1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/profile.h> 29 #include <linux/export.h> 30 #include <linux/mount.h> 31 #include <linux/mempolicy.h> 32 #include <linux/rmap.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/mmdebug.h> 35 #include <linux/perf_event.h> 36 #include <linux/audit.h> 37 #include <linux/khugepaged.h> 38 #include <linux/uprobes.h> 39 #include <linux/rbtree_augmented.h> 40 #include <linux/sched/sysctl.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/cacheflush.h> 48 #include <asm/tlb.h> 49 #include <asm/mmu_context.h> 50 51 #include "internal.h" 52 53 #ifndef arch_mmap_check 54 #define arch_mmap_check(addr, len, flags) (0) 55 #endif 56 57 #ifndef arch_rebalance_pgtables 58 #define arch_rebalance_pgtables(addr, len) (addr) 59 #endif 60 61 static void unmap_region(struct mm_struct *mm, 62 struct vm_area_struct *vma, struct vm_area_struct *prev, 63 unsigned long start, unsigned long end); 64 65 /* description of effects of mapping type and prot in current implementation. 66 * this is due to the limited x86 page protection hardware. The expected 67 * behavior is in parens: 68 * 69 * map_type prot 70 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 71 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 72 * w: (no) no w: (no) no w: (yes) yes w: (no) no 73 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 74 * 75 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 76 * w: (no) no w: (no) no w: (copy) copy w: (no) no 77 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 78 * 79 */ 80 pgprot_t protection_map[16] = { 81 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 82 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 83 }; 84 85 pgprot_t vm_get_page_prot(unsigned long vm_flags) 86 { 87 return __pgprot(pgprot_val(protection_map[vm_flags & 88 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 89 pgprot_val(arch_vm_get_page_prot(vm_flags))); 90 } 91 EXPORT_SYMBOL(vm_get_page_prot); 92 93 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 94 { 95 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 96 } 97 98 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 99 void vma_set_page_prot(struct vm_area_struct *vma) 100 { 101 unsigned long vm_flags = vma->vm_flags; 102 103 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 104 if (vma_wants_writenotify(vma)) { 105 vm_flags &= ~VM_SHARED; 106 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, 107 vm_flags); 108 } 109 } 110 111 112 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 113 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 114 unsigned long sysctl_overcommit_kbytes __read_mostly; 115 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 116 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 117 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 118 /* 119 * Make sure vm_committed_as in one cacheline and not cacheline shared with 120 * other variables. It can be updated by several CPUs frequently. 121 */ 122 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 123 124 /* 125 * The global memory commitment made in the system can be a metric 126 * that can be used to drive ballooning decisions when Linux is hosted 127 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 128 * balancing memory across competing virtual machines that are hosted. 129 * Several metrics drive this policy engine including the guest reported 130 * memory commitment. 131 */ 132 unsigned long vm_memory_committed(void) 133 { 134 return percpu_counter_read_positive(&vm_committed_as); 135 } 136 EXPORT_SYMBOL_GPL(vm_memory_committed); 137 138 /* 139 * Check that a process has enough memory to allocate a new virtual 140 * mapping. 0 means there is enough memory for the allocation to 141 * succeed and -ENOMEM implies there is not. 142 * 143 * We currently support three overcommit policies, which are set via the 144 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 145 * 146 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 147 * Additional code 2002 Jul 20 by Robert Love. 148 * 149 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 150 * 151 * Note this is a helper function intended to be used by LSMs which 152 * wish to use this logic. 153 */ 154 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 155 { 156 long free, allowed, reserve; 157 158 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 159 -(s64)vm_committed_as_batch * num_online_cpus(), 160 "memory commitment underflow"); 161 162 vm_acct_memory(pages); 163 164 /* 165 * Sometimes we want to use more memory than we have 166 */ 167 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 168 return 0; 169 170 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 171 free = global_page_state(NR_FREE_PAGES); 172 free += global_page_state(NR_FILE_PAGES); 173 174 /* 175 * shmem pages shouldn't be counted as free in this 176 * case, they can't be purged, only swapped out, and 177 * that won't affect the overall amount of available 178 * memory in the system. 179 */ 180 free -= global_page_state(NR_SHMEM); 181 182 free += get_nr_swap_pages(); 183 184 /* 185 * Any slabs which are created with the 186 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 187 * which are reclaimable, under pressure. The dentry 188 * cache and most inode caches should fall into this 189 */ 190 free += global_page_state(NR_SLAB_RECLAIMABLE); 191 192 /* 193 * Leave reserved pages. The pages are not for anonymous pages. 194 */ 195 if (free <= totalreserve_pages) 196 goto error; 197 else 198 free -= totalreserve_pages; 199 200 /* 201 * Reserve some for root 202 */ 203 if (!cap_sys_admin) 204 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 205 206 if (free > pages) 207 return 0; 208 209 goto error; 210 } 211 212 allowed = vm_commit_limit(); 213 /* 214 * Reserve some for root 215 */ 216 if (!cap_sys_admin) 217 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 218 219 /* 220 * Don't let a single process grow so big a user can't recover 221 */ 222 if (mm) { 223 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 224 allowed -= min_t(long, mm->total_vm / 32, reserve); 225 } 226 227 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 228 return 0; 229 error: 230 vm_unacct_memory(pages); 231 232 return -ENOMEM; 233 } 234 235 /* 236 * Requires inode->i_mapping->i_mmap_rwsem 237 */ 238 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 239 struct file *file, struct address_space *mapping) 240 { 241 if (vma->vm_flags & VM_DENYWRITE) 242 atomic_inc(&file_inode(file)->i_writecount); 243 if (vma->vm_flags & VM_SHARED) 244 mapping_unmap_writable(mapping); 245 246 flush_dcache_mmap_lock(mapping); 247 vma_interval_tree_remove(vma, &mapping->i_mmap); 248 flush_dcache_mmap_unlock(mapping); 249 } 250 251 /* 252 * Unlink a file-based vm structure from its interval tree, to hide 253 * vma from rmap and vmtruncate before freeing its page tables. 