1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 unsigned long start, unsigned long end); 82 83 /* description of effects of mapping type and prot in current implementation. 84 * this is due to the limited x86 page protection hardware. The expected 85 * behavior is in parens: 86 * 87 * map_type prot 88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 90 * w: (no) no w: (no) no w: (yes) yes w: (no) no 91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 92 * 93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 94 * w: (no) no w: (no) no w: (copy) copy w: (no) no 95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 96 */ 97 pgprot_t protection_map[16] __ro_after_init = { 98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 100 }; 101 102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 104 { 105 return prot; 106 } 107 #endif 108 109 pgprot_t vm_get_page_prot(unsigned long vm_flags) 110 { 111 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 112 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 113 pgprot_val(arch_vm_get_page_prot(vm_flags))); 114 115 return arch_filter_pgprot(ret); 116 } 117 EXPORT_SYMBOL(vm_get_page_prot); 118 119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 120 { 121 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 122 } 123 124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 125 void vma_set_page_prot(struct vm_area_struct *vma) 126 { 127 unsigned long vm_flags = vma->vm_flags; 128 pgprot_t vm_page_prot; 129 130 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 131 if (vma_wants_writenotify(vma, vm_page_prot)) { 132 vm_flags &= ~VM_SHARED; 133 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 134 } 135 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 136 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 137 } 138 139 /* 140 * Requires inode->i_mapping->i_mmap_rwsem 141 */ 142 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 143 struct file *file, struct address_space *mapping) 144 { 145 if (vma->vm_flags & VM_DENYWRITE) 146 allow_write_access(file); 147 if (vma->vm_flags & VM_SHARED) 148 mapping_unmap_writable(mapping); 149 150 flush_dcache_mmap_lock(mapping); 151 vma_interval_tree_remove(vma, &mapping->i_mmap); 152 flush_dcache_mmap_unlock(mapping); 153 } 154 155 /* 156 * Unlink a file-based vm structure from its interval tree, to hide 157 * vma from rmap and vmtruncate before freeing its page tables. 158 */ 159 void unlink_file_vma(struct vm_area_struct *vma) 160 { 161 struct file *file = vma->vm_file; 162 163 if (file) { 164 struct address_space *mapping = file->f_mapping; 165 i_mmap_lock_write(mapping); 166 __remove_shared_vm_struct(vma, file, mapping); 167 i_mmap_unlock_write(mapping); 168 } 169 } 170 171 /* 172 * Close a vm structure and free it, returning the next. 173 */ 174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 175 { 176 struct vm_area_struct *next = vma->vm_next; 177 178 might_sleep(); 179 if (vma->vm_ops && vma->vm_ops->close) 180 vma->vm_ops->close(vma); 181 if (vma->vm_file) 182 fput(vma->vm_file); 183 mpol_put(vma_policy(vma)); 184 vm_area_free(vma); 185 return next; 186 } 187 188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 189 struct list_head *uf); 190 SYSCALL_DEFINE1(brk, unsigned long, brk) 191 { 192 unsigned long retval; 193 unsigned long newbrk, oldbrk, origbrk; 194 struct mm_struct *mm = current->mm; 195 struct vm_area_struct *next; 196 unsigned long min_brk; 197 bool populate; 198 bool downgraded = false; 199 LIST_HEAD(uf); 200 201 if (mmap_write_lock_killable(mm)) 202 return -EINTR; 203 204 origbrk = mm->brk; 205 206 #ifdef CONFIG_COMPAT_BRK 207 /* 208 * CONFIG_COMPAT_BRK can still be overridden by setting 209 * randomize_va_space to 2, which will still cause mm->start_brk 210 * to be arbitrarily shifted 211 */ 212 if (current->brk_randomized) 213 min_brk = mm->start_brk; 214 else 215 min_brk = mm->end_data; 216 #else 217 min_brk = mm->start_brk; 218 #endif 219 if (brk < min_brk) 220 goto out; 221 222 /* 223 * Check against rlimit here. If this check is done later after the test 224 * of oldbrk with newbrk then it can escape the test and let the data 225 * segment grow beyond its set limit the in case where the limit is 226 * not page aligned -Ram Gupta 227 */ 228 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 229 mm->end_data, mm->start_data)) 230 goto out; 231 232 newbrk = PAGE_ALIGN(brk); 233 oldbrk = PAGE_ALIGN(mm->brk); 234 if (oldbrk == newbrk) { 235 mm->brk = brk; 236 goto success; 237 } 238 239 /* 240 * Always allow shrinking brk. 241 * __do_munmap() may downgrade mmap_lock to read. 242 */ 243 if (brk <= mm->brk) { 244 int ret; 245 246 /* 247 * mm->brk must to be protected by write mmap_lock so update it 248 * before downgrading mmap_lock. When __do_munmap() fails, 249 * mm->brk will be restored from origbrk. 250 */ 251 mm->brk = brk; 252 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 253 if (ret < 0) { 254 mm->brk = origbrk; 255 goto out; 256 } else if (ret == 1) { 257 downgraded = true; 258 } 259 goto success; 260 } 261 262 /* Check against existing mmap mappings. */ 263 next = find_vma(mm, oldbrk); 264 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 265 goto out; 266 267 /* Ok, looks good - let it rip. */ 268 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 269 goto out; 270 mm->brk = brk; 271 272 success: 273 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 274 if (downgraded) 275 mmap_read_unlock(mm); 276 else 277 mmap_write_unlock(mm); 278 userfaultfd_unmap_complete(mm, &uf); 279 if (populate) 280 mm_populate(oldbrk, newbrk - oldbrk); 281 return brk; 282 283 out: 284 retval = origbrk; 285 mmap_write_unlock(mm); 286 return retval; 287 } 288 289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 290 { 291 unsigned long gap, prev_end; 292 293 /* 294 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 295 * allow two stack_guard_gaps between them here, and when choosing 296 * an unmapped area; whereas when expanding we only require one. 297 * That's a little inconsistent, but keeps the code here simpler. 298 */ 299 gap = vm_start_gap(vma); 300 if (vma->vm_prev) { 301 prev_end = vm_end_gap(vma->vm_prev); 302 if (gap > prev_end) 303 gap -= prev_end; 304 else 305 gap = 0; 306 } 307 return gap; 308 } 309 310 #ifdef CONFIG_DEBUG_VM_RB 311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 312 { 313 unsigned long max = vma_compute_gap(vma), subtree_gap; 314 if (vma->vm_rb.rb_left) { 315 subtree_gap = rb_entry(vma->vm_rb.rb_left, 316 struct vm_area_struct, vm_rb)->rb_subtree_gap; 317 if (subtree_gap > max) 318 max = subtree_gap; 319 } 320 if (vma->vm_rb.rb_right) { 321 subtree_gap = rb_entry(vma->vm_rb.rb_right, 322 struct vm_area_struct, vm_rb)->rb_subtree_gap; 323 if (subtree_gap > max) 324 max = subtree_gap; 325 } 326 return max; 327 } 328 329 static int browse_rb(struct mm_struct *mm) 330 { 331 struct rb_root *root = &mm->mm_rb; 332 int i = 0, j, bug = 0; 333 struct rb_node *nd, *pn = NULL; 334 unsigned long prev = 0, pend = 0; 335 336 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 337 struct vm_area_struct *vma; 338 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 339 if (vma->vm_start < prev) { 340 pr_emerg("vm_start %lx < prev %lx\n", 341 vma->vm_start, prev); 342 bug = 1; 343 } 344 if (vma->vm_start < pend) { 345 pr_emerg("vm_start %lx < pend %lx\n", 346 vma->vm_start, pend); 347 bug = 1; 348 } 349 if (vma->vm_start > vma->vm_end) { 350 pr_emerg("vm_start %lx > vm_end %lx\n", 351 vma->vm_start, vma->vm_end); 352 bug = 1; 353 } 354 spin_lock(&mm->page_table_lock); 355 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 356 pr_emerg("free gap %lx, correct %lx\n", 357 vma->rb_subtree_gap, 358 vma_compute_subtree_gap(vma)); 359 bug = 1; 360 } 361 spin_unlock(&mm->page_table_lock); 362 i++; 363 pn = nd; 364 prev = vma->vm_start; 365 pend = vma->vm_end; 366 } 367 j = 0; 368 for (nd = pn; nd; nd = rb_prev(nd)) 369 j++; 370 if (i != j) { 371 pr_emerg("backwards %d, forwards %d\n", j, i); 372 bug = 1; 373 } 374 return bug ? -1 : i; 375 } 376 377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 378 { 379 struct rb_node *nd; 380 381 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 382 struct vm_area_struct *vma; 383 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 384 VM_BUG_ON_VMA(vma != ignore && 385 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 386 vma); 387 } 388 } 389 390 static void validate_mm(struct mm_struct *mm) 391 { 392 int bug = 0; 393 int i = 0; 394 unsigned long highest_address = 0; 395 struct vm_area_struct *vma = mm->mmap; 396 397 while (vma) { 398 struct anon_vma *anon_vma = vma->anon_vma; 399 struct anon_vma_chain *avc; 400 401 if (anon_vma) { 402 anon_vma_lock_read(anon_vma); 403 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 404 anon_vma_interval_tree_verify(avc); 405 anon_vma_unlock_read(anon_vma); 406 } 407 408 highest_address = vm_end_gap(vma); 409 vma = vma->vm_next; 410 i++; 411 } 412 if (i != mm->map_count) { 413 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 414 bug = 1; 415 } 416 if (highest_address != mm->highest_vm_end) { 417 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 418 mm->highest_vm_end, highest_address); 419 bug = 1; 420 } 421 i = browse_rb(mm); 422 if (i != mm->map_count) { 423 if (i != -1) 424 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 425 bug = 1; 426 } 427 VM_BUG_ON_MM(bug, mm); 428 } 429 #else 430 #define validate_mm_rb(root, ignore) do { } while (0) 431 #define validate_mm(mm) do { } while (0) 432 #endif 433 434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 435 struct vm_area_struct, vm_rb, 436 unsigned long, rb_subtree_gap, vma_compute_gap) 437 438 /* 439 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 440 * vma->vm_prev->vm_end values changed, without modifying the vma's position 441 * in the rbtree. 442 */ 443 static void vma_gap_update(struct vm_area_struct *vma) 444 { 445 /* 446 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 447 * a callback function that does exactly what we want. 448 */ 449 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 450 } 451 452 static inline void vma_rb_insert(struct vm_area_struct *vma, 453 struct rb_root *root) 454 { 455 /* All rb_subtree_gap values must be consistent prior to insertion */ 456 validate_mm_rb(root, NULL); 457 458 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 459 } 460 461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 462 { 463 /* 464 * Note rb_erase_augmented is a fairly large inline function, 465 * so make sure we instantiate it only once with our desired 466 * augmented rbtree callbacks. 467 */ 468 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 469 } 470 471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 472 struct rb_root *root, 473 struct vm_area_struct *ignore) 474 { 475 /* 476 * All rb_subtree_gap values must be consistent prior to erase, 477 * with the possible exception of 478 * 479 * a. the "next" vma being erased if next->vm_start was reduced in 480 * __vma_adjust() -> __vma_unlink() 481 * b. the vma being erased in detach_vmas_to_be_unmapped() -> 482 * vma_rb_erase() 483 */ 484 validate_mm_rb(root, ignore); 485 486 __vma_rb_erase(vma, root); 487 } 488 489 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 490 struct rb_root *root) 491 { 492 vma_rb_erase_ignore(vma, root, vma); 493 } 494 495 /* 496 * vma has some anon_vma assigned, and is already inserted on that 497 * anon_vma's interval trees. 498 * 499 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 500 * vma must be removed from the anon_vma's interval trees using 501 * anon_vma_interval_tree_pre_update_vma(). 502 * 503 * After the update, the vma will be reinserted using 504 * anon_vma_interval_tree_post_update_vma(). 505 * 506 * The entire update must be protected by exclusive mmap_lock and by 507 * the root anon_vma's mutex. 