases 3, 8 */
1208 			err = __vma_adjust(area, addr, next->vm_end,
1209 					 next->vm_pgoff - pglen, NULL, next);
1210 			/*
1211 			 * In case 3 area is already equal to next and
1212 			 * this is a noop, but in case 8 "area" has
1213 			 * been removed and next was expanded over it.
1214 			 */
1215 			area = next;
1216 		}
1217 		if (err)
1218 			return NULL;
1219 		khugepaged_enter_vma_merge(area, vm_flags);
1220 		return area;
1221 	}
1222 
1223 	return NULL;
1224 }
1225 
1226 /*
1227  * Rough compatbility check to quickly see if it's even worth looking
1228  * at sharing an anon_vma.
1229  *
1230  * They need to have the same vm_file, and the flags can only differ
1231  * in things that mprotect may change.
1232  *
1233  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1234  * we can merge the two vma's. For example, we refuse to merge a vma if
1235  * there is a vm_ops->close() function, because that indicates that the
1236  * driver is doing some kind of reference counting. But that doesn't
1237  * really matter for the anon_vma sharing case.
1238  */
1239 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1240 {
1241 	return a->vm_end == b->vm_start &&
1242 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1243 		a->vm_file == b->vm_file &&
1244 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1245 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1246 }
1247 
1248 /*
1249  * Do some basic sanity checking to see if we can re-use the anon_vma
1250  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1251  * the same as 'old', the other will be the new one that is trying
1252  * to share the anon_vma.
1253  *
1254  * NOTE! This runs with mm_sem held for reading, so it is possible that
1255  * the anon_vma of 'old' is concurrently in the process of being set up
1256  * by another page fault trying to merge _that_. But that's ok: if it
1257  * is being set up, that automatically means that it will be a singleton
1258  * acceptable for merging, so we can do all of this optimistically. But
1259  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1260  *
1261  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1262  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1263  * is to return an anon_vma that is "complex" due to having gone through
1264  * a fork).
1265  *
1266  * We also make sure that the two vma's are compatible (adjacent,
1267  * and with the same memory policies). That's all stable, even with just
1268  * a read lock on the mm_sem.
1269  */
1270 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1271 {
1272 	if (anon_vma_compatible(a, b)) {
1273 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1274 
1275 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1276 			return anon_vma;
1277 	}
1278 	return NULL;
1279 }
1280 
1281 /*
1282  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1283  * neighbouring vmas for a suitable anon_vma, before it goes off
1284  * to allocate a new anon_vma.  It checks because a repetitive
1285  * sequence of mprotects and faults may otherwise lead to distinct
1286  * anon_vmas being allocated, preventing vma merge in subsequent
1287  * mprotect.
1288  */
1289 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1290 {
1291 	struct anon_vma *anon_vma;
1292 	struct vm_area_struct *near;
1293 
1294 	near = vma->vm_next;
1295 	if (!near)
1296 		goto try_prev;
1297 
1298 	anon_vma = reusable_anon_vma(near, vma, near);
1299 	if (anon_vma)
1300 		return anon_vma;
1301 try_prev:
1302 	near = vma->vm_prev;
1303 	if (!near)
1304 		goto none;
1305 
1306 	anon_vma = reusable_anon_vma(near, near, vma);
1307 	if (anon_vma)
1308 		return anon_vma;
1309 none:
1310 	/*
1311 	 * There's no absolute need to look only at touching neighbours:
1312 	 * we could search further afield for "compatible" anon_vmas.
1313 	 * But it would probably just be a waste of time searching,
1314 	 * or lead to too many vmas hanging off the same anon_vma.
1315 	 * We're trying to allow mprotect remerging later on,
1316 	 * not trying to minimize memory used for anon_vmas.
1317 	 */
1318 	return NULL;
1319 }
1320 
1321 /*
1322  * If a hint addr is less than mmap_min_addr change hint to be as
1323  * low as possible but still greater than mmap_min_addr
1324  */
1325 static inline unsigned long round_hint_to_min(unsigned long hint)
1326 {
1327 	hint &= PAGE_MASK;
1328 	if (((void *)hint != NULL) &&
1329 	    (hint < mmap_min_addr))
1330 		return PAGE_ALIGN(mmap_min_addr);
1331 	return hint;
1332 }
1333 
1334 static inline int mlock_future_check(struct mm_struct *mm,
1335 				     unsigned long flags,
1336 				     unsigned long len)
1337 {
1338 	unsigned long locked, lock_limit;
1339 
1340 	/*  mlock MCL_FUTURE? */
1341 	if (flags & VM_LOCKED) {
1342 		locked = len >> PAGE_SHIFT;
1343 		locked += mm->locked_vm;
1344 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1345 		lock_limit >>= PAGE_SHIFT;
1346 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1347 			return -EAGAIN;
1348 	}
1349 	return 0;
1350 }
1351 
1352 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1353 {
1354 	if (S_ISREG(inode->i_mode))
1355 		return MAX_LFS_FILESIZE;
1356 
1357 	if (S_ISBLK(inode->i_mode))
1358 		return MAX_LFS_FILESIZE;
1359 
1360 	/* Special "we do even unsigned file positions" case */
1361 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1362 		return 0;
1363 
1364 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1365 	return ULONG_MAX;
1366 }
1367 
1368 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1369 				unsigned long pgoff, unsigned long len)
1370 {
1371 	u64 maxsize = file_mmap_size_max(file, inode);
1372 
1373 	if (maxsize && len > maxsize)
1374 		return false;
1375 	maxsize -= len;
1376 	if (pgoff > maxsize >> PAGE_SHIFT)
1377 		return false;
1378 	return true;
1379 }
1380 
1381 /*
1382  * The caller must hold down_write(&current->mm->mmap_sem).
1383  */
1384 unsigned long do_mmap(struct file *file, unsigned long addr,
1385 			unsigned long len, unsigned long prot,
1386 			unsigned long flags, vm_flags_t vm_flags,
1387 			unsigned long pgoff, unsigned long *populate,
1388 			struct list_head *uf)
1389 {
1390 	struct mm_struct *mm = current->mm;
1391 	int pkey = 0;
1392 
1393 	*populate = 0;
1394 
1395 	if (!len)
1396 		return -EINVAL;
1397 
1398 	/*
1399 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1400 	 *
1401 	 * (the exception is when the underlying filesystem is noexec
1402 	 *  mounted, in which case we dont add PROT_EXEC.)
1403 	 */
1404 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1405 		if (!(file && path_noexec(&file->f_path)))
1406 			prot |= PROT_EXEC;
1407 
1408 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1409 	if (flags & MAP_FIXED_NOREPLACE)
1410 		flags |= MAP_FIXED;
1411 
1412 	if (!(flags & MAP_FIXED))
1413 		addr = round_hint_to_min(addr);
1414 
1415 	/* Careful about overflows.. */
1416 	len = PAGE_ALIGN(len);
1417 	if (!len)
1418 		return -ENOMEM;
1419 
1420 	/* offset overflow? */
1421 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1422 		return -EOVERFLOW;
1423 
1424 	/* Too many mappings? */
1425 	if (mm->map_count > sysctl_max_map_count)
1426 		return -ENOMEM;
1427 
1428 	/* Obtain the address to map to. we verify (or select) it and ensure
1429 	 * that it represents a valid section of the address space.
1430 	 */
1431 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1432 	if (offset_in_page(addr))
1433 		return addr;
1434 
1435 	if (flags & MAP_FIXED_NOREPLACE) {
1436 		struct vm_area_struct *vma = find_vma(mm, addr);
1437 
1438 		if (vma && vma->vm_start < addr + len)
1439 			return -EEXIST;
1440 	}
1441 
1442 	if (prot == PROT_EXEC) {
1443 		pkey = execute_only_pkey(mm);
1444 		if (pkey < 0)
1445 			pkey = 0;
1446 	}
1447 
1448 	/* Do simple checking here so the lower-level routines won't have
1449 	 * to. we assume access permissions have been handled by the open
1450 	 * of the memory object, so we don't do any here.
1451 	 */
1452 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1453 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1454 
1455 	if (flags & MAP_LOCKED)
1456 		if (!can_do_mlock())
1457 			return -EPERM;
1458 
1459 	if (mlock_future_check(mm, vm_flags, len))
1460 		return -EAGAIN;
1461 
1462 	if (file) {
1463 		struct inode *inode = file_inode(file);
1464 		unsigned long flags_mask;
1465 
1466 		if (!file_mmap_ok(file, inode, pgoff, len))
1467 			return -EOVERFLOW;
1468 
1469 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1470 
1471 		switch (flags & MAP_TYPE) {
1472 		case MAP_SHARED:
1473 			/*
1474 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1475 			 * flags. E.g. MAP_SYNC is dangerous to use with
1476 			 * MAP_SHARED as you don't know which consistency model
1477 			 * you will get. We silently ignore unsupported flags
1478 			 * with MAP_SHARED to preserve backward compatibility.
1479 			 */
1480 			flags &= LEGACY_MAP_MASK;
1481 			/* fall through */
1482 		case MAP_SHARED_VALIDATE:
1483 			if (flags & ~flags_mask)
1484 				return -EOPNOTSUPP;
1485 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1486 				return -EACCES;
1487 
1488 			/*
1489 			 * Make sure we don't allow writing to an append-only
1490 			 * file..
1491 			 */
1492 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1493 				return -EACCES;
1494 
1495 			/*
1496 			 * Make sure there are no mandatory locks on the file.
1497 			 */
1498 			if (locks_verify_locked(file))
1499 				return -EAGAIN;
1500 
1501 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1502 			if (!(file->f_mode & FMODE_WRITE))
1503 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1504 
1505 			/* fall through */
1506 		case MAP_PRIVATE:
1507 			if (!(file->f_mode & FMODE_READ))
1508 				return -EACCES;
1509 			if (path_noexec(&file->f_path)) {
1510 				if (vm_flags & VM_EXEC)
1511 					return -EPERM;
1512 				vm_flags &= ~VM_MAYEXEC;
1513 			}
1514 
1515 			if (!file->f_op->mmap)
1516 				return -ENODEV;
1517 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1518 				return -EINVAL;
1519 			break;
1520 
1521 		default:
1522 			return -EINVAL;
1523 		}
1524 	} else {
1525 		switch (flags & MAP_TYPE) {
1526 		case MAP_SHARED:
1527 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1528 				return -EINVAL;
1529 			/*
1530 			 * Ignore pgoff.