254 */ 255 void unlink_file_vma(struct vm_area_struct *vma) 256 { 257 struct file *file = vma->vm_file; 258 259 if (file) { 260 struct address_space *mapping = file->f_mapping; 261 i_mmap_lock_write(mapping); 262 __remove_shared_vm_struct(vma, file, mapping); 263 i_mmap_unlock_write(mapping); 264 } 265 } 266 267 /* 268 * Close a vm structure and free it, returning the next. 269 */ 270 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 271 { 272 struct vm_area_struct *next = vma->vm_next; 273 274 might_sleep(); 275 if (vma->vm_ops && vma->vm_ops->close) 276 vma->vm_ops->close(vma); 277 if (vma->vm_file) 278 fput(vma->vm_file); 279 mpol_put(vma_policy(vma)); 280 kmem_cache_free(vm_area_cachep, vma); 281 return next; 282 } 283 284 static unsigned long do_brk(unsigned long addr, unsigned long len); 285 286 SYSCALL_DEFINE1(brk, unsigned long, brk) 287 { 288 unsigned long retval; 289 unsigned long newbrk, oldbrk; 290 struct mm_struct *mm = current->mm; 291 unsigned long min_brk; 292 bool populate; 293 294 down_write(&mm->mmap_sem); 295 296 #ifdef CONFIG_COMPAT_BRK 297 /* 298 * CONFIG_COMPAT_BRK can still be overridden by setting 299 * randomize_va_space to 2, which will still cause mm->start_brk 300 * to be arbitrarily shifted 301 */ 302 if (current->brk_randomized) 303 min_brk = mm->start_brk; 304 else 305 min_brk = mm->end_data; 306 #else 307 min_brk = mm->start_brk; 308 #endif 309 if (brk < min_brk) 310 goto out; 311 312 /* 313 * Check against rlimit here. If this check is done later after the test 314 * of oldbrk with newbrk then it can escape the test and let the data 315 * segment grow beyond its set limit the in case where the limit is 316 * not page aligned -Ram Gupta 317 */ 318 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 319 mm->end_data, mm->start_data)) 320 goto out; 321 322 newbrk = PAGE_ALIGN(brk); 323 oldbrk = PAGE_ALIGN(mm->brk); 324 if (oldbrk == newbrk) 325 goto set_brk; 326 327 /* Always allow shrinking brk. */ 328 if (brk <= mm->brk) { 329 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 330 goto set_brk; 331 goto out; 332 } 333 334 /* Check against existing mmap mappings. */ 335 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 336 goto out; 337 338 /* Ok, looks good - let it rip. */ 339 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 340 goto out; 341 342 set_brk: 343 mm->brk = brk; 344 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 345 up_write(&mm->mmap_sem); 346 if (populate) 347 mm_populate(oldbrk, newbrk - oldbrk); 348 return brk; 349 350 out: 351 retval = mm->brk; 352 up_write(&mm->mmap_sem); 353 return retval; 354 } 355 356 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 357 { 358 unsigned long max, subtree_gap; 359 max = vma->vm_start; 360 if (vma->vm_prev) 361 max -= vma->vm_prev->vm_end; 362 if (vma->vm_rb.rb_left) { 363 subtree_gap = rb_entry(vma->vm_rb.rb_left, 364 struct vm_area_struct, vm_rb)->rb_subtree_gap; 365 if (subtree_gap > max) 366 max = subtree_gap; 367 } 368 if (vma->vm_rb.rb_right) { 369 subtree_gap = rb_entry(vma->vm_rb.rb_right, 370 struct vm_area_struct, vm_rb)->rb_subtree_gap; 371 if (subtree_gap > max) 372 max = subtree_gap; 373 } 374 return max; 375 } 376 377 #ifdef CONFIG_DEBUG_VM_RB 378 static int browse_rb(struct rb_root *root) 379 { 380 int i = 0, j, bug = 0; 381 struct rb_node *nd, *pn = NULL; 382 unsigned long prev = 0, pend = 0; 383 384 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 385 struct vm_area_struct *vma; 386 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 387 if (vma->vm_start < prev) { 388 pr_emerg("vm_start %lx < prev %lx\n", 389 vma->vm_start, prev); 390 bug = 1; 391 } 392 if (vma->vm_start < pend) { 393 pr_emerg("vm_start %lx < pend %lx\n", 394 vma->vm_start, pend); 395 bug = 1; 396 } 397 if (vma->vm_start > vma->vm_end) { 398 pr_emerg("vm_start %lx > vm_end %lx\n", 399 vma->vm_start, vma->vm_end); 400 bug = 1; 401 } 402 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 403 pr_emerg("free gap %lx, correct %lx\n", 404 vma->rb_subtree_gap, 405 vma_compute_subtree_gap(vma)); 406 bug = 1; 407 } 408 i++; 409 pn = nd; 410 prev = vma->vm_start; 411 pend = vma->vm_end; 412 } 413 j = 0; 414 for (nd = pn; nd; nd = rb_prev(nd)) 415 j++; 416 if (i != j) { 417 pr_emerg("backwards %d, forwards %d\n", j, i); 418 bug = 1; 419 } 420 return bug ? -1 : i; 421 } 422 423 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 424 { 425 struct rb_node *nd; 426 427 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 428 struct vm_area_struct *vma; 429 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 430 VM_BUG_ON_VMA(vma != ignore && 431 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 432 vma); 433 } 434 } 435 436 static void validate_mm(struct mm_struct *mm) 437 { 438 int bug = 0; 439 int i = 0; 440 unsigned long highest_address = 0; 441 struct vm_area_struct *vma = mm->mmap; 442 443 while (vma) { 444 struct anon_vma_chain *avc; 445 446 vma_lock_anon_vma(vma); 447 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 448 anon_vma_interval_tree_verify(avc); 449 vma_unlock_anon_vma(vma); 450 highest_address = vma->vm_end; 451 vma = vma->vm_next; 452 i++; 453 } 454 if (i != mm->map_count) { 455 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 456 bug = 1; 457 } 458 if (highest_address != mm->highest_vm_end) { 459 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 460 mm->highest_vm_end, highest_address); 461 bug = 1; 462 } 463 i = browse_rb(&mm->mm_rb); 464 if (i != mm->map_count) { 465 if (i != -1) 466 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 467 bug = 1; 468 } 469 VM_BUG_ON_MM(bug, mm); 470 } 471 #else 472 #define validate_mm_rb(root, ignore) do { } while (0) 473 #define validate_mm(mm) do { } while (0) 474 #endif 475 476 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 477 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 478 479 /* 480 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 481 * vma->vm_prev->vm_end values changed, without modifying the vma's position 482 * in the rbtree. 483 */ 484 static void vma_gap_update(struct vm_area_struct *vma) 485 { 486 /* 487 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 488 * function that does exacltly what we want. 489 */ 490 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 491 } 492 493 static inline void vma_rb_insert(struct vm_area_struct *vma, 494 struct rb_root *root) 495 { 496 /* All rb_subtree_gap values must be consistent prior to insertion */ 497 validate_mm_rb(root, NULL); 498 499 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 500 } 501 502 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 503 { 504 /* 505 * All rb_subtree_gap values must be consistent prior to erase, 506 * with the possible exception of the vma being erased. 507 */ 508 validate_mm_rb(root, vma); 509 510 /* 511 * Note rb_erase_augmented is a fairly large inline function, 512 * so make sure we instantiate it only once with our desired 513 * augmented rbtree callbacks. 514 */ 515 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 516 } 517 518 /* 519 * vma has some anon_vma assigned, and is already inserted on that 520 * anon_vma's interval trees. 521 * 522 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 523 * vma must be removed from the anon_vma's interval trees using 524 * anon_vma_interval_tree_pre_update_vma(). 525 * 526 * After the update, the vma will be reinserted using 527 * anon_vma_interval_tree_post_update_vma(). 