1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/backing-dev.h> 12 #include <linux/mm.h> 13 #include <linux/vmacache.h> 14 #include <linux/shm.h> 15 #include <linux/mman.h> 16 #include <linux/pagemap.h> 17 #include <linux/swap.h> 18 #include <linux/syscalls.h> 19 #include <linux/capability.h> 20 #include <linux/init.h> 21 #include <linux/file.h> 22 #include <linux/fs.h> 23 #include <linux/personality.h> 24 #include <linux/security.h> 25 #include <linux/hugetlb.h> 26 #include <linux/profile.h> 27 #include <linux/export.h> 28 #include <linux/mount.h> 29 #include <linux/mempolicy.h> 30 #include <linux/rmap.h> 31 #include <linux/mmu_notifier.h> 32 #include <linux/perf_event.h> 33 #include <linux/audit.h> 34 #include <linux/khugepaged.h> 35 #include <linux/uprobes.h> 36 #include <linux/rbtree_augmented.h> 37 #include <linux/sched/sysctl.h> 38 #include <linux/notifier.h> 39 #include <linux/memory.h> 40 41 #include <asm/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <asm/tlb.h> 44 #include <asm/mmu_context.h> 45 46 #include "internal.h" 47 48 #ifndef arch_mmap_check 49 #define arch_mmap_check(addr, len, flags) (0) 50 #endif 51 52 #ifndef arch_rebalance_pgtables 53 #define arch_rebalance_pgtables(addr, len) (addr) 54 #endif 55 56 static void unmap_region(struct mm_struct *mm, 57 struct vm_area_struct *vma, struct vm_area_struct *prev, 58 unsigned long start, unsigned long end); 59 60 /* description of effects of mapping type and prot in current implementation. 61 * this is due to the limited x86 page protection hardware. The expected 62 * behavior is in parens: 63 * 64 * map_type prot 65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 67 * w: (no) no w: (no) no w: (yes) yes w: (no) no 68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 69 * 70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 71 * w: (no) no w: (no) no w: (copy) copy w: (no) no 72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 73 * 74 */ 75 pgprot_t protection_map[16] = { 76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 78 }; 79 80 pgprot_t vm_get_page_prot(unsigned long vm_flags) 81 { 82 return __pgprot(pgprot_val(protection_map[vm_flags & 83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 84 pgprot_val(arch_vm_get_page_prot(vm_flags))); 85 } 86 EXPORT_SYMBOL(vm_get_page_prot); 87 88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 90 unsigned long sysctl_overcommit_kbytes __read_mostly; 91 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 92 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 93 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 94 /* 95 * Make sure vm_committed_as in one cacheline and not cacheline shared with 96 * other variables. It can be updated by several CPUs frequently. 97 */ 98 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 99 100 /* 101 * The global memory commitment made in the system can be a metric 102 * that can be used to drive ballooning decisions when Linux is hosted 103 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 104 * balancing memory across competing virtual machines that are hosted. 105 * Several metrics drive this policy engine including the guest reported 106 * memory commitment. 107 */ 108 unsigned long vm_memory_committed(void) 109 { 110 return percpu_counter_read_positive(&vm_committed_as); 111 } 112 EXPORT_SYMBOL_GPL(vm_memory_committed); 113 114 /* 115 * Check that a process has enough memory to allocate a new virtual 116 * mapping. 0 means there is enough memory for the allocation to 117 * succeed and -ENOMEM implies there is not. 118 * 119 * We currently support three overcommit policies, which are set via the 120 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 121 * 122 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 123 * Additional code 2002 Jul 20 by Robert Love. 124 * 125 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 126 * 127 * Note this is a helper function intended to be used by LSMs which 128 * wish to use this logic. 129 */ 130 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 131 { 132 unsigned long free, allowed, reserve; 133 134 vm_acct_memory(pages); 135 136 /* 137 * Sometimes we want to use more memory than we have 138 */ 139 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 140 return 0; 141 142 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 143 free = global_page_state(NR_FREE_PAGES); 144 free += global_page_state(NR_FILE_PAGES); 145 146 /* 147 * shmem pages shouldn't be counted as free in this 148 * case, they can't be purged, only swapped out, and 149 * that won't affect the overall amount of available 150 * memory in the system. 151 */ 152 free -= global_page_state(NR_SHMEM); 153 154 free += get_nr_swap_pages(); 155 156 /* 157 * Any slabs which are created with the 158 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 159 * which are reclaimable, under pressure. The dentry 160 * cache and most inode caches should fall into this 161 */ 162 free += global_page_state(NR_SLAB_RECLAIMABLE); 163 164 /* 165 * Leave reserved pages. The pages are not for anonymous pages. 166 */ 167 if (free <= totalreserve_pages) 168 goto error; 169 else 170 free -= totalreserve_pages; 171 172 /* 173 * Reserve some for root 174 */ 175 if (!cap_sys_admin) 176 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 177 178 if (free > pages) 179 return 0; 180 181 goto error; 182 } 183 184 allowed = vm_commit_limit(); 185 /* 186 * Reserve some for root 187 */ 188 if (!cap_sys_admin) 189 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 190 191 /* 192 * Don't let a single process grow so big a user can't recover 193 */ 194 if (mm) { 195 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 196 allowed -= min(mm->total_vm / 32, reserve); 197 } 198 199 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 200 return 0; 201 error: 202 vm_unacct_memory(pages); 203 204 return -ENOMEM; 205 } 206 207 /* 208 * Requires inode->i_mapping->i_mmap_mutex 209 */ 210 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 211 struct file *file, struct address_space *mapping) 212 { 213 if (vma->vm_flags & VM_DENYWRITE) 214 atomic_inc(&file_inode(file)->i_writecount); 215 if (vma->vm_flags & VM_SHARED) 216 mapping->i_mmap_writable--; 217 218 flush_dcache_mmap_lock(mapping); 219 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 220 list_del_init(&vma->shared.nonlinear); 221 else 222 vma_interval_tree_remove(vma, &mapping->i_mmap); 223 flush_dcache_mmap_unlock(mapping); 224 } 225 226 /* 227 * Unlink a file-based vm structure from its interval tree, to hide 228 * vma from rmap and vmtruncate before freeing its page tables. 229 */ 230 void unlink_file_vma(struct vm_area_struct *vma) 231 { 232 struct file *file = vma->vm_file; 233 234 if (file) { 235 struct address_space *mapping = file->f_mapping; 236 mutex_lock(&mapping->i_mmap_mutex); 237 __remove_shared_vm_struct(vma, file, mapping); 238 mutex_unlock(&mapping->i_mmap_mutex); 239 } 240 } 241 242 /* 243 * Close a vm structure and free it, returning the next. 244 */ 245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 246 { 247 struct vm_area_struct *next = vma->vm_next; 248 249 might_sleep(); 250 if (vma->vm_ops && vma->vm_ops->close) 251 vma->vm_ops->close(vma); 252 if (vma->vm_file) 253 fput(vma->vm_file); 254 mpol_put(vma_policy(vma)); 255 kmem_cache_free(vm_area_cachep, vma); 256 return next; 257 } 258 259 static unsigned long do_brk(unsigned long addr, unsigned long len); 260 261 SYSCALL_DEFINE1(brk, unsigned long, brk) 262 { 263 unsigned long rlim, retval; 264 unsigned long newbrk, oldbrk; 265 struct mm_struct *mm = current->mm; 266 unsigned long min_brk; 267 bool populate; 268 269 down_write(&mm->mmap_sem); 270 271 #ifdef CONFIG_COMPAT_BRK 272 /* 273 * CONFIG_COMPAT_BRK can still be overridden by setting 274 * randomize_va_space to 2, which will still cause mm->start_brk 275 * to be arbitrarily shifted 276 */ 277 if (current->brk_randomized) 278 min_brk = mm->start_brk; 279 else 280 min_brk = mm->end_data; 281 #else 282 min_brk = mm->start_brk; 283 #endif 284 if (brk < min_brk) 285 goto out; 286 287 /* 288 * Check against rlimit here. If this check is done later after the test 289 * of oldbrk with newbrk then it can escape the test and let the data 290 * segment grow beyond its set limit the in case where the limit is 291 * not page aligned -Ram Gupta 292 */ 293 rlim = rlimit(RLIMIT_DATA); 294 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 295 (mm->end_data - mm->start_data) > rlim) 296 goto out; 297 298 newbrk = PAGE_ALIGN(brk); 299 oldbrk = PAGE_ALIGN(mm->brk); 300 if (oldbrk == newbrk) 301 goto set_brk; 302 303 /* Always allow shrinking brk. */ 304 if (brk <= mm->brk) { 305 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 306 goto set_brk; 307 goto out; 308 } 309 310 /* Check against existing mmap mappings. */ 311 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 312 goto out; 313 314 /* Ok, looks good - let it rip. */ 315 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 316 goto out; 317 318 set_brk: 319 mm->brk = brk; 320 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 321 up_write(&mm->mmap_sem); 322 if (populate) 323 mm_populate(oldbrk, newbrk - oldbrk); 324 return brk; 325 326 out: 327 retval = mm->brk; 328 up_write(&mm->mmap_sem); 329 return retval; 330 } 331 332 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 333 { 334 unsigned long max, subtree_gap; 335 max = vma->vm_start; 336 if (vma->vm_prev) 337 max -= vma->vm_prev->vm_end; 338 if (vma->vm_rb.rb_left) { 339 subtree_gap = rb_entry(vma->vm_rb.rb_left, 340 struct vm_area_struct, vm_rb)->rb_subtree_gap; 341 if (subtree_gap > max) 342 max = subtree_gap; 343 } 344 if (vma->vm_rb.rb_right) { 345 subtree_gap = rb_entry(vma->vm_rb.rb_right, 346 struct vm_area_struct, vm_rb)->rb_subtree_gap; 347 if (subtree_gap > max) 348 max = subtree_gap; 349 } 350 return max; 351 } 352 353 #ifdef CONFIG_DEBUG_VM_RB 354 static int browse_rb(struct rb_root *root) 355 { 356 int i = 0, j, bug = 0; 357 struct rb_node *nd, *pn = NULL; 358 unsigned long prev = 0, pend = 0; 359 360 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 361 struct vm_area_struct *vma; 362 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 363 if (vma->vm_start < prev) { 364 printk("vm_start %lx prev %lx\n", vma->vm_start, prev); 365 bug = 1; 366 } 367 if (vma->vm_start < pend) { 368 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 369 bug = 1; 370 } 371 if (vma->vm_start > vma->vm_end) { 372 printk("vm_end %lx < vm_start %lx\n", 373 vma->vm_end, vma->vm_start); 374 bug = 1; 375 } 376 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 377 printk("free gap %lx, correct %lx\n", 378 vma->rb_subtree_gap, 379 vma_compute_subtree_gap(vma)); 380 bug = 1; 381 } 382 i++; 383 pn = nd; 384 prev = vma->vm_start; 385 pend = vma->vm_end; 386 } 387 j = 0; 388 for (nd = pn; nd; nd = rb_prev(nd)) 389 j++; 390 if (i != j) { 391 printk("backwards %d, forwards %d\n", j, i); 392 bug = 1; 393 } 394 return bug ? -1 : i; 395 } 396 397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 398 { 399 struct rb_node *nd; 400 401 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 402 struct vm_area_struct *vma; 403 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 404 BUG_ON(vma != ignore && 405 vma->rb_subtree_gap != vma_compute_subtree_gap(vma)); 406 } 407 } 408 409 static void validate_mm(struct mm_struct *mm) 410 { 411 int bug = 0; 412 int i = 0; 413 unsigned long highest_address = 0; 414 struct vm_area_struct *vma = mm->mmap; 415 while (vma) { 416 struct anon_vma_chain *avc; 417 vma_lock_anon_vma(vma); 418 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 419 anon_vma_interval_tree_verify(avc); 420 vma_unlock_anon_vma(vma); 421 highest_address = vma->vm_end; 422 vma = vma->vm_next; 423 i++; 424 } 425 if (i != mm->map_count) { 426 printk("map_count %d vm_next %d\n", mm->map_count, i); 427 bug = 1; 428 } 429 if (highest_address != mm->highest_vm_end) { 430 printk("mm->highest_vm_end %lx, found %lx\n", 431 mm->highest_vm_end, highest_address); 432 bug = 1; 433 } 434 i = browse_rb(&mm->mm_rb); 435 if (i != mm->map_count) { 436 printk("map_count %d rb %d\n", mm->map_count, i); 437 bug = 1; 438 } 439 BUG_ON(bug); 440 } 441 #else 442 #define validate_mm_rb(root, ignore) do { } while (0) 443 #define validate_mm(mm) do { } while (0) 444 #endif 445 446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 447 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 448 449 /* 450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 451 * vma->vm_prev->vm_end values changed, without modifying the vma's position 452 * in the rbtree. 