1531 			 */
1532 			pgoff = 0;
1533 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1534 			break;
1535 		case MAP_PRIVATE:
1536 			/*
1537 			 * Set pgoff according to addr for anon_vma.
1538 			 */
1539 			pgoff = addr >> PAGE_SHIFT;
1540 			break;
1541 		default:
1542 			return -EINVAL;
1543 		}
1544 	}
1545 
1546 	/*
1547 	 * Set 'VM_NORESERVE' if we should not account for the
1548 	 * memory use of this mapping.
1549 	 */
1550 	if (flags & MAP_NORESERVE) {
1551 		/* We honor MAP_NORESERVE if allowed to overcommit */
1552 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1553 			vm_flags |= VM_NORESERVE;
1554 
1555 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1556 		if (file && is_file_hugepages(file))
1557 			vm_flags |= VM_NORESERVE;
1558 	}
1559 
1560 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1561 	if (!IS_ERR_VALUE(addr) &&
1562 	    ((vm_flags & VM_LOCKED) ||
1563 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1564 		*populate = len;
1565 	return addr;
1566 }
1567 
1568 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1569 			      unsigned long prot, unsigned long flags,
1570 			      unsigned long fd, unsigned long pgoff)
1571 {
1572 	struct file *file = NULL;
1573 	unsigned long retval;
1574 
1575 	if (!(flags & MAP_ANONYMOUS)) {
1576 		audit_mmap_fd(fd, flags);
1577 		file = fget(fd);
1578 		if (!file)
1579 			return -EBADF;
1580 		if (is_file_hugepages(file))
1581 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1582 		retval = -EINVAL;
1583 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1584 			goto out_fput;
1585 	} else if (flags & MAP_HUGETLB) {
1586 		struct user_struct *user = NULL;
1587 		struct hstate *hs;
1588 
1589 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1590 		if (!hs)
1591 			return -EINVAL;
1592 
1593 		len = ALIGN(len, huge_page_size(hs));
1594 		/*
1595 		 * VM_NORESERVE is used because the reservations will be
1596 		 * taken when vm_ops->mmap() is called
1597 		 * A dummy user value is used because we are not locking
1598 		 * memory so no accounting is necessary
1599 		 */
1600 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1601 				VM_NORESERVE,
1602 				&user, HUGETLB_ANONHUGE_INODE,
1603 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1604 		if (IS_ERR(file))
1605 			return PTR_ERR(file);
1606 	}
1607 
1608 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1609 
1610 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1611 out_fput:
1612 	if (file)
1613 		fput(file);
1614 	return retval;
1615 }
1616 
1617 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1618 		unsigned long, prot, unsigned long, flags,
1619 		unsigned long, fd, unsigned long, pgoff)
1620 {
1621 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1622 }
1623 
1624 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1625 struct mmap_arg_struct {
1626 	unsigned long addr;
1627 	unsigned long len;
1628 	unsigned long prot;
1629 	unsigned long flags;
1630 	unsigned long fd;
1631 	unsigned long offset;
1632 };
1633 
1634 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1635 {
1636 	struct mmap_arg_struct a;
1637 
1638 	if (copy_from_user(&a, arg, sizeof(a)))
1639 		return -EFAULT;
1640 	if (offset_in_page(a.offset))
1641 		return -EINVAL;
1642 
1643 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1644 			       a.offset >> PAGE_SHIFT);
1645 }
1646 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1647 
1648 /*
1649  * Some shared mappings will want the pages marked read-only
1650  * to track write events. If so, we'll downgrade vm_page_prot
1651  * to the private version (using protection_map[] without the
1652  * VM_SHARED bit).
1653  */
1654 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1655 {
1656 	vm_flags_t vm_flags = vma->vm_flags;
1657 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1658 
1659 	/* If it was private or non-writable, the write bit is already clear */
1660 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1661 		return 0;
1662 
1663 	/* The backer wishes to know when pages are first written to? */
1664 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1665 		return 1;
1666 
1667 	/* The open routine did something to the protections that pgprot_modify
1668 	 * won't preserve? */
1669 	if (pgprot_val(vm_page_prot) !=
1670 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1671 		return 0;
1672 
1673 	/* Do we need to track softdirty? */
1674 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1675 		return 1;
1676 
1677 	/* Specialty mapping? */
1678 	if (vm_flags & VM_PFNMAP)
1679 		return 0;
1680 
1681 	/* Can the mapping track the dirty pages? */
1682 	return vma->vm_file && vma->vm_file->f_mapping &&
1683 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1684 }
1685 
1686 /*
1687  * We account for memory if it's a private writeable mapping,
1688  * not hugepages and VM_NORESERVE wasn't set.
1689  */
1690 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1691 {
1692 	/*
1693 	 * hugetlb has its own accounting separate from the core VM
1694 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1695 	 */
1696 	if (file && is_file_hugepages(file))
1697 		return 0;
1698 
1699 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1700 }
1701 
1702 unsigned long mmap_region(struct file *file, unsigned long addr,
1703 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1704 		struct list_head *uf)
1705 {
1706 	struct mm_struct *mm = current->mm;
1707 	struct vm_area_struct *vma, *prev;
1708 	int error;
1709 	struct rb_node **rb_link, *rb_parent;
1710 	unsigned long charged = 0;
1711 
1712 	/* Check against address space limit. */
1713 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1714 		unsigned long nr_pages;
1715 
1716 		/*
1717 		 * MAP_FIXED may remove pages of mappings that intersects with
1718 		 * requested mapping. Account for the pages it would unmap.
1719 		 */
1720 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1721 
1722 		if (!may_expand_vm(mm, vm_flags,
1723 					(len >> PAGE_SHIFT) - nr_pages))
1724 			return -ENOMEM;
1725 	}
1726 
1727 	/* Clear old maps */
1728 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1729 			      &rb_parent)) {
1730 		if (do_munmap(mm, addr, len, uf))
1731 			return -ENOMEM;
1732 	}
1733 
1734 	/*
1735 	 * Private writable mapping: check memory availability
1736 	 */
1737 	if (accountable_mapping(file, vm_flags)) {
1738 		charged = len >> PAGE_SHIFT;
1739 		if (security_vm_enough_memory_mm(mm, charged))
1740 			return -ENOMEM;
1741 		vm_flags |= VM_ACCOUNT;
1742 	}
1743 
1744 	/*
1745 	 * Can we just expand an old mapping?
1746 	 */
1747 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1748 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1749 	if (vma)
1750 		goto out;
1751 
1752 	/*
1753 	 * Determine the object being mapped and call the appropriate
1754 	 * specific mapper. the address has already been validated, but
1755 	 * not unmapped, but the maps are removed from the list.
1756 	 */
1757 	vma = vm_area_alloc(mm);
1758 	if (!vma) {
1759 		error = -ENOMEM;
1760 		goto unacct_error;
1761 	}
1762 
1763 	vma->vm_start = addr;
1764 	vma->vm_end = addr + len;
1765 	vma->vm_flags = vm_flags;
1766 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1767 	vma->vm_pgoff = pgoff;
1768 
1769 	if (file) {
1770 		if (vm_flags & VM_DENYWRITE) {
1771 			error = deny_write_access(file);
1772 			if (error)
1773 				goto free_vma;
1774 		}
1775 		if (vm_flags & VM_SHARED) {
1776 			error = mapping_map_writable(file->f_mapping);
1777 			if (error)
1778 				goto allow_write_and_free_vma;
1779 		}
1780 
1781 		/* ->mmap() can change vma->vm_file, but must guarantee that
1782 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1783 		 * and map writably if VM_SHARED is set. This usually means the
1784 		 * new file must not have been exposed to user-space, yet.
1785 		 */
1786 		vma->vm_file = get_file(file);
1787 		error = call_mmap(file, vma);
1788 		if (error)
1789 			goto unmap_and_free_vma;
1790 
1791 		/* Can addr have changed??
1792 		 *
1793 		 * Answer: Yes, several device drivers can do it in their
1794 		 *         f_op->mmap method. -DaveM
1795 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1796 		 *      be updated for vma_link()
1797 		 */
1798 		WARN_ON_ONCE(addr != vma->vm_start);
1799 
1800 		addr = vma->vm_start;
1801 		vm_flags = vma->vm_flags;
1802 	} else if (vm_flags & VM_SHARED) {
1803 		error = shmem_zero_setup(vma);
1804 		if (error)
1805 			goto free_vma;
1806 	} else {
1807 		vma_set_anonymous(vma);
1808 	}
1809 
1810 	vma_link(mm, vma, prev, rb_link, rb_parent);
1811 	/* Once vma denies write, undo our temporary denial count */
1812 	if (file) {
1813 		if (vm_flags & VM_SHARED)
1814 			mapping_unmap_writable(file->f_mapping);
1815 		if (vm_flags & VM_DENYWRITE)
1816 			allow_write_access(file);
1817 	}
1818 	file = vma->vm_file;
1819 out:
1820 	perf_event_mmap(vma);
1821 
1822 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1823 	if (vm_flags & VM_LOCKED) {
1824 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1825 					is_vm_hugetlb_page(vma) ||
1826 					vma == get_gate_vma(current->mm))
1827 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1828 		else
1829 			mm->locked_vm += (len >> PAGE_SHIFT);
1830 	}
1831 
1832 	if (file)
1833 		uprobe_mmap(vma);
1834 
1835 	/*
1836 	 * New (or expanded) vma always get soft dirty status.
1837 	 * Otherwise user-space soft-dirty page tracker won't
1838 	 * be able to distinguish situation when vma area unmapped,
1839 	 * then new mapped in-place (which must be aimed as
1840 	 * a completely new data area).