528 * 529 * The entire update must be protected by exclusive mmap_sem and by 530 * the root anon_vma's mutex. 531 */ 532 static inline void 533 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 534 { 535 struct anon_vma_chain *avc; 536 537 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 538 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 539 } 540 541 static inline void 542 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 543 { 544 struct anon_vma_chain *avc; 545 546 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 547 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 548 } 549 550 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 551 unsigned long end, struct vm_area_struct **pprev, 552 struct rb_node ***rb_link, struct rb_node **rb_parent) 553 { 554 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 555 556 __rb_link = &mm->mm_rb.rb_node; 557 rb_prev = __rb_parent = NULL; 558 559 while (*__rb_link) { 560 struct vm_area_struct *vma_tmp; 561 562 __rb_parent = *__rb_link; 563 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 564 565 if (vma_tmp->vm_end > addr) { 566 /* Fail if an existing vma overlaps the area */ 567 if (vma_tmp->vm_start < end) 568 return -ENOMEM; 569 __rb_link = &__rb_parent->rb_left; 570 } else { 571 rb_prev = __rb_parent; 572 __rb_link = &__rb_parent->rb_right; 573 } 574 } 575 576 *pprev = NULL; 577 if (rb_prev) 578 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 579 *rb_link = __rb_link; 580 *rb_parent = __rb_parent; 581 return 0; 582 } 583 584 static unsigned long count_vma_pages_range(struct mm_struct *mm, 585 unsigned long addr, unsigned long end) 586 { 587 unsigned long nr_pages = 0; 588 struct vm_area_struct *vma; 589 590 /* Find first overlaping mapping */ 591 vma = find_vma_intersection(mm, addr, end); 592 if (!vma) 593 return 0; 594 595 nr_pages = (min(end, vma->vm_end) - 596 max(addr, vma->vm_start)) >> PAGE_SHIFT; 597 598 /* Iterate over the rest of the overlaps */ 599 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 600 unsigned long overlap_len; 601 602 if (vma->vm_start > end) 603 break; 604 605 overlap_len = min(end, vma->vm_end) - vma->vm_start; 606 nr_pages += overlap_len >> PAGE_SHIFT; 607 } 608 609 return nr_pages; 610 } 611 612 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 613 struct rb_node **rb_link, struct rb_node *rb_parent) 614 { 615 /* Update tracking information for the gap following the new vma. */ 616 if (vma->vm_next) 617 vma_gap_update(vma->vm_next); 618 else 619 mm->highest_vm_end = vma->vm_end; 620 621 /* 622 * vma->vm_prev wasn't known when we followed the rbtree to find the 623 * correct insertion point for that vma. As a result, we could not 624 * update the vma vm_rb parents rb_subtree_gap values on the way down. 625 * So, we first insert the vma with a zero rb_subtree_gap value 626 * (to be consistent with what we did on the way down), and then 627 * immediately update the gap to the correct value. Finally we 628 * rebalance the rbtree after all augmented values have been set. 629 */ 630 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 631 vma->rb_subtree_gap = 0; 632 vma_gap_update(vma); 633 vma_rb_insert(vma, &mm->mm_rb); 634 } 635 636 static void __vma_link_file(struct vm_area_struct *vma) 637 { 638 struct file *file; 639 640 file = vma->vm_file; 641 if (file) { 642 struct address_space *mapping = file->f_mapping; 643 644 if (vma->vm_flags & VM_DENYWRITE) 645 atomic_dec(&file_inode(file)->i_writecount); 646 if (vma->vm_flags & VM_SHARED) 647 atomic_inc(&mapping->i_mmap_writable); 648 649 flush_dcache_mmap_lock(mapping); 650 vma_interval_tree_insert(vma, &mapping->i_mmap); 651 flush_dcache_mmap_unlock(mapping); 652 } 653 } 654 655 static void 656 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 657 struct vm_area_struct *prev, struct rb_node **rb_link, 658 struct rb_node *rb_parent) 659 { 660 __vma_link_list(mm, vma, prev, rb_parent); 661 __vma_link_rb(mm, vma, rb_link, rb_parent); 662 } 663 664 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 665 struct vm_area_struct *prev, struct rb_node **rb_link, 666 struct rb_node *rb_parent) 667 { 668 struct address_space *mapping = NULL; 669 670 if (vma->vm_file) { 671 mapping = vma->vm_file->f_mapping; 672 i_mmap_lock_write(mapping); 673 } 674 675 __vma_link(mm, vma, prev, rb_link, rb_parent); 676 __vma_link_file(vma); 677 678 if (mapping) 679 i_mmap_unlock_write(mapping); 680 681 mm->map_count++; 682 validate_mm(mm); 683 } 684 685 /* 686 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 687 * mm's list and rbtree. It has already been inserted into the interval tree. 688 */ 689 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 690 { 691 struct vm_area_struct *prev; 692 struct rb_node **rb_link, *rb_parent; 693 694 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 695 &prev, &rb_link, &rb_parent)) 696 BUG(); 697 __vma_link(mm, vma, prev, rb_link, rb_parent); 698 mm->map_count++; 699 } 700 701 static inline void 702 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 703 struct vm_area_struct *prev) 704 { 705 struct vm_area_struct *next; 706 707 vma_rb_erase(vma, &mm->mm_rb); 708 prev->vm_next = next = vma->vm_next; 709 if (next) 710 next->vm_prev = prev; 711 712 /* Kill the cache */ 713 vmacache_invalidate(mm); 714 } 715 716 /* 717 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 718 * is already present in an i_mmap tree without adjusting the tree. 719 * The following helper function should be used when such adjustments 720 * are necessary. The "insert" vma (if any) is to be inserted 721 * before we drop the necessary locks. 722 */ 723 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 724 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 725 { 726 struct mm_struct *mm = vma->vm_mm; 727 struct vm_area_struct *next = vma->vm_next; 728 struct vm_area_struct *importer = NULL; 729 struct address_space *mapping = NULL; 730 struct rb_root *root = NULL; 731 struct anon_vma *anon_vma = NULL; 732 struct file *file = vma->vm_file; 733 bool start_changed = false, end_changed = false; 734 long adjust_next = 0; 735 int remove_next = 0; 736 737 if (next && !insert) { 738 struct vm_area_struct *exporter = NULL; 739 740 if (end >= next->vm_end) { 741 /* 742 * vma expands, overlapping all the next, and 743 * perhaps the one after too (mprotect case 6). 744 */ 745 again: remove_next = 1 + (end > next->vm_end); 746 end = next->vm_end; 747 exporter = next; 748 importer = vma; 749 } else if (end > next->vm_start) { 750 /* 751 * vma expands, overlapping part of the next: 752 * mprotect case 5 shifting the boundary up. 753 */ 754 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 755 exporter = next; 756 importer = vma; 757 } else if (end < vma->vm_end) { 758 /* 759 * vma shrinks, and !insert tells it's not 760 * split_vma inserting another: so it must be 761 * mprotect case 4 shifting the boundary down. 762 */ 763 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 764 exporter = vma; 765 importer = next; 766 } 767 768 /* 769 * Easily overlooked: when mprotect shifts the boundary, 770 * make sure the expanding vma has anon_vma set if the 771 * shrinking vma had, to cover any anon pages imported. 