453 */ 454 static void vma_gap_update(struct vm_area_struct *vma) 455 { 456 /* 457 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 458 * function that does exacltly what we want. 459 */ 460 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 461 } 462 463 static inline void vma_rb_insert(struct vm_area_struct *vma, 464 struct rb_root *root) 465 { 466 /* All rb_subtree_gap values must be consistent prior to insertion */ 467 validate_mm_rb(root, NULL); 468 469 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 470 } 471 472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 473 { 474 /* 475 * All rb_subtree_gap values must be consistent prior to erase, 476 * with the possible exception of the vma being erased. 477 */ 478 validate_mm_rb(root, vma); 479 480 /* 481 * Note rb_erase_augmented is a fairly large inline function, 482 * so make sure we instantiate it only once with our desired 483 * augmented rbtree callbacks. 484 */ 485 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 486 } 487 488 /* 489 * vma has some anon_vma assigned, and is already inserted on that 490 * anon_vma's interval trees. 491 * 492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 493 * vma must be removed from the anon_vma's interval trees using 494 * anon_vma_interval_tree_pre_update_vma(). 495 * 496 * After the update, the vma will be reinserted using 497 * anon_vma_interval_tree_post_update_vma(). 498 * 499 * The entire update must be protected by exclusive mmap_sem and by 500 * the root anon_vma's mutex. 501 */ 502 static inline void 503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 504 { 505 struct anon_vma_chain *avc; 506 507 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 508 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 509 } 510 511 static inline void 512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 513 { 514 struct anon_vma_chain *avc; 515 516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 517 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 518 } 519 520 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 521 unsigned long end, struct vm_area_struct **pprev, 522 struct rb_node ***rb_link, struct rb_node **rb_parent) 523 { 524 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 525 526 __rb_link = &mm->mm_rb.rb_node; 527 rb_prev = __rb_parent = NULL; 528 529 while (*__rb_link) { 530 struct vm_area_struct *vma_tmp; 531 532 __rb_parent = *__rb_link; 533 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 534 535 if (vma_tmp->vm_end > addr) { 536 /* Fail if an existing vma overlaps the area */ 537 if (vma_tmp->vm_start < end) 538 return -ENOMEM; 539 __rb_link = &__rb_parent->rb_left; 540 } else { 541 rb_prev = __rb_parent; 542 __rb_link = &__rb_parent->rb_right; 543 } 544 } 545 546 *pprev = NULL; 547 if (rb_prev) 548 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 549 *rb_link = __rb_link; 550 *rb_parent = __rb_parent; 551 return 0; 552 } 553 554 static unsigned long count_vma_pages_range(struct mm_struct *mm, 555 unsigned long addr, unsigned long end) 556 { 557 unsigned long nr_pages = 0; 558 struct vm_area_struct *vma; 559 560 /* Find first overlaping mapping */ 561 vma = find_vma_intersection(mm, addr, end); 562 if (!vma) 563 return 0; 564 565 nr_pages = (min(end, vma->vm_end) - 566 max(addr, vma->vm_start)) >> PAGE_SHIFT; 567 568 /* Iterate over the rest of the overlaps */ 569 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 570 unsigned long overlap_len; 571 572 if (vma->vm_start > end) 573 break; 574 575 overlap_len = min(end, vma->vm_end) - vma->vm_start; 576 nr_pages += overlap_len >> PAGE_SHIFT; 577 } 578 579 return nr_pages; 580 } 581 582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 583 struct rb_node **rb_link, struct rb_node *rb_parent) 584 { 585 /* Update tracking information for the gap following the new vma. */ 586 if (vma->vm_next) 587 vma_gap_update(vma->vm_next); 588 else 589 mm->highest_vm_end = vma->vm_end; 590 591 /* 592 * vma->vm_prev wasn't known when we followed the rbtree to find the 593 * correct insertion point for that vma. As a result, we could not 594 * update the vma vm_rb parents rb_subtree_gap values on the way down. 595 * So, we first insert the vma with a zero rb_subtree_gap value 596 * (to be consistent with what we did on the way down), and then 597 * immediately update the gap to the correct value. Finally we 598 * rebalance the rbtree after all augmented values have been set. 599 */ 600 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 601 vma->rb_subtree_gap = 0; 602 vma_gap_update(vma); 603 vma_rb_insert(vma, &mm->mm_rb); 604 } 605 606 static void __vma_link_file(struct vm_area_struct *vma) 607 { 608 struct file *file; 609 610 file = vma->vm_file; 611 if (file) { 612 struct address_space *mapping = file->f_mapping; 613 614 if (vma->vm_flags & VM_DENYWRITE) 615 atomic_dec(&file_inode(file)->i_writecount); 616 if (vma->vm_flags & VM_SHARED) 617 mapping->i_mmap_writable++; 618 619 flush_dcache_mmap_lock(mapping); 620 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 621 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 622 else 623 vma_interval_tree_insert(vma, &mapping->i_mmap); 624 flush_dcache_mmap_unlock(mapping); 625 } 626 } 627 628 static void 629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 630 struct vm_area_struct *prev, struct rb_node **rb_link, 631 struct rb_node *rb_parent) 632 { 633 __vma_link_list(mm, vma, prev, rb_parent); 634 __vma_link_rb(mm, vma, rb_link, rb_parent); 635 } 636 637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 638 struct vm_area_struct *prev, struct rb_node **rb_link, 639 struct rb_node *rb_parent) 640 { 641 struct address_space *mapping = NULL; 642 643 if (vma->vm_file) 644 mapping = vma->vm_file->f_mapping; 645 646 if (mapping) 647 mutex_lock(&mapping->i_mmap_mutex); 648 649 __vma_link(mm, vma, prev, rb_link, rb_parent); 650 __vma_link_file(vma); 651 652 if (mapping) 653 mutex_unlock(&mapping->i_mmap_mutex); 654 655 mm->map_count++; 656 validate_mm(mm); 657 } 658 659 /* 660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 661 * mm's list and rbtree. It has already been inserted into the interval tree. 662 */ 663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 664 { 665 struct vm_area_struct *prev; 666 struct rb_node **rb_link, *rb_parent; 667 668 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 669 &prev, &rb_link, &rb_parent)) 670 BUG(); 671 __vma_link(mm, vma, prev, rb_link, rb_parent); 672 mm->map_count++; 673 } 674 675 static inline void 676 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 677 struct vm_area_struct *prev) 678 { 679 struct vm_area_struct *next; 680 681 vma_rb_erase(vma, &mm->mm_rb); 682 prev->vm_next = next = vma->vm_next; 683 if (next) 684 next->vm_prev = prev; 685 686 /* Kill the cache */ 687 vmacache_invalidate(mm); 688 } 689 690 /* 691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 692 * is already present in an i_mmap tree without adjusting the tree. 693 * The following helper function should be used when such adjustments 694 * are necessary. The "insert" vma (if any) is to be inserted 695 * before we drop the necessary locks. 696 */ 697 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 698 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 699 { 700 struct mm_struct *mm = vma->vm_mm; 701 struct vm_area_struct *next = vma->vm_next; 702 struct vm_area_struct *importer = NULL; 703 struct address_space *mapping = NULL; 704 struct rb_root *root = NULL; 705 struct anon_vma *anon_vma = NULL; 706 struct file *file = vma->vm_file; 707 bool start_changed = false, end_changed = false; 708 long adjust_next = 0; 709 int remove_next = 0; 710 711 if (next && !insert) { 712 struct vm_area_struct *exporter = NULL; 713 714 if (end >= next->vm_end) { 715 /* 716 * vma expands, overlapping all the next, and 717 * perhaps the one after too (mprotect case 6). 718 */ 719 again: remove_next = 1 + (end > next->vm_end); 720 end = next->vm_end; 721 exporter = next; 722 importer = vma; 723 } else if (end > next->vm_start) { 724 /* 725 * vma expands, overlapping part of the next: 726 * mprotect case 5 shifting the boundary up. 727 */ 728 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 729 exporter = next; 730 importer = vma; 731 } else if (end < vma->vm_end) { 732 /* 733 * vma shrinks, and !insert tells it's not 734 * split_vma inserting another: so it must be 735 * mprotect case 4 shifting the boundary down. 736 */ 737 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 738 exporter = vma; 739 importer = next; 740 } 741 742 /* 743 * Easily overlooked: when mprotect shifts the boundary, 744 * make sure the expanding vma has anon_vma set if the 745 * shrinking vma had, to cover any anon pages imported. 746 */ 747 if (exporter && exporter->anon_vma && !importer->anon_vma) { 748 if (anon_vma_clone(importer, exporter)) 749 return -ENOMEM; 750 importer->anon_vma = exporter->anon_vma; 751 } 752 } 753 754 if (file) { 755 mapping = file->f_mapping; 756 if (!(vma->vm_flags & VM_NONLINEAR)) { 757 root = &mapping->i_mmap; 758 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 759 760 if (adjust_next) 761 uprobe_munmap(next, next->vm_start, 762 next->vm_end); 763 } 764 765 mutex_lock(&mapping->i_mmap_mutex); 766 if (insert) { 767 /* 768 * Put into interval tree now, so instantiated pages 769 * are visible to arm/parisc __flush_dcache_page 770 * throughout; but we cannot insert into address 771 * space until vma start or end is updated. 772 */ 773 __vma_link_file(insert); 774 } 775 } 776 777 vma_adjust_trans_huge(vma, start, end, adjust_next); 778 779 anon_vma = vma->anon_vma; 780 if (!anon_vma && adjust_next) 781 anon_vma = next->anon_vma; 782 if (anon_vma) { 783 VM_BUG_ON(adjust_next && next->anon_vma && 784 anon_vma != next->anon_vma); 785 anon_vma_lock_write(anon_vma); 786 anon_vma_interval_tree_pre_update_vma(vma); 787 if (adjust_next) 788 anon_vma_interval_tree_pre_update_vma(next); 789 } 790 791 if (root) { 792 flush_dcache_mmap_lock(mapping); 793 vma_interval_tree_remove(vma, root); 794 if (adjust_next) 795 vma_interval_tree_remove(next, root); 796 } 797 798 if (start != vma->vm_start) { 799 vma->vm_start = start; 800 start_changed = true; 801 } 802 if (end != vma->vm_end) { 803 vma->vm_end = end; 804 end_changed = true; 805 } 806 vma->vm_pgoff = pgoff; 807 if (adjust_next) { 808 next->vm_start += adjust_next << PAGE_SHIFT; 809 next->vm_pgoff += adjust_next; 810 } 811 812 if (root) { 813 if (adjust_next) 814 vma_interval_tree_insert(next, root); 815 vma_interval_tree_insert(vma, root); 816 flush_dcache_mmap_unlock(mapping); 817 } 818 819 if (remove_next) { 820 /* 821 * vma_merge has merged next into vma, and needs 822 * us to remove next before dropping the locks. 823 */ 824 __vma_unlink(mm, next, vma); 825 if (file) 826 __remove_shared_vm_struct(next, file, mapping); 827 } else if (insert) { 828 /* 829 * split_vma has split insert from vma, and needs 830 * us to insert it before dropping the locks 831 * (it may either follow vma or precede it). 