1841 	 */
1842 	vma->vm_flags |= VM_SOFTDIRTY;
1843 
1844 	vma_set_page_prot(vma);
1845 
1846 	return addr;
1847 
1848 unmap_and_free_vma:
1849 	vma->vm_file = NULL;
1850 	fput(file);
1851 
1852 	/* Undo any partial mapping done by a device driver. */
1853 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1854 	charged = 0;
1855 	if (vm_flags & VM_SHARED)
1856 		mapping_unmap_writable(file->f_mapping);
1857 allow_write_and_free_vma:
1858 	if (vm_flags & VM_DENYWRITE)
1859 		allow_write_access(file);
1860 free_vma:
1861 	vm_area_free(vma);
1862 unacct_error:
1863 	if (charged)
1864 		vm_unacct_memory(charged);
1865 	return error;
1866 }
1867 
1868 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1869 {
1870 	/*
1871 	 * We implement the search by looking for an rbtree node that
1872 	 * immediately follows a suitable gap. That is,
1873 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1874 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1875 	 * - gap_end - gap_start >= length
1876 	 */
1877 
1878 	struct mm_struct *mm = current->mm;
1879 	struct vm_area_struct *vma;
1880 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1881 
1882 	/* Adjust search length to account for worst case alignment overhead */
1883 	length = info->length + info->align_mask;
1884 	if (length < info->length)
1885 		return -ENOMEM;
1886 
1887 	/* Adjust search limits by the desired length */
1888 	if (info->high_limit < length)
1889 		return -ENOMEM;
1890 	high_limit = info->high_limit - length;
1891 
1892 	if (info->low_limit > high_limit)
1893 		return -ENOMEM;
1894 	low_limit = info->low_limit + length;
1895 
1896 	/* Check if rbtree root looks promising */
1897 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1898 		goto check_highest;
1899 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1900 	if (vma->rb_subtree_gap < length)
1901 		goto check_highest;
1902 
1903 	while (true) {
1904 		/* Visit left subtree if it looks promising */
1905 		gap_end = vm_start_gap(vma);
1906 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1907 			struct vm_area_struct *left =
1908 				rb_entry(vma->vm_rb.rb_left,
1909 					 struct vm_area_struct, vm_rb);
1910 			if (left->rb_subtree_gap >= length) {
1911 				vma = left;
1912 				continue;
1913 			}
1914 		}
1915 
1916 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1917 check_current:
1918 		/* Check if current node has a suitable gap */
1919 		if (gap_start > high_limit)
1920 			return -ENOMEM;
1921 		if (gap_end >= low_limit &&
1922 		    gap_end > gap_start && gap_end - gap_start >= length)
1923 			goto found;
1924 
1925 		/* Visit right subtree if it looks promising */
1926 		if (vma->vm_rb.rb_right) {
1927 			struct vm_area_struct *right =
1928 				rb_entry(vma->vm_rb.rb_right,
1929 					 struct vm_area_struct, vm_rb);
1930 			if (right->rb_subtree_gap >= length) {
1931 				vma = right;
1932 				continue;
1933 			}
1934 		}
1935 
1936 		/* Go back up the rbtree to find next candidate node */
1937 		while (true) {
1938 			struct rb_node *prev = &vma->vm_rb;
1939 			if (!rb_parent(prev))
1940 				goto check_highest;
1941 			vma = rb_entry(rb_parent(prev),
1942 				       struct vm_area_struct, vm_rb);
1943 			if (prev == vma->vm_rb.rb_left) {
1944 				gap_start = vm_end_gap(vma->vm_prev);
1945 				gap_end = vm_start_gap(vma);
1946 				goto check_current;
1947 			}
1948 		}
1949 	}
1950 
1951 check_highest:
1952 	/* Check highest gap, which does not precede any rbtree node */
1953 	gap_start = mm->highest_vm_end;
1954 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1955 	if (gap_start > high_limit)
1956 		return -ENOMEM;
1957 
1958 found:
1959 	/* We found a suitable gap. Clip it with the original low_limit. */
1960 	if (gap_start < info->low_limit)
1961 		gap_start = info->low_limit;
1962 
1963 	/* Adjust gap address to the desired alignment */
1964 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1965 
1966 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1967 	VM_BUG_ON(gap_start + info->length > gap_end);
1968 	return gap_start;
1969 }
1970 
1971 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1972 {
1973 	struct mm_struct *mm = current->mm;
1974 	struct vm_area_struct *vma;
1975 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1976 
1977 	/* Adjust search length to account for worst case alignment overhead */
1978 	length = info->length + info->align_mask;
1979 	if (length < info->length)
1980 		return -ENOMEM;
1981 
1982 	/*
1983 	 * Adjust search limits by the desired length.
1984 	 * See implementation comment at top of unmapped_area().
1985 	 */
1986 	gap_end = info->high_limit;
1987 	if (gap_end < length)
1988 		return -ENOMEM;
1989 	high_limit = gap_end - length;
1990 
1991 	if (info->low_limit > high_limit)
1992 		return -ENOMEM;
1993 	low_limit = info->low_limit + length;
1994 
1995 	/* Check highest gap, which does not precede any rbtree node */
1996 	gap_start = mm->highest_vm_end;
1997 	if (gap_start <= high_limit)
1998 		goto found_highest;
1999 
2000 	/* Check if rbtree root looks promising */
2001 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2002 		return -ENOMEM;
2003 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2004 	if (vma->rb_subtree_gap < length)
2005 		return -ENOMEM;
2006 
2007 	while (true) {
2008 		/* Visit right subtree if it looks promising */
2009 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2010 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2011 			struct vm_area_struct *right =
2012 				rb_entry(vma->vm_rb.rb_right,
2013 					 struct vm_area_struct, vm_rb);
2014 			if (right->rb_subtree_gap >= length) {
2015 				vma = right;
2016 				continue;
2017 			}
2018 		}
2019 
2020 check_current:
2021 		/* Check if current node has a suitable gap */
2022 		gap_end = vm_start_gap(vma);
2023 		if (gap_end < low_limit)
2024 			return -ENOMEM;
2025 		if (gap_start <= high_limit &&
2026 		    gap_end > gap_start && gap_end - gap_start >= length)
2027 			goto found;
2028 
2029 		/* Visit left subtree if it looks promising */
2030 		if (vma->vm_rb.rb_left) {
2031 			struct vm_area_struct *left =
2032 				rb_entry(vma->vm_rb.rb_left,
2033 					 struct vm_area_struct, vm_rb);
2034 			if (left->rb_subtree_gap >= length) {
2035 				vma = left;
2036 				continue;
2037 			}
2038 		}
2039 
2040 		/* Go back up the rbtree to find next candidate node */
2041 		while (true) {
2042 			struct rb_node *prev = &vma->vm_rb;
2043 			if (!rb_parent(prev))
2044 				return -ENOMEM;
2045 			vma = rb_entry(rb_parent(prev),
2046 				       struct vm_area_struct, vm_rb);
2047 			if (prev == vma->vm_rb.rb_right) {
2048 				gap_start = vma->vm_prev ?
2049 					vm_end_gap(vma->vm_prev) : 0;
2050 				goto check_current;
2051 			}
2052 		}
2053 	}
2054 
2055 found:
2056 	/* We found a suitable gap. Clip it with the original high_limit. */
2057 	if (gap_end > info->high_limit)
2058 		gap_end = info->high_limit;
2059 
2060 found_highest:
2061 	/* Compute highest gap address at the desired alignment */
2062 	gap_end -= info->length;
2063 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2064 
2065 	VM_BUG_ON(gap_end < info->low_limit);
2066 	VM_BUG_ON(gap_end < gap_start);
2067 	return gap_end;
2068 }
2069 
2070 
2071 #ifndef arch_get_mmap_end
2072 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2073 #endif
2074 
2075 #ifndef arch_get_mmap_base
2076 #define arch_get_mmap_base(addr, base) (base)
2077 #endif
2078 
2079 /* Get an address range which is currently unmapped.
2080  * For shmat() with addr=0.
2081  *
2082  * Ugly calling convention alert:
2083  * Return value with the low bits set means error value,
2084  * ie
2085  *	if (ret & ~PAGE_MASK)
2086  *		error = ret;
2087  *
2088  * This function "knows" that -ENOMEM has the bits set.
2089  */
2090 #ifndef HAVE_ARCH_UNMAPPED_AREA
2091 unsigned long
2092 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2093 		unsigned long len, unsigned long pgoff, unsigned long flags)
2094 {
2095 	struct mm_struct *mm = current->mm;
2096 	struct vm_area_struct *vma, *prev;
2097 	struct vm_unmapped_area_info info;
2098 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2099 
2100 	if (len > mmap_end - mmap_min_addr)
2101 		return -ENOMEM;
2102 
2103 	if (flags & MAP_FIXED)
2104 		return addr;
2105 
2106 	if (addr) {
2107 		addr = PAGE_ALIGN(addr);
2108 		vma = find_vma_prev(mm, addr, &prev);
2109 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2110 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2111 		    (!prev || addr >= vm_end_gap(prev)))
2112 			return addr;
2113 	}
2114 
2115 	info.flags = 0;
2116 	info.length = len;
2117 	info.low_limit = mm->mmap_base;
2118 	info.high_limit = mmap_end;
2119 	info.align_mask = 0;
2120 	return vm_unmapped_area(&info);
2121 }
2122 #endif
2123 
2124 /*
2125  * This mmap-allocator allocates new areas top-down from below the
2126  * stack's low limit (the base):
2127  */
2128 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2129 unsigned long
2130 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2131 			  unsigned long len, unsigned long pgoff,
2132 			  unsigned long flags)
2133 {
2134 	struct vm_area_struct *vma, *prev;
2135 	struct mm_struct *mm = current->mm;
2136 	struct vm_unmapped_area_info info;
2137 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2138 
2139 	/* requested length too big for entire address space */
2140 	if (len > mmap_end - mmap_min_addr)
2141 		return -ENOMEM;
2142 
2143 	if (flags & MAP_FIXED)
2144 		return addr;
2145 
2146 	/* requesting a specific address */
2147 	if (addr) {
2148 		addr = PAGE_ALIGN(addr);
2149 		vma = find_vma_prev(mm, addr, &prev);
2150 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2151 				(!vma || addr + len <= vm_start_gap(vma)) &&
2152 				(!prev || addr >= vm_end_gap(prev)))
2153 			return addr;
2154 	}
2155 
2156 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2157 	info.length = len;
2158 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2159 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2160 	info.align_mask = 0;
2161 	addr = vm_unmapped_area(&info);
2162 
2163 	/*
2164 	 * A failed mmap() very likely causes application failure,
2165 	 * so fall back to the bottom-up function here. This scenario
2166 	 * can happen with large stack limits and large mmap()
2167 	 * allocations.