508 */ 509 static inline void 510 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 511 { 512 struct anon_vma_chain *avc; 513 514 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 515 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 516 } 517 518 static inline void 519 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 520 { 521 struct anon_vma_chain *avc; 522 523 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 524 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 525 } 526 527 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 528 unsigned long end, struct vm_area_struct **pprev, 529 struct rb_node ***rb_link, struct rb_node **rb_parent) 530 { 531 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 532 533 __rb_link = &mm->mm_rb.rb_node; 534 rb_prev = __rb_parent = NULL; 535 536 while (*__rb_link) { 537 struct vm_area_struct *vma_tmp; 538 539 __rb_parent = *__rb_link; 540 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 541 542 if (vma_tmp->vm_end > addr) { 543 /* Fail if an existing vma overlaps the area */ 544 if (vma_tmp->vm_start < end) 545 return -ENOMEM; 546 __rb_link = &__rb_parent->rb_left; 547 } else { 548 rb_prev = __rb_parent; 549 __rb_link = &__rb_parent->rb_right; 550 } 551 } 552 553 *pprev = NULL; 554 if (rb_prev) 555 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 556 *rb_link = __rb_link; 557 *rb_parent = __rb_parent; 558 return 0; 559 } 560 561 static unsigned long count_vma_pages_range(struct mm_struct *mm, 562 unsigned long addr, unsigned long end) 563 { 564 unsigned long nr_pages = 0; 565 struct vm_area_struct *vma; 566 567 /* Find first overlaping mapping */ 568 vma = find_vma_intersection(mm, addr, end); 569 if (!vma) 570 return 0; 571 572 nr_pages = (min(end, vma->vm_end) - 573 max(addr, vma->vm_start)) >> PAGE_SHIFT; 574 575 /* Iterate over the rest of the overlaps */ 576 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 577 unsigned long overlap_len; 578 579 if (vma->vm_start > end) 580 break; 581 582 overlap_len = min(end, vma->vm_end) - vma->vm_start; 583 nr_pages += overlap_len >> PAGE_SHIFT; 584 } 585 586 return nr_pages; 587 } 588 589 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 590 struct rb_node **rb_link, struct rb_node *rb_parent) 591 { 592 /* Update tracking information for the gap following the new vma. */ 593 if (vma->vm_next) 594 vma_gap_update(vma->vm_next); 595 else 596 mm->highest_vm_end = vm_end_gap(vma); 597 598 /* 599 * vma->vm_prev wasn't known when we followed the rbtree to find the 600 * correct insertion point for that vma. As a result, we could not 601 * update the vma vm_rb parents rb_subtree_gap values on the way down. 602 * So, we first insert the vma with a zero rb_subtree_gap value 603 * (to be consistent with what we did on the way down), and then 604 * immediately update the gap to the correct value. Finally we 605 * rebalance the rbtree after all augmented values have been set. 606 */ 607 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 608 vma->rb_subtree_gap = 0; 609 vma_gap_update(vma); 610 vma_rb_insert(vma, &mm->mm_rb); 611 } 612 613 static void __vma_link_file(struct vm_area_struct *vma) 614 { 615 struct file *file; 616 617 file = vma->vm_file; 618 if (file) { 619 struct address_space *mapping = file->f_mapping; 620 621 if (vma->vm_flags & VM_DENYWRITE) 622 put_write_access(file_inode(file)); 623 if (vma->vm_flags & VM_SHARED) 624 mapping_allow_writable(mapping); 625 626 flush_dcache_mmap_lock(mapping); 627 vma_interval_tree_insert(vma, &mapping->i_mmap); 628 flush_dcache_mmap_unlock(mapping); 629 } 630 } 631 632 static void 633 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 634 struct vm_area_struct *prev, struct rb_node **rb_link, 635 struct rb_node *rb_parent) 636 { 637 __vma_link_list(mm, vma, prev); 638 __vma_link_rb(mm, vma, rb_link, rb_parent); 639 } 640 641 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 642 struct vm_area_struct *prev, struct rb_node **rb_link, 643 struct rb_node *rb_parent) 644 { 645 struct address_space *mapping = NULL; 646 647 if (vma->vm_file) { 648 mapping = vma->vm_file->f_mapping; 649 i_mmap_lock_write(mapping); 650 } 651 652 __vma_link(mm, vma, prev, rb_link, rb_parent); 653 __vma_link_file(vma); 654 655 if (mapping) 656 i_mmap_unlock_write(mapping); 657 658 mm->map_count++; 659 validate_mm(mm); 660 } 661 662 /* 663 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 664 * mm's list and rbtree. It has already been inserted into the interval tree. 665 */ 666 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 667 { 668 struct vm_area_struct *prev; 669 struct rb_node **rb_link, *rb_parent; 670 671 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 672 &prev, &rb_link, &rb_parent)) 673 BUG(); 674 __vma_link(mm, vma, prev, rb_link, rb_parent); 675 mm->map_count++; 676 } 677 678 static __always_inline void __vma_unlink(struct mm_struct *mm, 679 struct vm_area_struct *vma, 680 struct vm_area_struct *ignore) 681 { 682 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 683 __vma_unlink_list(mm, vma); 684 /* Kill the cache */ 685 vmacache_invalidate(mm); 686 } 687 688 /* 689 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 690 * is already present in an i_mmap tree without adjusting the tree. 691 * The following helper function should be used when such adjustments 692 * are necessary. The "insert" vma (if any) is to be inserted 693 * before we drop the necessary locks. 694 */ 695 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 696 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 697 struct vm_area_struct *expand) 698 { 699 struct mm_struct *mm = vma->vm_mm; 700 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 701 struct address_space *mapping = NULL; 702 struct rb_root_cached *root = NULL; 703 struct anon_vma *anon_vma = NULL; 704 struct file *file = vma->vm_file; 705 bool start_changed = false, end_changed = false; 706 long adjust_next = 0; 707 int remove_next = 0; 708 709 if (next && !insert) { 710 struct vm_area_struct *exporter = NULL, *importer = NULL; 711 712 if (end >= next->vm_end) { 713 /* 714 * vma expands, overlapping all the next, and 715 * perhaps the one after too (mprotect case 6). 716 * The only other cases that gets here are 717 * case 1, case 7 and case 8. 718 */ 719 if (next == expand) { 720 /* 721 * The only case where we don't expand "vma" 722 * and we expand "next" instead is case 8. 723 */ 724 VM_WARN_ON(end != next->vm_end); 725 /* 726 * remove_next == 3 means we're 727 * removing "vma" and that to do so we 728 * swapped "vma" and "next". 729 */ 730 remove_next = 3; 731 VM_WARN_ON(file != next->vm_file); 732 swap(vma, next); 733 } else { 734 VM_WARN_ON(expand != vma); 735 /* 736 * case 1, 6, 7, remove_next == 2 is case 6, 737 * remove_next == 1 is case 1 or 7. 738 */ 739 remove_next = 1 + (end > next->vm_end); 740 VM_WARN_ON(remove_next == 2 && 741 end != next->vm_next->vm_end); 742 /* trim end to next, for case 6 first pass */ 743 end = next->vm_end; 744 } 745 746 exporter = next; 747 importer = vma; 748 749 /* 750 * If next doesn't have anon_vma, import from vma after 751 * next, if the vma overlaps with it. 752 */ 753 if (remove_next == 2 && !next->anon_vma) 754 exporter = next->vm_next; 755 756 } else if (end > next->vm_start) { 757 /* 758 * vma expands, overlapping part of the next: 759 * mprotect case 5 shifting the boundary up. 760 */ 761 adjust_next = (end - next->vm_start); 762 exporter = next; 763 importer = vma; 764 VM_WARN_ON(expand != importer); 765 } else if (end < vma->vm_end) { 766 /* 767 * vma shrinks, and !insert tells it's not 768 * split_vma inserting another: so it must be 769 * mprotect case 4 shifting the boundary down. 770 */ 771 adjust_next = -(vma->vm_end - end); 772 exporter = vma; 773 importer = next; 774 VM_WARN_ON(expand != importer); 775 } 776 777 /* 778 * Easily overlooked: when mprotect shifts the boundary, 779 * make sure the expanding vma has anon_vma set if the 780 * shrinking vma had, to cover any anon pages imported. 781 */ 782 if (exporter && exporter->anon_vma && !importer->anon_vma) { 783 int error; 784 785 importer->anon_vma = exporter->anon_vma; 786 error = anon_vma_clone(importer, exporter); 787 if (error) 788 return error; 789 } 790 } 791 again: 792 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 793 794 if (file) { 795 mapping = file->f_mapping; 796 root = &mapping->i_mmap; 797 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 798 799 if (adjust_next) 800 uprobe_munmap(next, next->vm_start, next->vm_end); 801 802 i_mmap_lock_write(mapping); 803 if (insert) { 804 /* 805 * Put into interval tree now, so instantiated pages 806 * are visible to arm/parisc __flush_dcache_page 807 * throughout; but we cannot insert into address 808 * space until vma start or end is updated. 809 */ 810 __vma_link_file(insert); 811 } 812 } 813 814 anon_vma = vma->anon_vma; 815 if (!anon_vma && adjust_next) 816 anon_vma = next->anon_vma; 817 if (anon_vma) { 818 VM_WARN_ON(adjust_next && next->anon_vma && 819 anon_vma != next->anon_vma); 820 anon_vma_lock_write(anon_vma); 821 anon_vma_interval_tree_pre_update_vma(vma); 822 if (adjust_next) 823 anon_vma_interval_tree_pre_update_vma(next); 824 } 825 826 if (file) { 827 flush_dcache_mmap_lock(mapping); 828 vma_interval_tree_remove(vma, root); 829 if (adjust_next) 830 vma_interval_tree_remove(next, root); 831 } 832 833 if (start != vma->vm_start) { 834 vma->vm_start = start; 835 start_changed = true; 836 } 837 if (end != vma->vm_end) { 838 vma->vm_end = end; 839 end_changed = true; 840 } 841 vma->vm_pgoff = pgoff; 842 if (adjust_next) { 843 next->vm_start += adjust_next; 844 next->vm_pgoff += adjust_next >> PAGE_SHIFT; 845 } 846 847 if (file) { 848 if (adjust_next) 849 vma_interval_tree_insert(next, root); 850 vma_interval_tree_insert(vma, root); 851 flush_dcache_mmap_unlock(mapping); 852 } 853 854 if (remove_next) { 855 /* 856 * vma_merge has merged next into vma, and needs 857 * us to remove next before dropping the locks. 858 */ 859 if (remove_next != 3) 860 __vma_unlink(mm, next, next); 861 else 862 /* 863 * vma is not before next if they've been 864 * swapped. 865 * 866 * pre-swap() next->vm_start was reduced so 867 * tell validate_mm_rb to ignore pre-swap() 868 * "next" (which is stored in post-swap() 869 * "vma"). 870 */ 871 __vma_unlink(mm, next, vma); 872 if (file) 873 __remove_shared_vm_struct(next, file, mapping); 874 } else if (insert) { 875 /* 876 * split_vma has split insert from vma, and needs 877 * us to insert it before dropping the locks 878 * (it may either follow vma or precede it). 879 */ 880 __insert_vm_struct(mm, insert); 881 } else { 882 if (start_changed) 883 vma_gap_update(vma); 884 if (end_changed) { 885 if (!next) 886 mm->highest_vm_end = vm_end_gap(vma); 887 else if (!adjust_next) 888 vma_gap_update(next); 889 } 890 } 891 892 if (anon_vma) { 893 anon_vma_interval_tree_post_update_vma(vma); 894 if (adjust_next) 895 anon_vma_interval_tree_post_update_vma(next); 896 anon_vma_unlock_write(anon_vma); 897 } 898 899 if (file) { 900 i_mmap_unlock_write(mapping); 901 uprobe_mmap(vma); 902 903 if (adjust_next) 904 uprobe_mmap(next); 905 } 906 907 if (remove_next) { 908 if (file) { 909 uprobe_munmap(next, next->vm_start, next->vm_end); 910 fput(file); 911 } 912 if (next->anon_vma) 913 anon_vma_merge(vma, next); 914 mm->map_count--; 915 mpol_put(vma_policy(next)); 916 vm_area_free(next); 917 /* 918 * In mprotect's case 6 (see comments on vma_merge), 919 * we must remove another next too. It would clutter 920 * up the code too much to do both in one go. 921 */ 922 if (remove_next != 3) { 923 /* 924 * If "next" was removed and vma->vm_end was 925 * expanded (up) over it, in turn 926 * "next->vm_prev->vm_end" changed and the 927 * "vma->vm_next" gap must be updated. 928 */ 929 next = vma->vm_next; 930 } else { 931 /* 932 * For the scope of the comment "next" and 933 * "vma" considered pre-swap(): if "vma" was 934 * removed, next->vm_start was expanded (down) 935 * over it and the "next" gap must be updated. 936 * Because of the swap() the post-swap() "vma" 937 * actually points to pre-swap() "next" 938 * (post-swap() "next" as opposed is now a 939 * dangling pointer). 940 */ 941 next = vma; 942 } 943 if (remove_next == 2) { 944 remove_next = 1; 945 end = next->vm_end; 946 goto again; 947 } 948 else if (next) 949 vma_gap_update(next); 950 else { 951 /* 952 * If remove_next == 2 we obviously can't 953 * reach this path. 954 * 955 * If remove_next == 3 we can't reach this 956 * path because pre-swap() next is always not 957 * NULL. pre-swap() "next" is not being 958 * removed and its next->vm_end is not altered 959 * (and furthermore "end" already matches 960 * next->vm_end in remove_next == 3). 961 * 962 * We reach this only in the remove_next == 1 963 * case if the "next" vma that was removed was 964 * the highest vma of the mm. However in such 965 * case next->vm_end == "end" and the extended 966 * "vma" has vma->vm_end == next->vm_end so 967 * mm->highest_vm_end doesn't need any update 968 * in remove_next == 1 case. 969 */ 970 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 971 } 972 } 973 if (insert && file) 974 uprobe_mmap(insert); 975 976 validate_mm(mm); 977 978 return 0; 979 } 980 981 /* 982 * If the vma has a ->close operation then the driver probably needs to release 983 * per-vma resources, so we don't attempt to merge those. 984 */ 985 static inline int is_mergeable_vma(struct vm_area_struct *vma, 986 struct file *file, unsigned long vm_flags, 987 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 988 { 989 /* 990 * VM_SOFTDIRTY should not prevent from VMA merging, if we 991 * match the flags but dirty bit -- the caller should mark 992 * merged VMA as dirty. If dirty bit won't be excluded from 993 * comparison, we increase pressure on the memory system forcing 994 * the kernel to generate new VMAs when old one could be 995 * extended instead. 996 */ 997 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 998 return 0; 999 if (vma->vm_file != file) 1000 return 0; 1001 if (vma->vm_ops && vma->vm_ops->close) 1002 return 0; 1003 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1004 return 0; 1005 return 1; 1006 } 1007 1008 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1009 struct anon_vma *anon_vma2, 1010 struct vm_area_struct *vma) 1011 { 1012 /* 1013 * The list_is_singular() test is to avoid merging VMA cloned from 1014 * parents. This can improve scalability caused by anon_vma lock. 1015 */ 1016 if ((!anon_vma1 || !anon_vma2) && (!vma || 1017 list_is_singular(&vma->anon_vma_chain))) 1018 return 1; 1019 return anon_vma1 == anon_vma2; 1020 } 1021 1022 /* 1023 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1024 * in front of (at a lower virtual address and file offset than) the vma. 1025 * 1026 * We cannot merge two vmas if they have differently assigned (non-NULL) 1027 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1028 * 1029 * We don't check here for the merged mmap wrapping around the end of pagecache 1030 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 1031 * wrap, nor mmaps which cover the final page at index -1UL. 1032 */ 1033 static int 1034 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1035 struct anon_vma *anon_vma, struct file *file, 1036 pgoff_t vm_pgoff, 1037 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1038 { 1039 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1040 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1041 if (vma->vm_pgoff == vm_pgoff) 1042 return 1; 1043 } 1044 return 0; 1045 } 1046 1047 /* 1048 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1049 * beyond (at a higher virtual address and file offset than) the vma. 1050 * 1051 * We cannot merge two vmas if they have differently assigned (non-NULL) 1052 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1053 */ 1054 static int 1055 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1056 struct anon_vma *anon_vma, struct file *file, 1057 pgoff_t vm_pgoff, 1058 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1059 { 1060 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1061 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1062 pgoff_t vm_pglen; 1063 vm_pglen = vma_pages(vma); 1064 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1065 return 1; 1066 } 1067 return 0; 1068 } 1069 1070 /* 1071 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1072 * whether that can be merged with its predecessor or its successor. 