832 */ 833 __insert_vm_struct(mm, insert); 834 } else { 835 if (start_changed) 836 vma_gap_update(vma); 837 if (end_changed) { 838 if (!next) 839 mm->highest_vm_end = end; 840 else if (!adjust_next) 841 vma_gap_update(next); 842 } 843 } 844 845 if (anon_vma) { 846 anon_vma_interval_tree_post_update_vma(vma); 847 if (adjust_next) 848 anon_vma_interval_tree_post_update_vma(next); 849 anon_vma_unlock_write(anon_vma); 850 } 851 if (mapping) 852 mutex_unlock(&mapping->i_mmap_mutex); 853 854 if (root) { 855 uprobe_mmap(vma); 856 857 if (adjust_next) 858 uprobe_mmap(next); 859 } 860 861 if (remove_next) { 862 if (file) { 863 uprobe_munmap(next, next->vm_start, next->vm_end); 864 fput(file); 865 } 866 if (next->anon_vma) 867 anon_vma_merge(vma, next); 868 mm->map_count--; 869 mpol_put(vma_policy(next)); 870 kmem_cache_free(vm_area_cachep, next); 871 /* 872 * In mprotect's case 6 (see comments on vma_merge), 873 * we must remove another next too. It would clutter 874 * up the code too much to do both in one go. 875 */ 876 next = vma->vm_next; 877 if (remove_next == 2) 878 goto again; 879 else if (next) 880 vma_gap_update(next); 881 else 882 mm->highest_vm_end = end; 883 } 884 if (insert && file) 885 uprobe_mmap(insert); 886 887 validate_mm(mm); 888 889 return 0; 890 } 891 892 /* 893 * If the vma has a ->close operation then the driver probably needs to release 894 * per-vma resources, so we don't attempt to merge those. 895 */ 896 static inline int is_mergeable_vma(struct vm_area_struct *vma, 897 struct file *file, unsigned long vm_flags) 898 { 899 /* 900 * VM_SOFTDIRTY should not prevent from VMA merging, if we 901 * match the flags but dirty bit -- the caller should mark 902 * merged VMA as dirty. If dirty bit won't be excluded from 903 * comparison, we increase pressue on the memory system forcing 904 * the kernel to generate new VMAs when old one could be 905 * extended instead. 906 */ 907 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 908 return 0; 909 if (vma->vm_file != file) 910 return 0; 911 if (vma->vm_ops && vma->vm_ops->close) 912 return 0; 913 return 1; 914 } 915 916 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 917 struct anon_vma *anon_vma2, 918 struct vm_area_struct *vma) 919 { 920 /* 921 * The list_is_singular() test is to avoid merging VMA cloned from 922 * parents. This can improve scalability caused by anon_vma lock. 923 */ 924 if ((!anon_vma1 || !anon_vma2) && (!vma || 925 list_is_singular(&vma->anon_vma_chain))) 926 return 1; 927 return anon_vma1 == anon_vma2; 928 } 929 930 /* 931 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 932 * in front of (at a lower virtual address and file offset than) the vma. 933 * 934 * We cannot merge two vmas if they have differently assigned (non-NULL) 935 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 936 * 937 * We don't check here for the merged mmap wrapping around the end of pagecache 938 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 939 * wrap, nor mmaps which cover the final page at index -1UL. 940 */ 941 static int 942 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 943 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 944 { 945 if (is_mergeable_vma(vma, file, vm_flags) && 946 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 947 if (vma->vm_pgoff == vm_pgoff) 948 return 1; 949 } 950 return 0; 951 } 952 953 /* 954 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 955 * beyond (at a higher virtual address and file offset than) the vma. 956 * 957 * We cannot merge two vmas if they have differently assigned (non-NULL) 958 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 959 */ 960 static int 961 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 962 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 963 { 964 if (is_mergeable_vma(vma, file, vm_flags) && 965 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 966 pgoff_t vm_pglen; 967 vm_pglen = vma_pages(vma); 968 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 969 return 1; 970 } 971 return 0; 972 } 973 974 /* 975 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 976 * whether that can be merged with its predecessor or its successor. 977 * Or both (it neatly fills a hole). 978 * 979 * In most cases - when called for mmap, brk or mremap - [addr,end) is 980 * certain not to be mapped by the time vma_merge is called; but when 981 * called for mprotect, it is certain to be already mapped (either at 982 * an offset within prev, or at the start of next), and the flags of 983 * this area are about to be changed to vm_flags - and the no-change 984 * case has already been eliminated. 985 * 986 * The following mprotect cases have to be considered, where AAAA is 987 * the area passed down from mprotect_fixup, never extending beyond one 988 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 989 * 990 * AAAA AAAA AAAA AAAA 991 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 992 * cannot merge might become might become might become 993 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 994 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 995 * mremap move: PPPPNNNNNNNN 8 996 * AAAA 997 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 998 * might become case 1 below case 2 below case 3 below 999 * 1000 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 1001 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 1002 */ 1003 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1004 struct vm_area_struct *prev, unsigned long addr, 1005 unsigned long end, unsigned long vm_flags, 1006 struct anon_vma *anon_vma, struct file *file, 1007 pgoff_t pgoff, struct mempolicy *policy) 1008 { 1009 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1010 struct vm_area_struct *area, *next; 1011 int err; 1012 1013 /* 1014 * We later require that vma->vm_flags == vm_flags, 1015 * so this tests vma->vm_flags & VM_SPECIAL, too. 1016 */ 1017 if (vm_flags & VM_SPECIAL) 1018 return NULL; 1019 1020 if (prev) 1021 next = prev->vm_next; 1022 else 1023 next = mm->mmap; 1024 area = next; 1025 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 1026 next = next->vm_next; 1027 1028 /* 1029 * Can it merge with the predecessor? 1030 */ 1031 if (prev && prev->vm_end == addr && 1032 mpol_equal(vma_policy(prev), policy) && 1033 can_vma_merge_after(prev, vm_flags, 1034 anon_vma, file, pgoff)) { 1035 /* 1036 * OK, it can. Can we now merge in the successor as well? 1037 */ 1038 if (next && end == next->vm_start && 1039 mpol_equal(policy, vma_policy(next)) && 1040 can_vma_merge_before(next, vm_flags, 1041 anon_vma, file, pgoff+pglen) && 1042 is_mergeable_anon_vma(prev->anon_vma, 1043 next->anon_vma, NULL)) { 1044 /* cases 1, 6 */ 1045 err = vma_adjust(prev, prev->vm_start, 1046 next->vm_end, prev->vm_pgoff, NULL); 1047 } else /* cases 2, 5, 7 */ 1048 err = vma_adjust(prev, prev->vm_start, 1049 end, prev->vm_pgoff, NULL); 1050 if (err) 1051 return NULL; 1052 khugepaged_enter_vma_merge(prev); 1053 return prev; 1054 } 1055 1056 /* 1057 * Can this new request be merged in front of next? 1058 */ 1059 if (next && end == next->vm_start && 1060 mpol_equal(policy, vma_policy(next)) && 1061 can_vma_merge_before(next, vm_flags, 1062 anon_vma, file, pgoff+pglen)) { 1063 if (prev && addr < prev->vm_end) /* case 4 */ 1064 err = vma_adjust(prev, prev->vm_start, 1065 addr, prev->vm_pgoff, NULL); 1066 else /* cases 3, 8 */ 1067 err = vma_adjust(area, addr, next->vm_end, 1068 next->vm_pgoff - pglen, NULL); 1069 if (err) 1070 return NULL; 1071 khugepaged_enter_vma_merge(area); 1072 return area; 1073 } 1074 1075 return NULL; 1076 } 1077 1078 /* 1079 * Rough compatbility check to quickly see if it's even worth looking 1080 * at sharing an anon_vma. 1081 * 1082 * They need to have the same vm_file, and the flags can only differ 1083 * in things that mprotect may change. 1084 * 1085 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1086 * we can merge the two vma's. For example, we refuse to merge a vma if 1087 * there is a vm_ops->close() function, because that indicates that the 1088 * driver is doing some kind of reference counting. But that doesn't 1089 * really matter for the anon_vma sharing case. 1090 */ 1091 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1092 { 1093 return a->vm_end == b->vm_start && 1094 mpol_equal(vma_policy(a), vma_policy(b)) && 1095 a->vm_file == b->vm_file && 1096 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1097 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1098 } 1099 1100 /* 1101 * Do some basic sanity checking to see if we can re-use the anon_vma 1102 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1103 * the same as 'old', the other will be the new one that is trying 1104 * to share the anon_vma. 1105 * 1106 * NOTE! This runs with mm_sem held for reading, so it is possible that 1107 * the anon_vma of 'old' is concurrently in the process of being set up 1108 * by another page fault trying to merge _that_. But that's ok: if it 1109 * is being set up, that automatically means that it will be a singleton 1110 * acceptable for merging, so we can do all of this optimistically. But 1111 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 1112 * 1113 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1114 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1115 * is to return an anon_vma that is "complex" due to having gone through 1116 * a fork). 1117 * 1118 * We also make sure that the two vma's are compatible (adjacent, 1119 * and with the same memory policies). That's all stable, even with just 1120 * a read lock on the mm_sem. 1121 */ 1122 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1123 { 1124 if (anon_vma_compatible(a, b)) { 1125 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 1126 1127 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1128 return anon_vma; 1129 } 1130 return NULL; 1131 } 1132 1133 /* 1134 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1135 * neighbouring vmas for a suitable anon_vma, before it goes off 1136 * to allocate a new anon_vma. It checks because a repetitive 1137 * sequence of mprotects and faults may otherwise lead to distinct 1138 * anon_vmas being allocated, preventing vma merge in subsequent 1139 * mprotect. 1140 */ 1141 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1142 { 1143 struct anon_vma *anon_vma; 1144 struct vm_area_struct *near; 1145 1146 near = vma->vm_next; 1147 if (!near) 1148 goto try_prev; 1149 1150 anon_vma = reusable_anon_vma(near, vma, near); 1151 if (anon_vma) 1152 return anon_vma; 1153 try_prev: 1154 near = vma->vm_prev; 1155 if (!near) 1156 goto none; 1157 1158 anon_vma = reusable_anon_vma(near, near, vma); 1159 if (anon_vma) 1160 return anon_vma; 1161 none: 1162 /* 1163 * There's no absolute need to look only at touching neighbours: 1164 * we could search further afield for "compatible" anon_vmas. 1165 * But it would probably just be a waste of time searching, 1166 * or lead to too many vmas hanging off the same anon_vma. 1167 * We're trying to allow mprotect remerging later on, 1168 * not trying to minimize memory used for anon_vmas. 1169 */ 1170 return NULL; 1171 } 1172 1173 #ifdef CONFIG_PROC_FS 1174 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 1175 struct file *file, long pages) 1176 { 1177 const unsigned long stack_flags 1178 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 1179 1180 mm->total_vm += pages; 1181 1182 if (file) { 1183 mm->shared_vm += pages; 1184 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 1185 mm->exec_vm += pages; 1186 } else if (flags & stack_flags) 1187 mm->stack_vm += pages; 1188 } 1189 #endif /* CONFIG_PROC_FS */ 1190 1191 /* 1192 * If a hint addr is less than mmap_min_addr change hint to be as 1193 * low as possible but still greater than mmap_min_addr 1194 */ 1195 static inline unsigned long round_hint_to_min(unsigned long hint) 1196 { 1197 hint &= PAGE_MASK; 1198 if (((void *)hint != NULL) && 1199 (hint < mmap_min_addr)) 1200 return PAGE_ALIGN(mmap_min_addr); 1201 return hint; 1202 } 1203 1204 static inline int mlock_future_check(struct mm_struct *mm, 1205 unsigned long flags, 1206 unsigned long len) 1207 { 1208 unsigned long locked, lock_limit; 1209 1210 /* mlock MCL_FUTURE? */ 1211 if (flags & VM_LOCKED) { 1212 locked = len >> PAGE_SHIFT; 1213 locked += mm->locked_vm; 1214 lock_limit = rlimit(RLIMIT_MEMLOCK); 1215 lock_limit >>= PAGE_SHIFT; 1216 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1217 return -EAGAIN; 1218 } 1219 return 0; 1220 } 1221 1222 /* 1223 * The caller must hold down_write(¤t->mm->mmap_sem). 