2168 	 */
2169 	if (offset_in_page(addr)) {
2170 		VM_BUG_ON(addr != -ENOMEM);
2171 		info.flags = 0;
2172 		info.low_limit = TASK_UNMAPPED_BASE;
2173 		info.high_limit = mmap_end;
2174 		addr = vm_unmapped_area(&info);
2175 	}
2176 
2177 	return addr;
2178 }
2179 #endif
2180 
2181 unsigned long
2182 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2183 		unsigned long pgoff, unsigned long flags)
2184 {
2185 	unsigned long (*get_area)(struct file *, unsigned long,
2186 				  unsigned long, unsigned long, unsigned long);
2187 
2188 	unsigned long error = arch_mmap_check(addr, len, flags);
2189 	if (error)
2190 		return error;
2191 
2192 	/* Careful about overflows.. */
2193 	if (len > TASK_SIZE)
2194 		return -ENOMEM;
2195 
2196 	get_area = current->mm->get_unmapped_area;
2197 	if (file) {
2198 		if (file->f_op->get_unmapped_area)
2199 			get_area = file->f_op->get_unmapped_area;
2200 	} else if (flags & MAP_SHARED) {
2201 		/*
2202 		 * mmap_region() will call shmem_zero_setup() to create a file,
2203 		 * so use shmem's get_unmapped_area in case it can be huge.
2204 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2205 		 */
2206 		pgoff = 0;
2207 		get_area = shmem_get_unmapped_area;
2208 	}
2209 
2210 	addr = get_area(file, addr, len, pgoff, flags);
2211 	if (IS_ERR_VALUE(addr))
2212 		return addr;
2213 
2214 	if (addr > TASK_SIZE - len)
2215 		return -ENOMEM;
2216 	if (offset_in_page(addr))
2217 		return -EINVAL;
2218 
2219 	error = security_mmap_addr(addr);
2220 	return error ? error : addr;
2221 }
2222 
2223 EXPORT_SYMBOL(get_unmapped_area);
2224 
2225 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2226 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2227 {
2228 	struct rb_node *rb_node;
2229 	struct vm_area_struct *vma;
2230 
2231 	/* Check the cache first. */
2232 	vma = vmacache_find(mm, addr);
2233 	if (likely(vma))
2234 		return vma;
2235 
2236 	rb_node = mm->mm_rb.rb_node;
2237 
2238 	while (rb_node) {
2239 		struct vm_area_struct *tmp;
2240 
2241 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2242 
2243 		if (tmp->vm_end > addr) {
2244 			vma = tmp;
2245 			if (tmp->vm_start <= addr)
2246 				break;
2247 			rb_node = rb_node->rb_left;
2248 		} else
2249 			rb_node = rb_node->rb_right;
2250 	}
2251 
2252 	if (vma)
2253 		vmacache_update(addr, vma);
2254 	return vma;
2255 }
2256 
2257 EXPORT_SYMBOL(find_vma);
2258 
2259 /*
2260  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2261  */
2262 struct vm_area_struct *
2263 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2264 			struct vm_area_struct **pprev)
2265 {
2266 	struct vm_area_struct *vma;
2267 
2268 	vma = find_vma(mm, addr);
2269 	if (vma) {
2270 		*pprev = vma->vm_prev;
2271 	} else {
2272 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2273 		*pprev = NULL;
2274 		while (rb_node) {
2275 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2276 			rb_node = rb_node->rb_right;
2277 		}
2278 	}
2279 	return vma;
2280 }
2281 
2282 /*
2283  * Verify that the stack growth is acceptable and
2284  * update accounting. This is shared with both the
2285  * grow-up and grow-down cases.
2286  */
2287 static int acct_stack_growth(struct vm_area_struct *vma,
2288 			     unsigned long size, unsigned long grow)
2289 {
2290 	struct mm_struct *mm = vma->vm_mm;
2291 	unsigned long new_start;
2292 
2293 	/* address space limit tests */
2294 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2295 		return -ENOMEM;
2296 
2297 	/* Stack limit test */
2298 	if (size > rlimit(RLIMIT_STACK))
2299 		return -ENOMEM;
2300 
2301 	/* mlock limit tests */
2302 	if (vma->vm_flags & VM_LOCKED) {
2303 		unsigned long locked;
2304 		unsigned long limit;
2305 		locked = mm->locked_vm + grow;
2306 		limit = rlimit(RLIMIT_MEMLOCK);
2307 		limit >>= PAGE_SHIFT;
2308 		if (locked > limit && !capable(CAP_IPC_LOCK))
2309 			return -ENOMEM;
2310 	}
2311 
2312 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2313 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2314 			vma->vm_end - size;
2315 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2316 		return -EFAULT;
2317 
2318 	/*
2319 	 * Overcommit..  This must be the final test, as it will
2320 	 * update security statistics.
2321 	 */
2322 	if (security_vm_enough_memory_mm(mm, grow))
2323 		return -ENOMEM;
2324 
2325 	return 0;
2326 }
2327 
2328 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2329 /*
2330  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2331  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2332  */
2333 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2334 {
2335 	struct mm_struct *mm = vma->vm_mm;
2336 	struct vm_area_struct *next;
2337 	unsigned long gap_addr;
2338 	int error = 0;
2339 
2340 	if (!(vma->vm_flags & VM_GROWSUP))
2341 		return -EFAULT;
2342 
2343 	/* Guard against exceeding limits of the address space. */
2344 	address &= PAGE_MASK;
2345 	if (address >= (TASK_SIZE & PAGE_MASK))
2346 		return -ENOMEM;
2347 	address += PAGE_SIZE;
2348 
2349 	/* Enforce stack_guard_gap */
2350 	gap_addr = address + stack_guard_gap;
2351 
2352 	/* Guard against overflow */
2353 	if (gap_addr < address || gap_addr > TASK_SIZE)
2354 		gap_addr = TASK_SIZE;
2355 
2356 	next = vma->vm_next;
2357 	if (next && next->vm_start < gap_addr &&
2358 			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2359 		if (!(next->vm_flags & VM_GROWSUP))
2360 			return -ENOMEM;
2361 		/* Check that both stack segments have the same anon_vma? */
2362 	}
2363 
2364 	/* We must make sure the anon_vma is allocated. */
2365 	if (unlikely(anon_vma_prepare(vma)))
2366 		return -ENOMEM;
2367 
2368 	/*
2369 	 * vma->vm_start/vm_end cannot change under us because the caller
2370 	 * is required to hold the mmap_sem in read mode.  We need the
2371 	 * anon_vma lock to serialize against concurrent expand_stacks.
2372 	 */
2373 	anon_vma_lock_write(vma->anon_vma);
2374 
2375 	/* Somebody else might have raced and expanded it already */
2376 	if (address > vma->vm_end) {
2377 		unsigned long size, grow;
2378 
2379 		size = address - vma->vm_start;
2380 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2381 
2382 		error = -ENOMEM;
2383 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2384 			error = acct_stack_growth(vma, size, grow);
2385 			if (!error) {
2386 				/*
2387 				 * vma_gap_update() doesn't support concurrent
2388 				 * updates, but we only hold a shared mmap_sem
2389 				 * lock here, so we need to protect against
2390 				 * concurrent vma expansions.
2391 				 * anon_vma_lock_write() doesn't help here, as
2392 				 * we don't guarantee that all growable vmas
2393 				 * in a mm share the same root anon vma.
2394 				 * So, we reuse mm->page_table_lock to guard
2395 				 * against concurrent vma expansions.
2396 				 */
2397 				spin_lock(&mm->page_table_lock);
2398 				if (vma->vm_flags & VM_LOCKED)
2399 					mm->locked_vm += grow;
2400 				vm_stat_account(mm, vma->vm_flags, grow);
2401 				anon_vma_interval_tree_pre_update_vma(vma);
2402 				vma->vm_end = address;
2403 				anon_vma_interval_tree_post_update_vma(vma);
2404 				if (vma->vm_next)
2405 					vma_gap_update(vma->vm_next);
2406 				else
2407 					mm->highest_vm_end = vm_end_gap(vma);
2408 				spin_unlock(&mm->page_table_lock);
2409 
2410 				perf_event_mmap(vma);
2411 			}
2412 		}
2413 	}
2414 	anon_vma_unlock_write(vma->anon_vma);
2415 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2416 	validate_mm(mm);
2417 	return error;
2418 }
2419 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2420 
2421 /*
2422  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2423  */
2424 int expand_downwards(struct vm_area_struct *vma,
2425 				   unsigned long address)
2426 {
2427 	struct mm_struct *mm = vma->vm_mm;
2428 	struct vm_area_struct *prev;
2429 	int error = 0;
2430 
2431 	address &= PAGE_MASK;
2432 	if (address < mmap_min_addr)
2433 		return -EPERM;
2434 
2435 	/* Enforce stack_guard_gap */
2436 	prev = vma->vm_prev;
2437 	/* Check that both stack segments have the same anon_vma? */
2438 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2439 			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2440 		if (address - prev->vm_end < stack_guard_gap)
2441 			return -ENOMEM;
2442 	}
2443 
2444 	/* We must make sure the anon_vma is allocated. */
2445 	if (unlikely(anon_vma_prepare(vma)))
2446 		return -ENOMEM;
2447 
2448 	/*
2449 	 * vma->vm_start/vm_end cannot change under us because the caller
2450 	 * is required to hold the mmap_sem in read mode.  We need the
2451 	 * anon_vma lock to serialize against concurrent expand_stacks.
2452 	 */
2453 	anon_vma_lock_write(vma->anon_vma);
2454 
2455 	/* Somebody else might have raced and expanded it already */
2456 	if (address < vma->vm_start) {
2457 		unsigned long size, grow;
2458 
2459 		size = vma->vm_end - address;
2460 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2461 
2462 		error = -ENOMEM;
2463 		if (grow <= vma->vm_pgoff) {
2464 			error = acct_stack_growth(vma, size, grow);
2465 			if (!error) {
2466 				/*
2467 				 * vma_gap_update() doesn't support concurrent
2468 				 * updates, but we only hold a shared mmap_sem
2469 				 * lock here, so we need to protect against
2470 				 * concurrent vma expansions.