772 */ 773 if (exporter && exporter->anon_vma && !importer->anon_vma) { 774 int error; 775 776 importer->anon_vma = exporter->anon_vma; 777 error = anon_vma_clone(importer, exporter); 778 if (error) 779 return error; 780 } 781 } 782 783 if (file) { 784 mapping = file->f_mapping; 785 root = &mapping->i_mmap; 786 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 787 788 if (adjust_next) 789 uprobe_munmap(next, next->vm_start, next->vm_end); 790 791 i_mmap_lock_write(mapping); 792 if (insert) { 793 /* 794 * Put into interval tree now, so instantiated pages 795 * are visible to arm/parisc __flush_dcache_page 796 * throughout; but we cannot insert into address 797 * space until vma start or end is updated. 798 */ 799 __vma_link_file(insert); 800 } 801 } 802 803 vma_adjust_trans_huge(vma, start, end, adjust_next); 804 805 anon_vma = vma->anon_vma; 806 if (!anon_vma && adjust_next) 807 anon_vma = next->anon_vma; 808 if (anon_vma) { 809 VM_BUG_ON_VMA(adjust_next && next->anon_vma && 810 anon_vma != next->anon_vma, next); 811 anon_vma_lock_write(anon_vma); 812 anon_vma_interval_tree_pre_update_vma(vma); 813 if (adjust_next) 814 anon_vma_interval_tree_pre_update_vma(next); 815 } 816 817 if (root) { 818 flush_dcache_mmap_lock(mapping); 819 vma_interval_tree_remove(vma, root); 820 if (adjust_next) 821 vma_interval_tree_remove(next, root); 822 } 823 824 if (start != vma->vm_start) { 825 vma->vm_start = start; 826 start_changed = true; 827 } 828 if (end != vma->vm_end) { 829 vma->vm_end = end; 830 end_changed = true; 831 } 832 vma->vm_pgoff = pgoff; 833 if (adjust_next) { 834 next->vm_start += adjust_next << PAGE_SHIFT; 835 next->vm_pgoff += adjust_next; 836 } 837 838 if (root) { 839 if (adjust_next) 840 vma_interval_tree_insert(next, root); 841 vma_interval_tree_insert(vma, root); 842 flush_dcache_mmap_unlock(mapping); 843 } 844 845 if (remove_next) { 846 /* 847 * vma_merge has merged next into vma, and needs 848 * us to remove next before dropping the locks. 849 */ 850 __vma_unlink(mm, next, vma); 851 if (file) 852 __remove_shared_vm_struct(next, file, mapping); 853 } else if (insert) { 854 /* 855 * split_vma has split insert from vma, and needs 856 * us to insert it before dropping the locks 857 * (it may either follow vma or precede it). 858 */ 859 __insert_vm_struct(mm, insert); 860 } else { 861 if (start_changed) 862 vma_gap_update(vma); 863 if (end_changed) { 864 if (!next) 865 mm->highest_vm_end = end; 866 else if (!adjust_next) 867 vma_gap_update(next); 868 } 869 } 870 871 if (anon_vma) { 872 anon_vma_interval_tree_post_update_vma(vma); 873 if (adjust_next) 874 anon_vma_interval_tree_post_update_vma(next); 875 anon_vma_unlock_write(anon_vma); 876 } 877 if (mapping) 878 i_mmap_unlock_write(mapping); 879 880 if (root) { 881 uprobe_mmap(vma); 882 883 if (adjust_next) 884 uprobe_mmap(next); 885 } 886 887 if (remove_next) { 888 if (file) { 889 uprobe_munmap(next, next->vm_start, next->vm_end); 890 fput(file); 891 } 892 if (next->anon_vma) 893 anon_vma_merge(vma, next); 894 mm->map_count--; 895 mpol_put(vma_policy(next)); 896 kmem_cache_free(vm_area_cachep, next); 897 /* 898 * In mprotect's case 6 (see comments on vma_merge), 899 * we must remove another next too. It would clutter 900 * up the code too much to do both in one go. 901 */ 902 next = vma->vm_next; 903 if (remove_next == 2) 904 goto again; 905 else if (next) 906 vma_gap_update(next); 907 else 908 mm->highest_vm_end = end; 909 } 910 if (insert && file) 911 uprobe_mmap(insert); 912 913 validate_mm(mm); 914 915 return 0; 916 } 917 918 /* 919 * If the vma has a ->close operation then the driver probably needs to release 920 * per-vma resources, so we don't attempt to merge those. 921 */ 922 static inline int is_mergeable_vma(struct vm_area_struct *vma, 923 struct file *file, unsigned long vm_flags, 924 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 925 { 926 /* 927 * VM_SOFTDIRTY should not prevent from VMA merging, if we 928 * match the flags but dirty bit -- the caller should mark 929 * merged VMA as dirty. If dirty bit won't be excluded from 930 * comparison, we increase pressue on the memory system forcing 931 * the kernel to generate new VMAs when old one could be 932 * extended instead. 933 */ 934 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 935 return 0; 936 if (vma->vm_file != file) 937 return 0; 938 if (vma->vm_ops && vma->vm_ops->close) 939 return 0; 940 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 941 return 0; 942 return 1; 943 } 944 945 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 946 struct anon_vma *anon_vma2, 947 struct vm_area_struct *vma) 948 { 949 /* 950 * The list_is_singular() test is to avoid merging VMA cloned from 951 * parents. This can improve scalability caused by anon_vma lock. 952 */ 953 if ((!anon_vma1 || !anon_vma2) && (!vma || 954 list_is_singular(&vma->anon_vma_chain))) 955 return 1; 956 return anon_vma1 == anon_vma2; 957 } 958 959 /* 960 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 961 * in front of (at a lower virtual address and file offset than) the vma. 962 * 963 * We cannot merge two vmas if they have differently assigned (non-NULL) 964 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 965 * 966 * We don't check here for the merged mmap wrapping around the end of pagecache 967 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 968 * wrap, nor mmaps which cover the final page at index -1UL. 969 */ 970 static int 971 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 972 struct anon_vma *anon_vma, struct file *file, 973 pgoff_t vm_pgoff, 974 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 975 { 976 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 977 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 978 if (vma->vm_pgoff == vm_pgoff) 979 return 1; 980 } 981 return 0; 982 } 983 984 /* 985 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 986 * beyond (at a higher virtual address and file offset than) the vma. 987 * 988 * We cannot merge two vmas if they have differently assigned (non-NULL) 989 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 990 */ 991 static int 992 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 993 struct anon_vma *anon_vma, struct file *file, 994 pgoff_t vm_pgoff, 995 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 996 { 997 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 998 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 999 pgoff_t vm_pglen; 1000 vm_pglen = vma_pages(vma); 1001 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1002 return 1; 1003 } 1004 return 0; 1005 } 1006 1007 /* 1008 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1009 * whether that can be merged with its predecessor or its successor. 1010 * Or both (it neatly fills a hole). 1011 * 1012 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1013 * certain not to be mapped by the time vma_merge is called; but when 1014 * called for mprotect, it is certain to be already mapped (either at 1015 * an offset within prev, or at the start of next), and the flags of 1016 * this area are about to be changed to vm_flags - and the no-change 1017 * case has already been eliminated. 