1073 * Or both (it neatly fills a hole). 1074 * 1075 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1076 * certain not to be mapped by the time vma_merge is called; but when 1077 * called for mprotect, it is certain to be already mapped (either at 1078 * an offset within prev, or at the start of next), and the flags of 1079 * this area are about to be changed to vm_flags - and the no-change 1080 * case has already been eliminated. 1081 * 1082 * The following mprotect cases have to be considered, where AAAA is 1083 * the area passed down from mprotect_fixup, never extending beyond one 1084 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1085 * 1086 * AAAA AAAA AAAA 1087 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1088 * cannot merge might become might become 1089 * PPNNNNNNNNNN PPPPPPPPPPNN 1090 * mmap, brk or case 4 below case 5 below 1091 * mremap move: 1092 * AAAA AAAA 1093 * PPPP NNNN PPPPNNNNXXXX 1094 * might become might become 1095 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1096 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1097 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1098 * 1099 * It is important for case 8 that the vma NNNN overlapping the 1100 * region AAAA is never going to extended over XXXX. Instead XXXX must 1101 * be extended in region AAAA and NNNN must be removed. This way in 1102 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1103 * rmap_locks, the properties of the merged vma will be already 1104 * correct for the whole merged range. Some of those properties like 1105 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1106 * be correct for the whole merged range immediately after the 1107 * rmap_locks are released. Otherwise if XXXX would be removed and 1108 * NNNN would be extended over the XXXX range, remove_migration_ptes 1109 * or other rmap walkers (if working on addresses beyond the "end" 1110 * parameter) may establish ptes with the wrong permissions of NNNN 1111 * instead of the right permissions of XXXX. 1112 */ 1113 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1114 struct vm_area_struct *prev, unsigned long addr, 1115 unsigned long end, unsigned long vm_flags, 1116 struct anon_vma *anon_vma, struct file *file, 1117 pgoff_t pgoff, struct mempolicy *policy, 1118 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1119 { 1120 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1121 struct vm_area_struct *area, *next; 1122 int err; 1123 1124 /* 1125 * We later require that vma->vm_flags == vm_flags, 1126 * so this tests vma->vm_flags & VM_SPECIAL, too. 1127 */ 1128 if (vm_flags & VM_SPECIAL) 1129 return NULL; 1130 1131 if (prev) 1132 next = prev->vm_next; 1133 else 1134 next = mm->mmap; 1135 area = next; 1136 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1137 next = next->vm_next; 1138 1139 /* verify some invariant that must be enforced by the caller */ 1140 VM_WARN_ON(prev && addr <= prev->vm_start); 1141 VM_WARN_ON(area && end > area->vm_end); 1142 VM_WARN_ON(addr >= end); 1143 1144 /* 1145 * Can it merge with the predecessor? 1146 */ 1147 if (prev && prev->vm_end == addr && 1148 mpol_equal(vma_policy(prev), policy) && 1149 can_vma_merge_after(prev, vm_flags, 1150 anon_vma, file, pgoff, 1151 vm_userfaultfd_ctx)) { 1152 /* 1153 * OK, it can. Can we now merge in the successor as well? 1154 */ 1155 if (next && end == next->vm_start && 1156 mpol_equal(policy, vma_policy(next)) && 1157 can_vma_merge_before(next, vm_flags, 1158 anon_vma, file, 1159 pgoff+pglen, 1160 vm_userfaultfd_ctx) && 1161 is_mergeable_anon_vma(prev->anon_vma, 1162 next->anon_vma, NULL)) { 1163 /* cases 1, 6 */ 1164 err = __vma_adjust(prev, prev->vm_start, 1165 next->vm_end, prev->vm_pgoff, NULL, 1166 prev); 1167 } else /* cases 2, 5, 7 */ 1168 err = __vma_adjust(prev, prev->vm_start, 1169 end, prev->vm_pgoff, NULL, prev); 1170 if (err) 1171 return NULL; 1172 khugepaged_enter_vma_merge(prev, vm_flags); 1173 return prev; 1174 } 1175 1176 /* 1177 * Can this new request be merged in front of next? 1178 */ 1179 if (next && end == next->vm_start && 1180 mpol_equal(policy, vma_policy(next)) && 1181 can_vma_merge_before(next, vm_flags, 1182 anon_vma, file, pgoff+pglen, 1183 vm_userfaultfd_ctx)) { 1184 if (prev && addr < prev->vm_end) /* case 4 */ 1185 err = __vma_adjust(prev, prev->vm_start, 1186 addr, prev->vm_pgoff, NULL, next); 1187 else { /* cases 3, 8 */ 1188 err = __vma_adjust(area, addr, next->vm_end, 1189 next->vm_pgoff - pglen, NULL, next); 1190 /* 1191 * In case 3 area is already equal to next and 1192 * this is a noop, but in case 8 "area" has 1193 * been removed and next was expanded over it. 1194 */ 1195 area = next; 1196 } 1197 if (err) 1198 return NULL; 1199 khugepaged_enter_vma_merge(area, vm_flags); 1200 return area; 1201 } 1202 1203 return NULL; 1204 } 1205 1206 /* 1207 * Rough compatibility check to quickly see if it's even worth looking 1208 * at sharing an anon_vma. 1209 * 1210 * They need to have the same vm_file, and the flags can only differ 1211 * in things that mprotect may change. 1212 * 1213 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1214 * we can merge the two vma's. For example, we refuse to merge a vma if 1215 * there is a vm_ops->close() function, because that indicates that the 1216 * driver is doing some kind of reference counting. But that doesn't 1217 * really matter for the anon_vma sharing case. 1218 */ 1219 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1220 { 1221 return a->vm_end == b->vm_start && 1222 mpol_equal(vma_policy(a), vma_policy(b)) && 1223 a->vm_file == b->vm_file && 1224 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1225 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1226 } 1227 1228 /* 1229 * Do some basic sanity checking to see if we can re-use the anon_vma 1230 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1231 * the same as 'old', the other will be the new one that is trying 1232 * to share the anon_vma. 1233 * 1234 * NOTE! This runs with mm_sem held for reading, so it is possible that 1235 * the anon_vma of 'old' is concurrently in the process of being set up 1236 * by another page fault trying to merge _that_. But that's ok: if it 1237 * is being set up, that automatically means that it will be a singleton 1238 * acceptable for merging, so we can do all of this optimistically. But 1239 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1240 * 1241 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1242 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1243 * is to return an anon_vma that is "complex" due to having gone through 1244 * a fork). 1245 * 1246 * We also make sure that the two vma's are compatible (adjacent, 1247 * and with the same memory policies). That's all stable, even with just 1248 * a read lock on the mm_sem. 1249 */ 1250 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1251 { 1252 if (anon_vma_compatible(a, b)) { 1253 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1254 1255 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1256 return anon_vma; 1257 } 1258 return NULL; 1259 } 1260 1261 /* 1262 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1263 * neighbouring vmas for a suitable anon_vma, before it goes off 1264 * to allocate a new anon_vma. It checks because a repetitive 1265 * sequence of mprotects and faults may otherwise lead to distinct 1266 * anon_vmas being allocated, preventing vma merge in subsequent 1267 * mprotect. 1268 */ 1269 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1270 { 1271 struct anon_vma *anon_vma = NULL; 1272 1273 /* Try next first. */ 1274 if (vma->vm_next) { 1275 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next); 1276 if (anon_vma) 1277 return anon_vma; 1278 } 1279 1280 /* Try prev next. */ 1281 if (vma->vm_prev) 1282 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma); 1283 1284 /* 1285 * We might reach here with anon_vma == NULL if we can't find 1286 * any reusable anon_vma. 1287 * There's no absolute need to look only at touching neighbours: 1288 * we could search further afield for "compatible" anon_vmas. 1289 * But it would probably just be a waste of time searching, 1290 * or lead to too many vmas hanging off the same anon_vma. 1291 * We're trying to allow mprotect remerging later on, 1292 * not trying to minimize memory used for anon_vmas. 1293 */ 1294 return anon_vma; 1295 } 1296 1297 /* 1298 * If a hint addr is less than mmap_min_addr change hint to be as 1299 * low as possible but still greater than mmap_min_addr 1300 */ 1301 static inline unsigned long round_hint_to_min(unsigned long hint) 1302 { 1303 hint &= PAGE_MASK; 1304 if (((void *)hint != NULL) && 1305 (hint < mmap_min_addr)) 1306 return PAGE_ALIGN(mmap_min_addr); 1307 return hint; 1308 } 1309 1310 static inline int mlock_future_check(struct mm_struct *mm, 1311 unsigned long flags, 1312 unsigned long len) 1313 { 1314 unsigned long locked, lock_limit; 1315 1316 /* mlock MCL_FUTURE? */ 1317 if (flags & VM_LOCKED) { 1318 locked = len >> PAGE_SHIFT; 1319 locked += mm->locked_vm; 1320 lock_limit = rlimit(RLIMIT_MEMLOCK); 1321 lock_limit >>= PAGE_SHIFT; 1322 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1323 return -EAGAIN; 1324 } 1325 return 0; 1326 } 1327 1328 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1329 { 1330 if (S_ISREG(inode->i_mode)) 1331 return MAX_LFS_FILESIZE; 1332 1333 if (S_ISBLK(inode->i_mode)) 1334 return MAX_LFS_FILESIZE; 1335 1336 if (S_ISSOCK(inode->i_mode)) 1337 return MAX_LFS_FILESIZE; 1338 1339 /* Special "we do even unsigned file positions" case */ 1340 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1341 return 0; 1342 1343 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1344 return ULONG_MAX; 1345 } 1346 1347 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1348 unsigned long pgoff, unsigned long len) 1349 { 1350 u64 maxsize = file_mmap_size_max(file, inode); 1351 1352 if (maxsize && len > maxsize) 1353 return false; 1354 maxsize -= len; 1355 if (pgoff > maxsize >> PAGE_SHIFT) 1356 return false; 1357 return true; 1358 } 1359 1360 /* 1361 * The caller must write-lock current->mm->mmap_lock. 1362 */ 1363 unsigned long do_mmap(struct file *file, unsigned long addr, 1364 unsigned long len, unsigned long prot, 1365 unsigned long flags, unsigned long pgoff, 1366 unsigned long *populate, struct list_head *uf) 1367 { 1368 struct mm_struct *mm = current->mm; 1369 vm_flags_t vm_flags; 1370 int pkey = 0; 1371 1372 *populate = 0; 1373 1374 if (!len) 1375 return -EINVAL; 1376 1377 /* 1378 * Does the application expect PROT_READ to imply PROT_EXEC? 1379 * 1380 * (the exception is when the underlying filesystem is noexec 1381 * mounted, in which case we dont add PROT_EXEC.) 1382 */ 1383 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1384 if (!(file && path_noexec(&file->f_path))) 1385 prot |= PROT_EXEC; 1386 1387 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1388 if (flags & MAP_FIXED_NOREPLACE) 1389 flags |= MAP_FIXED; 1390 1391 if (!(flags & MAP_FIXED)) 1392 addr = round_hint_to_min(addr); 1393 1394 /* Careful about overflows.. */ 1395 len = PAGE_ALIGN(len); 1396 if (!len) 1397 return -ENOMEM; 1398 1399 /* offset overflow? */ 1400 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1401 return -EOVERFLOW; 1402 1403 /* Too many mappings? */ 1404 if (mm->map_count > sysctl_max_map_count) 1405 return -ENOMEM; 1406 1407 /* Obtain the address to map to. we verify (or select) it and ensure 1408 * that it represents a valid section of the address space. 1409 */ 1410 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1411 if (IS_ERR_VALUE(addr)) 1412 return addr; 1413 1414 if (flags & MAP_FIXED_NOREPLACE) { 1415 struct vm_area_struct *vma = find_vma(mm, addr); 1416 1417 if (vma && vma->vm_start < addr + len) 1418 return -EEXIST; 1419 } 1420 1421 if (prot == PROT_EXEC) { 1422 pkey = execute_only_pkey(mm); 1423 if (pkey < 0) 1424 pkey = 0; 1425 } 1426 1427 /* Do simple checking here so the lower-level routines won't have 1428 * to. we assume access permissions have been handled by the open 1429 * of the memory object, so we don't do any here. 1430 */ 1431 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1432 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1433 1434 if (flags & MAP_LOCKED) 1435 if (!can_do_mlock()) 1436 return -EPERM; 1437 1438 if (mlock_future_check(mm, vm_flags, len)) 1439 return -EAGAIN; 1440 1441 if (file) { 1442 struct inode *inode = file_inode(file); 1443 unsigned long flags_mask; 1444 1445 if (!file_mmap_ok(file, inode, pgoff, len)) 1446 return -EOVERFLOW; 1447 1448 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1449 1450 switch (flags & MAP_TYPE) { 1451 case MAP_SHARED: 1452 /* 1453 * Force use of MAP_SHARED_VALIDATE with non-legacy 1454 * flags. E.g. MAP_SYNC is dangerous to use with 1455 * MAP_SHARED as you don't know which consistency model 1456 * you will get. We silently ignore unsupported flags 1457 * with MAP_SHARED to preserve backward compatibility. 