2471 				 * anon_vma_lock_write() doesn't help here, as
2472 				 * we don't guarantee that all growable vmas
2473 				 * in a mm share the same root anon vma.
2474 				 * So, we reuse mm->page_table_lock to guard
2475 				 * against concurrent vma expansions.
2476 				 */
2477 				spin_lock(&mm->page_table_lock);
2478 				if (vma->vm_flags & VM_LOCKED)
2479 					mm->locked_vm += grow;
2480 				vm_stat_account(mm, vma->vm_flags, grow);
2481 				anon_vma_interval_tree_pre_update_vma(vma);
2482 				vma->vm_start = address;
2483 				vma->vm_pgoff -= grow;
2484 				anon_vma_interval_tree_post_update_vma(vma);
2485 				vma_gap_update(vma);
2486 				spin_unlock(&mm->page_table_lock);
2487 
2488 				perf_event_mmap(vma);
2489 			}
2490 		}
2491 	}
2492 	anon_vma_unlock_write(vma->anon_vma);
2493 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2494 	validate_mm(mm);
2495 	return error;
2496 }
2497 
2498 /* enforced gap between the expanding stack and other mappings. */
2499 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2500 
2501 static int __init cmdline_parse_stack_guard_gap(char *p)
2502 {
2503 	unsigned long val;
2504 	char *endptr;
2505 
2506 	val = simple_strtoul(p, &endptr, 10);
2507 	if (!*endptr)
2508 		stack_guard_gap = val << PAGE_SHIFT;
2509 
2510 	return 0;
2511 }
2512 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2513 
2514 #ifdef CONFIG_STACK_GROWSUP
2515 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2516 {
2517 	return expand_upwards(vma, address);
2518 }
2519 
2520 struct vm_area_struct *
2521 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2522 {
2523 	struct vm_area_struct *vma, *prev;
2524 
2525 	addr &= PAGE_MASK;
2526 	vma = find_vma_prev(mm, addr, &prev);
2527 	if (vma && (vma->vm_start <= addr))
2528 		return vma;
2529 	/* don't alter vm_end if the coredump is running */
2530 	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2531 		return NULL;
2532 	if (prev->vm_flags & VM_LOCKED)
2533 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2534 	return prev;
2535 }
2536 #else
2537 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2538 {
2539 	return expand_downwards(vma, address);
2540 }
2541 
2542 struct vm_area_struct *
2543 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2544 {
2545 	struct vm_area_struct *vma;
2546 	unsigned long start;
2547 
2548 	addr &= PAGE_MASK;
2549 	vma = find_vma(mm, addr);
2550 	if (!vma)
2551 		return NULL;
2552 	if (vma->vm_start <= addr)
2553 		return vma;
2554 	if (!(vma->vm_flags & VM_GROWSDOWN))
2555 		return NULL;
2556 	/* don't alter vm_start if the coredump is running */
2557 	if (!mmget_still_valid(mm))
2558 		return NULL;
2559 	start = vma->vm_start;
2560 	if (expand_stack(vma, addr))
2561 		return NULL;
2562 	if (vma->vm_flags & VM_LOCKED)
2563 		populate_vma_page_range(vma, addr, start, NULL);
2564 	return vma;
2565 }
2566 #endif
2567 
2568 EXPORT_SYMBOL_GPL(find_extend_vma);
2569 
2570 /*
2571  * Ok - we have the memory areas we should free on the vma list,
2572  * so release them, and do the vma updates.
2573  *
2574  * Called with the mm semaphore held.
2575  */
2576 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2577 {
2578 	unsigned long nr_accounted = 0;
2579 
2580 	/* Update high watermark before we lower total_vm */
2581 	update_hiwater_vm(mm);
2582 	do {
2583 		long nrpages = vma_pages(vma);
2584 
2585 		if (vma->vm_flags & VM_ACCOUNT)
2586 			nr_accounted += nrpages;
2587 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2588 		vma = remove_vma(vma);
2589 	} while (vma);
2590 	vm_unacct_memory(nr_accounted);
2591 	validate_mm(mm);
2592 }
2593 
2594 /*
2595  * Get rid of page table information in the indicated region.
2596  *
2597  * Called with the mm semaphore held.
2598  */
2599 static void unmap_region(struct mm_struct *mm,
2600 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2601 		unsigned long start, unsigned long end)
2602 {
2603 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2604 	struct mmu_gather tlb;
2605 
2606 	lru_add_drain();
2607 	tlb_gather_mmu(&tlb, mm, start, end);
2608 	update_hiwater_rss(mm);
2609 	unmap_vmas(&tlb, vma, start, end);
2610 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2611 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2612 	tlb_finish_mmu(&tlb, start, end);
2613 }
2614 
2615 /*
2616  * Create a list of vma's touched by the unmap, removing them from the mm's
2617  * vma list as we go..
2618  */
2619 static void
2620 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2621 	struct vm_area_struct *prev, unsigned long end)
2622 {
2623 	struct vm_area_struct **insertion_point;
2624 	struct vm_area_struct *tail_vma = NULL;
2625 
2626 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2627 	vma->vm_prev = NULL;
2628 	do {
2629 		vma_rb_erase(vma, &mm->mm_rb);
2630 		mm->map_count--;
2631 		tail_vma = vma;
2632 		vma = vma->vm_next;
2633 	} while (vma && vma->vm_start < end);
2634 	*insertion_point = vma;
2635 	if (vma) {
2636 		vma->vm_prev = prev;
2637 		vma_gap_update(vma);
2638 	} else
2639 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2640 	tail_vma->vm_next = NULL;
2641 
2642 	/* Kill the cache */
2643 	vmacache_invalidate(mm);
2644 }
2645 
2646 /*
2647  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2648  * has already been checked or doesn't make sense to fail.
2649  */
2650 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2651 		unsigned long addr, int new_below)
2652 {
2653 	struct vm_area_struct *new;
2654 	int err;
2655 
2656 	if (vma->vm_ops && vma->vm_ops->split) {
2657 		err = vma->vm_ops->split(vma, addr);
2658 		if (err)
2659 			return err;
2660 	}
2661 
2662 	new = vm_area_dup(vma);
2663 	if (!new)
2664 		return -ENOMEM;
2665 
2666 	if (new_below)
2667 		new->vm_end = addr;
2668 	else {
2669 		new->vm_start = addr;
2670 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2671 	}
2672 
2673 	err = vma_dup_policy(vma, new);
2674 	if (err)
2675 		goto out_free_vma;
2676 
2677 	err = anon_vma_clone(new, vma);
2678 	if (err)
2679 		goto out_free_mpol;
2680 
2681 	if (new->vm_file)
2682 		get_file(new->vm_file);
2683 
2684 	if (new->vm_ops && new->vm_ops->open)
2685 		new->vm_ops->open(new);
2686 
2687 	if (new_below)
2688 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2689 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2690 	else
2691 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2692 
2693 	/* Success. */
2694 	if (!err)
2695 		return 0;
2696 
2697 	/* Clean everything up if vma_adjust failed. */
2698 	if (new->vm_ops && new->vm_ops->close)
2699 		new->vm_ops->close(new);
2700 	if (new->vm_file)
2701 		fput(new->vm_file);
2702 	unlink_anon_vmas(new);
2703  out_free_mpol:
2704 	mpol_put(vma_policy(new));
2705  out_free_vma:
2706 	vm_area_free(new);
2707 	return err;
2708 }
2709 
2710 /*
2711  * Split a vma into two pieces at address 'addr', a new vma is allocated
2712  * either for the first part or the tail.
2713  */
2714 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2715 	      unsigned long addr, int new_below)
2716 {
2717 	if (mm->map_count >= sysctl_max_map_count)
2718 		return -ENOMEM;
2719 
2720 	return __split_vma(mm, vma, addr, new_below);
2721 }
2722 
2723 /* Munmap is split into 2 main parts -- this part which finds
2724  * what needs doing, and the areas themselves, which do the
2725  * work.  This now handles partial unmappings.
2726  * Jeremy Fitzhardinge <jeremy@goop.org>
2727  */
2728 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2729 		struct list_head *uf, bool downgrade)
2730 {
2731 	unsigned long end;
2732 	struct vm_area_struct *vma, *prev, *last;
2733 
2734 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2735 		return -EINVAL;
2736 
2737 	len = PAGE_ALIGN(len);
2738 	end = start + len;
2739 	if (len == 0)
2740 		return -EINVAL;
2741 
2742 	/*
2743 	 * arch_unmap() might do unmaps itself.  It must be called
2744 	 * and finish any rbtree manipulation before this code
2745 	 * runs and also starts to manipulate the rbtree.
2746 	 */
2747 	arch_unmap(mm, start, end);
2748 
2749 	/* Find the first overlapping VMA */
2750 	vma = find_vma(mm, start);
2751 	if (!vma)
2752 		return 0;
2753 	prev = vma->vm_prev;
2754 	/* we have  start < vma->vm_end  */
2755 
2756 	/* if it doesn't overlap, we have nothing.. */
2757 	if (vma->vm_start >= end)
2758 		return 0;
2759 
2760 	/*
2761 	 * If we need to split any vma, do it now to save pain later.
2762 	 *
2763 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2764 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2765 	 * places tmp vma above, and higher split_vma places tmp vma below.
2766 	 */
2767 	if (start > vma->vm_start) {
2768 		int error;
2769 
2770 		/*
2771 		 * Make sure that map_count on return from munmap() will
2772 		 * not exceed its limit; but let map_count go just above
2773 		 * its limit temporarily, to help free resources as expected.
