1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/profile.h> 29 #include <linux/export.h> 30 #include <linux/mount.h> 31 #include <linux/mempolicy.h> 32 #include <linux/rmap.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/mmdebug.h> 35 #include <linux/perf_event.h> 36 #include <linux/audit.h> 37 #include <linux/khugepaged.h> 38 #include <linux/uprobes.h> 39 #include <linux/rbtree_augmented.h> 40 #include <linux/sched/sysctl.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 45 #include <asm/uaccess.h> 46 #include <asm/cacheflush.h> 47 #include <asm/tlb.h> 48 #include <asm/mmu_context.h> 49 50 #include "internal.h" 51 52 #ifndef arch_mmap_check 53 #define arch_mmap_check(addr, len, flags) (0) 54 #endif 55 56 #ifndef arch_rebalance_pgtables 57 #define arch_rebalance_pgtables(addr, len) (addr) 58 #endif 59 60 static void unmap_region(struct mm_struct *mm, 61 struct vm_area_struct *vma, struct vm_area_struct *prev, 62 unsigned long start, unsigned long end); 63 64 /* description of effects of mapping type and prot in current implementation. 65 * this is due to the limited x86 page protection hardware. The expected 66 * behavior is in parens: 67 * 68 * map_type prot 69 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 70 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 71 * w: (no) no w: (no) no w: (yes) yes w: (no) no 72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 73 * 74 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 75 * w: (no) no w: (no) no w: (copy) copy w: (no) no 76 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 77 * 78 */ 79 pgprot_t protection_map[16] = { 80 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 81 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 82 }; 83 84 pgprot_t vm_get_page_prot(unsigned long vm_flags) 85 { 86 return __pgprot(pgprot_val(protection_map[vm_flags & 87 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 88 pgprot_val(arch_vm_get_page_prot(vm_flags))); 89 } 90 EXPORT_SYMBOL(vm_get_page_prot); 91 92 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 93 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 94 unsigned long sysctl_overcommit_kbytes __read_mostly; 95 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 96 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 97 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 98 /* 99 * Make sure vm_committed_as in one cacheline and not cacheline shared with 100 * other variables. It can be updated by several CPUs frequently. 101 */ 102 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 103 104 /* 105 * The global memory commitment made in the system can be a metric 106 * that can be used to drive ballooning decisions when Linux is hosted 107 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 108 * balancing memory across competing virtual machines that are hosted. 109 * Several metrics drive this policy engine including the guest reported 110 * memory commitment. 111 */ 112 unsigned long vm_memory_committed(void) 113 { 114 return percpu_counter_read_positive(&vm_committed_as); 115 } 116 EXPORT_SYMBOL_GPL(vm_memory_committed); 117 118 /* 119 * Check that a process has enough memory to allocate a new virtual 120 * mapping. 0 means there is enough memory for the allocation to 121 * succeed and -ENOMEM implies there is not. 122 * 123 * We currently support three overcommit policies, which are set via the 124 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 125 * 126 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 127 * Additional code 2002 Jul 20 by Robert Love. 128 * 129 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 130 * 131 * Note this is a helper function intended to be used by LSMs which 132 * wish to use this logic. 133 */ 134 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 135 { 136 unsigned long free, allowed, reserve; 137 138 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 139 -(s64)vm_committed_as_batch * num_online_cpus(), 140 "memory commitment underflow"); 141 142 vm_acct_memory(pages); 143 144 /* 145 * Sometimes we want to use more memory than we have 146 */ 147 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 148 return 0; 149 150 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 151 free = global_page_state(NR_FREE_PAGES); 152 free += global_page_state(NR_FILE_PAGES); 153 154 /* 155 * shmem pages shouldn't be counted as free in this 156 * case, they can't be purged, only swapped out, and 157 * that won't affect the overall amount of available 158 * memory in the system. 159 */ 160 free -= global_page_state(NR_SHMEM); 161 162 free += get_nr_swap_pages(); 163 164 /* 165 * Any slabs which are created with the 166 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 167 * which are reclaimable, under pressure. The dentry 168 * cache and most inode caches should fall into this 169 */ 170 free += global_page_state(NR_SLAB_RECLAIMABLE); 171 172 /* 173 * Leave reserved pages. The pages are not for anonymous pages. 174 */ 175 if (free <= totalreserve_pages) 176 goto error; 177 else 178 free -= totalreserve_pages; 179 180 /* 181 * Reserve some for root 182 */ 183 if (!cap_sys_admin) 184 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 185 186 if (free > pages) 187 return 0; 188 189 goto error; 190 } 191 192 allowed = vm_commit_limit(); 193 /* 194 * Reserve some for root 195 */ 196 if (!cap_sys_admin) 197 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 198 199 /* 200 * Don't let a single process grow so big a user can't recover 201 */ 202 if (mm) { 203 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 204 allowed -= min(mm->total_vm / 32, reserve); 205 } 206 207 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 208 return 0; 209 error: 210 vm_unacct_memory(pages); 211 212 return -ENOMEM; 213 } 214 215 /* 216 * Requires inode->i_mapping->i_mmap_mutex 217 */ 218 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 219 struct file *file, struct address_space *mapping) 220 { 221 if (vma->vm_flags & VM_DENYWRITE) 222 atomic_inc(&file_inode(file)->i_writecount); 223 if (vma->vm_flags & VM_SHARED) 224 mapping_unmap_writable(mapping); 225 226 flush_dcache_mmap_lock(mapping); 227 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 228 list_del_init(&vma->shared.nonlinear); 229 else 230 vma_interval_tree_remove(vma, &mapping->i_mmap); 231 flush_dcache_mmap_unlock(mapping); 232 } 233 234 /* 235 * Unlink a file-based vm structure from its interval tree, to hide 236 * vma from rmap and vmtruncate before freeing its page tables. 237 */ 238 void unlink_file_vma(struct vm_area_struct *vma) 239 { 240 struct file *file = vma->vm_file; 241 242 if (file) { 243 struct address_space *mapping = file->f_mapping; 244 mutex_lock(&mapping->i_mmap_mutex); 245 __remove_shared_vm_struct(vma, file, mapping); 246 mutex_unlock(&mapping->i_mmap_mutex); 247 } 248 } 249 250 /* 251 * Close a vm structure and free it, returning the next. 252 */ 253 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 254 { 255 struct vm_area_struct *next = vma->vm_next; 256 257 might_sleep(); 258 if (vma->vm_ops && vma->vm_ops->close) 259 vma->vm_ops->close(vma); 260 if (vma->vm_file) 261 fput(vma->vm_file); 262 mpol_put(vma_policy(vma)); 263 kmem_cache_free(vm_area_cachep, vma); 264 return next; 265 } 266 267 static unsigned long do_brk(unsigned long addr, unsigned long len); 268 269 SYSCALL_DEFINE1(brk, unsigned long, brk) 270 { 271 unsigned long rlim, retval; 272 unsigned long newbrk, oldbrk; 273 struct mm_struct *mm = current->mm; 274 unsigned long min_brk; 275 bool populate; 276 277 down_write(&mm->mmap_sem); 278 279 #ifdef CONFIG_COMPAT_BRK 280 /* 281 * CONFIG_COMPAT_BRK can still be overridden by setting 282 * randomize_va_space to 2, which will still cause mm->start_brk 283 * to be arbitrarily shifted 284 */ 285 if (current->brk_randomized) 286 min_brk = mm->start_brk; 287 else 288 min_brk = mm->end_data; 289 #else 290 min_brk = mm->start_brk; 291 #endif 292 if (brk < min_brk) 293 goto out; 294 295 /* 296 * Check against rlimit here. If this check is done later after the test 297 * of oldbrk with newbrk then it can escape the test and let the data 298 * segment grow beyond its set limit the in case where the limit is 299 * not page aligned -Ram Gupta 300 */ 301 rlim = rlimit(RLIMIT_DATA); 302 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 303 (mm->end_data - mm->start_data) > rlim) 304 goto out; 305 306 newbrk = PAGE_ALIGN(brk); 307 oldbrk = PAGE_ALIGN(mm->brk); 308 if (oldbrk == newbrk) 309 goto set_brk; 310 311 /* Always allow shrinking brk. */ 312 if (brk <= mm->brk) { 313 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 314 goto set_brk; 315 goto out; 316 } 317 318 /* Check against existing mmap mappings. */ 319 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 320 goto out; 321 322 /* Ok, looks good - let it rip. */ 323 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 324 goto out; 325 326 set_brk: 327 mm->brk = brk; 328 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 329 up_write(&mm->mmap_sem); 330 if (populate) 331 mm_populate(oldbrk, newbrk - oldbrk); 332 return brk; 333 334 out: 335 retval = mm->brk; 336 up_write(&mm->mmap_sem); 337 return retval; 338 } 339 340 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 341 { 342 unsigned long max, subtree_gap; 343 max = vma->vm_start; 344 if (vma->vm_prev) 345 max -= vma->vm_prev->vm_end; 346 if (vma->vm_rb.rb_left) { 347 subtree_gap = rb_entry(vma->vm_rb.rb_left, 348 struct vm_area_struct, vm_rb)->rb_subtree_gap; 349 if (subtree_gap > max) 350 max = subtree_gap; 351 } 352 if (vma->vm_rb.rb_right) { 353 subtree_gap = rb_entry(vma->vm_rb.rb_right, 354 struct vm_area_struct, vm_rb)->rb_subtree_gap; 355 if (subtree_gap > max) 356 max = subtree_gap; 357 } 358 return max; 359 } 360 361 #ifdef CONFIG_DEBUG_VM_RB 362 static int browse_rb(struct rb_root *root) 363 { 364 int i = 0, j, bug = 0; 365 struct rb_node *nd, *pn = NULL; 366 unsigned long prev = 0, pend = 0; 367 368 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 369 struct vm_area_struct *vma; 370 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 371 if (vma->vm_start < prev) { 372 pr_emerg("vm_start %lx prev %lx\n", vma->vm_start, prev); 373 bug = 1; 374 } 375 if (vma->vm_start < pend) { 376 pr_emerg("vm_start %lx pend %lx\n", vma->vm_start, pend); 377 bug = 1; 378 } 379 if (vma->vm_start > vma->vm_end) { 380 pr_emerg("vm_end %lx < vm_start %lx\n", 381 vma->vm_end, vma->vm_start); 382 bug = 1; 383 } 384 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 385 pr_emerg("free gap %lx, correct %lx\n", 386 vma->rb_subtree_gap, 387 vma_compute_subtree_gap(vma)); 388 bug = 1; 389 } 390 i++; 391 pn = nd; 392 prev = vma->vm_start; 393 pend = vma->vm_end; 394 } 395 j = 0; 396 for (nd = pn; nd; nd = rb_prev(nd)) 397 j++; 398 if (i != j) { 399 pr_emerg("backwards %d, forwards %d\n", j, i); 400 bug = 1; 401 } 402 return bug ? -1 : i; 403 } 404 405 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 406 { 407 struct rb_node *nd; 408 409 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 410 struct vm_area_struct *vma; 411 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 412 BUG_ON(vma != ignore && 413 vma->rb_subtree_gap != vma_compute_subtree_gap(vma)); 414 } 415 } 416 417 static void validate_mm(struct mm_struct *mm) 418 { 419 int bug = 0; 420 int i = 0; 421 unsigned long highest_address = 0; 422 struct vm_area_struct *vma = mm->mmap; 423 while (vma) { 424 struct anon_vma_chain *avc; 425 vma_lock_anon_vma(vma); 426 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 427 anon_vma_interval_tree_verify(avc); 428 vma_unlock_anon_vma(vma); 429 highest_address = vma->vm_end; 430 vma = vma->vm_next; 431 i++; 432 } 433 if (i != mm->map_count) { 434 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 435 bug = 1; 436 } 437 if (highest_address != mm->highest_vm_end) { 438 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 439 mm->highest_vm_end, highest_address); 440 bug = 1; 441 } 442 i = browse_rb(&mm->mm_rb); 443 if (i != mm->map_count) { 444 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 445 bug = 1; 446 } 447 BUG_ON(bug); 448 } 449 #else 450 #define validate_mm_rb(root, ignore) do { } while (0) 451 #define validate_mm(mm) do { } while (0) 452 #endif 453 454 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 455 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 456 457 /* 458 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 459 * vma->vm_prev->vm_end values changed, without modifying the vma's position 460 * in the rbtree. 