1224 */ 1225 1226 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1227 unsigned long len, unsigned long prot, 1228 unsigned long flags, unsigned long pgoff, 1229 unsigned long *populate) 1230 { 1231 struct mm_struct * mm = current->mm; 1232 vm_flags_t vm_flags; 1233 1234 *populate = 0; 1235 1236 /* 1237 * Does the application expect PROT_READ to imply PROT_EXEC? 1238 * 1239 * (the exception is when the underlying filesystem is noexec 1240 * mounted, in which case we dont add PROT_EXEC.) 1241 */ 1242 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1243 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 1244 prot |= PROT_EXEC; 1245 1246 if (!len) 1247 return -EINVAL; 1248 1249 if (!(flags & MAP_FIXED)) 1250 addr = round_hint_to_min(addr); 1251 1252 /* Careful about overflows.. */ 1253 len = PAGE_ALIGN(len); 1254 if (!len) 1255 return -ENOMEM; 1256 1257 /* offset overflow? */ 1258 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1259 return -EOVERFLOW; 1260 1261 /* Too many mappings? */ 1262 if (mm->map_count > sysctl_max_map_count) 1263 return -ENOMEM; 1264 1265 /* Obtain the address to map to. we verify (or select) it and ensure 1266 * that it represents a valid section of the address space. 1267 */ 1268 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1269 if (addr & ~PAGE_MASK) 1270 return addr; 1271 1272 /* Do simple checking here so the lower-level routines won't have 1273 * to. we assume access permissions have been handled by the open 1274 * of the memory object, so we don't do any here. 1275 */ 1276 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1277 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1278 1279 if (flags & MAP_LOCKED) 1280 if (!can_do_mlock()) 1281 return -EPERM; 1282 1283 if (mlock_future_check(mm, vm_flags, len)) 1284 return -EAGAIN; 1285 1286 if (file) { 1287 struct inode *inode = file_inode(file); 1288 1289 switch (flags & MAP_TYPE) { 1290 case MAP_SHARED: 1291 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1292 return -EACCES; 1293 1294 /* 1295 * Make sure we don't allow writing to an append-only 1296 * file.. 1297 */ 1298 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1299 return -EACCES; 1300 1301 /* 1302 * Make sure there are no mandatory locks on the file. 1303 */ 1304 if (locks_verify_locked(file)) 1305 return -EAGAIN; 1306 1307 vm_flags |= VM_SHARED | VM_MAYSHARE; 1308 if (!(file->f_mode & FMODE_WRITE)) 1309 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1310 1311 /* fall through */ 1312 case MAP_PRIVATE: 1313 if (!(file->f_mode & FMODE_READ)) 1314 return -EACCES; 1315 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1316 if (vm_flags & VM_EXEC) 1317 return -EPERM; 1318 vm_flags &= ~VM_MAYEXEC; 1319 } 1320 1321 if (!file->f_op->mmap) 1322 return -ENODEV; 1323 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1324 return -EINVAL; 1325 break; 1326 1327 default: 1328 return -EINVAL; 1329 } 1330 } else { 1331 switch (flags & MAP_TYPE) { 1332 case MAP_SHARED: 1333 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1334 return -EINVAL; 1335 /* 1336 * Ignore pgoff. 1337 */ 1338 pgoff = 0; 1339 vm_flags |= VM_SHARED | VM_MAYSHARE; 1340 break; 1341 case MAP_PRIVATE: 1342 /* 1343 * Set pgoff according to addr for anon_vma. 1344 */ 1345 pgoff = addr >> PAGE_SHIFT; 1346 break; 1347 default: 1348 return -EINVAL; 1349 } 1350 } 1351 1352 /* 1353 * Set 'VM_NORESERVE' if we should not account for the 1354 * memory use of this mapping. 1355 */ 1356 if (flags & MAP_NORESERVE) { 1357 /* We honor MAP_NORESERVE if allowed to overcommit */ 1358 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1359 vm_flags |= VM_NORESERVE; 1360 1361 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1362 if (file && is_file_hugepages(file)) 1363 vm_flags |= VM_NORESERVE; 1364 } 1365 1366 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1367 if (!IS_ERR_VALUE(addr) && 1368 ((vm_flags & VM_LOCKED) || 1369 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1370 *populate = len; 1371 return addr; 1372 } 1373 1374 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1375 unsigned long, prot, unsigned long, flags, 1376 unsigned long, fd, unsigned long, pgoff) 1377 { 1378 struct file *file = NULL; 1379 unsigned long retval = -EBADF; 1380 1381 if (!(flags & MAP_ANONYMOUS)) { 1382 audit_mmap_fd(fd, flags); 1383 file = fget(fd); 1384 if (!file) 1385 goto out; 1386 if (is_file_hugepages(file)) 1387 len = ALIGN(len, huge_page_size(hstate_file(file))); 1388 retval = -EINVAL; 1389 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1390 goto out_fput; 1391 } else if (flags & MAP_HUGETLB) { 1392 struct user_struct *user = NULL; 1393 struct hstate *hs; 1394 1395 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1396 if (!hs) 1397 return -EINVAL; 1398 1399 len = ALIGN(len, huge_page_size(hs)); 1400 /* 1401 * VM_NORESERVE is used because the reservations will be 1402 * taken when vm_ops->mmap() is called 1403 * A dummy user value is used because we are not locking 1404 * memory so no accounting is necessary 1405 */ 1406 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1407 VM_NORESERVE, 1408 &user, HUGETLB_ANONHUGE_INODE, 1409 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1410 if (IS_ERR(file)) 1411 return PTR_ERR(file); 1412 } 1413 1414 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1415 1416 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1417 out_fput: 1418 if (file) 1419 fput(file); 1420 out: 1421 return retval; 1422 } 1423 1424 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1425 struct mmap_arg_struct { 1426 unsigned long addr; 1427 unsigned long len; 1428 unsigned long prot; 1429 unsigned long flags; 1430 unsigned long fd; 1431 unsigned long offset; 1432 }; 1433 1434 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1435 { 1436 struct mmap_arg_struct a; 1437 1438 if (copy_from_user(&a, arg, sizeof(a))) 1439 return -EFAULT; 1440 if (a.offset & ~PAGE_MASK) 1441 return -EINVAL; 1442 1443 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1444 a.offset >> PAGE_SHIFT); 1445 } 1446 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1447 1448 /* 1449 * Some shared mappigns will want the pages marked read-only 1450 * to track write events. If so, we'll downgrade vm_page_prot 1451 * to the private version (using protection_map[] without the 1452 * VM_SHARED bit). 1453 */ 1454 int vma_wants_writenotify(struct vm_area_struct *vma) 1455 { 1456 vm_flags_t vm_flags = vma->vm_flags; 1457 1458 /* If it was private or non-writable, the write bit is already clear */ 1459 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1460 return 0; 1461 1462 /* The backer wishes to know when pages are first written to? */ 1463 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1464 return 1; 1465 1466 /* The open routine did something to the protections already? */ 1467 if (pgprot_val(vma->vm_page_prot) != 1468 pgprot_val(vm_get_page_prot(vm_flags))) 1469 return 0; 1470 1471 /* Specialty mapping? */ 1472 if (vm_flags & VM_PFNMAP) 1473 return 0; 1474 1475 /* Can the mapping track the dirty pages? */ 1476 return vma->vm_file && vma->vm_file->f_mapping && 1477 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1478 } 1479 1480 /* 1481 * We account for memory if it's a private writeable mapping, 1482 * not hugepages and VM_NORESERVE wasn't set. 1483 */ 1484 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1485 { 1486 /* 1487 * hugetlb has its own accounting separate from the core VM 1488 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1489 */ 1490 if (file && is_file_hugepages(file)) 1491 return 0; 1492 1493 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1494 } 1495 1496 unsigned long mmap_region(struct file *file, unsigned long addr, 1497 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1498 { 1499 struct mm_struct *mm = current->mm; 1500 struct vm_area_struct *vma, *prev; 1501 int error; 1502 struct rb_node **rb_link, *rb_parent; 1503 unsigned long charged = 0; 1504 1505 /* Check against address space limit. */ 1506 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) { 1507 unsigned long nr_pages; 1508 1509 /* 1510 * MAP_FIXED may remove pages of mappings that intersects with 1511 * requested mapping. Account for the pages it would unmap. 1512 */ 1513 if (!(vm_flags & MAP_FIXED)) 1514 return -ENOMEM; 1515 1516 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1517 1518 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages)) 1519 return -ENOMEM; 1520 } 1521 1522 /* Clear old maps */ 1523 error = -ENOMEM; 1524 munmap_back: 1525 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 1526 if (do_munmap(mm, addr, len)) 1527 return -ENOMEM; 1528 goto munmap_back; 1529 } 1530 1531 /* 1532 * Private writable mapping: check memory availability 1533 */ 1534 if (accountable_mapping(file, vm_flags)) { 1535 charged = len >> PAGE_SHIFT; 1536 if (security_vm_enough_memory_mm(mm, charged)) 1537 return -ENOMEM; 1538 vm_flags |= VM_ACCOUNT; 1539 } 1540 1541 /* 1542 * Can we just expand an old mapping? 1543 */ 1544 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1545 if (vma) 1546 goto out; 1547 1548 /* 1549 * Determine the object being mapped and call the appropriate 1550 * specific mapper. the address has already been validated, but 1551 * not unmapped, but the maps are removed from the list. 1552 */ 1553 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1554 if (!vma) { 1555 error = -ENOMEM; 1556 goto unacct_error; 1557 } 1558 1559 vma->vm_mm = mm; 1560 vma->vm_start = addr; 1561 vma->vm_end = addr + len; 1562 vma->vm_flags = vm_flags; 1563 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1564 vma->vm_pgoff = pgoff; 1565 INIT_LIST_HEAD(&vma->anon_vma_chain); 1566 1567 if (file) { 1568 if (vm_flags & VM_DENYWRITE) { 1569 error = deny_write_access(file); 1570 if (error) 1571 goto free_vma; 1572 } 1573 vma->vm_file = get_file(file); 1574 error = file->f_op->mmap(file, vma); 1575 if (error) 1576 goto unmap_and_free_vma; 1577 1578 /* Can addr have changed?? 1579 * 1580 * Answer: Yes, several device drivers can do it in their 1581 * f_op->mmap method. -DaveM 1582 * Bug: If addr is changed, prev, rb_link, rb_parent should 1583 * be updated for vma_link() 1584 */ 1585 WARN_ON_ONCE(addr != vma->vm_start); 1586 1587 addr = vma->vm_start; 1588 vm_flags = vma->vm_flags; 1589 } else if (vm_flags & VM_SHARED) { 1590 error = shmem_zero_setup(vma); 1591 if (error) 1592 goto free_vma; 1593 } 1594 1595 if (vma_wants_writenotify(vma)) { 1596 pgprot_t pprot = vma->vm_page_prot; 1597 1598 /* Can vma->vm_page_prot have changed?? 1599 * 1600 * Answer: Yes, drivers may have changed it in their 1601 * f_op->mmap method. 1602 * 1603 * Ensures that vmas marked as uncached stay that way. 1604 */ 1605 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1606 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1607 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1608 } 1609 1610 vma_link(mm, vma, prev, rb_link, rb_parent); 1611 /* Once vma denies write, undo our temporary denial count */ 1612 if (vm_flags & VM_DENYWRITE) 1613 allow_write_access(file); 1614 file = vma->vm_file; 1615 out: 1616 perf_event_mmap(vma); 1617 1618 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1619 if (vm_flags & VM_LOCKED) { 1620 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1621 vma == get_gate_vma(current->mm))) 1622 mm->locked_vm += (len >> PAGE_SHIFT); 1623 else 1624 vma->vm_flags &= ~VM_LOCKED; 1625 } 1626 1627 if (file) 1628 uprobe_mmap(vma); 1629 1630 /* 1631 * New (or expanded) vma always get soft dirty status. 1632 * Otherwise user-space soft-dirty page tracker won't 1633 * be able to distinguish situation when vma area unmapped, 1634 * then new mapped in-place (which must be aimed as 1635 * a completely new data area). 