2774 		 */
2775 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2776 			return -ENOMEM;
2777 
2778 		error = __split_vma(mm, vma, start, 0);
2779 		if (error)
2780 			return error;
2781 		prev = vma;
2782 	}
2783 
2784 	/* Does it split the last one? */
2785 	last = find_vma(mm, end);
2786 	if (last && end > last->vm_start) {
2787 		int error = __split_vma(mm, last, end, 1);
2788 		if (error)
2789 			return error;
2790 	}
2791 	vma = prev ? prev->vm_next : mm->mmap;
2792 
2793 	if (unlikely(uf)) {
2794 		/*
2795 		 * If userfaultfd_unmap_prep returns an error the vmas
2796 		 * will remain splitted, but userland will get a
2797 		 * highly unexpected error anyway. This is no
2798 		 * different than the case where the first of the two
2799 		 * __split_vma fails, but we don't undo the first
2800 		 * split, despite we could. This is unlikely enough
2801 		 * failure that it's not worth optimizing it for.
2802 		 */
2803 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2804 		if (error)
2805 			return error;
2806 	}
2807 
2808 	/*
2809 	 * unlock any mlock()ed ranges before detaching vmas
2810 	 */
2811 	if (mm->locked_vm) {
2812 		struct vm_area_struct *tmp = vma;
2813 		while (tmp && tmp->vm_start < end) {
2814 			if (tmp->vm_flags & VM_LOCKED) {
2815 				mm->locked_vm -= vma_pages(tmp);
2816 				munlock_vma_pages_all(tmp);
2817 			}
2818 
2819 			tmp = tmp->vm_next;
2820 		}
2821 	}
2822 
2823 	/* Detach vmas from rbtree */
2824 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2825 
2826 	if (downgrade)
2827 		downgrade_write(&mm->mmap_sem);
2828 
2829 	unmap_region(mm, vma, prev, start, end);
2830 
2831 	/* Fix up all other VM information */
2832 	remove_vma_list(mm, vma);
2833 
2834 	return downgrade ? 1 : 0;
2835 }
2836 
2837 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2838 	      struct list_head *uf)
2839 {
2840 	return __do_munmap(mm, start, len, uf, false);
2841 }
2842 
2843 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2844 {
2845 	int ret;
2846 	struct mm_struct *mm = current->mm;
2847 	LIST_HEAD(uf);
2848 
2849 	if (down_write_killable(&mm->mmap_sem))
2850 		return -EINTR;
2851 
2852 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2853 	/*
2854 	 * Returning 1 indicates mmap_sem is downgraded.
2855 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2856 	 * it to 0 before return.
2857 	 */
2858 	if (ret == 1) {
2859 		up_read(&mm->mmap_sem);
2860 		ret = 0;
2861 	} else
2862 		up_write(&mm->mmap_sem);
2863 
2864 	userfaultfd_unmap_complete(mm, &uf);
2865 	return ret;
2866 }
2867 
2868 int vm_munmap(unsigned long start, size_t len)
2869 {
2870 	return __vm_munmap(start, len, false);
2871 }
2872 EXPORT_SYMBOL(vm_munmap);
2873 
2874 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2875 {
2876 	profile_munmap(addr);
2877 	return __vm_munmap(addr, len, true);
2878 }
2879 
2880 
2881 /*
2882  * Emulation of deprecated remap_file_pages() syscall.
2883  */
2884 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2885 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2886 {
2887 
2888 	struct mm_struct *mm = current->mm;
2889 	struct vm_area_struct *vma;
2890 	unsigned long populate = 0;
2891 	unsigned long ret = -EINVAL;
2892 	struct file *file;
2893 
2894 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2895 		     current->comm, current->pid);
2896 
2897 	if (prot)
2898 		return ret;
2899 	start = start & PAGE_MASK;
2900 	size = size & PAGE_MASK;
2901 
2902 	if (start + size <= start)
2903 		return ret;
2904 
2905 	/* Does pgoff wrap? */
2906 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2907 		return ret;
2908 
2909 	if (down_write_killable(&mm->mmap_sem))
2910 		return -EINTR;
2911 
2912 	vma = find_vma(mm, start);
2913 
2914 	if (!vma || !(vma->vm_flags & VM_SHARED))
2915 		goto out;
2916 
2917 	if (start < vma->vm_start)
2918 		goto out;
2919 
2920 	if (start + size > vma->vm_end) {
2921 		struct vm_area_struct *next;
2922 
2923 		for (next = vma->vm_next; next; next = next->vm_next) {
2924 			/* hole between vmas ? */
2925 			if (next->vm_start != next->vm_prev->vm_end)
2926 				goto out;
2927 
2928 			if (next->vm_file != vma->vm_file)
2929 				goto out;
2930 
2931 			if (next->vm_flags != vma->vm_flags)
2932 				goto out;
2933 
2934 			if (start + size <= next->vm_end)
2935 				break;
2936 		}
2937 
2938 		if (!next)
2939 			goto out;
2940 	}
2941 
2942 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2943 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2944 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2945 
2946 	flags &= MAP_NONBLOCK;
2947 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2948 	if (vma->vm_flags & VM_LOCKED) {
2949 		struct vm_area_struct *tmp;
2950 		flags |= MAP_LOCKED;
2951 
2952 		/* drop PG_Mlocked flag for over-mapped range */
2953 		for (tmp = vma; tmp->vm_start >= start + size;
2954 				tmp = tmp->vm_next) {
2955 			/*
2956 			 * Split pmd and munlock page on the border
2957 			 * of the range.
2958 			 */
2959 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2960 
2961 			munlock_vma_pages_range(tmp,
2962 					max(tmp->vm_start, start),
2963 					min(tmp->vm_end, start + size));
2964 		}
2965 	}
2966 
2967 	file = get_file(vma->vm_file);
2968 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2969 			prot, flags, pgoff, &populate, NULL);
2970 	fput(file);
2971 out:
2972 	up_write(&mm->mmap_sem);
2973 	if (populate)
2974 		mm_populate(ret, populate);
2975 	if (!IS_ERR_VALUE(ret))
2976 		ret = 0;
2977 	return ret;
2978 }
2979 
2980 /*
2981  *  this is really a simplified "do_mmap".  it only handles
2982  *  anonymous maps.  eventually we may be able to do some
2983  *  brk-specific accounting here.
2984  */
2985 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2986 {
2987 	struct mm_struct *mm = current->mm;
2988 	struct vm_area_struct *vma, *prev;
2989 	struct rb_node **rb_link, *rb_parent;
2990 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2991 	int error;
2992 
2993 	/* Until we need other flags, refuse anything except VM_EXEC. */
2994 	if ((flags & (~VM_EXEC)) != 0)
2995 		return -EINVAL;
2996 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2997 
2998 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2999 	if (offset_in_page(error))
3000 		return error;
3001 
3002 	error = mlock_future_check(mm, mm->def_flags, len);
3003 	if (error)
3004 		return error;
3005 
3006 	/*
3007 	 * Clear old maps.  this also does some error checking for us
3008 	 */
3009 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3010 			      &rb_parent)) {
3011 		if (do_munmap(mm, addr, len, uf))
3012 			return -ENOMEM;
3013 	}
3014 
3015 	/* Check against address space limits *after* clearing old maps... */
3016 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3017 		return -ENOMEM;
3018 
3019 	if (mm->map_count > sysctl_max_map_count)
3020 		return -ENOMEM;
3021 
3022 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3023 		return -ENOMEM;
3024 
3025 	/* Can we just expand an old private anonymous mapping? */
3026 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3027 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3028 	if (vma)
3029 		goto out;
3030 
3031 	/*
3032 	 * create a vma struct for an anonymous mapping
3033 	 */
3034 	vma = vm_area_alloc(mm);
3035 	if (!vma) {
3036 		vm_unacct_memory(len >> PAGE_SHIFT);
3037 		return -ENOMEM;
3038 	}
3039 
3040 	vma_set_anonymous(vma);
3041 	vma->vm_start = addr;
3042 	vma->vm_end = addr + len;
3043 	vma->vm_pgoff = pgoff;
3044 	vma->vm_flags = flags;
3045 	vma->vm_page_prot = vm_get_page_prot(flags);
3046 	vma_link(mm, vma, prev, rb_link, rb_parent);
3047 out:
3048 	perf_event_mmap(vma);
3049 	mm->total_vm += len >> PAGE_SHIFT;
3050 	mm->data_vm += len >> PAGE_SHIFT;
3051 	if (flags & VM_LOCKED)
3052 		mm->locked_vm += (len >> PAGE_SHIFT);
3053 	vma->vm_flags |= VM_SOFTDIRTY;
3054 	return 0;
3055 }
3056 
3057 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3058 {
3059 	struct mm_struct *mm = current->mm;
3060 	unsigned long len;
3061 	int ret;
3062 	bool populate;
3063 	LIST_HEAD(uf);
3064 
3065 	len = PAGE_ALIGN(request);
3066 	if (len < request)
3067 		return -ENOMEM;
3068 	if (!len)
3069 		return 0;
3070 
3071 	if (down_write_killable(&mm->mmap_sem))
3072 		return -EINTR;
3073 
3074 	ret = do_brk_flags(addr, len, flags, &uf);
3075 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3076 	up_write(&mm->mmap_sem);
3077 	userfaultfd_unmap_complete(mm, &uf);
3078 	if (populate && !ret)
3079 		mm_populate(addr, len);
3080 	return ret;
3081 }
3082 EXPORT_SYMBOL(vm_brk_flags);
3083 
3084 int vm_brk(unsigned long addr, unsigned long len)
3085 {
3086 	return vm_brk_flags(addr, len, 0);
3087 }
3088 EXPORT_SYMBOL(vm_brk);
3089 
3090 /* Release all mmaps. */
3091 void exit_mmap(struct mm_struct *mm)
3092 {
3093 	struct mmu_gather tlb;
3094 	struct vm_area_struct *vma;
3095 	unsigned long nr_accounted = 0;
3096 
3097 	/* mm's last user has gone, and its about to be pulled down */
3098 	mmu_notifier_release(mm);
3099 
3100 	if (unlikely(mm_is_oom_victim(mm))) {
3101 		/*
3102 		 * Manually reap the mm to free as much memory as possible.
3103 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3104 		 * this mm from further consideration.  Taking mm->mmap_sem for
3105 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3106 		 * reaper will not run on this mm again after mmap_sem is
3107 		 * dropped.