461 */ 462 static void vma_gap_update(struct vm_area_struct *vma) 463 { 464 /* 465 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 466 * function that does exacltly what we want. 467 */ 468 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 469 } 470 471 static inline void vma_rb_insert(struct vm_area_struct *vma, 472 struct rb_root *root) 473 { 474 /* All rb_subtree_gap values must be consistent prior to insertion */ 475 validate_mm_rb(root, NULL); 476 477 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 478 } 479 480 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 481 { 482 /* 483 * All rb_subtree_gap values must be consistent prior to erase, 484 * with the possible exception of the vma being erased. 485 */ 486 validate_mm_rb(root, vma); 487 488 /* 489 * Note rb_erase_augmented is a fairly large inline function, 490 * so make sure we instantiate it only once with our desired 491 * augmented rbtree callbacks. 492 */ 493 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 494 } 495 496 /* 497 * vma has some anon_vma assigned, and is already inserted on that 498 * anon_vma's interval trees. 499 * 500 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 501 * vma must be removed from the anon_vma's interval trees using 502 * anon_vma_interval_tree_pre_update_vma(). 503 * 504 * After the update, the vma will be reinserted using 505 * anon_vma_interval_tree_post_update_vma(). 506 * 507 * The entire update must be protected by exclusive mmap_sem and by 508 * the root anon_vma's mutex. 509 */ 510 static inline void 511 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 512 { 513 struct anon_vma_chain *avc; 514 515 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 516 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 517 } 518 519 static inline void 520 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 521 { 522 struct anon_vma_chain *avc; 523 524 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 525 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 526 } 527 528 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 529 unsigned long end, struct vm_area_struct **pprev, 530 struct rb_node ***rb_link, struct rb_node **rb_parent) 531 { 532 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 533 534 __rb_link = &mm->mm_rb.rb_node; 535 rb_prev = __rb_parent = NULL; 536 537 while (*__rb_link) { 538 struct vm_area_struct *vma_tmp; 539 540 __rb_parent = *__rb_link; 541 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 542 543 if (vma_tmp->vm_end > addr) { 544 /* Fail if an existing vma overlaps the area */ 545 if (vma_tmp->vm_start < end) 546 return -ENOMEM; 547 __rb_link = &__rb_parent->rb_left; 548 } else { 549 rb_prev = __rb_parent; 550 __rb_link = &__rb_parent->rb_right; 551 } 552 } 553 554 *pprev = NULL; 555 if (rb_prev) 556 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 557 *rb_link = __rb_link; 558 *rb_parent = __rb_parent; 559 return 0; 560 } 561 562 static unsigned long count_vma_pages_range(struct mm_struct *mm, 563 unsigned long addr, unsigned long end) 564 { 565 unsigned long nr_pages = 0; 566 struct vm_area_struct *vma; 567 568 /* Find first overlaping mapping */ 569 vma = find_vma_intersection(mm, addr, end); 570 if (!vma) 571 return 0; 572 573 nr_pages = (min(end, vma->vm_end) - 574 max(addr, vma->vm_start)) >> PAGE_SHIFT; 575 576 /* Iterate over the rest of the overlaps */ 577 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 578 unsigned long overlap_len; 579 580 if (vma->vm_start > end) 581 break; 582 583 overlap_len = min(end, vma->vm_end) - vma->vm_start; 584 nr_pages += overlap_len >> PAGE_SHIFT; 585 } 586 587 return nr_pages; 588 } 589 590 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 591 struct rb_node **rb_link, struct rb_node *rb_parent) 592 { 593 /* Update tracking information for the gap following the new vma. */ 594 if (vma->vm_next) 595 vma_gap_update(vma->vm_next); 596 else 597 mm->highest_vm_end = vma->vm_end; 598 599 /* 600 * vma->vm_prev wasn't known when we followed the rbtree to find the 601 * correct insertion point for that vma. As a result, we could not 602 * update the vma vm_rb parents rb_subtree_gap values on the way down. 603 * So, we first insert the vma with a zero rb_subtree_gap value 604 * (to be consistent with what we did on the way down), and then 605 * immediately update the gap to the correct value. Finally we 606 * rebalance the rbtree after all augmented values have been set. 607 */ 608 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 609 vma->rb_subtree_gap = 0; 610 vma_gap_update(vma); 611 vma_rb_insert(vma, &mm->mm_rb); 612 } 613 614 static void __vma_link_file(struct vm_area_struct *vma) 615 { 616 struct file *file; 617 618 file = vma->vm_file; 619 if (file) { 620 struct address_space *mapping = file->f_mapping; 621 622 if (vma->vm_flags & VM_DENYWRITE) 623 atomic_dec(&file_inode(file)->i_writecount); 624 if (vma->vm_flags & VM_SHARED) 625 atomic_inc(&mapping->i_mmap_writable); 626 627 flush_dcache_mmap_lock(mapping); 628 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 629 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 630 else 631 vma_interval_tree_insert(vma, &mapping->i_mmap); 632 flush_dcache_mmap_unlock(mapping); 633 } 634 } 635 636 static void 637 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 638 struct vm_area_struct *prev, struct rb_node **rb_link, 639 struct rb_node *rb_parent) 640 { 641 __vma_link_list(mm, vma, prev, rb_parent); 642 __vma_link_rb(mm, vma, rb_link, rb_parent); 643 } 644 645 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 646 struct vm_area_struct *prev, struct rb_node **rb_link, 647 struct rb_node *rb_parent) 648 { 649 struct address_space *mapping = NULL; 650 651 if (vma->vm_file) { 652 mapping = vma->vm_file->f_mapping; 653 mutex_lock(&mapping->i_mmap_mutex); 654 } 655 656 __vma_link(mm, vma, prev, rb_link, rb_parent); 657 __vma_link_file(vma); 658 659 if (mapping) 660 mutex_unlock(&mapping->i_mmap_mutex); 661 662 mm->map_count++; 663 validate_mm(mm); 664 } 665 666 /* 667 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 668 * mm's list and rbtree. It has already been inserted into the interval tree. 669 */ 670 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 671 { 672 struct vm_area_struct *prev; 673 struct rb_node **rb_link, *rb_parent; 674 675 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 676 &prev, &rb_link, &rb_parent)) 677 BUG(); 678 __vma_link(mm, vma, prev, rb_link, rb_parent); 679 mm->map_count++; 680 } 681 682 static inline void 683 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 684 struct vm_area_struct *prev) 685 { 686 struct vm_area_struct *next; 687 688 vma_rb_erase(vma, &mm->mm_rb); 689 prev->vm_next = next = vma->vm_next; 690 if (next) 691 next->vm_prev = prev; 692 693 /* Kill the cache */ 694 vmacache_invalidate(mm); 695 } 696 697 /* 698 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 699 * is already present in an i_mmap tree without adjusting the tree. 700 * The following helper function should be used when such adjustments 701 * are necessary. The "insert" vma (if any) is to be inserted 702 * before we drop the necessary locks. 703 */ 704 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 705 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 706 { 707 struct mm_struct *mm = vma->vm_mm; 708 struct vm_area_struct *next = vma->vm_next; 709 struct vm_area_struct *importer = NULL; 710 struct address_space *mapping = NULL; 711 struct rb_root *root = NULL; 712 struct anon_vma *anon_vma = NULL; 713 struct file *file = vma->vm_file; 714 bool start_changed = false, end_changed = false; 715 long adjust_next = 0; 716 int remove_next = 0; 717 718 if (next && !insert) { 719 struct vm_area_struct *exporter = NULL; 720 721 if (end >= next->vm_end) { 722 /* 723 * vma expands, overlapping all the next, and 724 * perhaps the one after too (mprotect case 6). 725 */ 726 again: remove_next = 1 + (end > next->vm_end); 727 end = next->vm_end; 728 exporter = next; 729 importer = vma; 730 } else if (end > next->vm_start) { 731 /* 732 * vma expands, overlapping part of the next: 733 * mprotect case 5 shifting the boundary up. 734 */ 735 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 736 exporter = next; 737 importer = vma; 738 } else if (end < vma->vm_end) { 739 /* 740 * vma shrinks, and !insert tells it's not 741 * split_vma inserting another: so it must be 742 * mprotect case 4 shifting the boundary down. 743 */ 744 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 745 exporter = vma; 746 importer = next; 747 } 748 749 /* 750 * Easily overlooked: when mprotect shifts the boundary, 751 * make sure the expanding vma has anon_vma set if the 752 * shrinking vma had, to cover any anon pages imported. 753 */ 754 if (exporter && exporter->anon_vma && !importer->anon_vma) { 755 if (anon_vma_clone(importer, exporter)) 756 return -ENOMEM; 757 importer->anon_vma = exporter->anon_vma; 758 } 759 } 760 761 if (file) { 762 mapping = file->f_mapping; 763 if (!(vma->vm_flags & VM_NONLINEAR)) { 764 root = &mapping->i_mmap; 765 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 766 767 if (adjust_next) 768 uprobe_munmap(next, next->vm_start, 769 next->vm_end); 770 } 771 772 mutex_lock(&mapping->i_mmap_mutex); 773 if (insert) { 774 /* 775 * Put into interval tree now, so instantiated pages 776 * are visible to arm/parisc __flush_dcache_page 777 * throughout; but we cannot insert into address 778 * space until vma start or end is updated. 779 */ 780 __vma_link_file(insert); 781 } 782 } 783 784 vma_adjust_trans_huge(vma, start, end, adjust_next); 785 786 anon_vma = vma->anon_vma; 787 if (!anon_vma && adjust_next) 788 anon_vma = next->anon_vma; 789 if (anon_vma) { 790 VM_BUG_ON(adjust_next && next->anon_vma && 791 anon_vma != next->anon_vma); 792 anon_vma_lock_write(anon_vma); 793 anon_vma_interval_tree_pre_update_vma(vma); 794 if (adjust_next) 795 anon_vma_interval_tree_pre_update_vma(next); 796 } 797 798 if (root) { 799 flush_dcache_mmap_lock(mapping); 800 vma_interval_tree_remove(vma, root); 801 if (adjust_next) 802 vma_interval_tree_remove(next, root); 803 } 804 805 if (start != vma->vm_start) { 806 vma->vm_start = start; 807 start_changed = true; 808 } 809 if (end != vma->vm_end) { 810 vma->vm_end = end; 811 end_changed = true; 812 } 813 vma->vm_pgoff = pgoff; 814 if (adjust_next) { 815 next->vm_start += adjust_next << PAGE_SHIFT; 816 next->vm_pgoff += adjust_next; 817 } 818 819 if (root) { 820 if (adjust_next) 821 vma_interval_tree_insert(next, root); 822 vma_interval_tree_insert(vma, root); 823 flush_dcache_mmap_unlock(mapping); 824 } 825 826 if (remove_next) { 827 /* 828 * vma_merge has merged next into vma, and needs 829 * us to remove next before dropping the locks. 830 */ 831 __vma_unlink(mm, next, vma); 832 if (file) 833 __remove_shared_vm_struct(next, file, mapping); 834 } else if (insert) { 835 /* 836 * split_vma has split insert from vma, and needs 837 * us to insert it before dropping the locks 838 * (it may either follow vma or precede it). 839 */ 840 __insert_vm_struct(mm, insert); 841 } else { 842 if (start_changed) 843 vma_gap_update(vma); 844 if (end_changed) { 845 if (!next) 846 mm->highest_vm_end = end; 847 else if (!adjust_next) 848 vma_gap_update(next); 849 } 850 } 851 852 if (anon_vma) { 853 anon_vma_interval_tree_post_update_vma(vma); 854 if (adjust_next) 855 anon_vma_interval_tree_post_update_vma(next); 856 anon_vma_unlock_write(anon_vma); 857 } 858 if (mapping) 859 mutex_unlock(&mapping->i_mmap_mutex); 860 861 if (root) { 862 uprobe_mmap(vma); 863 864 if (adjust_next) 865 uprobe_mmap(next); 866 } 867 868 if (remove_next) { 869 if (file) { 870 uprobe_munmap(next, next->vm_start, next->vm_end); 871 fput(file); 872 } 873 if (next->anon_vma) 874 anon_vma_merge(vma, next); 875 mm->map_count--; 876 mpol_put(vma_policy(next)); 877 kmem_cache_free(vm_area_cachep, next); 878 /* 879 * In mprotect's case 6 (see comments on vma_merge), 880 * we must remove another next too. It would clutter 881 * up the code too much to do both in one go. 882 */ 883 next = vma->vm_next; 884 if (remove_next == 2) 885 goto again; 886 else if (next) 887 vma_gap_update(next); 888 else 889 mm->highest_vm_end = end; 890 } 891 if (insert && file) 892 uprobe_mmap(insert); 893 894 validate_mm(mm); 895 896 return 0; 897 } 898 899 /* 900 * If the vma has a ->close operation then the driver probably needs to release 901 * per-vma resources, so we don't attempt to merge those. 