1458 */ 1459 flags &= LEGACY_MAP_MASK; 1460 fallthrough; 1461 case MAP_SHARED_VALIDATE: 1462 if (flags & ~flags_mask) 1463 return -EOPNOTSUPP; 1464 if (prot & PROT_WRITE) { 1465 if (!(file->f_mode & FMODE_WRITE)) 1466 return -EACCES; 1467 if (IS_SWAPFILE(file->f_mapping->host)) 1468 return -ETXTBSY; 1469 } 1470 1471 /* 1472 * Make sure we don't allow writing to an append-only 1473 * file.. 1474 */ 1475 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1476 return -EACCES; 1477 1478 /* 1479 * Make sure there are no mandatory locks on the file. 1480 */ 1481 if (locks_verify_locked(file)) 1482 return -EAGAIN; 1483 1484 vm_flags |= VM_SHARED | VM_MAYSHARE; 1485 if (!(file->f_mode & FMODE_WRITE)) 1486 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1487 fallthrough; 1488 case MAP_PRIVATE: 1489 if (!(file->f_mode & FMODE_READ)) 1490 return -EACCES; 1491 if (path_noexec(&file->f_path)) { 1492 if (vm_flags & VM_EXEC) 1493 return -EPERM; 1494 vm_flags &= ~VM_MAYEXEC; 1495 } 1496 1497 if (!file->f_op->mmap) 1498 return -ENODEV; 1499 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1500 return -EINVAL; 1501 break; 1502 1503 default: 1504 return -EINVAL; 1505 } 1506 } else { 1507 switch (flags & MAP_TYPE) { 1508 case MAP_SHARED: 1509 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1510 return -EINVAL; 1511 /* 1512 * Ignore pgoff. 1513 */ 1514 pgoff = 0; 1515 vm_flags |= VM_SHARED | VM_MAYSHARE; 1516 break; 1517 case MAP_PRIVATE: 1518 /* 1519 * Set pgoff according to addr for anon_vma. 1520 */ 1521 pgoff = addr >> PAGE_SHIFT; 1522 break; 1523 default: 1524 return -EINVAL; 1525 } 1526 } 1527 1528 /* 1529 * Set 'VM_NORESERVE' if we should not account for the 1530 * memory use of this mapping. 1531 */ 1532 if (flags & MAP_NORESERVE) { 1533 /* We honor MAP_NORESERVE if allowed to overcommit */ 1534 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1535 vm_flags |= VM_NORESERVE; 1536 1537 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1538 if (file && is_file_hugepages(file)) 1539 vm_flags |= VM_NORESERVE; 1540 } 1541 1542 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1543 if (!IS_ERR_VALUE(addr) && 1544 ((vm_flags & VM_LOCKED) || 1545 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1546 *populate = len; 1547 return addr; 1548 } 1549 1550 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1551 unsigned long prot, unsigned long flags, 1552 unsigned long fd, unsigned long pgoff) 1553 { 1554 struct file *file = NULL; 1555 unsigned long retval; 1556 1557 if (!(flags & MAP_ANONYMOUS)) { 1558 audit_mmap_fd(fd, flags); 1559 file = fget(fd); 1560 if (!file) 1561 return -EBADF; 1562 if (is_file_hugepages(file)) { 1563 len = ALIGN(len, huge_page_size(hstate_file(file))); 1564 } else if (unlikely(flags & MAP_HUGETLB)) { 1565 retval = -EINVAL; 1566 goto out_fput; 1567 } 1568 } else if (flags & MAP_HUGETLB) { 1569 struct user_struct *user = NULL; 1570 struct hstate *hs; 1571 1572 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1573 if (!hs) 1574 return -EINVAL; 1575 1576 len = ALIGN(len, huge_page_size(hs)); 1577 /* 1578 * VM_NORESERVE is used because the reservations will be 1579 * taken when vm_ops->mmap() is called 1580 * A dummy user value is used because we are not locking 1581 * memory so no accounting is necessary 1582 */ 1583 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1584 VM_NORESERVE, 1585 &user, HUGETLB_ANONHUGE_INODE, 1586 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1587 if (IS_ERR(file)) 1588 return PTR_ERR(file); 1589 } 1590 1591 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1592 1593 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1594 out_fput: 1595 if (file) 1596 fput(file); 1597 return retval; 1598 } 1599 1600 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1601 unsigned long, prot, unsigned long, flags, 1602 unsigned long, fd, unsigned long, pgoff) 1603 { 1604 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1605 } 1606 1607 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1608 struct mmap_arg_struct { 1609 unsigned long addr; 1610 unsigned long len; 1611 unsigned long prot; 1612 unsigned long flags; 1613 unsigned long fd; 1614 unsigned long offset; 1615 }; 1616 1617 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1618 { 1619 struct mmap_arg_struct a; 1620 1621 if (copy_from_user(&a, arg, sizeof(a))) 1622 return -EFAULT; 1623 if (offset_in_page(a.offset)) 1624 return -EINVAL; 1625 1626 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1627 a.offset >> PAGE_SHIFT); 1628 } 1629 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1630 1631 /* 1632 * Some shared mappings will want the pages marked read-only 1633 * to track write events. If so, we'll downgrade vm_page_prot 1634 * to the private version (using protection_map[] without the 1635 * VM_SHARED bit). 1636 */ 1637 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1638 { 1639 vm_flags_t vm_flags = vma->vm_flags; 1640 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1641 1642 /* If it was private or non-writable, the write bit is already clear */ 1643 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1644 return 0; 1645 1646 /* The backer wishes to know when pages are first written to? */ 1647 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1648 return 1; 1649 1650 /* The open routine did something to the protections that pgprot_modify 1651 * won't preserve? */ 1652 if (pgprot_val(vm_page_prot) != 1653 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1654 return 0; 1655 1656 /* Do we need to track softdirty? */ 1657 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1658 return 1; 1659 1660 /* Specialty mapping? */ 1661 if (vm_flags & VM_PFNMAP) 1662 return 0; 1663 1664 /* Can the mapping track the dirty pages? */ 1665 return vma->vm_file && vma->vm_file->f_mapping && 1666 mapping_can_writeback(vma->vm_file->f_mapping); 1667 } 1668 1669 /* 1670 * We account for memory if it's a private writeable mapping, 1671 * not hugepages and VM_NORESERVE wasn't set. 1672 */ 1673 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1674 { 1675 /* 1676 * hugetlb has its own accounting separate from the core VM 1677 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1678 */ 1679 if (file && is_file_hugepages(file)) 1680 return 0; 1681 1682 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1683 } 1684 1685 unsigned long mmap_region(struct file *file, unsigned long addr, 1686 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1687 struct list_head *uf) 1688 { 1689 struct mm_struct *mm = current->mm; 1690 struct vm_area_struct *vma, *prev, *merge; 1691 int error; 1692 struct rb_node **rb_link, *rb_parent; 1693 unsigned long charged = 0; 1694 1695 /* Check against address space limit. */ 1696 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1697 unsigned long nr_pages; 1698 1699 /* 1700 * MAP_FIXED may remove pages of mappings that intersects with 1701 * requested mapping. Account for the pages it would unmap. 1702 */ 1703 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1704 1705 if (!may_expand_vm(mm, vm_flags, 1706 (len >> PAGE_SHIFT) - nr_pages)) 1707 return -ENOMEM; 1708 } 1709 1710 /* Clear old maps */ 1711 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1712 &rb_parent)) { 1713 if (do_munmap(mm, addr, len, uf)) 1714 return -ENOMEM; 1715 } 1716 1717 /* 1718 * Private writable mapping: check memory availability 1719 */ 1720 if (accountable_mapping(file, vm_flags)) { 1721 charged = len >> PAGE_SHIFT; 1722 if (security_vm_enough_memory_mm(mm, charged)) 1723 return -ENOMEM; 1724 vm_flags |= VM_ACCOUNT; 1725 } 1726 1727 /* 1728 * Can we just expand an old mapping? 1729 */ 1730 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1731 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1732 if (vma) 1733 goto out; 1734 1735 /* 1736 * Determine the object being mapped and call the appropriate 1737 * specific mapper. the address has already been validated, but 1738 * not unmapped, but the maps are removed from the list. 1739 */ 1740 vma = vm_area_alloc(mm); 1741 if (!vma) { 1742 error = -ENOMEM; 1743 goto unacct_error; 1744 } 1745 1746 vma->vm_start = addr; 1747 vma->vm_end = addr + len; 1748 vma->vm_flags = vm_flags; 1749 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1750 vma->vm_pgoff = pgoff; 1751 1752 if (file) { 1753 if (vm_flags & VM_DENYWRITE) { 1754 error = deny_write_access(file); 1755 if (error) 1756 goto free_vma; 1757 } 1758 if (vm_flags & VM_SHARED) { 1759 error = mapping_map_writable(file->f_mapping); 1760 if (error) 1761 goto allow_write_and_free_vma; 1762 } 1763 1764 /* ->mmap() can change vma->vm_file, but must guarantee that 1765 * vma_link() below can deny write-access if VM_DENYWRITE is set 1766 * and map writably if VM_SHARED is set. This usually means the 1767 * new file must not have been exposed to user-space, yet. 1768 */ 1769 vma->vm_file = get_file(file); 1770 error = call_mmap(file, vma); 1771 if (error) 1772 goto unmap_and_free_vma; 1773 1774 /* If vm_flags changed after call_mmap(), we should try merge vma again 1775 * as we may succeed this time. 1776 */ 1777 if (unlikely(vm_flags != vma->vm_flags && prev)) { 1778 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, 1779 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX); 1780 if (merge) { 1781 /* ->mmap() can change vma->vm_file and fput the original file. So 1782 * fput the vma->vm_file here or we would add an extra fput for file 1783 * and cause general protection fault ultimately. 1784 */ 1785 fput(vma->vm_file); 1786 vm_area_free(vma); 1787 vma = merge; 1788 /* Update vm_flags and possible addr to pick up the change. We don't 1789 * warn here if addr changed as the vma is not linked by vma_link(). 1790 */ 1791 addr = vma->vm_start; 1792 vm_flags = vma->vm_flags; 1793 goto unmap_writable; 1794 } 1795 } 1796 1797 /* Can addr have changed?? 1798 * 1799 * Answer: Yes, several device drivers can do it in their 1800 * f_op->mmap method. -DaveM 1801 * Bug: If addr is changed, prev, rb_link, rb_parent should 1802 * be updated for vma_link() 1803 */ 1804 WARN_ON_ONCE(addr != vma->vm_start); 1805 1806 addr = vma->vm_start; 1807 vm_flags = vma->vm_flags; 1808 } else if (vm_flags & VM_SHARED) { 1809 error = shmem_zero_setup(vma); 1810 if (error) 1811 goto free_vma; 1812 } else { 1813 vma_set_anonymous(vma); 1814 } 1815 1816 /* Allow architectures to sanity-check the vm_flags */ 1817 if (!arch_validate_flags(vma->vm_flags)) { 1818 error = -EINVAL; 1819 if (file) 1820 goto unmap_and_free_vma; 1821 else 1822 goto free_vma; 1823 } 1824 1825 vma_link(mm, vma, prev, rb_link, rb_parent); 1826 /* Once vma denies write, undo our temporary denial count */ 1827 if (file) { 1828 unmap_writable: 1829 if (vm_flags & VM_SHARED) 1830 mapping_unmap_writable(file->f_mapping); 1831 if (vm_flags & VM_DENYWRITE) 1832 allow_write_access(file); 1833 } 1834 file = vma->vm_file; 1835 out: 1836 perf_event_mmap(vma); 1837 1838 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1839 if (vm_flags & VM_LOCKED) { 1840 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1841 is_vm_hugetlb_page(vma) || 1842 vma == get_gate_vma(current->mm)) 1843 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1844 else 1845 mm->locked_vm += (len >> PAGE_SHIFT); 1846 } 1847 1848 if (file) 1849 uprobe_mmap(vma); 1850 1851 /* 1852 * New (or expanded) vma always get soft dirty status. 1853 * Otherwise user-space soft-dirty page tracker won't 1854 * be able to distinguish situation when vma area unmapped, 1855 * then new mapped in-place (which must be aimed as 1856 * a completely new data area). 1857 */ 1858 vma->vm_flags |= VM_SOFTDIRTY; 1859 1860 vma_set_page_prot(vma); 1861 1862 return addr; 1863 1864 unmap_and_free_vma: 1865 vma->vm_file = NULL; 1866 fput(file); 1867 1868 /* Undo any partial mapping done by a device driver. */ 1869 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1870 charged = 0; 1871 if (vm_flags & VM_SHARED) 1872 mapping_unmap_writable(file->f_mapping); 1873 allow_write_and_free_vma: 1874 if (vm_flags & VM_DENYWRITE) 1875 allow_write_access(file); 1876 free_vma: 1877 vm_area_free(vma); 1878 unacct_error: 1879 if (charged) 1880 vm_unacct_memory(charged); 1881 return error; 1882 } 1883 1884 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1885 { 1886 /* 1887 * We implement the search by looking for an rbtree node that 1888 * immediately follows a suitable gap. That is, 1889 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1890 * - gap_end = vma->vm_start >= info->low_limit + length; 1891 * - gap_end - gap_start >= length 1892 */ 1893 1894 struct mm_struct *mm = current->mm; 1895 struct vm_area_struct *vma; 1896 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1897 1898 /* Adjust search length to account for worst case alignment overhead */ 1899 length = info->length + info->align_mask; 1900 if (length < info->length) 1901 return -ENOMEM; 1902 1903 /* Adjust search limits by the desired length */ 1904 if (info->high_limit < length) 1905 return -ENOMEM; 1906 high_limit = info->high_limit - length; 1907 1908 if (info->low_limit > high_limit) 1909 return -ENOMEM; 1910 low_limit = info->low_limit + length; 1911 1912 /* Check if rbtree root looks promising */ 1913 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1914 goto check_highest; 1915 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1916 if (vma->rb_subtree_gap < length) 1917 goto check_highest; 1918 1919 while (true) { 1920 /* Visit left subtree if it looks promising */ 1921 gap_end = vm_start_gap(vma); 1922 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1923 struct vm_area_struct *left = 1924 rb_entry(vma->vm_rb.rb_left, 1925 struct vm_area_struct, vm_rb); 1926 if (left->rb_subtree_gap >= length) { 1927 vma = left; 1928 continue; 1929 } 1930 } 1931 1932 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1933 check_current: 1934 /* Check if current node has a suitable gap */ 1935 if (gap_start > high_limit) 1936 return -ENOMEM; 1937 if (gap_end >= low_limit && 1938 gap_end > gap_start && gap_end - gap_start >= length) 1939 goto found; 1940 1941 /* Visit right subtree if it looks promising */ 1942 if (vma->vm_rb.rb_right) { 1943 struct vm_area_struct *right = 1944 rb_entry(vma->vm_rb.rb_right, 1945 struct vm_area_struct, vm_rb); 1946 if (right->rb_subtree_gap >= length) { 1947 vma = right; 1948 continue; 1949 } 1950 } 1951 1952 /* Go back up the rbtree to find next candidate node */ 1953 while (true) { 1954 struct rb_node *prev = &vma->vm_rb; 1955 if (!rb_parent(prev)) 1956 goto check_highest; 1957 vma = rb_entry(rb_parent(prev), 1958 struct vm_area_struct, vm_rb); 1959 if (prev == vma->vm_rb.rb_left) { 1960 gap_start = vm_end_gap(vma->vm_prev); 1961 gap_end = vm_start_gap(vma); 1962 goto check_current; 1963 } 1964 } 1965 } 1966 1967 check_highest: 1968 /* Check highest gap, which does not precede any rbtree node */ 1969 gap_start = mm->highest_vm_end; 1970 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1971 if (gap_start > high_limit) 1972 return -ENOMEM; 1973 1974 found: 1975 /* We found a suitable gap. Clip it with the original low_limit. */ 1976 if (gap_start < info->low_limit) 1977 gap_start = info->low_limit; 1978 1979 /* Adjust gap address to the desired alignment */ 1980 gap_start += (info->align_offset - gap_start) & info->align_mask; 1981 1982 VM_BUG_ON(gap_start + info->length > info->high_limit); 1983 VM_BUG_ON(gap_start + info->length > gap_end); 1984 return gap_start; 1985 } 1986 1987 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1988 { 1989 struct mm_struct *mm = current->mm; 1990 struct vm_area_struct *vma; 1991 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1992 1993 /* Adjust search length to account for worst case alignment overhead */ 1994 length = info->length + info->align_mask; 1995 if (length < info->length) 1996 return -ENOMEM; 1997 1998 /* 1999 * Adjust search limits by the desired length. 