1018 * 1019 * The following mprotect cases have to be considered, where AAAA is 1020 * the area passed down from mprotect_fixup, never extending beyond one 1021 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1022 * 1023 * AAAA AAAA AAAA AAAA 1024 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1025 * cannot merge might become might become might become 1026 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1027 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1028 * mremap move: PPPPNNNNNNNN 8 1029 * AAAA 1030 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1031 * might become case 1 below case 2 below case 3 below 1032 * 1033 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 1034 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 1035 */ 1036 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1037 struct vm_area_struct *prev, unsigned long addr, 1038 unsigned long end, unsigned long vm_flags, 1039 struct anon_vma *anon_vma, struct file *file, 1040 pgoff_t pgoff, struct mempolicy *policy, 1041 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1042 { 1043 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1044 struct vm_area_struct *area, *next; 1045 int err; 1046 1047 /* 1048 * We later require that vma->vm_flags == vm_flags, 1049 * so this tests vma->vm_flags & VM_SPECIAL, too. 1050 */ 1051 if (vm_flags & VM_SPECIAL) 1052 return NULL; 1053 1054 if (prev) 1055 next = prev->vm_next; 1056 else 1057 next = mm->mmap; 1058 area = next; 1059 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 1060 next = next->vm_next; 1061 1062 /* 1063 * Can it merge with the predecessor? 1064 */ 1065 if (prev && prev->vm_end == addr && 1066 mpol_equal(vma_policy(prev), policy) && 1067 can_vma_merge_after(prev, vm_flags, 1068 anon_vma, file, pgoff, 1069 vm_userfaultfd_ctx)) { 1070 /* 1071 * OK, it can. Can we now merge in the successor as well? 1072 */ 1073 if (next && end == next->vm_start && 1074 mpol_equal(policy, vma_policy(next)) && 1075 can_vma_merge_before(next, vm_flags, 1076 anon_vma, file, 1077 pgoff+pglen, 1078 vm_userfaultfd_ctx) && 1079 is_mergeable_anon_vma(prev->anon_vma, 1080 next->anon_vma, NULL)) { 1081 /* cases 1, 6 */ 1082 err = vma_adjust(prev, prev->vm_start, 1083 next->vm_end, prev->vm_pgoff, NULL); 1084 } else /* cases 2, 5, 7 */ 1085 err = vma_adjust(prev, prev->vm_start, 1086 end, prev->vm_pgoff, NULL); 1087 if (err) 1088 return NULL; 1089 khugepaged_enter_vma_merge(prev, vm_flags); 1090 return prev; 1091 } 1092 1093 /* 1094 * Can this new request be merged in front of next? 1095 */ 1096 if (next && end == next->vm_start && 1097 mpol_equal(policy, vma_policy(next)) && 1098 can_vma_merge_before(next, vm_flags, 1099 anon_vma, file, pgoff+pglen, 1100 vm_userfaultfd_ctx)) { 1101 if (prev && addr < prev->vm_end) /* case 4 */ 1102 err = vma_adjust(prev, prev->vm_start, 1103 addr, prev->vm_pgoff, NULL); 1104 else /* cases 3, 8 */ 1105 err = vma_adjust(area, addr, next->vm_end, 1106 next->vm_pgoff - pglen, NULL); 1107 if (err) 1108 return NULL; 1109 khugepaged_enter_vma_merge(area, vm_flags); 1110 return area; 1111 } 1112 1113 return NULL; 1114 } 1115 1116 /* 1117 * Rough compatbility check to quickly see if it's even worth looking 1118 * at sharing an anon_vma. 1119 * 1120 * They need to have the same vm_file, and the flags can only differ 1121 * in things that mprotect may change. 1122 * 1123 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1124 * we can merge the two vma's. For example, we refuse to merge a vma if 1125 * there is a vm_ops->close() function, because that indicates that the 1126 * driver is doing some kind of reference counting. But that doesn't 1127 * really matter for the anon_vma sharing case. 1128 */ 1129 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1130 { 1131 return a->vm_end == b->vm_start && 1132 mpol_equal(vma_policy(a), vma_policy(b)) && 1133 a->vm_file == b->vm_file && 1134 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1135 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1136 } 1137 1138 /* 1139 * Do some basic sanity checking to see if we can re-use the anon_vma 1140 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1141 * the same as 'old', the other will be the new one that is trying 1142 * to share the anon_vma. 1143 * 1144 * NOTE! This runs with mm_sem held for reading, so it is possible that 1145 * the anon_vma of 'old' is concurrently in the process of being set up 1146 * by another page fault trying to merge _that_. But that's ok: if it 1147 * is being set up, that automatically means that it will be a singleton 1148 * acceptable for merging, so we can do all of this optimistically. But 1149 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1150 * 1151 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1152 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1153 * is to return an anon_vma that is "complex" due to having gone through 1154 * a fork). 1155 * 1156 * We also make sure that the two vma's are compatible (adjacent, 1157 * and with the same memory policies). That's all stable, even with just 1158 * a read lock on the mm_sem. 1159 */ 1160 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1161 { 1162 if (anon_vma_compatible(a, b)) { 1163 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1164 1165 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1166 return anon_vma; 1167 } 1168 return NULL; 1169 } 1170 1171 /* 1172 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1173 * neighbouring vmas for a suitable anon_vma, before it goes off 1174 * to allocate a new anon_vma. It checks because a repetitive 1175 * sequence of mprotects and faults may otherwise lead to distinct 1176 * anon_vmas being allocated, preventing vma merge in subsequent 1177 * mprotect. 1178 */ 1179 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1180 { 1181 struct anon_vma *anon_vma; 1182 struct vm_area_struct *near; 1183 1184 near = vma->vm_next; 1185 if (!near) 1186 goto try_prev; 1187 1188 anon_vma = reusable_anon_vma(near, vma, near); 1189 if (anon_vma) 1190 return anon_vma; 1191 try_prev: 1192 near = vma->vm_prev; 1193 if (!near) 1194 goto none; 1195 1196 anon_vma = reusable_anon_vma(near, near, vma); 1197 if (anon_vma) 1198 return anon_vma; 1199 none: 1200 /* 1201 * There's no absolute need to look only at touching neighbours: 1202 * we could search further afield for "compatible" anon_vmas. 1203 * But it would probably just be a waste of time searching, 1204 * or lead to too many vmas hanging off the same anon_vma. 1205 * We're trying to allow mprotect remerging later on, 1206 * not trying to minimize memory used for anon_vmas. 1207 */ 1208 return NULL; 1209 } 1210 1211 #ifdef CONFIG_PROC_FS 1212 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 1213 struct file *file, long pages) 1214 { 1215 const unsigned long stack_flags 1216 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 1217 1218 mm->total_vm += pages; 1219 1220 if (file) { 1221 mm->shared_vm += pages; 1222 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 1223 mm->exec_vm += pages; 1224 } else if (flags & stack_flags) 1225 mm->stack_vm += pages; 1226 } 1227 #endif /* CONFIG_PROC_FS */ 1228 1229 /* 1230 * If a hint addr is less than mmap_min_addr change hint to be as 1231 * low as possible but still greater than mmap_min_addr 1232 */ 1233 static inline unsigned long round_hint_to_min(unsigned long hint) 1234 { 1235 hint &= PAGE_MASK; 1236 if (((void *)hint != NULL) && 1237 (hint < mmap_min_addr)) 1238 return PAGE_ALIGN(mmap_min_addr); 1239 return hint; 1240 } 1241 1242 static inline int mlock_future_check(struct mm_struct *mm, 1243 unsigned long flags, 1244 unsigned long len) 1245 { 1246 unsigned long locked, lock_limit; 1247 1248 /* mlock MCL_FUTURE? */ 1249 if (flags & VM_LOCKED) { 1250 locked = len >> PAGE_SHIFT; 1251 locked += mm->locked_vm; 1252 lock_limit = rlimit(RLIMIT_MEMLOCK); 1253 lock_limit >>= PAGE_SHIFT; 1254 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1255 return -EAGAIN; 1256 } 1257 return 0; 1258 } 1259 1260 /* 1261 * The caller must hold down_write(¤t->mm->mmap_sem). 