902 */ 903 static inline int is_mergeable_vma(struct vm_area_struct *vma, 904 struct file *file, unsigned long vm_flags) 905 { 906 /* 907 * VM_SOFTDIRTY should not prevent from VMA merging, if we 908 * match the flags but dirty bit -- the caller should mark 909 * merged VMA as dirty. If dirty bit won't be excluded from 910 * comparison, we increase pressue on the memory system forcing 911 * the kernel to generate new VMAs when old one could be 912 * extended instead. 913 */ 914 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 915 return 0; 916 if (vma->vm_file != file) 917 return 0; 918 if (vma->vm_ops && vma->vm_ops->close) 919 return 0; 920 return 1; 921 } 922 923 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 924 struct anon_vma *anon_vma2, 925 struct vm_area_struct *vma) 926 { 927 /* 928 * The list_is_singular() test is to avoid merging VMA cloned from 929 * parents. This can improve scalability caused by anon_vma lock. 930 */ 931 if ((!anon_vma1 || !anon_vma2) && (!vma || 932 list_is_singular(&vma->anon_vma_chain))) 933 return 1; 934 return anon_vma1 == anon_vma2; 935 } 936 937 /* 938 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 939 * in front of (at a lower virtual address and file offset than) the vma. 940 * 941 * We cannot merge two vmas if they have differently assigned (non-NULL) 942 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 943 * 944 * We don't check here for the merged mmap wrapping around the end of pagecache 945 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 946 * wrap, nor mmaps which cover the final page at index -1UL. 947 */ 948 static int 949 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 950 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 951 { 952 if (is_mergeable_vma(vma, file, vm_flags) && 953 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 954 if (vma->vm_pgoff == vm_pgoff) 955 return 1; 956 } 957 return 0; 958 } 959 960 /* 961 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 962 * beyond (at a higher virtual address and file offset than) the vma. 963 * 964 * We cannot merge two vmas if they have differently assigned (non-NULL) 965 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 966 */ 967 static int 968 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 969 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 970 { 971 if (is_mergeable_vma(vma, file, vm_flags) && 972 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 973 pgoff_t vm_pglen; 974 vm_pglen = vma_pages(vma); 975 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 976 return 1; 977 } 978 return 0; 979 } 980 981 /* 982 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 983 * whether that can be merged with its predecessor or its successor. 984 * Or both (it neatly fills a hole). 985 * 986 * In most cases - when called for mmap, brk or mremap - [addr,end) is 987 * certain not to be mapped by the time vma_merge is called; but when 988 * called for mprotect, it is certain to be already mapped (either at 989 * an offset within prev, or at the start of next), and the flags of 990 * this area are about to be changed to vm_flags - and the no-change 991 * case has already been eliminated. 992 * 993 * The following mprotect cases have to be considered, where AAAA is 994 * the area passed down from mprotect_fixup, never extending beyond one 995 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 996 * 997 * AAAA AAAA AAAA AAAA 998 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 999 * cannot merge might become might become might become 1000 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1001 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1002 * mremap move: PPPPNNNNNNNN 8 1003 * AAAA 1004 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1005 * might become case 1 below case 2 below case 3 below 1006 * 1007 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 1008 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 1009 */ 1010 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1011 struct vm_area_struct *prev, unsigned long addr, 1012 unsigned long end, unsigned long vm_flags, 1013 struct anon_vma *anon_vma, struct file *file, 1014 pgoff_t pgoff, struct mempolicy *policy) 1015 { 1016 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1017 struct vm_area_struct *area, *next; 1018 int err; 1019 1020 /* 1021 * We later require that vma->vm_flags == vm_flags, 1022 * so this tests vma->vm_flags & VM_SPECIAL, too. 1023 */ 1024 if (vm_flags & VM_SPECIAL) 1025 return NULL; 1026 1027 if (prev) 1028 next = prev->vm_next; 1029 else 1030 next = mm->mmap; 1031 area = next; 1032 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 1033 next = next->vm_next; 1034 1035 /* 1036 * Can it merge with the predecessor? 1037 */ 1038 if (prev && prev->vm_end == addr && 1039 mpol_equal(vma_policy(prev), policy) && 1040 can_vma_merge_after(prev, vm_flags, 1041 anon_vma, file, pgoff)) { 1042 /* 1043 * OK, it can. Can we now merge in the successor as well? 1044 */ 1045 if (next && end == next->vm_start && 1046 mpol_equal(policy, vma_policy(next)) && 1047 can_vma_merge_before(next, vm_flags, 1048 anon_vma, file, pgoff+pglen) && 1049 is_mergeable_anon_vma(prev->anon_vma, 1050 next->anon_vma, NULL)) { 1051 /* cases 1, 6 */ 1052 err = vma_adjust(prev, prev->vm_start, 1053 next->vm_end, prev->vm_pgoff, NULL); 1054 } else /* cases 2, 5, 7 */ 1055 err = vma_adjust(prev, prev->vm_start, 1056 end, prev->vm_pgoff, NULL); 1057 if (err) 1058 return NULL; 1059 khugepaged_enter_vma_merge(prev); 1060 return prev; 1061 } 1062 1063 /* 1064 * Can this new request be merged in front of next? 1065 */ 1066 if (next && end == next->vm_start && 1067 mpol_equal(policy, vma_policy(next)) && 1068 can_vma_merge_before(next, vm_flags, 1069 anon_vma, file, pgoff+pglen)) { 1070 if (prev && addr < prev->vm_end) /* case 4 */ 1071 err = vma_adjust(prev, prev->vm_start, 1072 addr, prev->vm_pgoff, NULL); 1073 else /* cases 3, 8 */ 1074 err = vma_adjust(area, addr, next->vm_end, 1075 next->vm_pgoff - pglen, NULL); 1076 if (err) 1077 return NULL; 1078 khugepaged_enter_vma_merge(area); 1079 return area; 1080 } 1081 1082 return NULL; 1083 } 1084 1085 /* 1086 * Rough compatbility check to quickly see if it's even worth looking 1087 * at sharing an anon_vma. 1088 * 1089 * They need to have the same vm_file, and the flags can only differ 1090 * in things that mprotect may change. 1091 * 1092 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1093 * we can merge the two vma's. For example, we refuse to merge a vma if 1094 * there is a vm_ops->close() function, because that indicates that the 1095 * driver is doing some kind of reference counting. But that doesn't 1096 * really matter for the anon_vma sharing case. 1097 */ 1098 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1099 { 1100 return a->vm_end == b->vm_start && 1101 mpol_equal(vma_policy(a), vma_policy(b)) && 1102 a->vm_file == b->vm_file && 1103 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1104 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1105 } 1106 1107 /* 1108 * Do some basic sanity checking to see if we can re-use the anon_vma 1109 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1110 * the same as 'old', the other will be the new one that is trying 1111 * to share the anon_vma. 1112 * 1113 * NOTE! This runs with mm_sem held for reading, so it is possible that 1114 * the anon_vma of 'old' is concurrently in the process of being set up 1115 * by another page fault trying to merge _that_. But that's ok: if it 1116 * is being set up, that automatically means that it will be a singleton 1117 * acceptable for merging, so we can do all of this optimistically. But 1118 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 1119 * 1120 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1121 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1122 * is to return an anon_vma that is "complex" due to having gone through 1123 * a fork). 1124 * 1125 * We also make sure that the two vma's are compatible (adjacent, 1126 * and with the same memory policies). That's all stable, even with just 1127 * a read lock on the mm_sem. 1128 */ 1129 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1130 { 1131 if (anon_vma_compatible(a, b)) { 1132 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 1133 1134 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1135 return anon_vma; 1136 } 1137 return NULL; 1138 } 1139 1140 /* 1141 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1142 * neighbouring vmas for a suitable anon_vma, before it goes off 1143 * to allocate a new anon_vma. It checks because a repetitive 1144 * sequence of mprotects and faults may otherwise lead to distinct 1145 * anon_vmas being allocated, preventing vma merge in subsequent 1146 * mprotect. 1147 */ 1148 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1149 { 1150 struct anon_vma *anon_vma; 1151 struct vm_area_struct *near; 1152 1153 near = vma->vm_next; 1154 if (!near) 1155 goto try_prev; 1156 1157 anon_vma = reusable_anon_vma(near, vma, near); 1158 if (anon_vma) 1159 return anon_vma; 1160 try_prev: 1161 near = vma->vm_prev; 1162 if (!near) 1163 goto none; 1164 1165 anon_vma = reusable_anon_vma(near, near, vma); 1166 if (anon_vma) 1167 return anon_vma; 1168 none: 1169 /* 1170 * There's no absolute need to look only at touching neighbours: 1171 * we could search further afield for "compatible" anon_vmas. 1172 * But it would probably just be a waste of time searching, 1173 * or lead to too many vmas hanging off the same anon_vma. 1174 * We're trying to allow mprotect remerging later on, 1175 * not trying to minimize memory used for anon_vmas. 1176 */ 1177 return NULL; 1178 } 1179 1180 #ifdef CONFIG_PROC_FS 1181 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 1182 struct file *file, long pages) 1183 { 1184 const unsigned long stack_flags 1185 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 1186 1187 mm->total_vm += pages; 1188 1189 if (file) { 1190 mm->shared_vm += pages; 1191 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 1192 mm->exec_vm += pages; 1193 } else if (flags & stack_flags) 1194 mm->stack_vm += pages; 1195 } 1196 #endif /* CONFIG_PROC_FS */ 1197 1198 /* 1199 * If a hint addr is less than mmap_min_addr change hint to be as 1200 * low as possible but still greater than mmap_min_addr 1201 */ 1202 static inline unsigned long round_hint_to_min(unsigned long hint) 1203 { 1204 hint &= PAGE_MASK; 1205 if (((void *)hint != NULL) && 1206 (hint < mmap_min_addr)) 1207 return PAGE_ALIGN(mmap_min_addr); 1208 return hint; 1209 } 1210 1211 static inline int mlock_future_check(struct mm_struct *mm, 1212 unsigned long flags, 1213 unsigned long len) 1214 { 1215 unsigned long locked, lock_limit; 1216 1217 /* mlock MCL_FUTURE? */ 1218 if (flags & VM_LOCKED) { 1219 locked = len >> PAGE_SHIFT; 1220 locked += mm->locked_vm; 1221 lock_limit = rlimit(RLIMIT_MEMLOCK); 1222 lock_limit >>= PAGE_SHIFT; 1223 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1224 return -EAGAIN; 1225 } 1226 return 0; 1227 } 1228 1229 /* 1230 * The caller must hold down_write(¤t->mm->mmap_sem). 1231 */ 1232 1233 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1234 unsigned long len, unsigned long prot, 1235 unsigned long flags, unsigned long pgoff, 1236 unsigned long *populate) 1237 { 1238 struct mm_struct * mm = current->mm; 1239 vm_flags_t vm_flags; 1240 1241 *populate = 0; 1242 1243 /* 1244 * Does the application expect PROT_READ to imply PROT_EXEC? 1245 * 1246 * (the exception is when the underlying filesystem is noexec 1247 * mounted, in which case we dont add PROT_EXEC.) 1248 */ 1249 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1250 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 1251 prot |= PROT_EXEC; 1252 1253 if (!len) 1254 return -EINVAL; 1255 1256 if (!