1636 */ 1637 vma->vm_flags |= VM_SOFTDIRTY; 1638 1639 return addr; 1640 1641 unmap_and_free_vma: 1642 if (vm_flags & VM_DENYWRITE) 1643 allow_write_access(file); 1644 vma->vm_file = NULL; 1645 fput(file); 1646 1647 /* Undo any partial mapping done by a device driver. */ 1648 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1649 charged = 0; 1650 free_vma: 1651 kmem_cache_free(vm_area_cachep, vma); 1652 unacct_error: 1653 if (charged) 1654 vm_unacct_memory(charged); 1655 return error; 1656 } 1657 1658 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1659 { 1660 /* 1661 * We implement the search by looking for an rbtree node that 1662 * immediately follows a suitable gap. That is, 1663 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1664 * - gap_end = vma->vm_start >= info->low_limit + length; 1665 * - gap_end - gap_start >= length 1666 */ 1667 1668 struct mm_struct *mm = current->mm; 1669 struct vm_area_struct *vma; 1670 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1671 1672 /* Adjust search length to account for worst case alignment overhead */ 1673 length = info->length + info->align_mask; 1674 if (length < info->length) 1675 return -ENOMEM; 1676 1677 /* Adjust search limits by the desired length */ 1678 if (info->high_limit < length) 1679 return -ENOMEM; 1680 high_limit = info->high_limit - length; 1681 1682 if (info->low_limit > high_limit) 1683 return -ENOMEM; 1684 low_limit = info->low_limit + length; 1685 1686 /* Check if rbtree root looks promising */ 1687 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1688 goto check_highest; 1689 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1690 if (vma->rb_subtree_gap < length) 1691 goto check_highest; 1692 1693 while (true) { 1694 /* Visit left subtree if it looks promising */ 1695 gap_end = vma->vm_start; 1696 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1697 struct vm_area_struct *left = 1698 rb_entry(vma->vm_rb.rb_left, 1699 struct vm_area_struct, vm_rb); 1700 if (left->rb_subtree_gap >= length) { 1701 vma = left; 1702 continue; 1703 } 1704 } 1705 1706 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1707 check_current: 1708 /* Check if current node has a suitable gap */ 1709 if (gap_start > high_limit) 1710 return -ENOMEM; 1711 if (gap_end >= low_limit && gap_end - gap_start >= length) 1712 goto found; 1713 1714 /* Visit right subtree if it looks promising */ 1715 if (vma->vm_rb.rb_right) { 1716 struct vm_area_struct *right = 1717 rb_entry(vma->vm_rb.rb_right, 1718 struct vm_area_struct, vm_rb); 1719 if (right->rb_subtree_gap >= length) { 1720 vma = right; 1721 continue; 1722 } 1723 } 1724 1725 /* Go back up the rbtree to find next candidate node */ 1726 while (true) { 1727 struct rb_node *prev = &vma->vm_rb; 1728 if (!rb_parent(prev)) 1729 goto check_highest; 1730 vma = rb_entry(rb_parent(prev), 1731 struct vm_area_struct, vm_rb); 1732 if (prev == vma->vm_rb.rb_left) { 1733 gap_start = vma->vm_prev->vm_end; 1734 gap_end = vma->vm_start; 1735 goto check_current; 1736 } 1737 } 1738 } 1739 1740 check_highest: 1741 /* Check highest gap, which does not precede any rbtree node */ 1742 gap_start = mm->highest_vm_end; 1743 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1744 if (gap_start > high_limit) 1745 return -ENOMEM; 1746 1747 found: 1748 /* We found a suitable gap. Clip it with the original low_limit. */ 1749 if (gap_start < info->low_limit) 1750 gap_start = info->low_limit; 1751 1752 /* Adjust gap address to the desired alignment */ 1753 gap_start += (info->align_offset - gap_start) & info->align_mask; 1754 1755 VM_BUG_ON(gap_start + info->length > info->high_limit); 1756 VM_BUG_ON(gap_start + info->length > gap_end); 1757 return gap_start; 1758 } 1759 1760 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1761 { 1762 struct mm_struct *mm = current->mm; 1763 struct vm_area_struct *vma; 1764 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1765 1766 /* Adjust search length to account for worst case alignment overhead */ 1767 length = info->length + info->align_mask; 1768 if (length < info->length) 1769 return -ENOMEM; 1770 1771 /* 1772 * Adjust search limits by the desired length. 1773 * See implementation comment at top of unmapped_area(). 1774 */ 1775 gap_end = info->high_limit; 1776 if (gap_end < length) 1777 return -ENOMEM; 1778 high_limit = gap_end - length; 1779 1780 if (info->low_limit > high_limit) 1781 return -ENOMEM; 1782 low_limit = info->low_limit + length; 1783 1784 /* Check highest gap, which does not precede any rbtree node */ 1785 gap_start = mm->highest_vm_end; 1786 if (gap_start <= high_limit) 1787 goto found_highest; 1788 1789 /* Check if rbtree root looks promising */ 1790 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1791 return -ENOMEM; 1792 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1793 if (vma->rb_subtree_gap < length) 1794 return -ENOMEM; 1795 1796 while (true) { 1797 /* Visit right subtree if it looks promising */ 1798 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1799 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1800 struct vm_area_struct *right = 1801 rb_entry(vma->vm_rb.rb_right, 1802 struct vm_area_struct, vm_rb); 1803 if (right->rb_subtree_gap >= length) { 1804 vma = right; 1805 continue; 1806 } 1807 } 1808 1809 check_current: 1810 /* Check if current node has a suitable gap */ 1811 gap_end = vma->vm_start; 1812 if (gap_end < low_limit) 1813 return -ENOMEM; 1814 if (gap_start <= high_limit && gap_end - gap_start >= length) 1815 goto found; 1816 1817 /* Visit left subtree if it looks promising */ 1818 if (vma->vm_rb.rb_left) { 1819 struct vm_area_struct *left = 1820 rb_entry(vma->vm_rb.rb_left, 1821 struct vm_area_struct, vm_rb); 1822 if (left->rb_subtree_gap >= length) { 1823 vma = left; 1824 continue; 1825 } 1826 } 1827 1828 /* Go back up the rbtree to find next candidate node */ 1829 while (true) { 1830 struct rb_node *prev = &vma->vm_rb; 1831 if (!rb_parent(prev)) 1832 return -ENOMEM; 1833 vma = rb_entry(rb_parent(prev), 1834 struct vm_area_struct, vm_rb); 1835 if (prev == vma->vm_rb.rb_right) { 1836 gap_start = vma->vm_prev ? 1837 vma->vm_prev->vm_end : 0; 1838 goto check_current; 1839 } 1840 } 1841 } 1842 1843 found: 1844 /* We found a suitable gap. Clip it with the original high_limit. */ 1845 if (gap_end > info->high_limit) 1846 gap_end = info->high_limit; 1847 1848 found_highest: 1849 /* Compute highest gap address at the desired alignment */ 1850 gap_end -= info->length; 1851 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1852 1853 VM_BUG_ON(gap_end < info->low_limit); 1854 VM_BUG_ON(gap_end < gap_start); 1855 return gap_end; 1856 } 1857 1858 /* Get an address range which is currently unmapped. 1859 * For shmat() with addr=0. 1860 * 1861 * Ugly calling convention alert: 1862 * Return value with the low bits set means error value, 1863 * ie 1864 * if (ret & ~PAGE_MASK) 1865 * error = ret; 1866 * 1867 * This function "knows" that -ENOMEM has the bits set. 1868 */ 1869 #ifndef HAVE_ARCH_UNMAPPED_AREA 1870 unsigned long 1871 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1872 unsigned long len, unsigned long pgoff, unsigned long flags) 1873 { 1874 struct mm_struct *mm = current->mm; 1875 struct vm_area_struct *vma; 1876 struct vm_unmapped_area_info info; 1877 1878 if (len > TASK_SIZE - mmap_min_addr) 1879 return -ENOMEM; 1880 1881 if (flags & MAP_FIXED) 1882 return addr; 1883 1884 if (addr) { 1885 addr = PAGE_ALIGN(addr); 1886 vma = find_vma(mm, addr); 1887 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1888 (!vma || addr + len <= vma->vm_start)) 1889 return addr; 1890 } 1891 1892 info.flags = 0; 1893 info.length = len; 1894 info.low_limit = mm->mmap_base; 1895 info.high_limit = TASK_SIZE; 1896 info.align_mask = 0; 1897 return vm_unmapped_area(&info); 1898 } 1899 #endif 1900 1901 /* 1902 * This mmap-allocator allocates new areas top-down from below the 1903 * stack's low limit (the base): 1904 */ 1905 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1906 unsigned long 1907 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1908 const unsigned long len, const unsigned long pgoff, 1909 const unsigned long flags) 1910 { 1911 struct vm_area_struct *vma; 1912 struct mm_struct *mm = current->mm; 1913 unsigned long addr = addr0; 1914 struct vm_unmapped_area_info info; 1915 1916 /* requested length too big for entire address space */ 1917 if (len > TASK_SIZE - mmap_min_addr) 1918 return -ENOMEM; 1919 1920 if (flags & MAP_FIXED) 1921 return addr; 1922 1923 /* requesting a specific address */ 1924 if (addr) { 1925 addr = PAGE_ALIGN(addr); 1926 vma = find_vma(mm, addr); 1927 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1928 (!vma || addr + len <= vma->vm_start)) 1929 return addr; 1930 } 1931 1932 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1933 info.length = len; 1934 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1935 info.high_limit = mm->mmap_base; 1936 info.align_mask = 0; 1937 addr = vm_unmapped_area(&info); 1938 1939 /* 1940 * A failed mmap() very likely causes application failure, 1941 * so fall back to the bottom-up function here. This scenario 1942 * can happen with large stack limits and large mmap() 1943 * allocations. 1944 */ 1945 if (addr & ~PAGE_MASK) { 1946 VM_BUG_ON(addr != -ENOMEM); 1947 info.flags = 0; 1948 info.low_limit = TASK_UNMAPPED_BASE; 1949 info.high_limit = TASK_SIZE; 1950 addr = vm_unmapped_area(&info); 1951 } 1952 1953 return addr; 1954 } 1955 #endif 1956 1957 unsigned long 1958 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1959 unsigned long pgoff, unsigned long flags) 1960 { 1961 unsigned long (*get_area)(struct file *, unsigned long, 1962 unsigned long, unsigned long, unsigned long); 1963 1964 unsigned long error = arch_mmap_check(addr, len, flags); 1965 if (error) 1966 return error; 1967 1968 /* Careful about overflows.. */ 1969 if (len > TASK_SIZE) 1970 return -ENOMEM; 1971 1972 get_area = current->mm->get_unmapped_area; 1973 if (file && file->f_op->get_unmapped_area) 1974 get_area = file->f_op->get_unmapped_area; 1975 addr = get_area(file, addr, len, pgoff, flags); 1976 if (IS_ERR_VALUE(addr)) 1977 return addr; 1978 1979 if (addr > TASK_SIZE - len) 1980 return -ENOMEM; 1981 if (addr & ~PAGE_MASK) 1982 return -EINVAL; 1983 1984 addr = arch_rebalance_pgtables(addr, len); 1985 error = security_mmap_addr(addr); 1986 return error ? error : addr; 1987 } 1988 1989 EXPORT_SYMBOL(get_unmapped_area); 1990 1991 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1992 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1993 { 1994 struct rb_node *rb_node; 1995 struct vm_area_struct *vma; 1996 1997 /* Check the cache first. */ 1998 vma = vmacache_find(mm, addr); 1999 if (likely(vma)) 2000 return vma; 2001 2002 rb_node = mm->mm_rb.rb_node; 2003 vma = NULL; 2004 2005 while (rb_node) { 2006 struct vm_area_struct *tmp; 2007 2008 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2009 2010 if (tmp->vm_end > addr) { 2011 vma = tmp; 2012 if (tmp->vm_start <= addr) 2013 break; 2014 rb_node = rb_node->rb_left; 2015 } else 2016 rb_node = rb_node->rb_right; 2017 } 2018 2019 if (vma) 2020 vmacache_update(addr, vma); 2021 return vma; 2022 } 2023 2024 EXPORT_SYMBOL(find_vma); 2025 2026 /* 2027 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2028 */ 2029 struct vm_area_struct * 2030 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2031 struct vm_area_struct **pprev) 2032 { 2033 struct vm_area_struct *vma; 2034 2035 vma = find_vma(mm, addr); 2036 if (vma) { 2037 *pprev = vma->vm_prev; 2038 } else { 2039 struct rb_node *rb_node = mm->mm_rb.rb_node; 2040 *pprev = NULL; 2041 while (rb_node) { 2042 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2043 rb_node = rb_node->rb_right; 2044 } 2045 } 2046 return vma; 2047 } 2048 2049 /* 2050 * Verify that the stack growth is acceptable and 2051 * update accounting. This is shared with both the 2052 * grow-up and grow-down cases. 