3108 		 *
3109 		 * Nothing can be holding mm->mmap_sem here and the above call
3110 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3111 		 * __oom_reap_task_mm() will not block.
3112 		 *
3113 		 * This needs to be done before calling munlock_vma_pages_all(),
3114 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3115 		 * reliably test it.
3116 		 */
3117 		(void)__oom_reap_task_mm(mm);
3118 
3119 		set_bit(MMF_OOM_SKIP, &mm->flags);
3120 		down_write(&mm->mmap_sem);
3121 		up_write(&mm->mmap_sem);
3122 	}
3123 
3124 	if (mm->locked_vm) {
3125 		vma = mm->mmap;
3126 		while (vma) {
3127 			if (vma->vm_flags & VM_LOCKED)
3128 				munlock_vma_pages_all(vma);
3129 			vma = vma->vm_next;
3130 		}
3131 	}
3132 
3133 	arch_exit_mmap(mm);
3134 
3135 	vma = mm->mmap;
3136 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3137 		return;
3138 
3139 	lru_add_drain();
3140 	flush_cache_mm(mm);
3141 	tlb_gather_mmu(&tlb, mm, 0, -1);
3142 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3143 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3144 	unmap_vmas(&tlb, vma, 0, -1);
3145 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3146 	tlb_finish_mmu(&tlb, 0, -1);
3147 
3148 	/*
3149 	 * Walk the list again, actually closing and freeing it,
3150 	 * with preemption enabled, without holding any MM locks.
3151 	 */
3152 	while (vma) {
3153 		if (vma->vm_flags & VM_ACCOUNT)
3154 			nr_accounted += vma_pages(vma);
3155 		vma = remove_vma(vma);
3156 	}
3157 	vm_unacct_memory(nr_accounted);
3158 }
3159 
3160 /* Insert vm structure into process list sorted by address
3161  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3162  * then i_mmap_rwsem is taken here.
3163  */
3164 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3165 {
3166 	struct vm_area_struct *prev;
3167 	struct rb_node **rb_link, *rb_parent;
3168 
3169 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3170 			   &prev, &rb_link, &rb_parent))
3171 		return -ENOMEM;
3172 	if ((vma->vm_flags & VM_ACCOUNT) &&
3173 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3174 		return -ENOMEM;
3175 
3176 	/*
3177 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3178 	 * until its first write fault, when page's anon_vma and index
3179 	 * are set.  But now set the vm_pgoff it will almost certainly
3180 	 * end up with (unless mremap moves it elsewhere before that
3181 	 * first wfault), so /proc/pid/maps tells a consistent story.
3182 	 *
3183 	 * By setting it to reflect the virtual start address of the
3184 	 * vma, merges and splits can happen in a seamless way, just
3185 	 * using the existing file pgoff checks and manipulations.
3186 	 * Similarly in do_mmap_pgoff and in do_brk.
3187 	 */
3188 	if (vma_is_anonymous(vma)) {
3189 		BUG_ON(vma->anon_vma);
3190 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3191 	}
3192 
3193 	vma_link(mm, vma, prev, rb_link, rb_parent);
3194 	return 0;
3195 }
3196 
3197 /*
3198  * Copy the vma structure to a new location in the same mm,
3199  * prior to moving page table entries, to effect an mremap move.
3200  */
3201 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3202 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3203 	bool *need_rmap_locks)
3204 {
3205 	struct vm_area_struct *vma = *vmap;
3206 	unsigned long vma_start = vma->vm_start;
3207 	struct mm_struct *mm = vma->vm_mm;
3208 	struct vm_area_struct *new_vma, *prev;
3209 	struct rb_node **rb_link, *rb_parent;
3210 	bool faulted_in_anon_vma = true;
3211 
3212 	/*
3213 	 * If anonymous vma has not yet been faulted, update new pgoff
3214 	 * to match new location, to increase its chance of merging.
3215 	 */
3216 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3217 		pgoff = addr >> PAGE_SHIFT;
3218 		faulted_in_anon_vma = false;
3219 	}
3220 
3221 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3222 		return NULL;	/* should never get here */
3223 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3224 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3225 			    vma->vm_userfaultfd_ctx);
3226 	if (new_vma) {
3227 		/*
3228 		 * Source vma may have been merged into new_vma
3229 		 */
3230 		if (unlikely(vma_start >= new_vma->vm_start &&
3231 			     vma_start < new_vma->vm_end)) {
3232 			/*
3233 			 * The only way we can get a vma_merge with
3234 			 * self during an mremap is if the vma hasn't
3235 			 * been faulted in yet and we were allowed to
3236 			 * reset the dst vma->vm_pgoff to the
3237 			 * destination address of the mremap to allow
3238 			 * the merge to happen. mremap must change the
3239 			 * vm_pgoff linearity between src and dst vmas
3240 			 * (in turn preventing a vma_merge) to be
3241 			 * safe. It is only safe to keep the vm_pgoff
3242 			 * linear if there are no pages mapped yet.
3243 			 */
3244 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3245 			*vmap = vma = new_vma;
3246 		}
3247 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3248 	} else {
3249 		new_vma = vm_area_dup(vma);
3250 		if (!new_vma)
3251 			goto out;
3252 		new_vma->vm_start = addr;
3253 		new_vma->vm_end = addr + len;
3254 		new_vma->vm_pgoff = pgoff;
3255 		if (vma_dup_policy(vma, new_vma))
3256 			goto out_free_vma;
3257 		if (anon_vma_clone(new_vma, vma))
3258 			goto out_free_mempol;
3259 		if (new_vma->vm_file)
3260 			get_file(new_vma->vm_file);
3261 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3262 			new_vma->vm_ops->open(new_vma);
3263 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3264 		*need_rmap_locks = false;
3265 	}
3266 	return new_vma;
3267 
3268 out_free_mempol:
3269 	mpol_put(vma_policy(new_vma));
3270 out_free_vma:
3271 	vm_area_free(new_vma);
3272 out:
3273 	return NULL;
3274 }
3275 
3276 /*
3277  * Return true if the calling process may expand its vm space by the passed
3278  * number of pages
3279  */
3280 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3281 {
3282 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3283 		return false;
3284 
3285 	if (is_data_mapping(flags) &&
3286 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3287 		/* Workaround for Valgrind */
3288 		if (rlimit(RLIMIT_DATA) == 0 &&
3289 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3290 			return true;
3291 
3292 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3293 			     current->comm, current->pid,
3294 			     (mm->data_vm + npages) << PAGE_SHIFT,
3295 			     rlimit(RLIMIT_DATA),
3296 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3297 
3298 		if (!ignore_rlimit_data)
3299 			return false;
3300 	}
3301 
3302 	return true;
3303 }
3304 
3305 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3306 {
3307 	mm->total_vm += npages;
3308 
3309 	if (is_exec_mapping(flags))
3310 		mm->exec_vm += npages;
3311 	else if (is_stack_mapping(flags))
3312 		mm->stack_vm += npages;
3313 	else if (is_data_mapping(flags))
3314 		mm->data_vm += npages;
3315 }
3316 
3317 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3318 
3319 /*
3320  * Having a close hook prevents vma merging regardless of flags.
3321  */
3322 static void special_mapping_close(struct vm_area_struct *vma)
3323 {
3324 }
3325 
3326 static const char *special_mapping_name(struct vm_area_struct *vma)
3327 {
3328 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3329 }
3330 
3331 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3332 {
3333 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3334 
3335 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3336 		return -EFAULT;
3337 
3338 	if (sm->mremap)
3339 		return sm->mremap(sm, new_vma);
3340 
3341 	return 0;
3342 }
3343 
3344 static const struct vm_operations_struct special_mapping_vmops = {
3345 	.close = special_mapping_close,
3346 	.fault = special_mapping_fault,
3347 	.mremap = special_mapping_mremap,
3348 	.name = special_mapping_name,
3349 };
3350 
3351 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3352 	.close = special_mapping_close,
3353 	.fault = special_mapping_fault,
3354 };
3355 
3356 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3357 {
3358 	struct vm_area_struct *vma = vmf->vma;
3359 	pgoff_t pgoff;
3360 	struct page **pages;
3361 
3362 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3363 		pages = vma->vm_private_data;
3364 	} else {
3365 		struct vm_special_mapping *sm = vma->vm_private_data;
3366 
3367 		if (sm->fault)
3368 			return sm->fault(sm, vmf->vma, vmf);
3369 
3370 		pages = sm->pages;
3371 	}
3372 
3373 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3374 		pgoff--;
3375 
3376 	if (*pages) {
3377 		struct page *page = *pages;
3378 		get_page(page);
3379 		vmf->page = page;
3380 		return 0;
3381 	}
3382 
3383 	return VM_FAULT_SIGBUS;
3384 }
3385 
3386 static struct vm_area_struct *__install_special_mapping(
3387 	struct mm_struct *mm,
3388 	unsigned long addr, unsigned long len,
3389 	unsigned long vm_flags, void *priv,
3390 	const struct vm_operations_struct *ops)
3391 {
3392 	int ret;
3393 	struct vm_area_struct *vma;
3394 
3395 	vma = vm_area_alloc(mm);
3396 	if (unlikely(vma == NULL))
3397 		return ERR_PTR(-ENOMEM);
3398 
3399 	vma->vm_start = addr;
3400 	vma->vm_end = addr + len;
3401 
3402 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3403 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3404 
3405 	vma->vm_ops = ops;
3406 	vma->vm_private_data = priv;
3407 
3408 	ret = insert_vm_struct(mm, vma);
3409 	if (ret)
3410 		goto out;
3411 
3412 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3413 
3414 	perf_event_mmap(vma);
3415 
3416 	return vma;
3417 
3418 out:
3419 	vm_area_free(vma);
3420 	return ERR_PTR(ret);
3421 }
3422 
3423 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3424 	const struct vm_special_mapping *sm)
3425 {
3426 	return vma->vm_private_data == sm &&
3427 		(vma->vm_ops == &special_mapping_vmops ||
3428 		 vma->vm_ops == &legacy_special_mapping_vmops);
3429 }
3430 
3431 /*
3432  * Called with mm->mmap_sem held for writing.
3433  * Insert a new vma covering the given region, with the given flags.
3434  * Its pages are supplied by the given array of struct page *.