(flags & MAP_FIXED)) 1257 addr = round_hint_to_min(addr); 1258 1259 /* Careful about overflows.. */ 1260 len = PAGE_ALIGN(len); 1261 if (!len) 1262 return -ENOMEM; 1263 1264 /* offset overflow? */ 1265 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1266 return -EOVERFLOW; 1267 1268 /* Too many mappings? */ 1269 if (mm->map_count > sysctl_max_map_count) 1270 return -ENOMEM; 1271 1272 /* Obtain the address to map to. we verify (or select) it and ensure 1273 * that it represents a valid section of the address space. 1274 */ 1275 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1276 if (addr & ~PAGE_MASK) 1277 return addr; 1278 1279 /* Do simple checking here so the lower-level routines won't have 1280 * to. we assume access permissions have been handled by the open 1281 * of the memory object, so we don't do any here. 1282 */ 1283 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1284 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1285 1286 if (flags & MAP_LOCKED) 1287 if (!can_do_mlock()) 1288 return -EPERM; 1289 1290 if (mlock_future_check(mm, vm_flags, len)) 1291 return -EAGAIN; 1292 1293 if (file) { 1294 struct inode *inode = file_inode(file); 1295 1296 switch (flags & MAP_TYPE) { 1297 case MAP_SHARED: 1298 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1299 return -EACCES; 1300 1301 /* 1302 * Make sure we don't allow writing to an append-only 1303 * file.. 1304 */ 1305 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1306 return -EACCES; 1307 1308 /* 1309 * Make sure there are no mandatory locks on the file. 1310 */ 1311 if (locks_verify_locked(file)) 1312 return -EAGAIN; 1313 1314 vm_flags |= VM_SHARED | VM_MAYSHARE; 1315 if (!(file->f_mode & FMODE_WRITE)) 1316 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1317 1318 /* fall through */ 1319 case MAP_PRIVATE: 1320 if (!(file->f_mode & FMODE_READ)) 1321 return -EACCES; 1322 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1323 if (vm_flags & VM_EXEC) 1324 return -EPERM; 1325 vm_flags &= ~VM_MAYEXEC; 1326 } 1327 1328 if (!file->f_op->mmap) 1329 return -ENODEV; 1330 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1331 return -EINVAL; 1332 break; 1333 1334 default: 1335 return -EINVAL; 1336 } 1337 } else { 1338 switch (flags & MAP_TYPE) { 1339 case MAP_SHARED: 1340 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1341 return -EINVAL; 1342 /* 1343 * Ignore pgoff. 1344 */ 1345 pgoff = 0; 1346 vm_flags |= VM_SHARED | VM_MAYSHARE; 1347 break; 1348 case MAP_PRIVATE: 1349 /* 1350 * Set pgoff according to addr for anon_vma. 1351 */ 1352 pgoff = addr >> PAGE_SHIFT; 1353 break; 1354 default: 1355 return -EINVAL; 1356 } 1357 } 1358 1359 /* 1360 * Set 'VM_NORESERVE' if we should not account for the 1361 * memory use of this mapping. 1362 */ 1363 if (flags & MAP_NORESERVE) { 1364 /* We honor MAP_NORESERVE if allowed to overcommit */ 1365 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1366 vm_flags |= VM_NORESERVE; 1367 1368 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1369 if (file && is_file_hugepages(file)) 1370 vm_flags |= VM_NORESERVE; 1371 } 1372 1373 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1374 if (!IS_ERR_VALUE(addr) && 1375 ((vm_flags & VM_LOCKED) || 1376 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1377 *populate = len; 1378 return addr; 1379 } 1380 1381 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1382 unsigned long, prot, unsigned long, flags, 1383 unsigned long, fd, unsigned long, pgoff) 1384 { 1385 struct file *file = NULL; 1386 unsigned long retval = -EBADF; 1387 1388 if (!(flags & MAP_ANONYMOUS)) { 1389 audit_mmap_fd(fd, flags); 1390 file = fget(fd); 1391 if (!file) 1392 goto out; 1393 if (is_file_hugepages(file)) 1394 len = ALIGN(len, huge_page_size(hstate_file(file))); 1395 retval = -EINVAL; 1396 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1397 goto out_fput; 1398 } else if (flags & MAP_HUGETLB) { 1399 struct user_struct *user = NULL; 1400 struct hstate *hs; 1401 1402 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1403 if (!hs) 1404 return -EINVAL; 1405 1406 len = ALIGN(len, huge_page_size(hs)); 1407 /* 1408 * VM_NORESERVE is used because the reservations will be 1409 * taken when vm_ops->mmap() is called 1410 * A dummy user value is used because we are not locking 1411 * memory so no accounting is necessary 1412 */ 1413 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1414 VM_NORESERVE, 1415 &user, HUGETLB_ANONHUGE_INODE, 1416 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1417 if (IS_ERR(file)) 1418 return PTR_ERR(file); 1419 } 1420 1421 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1422 1423 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1424 out_fput: 1425 if (file) 1426 fput(file); 1427 out: 1428 return retval; 1429 } 1430 1431 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1432 struct mmap_arg_struct { 1433 unsigned long addr; 1434 unsigned long len; 1435 unsigned long prot; 1436 unsigned long flags; 1437 unsigned long fd; 1438 unsigned long offset; 1439 }; 1440 1441 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1442 { 1443 struct mmap_arg_struct a; 1444 1445 if (copy_from_user(&a, arg, sizeof(a))) 1446 return -EFAULT; 1447 if (a.offset & ~PAGE_MASK) 1448 return -EINVAL; 1449 1450 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1451 a.offset >> PAGE_SHIFT); 1452 } 1453 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1454 1455 /* 1456 * Some shared mappigns will want the pages marked read-only 1457 * to track write events. If so, we'll downgrade vm_page_prot 1458 * to the private version (using protection_map[] without the 1459 * VM_SHARED bit). 1460 */ 1461 int vma_wants_writenotify(struct vm_area_struct *vma) 1462 { 1463 vm_flags_t vm_flags = vma->vm_flags; 1464 1465 /* If it was private or non-writable, the write bit is already clear */ 1466 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1467 return 0; 1468 1469 /* The backer wishes to know when pages are first written to? */ 1470 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1471 return 1; 1472 1473 /* The open routine did something to the protections already? */ 1474 if (pgprot_val(vma->vm_page_prot) != 1475 pgprot_val(vm_get_page_prot(vm_flags))) 1476 return 0; 1477 1478 /* Specialty mapping? */ 1479 if (vm_flags & VM_PFNMAP) 1480 return 0; 1481 1482 /* Can the mapping track the dirty pages? */ 1483 return vma->vm_file && vma->vm_file->f_mapping && 1484 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1485 } 1486 1487 /* 1488 * We account for memory if it's a private writeable mapping, 1489 * not hugepages and VM_NORESERVE wasn't set. 1490 */ 1491 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1492 { 1493 /* 1494 * hugetlb has its own accounting separate from the core VM 1495 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1496 */ 1497 if (file && is_file_hugepages(file)) 1498 return 0; 1499 1500 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1501 } 1502 1503 unsigned long mmap_region(struct file *file, unsigned long addr, 1504 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1505 { 1506 struct mm_struct *mm = current->mm; 1507 struct vm_area_struct *vma, *prev; 1508 int error; 1509 struct rb_node **rb_link, *rb_parent; 1510 unsigned long charged = 0; 1511 1512 /* Check against address space limit. */ 1513 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) { 1514 unsigned long nr_pages; 1515 1516 /* 1517 * MAP_FIXED may remove pages of mappings that intersects with 1518 * requested mapping. Account for the pages it would unmap. 1519 */ 1520 if (!(vm_flags & MAP_FIXED)) 1521 return -ENOMEM; 1522 1523 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1524 1525 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages)) 1526 return -ENOMEM; 1527 } 1528 1529 /* Clear old maps */ 1530 error = -ENOMEM; 1531 munmap_back: 1532 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 1533 if (do_munmap(mm, addr, len)) 1534 return -ENOMEM; 1535 goto munmap_back; 1536 } 1537 1538 /* 1539 * Private writable mapping: check memory availability 1540 */ 1541 if (accountable_mapping(file, vm_flags)) { 1542 charged = len >> PAGE_SHIFT; 1543 if (security_vm_enough_memory_mm(mm, charged)) 1544 return -ENOMEM; 1545 vm_flags |= VM_ACCOUNT; 1546 } 1547 1548 /* 1549 * Can we just expand an old mapping? 1550 */ 1551 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1552 if (vma) 1553 goto out; 1554 1555 /* 1556 * Determine the object being mapped and call the appropriate 1557 * specific mapper. the address has already been validated, but 1558 * not unmapped, but the maps are removed from the list. 1559 */ 1560 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1561 if (!vma) { 1562 error = -ENOMEM; 1563 goto unacct_error; 1564 } 1565 1566 vma->vm_mm = mm; 1567 vma->vm_start = addr; 1568 vma->vm_end = addr + len; 1569 vma->vm_flags = vm_flags; 1570 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1571 vma->vm_pgoff = pgoff; 1572 INIT_LIST_HEAD(&vma->anon_vma_chain); 1573 1574 if (file) { 1575 if (vm_flags & VM_DENYWRITE) { 1576 error = deny_write_access(file); 1577 if (error) 1578 goto free_vma; 1579 } 1580 if (vm_flags & VM_SHARED) { 1581 error = mapping_map_writable(file->f_mapping); 1582 if (error) 1583 goto allow_write_and_free_vma; 1584 } 1585 1586 /* ->mmap() can change vma->vm_file, but must guarantee that 1587 * vma_link() below can deny write-access if VM_DENYWRITE is set 1588 * and map writably if VM_SHARED is set. This usually means the 1589 * new file must not have been exposed to user-space, yet. 1590 */ 1591 vma->vm_file = get_file(file); 1592 error = file->f_op->mmap(file, vma); 1593 if (error) 1594 goto unmap_and_free_vma; 1595 1596 /* Can addr have changed?? 1597 * 1598 * Answer: Yes, several device drivers can do it in their 1599 * f_op->mmap method. -DaveM 1600 * Bug: If addr is changed, prev, rb_link, rb_parent should 1601 * be updated for vma_link() 1602 */ 1603 WARN_ON_ONCE(addr != vma->vm_start); 1604 1605 addr = vma->vm_start; 1606 vm_flags = vma->vm_flags; 1607 } else if (vm_flags & VM_SHARED) { 1608 error = shmem_zero_setup(vma); 1609 if (error) 1610 goto free_vma; 1611 } 1612 1613 if (vma_wants_writenotify(vma)) { 1614 pgprot_t pprot = vma->vm_page_prot; 1615 1616 /* Can vma->vm_page_prot have changed?? 1617 * 1618 * Answer: Yes, drivers may have changed it in their 1619 * f_op->mmap method. 1620 * 1621 * Ensures that vmas marked as uncached stay that way. 1622 */ 1623 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1624 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1625 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1626 } 1627 1628 vma_link(mm, vma, prev, rb_link, rb_parent); 1629 /* Once vma denies write, undo our temporary denial count */ 1630 if (file) { 1631 if (vm_flags & VM_SHARED) 1632 mapping_unmap_writable(file->f_mapping); 1633 if (vm_flags & VM_DENYWRITE) 1634 allow_write_access(file); 1635 } 1636 file = vma->vm_file; 1637 out: 1638 perf_event_mmap(vma); 1639 1640 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1641 if (vm_flags & VM_LOCKED) { 1642 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1643 vma == get_gate_vma(current->mm))) 1644 mm->locked_vm += (len >> PAGE_SHIFT); 1645 else 1646 vma->vm_flags &= ~VM_LOCKED; 1647 } 1648 1649 if (file) 1650 uprobe_mmap(vma); 1651 1652 /* 1653 * New (or expanded) vma always get soft dirty status. 1654 * Otherwise user-space soft-dirty page tracker won't 1655 * be able to distinguish situation when vma area unmapped, 1656 * then new mapped in-place (which must be aimed as 1657 * a completely new data area). 