2000 * See implementation comment at top of unmapped_area(). 2001 */ 2002 gap_end = info->high_limit; 2003 if (gap_end < length) 2004 return -ENOMEM; 2005 high_limit = gap_end - length; 2006 2007 if (info->low_limit > high_limit) 2008 return -ENOMEM; 2009 low_limit = info->low_limit + length; 2010 2011 /* Check highest gap, which does not precede any rbtree node */ 2012 gap_start = mm->highest_vm_end; 2013 if (gap_start <= high_limit) 2014 goto found_highest; 2015 2016 /* Check if rbtree root looks promising */ 2017 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2018 return -ENOMEM; 2019 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2020 if (vma->rb_subtree_gap < length) 2021 return -ENOMEM; 2022 2023 while (true) { 2024 /* Visit right subtree if it looks promising */ 2025 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2026 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2027 struct vm_area_struct *right = 2028 rb_entry(vma->vm_rb.rb_right, 2029 struct vm_area_struct, vm_rb); 2030 if (right->rb_subtree_gap >= length) { 2031 vma = right; 2032 continue; 2033 } 2034 } 2035 2036 check_current: 2037 /* Check if current node has a suitable gap */ 2038 gap_end = vm_start_gap(vma); 2039 if (gap_end < low_limit) 2040 return -ENOMEM; 2041 if (gap_start <= high_limit && 2042 gap_end > gap_start && gap_end - gap_start >= length) 2043 goto found; 2044 2045 /* Visit left subtree if it looks promising */ 2046 if (vma->vm_rb.rb_left) { 2047 struct vm_area_struct *left = 2048 rb_entry(vma->vm_rb.rb_left, 2049 struct vm_area_struct, vm_rb); 2050 if (left->rb_subtree_gap >= length) { 2051 vma = left; 2052 continue; 2053 } 2054 } 2055 2056 /* Go back up the rbtree to find next candidate node */ 2057 while (true) { 2058 struct rb_node *prev = &vma->vm_rb; 2059 if (!rb_parent(prev)) 2060 return -ENOMEM; 2061 vma = rb_entry(rb_parent(prev), 2062 struct vm_area_struct, vm_rb); 2063 if (prev == vma->vm_rb.rb_right) { 2064 gap_start = vma->vm_prev ? 2065 vm_end_gap(vma->vm_prev) : 0; 2066 goto check_current; 2067 } 2068 } 2069 } 2070 2071 found: 2072 /* We found a suitable gap. Clip it with the original high_limit. */ 2073 if (gap_end > info->high_limit) 2074 gap_end = info->high_limit; 2075 2076 found_highest: 2077 /* Compute highest gap address at the desired alignment */ 2078 gap_end -= info->length; 2079 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2080 2081 VM_BUG_ON(gap_end < info->low_limit); 2082 VM_BUG_ON(gap_end < gap_start); 2083 return gap_end; 2084 } 2085 2086 /* 2087 * Search for an unmapped address range. 2088 * 2089 * We are looking for a range that: 2090 * - does not intersect with any VMA; 2091 * - is contained within the [low_limit, high_limit) interval; 2092 * - is at least the desired size. 2093 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2094 */ 2095 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 2096 { 2097 unsigned long addr; 2098 2099 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2100 addr = unmapped_area_topdown(info); 2101 else 2102 addr = unmapped_area(info); 2103 2104 trace_vm_unmapped_area(addr, info); 2105 return addr; 2106 } 2107 2108 #ifndef arch_get_mmap_end 2109 #define arch_get_mmap_end(addr) (TASK_SIZE) 2110 #endif 2111 2112 #ifndef arch_get_mmap_base 2113 #define arch_get_mmap_base(addr, base) (base) 2114 #endif 2115 2116 /* Get an address range which is currently unmapped. 2117 * For shmat() with addr=0. 2118 * 2119 * Ugly calling convention alert: 2120 * Return value with the low bits set means error value, 2121 * ie 2122 * if (ret & ~PAGE_MASK) 2123 * error = ret; 2124 * 2125 * This function "knows" that -ENOMEM has the bits set. 2126 */ 2127 #ifndef HAVE_ARCH_UNMAPPED_AREA 2128 unsigned long 2129 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2130 unsigned long len, unsigned long pgoff, unsigned long flags) 2131 { 2132 struct mm_struct *mm = current->mm; 2133 struct vm_area_struct *vma, *prev; 2134 struct vm_unmapped_area_info info; 2135 const unsigned long mmap_end = arch_get_mmap_end(addr); 2136 2137 if (len > mmap_end - mmap_min_addr) 2138 return -ENOMEM; 2139 2140 if (flags & MAP_FIXED) 2141 return addr; 2142 2143 if (addr) { 2144 addr = PAGE_ALIGN(addr); 2145 vma = find_vma_prev(mm, addr, &prev); 2146 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2147 (!vma || addr + len <= vm_start_gap(vma)) && 2148 (!prev || addr >= vm_end_gap(prev))) 2149 return addr; 2150 } 2151 2152 info.flags = 0; 2153 info.length = len; 2154 info.low_limit = mm->mmap_base; 2155 info.high_limit = mmap_end; 2156 info.align_mask = 0; 2157 info.align_offset = 0; 2158 return vm_unmapped_area(&info); 2159 } 2160 #endif 2161 2162 /* 2163 * This mmap-allocator allocates new areas top-down from below the 2164 * stack's low limit (the base): 2165 */ 2166 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2167 unsigned long 2168 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2169 unsigned long len, unsigned long pgoff, 2170 unsigned long flags) 2171 { 2172 struct vm_area_struct *vma, *prev; 2173 struct mm_struct *mm = current->mm; 2174 struct vm_unmapped_area_info info; 2175 const unsigned long mmap_end = arch_get_mmap_end(addr); 2176 2177 /* requested length too big for entire address space */ 2178 if (len > mmap_end - mmap_min_addr) 2179 return -ENOMEM; 2180 2181 if (flags & MAP_FIXED) 2182 return addr; 2183 2184 /* requesting a specific address */ 2185 if (addr) { 2186 addr = PAGE_ALIGN(addr); 2187 vma = find_vma_prev(mm, addr, &prev); 2188 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2189 (!vma || addr + len <= vm_start_gap(vma)) && 2190 (!prev || addr >= vm_end_gap(prev))) 2191 return addr; 2192 } 2193 2194 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2195 info.length = len; 2196 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2197 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2198 info.align_mask = 0; 2199 info.align_offset = 0; 2200 addr = vm_unmapped_area(&info); 2201 2202 /* 2203 * A failed mmap() very likely causes application failure, 2204 * so fall back to the bottom-up function here. This scenario 2205 * can happen with large stack limits and large mmap() 2206 * allocations. 2207 */ 2208 if (offset_in_page(addr)) { 2209 VM_BUG_ON(addr != -ENOMEM); 2210 info.flags = 0; 2211 info.low_limit = TASK_UNMAPPED_BASE; 2212 info.high_limit = mmap_end; 2213 addr = vm_unmapped_area(&info); 2214 } 2215 2216 return addr; 2217 } 2218 #endif 2219 2220 unsigned long 2221 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2222 unsigned long pgoff, unsigned long flags) 2223 { 2224 unsigned long (*get_area)(struct file *, unsigned long, 2225 unsigned long, unsigned long, unsigned long); 2226 2227 unsigned long error = arch_mmap_check(addr, len, flags); 2228 if (error) 2229 return error; 2230 2231 /* Careful about overflows.. */ 2232 if (len > TASK_SIZE) 2233 return -ENOMEM; 2234 2235 get_area = current->mm->get_unmapped_area; 2236 if (file) { 2237 if (file->f_op->get_unmapped_area) 2238 get_area = file->f_op->get_unmapped_area; 2239 } else if (flags & MAP_SHARED) { 2240 /* 2241 * mmap_region() will call shmem_zero_setup() to create a file, 2242 * so use shmem's get_unmapped_area in case it can be huge. 2243 * do_mmap() will clear pgoff, so match alignment. 2244 */ 2245 pgoff = 0; 2246 get_area = shmem_get_unmapped_area; 2247 } 2248 2249 addr = get_area(file, addr, len, pgoff, flags); 2250 if (IS_ERR_VALUE(addr)) 2251 return addr; 2252 2253 if (addr > TASK_SIZE - len) 2254 return -ENOMEM; 2255 if (offset_in_page(addr)) 2256 return -EINVAL; 2257 2258 error = security_mmap_addr(addr); 2259 return error ? error : addr; 2260 } 2261 2262 EXPORT_SYMBOL(get_unmapped_area); 2263 2264 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2265 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2266 { 2267 struct rb_node *rb_node; 2268 struct vm_area_struct *vma; 2269 2270 /* Check the cache first. */ 2271 vma = vmacache_find(mm, addr); 2272 if (likely(vma)) 2273 return vma; 2274 2275 rb_node = mm->mm_rb.rb_node; 2276 2277 while (rb_node) { 2278 struct vm_area_struct *tmp; 2279 2280 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2281 2282 if (tmp->vm_end > addr) { 2283 vma = tmp; 2284 if (tmp->vm_start <= addr) 2285 break; 2286 rb_node = rb_node->rb_left; 2287 } else 2288 rb_node = rb_node->rb_right; 2289 } 2290 2291 if (vma) 2292 vmacache_update(addr, vma); 2293 return vma; 2294 } 2295 2296 EXPORT_SYMBOL(find_vma); 2297 2298 /* 2299 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2300 */ 2301 struct vm_area_struct * 2302 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2303 struct vm_area_struct **pprev) 2304 { 2305 struct vm_area_struct *vma; 2306 2307 vma = find_vma(mm, addr); 2308 if (vma) { 2309 *pprev = vma->vm_prev; 2310 } else { 2311 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2312 2313 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2314 } 2315 return vma; 2316 } 2317 2318 /* 2319 * Verify that the stack growth is acceptable and 2320 * update accounting. This is shared with both the 2321 * grow-up and grow-down cases. 2322 */ 2323 static int acct_stack_growth(struct vm_area_struct *vma, 2324 unsigned long size, unsigned long grow) 2325 { 2326 struct mm_struct *mm = vma->vm_mm; 2327 unsigned long new_start; 2328 2329 /* address space limit tests */ 2330 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2331 return -ENOMEM; 2332 2333 /* Stack limit test */ 2334 if (size > rlimit(RLIMIT_STACK)) 2335 return -ENOMEM; 2336 2337 /* mlock limit tests */ 2338 if (vma->vm_flags & VM_LOCKED) { 2339 unsigned long locked; 2340 unsigned long limit; 2341 locked = mm->locked_vm + grow; 2342 limit = rlimit(RLIMIT_MEMLOCK); 2343 limit >>= PAGE_SHIFT; 2344 if (locked > limit && !capable(CAP_IPC_LOCK)) 2345 return -ENOMEM; 2346 } 2347 2348 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2349 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2350 vma->vm_end - size; 2351 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2352 return -EFAULT; 2353 2354 /* 2355 * Overcommit.. This must be the final test, as it will 2356 * update security statistics. 2357 */ 2358 if (security_vm_enough_memory_mm(mm, grow)) 2359 return -ENOMEM; 2360 2361 return 0; 2362 } 2363 2364 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2365 /* 2366 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2367 * vma is the last one with address > vma->vm_end. Have to extend vma. 2368 */ 2369 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2370 { 2371 struct mm_struct *mm = vma->vm_mm; 2372 struct vm_area_struct *next; 2373 unsigned long gap_addr; 2374 int error = 0; 2375 2376 if (!(vma->vm_flags & VM_GROWSUP)) 2377 return -EFAULT; 2378 2379 /* Guard against exceeding limits of the address space. */ 2380 address &= PAGE_MASK; 2381 if (address >= (TASK_SIZE & PAGE_MASK)) 2382 return -ENOMEM; 2383 address += PAGE_SIZE; 2384 2385 /* Enforce stack_guard_gap */ 2386 gap_addr = address + stack_guard_gap; 2387 2388 /* Guard against overflow */ 2389 if (gap_addr < address || gap_addr > TASK_SIZE) 2390 gap_addr = TASK_SIZE; 2391 2392 next = vma->vm_next; 2393 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) { 2394 if (!(next->vm_flags & VM_GROWSUP)) 2395 return -ENOMEM; 2396 /* Check that both stack segments have the same anon_vma? */ 2397 } 2398 2399 /* We must make sure the anon_vma is allocated. */ 2400 if (unlikely(anon_vma_prepare(vma))) 2401 return -ENOMEM; 2402 2403 /* 2404 * vma->vm_start/vm_end cannot change under us because the caller 2405 * is required to hold the mmap_lock in read mode. We need the 2406 * anon_vma lock to serialize against concurrent expand_stacks. 