2053 */ 2054 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2055 { 2056 struct mm_struct *mm = vma->vm_mm; 2057 struct rlimit *rlim = current->signal->rlim; 2058 unsigned long new_start; 2059 2060 /* address space limit tests */ 2061 if (!may_expand_vm(mm, grow)) 2062 return -ENOMEM; 2063 2064 /* Stack limit test */ 2065 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2066 return -ENOMEM; 2067 2068 /* mlock limit tests */ 2069 if (vma->vm_flags & VM_LOCKED) { 2070 unsigned long locked; 2071 unsigned long limit; 2072 locked = mm->locked_vm + grow; 2073 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2074 limit >>= PAGE_SHIFT; 2075 if (locked > limit && !capable(CAP_IPC_LOCK)) 2076 return -ENOMEM; 2077 } 2078 2079 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2080 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2081 vma->vm_end - size; 2082 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2083 return -EFAULT; 2084 2085 /* 2086 * Overcommit.. This must be the final test, as it will 2087 * update security statistics. 2088 */ 2089 if (security_vm_enough_memory_mm(mm, grow)) 2090 return -ENOMEM; 2091 2092 /* Ok, everything looks good - let it rip */ 2093 if (vma->vm_flags & VM_LOCKED) 2094 mm->locked_vm += grow; 2095 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 2096 return 0; 2097 } 2098 2099 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2100 /* 2101 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2102 * vma is the last one with address > vma->vm_end. Have to extend vma. 2103 */ 2104 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2105 { 2106 int error; 2107 2108 if (!(vma->vm_flags & VM_GROWSUP)) 2109 return -EFAULT; 2110 2111 /* 2112 * We must make sure the anon_vma is allocated 2113 * so that the anon_vma locking is not a noop. 2114 */ 2115 if (unlikely(anon_vma_prepare(vma))) 2116 return -ENOMEM; 2117 vma_lock_anon_vma(vma); 2118 2119 /* 2120 * vma->vm_start/vm_end cannot change under us because the caller 2121 * is required to hold the mmap_sem in read mode. We need the 2122 * anon_vma lock to serialize against concurrent expand_stacks. 2123 * Also guard against wrapping around to address 0. 2124 */ 2125 if (address < PAGE_ALIGN(address+4)) 2126 address = PAGE_ALIGN(address+4); 2127 else { 2128 vma_unlock_anon_vma(vma); 2129 return -ENOMEM; 2130 } 2131 error = 0; 2132 2133 /* Somebody else might have raced and expanded it already */ 2134 if (address > vma->vm_end) { 2135 unsigned long size, grow; 2136 2137 size = address - vma->vm_start; 2138 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2139 2140 error = -ENOMEM; 2141 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2142 error = acct_stack_growth(vma, size, grow); 2143 if (!error) { 2144 /* 2145 * vma_gap_update() doesn't support concurrent 2146 * updates, but we only hold a shared mmap_sem 2147 * lock here, so we need to protect against 2148 * concurrent vma expansions. 2149 * vma_lock_anon_vma() doesn't help here, as 2150 * we don't guarantee that all growable vmas 2151 * in a mm share the same root anon vma. 2152 * So, we reuse mm->page_table_lock to guard 2153 * against concurrent vma expansions. 2154 */ 2155 spin_lock(&vma->vm_mm->page_table_lock); 2156 anon_vma_interval_tree_pre_update_vma(vma); 2157 vma->vm_end = address; 2158 anon_vma_interval_tree_post_update_vma(vma); 2159 if (vma->vm_next) 2160 vma_gap_update(vma->vm_next); 2161 else 2162 vma->vm_mm->highest_vm_end = address; 2163 spin_unlock(&vma->vm_mm->page_table_lock); 2164 2165 perf_event_mmap(vma); 2166 } 2167 } 2168 } 2169 vma_unlock_anon_vma(vma); 2170 khugepaged_enter_vma_merge(vma); 2171 validate_mm(vma->vm_mm); 2172 return error; 2173 } 2174 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2175 2176 /* 2177 * vma is the first one with address < vma->vm_start. Have to extend vma. 2178 */ 2179 int expand_downwards(struct vm_area_struct *vma, 2180 unsigned long address) 2181 { 2182 int error; 2183 2184 /* 2185 * We must make sure the anon_vma is allocated 2186 * so that the anon_vma locking is not a noop. 2187 */ 2188 if (unlikely(anon_vma_prepare(vma))) 2189 return -ENOMEM; 2190 2191 address &= PAGE_MASK; 2192 error = security_mmap_addr(address); 2193 if (error) 2194 return error; 2195 2196 vma_lock_anon_vma(vma); 2197 2198 /* 2199 * vma->vm_start/vm_end cannot change under us because the caller 2200 * is required to hold the mmap_sem in read mode. We need the 2201 * anon_vma lock to serialize against concurrent expand_stacks. 2202 */ 2203 2204 /* Somebody else might have raced and expanded it already */ 2205 if (address < vma->vm_start) { 2206 unsigned long size, grow; 2207 2208 size = vma->vm_end - address; 2209 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2210 2211 error = -ENOMEM; 2212 if (grow <= vma->vm_pgoff) { 2213 error = acct_stack_growth(vma, size, grow); 2214 if (!error) { 2215 /* 2216 * vma_gap_update() doesn't support concurrent 2217 * updates, but we only hold a shared mmap_sem 2218 * lock here, so we need to protect against 2219 * concurrent vma expansions. 2220 * vma_lock_anon_vma() doesn't help here, as 2221 * we don't guarantee that all growable vmas 2222 * in a mm share the same root anon vma. 2223 * So, we reuse mm->page_table_lock to guard 2224 * against concurrent vma expansions. 2225 */ 2226 spin_lock(&vma->vm_mm->page_table_lock); 2227 anon_vma_interval_tree_pre_update_vma(vma); 2228 vma->vm_start = address; 2229 vma->vm_pgoff -= grow; 2230 anon_vma_interval_tree_post_update_vma(vma); 2231 vma_gap_update(vma); 2232 spin_unlock(&vma->vm_mm->page_table_lock); 2233 2234 perf_event_mmap(vma); 2235 } 2236 } 2237 } 2238 vma_unlock_anon_vma(vma); 2239 khugepaged_enter_vma_merge(vma); 2240 validate_mm(vma->vm_mm); 2241 return error; 2242 } 2243 2244 /* 2245 * Note how expand_stack() refuses to expand the stack all the way to 2246 * abut the next virtual mapping, *unless* that mapping itself is also 2247 * a stack mapping. We want to leave room for a guard page, after all 2248 * (the guard page itself is not added here, that is done by the 2249 * actual page faulting logic) 2250 * 2251 * This matches the behavior of the guard page logic (see mm/memory.c: 2252 * check_stack_guard_page()), which only allows the guard page to be 2253 * removed under these circumstances. 2254 */ 2255 #ifdef CONFIG_STACK_GROWSUP 2256 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2257 { 2258 struct vm_area_struct *next; 2259 2260 address &= PAGE_MASK; 2261 next = vma->vm_next; 2262 if (next && next->vm_start == address + PAGE_SIZE) { 2263 if (!(next->vm_flags & VM_GROWSUP)) 2264 return -ENOMEM; 2265 } 2266 return expand_upwards(vma, address); 2267 } 2268 2269 struct vm_area_struct * 2270 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2271 { 2272 struct vm_area_struct *vma, *prev; 2273 2274 addr &= PAGE_MASK; 2275 vma = find_vma_prev(mm, addr, &prev); 2276 if (vma && (vma->vm_start <= addr)) 2277 return vma; 2278 if (!prev || expand_stack(prev, addr)) 2279 return NULL; 2280 if (prev->vm_flags & VM_LOCKED) 2281 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL); 2282 return prev; 2283 } 2284 #else 2285 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2286 { 2287 struct vm_area_struct *prev; 2288 2289 address &= PAGE_MASK; 2290 prev = vma->vm_prev; 2291 if (prev && prev->vm_end == address) { 2292 if (!(prev->vm_flags & VM_GROWSDOWN)) 2293 return -ENOMEM; 2294 } 2295 return expand_downwards(vma, address); 2296 } 2297 2298 struct vm_area_struct * 2299 find_extend_vma(struct mm_struct * mm, unsigned long addr) 2300 { 2301 struct vm_area_struct * vma; 2302 unsigned long start; 2303 2304 addr &= PAGE_MASK; 2305 vma = find_vma(mm,addr); 2306 if (!vma) 2307 return NULL; 2308 if (vma->vm_start <= addr) 2309 return vma; 2310 if (!(vma->vm_flags & VM_GROWSDOWN)) 2311 return NULL; 2312 start = vma->vm_start; 2313 if (expand_stack(vma, addr)) 2314 return NULL; 2315 if (vma->vm_flags & VM_LOCKED) 2316 __mlock_vma_pages_range(vma, addr, start, NULL); 2317 return vma; 2318 } 2319 #endif 2320 2321 /* 2322 * Ok - we have the memory areas we should free on the vma list, 2323 * so release them, and do the vma updates. 2324 * 2325 * Called with the mm semaphore held. 2326 */ 2327 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2328 { 2329 unsigned long nr_accounted = 0; 2330 2331 /* Update high watermark before we lower total_vm */ 2332 update_hiwater_vm(mm); 2333 do { 2334 long nrpages = vma_pages(vma); 2335 2336 if (vma->vm_flags & VM_ACCOUNT) 2337 nr_accounted += nrpages; 2338 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 2339 vma = remove_vma(vma); 2340 } while (vma); 2341 vm_unacct_memory(nr_accounted); 2342 validate_mm(mm); 2343 } 2344 2345 /* 2346 * Get rid of page table information in the indicated region. 2347 * 2348 * Called with the mm semaphore held. 2349 */ 2350 static void unmap_region(struct mm_struct *mm, 2351 struct vm_area_struct *vma, struct vm_area_struct *prev, 2352 unsigned long start, unsigned long end) 2353 { 2354 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 2355 struct mmu_gather tlb; 2356 2357 lru_add_drain(); 2358 tlb_gather_mmu(&tlb, mm, start, end); 2359 update_hiwater_rss(mm); 2360 unmap_vmas(&tlb, vma, start, end); 2361 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2362 next ? next->vm_start : USER_PGTABLES_CEILING); 2363 tlb_finish_mmu(&tlb, start, end); 2364 } 2365 2366 /* 2367 * Create a list of vma's touched by the unmap, removing them from the mm's 2368 * vma list as we go.. 2369 */ 2370 static void 2371 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2372 struct vm_area_struct *prev, unsigned long end) 2373 { 2374 struct vm_area_struct **insertion_point; 2375 struct vm_area_struct *tail_vma = NULL; 2376 2377 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2378 vma->vm_prev = NULL; 2379 do { 2380 vma_rb_erase(vma, &mm->mm_rb); 2381 mm->map_count--; 2382 tail_vma = vma; 2383 vma = vma->vm_next; 2384 } while (vma && vma->vm_start < end); 2385 *insertion_point = vma; 2386 if (vma) { 2387 vma->vm_prev = prev; 2388 vma_gap_update(vma); 2389 } else 2390 mm->highest_vm_end = prev ? prev->vm_end : 0; 2391 tail_vma->vm_next = NULL; 2392 2393 /* Kill the cache */ 2394 vmacache_invalidate(mm); 2395 } 2396 2397 /* 2398 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2399 * munmap path where it doesn't make sense to fail. 2400 */ 2401 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 2402 unsigned long addr, int new_below) 2403 { 2404 struct vm_area_struct *new; 2405 int err = -ENOMEM; 2406 2407 if (is_vm_hugetlb_page(vma) && (addr & 2408 ~(huge_page_mask(hstate_vma(vma))))) 2409 return -EINVAL; 2410 2411 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2412 if (!new) 2413 goto out_err; 2414 2415 /* most fields are the same, copy all, and then fixup */ 2416 *new = *vma; 2417 2418 INIT_LIST_HEAD(&new->anon_vma_chain); 2419 2420 if (new_below) 2421 new->vm_end = addr; 2422 else { 2423 new->vm_start = addr; 2424 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2425 } 2426 2427 err = vma_dup_policy(vma, new); 2428 if (err) 2429 goto out_free_vma; 2430 2431 if (anon_vma_clone(new, vma)) 2432 goto out_free_mpol; 2433 2434 if (new->vm_file) 2435 get_file(new->vm_file); 2436 2437 if (new->vm_ops && new->vm_ops->open) 2438 new->vm_ops->open(new); 2439 2440 if (new_below) 2441 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2442 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2443 else 2444 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2445 2446 /* Success. */ 2447 if (!err) 2448 return 0; 2449 2450 /* Clean everything up if vma_adjust failed. */ 2451 if (new->vm_ops && new->vm_ops->close) 2452 new->vm_ops->close(new); 2453 if (new->vm_file) 2454 fput(new->vm_file); 2455 unlink_anon_vmas(new); 2456 out_free_mpol: 2457 mpol_put(vma_policy(new)); 2458 out_free_vma: 2459 kmem_cache_free(vm_area_cachep, new); 2460 out_err: 2461 return err; 2462 } 2463 2464 /* 2465 * Split a vma into two pieces at address 'addr', a new vma is allocated 2466 * either for the first part or the tail. 2467 */ 2468 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2469 unsigned long addr, int new_below) 2470 { 2471 if (mm->map_count >= sysctl_max_map_count) 2472 return -ENOMEM; 2473 2474 return __split_vma(mm, vma, addr, new_below); 2475 } 2476 2477 /* Munmap is split into 2 main parts -- this part which finds 2478 * what needs doing, and the areas themselves, which do the 2479 * work. This now handles partial unmappings. 