1658 */ 1659 vma->vm_flags |= VM_SOFTDIRTY; 1660 1661 return addr; 1662 1663 unmap_and_free_vma: 1664 vma->vm_file = NULL; 1665 fput(file); 1666 1667 /* Undo any partial mapping done by a device driver. */ 1668 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1669 charged = 0; 1670 if (vm_flags & VM_SHARED) 1671 mapping_unmap_writable(file->f_mapping); 1672 allow_write_and_free_vma: 1673 if (vm_flags & VM_DENYWRITE) 1674 allow_write_access(file); 1675 free_vma: 1676 kmem_cache_free(vm_area_cachep, vma); 1677 unacct_error: 1678 if (charged) 1679 vm_unacct_memory(charged); 1680 return error; 1681 } 1682 1683 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1684 { 1685 /* 1686 * We implement the search by looking for an rbtree node that 1687 * immediately follows a suitable gap. That is, 1688 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1689 * - gap_end = vma->vm_start >= info->low_limit + length; 1690 * - gap_end - gap_start >= length 1691 */ 1692 1693 struct mm_struct *mm = current->mm; 1694 struct vm_area_struct *vma; 1695 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1696 1697 /* Adjust search length to account for worst case alignment overhead */ 1698 length = info->length + info->align_mask; 1699 if (length < info->length) 1700 return -ENOMEM; 1701 1702 /* Adjust search limits by the desired length */ 1703 if (info->high_limit < length) 1704 return -ENOMEM; 1705 high_limit = info->high_limit - length; 1706 1707 if (info->low_limit > high_limit) 1708 return -ENOMEM; 1709 low_limit = info->low_limit + length; 1710 1711 /* Check if rbtree root looks promising */ 1712 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1713 goto check_highest; 1714 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1715 if (vma->rb_subtree_gap < length) 1716 goto check_highest; 1717 1718 while (true) { 1719 /* Visit left subtree if it looks promising */ 1720 gap_end = vma->vm_start; 1721 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1722 struct vm_area_struct *left = 1723 rb_entry(vma->vm_rb.rb_left, 1724 struct vm_area_struct, vm_rb); 1725 if (left->rb_subtree_gap >= length) { 1726 vma = left; 1727 continue; 1728 } 1729 } 1730 1731 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1732 check_current: 1733 /* Check if current node has a suitable gap */ 1734 if (gap_start > high_limit) 1735 return -ENOMEM; 1736 if (gap_end >= low_limit && gap_end - gap_start >= length) 1737 goto found; 1738 1739 /* Visit right subtree if it looks promising */ 1740 if (vma->vm_rb.rb_right) { 1741 struct vm_area_struct *right = 1742 rb_entry(vma->vm_rb.rb_right, 1743 struct vm_area_struct, vm_rb); 1744 if (right->rb_subtree_gap >= length) { 1745 vma = right; 1746 continue; 1747 } 1748 } 1749 1750 /* Go back up the rbtree to find next candidate node */ 1751 while (true) { 1752 struct rb_node *prev = &vma->vm_rb; 1753 if (!rb_parent(prev)) 1754 goto check_highest; 1755 vma = rb_entry(rb_parent(prev), 1756 struct vm_area_struct, vm_rb); 1757 if (prev == vma->vm_rb.rb_left) { 1758 gap_start = vma->vm_prev->vm_end; 1759 gap_end = vma->vm_start; 1760 goto check_current; 1761 } 1762 } 1763 } 1764 1765 check_highest: 1766 /* Check highest gap, which does not precede any rbtree node */ 1767 gap_start = mm->highest_vm_end; 1768 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1769 if (gap_start > high_limit) 1770 return -ENOMEM; 1771 1772 found: 1773 /* We found a suitable gap. Clip it with the original low_limit. */ 1774 if (gap_start < info->low_limit) 1775 gap_start = info->low_limit; 1776 1777 /* Adjust gap address to the desired alignment */ 1778 gap_start += (info->align_offset - gap_start) & info->align_mask; 1779 1780 VM_BUG_ON(gap_start + info->length > info->high_limit); 1781 VM_BUG_ON(gap_start + info->length > gap_end); 1782 return gap_start; 1783 } 1784 1785 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1786 { 1787 struct mm_struct *mm = current->mm; 1788 struct vm_area_struct *vma; 1789 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1790 1791 /* Adjust search length to account for worst case alignment overhead */ 1792 length = info->length + info->align_mask; 1793 if (length < info->length) 1794 return -ENOMEM; 1795 1796 /* 1797 * Adjust search limits by the desired length. 1798 * See implementation comment at top of unmapped_area(). 1799 */ 1800 gap_end = info->high_limit; 1801 if (gap_end < length) 1802 return -ENOMEM; 1803 high_limit = gap_end - length; 1804 1805 if (info->low_limit > high_limit) 1806 return -ENOMEM; 1807 low_limit = info->low_limit + length; 1808 1809 /* Check highest gap, which does not precede any rbtree node */ 1810 gap_start = mm->highest_vm_end; 1811 if (gap_start <= high_limit) 1812 goto found_highest; 1813 1814 /* Check if rbtree root looks promising */ 1815 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1816 return -ENOMEM; 1817 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1818 if (vma->rb_subtree_gap < length) 1819 return -ENOMEM; 1820 1821 while (true) { 1822 /* Visit right subtree if it looks promising */ 1823 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1824 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1825 struct vm_area_struct *right = 1826 rb_entry(vma->vm_rb.rb_right, 1827 struct vm_area_struct, vm_rb); 1828 if (right->rb_subtree_gap >= length) { 1829 vma = right; 1830 continue; 1831 } 1832 } 1833 1834 check_current: 1835 /* Check if current node has a suitable gap */ 1836 gap_end = vma->vm_start; 1837 if (gap_end < low_limit) 1838 return -ENOMEM; 1839 if (gap_start <= high_limit && gap_end - gap_start >= length) 1840 goto found; 1841 1842 /* Visit left subtree if it looks promising */ 1843 if (vma->vm_rb.rb_left) { 1844 struct vm_area_struct *left = 1845 rb_entry(vma->vm_rb.rb_left, 1846 struct vm_area_struct, vm_rb); 1847 if (left->rb_subtree_gap >= length) { 1848 vma = left; 1849 continue; 1850 } 1851 } 1852 1853 /* Go back up the rbtree to find next candidate node */ 1854 while (true) { 1855 struct rb_node *prev = &vma->vm_rb; 1856 if (!rb_parent(prev)) 1857 return -ENOMEM; 1858 vma = rb_entry(rb_parent(prev), 1859 struct vm_area_struct, vm_rb); 1860 if (prev == vma->vm_rb.rb_right) { 1861 gap_start = vma->vm_prev ? 1862 vma->vm_prev->vm_end : 0; 1863 goto check_current; 1864 } 1865 } 1866 } 1867 1868 found: 1869 /* We found a suitable gap. Clip it with the original high_limit. */ 1870 if (gap_end > info->high_limit) 1871 gap_end = info->high_limit; 1872 1873 found_highest: 1874 /* Compute highest gap address at the desired alignment */ 1875 gap_end -= info->length; 1876 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1877 1878 VM_BUG_ON(gap_end < info->low_limit); 1879 VM_BUG_ON(gap_end < gap_start); 1880 return gap_end; 1881 } 1882 1883 /* Get an address range which is currently unmapped. 1884 * For shmat() with addr=0. 1885 * 1886 * Ugly calling convention alert: 1887 * Return value with the low bits set means error value, 1888 * ie 1889 * if (ret & ~PAGE_MASK) 1890 * error = ret; 1891 * 1892 * This function "knows" that -ENOMEM has the bits set. 1893 */ 1894 #ifndef HAVE_ARCH_UNMAPPED_AREA 1895 unsigned long 1896 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1897 unsigned long len, unsigned long pgoff, unsigned long flags) 1898 { 1899 struct mm_struct *mm = current->mm; 1900 struct vm_area_struct *vma; 1901 struct vm_unmapped_area_info info; 1902 1903 if (len > TASK_SIZE - mmap_min_addr) 1904 return -ENOMEM; 1905 1906 if (flags & MAP_FIXED) 1907 return addr; 1908 1909 if (addr) { 1910 addr = PAGE_ALIGN(addr); 1911 vma = find_vma(mm, addr); 1912 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1913 (!vma || addr + len <= vma->vm_start)) 1914 return addr; 1915 } 1916 1917 info.flags = 0; 1918 info.length = len; 1919 info.low_limit = mm->mmap_base; 1920 info.high_limit = TASK_SIZE; 1921 info.align_mask = 0; 1922 return vm_unmapped_area(&info); 1923 } 1924 #endif 1925 1926 /* 1927 * This mmap-allocator allocates new areas top-down from below the 1928 * stack's low limit (the base): 1929 */ 1930 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1931 unsigned long 1932 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1933 const unsigned long len, const unsigned long pgoff, 1934 const unsigned long flags) 1935 { 1936 struct vm_area_struct *vma; 1937 struct mm_struct *mm = current->mm; 1938 unsigned long addr = addr0; 1939 struct vm_unmapped_area_info info; 1940 1941 /* requested length too big for entire address space */ 1942 if (len > TASK_SIZE - mmap_min_addr) 1943 return -ENOMEM; 1944 1945 if (flags & MAP_FIXED) 1946 return addr; 1947 1948 /* requesting a specific address */ 1949 if (addr) { 1950 addr = PAGE_ALIGN(addr); 1951 vma = find_vma(mm, addr); 1952 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1953 (!vma || addr + len <= vma->vm_start)) 1954 return addr; 1955 } 1956 1957 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1958 info.length = len; 1959 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1960 info.high_limit = mm->mmap_base; 1961 info.align_mask = 0; 1962 addr = vm_unmapped_area(&info); 1963 1964 /* 1965 * A failed mmap() very likely causes application failure, 1966 * so fall back to the bottom-up function here. This scenario 1967 * can happen with large stack limits and large mmap() 1968 * allocations. 1969 */ 1970 if (addr & ~PAGE_MASK) { 1971 VM_BUG_ON(addr != -ENOMEM); 1972 info.flags = 0; 1973 info.low_limit = TASK_UNMAPPED_BASE; 1974 info.high_limit = TASK_SIZE; 1975 addr = vm_unmapped_area(&info); 1976 } 1977 1978 return addr; 1979 } 1980 #endif 1981 1982 unsigned long 1983 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1984 unsigned long pgoff, unsigned long flags) 1985 { 1986 unsigned long (*get_area)(struct file *, unsigned long, 1987 unsigned long, unsigned long, unsigned long); 1988 1989 unsigned long error = arch_mmap_check(addr, len, flags); 1990 if (error) 1991 return error; 1992 1993 /* Careful about overflows.. */ 1994 if (len > TASK_SIZE) 1995 return -ENOMEM; 1996 1997 get_area = current->mm->get_unmapped_area; 1998 if (file && file->f_op->get_unmapped_area) 1999 get_area = file->f_op->get_unmapped_area; 2000 addr = get_area(file, addr, len, pgoff, flags); 2001 if (IS_ERR_VALUE(addr)) 2002 return addr; 2003 2004 if (addr > TASK_SIZE - len) 2005 return -ENOMEM; 2006 if (addr & ~PAGE_MASK) 2007 return -EINVAL; 2008 2009 addr = arch_rebalance_pgtables(addr, len); 2010 error = security_mmap_addr(addr); 2011 return error ? error : addr; 2012 } 2013 2014 EXPORT_SYMBOL(get_unmapped_area); 2015 2016 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2017 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2018 { 2019 struct rb_node *rb_node; 2020 struct vm_area_struct *vma; 2021 2022 /* Check the cache first. */ 2023 vma = vmacache_find(mm, addr); 2024 if (likely(vma)) 2025 return vma; 2026 2027 rb_node = mm->mm_rb.rb_node; 2028 vma = NULL; 2029 2030 while (rb_node) { 2031 struct vm_area_struct *tmp; 2032 2033 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2034 2035 if (tmp->vm_end > addr) { 2036 vma = tmp; 2037 if (tmp->vm_start <= addr) 2038 break; 2039 rb_node = rb_node->rb_left; 2040 } else 2041 rb_node = rb_node->rb_right; 2042 } 2043 2044 if (vma) 2045 vmacache_update(addr, vma); 2046 return vma; 2047 } 2048 2049 EXPORT_SYMBOL(find_vma); 2050 2051 /* 2052 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2053 */ 2054 struct vm_area_struct * 2055 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2056 struct vm_area_struct **pprev) 2057 { 2058 struct vm_area_struct *vma; 2059 2060 vma = find_vma(mm, addr); 2061 if (vma) { 2062 *pprev = vma->vm_prev; 2063 } else { 2064 struct rb_node *rb_node = mm->mm_rb.rb_node; 2065 *pprev = NULL; 2066 while (rb_node) { 2067 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2068 rb_node = rb_node->rb_right; 2069 } 2070 } 2071 return vma; 2072 } 2073 2074 /* 2075 * Verify that the stack growth is acceptable and 2076 * update accounting. This is shared with both the 2077 * grow-up and grow-down cases. 