2407 */ 2408 anon_vma_lock_write(vma->anon_vma); 2409 2410 /* Somebody else might have raced and expanded it already */ 2411 if (address > vma->vm_end) { 2412 unsigned long size, grow; 2413 2414 size = address - vma->vm_start; 2415 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2416 2417 error = -ENOMEM; 2418 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2419 error = acct_stack_growth(vma, size, grow); 2420 if (!error) { 2421 /* 2422 * vma_gap_update() doesn't support concurrent 2423 * updates, but we only hold a shared mmap_lock 2424 * lock here, so we need to protect against 2425 * concurrent vma expansions. 2426 * anon_vma_lock_write() doesn't help here, as 2427 * we don't guarantee that all growable vmas 2428 * in a mm share the same root anon vma. 2429 * So, we reuse mm->page_table_lock to guard 2430 * against concurrent vma expansions. 2431 */ 2432 spin_lock(&mm->page_table_lock); 2433 if (vma->vm_flags & VM_LOCKED) 2434 mm->locked_vm += grow; 2435 vm_stat_account(mm, vma->vm_flags, grow); 2436 anon_vma_interval_tree_pre_update_vma(vma); 2437 vma->vm_end = address; 2438 anon_vma_interval_tree_post_update_vma(vma); 2439 if (vma->vm_next) 2440 vma_gap_update(vma->vm_next); 2441 else 2442 mm->highest_vm_end = vm_end_gap(vma); 2443 spin_unlock(&mm->page_table_lock); 2444 2445 perf_event_mmap(vma); 2446 } 2447 } 2448 } 2449 anon_vma_unlock_write(vma->anon_vma); 2450 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2451 validate_mm(mm); 2452 return error; 2453 } 2454 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2455 2456 /* 2457 * vma is the first one with address < vma->vm_start. Have to extend vma. 2458 */ 2459 int expand_downwards(struct vm_area_struct *vma, 2460 unsigned long address) 2461 { 2462 struct mm_struct *mm = vma->vm_mm; 2463 struct vm_area_struct *prev; 2464 int error = 0; 2465 2466 address &= PAGE_MASK; 2467 if (address < mmap_min_addr) 2468 return -EPERM; 2469 2470 /* Enforce stack_guard_gap */ 2471 prev = vma->vm_prev; 2472 /* Check that both stack segments have the same anon_vma? */ 2473 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2474 vma_is_accessible(prev)) { 2475 if (address - prev->vm_end < stack_guard_gap) 2476 return -ENOMEM; 2477 } 2478 2479 /* We must make sure the anon_vma is allocated. */ 2480 if (unlikely(anon_vma_prepare(vma))) 2481 return -ENOMEM; 2482 2483 /* 2484 * vma->vm_start/vm_end cannot change under us because the caller 2485 * is required to hold the mmap_lock in read mode. We need the 2486 * anon_vma lock to serialize against concurrent expand_stacks. 2487 */ 2488 anon_vma_lock_write(vma->anon_vma); 2489 2490 /* Somebody else might have raced and expanded it already */ 2491 if (address < vma->vm_start) { 2492 unsigned long size, grow; 2493 2494 size = vma->vm_end - address; 2495 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2496 2497 error = -ENOMEM; 2498 if (grow <= vma->vm_pgoff) { 2499 error = acct_stack_growth(vma, size, grow); 2500 if (!error) { 2501 /* 2502 * vma_gap_update() doesn't support concurrent 2503 * updates, but we only hold a shared mmap_lock 2504 * lock here, so we need to protect against 2505 * concurrent vma expansions. 2506 * anon_vma_lock_write() doesn't help here, as 2507 * we don't guarantee that all growable vmas 2508 * in a mm share the same root anon vma. 2509 * So, we reuse mm->page_table_lock to guard 2510 * against concurrent vma expansions. 2511 */ 2512 spin_lock(&mm->page_table_lock); 2513 if (vma->vm_flags & VM_LOCKED) 2514 mm->locked_vm += grow; 2515 vm_stat_account(mm, vma->vm_flags, grow); 2516 anon_vma_interval_tree_pre_update_vma(vma); 2517 vma->vm_start = address; 2518 vma->vm_pgoff -= grow; 2519 anon_vma_interval_tree_post_update_vma(vma); 2520 vma_gap_update(vma); 2521 spin_unlock(&mm->page_table_lock); 2522 2523 perf_event_mmap(vma); 2524 } 2525 } 2526 } 2527 anon_vma_unlock_write(vma->anon_vma); 2528 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2529 validate_mm(mm); 2530 return error; 2531 } 2532 2533 /* enforced gap between the expanding stack and other mappings. */ 2534 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2535 2536 static int __init cmdline_parse_stack_guard_gap(char *p) 2537 { 2538 unsigned long val; 2539 char *endptr; 2540 2541 val = simple_strtoul(p, &endptr, 10); 2542 if (!*endptr) 2543 stack_guard_gap = val << PAGE_SHIFT; 2544 2545 return 0; 2546 } 2547 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2548 2549 #ifdef CONFIG_STACK_GROWSUP 2550 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2551 { 2552 return expand_upwards(vma, address); 2553 } 2554 2555 struct vm_area_struct * 2556 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2557 { 2558 struct vm_area_struct *vma, *prev; 2559 2560 addr &= PAGE_MASK; 2561 vma = find_vma_prev(mm, addr, &prev); 2562 if (vma && (vma->vm_start <= addr)) 2563 return vma; 2564 /* don't alter vm_end if the coredump is running */ 2565 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr)) 2566 return NULL; 2567 if (prev->vm_flags & VM_LOCKED) 2568 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2569 return prev; 2570 } 2571 #else 2572 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2573 { 2574 return expand_downwards(vma, address); 2575 } 2576 2577 struct vm_area_struct * 2578 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2579 { 2580 struct vm_area_struct *vma; 2581 unsigned long start; 2582 2583 addr &= PAGE_MASK; 2584 vma = find_vma(mm, addr); 2585 if (!vma) 2586 return NULL; 2587 if (vma->vm_start <= addr) 2588 return vma; 2589 if (!(vma->vm_flags & VM_GROWSDOWN)) 2590 return NULL; 2591 /* don't alter vm_start if the coredump is running */ 2592 if (!mmget_still_valid(mm)) 2593 return NULL; 2594 start = vma->vm_start; 2595 if (expand_stack(vma, addr)) 2596 return NULL; 2597 if (vma->vm_flags & VM_LOCKED) 2598 populate_vma_page_range(vma, addr, start, NULL); 2599 return vma; 2600 } 2601 #endif 2602 2603 EXPORT_SYMBOL_GPL(find_extend_vma); 2604 2605 /* 2606 * Ok - we have the memory areas we should free on the vma list, 2607 * so release them, and do the vma updates. 2608 * 2609 * Called with the mm semaphore held. 2610 */ 2611 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2612 { 2613 unsigned long nr_accounted = 0; 2614 2615 /* Update high watermark before we lower total_vm */ 2616 update_hiwater_vm(mm); 2617 do { 2618 long nrpages = vma_pages(vma); 2619 2620 if (vma->vm_flags & VM_ACCOUNT) 2621 nr_accounted += nrpages; 2622 vm_stat_account(mm, vma->vm_flags, -nrpages); 2623 vma = remove_vma(vma); 2624 } while (vma); 2625 vm_unacct_memory(nr_accounted); 2626 validate_mm(mm); 2627 } 2628 2629 /* 2630 * Get rid of page table information in the indicated region. 2631 * 2632 * Called with the mm semaphore held. 2633 */ 2634 static void unmap_region(struct mm_struct *mm, 2635 struct vm_area_struct *vma, struct vm_area_struct *prev, 2636 unsigned long start, unsigned long end) 2637 { 2638 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2639 struct mmu_gather tlb; 2640 2641 lru_add_drain(); 2642 tlb_gather_mmu(&tlb, mm, start, end); 2643 update_hiwater_rss(mm); 2644 unmap_vmas(&tlb, vma, start, end); 2645 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2646 next ? next->vm_start : USER_PGTABLES_CEILING); 2647 tlb_finish_mmu(&tlb, start, end); 2648 } 2649 2650 /* 2651 * Create a list of vma's touched by the unmap, removing them from the mm's 2652 * vma list as we go.. 2653 */ 2654 static bool 2655 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2656 struct vm_area_struct *prev, unsigned long end) 2657 { 2658 struct vm_area_struct **insertion_point; 2659 struct vm_area_struct *tail_vma = NULL; 2660 2661 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2662 vma->vm_prev = NULL; 2663 do { 2664 vma_rb_erase(vma, &mm->mm_rb); 2665 mm->map_count--; 2666 tail_vma = vma; 2667 vma = vma->vm_next; 2668 } while (vma && vma->vm_start < end); 2669 *insertion_point = vma; 2670 if (vma) { 2671 vma->vm_prev = prev; 2672 vma_gap_update(vma); 2673 } else 2674 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2675 tail_vma->vm_next = NULL; 2676 2677 /* Kill the cache */ 2678 vmacache_invalidate(mm); 2679 2680 /* 2681 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2682 * VM_GROWSUP VMA. Such VMAs can change their size under 2683 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2684 */ 2685 if (vma && (vma->vm_flags & VM_GROWSDOWN)) 2686 return false; 2687 if (prev && (prev->vm_flags & VM_GROWSUP)) 2688 return false; 2689 return true; 2690 } 2691 2692 /* 2693 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2694 * has already been checked or doesn't make sense to fail. 2695 */ 2696 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2697 unsigned long addr, int new_below) 2698 { 2699 struct vm_area_struct *new; 2700 int err; 2701 2702 if (vma->vm_ops && vma->vm_ops->split) { 2703 err = vma->vm_ops->split(vma, addr); 2704 if (err) 2705 return err; 2706 } 2707 2708 new = vm_area_dup(vma); 2709 if (!new) 2710 return -ENOMEM; 2711 2712 if (new_below) 2713 new->vm_end = addr; 2714 else { 2715 new->vm_start = addr; 2716 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2717 } 2718 2719 err = vma_dup_policy(vma, new); 2720 if (err) 2721 goto out_free_vma; 2722 2723 err = anon_vma_clone(new, vma); 2724 if (err) 2725 goto out_free_mpol; 2726 2727 if (new->vm_file) 2728 get_file(new->vm_file); 2729 2730 if (new->vm_ops && new->vm_ops->open) 2731 new->vm_ops->open(new); 2732 2733 if (new_below) 2734 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2735 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2736 else 2737 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2738 2739 /* Success. */ 2740 if (!err) 2741 return 0; 2742 2743 /* Clean everything up if vma_adjust failed. */ 2744 if (new->vm_ops && new->vm_ops->close) 2745 new->vm_ops->close(new); 2746 if (new->vm_file) 2747 fput(new->vm_file); 2748 unlink_anon_vmas(new); 2749 out_free_mpol: 2750 mpol_put(vma_policy(new)); 2751 out_free_vma: 2752 vm_area_free(new); 2753 return err; 2754 } 2755 2756 /* 2757 * Split a vma into two pieces at address 'addr', a new vma is allocated 2758 * either for the first part or the tail. 2759 */ 2760 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2761 unsigned long addr, int new_below) 2762 { 2763 if (mm->map_count >= sysctl_max_map_count) 2764 return -ENOMEM; 2765 2766 return __split_vma(mm, vma, addr, new_below); 2767 } 2768 2769 /* Munmap is split into 2 main parts -- this part which finds 2770 * what needs doing, and the areas themselves, which do the 2771 * work. This now handles partial unmappings. 2772 * Jeremy Fitzhardinge <jeremy@goop.org> 2773 */ 2774 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2775 struct list_head *uf, bool downgrade) 2776 { 2777 unsigned long end; 2778 struct vm_area_struct *vma, *prev, *last; 2779 2780 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2781 return -EINVAL; 2782 2783 len = PAGE_ALIGN(len); 2784 end = start + len; 2785 if (len == 0) 2786 return -EINVAL; 2787 2788 /* 2789 * arch_unmap() might do unmaps itself. It must be called 2790 * and finish any rbtree manipulation before this code 2791 * runs and also starts to manipulate the rbtree. 2792 */ 2793 arch_unmap(mm, start, end); 2794 2795 /* Find the first overlapping VMA */ 2796 vma = find_vma(mm, start); 2797 if (!vma) 2798 return 0; 2799 prev = vma->vm_prev; 2800 /* we have start < vma->vm_end */ 2801 2802 /* if it doesn't overlap, we have nothing.. */ 2803 if (vma->vm_start >= end) 2804 return 0; 2805 2806 /* 2807 * If we need to split any vma, do it now to save pain later. 2808 * 2809 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2810 * unmapped vm_area_struct will remain in use: so lower split_vma 2811 * places tmp vma above, and higher split_vma places tmp vma below. 2812 */ 2813 if (start > vma->vm_start) { 2814 int error; 2815 2816 /* 2817 * Make sure that map_count on return from munmap() will 2818 * not exceed its limit; but let map_count go just above 2819 * its limit temporarily, to help free resources as expected. 2820 */ 2821 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2822 return -ENOMEM; 2823 2824 error = __split_vma(mm, vma, start, 0); 2825 if (error) 2826 return error; 2827 prev = vma; 2828 } 2829 2830 /* Does it split the last one? */ 2831 last = find_vma(mm, end); 2832 if (last && end > last->vm_start) { 2833 int error = __split_vma(mm, last, end, 1); 2834 if (error) 2835 return error; 2836 } 2837 vma = prev ? prev->vm_next : mm->mmap; 2838 2839 if (unlikely(uf)) { 2840 /* 2841 * If userfaultfd_unmap_prep returns an error the vmas 2842 * will remain splitted, but userland will get a 2843 * highly unexpected error anyway. This is no 2844 * different than the case where the first of the two 2845 * __split_vma fails, but we don't undo the first 2846 * split, despite we could. This is unlikely enough 2847 * failure that it's not worth optimizing it for. 2848 */ 2849 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2850 if (error) 2851 return error; 2852 } 2853 2854 /* 2855 * unlock any mlock()ed ranges before detaching vmas 2856 */ 2857 if (mm->locked_vm) { 2858 struct vm_area_struct *tmp = vma; 2859 while (tmp && tmp->vm_start < end) { 2860 if (tmp->vm_flags & VM_LOCKED) { 2861 mm->locked_vm -= vma_pages(tmp); 2862 munlock_vma_pages_all(tmp); 2863 } 2864 2865 tmp = tmp->vm_next; 2866 } 2867 } 2868 2869 /* Detach vmas from rbtree */ 2870 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end)) 2871 downgrade = false; 2872 2873 if (downgrade) 2874 mmap_write_downgrade(mm); 2875 2876 unmap_region(mm, vma, prev, start, end); 2877 2878 /* Fix up all other VM information */ 2879 remove_vma_list(mm, vma); 2880 2881 return downgrade ? 