2480 * Jeremy Fitzhardinge <jeremy@goop.org> 2481 */ 2482 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2483 { 2484 unsigned long end; 2485 struct vm_area_struct *vma, *prev, *last; 2486 2487 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2488 return -EINVAL; 2489 2490 if ((len = PAGE_ALIGN(len)) == 0) 2491 return -EINVAL; 2492 2493 /* Find the first overlapping VMA */ 2494 vma = find_vma(mm, start); 2495 if (!vma) 2496 return 0; 2497 prev = vma->vm_prev; 2498 /* we have start < vma->vm_end */ 2499 2500 /* if it doesn't overlap, we have nothing.. */ 2501 end = start + len; 2502 if (vma->vm_start >= end) 2503 return 0; 2504 2505 /* 2506 * If we need to split any vma, do it now to save pain later. 2507 * 2508 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2509 * unmapped vm_area_struct will remain in use: so lower split_vma 2510 * places tmp vma above, and higher split_vma places tmp vma below. 2511 */ 2512 if (start > vma->vm_start) { 2513 int error; 2514 2515 /* 2516 * Make sure that map_count on return from munmap() will 2517 * not exceed its limit; but let map_count go just above 2518 * its limit temporarily, to help free resources as expected. 2519 */ 2520 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2521 return -ENOMEM; 2522 2523 error = __split_vma(mm, vma, start, 0); 2524 if (error) 2525 return error; 2526 prev = vma; 2527 } 2528 2529 /* Does it split the last one? */ 2530 last = find_vma(mm, end); 2531 if (last && end > last->vm_start) { 2532 int error = __split_vma(mm, last, end, 1); 2533 if (error) 2534 return error; 2535 } 2536 vma = prev? prev->vm_next: mm->mmap; 2537 2538 /* 2539 * unlock any mlock()ed ranges before detaching vmas 2540 */ 2541 if (mm->locked_vm) { 2542 struct vm_area_struct *tmp = vma; 2543 while (tmp && tmp->vm_start < end) { 2544 if (tmp->vm_flags & VM_LOCKED) { 2545 mm->locked_vm -= vma_pages(tmp); 2546 munlock_vma_pages_all(tmp); 2547 } 2548 tmp = tmp->vm_next; 2549 } 2550 } 2551 2552 /* 2553 * Remove the vma's, and unmap the actual pages 2554 */ 2555 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2556 unmap_region(mm, vma, prev, start, end); 2557 2558 /* Fix up all other VM information */ 2559 remove_vma_list(mm, vma); 2560 2561 return 0; 2562 } 2563 2564 int vm_munmap(unsigned long start, size_t len) 2565 { 2566 int ret; 2567 struct mm_struct *mm = current->mm; 2568 2569 down_write(&mm->mmap_sem); 2570 ret = do_munmap(mm, start, len); 2571 up_write(&mm->mmap_sem); 2572 return ret; 2573 } 2574 EXPORT_SYMBOL(vm_munmap); 2575 2576 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2577 { 2578 profile_munmap(addr); 2579 return vm_munmap(addr, len); 2580 } 2581 2582 static inline void verify_mm_writelocked(struct mm_struct *mm) 2583 { 2584 #ifdef CONFIG_DEBUG_VM 2585 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2586 WARN_ON(1); 2587 up_read(&mm->mmap_sem); 2588 } 2589 #endif 2590 } 2591 2592 /* 2593 * this is really a simplified "do_mmap". it only handles 2594 * anonymous maps. eventually we may be able to do some 2595 * brk-specific accounting here. 2596 */ 2597 static unsigned long do_brk(unsigned long addr, unsigned long len) 2598 { 2599 struct mm_struct * mm = current->mm; 2600 struct vm_area_struct * vma, * prev; 2601 unsigned long flags; 2602 struct rb_node ** rb_link, * rb_parent; 2603 pgoff_t pgoff = addr >> PAGE_SHIFT; 2604 int error; 2605 2606 len = PAGE_ALIGN(len); 2607 if (!len) 2608 return addr; 2609 2610 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2611 2612 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2613 if (error & ~PAGE_MASK) 2614 return error; 2615 2616 error = mlock_future_check(mm, mm->def_flags, len); 2617 if (error) 2618 return error; 2619 2620 /* 2621 * mm->mmap_sem is required to protect against another thread 2622 * changing the mappings in case we sleep. 2623 */ 2624 verify_mm_writelocked(mm); 2625 2626 /* 2627 * Clear old maps. this also does some error checking for us 2628 */ 2629 munmap_back: 2630 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 2631 if (do_munmap(mm, addr, len)) 2632 return -ENOMEM; 2633 goto munmap_back; 2634 } 2635 2636 /* Check against address space limits *after* clearing old maps... */ 2637 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2638 return -ENOMEM; 2639 2640 if (mm->map_count > sysctl_max_map_count) 2641 return -ENOMEM; 2642 2643 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2644 return -ENOMEM; 2645 2646 /* Can we just expand an old private anonymous mapping? */ 2647 vma = vma_merge(mm, prev, addr, addr + len, flags, 2648 NULL, NULL, pgoff, NULL); 2649 if (vma) 2650 goto out; 2651 2652 /* 2653 * create a vma struct for an anonymous mapping 2654 */ 2655 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2656 if (!vma) { 2657 vm_unacct_memory(len >> PAGE_SHIFT); 2658 return -ENOMEM; 2659 } 2660 2661 INIT_LIST_HEAD(&vma->anon_vma_chain); 2662 vma->vm_mm = mm; 2663 vma->vm_start = addr; 2664 vma->vm_end = addr + len; 2665 vma->vm_pgoff = pgoff; 2666 vma->vm_flags = flags; 2667 vma->vm_page_prot = vm_get_page_prot(flags); 2668 vma_link(mm, vma, prev, rb_link, rb_parent); 2669 out: 2670 perf_event_mmap(vma); 2671 mm->total_vm += len >> PAGE_SHIFT; 2672 if (flags & VM_LOCKED) 2673 mm->locked_vm += (len >> PAGE_SHIFT); 2674 vma->vm_flags |= VM_SOFTDIRTY; 2675 return addr; 2676 } 2677 2678 unsigned long vm_brk(unsigned long addr, unsigned long len) 2679 { 2680 struct mm_struct *mm = current->mm; 2681 unsigned long ret; 2682 bool populate; 2683 2684 down_write(&mm->mmap_sem); 2685 ret = do_brk(addr, len); 2686 populate = ((mm->def_flags & VM_LOCKED) != 0); 2687 up_write(&mm->mmap_sem); 2688 if (populate) 2689 mm_populate(addr, len); 2690 return ret; 2691 } 2692 EXPORT_SYMBOL(vm_brk); 2693 2694 /* Release all mmaps. */ 2695 void exit_mmap(struct mm_struct *mm) 2696 { 2697 struct mmu_gather tlb; 2698 struct vm_area_struct *vma; 2699 unsigned long nr_accounted = 0; 2700 2701 /* mm's last user has gone, and its about to be pulled down */ 2702 mmu_notifier_release(mm); 2703 2704 if (mm->locked_vm) { 2705 vma = mm->mmap; 2706 while (vma) { 2707 if (vma->vm_flags & VM_LOCKED) 2708 munlock_vma_pages_all(vma); 2709 vma = vma->vm_next; 2710 } 2711 } 2712 2713 arch_exit_mmap(mm); 2714 2715 vma = mm->mmap; 2716 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2717 return; 2718 2719 lru_add_drain(); 2720 flush_cache_mm(mm); 2721 tlb_gather_mmu(&tlb, mm, 0, -1); 2722 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2723 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2724 unmap_vmas(&tlb, vma, 0, -1); 2725 2726 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2727 tlb_finish_mmu(&tlb, 0, -1); 2728 2729 /* 2730 * Walk the list again, actually closing and freeing it, 2731 * with preemption enabled, without holding any MM locks. 2732 */ 2733 while (vma) { 2734 if (vma->vm_flags & VM_ACCOUNT) 2735 nr_accounted += vma_pages(vma); 2736 vma = remove_vma(vma); 2737 } 2738 vm_unacct_memory(nr_accounted); 2739 2740 WARN_ON(atomic_long_read(&mm->nr_ptes) > 2741 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2742 } 2743 2744 /* Insert vm structure into process list sorted by address 2745 * and into the inode's i_mmap tree. If vm_file is non-NULL 2746 * then i_mmap_mutex is taken here. 2747 */ 2748 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2749 { 2750 struct vm_area_struct *prev; 2751 struct rb_node **rb_link, *rb_parent; 2752 2753 /* 2754 * The vm_pgoff of a purely anonymous vma should be irrelevant 2755 * until its first write fault, when page's anon_vma and index 2756 * are set. But now set the vm_pgoff it will almost certainly 2757 * end up with (unless mremap moves it elsewhere before that 2758 * first wfault), so /proc/pid/maps tells a consistent story. 2759 * 2760 * By setting it to reflect the virtual start address of the 2761 * vma, merges and splits can happen in a seamless way, just 2762 * using the existing file pgoff checks and manipulations. 2763 * Similarly in do_mmap_pgoff and in do_brk. 2764 */ 2765 if (!vma->vm_file) { 2766 BUG_ON(vma->anon_vma); 2767 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2768 } 2769 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2770 &prev, &rb_link, &rb_parent)) 2771 return -ENOMEM; 2772 if ((vma->vm_flags & VM_ACCOUNT) && 2773 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2774 return -ENOMEM; 2775 2776 vma_link(mm, vma, prev, rb_link, rb_parent); 2777 return 0; 2778 } 2779 2780 /* 2781 * Copy the vma structure to a new location in the same mm, 2782 * prior to moving page table entries, to effect an mremap move. 2783 */ 2784 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2785 unsigned long addr, unsigned long len, pgoff_t pgoff, 2786 bool *need_rmap_locks) 2787 { 2788 struct vm_area_struct *vma = *vmap; 2789 unsigned long vma_start = vma->vm_start; 2790 struct mm_struct *mm = vma->vm_mm; 2791 struct vm_area_struct *new_vma, *prev; 2792 struct rb_node **rb_link, *rb_parent; 2793 bool faulted_in_anon_vma = true; 2794 2795 /* 2796 * If anonymous vma has not yet been faulted, update new pgoff 2797 * to match new location, to increase its chance of merging. 2798 */ 2799 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2800 pgoff = addr >> PAGE_SHIFT; 2801 faulted_in_anon_vma = false; 2802 } 2803 2804 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2805 return NULL; /* should never get here */ 2806 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2807 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2808 if (new_vma) { 2809 /* 2810 * Source vma may have been merged into new_vma 2811 */ 2812 if (unlikely(vma_start >= new_vma->vm_start && 2813 vma_start < new_vma->vm_end)) { 2814 /* 2815 * The only way we can get a vma_merge with 2816 * self during an mremap is if the vma hasn't 2817 * been faulted in yet and we were allowed to 2818 * reset the dst vma->vm_pgoff to the 2819 * destination address of the mremap to allow 2820 * the merge to happen. mremap must change the 2821 * vm_pgoff linearity between src and dst vmas 2822 * (in turn preventing a vma_merge) to be 2823 * safe. It is only safe to keep the vm_pgoff 2824 * linear if there are no pages mapped yet. 2825 */ 2826 VM_BUG_ON(faulted_in_anon_vma); 2827 *vmap = vma = new_vma; 2828 } 2829 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2830 } else { 2831 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2832 if (new_vma) { 2833 *new_vma = *vma; 2834 new_vma->vm_start = addr; 2835 new_vma->vm_end = addr + len; 2836 new_vma->vm_pgoff = pgoff; 2837 if (vma_dup_policy(vma, new_vma)) 2838 goto out_free_vma; 2839 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2840 if (anon_vma_clone(new_vma, vma)) 2841 goto out_free_mempol; 2842 if (new_vma->vm_file) 2843 get_file(new_vma->vm_file); 2844 if (new_vma->vm_ops && new_vma->vm_ops->open) 2845 new_vma->vm_ops->open(new_vma); 2846 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2847 *need_rmap_locks = false; 2848 } 2849 } 2850 return new_vma; 2851 2852 out_free_mempol: 2853 mpol_put(vma_policy(new_vma)); 2854 out_free_vma: 2855 kmem_cache_free(vm_area_cachep, new_vma); 2856 return NULL; 2857 } 2858 2859 /* 2860 * Return true if the calling process may expand its vm space by the passed 2861 * number of pages 2862 */ 2863 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2864 { 2865 unsigned long cur = mm->total_vm; /* pages */ 2866 unsigned long lim; 2867 2868 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2869 2870 if (cur + npages > lim) 2871 return 0; 2872 return 1; 2873 } 2874 2875 2876 static int special_mapping_fault(struct vm_area_struct *vma, 2877 struct vm_fault *vmf) 2878 { 2879 pgoff_t pgoff; 2880 struct page **pages; 2881 2882 /* 2883 * special mappings have no vm_file, and in that case, the mm 2884 * uses vm_pgoff internally. So we have to subtract it from here. 2885 * We are allowed to do this because we are the mm; do not copy 2886 * this code into drivers! 