2078 */ 2079 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2080 { 2081 struct mm_struct *mm = vma->vm_mm; 2082 struct rlimit *rlim = current->signal->rlim; 2083 unsigned long new_start; 2084 2085 /* address space limit tests */ 2086 if (!may_expand_vm(mm, grow)) 2087 return -ENOMEM; 2088 2089 /* Stack limit test */ 2090 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2091 return -ENOMEM; 2092 2093 /* mlock limit tests */ 2094 if (vma->vm_flags & VM_LOCKED) { 2095 unsigned long locked; 2096 unsigned long limit; 2097 locked = mm->locked_vm + grow; 2098 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2099 limit >>= PAGE_SHIFT; 2100 if (locked > limit && !capable(CAP_IPC_LOCK)) 2101 return -ENOMEM; 2102 } 2103 2104 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2105 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2106 vma->vm_end - size; 2107 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2108 return -EFAULT; 2109 2110 /* 2111 * Overcommit.. This must be the final test, as it will 2112 * update security statistics. 2113 */ 2114 if (security_vm_enough_memory_mm(mm, grow)) 2115 return -ENOMEM; 2116 2117 /* Ok, everything looks good - let it rip */ 2118 if (vma->vm_flags & VM_LOCKED) 2119 mm->locked_vm += grow; 2120 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 2121 return 0; 2122 } 2123 2124 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2125 /* 2126 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2127 * vma is the last one with address > vma->vm_end. Have to extend vma. 2128 */ 2129 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2130 { 2131 int error; 2132 2133 if (!(vma->vm_flags & VM_GROWSUP)) 2134 return -EFAULT; 2135 2136 /* 2137 * We must make sure the anon_vma is allocated 2138 * so that the anon_vma locking is not a noop. 2139 */ 2140 if (unlikely(anon_vma_prepare(vma))) 2141 return -ENOMEM; 2142 vma_lock_anon_vma(vma); 2143 2144 /* 2145 * vma->vm_start/vm_end cannot change under us because the caller 2146 * is required to hold the mmap_sem in read mode. We need the 2147 * anon_vma lock to serialize against concurrent expand_stacks. 2148 * Also guard against wrapping around to address 0. 2149 */ 2150 if (address < PAGE_ALIGN(address+4)) 2151 address = PAGE_ALIGN(address+4); 2152 else { 2153 vma_unlock_anon_vma(vma); 2154 return -ENOMEM; 2155 } 2156 error = 0; 2157 2158 /* Somebody else might have raced and expanded it already */ 2159 if (address > vma->vm_end) { 2160 unsigned long size, grow; 2161 2162 size = address - vma->vm_start; 2163 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2164 2165 error = -ENOMEM; 2166 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2167 error = acct_stack_growth(vma, size, grow); 2168 if (!error) { 2169 /* 2170 * vma_gap_update() doesn't support concurrent 2171 * updates, but we only hold a shared mmap_sem 2172 * lock here, so we need to protect against 2173 * concurrent vma expansions. 2174 * vma_lock_anon_vma() doesn't help here, as 2175 * we don't guarantee that all growable vmas 2176 * in a mm share the same root anon vma. 2177 * So, we reuse mm->page_table_lock to guard 2178 * against concurrent vma expansions. 2179 */ 2180 spin_lock(&vma->vm_mm->page_table_lock); 2181 anon_vma_interval_tree_pre_update_vma(vma); 2182 vma->vm_end = address; 2183 anon_vma_interval_tree_post_update_vma(vma); 2184 if (vma->vm_next) 2185 vma_gap_update(vma->vm_next); 2186 else 2187 vma->vm_mm->highest_vm_end = address; 2188 spin_unlock(&vma->vm_mm->page_table_lock); 2189 2190 perf_event_mmap(vma); 2191 } 2192 } 2193 } 2194 vma_unlock_anon_vma(vma); 2195 khugepaged_enter_vma_merge(vma); 2196 validate_mm(vma->vm_mm); 2197 return error; 2198 } 2199 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2200 2201 /* 2202 * vma is the first one with address < vma->vm_start. Have to extend vma. 2203 */ 2204 int expand_downwards(struct vm_area_struct *vma, 2205 unsigned long address) 2206 { 2207 int error; 2208 2209 /* 2210 * We must make sure the anon_vma is allocated 2211 * so that the anon_vma locking is not a noop. 2212 */ 2213 if (unlikely(anon_vma_prepare(vma))) 2214 return -ENOMEM; 2215 2216 address &= PAGE_MASK; 2217 error = security_mmap_addr(address); 2218 if (error) 2219 return error; 2220 2221 vma_lock_anon_vma(vma); 2222 2223 /* 2224 * vma->vm_start/vm_end cannot change under us because the caller 2225 * is required to hold the mmap_sem in read mode. We need the 2226 * anon_vma lock to serialize against concurrent expand_stacks. 2227 */ 2228 2229 /* Somebody else might have raced and expanded it already */ 2230 if (address < vma->vm_start) { 2231 unsigned long size, grow; 2232 2233 size = vma->vm_end - address; 2234 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2235 2236 error = -ENOMEM; 2237 if (grow <= vma->vm_pgoff) { 2238 error = acct_stack_growth(vma, size, grow); 2239 if (!error) { 2240 /* 2241 * vma_gap_update() doesn't support concurrent 2242 * updates, but we only hold a shared mmap_sem 2243 * lock here, so we need to protect against 2244 * concurrent vma expansions. 2245 * vma_lock_anon_vma() doesn't help here, as 2246 * we don't guarantee that all growable vmas 2247 * in a mm share the same root anon vma. 2248 * So, we reuse mm->page_table_lock to guard 2249 * against concurrent vma expansions. 2250 */ 2251 spin_lock(&vma->vm_mm->page_table_lock); 2252 anon_vma_interval_tree_pre_update_vma(vma); 2253 vma->vm_start = address; 2254 vma->vm_pgoff -= grow; 2255 anon_vma_interval_tree_post_update_vma(vma); 2256 vma_gap_update(vma); 2257 spin_unlock(&vma->vm_mm->page_table_lock); 2258 2259 perf_event_mmap(vma); 2260 } 2261 } 2262 } 2263 vma_unlock_anon_vma(vma); 2264 khugepaged_enter_vma_merge(vma); 2265 validate_mm(vma->vm_mm); 2266 return error; 2267 } 2268 2269 /* 2270 * Note how expand_stack() refuses to expand the stack all the way to 2271 * abut the next virtual mapping, *unless* that mapping itself is also 2272 * a stack mapping. We want to leave room for a guard page, after all 2273 * (the guard page itself is not added here, that is done by the 2274 * actual page faulting logic) 2275 * 2276 * This matches the behavior of the guard page logic (see mm/memory.c: 2277 * check_stack_guard_page()), which only allows the guard page to be 2278 * removed under these circumstances. 2279 */ 2280 #ifdef CONFIG_STACK_GROWSUP 2281 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2282 { 2283 struct vm_area_struct *next; 2284 2285 address &= PAGE_MASK; 2286 next = vma->vm_next; 2287 if (next && next->vm_start == address + PAGE_SIZE) { 2288 if (!(next->vm_flags & VM_GROWSUP)) 2289 return -ENOMEM; 2290 } 2291 return expand_upwards(vma, address); 2292 } 2293 2294 struct vm_area_struct * 2295 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2296 { 2297 struct vm_area_struct *vma, *prev; 2298 2299 addr &= PAGE_MASK; 2300 vma = find_vma_prev(mm, addr, &prev); 2301 if (vma && (vma->vm_start <= addr)) 2302 return vma; 2303 if (!prev || expand_stack(prev, addr)) 2304 return NULL; 2305 if (prev->vm_flags & VM_LOCKED) 2306 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL); 2307 return prev; 2308 } 2309 #else 2310 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2311 { 2312 struct vm_area_struct *prev; 2313 2314 address &= PAGE_MASK; 2315 prev = vma->vm_prev; 2316 if (prev && prev->vm_end == address) { 2317 if (!(prev->vm_flags & VM_GROWSDOWN)) 2318 return -ENOMEM; 2319 } 2320 return expand_downwards(vma, address); 2321 } 2322 2323 struct vm_area_struct * 2324 find_extend_vma(struct mm_struct * mm, unsigned long addr) 2325 { 2326 struct vm_area_struct * vma; 2327 unsigned long start; 2328 2329 addr &= PAGE_MASK; 2330 vma = find_vma(mm,addr); 2331 if (!vma) 2332 return NULL; 2333 if (vma->vm_start <= addr) 2334 return vma; 2335 if (!(vma->vm_flags & VM_GROWSDOWN)) 2336 return NULL; 2337 start = vma->vm_start; 2338 if (expand_stack(vma, addr)) 2339 return NULL; 2340 if (vma->vm_flags & VM_LOCKED) 2341 __mlock_vma_pages_range(vma, addr, start, NULL); 2342 return vma; 2343 } 2344 #endif 2345 2346 /* 2347 * Ok - we have the memory areas we should free on the vma list, 2348 * so release them, and do the vma updates. 2349 * 2350 * Called with the mm semaphore held. 2351 */ 2352 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2353 { 2354 unsigned long nr_accounted = 0; 2355 2356 /* Update high watermark before we lower total_vm */ 2357 update_hiwater_vm(mm); 2358 do { 2359 long nrpages = vma_pages(vma); 2360 2361 if (vma->vm_flags & VM_ACCOUNT) 2362 nr_accounted += nrpages; 2363 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 2364 vma = remove_vma(vma); 2365 } while (vma); 2366 vm_unacct_memory(nr_accounted); 2367 validate_mm(mm); 2368 } 2369 2370 /* 2371 * Get rid of page table information in the indicated region. 2372 * 2373 * Called with the mm semaphore held. 2374 */ 2375 static void unmap_region(struct mm_struct *mm, 2376 struct vm_area_struct *vma, struct vm_area_struct *prev, 2377 unsigned long start, unsigned long end) 2378 { 2379 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 2380 struct mmu_gather tlb; 2381 2382 lru_add_drain(); 2383 tlb_gather_mmu(&tlb, mm, start, end); 2384 update_hiwater_rss(mm); 2385 unmap_vmas(&tlb, vma, start, end); 2386 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2387 next ? next->vm_start : USER_PGTABLES_CEILING); 2388 tlb_finish_mmu(&tlb, start, end); 2389 } 2390 2391 /* 2392 * Create a list of vma's touched by the unmap, removing them from the mm's 2393 * vma list as we go.. 2394 */ 2395 static void 2396 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2397 struct vm_area_struct *prev, unsigned long end) 2398 { 2399 struct vm_area_struct **insertion_point; 2400 struct vm_area_struct *tail_vma = NULL; 2401 2402 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2403 vma->vm_prev = NULL; 2404 do { 2405 vma_rb_erase(vma, &mm->mm_rb); 2406 mm->map_count--; 2407 tail_vma = vma; 2408 vma = vma->vm_next; 2409 } while (vma && vma->vm_start < end); 2410 *insertion_point = vma; 2411 if (vma) { 2412 vma->vm_prev = prev; 2413 vma_gap_update(vma); 2414 } else 2415 mm->highest_vm_end = prev ? prev->vm_end : 0; 2416 tail_vma->vm_next = NULL; 2417 2418 /* Kill the cache */ 2419 vmacache_invalidate(mm); 2420 } 2421 2422 /* 2423 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2424 * munmap path where it doesn't make sense to fail. 2425 */ 2426 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 2427 unsigned long addr, int new_below) 2428 { 2429 struct vm_area_struct *new; 2430 int err = -ENOMEM; 2431 2432 if (is_vm_hugetlb_page(vma) && (addr & 2433 ~(huge_page_mask(hstate_vma(vma))))) 2434 return -EINVAL; 2435 2436 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2437 if (!new) 2438 goto out_err; 2439 2440 /* most fields are the same, copy all, and then fixup */ 2441 *new = *vma; 2442 2443 INIT_LIST_HEAD(&new->anon_vma_chain); 2444 2445 if (new_below) 2446 new->vm_end = addr; 2447 else { 2448 new->vm_start = addr; 2449 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2450 } 2451 2452 err = vma_dup_policy(vma, new); 2453 if (err) 2454 goto out_free_vma; 2455 2456 if (anon_vma_clone(new, vma)) 2457 goto out_free_mpol; 2458 2459 if (new->vm_file) 2460 get_file(new->vm_file); 2461 2462 if (new->vm_ops && new->vm_ops->open) 2463 new->vm_ops->open(new); 2464 2465 if (new_below) 2466 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2467 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2468 else 2469 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2470 2471 /* Success. */ 2472 if (!err) 2473 return 0; 2474 2475 /* Clean everything up if vma_adjust failed. */ 2476 if (new->vm_ops && new->vm_ops->close) 2477 new->vm_ops->close(new); 2478 if (new->vm_file) 2479 fput(new->vm_file); 2480 unlink_anon_vmas(new); 2481 out_free_mpol: 2482 mpol_put(vma_policy(new)); 2483 out_free_vma: 2484 kmem_cache_free(vm_area_cachep, new); 2485 out_err: 2486 return err; 2487 } 2488 2489 /* 2490 * Split a vma into two pieces at address 'addr', a new vma is allocated 2491 * either for the first part or the tail. 2492 */ 2493 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2494 unsigned long addr, int new_below) 2495 { 2496 if (mm->map_count >= sysctl_max_map_count) 2497 return -ENOMEM; 2498 2499 return __split_vma(mm, vma, addr, new_below); 2500 } 2501 2502 /* Munmap is split into 2 main parts -- this part which finds 2503 * what needs doing, and the areas themselves, which do the 2504 * work. This now handles partial unmappings. 