3435  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3436  * The region past the last page supplied will always produce SIGBUS.
3437  * The array pointer and the pages it points to are assumed to stay alive
3438  * for as long as this mapping might exist.
3439  */
3440 struct vm_area_struct *_install_special_mapping(
3441 	struct mm_struct *mm,
3442 	unsigned long addr, unsigned long len,
3443 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3444 {
3445 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3446 					&special_mapping_vmops);
3447 }
3448 
3449 int install_special_mapping(struct mm_struct *mm,
3450 			    unsigned long addr, unsigned long len,
3451 			    unsigned long vm_flags, struct page **pages)
3452 {
3453 	struct vm_area_struct *vma = __install_special_mapping(
3454 		mm, addr, len, vm_flags, (void *)pages,
3455 		&legacy_special_mapping_vmops);
3456 
3457 	return PTR_ERR_OR_ZERO(vma);
3458 }
3459 
3460 static DEFINE_MUTEX(mm_all_locks_mutex);
3461 
3462 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3463 {
3464 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3465 		/*
3466 		 * The LSB of head.next can't change from under us
3467 		 * because we hold the mm_all_locks_mutex.
3468 		 */
3469 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3470 		/*
3471 		 * We can safely modify head.next after taking the
3472 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3473 		 * the same anon_vma we won't take it again.
3474 		 *
3475 		 * No need of atomic instructions here, head.next
3476 		 * can't change from under us thanks to the
3477 		 * anon_vma->root->rwsem.
3478 		 */
3479 		if (__test_and_set_bit(0, (unsigned long *)
3480 				       &anon_vma->root->rb_root.rb_root.rb_node))
3481 			BUG();
3482 	}
3483 }
3484 
3485 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3486 {
3487 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3488 		/*
3489 		 * AS_MM_ALL_LOCKS can't change from under us because
3490 		 * we hold the mm_all_locks_mutex.
3491 		 *
3492 		 * Operations on ->flags have to be atomic because
3493 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3494 		 * mm_all_locks_mutex, there may be other cpus
3495 		 * changing other bitflags in parallel to us.
3496 		 */
3497 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3498 			BUG();
3499 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3500 	}
3501 }
3502 
3503 /*
3504  * This operation locks against the VM for all pte/vma/mm related
3505  * operations that could ever happen on a certain mm. This includes
3506  * vmtruncate, try_to_unmap, and all page faults.
3507  *
3508  * The caller must take the mmap_sem in write mode before calling
3509  * mm_take_all_locks(). The caller isn't allowed to release the
3510  * mmap_sem until mm_drop_all_locks() returns.
3511  *
3512  * mmap_sem in write mode is required in order to block all operations
3513  * that could modify pagetables and free pages without need of
3514  * altering the vma layout. It's also needed in write mode to avoid new
3515  * anon_vmas to be associated with existing vmas.
3516  *
3517  * A single task can't take more than one mm_take_all_locks() in a row
3518  * or it would deadlock.
3519  *
3520  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3521  * mapping->flags avoid to take the same lock twice, if more than one
3522  * vma in this mm is backed by the same anon_vma or address_space.
3523  *
3524  * We take locks in following order, accordingly to comment at beginning
3525  * of mm/rmap.c:
3526  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3527  *     hugetlb mapping);
3528  *   - all i_mmap_rwsem locks;
3529  *   - all anon_vma->rwseml
3530  *
3531  * We can take all locks within these types randomly because the VM code
3532  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3533  * mm_all_locks_mutex.
3534  *
3535  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3536  * that may have to take thousand of locks.
3537  *
3538  * mm_take_all_locks() can fail if it's interrupted by signals.
3539  */
3540 int mm_take_all_locks(struct mm_struct *mm)
3541 {
3542 	struct vm_area_struct *vma;
3543 	struct anon_vma_chain *avc;
3544 
3545 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3546 
3547 	mutex_lock(&mm_all_locks_mutex);
3548 
3549 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3550 		if (signal_pending(current))
3551 			goto out_unlock;
3552 		if (vma->vm_file && vma->vm_file->f_mapping &&
3553 				is_vm_hugetlb_page(vma))
3554 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3555 	}
3556 
3557 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3558 		if (signal_pending(current))
3559 			goto out_unlock;
3560 		if (vma->vm_file && vma->vm_file->f_mapping &&
3561 				!is_vm_hugetlb_page(vma))
3562 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3563 	}
3564 
3565 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3566 		if (signal_pending(current))
3567 			goto out_unlock;
3568 		if (vma->anon_vma)
3569 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3570 				vm_lock_anon_vma(mm, avc->anon_vma);
3571 	}
3572 
3573 	return 0;
3574 
3575 out_unlock:
3576 	mm_drop_all_locks(mm);
3577 	return -EINTR;
3578 }
3579 
3580 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3581 {
3582 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3583 		/*
3584 		 * The LSB of head.next can't change to 0 from under
3585 		 * us because we hold the mm_all_locks_mutex.
3586 		 *
3587 		 * We must however clear the bitflag before unlocking
3588 		 * the vma so the users using the anon_vma->rb_root will
3589 		 * never see our bitflag.
3590 		 *
3591 		 * No need of atomic instructions here, head.next
3592 		 * can't change from under us until we release the
3593 		 * anon_vma->root->rwsem.
3594 		 */
3595 		if (!__test_and_clear_bit(0, (unsigned long *)
3596 					  &anon_vma->root->rb_root.rb_root.rb_node))
3597 			BUG();
3598 		anon_vma_unlock_write(anon_vma);
3599 	}
3600 }
3601 
3602 static void vm_unlock_mapping(struct address_space *mapping)
3603 {
3604 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3605 		/*
3606 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3607 		 * because we hold the mm_all_locks_mutex.
3608 		 */
3609 		i_mmap_unlock_write(mapping);
3610 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3611 					&mapping->flags))
3612 			BUG();
3613 	}
3614 }
3615 
3616 /*
3617  * The mmap_sem cannot be released by the caller until
3618  * mm_drop_all_locks() returns.
3619  */
3620 void mm_drop_all_locks(struct mm_struct *mm)
3621 {
3622 	struct vm_area_struct *vma;
3623 	struct anon_vma_chain *avc;
3624 
3625 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3626 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3627 
3628 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3629 		if (vma->anon_vma)
3630 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3631 				vm_unlock_anon_vma(avc->anon_vma);
3632 		if (vma->vm_file && vma->vm_file->f_mapping)
3633 			vm_unlock_mapping(vma->vm_file->f_mapping);
3634 	}
3635 
3636 	mutex_unlock(&mm_all_locks_mutex);
3637 }
3638 
3639 /*
3640  * initialise the percpu counter for VM
3641  */
3642 void __init mmap_init(void)
3643 {
3644 	int ret;
3645 
3646 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3647 	VM_BUG_ON(ret);
3648 }
3649 
3650 /*
3651  * Initialise sysctl_user_reserve_kbytes.
3652  *
3653  * This is intended to prevent a user from starting a single memory hogging
3654  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3655  * mode.
3656  *
3657  * The default value is min(3% of free memory, 128MB)
3658  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3659  */
3660 static int init_user_reserve(void)
3661 {
3662 	unsigned long free_kbytes;
3663 
3664 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3665 
3666 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3667 	return 0;
3668 }
3669 subsys_initcall(init_user_reserve);
3670 
3671 /*
3672  * Initialise sysctl_admin_reserve_kbytes.
3673  *
3674  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3675  * to log in and kill a memory hogging process.
3676  *
3677  * Systems with more than 256MB will reserve 8MB, enough to recover
3678  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3679  * only reserve 3% of free pages by default.
3680  */
3681 static int init_admin_reserve(void)
3682 {
3683 	unsigned long free_kbytes;
3684 
3685 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3686 
3687 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3688 	return 0;
3689 }
3690 subsys_initcall(init_admin_reserve);
3691 
3692 /*
3693  * Reinititalise user and admin reserves if memory is added or removed.
3694  *
3695  * The default user reserve max is 128MB, and the default max for the
3696  * admin reserve is 8MB. These are usually, but not always, enough to
3697  * enable recovery from a memory hogging process using login/sshd, a shell,
3698  * and tools like top. It may make sense to increase or even disable the
3699  * reserve depending on the existence of swap or variations in the recovery
3700  * tools. So, the admin may have changed them.
3701  *
3702  * If memory is added and the reserves have been eliminated or increased above
3703  * the default max, then we'll trust the admin.
3704  *
3705  * If memory is removed and there isn't enough free memory, then we
3706  * need to reset the reserves.
3707  *
3708  * Otherwise keep the reserve set by the admin.
3709  */
3710 static int reserve_mem_notifier(struct notifier_block *nb,
3711 			     unsigned long action, void *data)
3712 {
3713 	unsigned long tmp, free_kbytes;
3714 
3715 	switch (action) {
3716 	case MEM_ONLINE:
3717 		/* Default max is 128MB. Leave alone if modified by operator. */
3718 		tmp = sysctl_user_reserve_kbytes;
3719 		if (0 < tmp && tmp < (1UL << 17))
3720 			init_user_reserve();
3721 
3722 		/* Default max is 8MB.  Leave alone if modified by operator. */
3723 		tmp = sysctl_admin_reserve_kbytes;
3724 		if (0 < tmp && tmp < (1UL << 13))
3725 			init_admin_reserve();
3726 
3727 		break;
3728 	case MEM_OFFLINE:
3729 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3730 
3731 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3732 			init_user_reserve();
3733 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3734 				sysctl_user_reserve_kbytes);
3735 		}
3736 
3737 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3738 			init_admin_reserve();
3739 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3740 				sysctl_admin_reserve_kbytes);
3741 		}
3742 		break;
3743 	default:
3744 		break;
3745 	}
3746 	return NOTIFY_OK;
3747 }
3748 
3749 static struct notifier_block reserve_mem_nb = {
3750 	.notifier_call = reserve_mem_notifier,
3751 };
3752 
3753 static int __meminit init_reserve_notifier(void)
3754 {
3755 	if (register_hotmemory_notifier(&reserve_mem_nb))
3756 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3757 
3758 	return 0;
3759 }
3760 subsys_initcall(init_reserve_notifier);
3761