1 : 0; 2882 } 2883 2884 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2885 struct list_head *uf) 2886 { 2887 return __do_munmap(mm, start, len, uf, false); 2888 } 2889 2890 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2891 { 2892 int ret; 2893 struct mm_struct *mm = current->mm; 2894 LIST_HEAD(uf); 2895 2896 if (mmap_write_lock_killable(mm)) 2897 return -EINTR; 2898 2899 ret = __do_munmap(mm, start, len, &uf, downgrade); 2900 /* 2901 * Returning 1 indicates mmap_lock is downgraded. 2902 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2903 * it to 0 before return. 2904 */ 2905 if (ret == 1) { 2906 mmap_read_unlock(mm); 2907 ret = 0; 2908 } else 2909 mmap_write_unlock(mm); 2910 2911 userfaultfd_unmap_complete(mm, &uf); 2912 return ret; 2913 } 2914 2915 int vm_munmap(unsigned long start, size_t len) 2916 { 2917 return __vm_munmap(start, len, false); 2918 } 2919 EXPORT_SYMBOL(vm_munmap); 2920 2921 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2922 { 2923 addr = untagged_addr(addr); 2924 profile_munmap(addr); 2925 return __vm_munmap(addr, len, true); 2926 } 2927 2928 2929 /* 2930 * Emulation of deprecated remap_file_pages() syscall. 2931 */ 2932 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2933 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2934 { 2935 2936 struct mm_struct *mm = current->mm; 2937 struct vm_area_struct *vma; 2938 unsigned long populate = 0; 2939 unsigned long ret = -EINVAL; 2940 struct file *file; 2941 2942 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2943 current->comm, current->pid); 2944 2945 if (prot) 2946 return ret; 2947 start = start & PAGE_MASK; 2948 size = size & PAGE_MASK; 2949 2950 if (start + size <= start) 2951 return ret; 2952 2953 /* Does pgoff wrap? */ 2954 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2955 return ret; 2956 2957 if (mmap_write_lock_killable(mm)) 2958 return -EINTR; 2959 2960 vma = find_vma(mm, start); 2961 2962 if (!vma || !(vma->vm_flags & VM_SHARED)) 2963 goto out; 2964 2965 if (start < vma->vm_start) 2966 goto out; 2967 2968 if (start + size > vma->vm_end) { 2969 struct vm_area_struct *next; 2970 2971 for (next = vma->vm_next; next; next = next->vm_next) { 2972 /* hole between vmas ? */ 2973 if (next->vm_start != next->vm_prev->vm_end) 2974 goto out; 2975 2976 if (next->vm_file != vma->vm_file) 2977 goto out; 2978 2979 if (next->vm_flags != vma->vm_flags) 2980 goto out; 2981 2982 if (start + size <= next->vm_end) 2983 break; 2984 } 2985 2986 if (!next) 2987 goto out; 2988 } 2989 2990 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2991 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2992 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2993 2994 flags &= MAP_NONBLOCK; 2995 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2996 if (vma->vm_flags & VM_LOCKED) { 2997 struct vm_area_struct *tmp; 2998 flags |= MAP_LOCKED; 2999 3000 /* drop PG_Mlocked flag for over-mapped range */ 3001 for (tmp = vma; tmp->vm_start >= start + size; 3002 tmp = tmp->vm_next) { 3003 /* 3004 * Split pmd and munlock page on the border 3005 * of the range. 3006 */ 3007 vma_adjust_trans_huge(tmp, start, start + size, 0); 3008 3009 munlock_vma_pages_range(tmp, 3010 max(tmp->vm_start, start), 3011 min(tmp->vm_end, start + size)); 3012 } 3013 } 3014 3015 file = get_file(vma->vm_file); 3016 ret = do_mmap(vma->vm_file, start, size, 3017 prot, flags, pgoff, &populate, NULL); 3018 fput(file); 3019 out: 3020 mmap_write_unlock(mm); 3021 if (populate) 3022 mm_populate(ret, populate); 3023 if (!IS_ERR_VALUE(ret)) 3024 ret = 0; 3025 return ret; 3026 } 3027 3028 /* 3029 * this is really a simplified "do_mmap". it only handles 3030 * anonymous maps. eventually we may be able to do some 3031 * brk-specific accounting here. 3032 */ 3033 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 3034 { 3035 struct mm_struct *mm = current->mm; 3036 struct vm_area_struct *vma, *prev; 3037 struct rb_node **rb_link, *rb_parent; 3038 pgoff_t pgoff = addr >> PAGE_SHIFT; 3039 int error; 3040 unsigned long mapped_addr; 3041 3042 /* Until we need other flags, refuse anything except VM_EXEC. */ 3043 if ((flags & (~VM_EXEC)) != 0) 3044 return -EINVAL; 3045 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3046 3047 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3048 if (IS_ERR_VALUE(mapped_addr)) 3049 return mapped_addr; 3050 3051 error = mlock_future_check(mm, mm->def_flags, len); 3052 if (error) 3053 return error; 3054 3055 /* 3056 * Clear old maps. this also does some error checking for us 3057 */ 3058 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 3059 &rb_parent)) { 3060 if (do_munmap(mm, addr, len, uf)) 3061 return -ENOMEM; 3062 } 3063 3064 /* Check against address space limits *after* clearing old maps... */ 3065 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3066 return -ENOMEM; 3067 3068 if (mm->map_count > sysctl_max_map_count) 3069 return -ENOMEM; 3070 3071 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3072 return -ENOMEM; 3073 3074 /* Can we just expand an old private anonymous mapping? */ 3075 vma = vma_merge(mm, prev, addr, addr + len, flags, 3076 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3077 if (vma) 3078 goto out; 3079 3080 /* 3081 * create a vma struct for an anonymous mapping 3082 */ 3083 vma = vm_area_alloc(mm); 3084 if (!vma) { 3085 vm_unacct_memory(len >> PAGE_SHIFT); 3086 return -ENOMEM; 3087 } 3088 3089 vma_set_anonymous(vma); 3090 vma->vm_start = addr; 3091 vma->vm_end = addr + len; 3092 vma->vm_pgoff = pgoff; 3093 vma->vm_flags = flags; 3094 vma->vm_page_prot = vm_get_page_prot(flags); 3095 vma_link(mm, vma, prev, rb_link, rb_parent); 3096 out: 3097 perf_event_mmap(vma); 3098 mm->total_vm += len >> PAGE_SHIFT; 3099 mm->data_vm += len >> PAGE_SHIFT; 3100 if (flags & VM_LOCKED) 3101 mm->locked_vm += (len >> PAGE_SHIFT); 3102 vma->vm_flags |= VM_SOFTDIRTY; 3103 return 0; 3104 } 3105 3106 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3107 { 3108 struct mm_struct *mm = current->mm; 3109 unsigned long len; 3110 int ret; 3111 bool populate; 3112 LIST_HEAD(uf); 3113 3114 len = PAGE_ALIGN(request); 3115 if (len < request) 3116 return -ENOMEM; 3117 if (!len) 3118 return 0; 3119 3120 if (mmap_write_lock_killable(mm)) 3121 return -EINTR; 3122 3123 ret = do_brk_flags(addr, len, flags, &uf); 3124 populate = ((mm->def_flags & VM_LOCKED) != 0); 3125 mmap_write_unlock(mm); 3126 userfaultfd_unmap_complete(mm, &uf); 3127 if (populate && !ret) 3128 mm_populate(addr, len); 3129 return ret; 3130 } 3131 EXPORT_SYMBOL(vm_brk_flags); 3132 3133 int vm_brk(unsigned long addr, unsigned long len) 3134 { 3135 return vm_brk_flags(addr, len, 0); 3136 } 3137 EXPORT_SYMBOL(vm_brk); 3138 3139 /* Release all mmaps. */ 3140 void exit_mmap(struct mm_struct *mm) 3141 { 3142 struct mmu_gather tlb; 3143 struct vm_area_struct *vma; 3144 unsigned long nr_accounted = 0; 3145 3146 /* mm's last user has gone, and its about to be pulled down */ 3147 mmu_notifier_release(mm); 3148 3149 if (unlikely(mm_is_oom_victim(mm))) { 3150 /* 3151 * Manually reap the mm to free as much memory as possible. 3152 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3153 * this mm from further consideration. Taking mm->mmap_lock for 3154 * write after setting MMF_OOM_SKIP will guarantee that the oom 3155 * reaper will not run on this mm again after mmap_lock is 3156 * dropped. 3157 * 3158 * Nothing can be holding mm->mmap_lock here and the above call 3159 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3160 * __oom_reap_task_mm() will not block. 3161 * 3162 * This needs to be done before calling munlock_vma_pages_all(), 3163 * which clears VM_LOCKED, otherwise the oom reaper cannot 3164 * reliably test it. 3165 */ 3166 (void)__oom_reap_task_mm(mm); 3167 3168 set_bit(MMF_OOM_SKIP, &mm->flags); 3169 mmap_write_lock(mm); 3170 mmap_write_unlock(mm); 3171 } 3172 3173 if (mm->locked_vm) { 3174 vma = mm->mmap; 3175 while (vma) { 3176 if (vma->vm_flags & VM_LOCKED) 3177 munlock_vma_pages_all(vma); 3178 vma = vma->vm_next; 3179 } 3180 } 3181 3182 arch_exit_mmap(mm); 3183 3184 vma = mm->mmap; 3185 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3186 return; 3187 3188 lru_add_drain(); 3189 flush_cache_mm(mm); 3190 tlb_gather_mmu(&tlb, mm, 0, -1); 3191 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3192 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3193 unmap_vmas(&tlb, vma, 0, -1); 3194 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3195 tlb_finish_mmu(&tlb, 0, -1); 3196 3197 /* 3198 * Walk the list again, actually closing and freeing it, 3199 * with preemption enabled, without holding any MM locks. 3200 */ 3201 while (vma) { 3202 if (vma->vm_flags & VM_ACCOUNT) 3203 nr_accounted += vma_pages(vma); 3204 vma = remove_vma(vma); 3205 cond_resched(); 3206 } 3207 vm_unacct_memory(nr_accounted); 3208 } 3209 3210 /* Insert vm structure into process list sorted by address 3211 * and into the inode's i_mmap tree. If vm_file is non-NULL 3212 * then i_mmap_rwsem is taken here. 3213 */ 3214 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3215 { 3216 struct vm_area_struct *prev; 3217 struct rb_node **rb_link, *rb_parent; 3218 3219 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3220 &prev, &rb_link, &rb_parent)) 3221 return -ENOMEM; 3222 if ((vma->vm_flags & VM_ACCOUNT) && 3223 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3224 return -ENOMEM; 3225 3226 /* 3227 * The vm_pgoff of a purely anonymous vma should be irrelevant 3228 * until its first write fault, when page's anon_vma and index 3229 * are set. But now set the vm_pgoff it will almost certainly 3230 * end up with (unless mremap moves it elsewhere before that 3231 * first wfault), so /proc/pid/maps tells a consistent story. 3232 * 3233 * By setting it to reflect the virtual start address of the 3234 * vma, merges and splits can happen in a seamless way, just 3235 * using the existing file pgoff checks and manipulations. 3236 * Similarly in do_mmap and in do_brk_flags. 3237 */ 3238 if (vma_is_anonymous(vma)) { 3239 BUG_ON(vma->anon_vma); 3240 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3241 } 3242 3243 vma_link(mm, vma, prev, rb_link, rb_parent); 3244 return 0; 3245 } 3246 3247 /* 3248 * Copy the vma structure to a new location in the same mm, 3249 * prior to moving page table entries, to effect an mremap move. 3250 */ 3251 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3252 unsigned long addr, unsigned long len, pgoff_t pgoff, 3253 bool *need_rmap_locks) 3254 { 3255 struct vm_area_struct *vma = *vmap; 3256 unsigned long vma_start = vma->vm_start; 3257 struct mm_struct *mm = vma->vm_mm; 3258 struct vm_area_struct *new_vma, *prev; 3259 struct rb_node **rb_link, *rb_parent; 3260 bool faulted_in_anon_vma = true; 3261 3262 /* 3263 * If anonymous vma has not yet been faulted, update new pgoff 3264 * to match new location, to increase its chance of merging. 3265 */ 3266 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3267 pgoff = addr >> PAGE_SHIFT; 3268 faulted_in_anon_vma = false; 3269 } 3270 3271 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3272 return NULL; /* should never get here */ 3273 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3274 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3275 vma->vm_userfaultfd_ctx); 3276 if (new_vma) { 3277 /* 3278 * Source vma may have been merged into new_vma 3279 */ 3280 if (unlikely(vma_start >= new_vma->vm_start && 3281 vma_start < new_vma->vm_end)) { 3282 /* 3283 * The only way we can get a vma_merge with 3284 * self during an mremap is if the vma hasn't 3285 * been faulted in yet and we were allowed to 3286 * reset the dst vma->vm_pgoff to the 3287 * destination address of the mremap to allow 3288 * the merge to happen. mremap must change the 3289 * vm_pgoff linearity between src and dst vmas 3290 * (in turn preventing a vma_merge) to be 3291 * safe. It is only safe to keep the vm_pgoff 3292 * linear if there are no pages mapped yet. 3293 */ 3294 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3295 *vmap = vma = new_vma; 3296 } 3297 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3298 } else { 3299 new_vma = vm_area_dup(vma); 3300 if (!new_vma) 3301 goto out; 3302 new_vma->vm_start = addr; 3303 new_vma->vm_end = addr + len; 3304 new_vma->vm_pgoff = pgoff; 3305 if (vma_dup_policy(vma, new_vma)) 3306 goto out_free_vma; 3307 if (anon_vma_clone(new_vma, vma)) 3308 goto out_free_mempol; 3309 if (new_vma->vm_file) 3310 get_file(new_vma->vm_file); 3311 if (new_vma->vm_ops && new_vma->vm_ops->open) 3312 new_vma->vm_ops->open(new_vma); 3313 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3314 *need_rmap_locks = false; 3315 } 3316 return new_vma; 3317 3318 out_free_mempol: 3319 mpol_put(vma_policy(new_vma)); 3320 out_free_vma: 3321 vm_area_free(new_vma); 3322 out: 3323 return NULL; 3324 } 3325 3326 /* 3327 * Return true if the calling process may expand its vm space by the passed 3328 * number of pages 3329 */ 3330 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3331 { 3332 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3333 return false; 3334 3335 if (is_data_mapping(flags) && 3336 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3337 /* Workaround for Valgrind */ 3338 if (rlimit(RLIMIT_DATA) == 0 && 3339 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3340 return true; 3341 3342 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3343 current->comm, current->pid, 3344 (mm->data_vm + npages) << PAGE_SHIFT, 3345 rlimit(RLIMIT_DATA), 3346 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3347 3348 if (!ignore_rlimit_data) 3349 return false; 3350 } 3351 3352 return true; 3353 } 3354 3355 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3356 { 3357 mm->total_vm += npages; 3358 3359 if (is_exec_mapping(flags)) 3360 mm->exec_vm += npages; 3361 else if (is_stack_mapping(flags)) 3362 mm->stack_vm += npages; 3363 else if (is_data_mapping(flags)) 3364 mm->data_vm += npages; 3365 } 3366 3367 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3368 3369 /* 3370 * Having a close hook prevents vma merging regardless of flags. 