2505 * Jeremy Fitzhardinge <jeremy@goop.org> 2506 */ 2507 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2508 { 2509 unsigned long end; 2510 struct vm_area_struct *vma, *prev, *last; 2511 2512 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2513 return -EINVAL; 2514 2515 if ((len = PAGE_ALIGN(len)) == 0) 2516 return -EINVAL; 2517 2518 /* Find the first overlapping VMA */ 2519 vma = find_vma(mm, start); 2520 if (!vma) 2521 return 0; 2522 prev = vma->vm_prev; 2523 /* we have start < vma->vm_end */ 2524 2525 /* if it doesn't overlap, we have nothing.. */ 2526 end = start + len; 2527 if (vma->vm_start >= end) 2528 return 0; 2529 2530 /* 2531 * If we need to split any vma, do it now to save pain later. 2532 * 2533 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2534 * unmapped vm_area_struct will remain in use: so lower split_vma 2535 * places tmp vma above, and higher split_vma places tmp vma below. 2536 */ 2537 if (start > vma->vm_start) { 2538 int error; 2539 2540 /* 2541 * Make sure that map_count on return from munmap() will 2542 * not exceed its limit; but let map_count go just above 2543 * its limit temporarily, to help free resources as expected. 2544 */ 2545 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2546 return -ENOMEM; 2547 2548 error = __split_vma(mm, vma, start, 0); 2549 if (error) 2550 return error; 2551 prev = vma; 2552 } 2553 2554 /* Does it split the last one? */ 2555 last = find_vma(mm, end); 2556 if (last && end > last->vm_start) { 2557 int error = __split_vma(mm, last, end, 1); 2558 if (error) 2559 return error; 2560 } 2561 vma = prev? prev->vm_next: mm->mmap; 2562 2563 /* 2564 * unlock any mlock()ed ranges before detaching vmas 2565 */ 2566 if (mm->locked_vm) { 2567 struct vm_area_struct *tmp = vma; 2568 while (tmp && tmp->vm_start < end) { 2569 if (tmp->vm_flags & VM_LOCKED) { 2570 mm->locked_vm -= vma_pages(tmp); 2571 munlock_vma_pages_all(tmp); 2572 } 2573 tmp = tmp->vm_next; 2574 } 2575 } 2576 2577 /* 2578 * Remove the vma's, and unmap the actual pages 2579 */ 2580 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2581 unmap_region(mm, vma, prev, start, end); 2582 2583 /* Fix up all other VM information */ 2584 remove_vma_list(mm, vma); 2585 2586 return 0; 2587 } 2588 2589 int vm_munmap(unsigned long start, size_t len) 2590 { 2591 int ret; 2592 struct mm_struct *mm = current->mm; 2593 2594 down_write(&mm->mmap_sem); 2595 ret = do_munmap(mm, start, len); 2596 up_write(&mm->mmap_sem); 2597 return ret; 2598 } 2599 EXPORT_SYMBOL(vm_munmap); 2600 2601 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2602 { 2603 profile_munmap(addr); 2604 return vm_munmap(addr, len); 2605 } 2606 2607 static inline void verify_mm_writelocked(struct mm_struct *mm) 2608 { 2609 #ifdef CONFIG_DEBUG_VM 2610 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2611 WARN_ON(1); 2612 up_read(&mm->mmap_sem); 2613 } 2614 #endif 2615 } 2616 2617 /* 2618 * this is really a simplified "do_mmap". it only handles 2619 * anonymous maps. eventually we may be able to do some 2620 * brk-specific accounting here. 2621 */ 2622 static unsigned long do_brk(unsigned long addr, unsigned long len) 2623 { 2624 struct mm_struct * mm = current->mm; 2625 struct vm_area_struct * vma, * prev; 2626 unsigned long flags; 2627 struct rb_node ** rb_link, * rb_parent; 2628 pgoff_t pgoff = addr >> PAGE_SHIFT; 2629 int error; 2630 2631 len = PAGE_ALIGN(len); 2632 if (!len) 2633 return addr; 2634 2635 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2636 2637 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2638 if (error & ~PAGE_MASK) 2639 return error; 2640 2641 error = mlock_future_check(mm, mm->def_flags, len); 2642 if (error) 2643 return error; 2644 2645 /* 2646 * mm->mmap_sem is required to protect against another thread 2647 * changing the mappings in case we sleep. 2648 */ 2649 verify_mm_writelocked(mm); 2650 2651 /* 2652 * Clear old maps. this also does some error checking for us 2653 */ 2654 munmap_back: 2655 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 2656 if (do_munmap(mm, addr, len)) 2657 return -ENOMEM; 2658 goto munmap_back; 2659 } 2660 2661 /* Check against address space limits *after* clearing old maps... */ 2662 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2663 return -ENOMEM; 2664 2665 if (mm->map_count > sysctl_max_map_count) 2666 return -ENOMEM; 2667 2668 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2669 return -ENOMEM; 2670 2671 /* Can we just expand an old private anonymous mapping? */ 2672 vma = vma_merge(mm, prev, addr, addr + len, flags, 2673 NULL, NULL, pgoff, NULL); 2674 if (vma) 2675 goto out; 2676 2677 /* 2678 * create a vma struct for an anonymous mapping 2679 */ 2680 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2681 if (!vma) { 2682 vm_unacct_memory(len >> PAGE_SHIFT); 2683 return -ENOMEM; 2684 } 2685 2686 INIT_LIST_HEAD(&vma->anon_vma_chain); 2687 vma->vm_mm = mm; 2688 vma->vm_start = addr; 2689 vma->vm_end = addr + len; 2690 vma->vm_pgoff = pgoff; 2691 vma->vm_flags = flags; 2692 vma->vm_page_prot = vm_get_page_prot(flags); 2693 vma_link(mm, vma, prev, rb_link, rb_parent); 2694 out: 2695 perf_event_mmap(vma); 2696 mm->total_vm += len >> PAGE_SHIFT; 2697 if (flags & VM_LOCKED) 2698 mm->locked_vm += (len >> PAGE_SHIFT); 2699 vma->vm_flags |= VM_SOFTDIRTY; 2700 return addr; 2701 } 2702 2703 unsigned long vm_brk(unsigned long addr, unsigned long len) 2704 { 2705 struct mm_struct *mm = current->mm; 2706 unsigned long ret; 2707 bool populate; 2708 2709 down_write(&mm->mmap_sem); 2710 ret = do_brk(addr, len); 2711 populate = ((mm->def_flags & VM_LOCKED) != 0); 2712 up_write(&mm->mmap_sem); 2713 if (populate) 2714 mm_populate(addr, len); 2715 return ret; 2716 } 2717 EXPORT_SYMBOL(vm_brk); 2718 2719 /* Release all mmaps. */ 2720 void exit_mmap(struct mm_struct *mm) 2721 { 2722 struct mmu_gather tlb; 2723 struct vm_area_struct *vma; 2724 unsigned long nr_accounted = 0; 2725 2726 /* mm's last user has gone, and its about to be pulled down */ 2727 mmu_notifier_release(mm); 2728 2729 if (mm->locked_vm) { 2730 vma = mm->mmap; 2731 while (vma) { 2732 if (vma->vm_flags & VM_LOCKED) 2733 munlock_vma_pages_all(vma); 2734 vma = vma->vm_next; 2735 } 2736 } 2737 2738 arch_exit_mmap(mm); 2739 2740 vma = mm->mmap; 2741 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2742 return; 2743 2744 lru_add_drain(); 2745 flush_cache_mm(mm); 2746 tlb_gather_mmu(&tlb, mm, 0, -1); 2747 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2748 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2749 unmap_vmas(&tlb, vma, 0, -1); 2750 2751 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2752 tlb_finish_mmu(&tlb, 0, -1); 2753 2754 /* 2755 * Walk the list again, actually closing and freeing it, 2756 * with preemption enabled, without holding any MM locks. 2757 */ 2758 while (vma) { 2759 if (vma->vm_flags & VM_ACCOUNT) 2760 nr_accounted += vma_pages(vma); 2761 vma = remove_vma(vma); 2762 } 2763 vm_unacct_memory(nr_accounted); 2764 2765 WARN_ON(atomic_long_read(&mm->nr_ptes) > 2766 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2767 } 2768 2769 /* Insert vm structure into process list sorted by address 2770 * and into the inode's i_mmap tree. If vm_file is non-NULL 2771 * then i_mmap_mutex is taken here. 2772 */ 2773 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2774 { 2775 struct vm_area_struct *prev; 2776 struct rb_node **rb_link, *rb_parent; 2777 2778 /* 2779 * The vm_pgoff of a purely anonymous vma should be irrelevant 2780 * until its first write fault, when page's anon_vma and index 2781 * are set. But now set the vm_pgoff it will almost certainly 2782 * end up with (unless mremap moves it elsewhere before that 2783 * first wfault), so /proc/pid/maps tells a consistent story. 2784 * 2785 * By setting it to reflect the virtual start address of the 2786 * vma, merges and splits can happen in a seamless way, just 2787 * using the existing file pgoff checks and manipulations. 2788 * Similarly in do_mmap_pgoff and in do_brk. 2789 */ 2790 if (!vma->vm_file) { 2791 BUG_ON(vma->anon_vma); 2792 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2793 } 2794 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2795 &prev, &rb_link, &rb_parent)) 2796 return -ENOMEM; 2797 if ((vma->vm_flags & VM_ACCOUNT) && 2798 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2799 return -ENOMEM; 2800 2801 vma_link(mm, vma, prev, rb_link, rb_parent); 2802 return 0; 2803 } 2804 2805 /* 2806 * Copy the vma structure to a new location in the same mm, 2807 * prior to moving page table entries, to effect an mremap move. 2808 */ 2809 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2810 unsigned long addr, unsigned long len, pgoff_t pgoff, 2811 bool *need_rmap_locks) 2812 { 2813 struct vm_area_struct *vma = *vmap; 2814 unsigned long vma_start = vma->vm_start; 2815 struct mm_struct *mm = vma->vm_mm; 2816 struct vm_area_struct *new_vma, *prev; 2817 struct rb_node **rb_link, *rb_parent; 2818 bool faulted_in_anon_vma = true; 2819 2820 /* 2821 * If anonymous vma has not yet been faulted, update new pgoff 2822 * to match new location, to increase its chance of merging. 2823 */ 2824 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2825 pgoff = addr >> PAGE_SHIFT; 2826 faulted_in_anon_vma = false; 2827 } 2828 2829 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2830 return NULL; /* should never get here */ 2831 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2832 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2833 if (new_vma) { 2834 /* 2835 * Source vma may have been merged into new_vma 2836 */ 2837 if (unlikely(vma_start >= new_vma->vm_start && 2838 vma_start < new_vma->vm_end)) { 2839 /* 2840 * The only way we can get a vma_merge with 2841 * self during an mremap is if the vma hasn't 2842 * been faulted in yet and we were allowed to 2843 * reset the dst vma->vm_pgoff to the 2844 * destination address of the mremap to allow 2845 * the merge to happen. mremap must change the 2846 * vm_pgoff linearity between src and dst vmas 2847 * (in turn preventing a vma_merge) to be 2848 * safe. It is only safe to keep the vm_pgoff 2849 * linear if there are no pages mapped yet. 2850 */ 2851 VM_BUG_ON(faulted_in_anon_vma); 2852 *vmap = vma = new_vma; 2853 } 2854 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2855 } else { 2856 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2857 if (new_vma) { 2858 *new_vma = *vma; 2859 new_vma->vm_start = addr; 2860 new_vma->vm_end = addr + len; 2861 new_vma->vm_pgoff = pgoff; 2862 if (vma_dup_policy(vma, new_vma)) 2863 goto out_free_vma; 2864 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2865 if (anon_vma_clone(new_vma, vma)) 2866 goto out_free_mempol; 2867 if (new_vma->vm_file) 2868 get_file(new_vma->vm_file); 2869 if (new_vma->vm_ops && new_vma->vm_ops->open) 2870 new_vma->vm_ops->open(new_vma); 2871 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2872 *need_rmap_locks = false; 2873 } 2874 } 2875 return new_vma; 2876 2877 out_free_mempol: 2878 mpol_put(vma_policy(new_vma)); 2879 out_free_vma: 2880 kmem_cache_free(vm_area_cachep, new_vma); 2881 return NULL; 2882 } 2883 2884 /* 2885 * Return true if the calling process may expand its vm space by the passed 2886 * number of pages 2887 */ 2888 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2889 { 2890 unsigned long cur = mm->total_vm; /* pages */ 2891 unsigned long lim; 2892 2893 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2894 2895 if (cur + npages > lim) 2896 return 0; 2897 return 1; 2898 } 2899 2900 static int special_mapping_fault(struct vm_area_struct *vma, 2901 struct vm_fault *vmf); 2902 2903 /* 2904 * Having a close hook prevents vma merging regardless of flags. 2905 */ 2906 static void special_mapping_close(struct vm_area_struct *vma) 2907 { 2908 } 2909 2910 static const char *special_mapping_name(struct vm_area_struct *vma) 2911 { 2912 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 2913 } 2914 2915 static const struct vm_operations_struct special_mapping_vmops = { 2916 .close = special_mapping_close, 2917 .fault = special_mapping_fault, 2918 .name = special_mapping_name, 2919 }; 2920 2921 static const struct vm_operations_struct legacy_special_mapping_vmops = { 2922 .close = special_mapping_close, 2923 .fault = special_mapping_fault, 2924 }; 2925 2926 static int special_mapping_fault(struct vm_area_struct *vma, 2927 struct vm_fault *vmf) 2928 { 2929 pgoff_t pgoff; 2930 struct page **pages; 2931 2932 /* 2933 * special mappings have no vm_file, and in that case, the mm 2934 * uses vm_pgoff internally. So we have to subtract it from here. 2935 * We are allowed to do this because we are the mm; do not copy 2936 * this code into drivers! 