1262 */ 1263 unsigned long do_mmap(struct file *file, unsigned long addr, 1264 unsigned long len, unsigned long prot, 1265 unsigned long flags, vm_flags_t vm_flags, 1266 unsigned long pgoff, unsigned long *populate) 1267 { 1268 struct mm_struct *mm = current->mm; 1269 1270 *populate = 0; 1271 1272 if (!len) 1273 return -EINVAL; 1274 1275 /* 1276 * Does the application expect PROT_READ to imply PROT_EXEC? 1277 * 1278 * (the exception is when the underlying filesystem is noexec 1279 * mounted, in which case we dont add PROT_EXEC.) 1280 */ 1281 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1282 if (!(file && path_noexec(&file->f_path))) 1283 prot |= PROT_EXEC; 1284 1285 if (!(flags & MAP_FIXED)) 1286 addr = round_hint_to_min(addr); 1287 1288 /* Careful about overflows.. */ 1289 len = PAGE_ALIGN(len); 1290 if (!len) 1291 return -ENOMEM; 1292 1293 /* offset overflow? */ 1294 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1295 return -EOVERFLOW; 1296 1297 /* Too many mappings? */ 1298 if (mm->map_count > sysctl_max_map_count) 1299 return -ENOMEM; 1300 1301 /* Obtain the address to map to. we verify (or select) it and ensure 1302 * that it represents a valid section of the address space. 1303 */ 1304 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1305 if (offset_in_page(addr)) 1306 return addr; 1307 1308 /* Do simple checking here so the lower-level routines won't have 1309 * to. we assume access permissions have been handled by the open 1310 * of the memory object, so we don't do any here. 1311 */ 1312 vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1313 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1314 1315 if (flags & MAP_LOCKED) 1316 if (!can_do_mlock()) 1317 return -EPERM; 1318 1319 if (mlock_future_check(mm, vm_flags, len)) 1320 return -EAGAIN; 1321 1322 if (file) { 1323 struct inode *inode = file_inode(file); 1324 1325 switch (flags & MAP_TYPE) { 1326 case MAP_SHARED: 1327 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1328 return -EACCES; 1329 1330 /* 1331 * Make sure we don't allow writing to an append-only 1332 * file.. 1333 */ 1334 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1335 return -EACCES; 1336 1337 /* 1338 * Make sure there are no mandatory locks on the file. 1339 */ 1340 if (locks_verify_locked(file)) 1341 return -EAGAIN; 1342 1343 vm_flags |= VM_SHARED | VM_MAYSHARE; 1344 if (!(file->f_mode & FMODE_WRITE)) 1345 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1346 1347 /* fall through */ 1348 case MAP_PRIVATE: 1349 if (!(file->f_mode & FMODE_READ)) 1350 return -EACCES; 1351 if (path_noexec(&file->f_path)) { 1352 if (vm_flags & VM_EXEC) 1353 return -EPERM; 1354 vm_flags &= ~VM_MAYEXEC; 1355 } 1356 1357 if (!file->f_op->mmap) 1358 return -ENODEV; 1359 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1360 return -EINVAL; 1361 break; 1362 1363 default: 1364 return -EINVAL; 1365 } 1366 } else { 1367 switch (flags & MAP_TYPE) { 1368 case MAP_SHARED: 1369 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1370 return -EINVAL; 1371 /* 1372 * Ignore pgoff. 1373 */ 1374 pgoff = 0; 1375 vm_flags |= VM_SHARED | VM_MAYSHARE; 1376 break; 1377 case MAP_PRIVATE: 1378 /* 1379 * Set pgoff according to addr for anon_vma. 1380 */ 1381 pgoff = addr >> PAGE_SHIFT; 1382 break; 1383 default: 1384 return -EINVAL; 1385 } 1386 } 1387 1388 /* 1389 * Set 'VM_NORESERVE' if we should not account for the 1390 * memory use of this mapping. 1391 */ 1392 if (flags & MAP_NORESERVE) { 1393 /* We honor MAP_NORESERVE if allowed to overcommit */ 1394 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1395 vm_flags |= VM_NORESERVE; 1396 1397 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1398 if (file && is_file_hugepages(file)) 1399 vm_flags |= VM_NORESERVE; 1400 } 1401 1402 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1403 if (!IS_ERR_VALUE(addr) && 1404 ((vm_flags & VM_LOCKED) || 1405 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1406 *populate = len; 1407 return addr; 1408 } 1409 1410 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1411 unsigned long, prot, unsigned long, flags, 1412 unsigned long, fd, unsigned long, pgoff) 1413 { 1414 struct file *file = NULL; 1415 unsigned long retval; 1416 1417 if (!(flags & MAP_ANONYMOUS)) { 1418 audit_mmap_fd(fd, flags); 1419 file = fget(fd); 1420 if (!file) 1421 return -EBADF; 1422 if (is_file_hugepages(file)) 1423 len = ALIGN(len, huge_page_size(hstate_file(file))); 1424 retval = -EINVAL; 1425 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1426 goto out_fput; 1427 } else if (flags & MAP_HUGETLB) { 1428 struct user_struct *user = NULL; 1429 struct hstate *hs; 1430 1431 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1432 if (!hs) 1433 return -EINVAL; 1434 1435 len = ALIGN(len, huge_page_size(hs)); 1436 /* 1437 * VM_NORESERVE is used because the reservations will be 1438 * taken when vm_ops->mmap() is called 1439 * A dummy user value is used because we are not locking 1440 * memory so no accounting is necessary 1441 */ 1442 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1443 VM_NORESERVE, 1444 &user, HUGETLB_ANONHUGE_INODE, 1445 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1446 if (IS_ERR(file)) 1447 return PTR_ERR(file); 1448 } 1449 1450 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1451 1452 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1453 out_fput: 1454 if (file) 1455 fput(file); 1456 return retval; 1457 } 1458 1459 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1460 struct mmap_arg_struct { 1461 unsigned long addr; 1462 unsigned long len; 1463 unsigned long prot; 1464 unsigned long flags; 1465 unsigned long fd; 1466 unsigned long offset; 1467 }; 1468 1469 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1470 { 1471 struct mmap_arg_struct a; 1472 1473 if (copy_from_user(&a, arg, sizeof(a))) 1474 return -EFAULT; 1475 if (offset_in_page(a.offset)) 1476 return -EINVAL; 1477 1478 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1479 a.offset >> PAGE_SHIFT); 1480 } 1481 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1482 1483 /* 1484 * Some shared mappigns will want the pages marked read-only 1485 * to track write events. If so, we'll downgrade vm_page_prot 1486 * to the private version (using protection_map[] without the 1487 * VM_SHARED bit). 