2887 */ 2888 pgoff = vmf->pgoff - vma->vm_pgoff; 2889 2890 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2891 pgoff--; 2892 2893 if (*pages) { 2894 struct page *page = *pages; 2895 get_page(page); 2896 vmf->page = page; 2897 return 0; 2898 } 2899 2900 return VM_FAULT_SIGBUS; 2901 } 2902 2903 /* 2904 * Having a close hook prevents vma merging regardless of flags. 2905 */ 2906 static void special_mapping_close(struct vm_area_struct *vma) 2907 { 2908 } 2909 2910 static const struct vm_operations_struct special_mapping_vmops = { 2911 .close = special_mapping_close, 2912 .fault = special_mapping_fault, 2913 }; 2914 2915 /* 2916 * Called with mm->mmap_sem held for writing. 2917 * Insert a new vma covering the given region, with the given flags. 2918 * Its pages are supplied by the given array of struct page *. 2919 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2920 * The region past the last page supplied will always produce SIGBUS. 2921 * The array pointer and the pages it points to are assumed to stay alive 2922 * for as long as this mapping might exist. 2923 */ 2924 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2925 unsigned long addr, unsigned long len, 2926 unsigned long vm_flags, struct page **pages) 2927 { 2928 int ret; 2929 struct vm_area_struct *vma; 2930 2931 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2932 if (unlikely(vma == NULL)) 2933 return ERR_PTR(-ENOMEM); 2934 2935 INIT_LIST_HEAD(&vma->anon_vma_chain); 2936 vma->vm_mm = mm; 2937 vma->vm_start = addr; 2938 vma->vm_end = addr + len; 2939 2940 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 2941 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2942 2943 vma->vm_ops = &special_mapping_vmops; 2944 vma->vm_private_data = pages; 2945 2946 ret = insert_vm_struct(mm, vma); 2947 if (ret) 2948 goto out; 2949 2950 mm->total_vm += len >> PAGE_SHIFT; 2951 2952 perf_event_mmap(vma); 2953 2954 return vma; 2955 2956 out: 2957 kmem_cache_free(vm_area_cachep, vma); 2958 return ERR_PTR(ret); 2959 } 2960 2961 int install_special_mapping(struct mm_struct *mm, 2962 unsigned long addr, unsigned long len, 2963 unsigned long vm_flags, struct page **pages) 2964 { 2965 struct vm_area_struct *vma = _install_special_mapping(mm, 2966 addr, len, vm_flags, pages); 2967 2968 if (IS_ERR(vma)) 2969 return PTR_ERR(vma); 2970 return 0; 2971 } 2972 2973 static DEFINE_MUTEX(mm_all_locks_mutex); 2974 2975 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2976 { 2977 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 2978 /* 2979 * The LSB of head.next can't change from under us 2980 * because we hold the mm_all_locks_mutex. 2981 */ 2982 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 2983 /* 2984 * We can safely modify head.next after taking the 2985 * anon_vma->root->rwsem. If some other vma in this mm shares 2986 * the same anon_vma we won't take it again. 2987 * 2988 * No need of atomic instructions here, head.next 2989 * can't change from under us thanks to the 2990 * anon_vma->root->rwsem. 2991 */ 2992 if (__test_and_set_bit(0, (unsigned long *) 2993 &anon_vma->root->rb_root.rb_node)) 2994 BUG(); 2995 } 2996 } 2997 2998 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2999 { 3000 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3001 /* 3002 * AS_MM_ALL_LOCKS can't change from under us because 3003 * we hold the mm_all_locks_mutex. 3004 * 3005 * Operations on ->flags have to be atomic because 3006 * even if AS_MM_ALL_LOCKS is stable thanks to the 3007 * mm_all_locks_mutex, there may be other cpus 3008 * changing other bitflags in parallel to us. 3009 */ 3010 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3011 BUG(); 3012 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 3013 } 3014 } 3015 3016 /* 3017 * This operation locks against the VM for all pte/vma/mm related 3018 * operations that could ever happen on a certain mm. This includes 3019 * vmtruncate, try_to_unmap, and all page faults. 3020 * 3021 * The caller must take the mmap_sem in write mode before calling 3022 * mm_take_all_locks(). The caller isn't allowed to release the 3023 * mmap_sem until mm_drop_all_locks() returns. 3024 * 3025 * mmap_sem in write mode is required in order to block all operations 3026 * that could modify pagetables and free pages without need of 3027 * altering the vma layout (for example populate_range() with 3028 * nonlinear vmas). It's also needed in write mode to avoid new 3029 * anon_vmas to be associated with existing vmas. 3030 * 3031 * A single task can't take more than one mm_take_all_locks() in a row 3032 * or it would deadlock. 3033 * 3034 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3035 * mapping->flags avoid to take the same lock twice, if more than one 3036 * vma in this mm is backed by the same anon_vma or address_space. 3037 * 3038 * We can take all the locks in random order because the VM code 3039 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never 3040 * takes more than one of them in a row. Secondly we're protected 3041 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 3042 * 3043 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3044 * that may have to take thousand of locks. 3045 * 3046 * mm_take_all_locks() can fail if it's interrupted by signals. 3047 */ 3048 int mm_take_all_locks(struct mm_struct *mm) 3049 { 3050 struct vm_area_struct *vma; 3051 struct anon_vma_chain *avc; 3052 3053 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3054 3055 mutex_lock(&mm_all_locks_mutex); 3056 3057 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3058 if (signal_pending(current)) 3059 goto out_unlock; 3060 if (vma->vm_file && vma->vm_file->f_mapping) 3061 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3062 } 3063 3064 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3065 if (signal_pending(current)) 3066 goto out_unlock; 3067 if (vma->anon_vma) 3068 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3069 vm_lock_anon_vma(mm, avc->anon_vma); 3070 } 3071 3072 return 0; 3073 3074 out_unlock: 3075 mm_drop_all_locks(mm); 3076 return -EINTR; 3077 } 3078 3079 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3080 { 3081 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3082 /* 3083 * The LSB of head.next can't change to 0 from under 3084 * us because we hold the mm_all_locks_mutex. 3085 * 3086 * We must however clear the bitflag before unlocking 3087 * the vma so the users using the anon_vma->rb_root will 3088 * never see our bitflag. 3089 * 3090 * No need of atomic instructions here, head.next 3091 * can't change from under us until we release the 3092 * anon_vma->root->rwsem. 3093 */ 3094 if (!__test_and_clear_bit(0, (unsigned long *) 3095 &anon_vma->root->rb_root.rb_node)) 3096 BUG(); 3097 anon_vma_unlock_write(anon_vma); 3098 } 3099 } 3100 3101 static void vm_unlock_mapping(struct address_space *mapping) 3102 { 3103 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3104 /* 3105 * AS_MM_ALL_LOCKS can't change to 0 from under us 3106 * because we hold the mm_all_locks_mutex. 3107 */ 3108 mutex_unlock(&mapping->i_mmap_mutex); 3109 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3110 &mapping->flags)) 3111 BUG(); 3112 } 3113 } 3114 3115 /* 3116 * The mmap_sem cannot be released by the caller until 3117 * mm_drop_all_locks() returns. 3118 */ 3119 void mm_drop_all_locks(struct mm_struct *mm) 3120 { 3121 struct vm_area_struct *vma; 3122 struct anon_vma_chain *avc; 3123 3124 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3125 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3126 3127 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3128 if (vma->anon_vma) 3129 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3130 vm_unlock_anon_vma(avc->anon_vma); 3131 if (vma->vm_file && vma->vm_file->f_mapping) 3132 vm_unlock_mapping(vma->vm_file->f_mapping); 3133 } 3134 3135 mutex_unlock(&mm_all_locks_mutex); 3136 } 3137 3138 /* 3139 * initialise the VMA slab 3140 */ 3141 void __init mmap_init(void) 3142 { 3143 int ret; 3144 3145 ret = percpu_counter_init(&vm_committed_as, 0); 3146 VM_BUG_ON(ret); 3147 } 3148 3149 /* 3150 * Initialise sysctl_user_reserve_kbytes. 3151 * 3152 * This is intended to prevent a user from starting a single memory hogging 3153 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3154 * mode. 3155 * 3156 * The default value is min(3% of free memory, 128MB) 3157 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3158 */ 3159 static int init_user_reserve(void) 3160 { 3161 unsigned long free_kbytes; 3162 3163 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3164 3165 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3166 return 0; 3167 } 3168 subsys_initcall(init_user_reserve); 3169 3170 /* 3171 * Initialise sysctl_admin_reserve_kbytes. 3172 * 3173 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3174 * to log in and kill a memory hogging process. 3175 * 3176 * Systems with more than 256MB will reserve 8MB, enough to recover 3177 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3178 * only reserve 3% of free pages by default. 3179 */ 3180 static int init_admin_reserve(void) 3181 { 3182 unsigned long free_kbytes; 3183 3184 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3185 3186 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3187 return 0; 3188 } 3189 subsys_initcall(init_admin_reserve); 3190 3191 /* 3192 * Reinititalise user and admin reserves if memory is added or removed. 3193 * 3194 * The default user reserve max is 128MB, and the default max for the 3195 * admin reserve is 8MB. These are usually, but not always, enough to 3196 * enable recovery from a memory hogging process using login/sshd, a shell, 3197 * and tools like top. It may make sense to increase or even disable the 3198 * reserve depending on the existence of swap or variations in the recovery 3199 * tools. So, the admin may have changed them. 3200 * 3201 * If memory is added and the reserves have been eliminated or increased above 3202 * the default max, then we'll trust the admin. 3203 * 3204 * If memory is removed and there isn't enough free memory, then we 3205 * need to reset the reserves. 3206 * 3207 * Otherwise keep the reserve set by the admin. 3208 */ 3209 static int reserve_mem_notifier(struct notifier_block *nb, 3210 unsigned long action, void *data) 3211 { 3212 unsigned long tmp, free_kbytes; 3213 3214 switch (action) { 3215 case MEM_ONLINE: 3216 /* Default max is 128MB. Leave alone if modified by operator. */ 3217 tmp = sysctl_user_reserve_kbytes; 3218 if (0 < tmp && tmp < (1UL << 17)) 3219 init_user_reserve(); 3220 3221 /* Default max is 8MB. Leave alone if modified by operator. */ 3222 tmp = sysctl_admin_reserve_kbytes; 3223 if (0 < tmp && tmp < (1UL << 13)) 3224 init_admin_reserve(); 3225 3226 break; 3227 case MEM_OFFLINE: 3228 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3229 3230 if (sysctl_user_reserve_kbytes > free_kbytes) { 3231 init_user_reserve(); 3232 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3233 sysctl_user_reserve_kbytes); 3234 } 3235 3236 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3237 init_admin_reserve(); 3238 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3239 sysctl_admin_reserve_kbytes); 3240 } 3241 break; 3242 default: 3243 break; 3244 } 3245 return NOTIFY_OK; 3246 } 3247 3248 static struct notifier_block reserve_mem_nb = { 3249 .notifier_call = reserve_mem_notifier, 3250 }; 3251 3252 static int __meminit init_reserve_notifier(void) 3253 { 3254 if (register_hotmemory_notifier(&reserve_mem_nb)) 3255 printk("Failed registering memory add/remove notifier for admin reserve"); 3256 3257 return 0; 3258 } 3259 subsys_initcall(init_reserve_notifier); 3260