2937 */ 2938 pgoff = vmf->pgoff - vma->vm_pgoff; 2939 2940 if (vma->vm_ops == &legacy_special_mapping_vmops) 2941 pages = vma->vm_private_data; 2942 else 2943 pages = ((struct vm_special_mapping *)vma->vm_private_data)-> 2944 pages; 2945 2946 for (; pgoff && *pages; ++pages) 2947 pgoff--; 2948 2949 if (*pages) { 2950 struct page *page = *pages; 2951 get_page(page); 2952 vmf->page = page; 2953 return 0; 2954 } 2955 2956 return VM_FAULT_SIGBUS; 2957 } 2958 2959 static struct vm_area_struct *__install_special_mapping( 2960 struct mm_struct *mm, 2961 unsigned long addr, unsigned long len, 2962 unsigned long vm_flags, const struct vm_operations_struct *ops, 2963 void *priv) 2964 { 2965 int ret; 2966 struct vm_area_struct *vma; 2967 2968 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2969 if (unlikely(vma == NULL)) 2970 return ERR_PTR(-ENOMEM); 2971 2972 INIT_LIST_HEAD(&vma->anon_vma_chain); 2973 vma->vm_mm = mm; 2974 vma->vm_start = addr; 2975 vma->vm_end = addr + len; 2976 2977 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 2978 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2979 2980 vma->vm_ops = ops; 2981 vma->vm_private_data = priv; 2982 2983 ret = insert_vm_struct(mm, vma); 2984 if (ret) 2985 goto out; 2986 2987 mm->total_vm += len >> PAGE_SHIFT; 2988 2989 perf_event_mmap(vma); 2990 2991 return vma; 2992 2993 out: 2994 kmem_cache_free(vm_area_cachep, vma); 2995 return ERR_PTR(ret); 2996 } 2997 2998 /* 2999 * Called with mm->mmap_sem held for writing. 3000 * Insert a new vma covering the given region, with the given flags. 3001 * Its pages are supplied by the given array of struct page *. 3002 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3003 * The region past the last page supplied will always produce SIGBUS. 3004 * The array pointer and the pages it points to are assumed to stay alive 3005 * for as long as this mapping might exist. 3006 */ 3007 struct vm_area_struct *_install_special_mapping( 3008 struct mm_struct *mm, 3009 unsigned long addr, unsigned long len, 3010 unsigned long vm_flags, const struct vm_special_mapping *spec) 3011 { 3012 return __install_special_mapping(mm, addr, len, vm_flags, 3013 &special_mapping_vmops, (void *)spec); 3014 } 3015 3016 int install_special_mapping(struct mm_struct *mm, 3017 unsigned long addr, unsigned long len, 3018 unsigned long vm_flags, struct page **pages) 3019 { 3020 struct vm_area_struct *vma = __install_special_mapping( 3021 mm, addr, len, vm_flags, &legacy_special_mapping_vmops, 3022 (void *)pages); 3023 3024 return PTR_ERR_OR_ZERO(vma); 3025 } 3026 3027 static DEFINE_MUTEX(mm_all_locks_mutex); 3028 3029 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3030 { 3031 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3032 /* 3033 * The LSB of head.next can't change from under us 3034 * because we hold the mm_all_locks_mutex. 3035 */ 3036 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3037 /* 3038 * We can safely modify head.next after taking the 3039 * anon_vma->root->rwsem. If some other vma in this mm shares 3040 * the same anon_vma we won't take it again. 3041 * 3042 * No need of atomic instructions here, head.next 3043 * can't change from under us thanks to the 3044 * anon_vma->root->rwsem. 3045 */ 3046 if (__test_and_set_bit(0, (unsigned long *) 3047 &anon_vma->root->rb_root.rb_node)) 3048 BUG(); 3049 } 3050 } 3051 3052 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3053 { 3054 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3055 /* 3056 * AS_MM_ALL_LOCKS can't change from under us because 3057 * we hold the mm_all_locks_mutex. 3058 * 3059 * Operations on ->flags have to be atomic because 3060 * even if AS_MM_ALL_LOCKS is stable thanks to the 3061 * mm_all_locks_mutex, there may be other cpus 3062 * changing other bitflags in parallel to us. 3063 */ 3064 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3065 BUG(); 3066 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 3067 } 3068 } 3069 3070 /* 3071 * This operation locks against the VM for all pte/vma/mm related 3072 * operations that could ever happen on a certain mm. This includes 3073 * vmtruncate, try_to_unmap, and all page faults. 3074 * 3075 * The caller must take the mmap_sem in write mode before calling 3076 * mm_take_all_locks(). The caller isn't allowed to release the 3077 * mmap_sem until mm_drop_all_locks() returns. 3078 * 3079 * mmap_sem in write mode is required in order to block all operations 3080 * that could modify pagetables and free pages without need of 3081 * altering the vma layout (for example populate_range() with 3082 * nonlinear vmas). It's also needed in write mode to avoid new 3083 * anon_vmas to be associated with existing vmas. 3084 * 3085 * A single task can't take more than one mm_take_all_locks() in a row 3086 * or it would deadlock. 3087 * 3088 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3089 * mapping->flags avoid to take the same lock twice, if more than one 3090 * vma in this mm is backed by the same anon_vma or address_space. 3091 * 3092 * We can take all the locks in random order because the VM code 3093 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never 3094 * takes more than one of them in a row. Secondly we're protected 3095 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 3096 * 3097 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3098 * that may have to take thousand of locks. 3099 * 3100 * mm_take_all_locks() can fail if it's interrupted by signals. 3101 */ 3102 int mm_take_all_locks(struct mm_struct *mm) 3103 { 3104 struct vm_area_struct *vma; 3105 struct anon_vma_chain *avc; 3106 3107 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3108 3109 mutex_lock(&mm_all_locks_mutex); 3110 3111 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3112 if (signal_pending(current)) 3113 goto out_unlock; 3114 if (vma->vm_file && vma->vm_file->f_mapping) 3115 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3116 } 3117 3118 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3119 if (signal_pending(current)) 3120 goto out_unlock; 3121 if (vma->anon_vma) 3122 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3123 vm_lock_anon_vma(mm, avc->anon_vma); 3124 } 3125 3126 return 0; 3127 3128 out_unlock: 3129 mm_drop_all_locks(mm); 3130 return -EINTR; 3131 } 3132 3133 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3134 { 3135 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3136 /* 3137 * The LSB of head.next can't change to 0 from under 3138 * us because we hold the mm_all_locks_mutex. 3139 * 3140 * We must however clear the bitflag before unlocking 3141 * the vma so the users using the anon_vma->rb_root will 3142 * never see our bitflag. 3143 * 3144 * No need of atomic instructions here, head.next 3145 * can't change from under us until we release the 3146 * anon_vma->root->rwsem. 3147 */ 3148 if (!__test_and_clear_bit(0, (unsigned long *) 3149 &anon_vma->root->rb_root.rb_node)) 3150 BUG(); 3151 anon_vma_unlock_write(anon_vma); 3152 } 3153 } 3154 3155 static void vm_unlock_mapping(struct address_space *mapping) 3156 { 3157 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3158 /* 3159 * AS_MM_ALL_LOCKS can't change to 0 from under us 3160 * because we hold the mm_all_locks_mutex. 3161 */ 3162 mutex_unlock(&mapping->i_mmap_mutex); 3163 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3164 &mapping->flags)) 3165 BUG(); 3166 } 3167 } 3168 3169 /* 3170 * The mmap_sem cannot be released by the caller until 3171 * mm_drop_all_locks() returns. 3172 */ 3173 void mm_drop_all_locks(struct mm_struct *mm) 3174 { 3175 struct vm_area_struct *vma; 3176 struct anon_vma_chain *avc; 3177 3178 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3179 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3180 3181 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3182 if (vma->anon_vma) 3183 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3184 vm_unlock_anon_vma(avc->anon_vma); 3185 if (vma->vm_file && vma->vm_file->f_mapping) 3186 vm_unlock_mapping(vma->vm_file->f_mapping); 3187 } 3188 3189 mutex_unlock(&mm_all_locks_mutex); 3190 } 3191 3192 /* 3193 * initialise the VMA slab 3194 */ 3195 void __init mmap_init(void) 3196 { 3197 int ret; 3198 3199 ret = percpu_counter_init(&vm_committed_as, 0); 3200 VM_BUG_ON(ret); 3201 } 3202 3203 /* 3204 * Initialise sysctl_user_reserve_kbytes. 3205 * 3206 * This is intended to prevent a user from starting a single memory hogging 3207 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3208 * mode. 3209 * 3210 * The default value is min(3% of free memory, 128MB) 3211 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3212 */ 3213 static int init_user_reserve(void) 3214 { 3215 unsigned long free_kbytes; 3216 3217 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3218 3219 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3220 return 0; 3221 } 3222 subsys_initcall(init_user_reserve); 3223 3224 /* 3225 * Initialise sysctl_admin_reserve_kbytes. 3226 * 3227 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3228 * to log in and kill a memory hogging process. 3229 * 3230 * Systems with more than 256MB will reserve 8MB, enough to recover 3231 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3232 * only reserve 3% of free pages by default. 3233 */ 3234 static int init_admin_reserve(void) 3235 { 3236 unsigned long free_kbytes; 3237 3238 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3239 3240 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3241 return 0; 3242 } 3243 subsys_initcall(init_admin_reserve); 3244 3245 /* 3246 * Reinititalise user and admin reserves if memory is added or removed. 3247 * 3248 * The default user reserve max is 128MB, and the default max for the 3249 * admin reserve is 8MB. These are usually, but not always, enough to 3250 * enable recovery from a memory hogging process using login/sshd, a shell, 3251 * and tools like top. It may make sense to increase or even disable the 3252 * reserve depending on the existence of swap or variations in the recovery 3253 * tools. So, the admin may have changed them. 3254 * 3255 * If memory is added and the reserves have been eliminated or increased above 3256 * the default max, then we'll trust the admin. 3257 * 3258 * If memory is removed and there isn't enough free memory, then we 3259 * need to reset the reserves. 3260 * 3261 * Otherwise keep the reserve set by the admin. 3262 */ 3263 static int reserve_mem_notifier(struct notifier_block *nb, 3264 unsigned long action, void *data) 3265 { 3266 unsigned long tmp, free_kbytes; 3267 3268 switch (action) { 3269 case MEM_ONLINE: 3270 /* Default max is 128MB. Leave alone if modified by operator. */ 3271 tmp = sysctl_user_reserve_kbytes; 3272 if (0 < tmp && tmp < (1UL << 17)) 3273 init_user_reserve(); 3274 3275 /* Default max is 8MB. Leave alone if modified by operator. */ 3276 tmp = sysctl_admin_reserve_kbytes; 3277 if (0 < tmp && tmp < (1UL << 13)) 3278 init_admin_reserve(); 3279 3280 break; 3281 case MEM_OFFLINE: 3282 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3283 3284 if (sysctl_user_reserve_kbytes > free_kbytes) { 3285 init_user_reserve(); 3286 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3287 sysctl_user_reserve_kbytes); 3288 } 3289 3290 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3291 init_admin_reserve(); 3292 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3293 sysctl_admin_reserve_kbytes); 3294 } 3295 break; 3296 default: 3297 break; 3298 } 3299 return NOTIFY_OK; 3300 } 3301 3302 static struct notifier_block reserve_mem_nb = { 3303 .notifier_call = reserve_mem_notifier, 3304 }; 3305 3306 static int __meminit init_reserve_notifier(void) 3307 { 3308 if (register_hotmemory_notifier(&reserve_mem_nb)) 3309 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3310 3311 return 0; 3312 } 3313 subsys_initcall(init_reserve_notifier); 3314