3371 */ 3372 static void special_mapping_close(struct vm_area_struct *vma) 3373 { 3374 } 3375 3376 static const char *special_mapping_name(struct vm_area_struct *vma) 3377 { 3378 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3379 } 3380 3381 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3382 { 3383 struct vm_special_mapping *sm = new_vma->vm_private_data; 3384 3385 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3386 return -EFAULT; 3387 3388 if (sm->mremap) 3389 return sm->mremap(sm, new_vma); 3390 3391 return 0; 3392 } 3393 3394 static const struct vm_operations_struct special_mapping_vmops = { 3395 .close = special_mapping_close, 3396 .fault = special_mapping_fault, 3397 .mremap = special_mapping_mremap, 3398 .name = special_mapping_name, 3399 /* vDSO code relies that VVAR can't be accessed remotely */ 3400 .access = NULL, 3401 }; 3402 3403 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3404 .close = special_mapping_close, 3405 .fault = special_mapping_fault, 3406 }; 3407 3408 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3409 { 3410 struct vm_area_struct *vma = vmf->vma; 3411 pgoff_t pgoff; 3412 struct page **pages; 3413 3414 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3415 pages = vma->vm_private_data; 3416 } else { 3417 struct vm_special_mapping *sm = vma->vm_private_data; 3418 3419 if (sm->fault) 3420 return sm->fault(sm, vmf->vma, vmf); 3421 3422 pages = sm->pages; 3423 } 3424 3425 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3426 pgoff--; 3427 3428 if (*pages) { 3429 struct page *page = *pages; 3430 get_page(page); 3431 vmf->page = page; 3432 return 0; 3433 } 3434 3435 return VM_FAULT_SIGBUS; 3436 } 3437 3438 static struct vm_area_struct *__install_special_mapping( 3439 struct mm_struct *mm, 3440 unsigned long addr, unsigned long len, 3441 unsigned long vm_flags, void *priv, 3442 const struct vm_operations_struct *ops) 3443 { 3444 int ret; 3445 struct vm_area_struct *vma; 3446 3447 vma = vm_area_alloc(mm); 3448 if (unlikely(vma == NULL)) 3449 return ERR_PTR(-ENOMEM); 3450 3451 vma->vm_start = addr; 3452 vma->vm_end = addr + len; 3453 3454 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3455 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3456 3457 vma->vm_ops = ops; 3458 vma->vm_private_data = priv; 3459 3460 ret = insert_vm_struct(mm, vma); 3461 if (ret) 3462 goto out; 3463 3464 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3465 3466 perf_event_mmap(vma); 3467 3468 return vma; 3469 3470 out: 3471 vm_area_free(vma); 3472 return ERR_PTR(ret); 3473 } 3474 3475 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3476 const struct vm_special_mapping *sm) 3477 { 3478 return vma->vm_private_data == sm && 3479 (vma->vm_ops == &special_mapping_vmops || 3480 vma->vm_ops == &legacy_special_mapping_vmops); 3481 } 3482 3483 /* 3484 * Called with mm->mmap_lock held for writing. 3485 * Insert a new vma covering the given region, with the given flags. 3486 * Its pages are supplied by the given array of struct page *. 3487 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3488 * The region past the last page supplied will always produce SIGBUS. 3489 * The array pointer and the pages it points to are assumed to stay alive 3490 * for as long as this mapping might exist. 3491 */ 3492 struct vm_area_struct *_install_special_mapping( 3493 struct mm_struct *mm, 3494 unsigned long addr, unsigned long len, 3495 unsigned long vm_flags, const struct vm_special_mapping *spec) 3496 { 3497 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3498 &special_mapping_vmops); 3499 } 3500 3501 int install_special_mapping(struct mm_struct *mm, 3502 unsigned long addr, unsigned long len, 3503 unsigned long vm_flags, struct page **pages) 3504 { 3505 struct vm_area_struct *vma = __install_special_mapping( 3506 mm, addr, len, vm_flags, (void *)pages, 3507 &legacy_special_mapping_vmops); 3508 3509 return PTR_ERR_OR_ZERO(vma); 3510 } 3511 3512 static DEFINE_MUTEX(mm_all_locks_mutex); 3513 3514 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3515 { 3516 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3517 /* 3518 * The LSB of head.next can't change from under us 3519 * because we hold the mm_all_locks_mutex. 3520 */ 3521 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3522 /* 3523 * We can safely modify head.next after taking the 3524 * anon_vma->root->rwsem. If some other vma in this mm shares 3525 * the same anon_vma we won't take it again. 3526 * 3527 * No need of atomic instructions here, head.next 3528 * can't change from under us thanks to the 3529 * anon_vma->root->rwsem. 3530 */ 3531 if (__test_and_set_bit(0, (unsigned long *) 3532 &anon_vma->root->rb_root.rb_root.rb_node)) 3533 BUG(); 3534 } 3535 } 3536 3537 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3538 { 3539 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3540 /* 3541 * AS_MM_ALL_LOCKS can't change from under us because 3542 * we hold the mm_all_locks_mutex. 3543 * 3544 * Operations on ->flags have to be atomic because 3545 * even if AS_MM_ALL_LOCKS is stable thanks to the 3546 * mm_all_locks_mutex, there may be other cpus 3547 * changing other bitflags in parallel to us. 3548 */ 3549 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3550 BUG(); 3551 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3552 } 3553 } 3554 3555 /* 3556 * This operation locks against the VM for all pte/vma/mm related 3557 * operations that could ever happen on a certain mm. This includes 3558 * vmtruncate, try_to_unmap, and all page faults. 3559 * 3560 * The caller must take the mmap_lock in write mode before calling 3561 * mm_take_all_locks(). The caller isn't allowed to release the 3562 * mmap_lock until mm_drop_all_locks() returns. 3563 * 3564 * mmap_lock in write mode is required in order to block all operations 3565 * that could modify pagetables and free pages without need of 3566 * altering the vma layout. It's also needed in write mode to avoid new 3567 * anon_vmas to be associated with existing vmas. 3568 * 3569 * A single task can't take more than one mm_take_all_locks() in a row 3570 * or it would deadlock. 3571 * 3572 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3573 * mapping->flags avoid to take the same lock twice, if more than one 3574 * vma in this mm is backed by the same anon_vma or address_space. 3575 * 3576 * We take locks in following order, accordingly to comment at beginning 3577 * of mm/rmap.c: 3578 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3579 * hugetlb mapping); 3580 * - all i_mmap_rwsem locks; 3581 * - all anon_vma->rwseml 3582 * 3583 * We can take all locks within these types randomly because the VM code 3584 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3585 * mm_all_locks_mutex. 3586 * 3587 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3588 * that may have to take thousand of locks. 3589 * 3590 * mm_take_all_locks() can fail if it's interrupted by signals. 3591 */ 3592 int mm_take_all_locks(struct mm_struct *mm) 3593 { 3594 struct vm_area_struct *vma; 3595 struct anon_vma_chain *avc; 3596 3597 BUG_ON(mmap_read_trylock(mm)); 3598 3599 mutex_lock(&mm_all_locks_mutex); 3600 3601 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3602 if (signal_pending(current)) 3603 goto out_unlock; 3604 if (vma->vm_file && vma->vm_file->f_mapping && 3605 is_vm_hugetlb_page(vma)) 3606 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3607 } 3608 3609 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3610 if (signal_pending(current)) 3611 goto out_unlock; 3612 if (vma->vm_file && vma->vm_file->f_mapping && 3613 !is_vm_hugetlb_page(vma)) 3614 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3615 } 3616 3617 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3618 if (signal_pending(current)) 3619 goto out_unlock; 3620 if (vma->anon_vma) 3621 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3622 vm_lock_anon_vma(mm, avc->anon_vma); 3623 } 3624 3625 return 0; 3626 3627 out_unlock: 3628 mm_drop_all_locks(mm); 3629 return -EINTR; 3630 } 3631 3632 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3633 { 3634 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3635 /* 3636 * The LSB of head.next can't change to 0 from under 3637 * us because we hold the mm_all_locks_mutex. 3638 * 3639 * We must however clear the bitflag before unlocking 3640 * the vma so the users using the anon_vma->rb_root will 3641 * never see our bitflag. 3642 * 3643 * No need of atomic instructions here, head.next 3644 * can't change from under us until we release the 3645 * anon_vma->root->rwsem. 3646 */ 3647 if (!__test_and_clear_bit(0, (unsigned long *) 3648 &anon_vma->root->rb_root.rb_root.rb_node)) 3649 BUG(); 3650 anon_vma_unlock_write(anon_vma); 3651 } 3652 } 3653 3654 static void vm_unlock_mapping(struct address_space *mapping) 3655 { 3656 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3657 /* 3658 * AS_MM_ALL_LOCKS can't change to 0 from under us 3659 * because we hold the mm_all_locks_mutex. 3660 */ 3661 i_mmap_unlock_write(mapping); 3662 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3663 &mapping->flags)) 3664 BUG(); 3665 } 3666 } 3667 3668 /* 3669 * The mmap_lock cannot be released by the caller until 3670 * mm_drop_all_locks() returns. 3671 */ 3672 void mm_drop_all_locks(struct mm_struct *mm) 3673 { 3674 struct vm_area_struct *vma; 3675 struct anon_vma_chain *avc; 3676 3677 BUG_ON(mmap_read_trylock(mm)); 3678 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3679 3680 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3681 if (vma->anon_vma) 3682 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3683 vm_unlock_anon_vma(avc->anon_vma); 3684 if (vma->vm_file && vma->vm_file->f_mapping) 3685 vm_unlock_mapping(vma->vm_file->f_mapping); 3686 } 3687 3688 mutex_unlock(&mm_all_locks_mutex); 3689 } 3690 3691 /* 3692 * initialise the percpu counter for VM 3693 */ 3694 void __init mmap_init(void) 3695 { 3696 int ret; 3697 3698 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3699 VM_BUG_ON(ret); 3700 } 3701 3702 /* 3703 * Initialise sysctl_user_reserve_kbytes. 3704 * 3705 * This is intended to prevent a user from starting a single memory hogging 3706 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3707 * mode. 3708 * 3709 * The default value is min(3% of free memory, 128MB) 3710 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3711 */ 3712 static int init_user_reserve(void) 3713 { 3714 unsigned long free_kbytes; 3715 3716 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3717 3718 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3719 return 0; 3720 } 3721 subsys_initcall(init_user_reserve); 3722 3723 /* 3724 * Initialise sysctl_admin_reserve_kbytes. 3725 * 3726 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3727 * to log in and kill a memory hogging process. 3728 * 3729 * Systems with more than 256MB will reserve 8MB, enough to recover 3730 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3731 * only reserve 3% of free pages by default. 3732 */ 3733 static int init_admin_reserve(void) 3734 { 3735 unsigned long free_kbytes; 3736 3737 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3738 3739 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3740 return 0; 3741 } 3742 subsys_initcall(init_admin_reserve); 3743 3744 /* 3745 * Reinititalise user and admin reserves if memory is added or removed. 3746 * 3747 * The default user reserve max is 128MB, and the default max for the 3748 * admin reserve is 8MB. These are usually, but not always, enough to 3749 * enable recovery from a memory hogging process using login/sshd, a shell, 3750 * and tools like top. It may make sense to increase or even disable the 3751 * reserve depending on the existence of swap or variations in the recovery 3752 * tools. So, the admin may have changed them. 3753 * 3754 * If memory is added and the reserves have been eliminated or increased above 3755 * the default max, then we'll trust the admin. 3756 * 3757 * If memory is removed and there isn't enough free memory, then we 3758 * need to reset the reserves. 3759 * 3760 * Otherwise keep the reserve set by the admin. 3761 */ 3762 static int reserve_mem_notifier(struct notifier_block *nb, 3763 unsigned long action, void *data) 3764 { 3765 unsigned long tmp, free_kbytes; 3766 3767 switch (action) { 3768 case MEM_ONLINE: 3769 /* Default max is 128MB. Leave alone if modified by operator. */ 3770 tmp = sysctl_user_reserve_kbytes; 3771 if (0 < tmp && tmp < (1UL << 17)) 3772 init_user_reserve(); 3773 3774 /* Default max is 8MB. Leave alone if modified by operator. */ 3775 tmp = sysctl_admin_reserve_kbytes; 3776 if (0 < tmp && tmp < (1UL << 13)) 3777 init_admin_reserve(); 3778 3779 break; 3780 case MEM_OFFLINE: 3781 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3782 3783 if (sysctl_user_reserve_kbytes > free_kbytes) { 3784 init_user_reserve(); 3785 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3786 sysctl_user_reserve_kbytes); 3787 } 3788 3789 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3790 init_admin_reserve(); 3791 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3792 sysctl_admin_reserve_kbytes); 3793 } 3794 break; 3795 default: 3796 break; 3797 } 3798 return NOTIFY_OK; 3799 } 3800 3801 static struct notifier_block reserve_mem_nb = { 3802 .notifier_call = reserve_mem_notifier, 3803 }; 3804 3805 static int __meminit init_reserve_notifier(void) 3806 { 3807 if (register_hotmemory_notifier(&reserve_mem_nb)) 3808 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3809 3810 return 0; 3811 } 3812 subsys_initcall(init_reserve_notifier); 3813