1488 */ 1489 int vma_wants_writenotify(struct vm_area_struct *vma) 1490 { 1491 vm_flags_t vm_flags = vma->vm_flags; 1492 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1493 1494 /* If it was private or non-writable, the write bit is already clear */ 1495 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1496 return 0; 1497 1498 /* The backer wishes to know when pages are first written to? */ 1499 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1500 return 1; 1501 1502 /* The open routine did something to the protections that pgprot_modify 1503 * won't preserve? */ 1504 if (pgprot_val(vma->vm_page_prot) != 1505 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags))) 1506 return 0; 1507 1508 /* Do we need to track softdirty? */ 1509 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1510 return 1; 1511 1512 /* Specialty mapping? */ 1513 if (vm_flags & VM_PFNMAP) 1514 return 0; 1515 1516 /* Can the mapping track the dirty pages? */ 1517 return vma->vm_file && vma->vm_file->f_mapping && 1518 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1519 } 1520 1521 /* 1522 * We account for memory if it's a private writeable mapping, 1523 * not hugepages and VM_NORESERVE wasn't set. 1524 */ 1525 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1526 { 1527 /* 1528 * hugetlb has its own accounting separate from the core VM 1529 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1530 */ 1531 if (file && is_file_hugepages(file)) 1532 return 0; 1533 1534 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1535 } 1536 1537 unsigned long mmap_region(struct file *file, unsigned long addr, 1538 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1539 { 1540 struct mm_struct *mm = current->mm; 1541 struct vm_area_struct *vma, *prev; 1542 int error; 1543 struct rb_node **rb_link, *rb_parent; 1544 unsigned long charged = 0; 1545 1546 /* Check against address space limit. */ 1547 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) { 1548 unsigned long nr_pages; 1549 1550 /* 1551 * MAP_FIXED may remove pages of mappings that intersects with 1552 * requested mapping. Account for the pages it would unmap. 1553 */ 1554 if (!(vm_flags & MAP_FIXED)) 1555 return -ENOMEM; 1556 1557 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1558 1559 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages)) 1560 return -ENOMEM; 1561 } 1562 1563 /* Clear old maps */ 1564 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1565 &rb_parent)) { 1566 if (do_munmap(mm, addr, len)) 1567 return -ENOMEM; 1568 } 1569 1570 /* 1571 * Private writable mapping: check memory availability 1572 */ 1573 if (accountable_mapping(file, vm_flags)) { 1574 charged = len >> PAGE_SHIFT; 1575 if (security_vm_enough_memory_mm(mm, charged)) 1576 return -ENOMEM; 1577 vm_flags |= VM_ACCOUNT; 1578 } 1579 1580 /* 1581 * Can we just expand an old mapping? 1582 */ 1583 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1584 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1585 if (vma) 1586 goto out; 1587 1588 /* 1589 * Determine the object being mapped and call the appropriate 1590 * specific mapper. the address has already been validated, but 1591 * not unmapped, but the maps are removed from the list. 1592 */ 1593 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1594 if (!vma) { 1595 error = -ENOMEM; 1596 goto unacct_error; 1597 } 1598 1599 vma->vm_mm = mm; 1600 vma->vm_start = addr; 1601 vma->vm_end = addr + len; 1602 vma->vm_flags = vm_flags; 1603 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1604 vma->vm_pgoff = pgoff; 1605 INIT_LIST_HEAD(&vma->anon_vma_chain); 1606 1607 if (file) { 1608 if (vm_flags & VM_DENYWRITE) { 1609 error = deny_write_access(file); 1610 if (error) 1611 goto free_vma; 1612 } 1613 if (vm_flags & VM_SHARED) { 1614 error = mapping_map_writable(file->f_mapping); 1615 if (error) 1616 goto allow_write_and_free_vma; 1617 } 1618 1619 /* ->mmap() can change vma->vm_file, but must guarantee that 1620 * vma_link() below can deny write-access if VM_DENYWRITE is set 1621 * and map writably if VM_SHARED is set. This usually means the 1622 * new file must not have been exposed to user-space, yet. 1623 */ 1624 vma->vm_file = get_file(file); 1625 error = file->f_op->mmap(file, vma); 1626 if (error) 1627 goto unmap_and_free_vma; 1628 1629 /* Can addr have changed?? 1630 * 1631 * Answer: Yes, several device drivers can do it in their 1632 * f_op->mmap method. -DaveM 1633 * Bug: If addr is changed, prev, rb_link, rb_parent should 1634 * be updated for vma_link() 1635 */ 1636 WARN_ON_ONCE(addr != vma->vm_start); 1637 1638 addr = vma->vm_start; 1639 vm_flags = vma->vm_flags; 1640 } else if (vm_flags & VM_SHARED) { 1641 error = shmem_zero_setup(vma); 1642 if (error) 1643 goto free_vma; 1644 } 1645 1646 vma_link(mm, vma, prev, rb_link, rb_parent); 1647 /* Once vma denies write, undo our temporary denial count */ 1648 if (file) { 1649 if (vm_flags & VM_SHARED) 1650 mapping_unmap_writable(file->f_mapping); 1651 if (vm_flags & VM_DENYWRITE) 1652 allow_write_access(file); 1653 } 1654 file = vma->vm_file; 1655 out: 1656 perf_event_mmap(vma); 1657 1658 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1659 if (vm_flags & VM_LOCKED) { 1660 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1661 vma == get_gate_vma(current->mm))) 1662 mm->locked_vm += (len >> PAGE_SHIFT); 1663 else 1664 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1665 } 1666 1667 if (file) 1668 uprobe_mmap(vma); 1669 1670 /* 1671 * New (or expanded) vma always get soft dirty status. 1672 * Otherwise user-space soft-dirty page tracker won't 1673 * be able to distinguish situation when vma area unmapped, 1674 * then new mapped in-place (which must be aimed as 1675 * a completely new data area). 1676 */ 1677 vma->vm_flags |= VM_SOFTDIRTY; 1678 1679 vma_set_page_prot(vma); 1680 1681 return addr; 1682 1683 unmap_and_free_vma: 1684 vma->vm_file = NULL; 1685 fput(file); 1686 1687 /* Undo any partial mapping done by a device driver. */ 1688 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1689 charged = 0; 1690 if (vm_flags & VM_SHARED) 1691 mapping_unmap_writable(file->f_mapping); 1692 allow_write_and_free_vma: 1693 if (vm_flags & VM_DENYWRITE) 1694 allow_write_access(file); 1695 free_vma: 1696 kmem_cache_free(vm_area_cachep, vma); 1697 unacct_error: 1698 if (charged) 1699 vm_unacct_memory(charged); 1700 return error; 1701 } 1702 1703 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1704 { 1705 /* 1706 * We implement the search by looking for an rbtree node that 1707 * immediately follows a suitable gap. That is, 1708 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1709 * - gap_end = vma->vm_start >= info->low_limit + length; 1710 * - gap_end - gap_start >= length 1711 */ 1712 1713 struct mm_struct *mm = current->mm; 1714 struct vm_area_struct *vma; 1715 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1716 1717 /* Adjust search length to account for worst case alignment overhead */ 1718 length = info->length + info->align_mask; 1719 if (length < info->length) 1720 return -ENOMEM; 1721 1722 /* Adjust search limits by the desired length */ 1723 if (info->high_limit < length) 1724 return -ENOMEM; 1725 high_limit = info->high_limit - length; 1726 1727 if (info->low_limit > high_limit) 1728 return -ENOMEM; 1729 low_limit = info->low_limit + length; 1730 1731 /* Check if rbtree root looks promising */ 1732 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1733 goto check_highest; 1734 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1735 if (vma->rb_subtree_gap < length) 1736 goto check_highest; 1737 1738 while (true) { 1739 /* Visit left subtree if it looks promising */ 1740 gap_end = vma->vm_start; 1741 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1742 struct vm_area_struct *left = 1743 rb_entry(vma->vm_rb.rb_left, 1744 struct vm_area_struct, vm_rb); 1745 if (left->rb_subtree_gap >= length) { 1746 vma = left; 1747 continue; 1748 } 1749 } 1750 1751 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1752 check_current: 1753 /* Check if current node has a suitable gap */ 1754 if (gap_start > high_limit) 1755 return -ENOMEM; 1756 if (gap_end >= low_limit && gap_end - gap_start >= length) 1757 goto found; 1758 1759 /* Visit right subtree if it looks promising */ 1760 if (vma->vm_rb.rb_right) { 1761 struct vm_area_struct *right = 1762 rb_entry(vma->vm_rb.rb_right, 1763 struct vm_area_struct, vm_rb); 1764 if (right->rb_subtree_gap >= length) { 1765 vma = right; 1766 continue; 1767 } 1768 } 1769 1770 /* Go back up the rbtree to find next candidate node */ 1771 while (true) { 1772 struct rb_node *prev = &vma->vm_rb; 1773 if (!rb_parent(prev)) 1774 goto check_highest; 1775 vma = rb_entry(rb_parent(prev), 1776 struct vm_area_struct, vm_rb); 1777 if (prev == vma->vm_rb.rb_left) { 1778 gap_start = vma->vm_prev->vm_end; 1779 gap_end = vma->vm_start; 1780 goto check_current; 1781 } 1782 } 1783 } 1784 1785 check_highest: 1786 /* Check highest gap, which does not precede any rbtree node */ 1787 gap_start = mm->highest_vm_end; 1788 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1789 if (gap_start > high_limit) 1790 return -ENOMEM; 1791 1792 found: 1793 /* We found a suitable gap. Clip it with the original low_limit. */ 1794 if (gap_start < info->low_limit) 1795 gap_start = info->low_limit; 1796 1797 /* Adjust gap address to the desired alignment */ 1798 gap_start += (info->align_offset - gap_start) & info->align_mask; 1799 1800 VM_BUG_ON(gap_start + info->length > info->high_limit); 1801 VM_BUG_ON(gap_start + info->length > gap_end); 1802 return gap_start; 1803 } 1804 1805 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1806 { 1807 struct mm_struct *mm = current->mm; 1808 struct vm_area_struct *vma; 1809 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1810 1811 /* Adjust search length to account for worst case alignment overhead */ 1812 length = info->length + info->align_mask; 1813 if (length < info->length) 1814 return -ENOMEM; 1815 1816 /* 1817 * Adjust search limits by the desired length. 1818 * See implementation comment at top of unmapped_area(). 1819 */ 1820 gap_end = info->high_limit; 1821 if (gap_end < length) 1822 return -ENOMEM; 1823 high_limit = gap_end - length; 1824 1825 if (info->low_limit > high_limit) 1826 return -ENOMEM; 1827 low_limit = info->low_limit + length; 1828 1829 /* Check highest gap, which does not precede any rbtree node */ 1830 gap_start = mm->highest_vm_end; 1831 if (gap_start <= high_limit) 1832 goto found_highest; 1833 1834 /* Check if rbtree root looks promising */ 1835 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1836 return -ENOMEM; 1837 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1838 if (vma->rb_subtree_gap < length) 1839 return -ENOMEM; 1840 1841 while (true) { 1842 /* Visit right subtree if it looks promising */ 1843 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1844 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1845 struct vm_area_struct *right = 1846 rb_entry(vma->vm_rb.rb_right, 1847 struct vm_area_struct, vm_rb); 1848 if (right->rb_subtree_gap >= length) { 1849 vma = right; 1850 continue; 1851 } 1852 } 1853 1854 check_current: 1855 /* Check if current node has a suitable gap */ 1856 gap_end = vma->vm_start; 1857 if (gap_end < low_limit) 1858 return -ENOMEM; 1859 if (gap_start <= high_limit && gap_end - gap_start >= length) 1860 goto found; 1861 1862 /* Visit left subtree if it looks promising */ 1863 if (vma->vm_rb.rb_left) { 1864 struct vm_area_struct *left = 1865 rb_entry(vma->vm_rb.rb_left, 1866 struct vm_area_struct, vm_rb); 1867 if (left->rb_subtree_gap >= length) { 1868 vma = left; 1869 continue; 1870 } 1871 } 1872 1873 /* Go back up the rbtree to find next candidate node */ 1874 while (true) { 1875 struct rb_node *prev = &vma->vm_rb; 1876 if (!rb_parent(prev)) 1877 return -ENOMEM; 1878 vma = rb_entry(rb_parent(prev), 1879 struct vm_area_struct, vm_rb); 1880 if (prev == vma->vm_rb.rb_right) { 1881 gap_start = vma->vm_prev ? 1882 vma->vm_prev->vm_end : 0; 1883 goto check_current; 1884 } 1885 } 1886 } 1887 1888 found: 1889 /* We found a suitable gap. Clip it with the original high_limit. */ 1890 if (gap_end > info->high_limit) 1891 gap_end = info->high_limit; 1892 1893 found_highest: 1894 /* Compute highest gap address at the desired alignment */ 1895 gap_end -= info->length; 1896 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1897 1898 VM_BUG_ON(gap_end < info->low_limit); 1899 VM_BUG_ON(gap_end < gap_start); 1900 return gap_end; 1901 } 1902 1903 /* Get an address range which is currently unmapped. 1904 * For shmat() with addr=0. 1905 * 1906 * Ugly calling convention alert: 1907 * Return value with the low bits set means error value, 1908 * ie 1909 * if (ret & ~PAGE_MASK) 1910 * error = ret; 1911 * 1912 * This function "knows" that -ENOMEM has the bits set. 1913 */ 1914 #ifndef HAVE_ARCH_UNMAPPED_AREA 1915 unsigned long 1916 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1917 unsigned long len, unsigned long pgoff, unsigned long flags) 1918 { 1919 struct mm_struct *mm = current->mm; 1920 struct vm_area_struct *vma; 1921 struct vm_unmapped_area_info info; 1922 1923 if (len > TASK_SIZE - mmap_min_addr) 1924 return -ENOMEM; 1925 1926 if (flags & MAP_FIXED) 1927 return addr; 1928 1929 if (addr) { 1930 addr = PAGE_ALIGN(addr); 1931 vma = find_vma(mm, addr); 1932 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1933 (!vma || addr + len <= vma->vm_start)) 1934 return addr; 1935 } 1936 1937 info.flags = 0; 1938 info.length = len; 1939 info.low_limit = mm->mmap_base; 1940 info.high_limit = TASK_SIZE; 1941 info.align_mask = 0; 1942 return vm_unmapped_area(&info); 1943 } 1944 #endif 1945 1946 /* 1947 * This mmap-allocator allocates new areas top-down from below the 1948 * stack's low limit (the base): 1949 */ 1950 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1951 unsigned long 1952 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1953 const unsigned long len, const unsigned long pgoff, 1954 const unsigned long flags) 1955 { 1956 struct vm_area_struct *vma; 1957 struct mm_struct *mm = current->mm; 1958 unsigned long addr = addr0; 1959 struct vm_unmapped_area_info info; 1960 1961 /* requested length too big for entire address space */ 1962 if (len > TASK_SIZE - mmap_min_addr) 1963 return -ENOMEM; 1964 1965 if (flags & MAP_FIXED) 1966 return addr; 1967 1968 /* requesting a specific address */ 1969 if (addr) { 1970 addr = PAGE_ALIGN(addr); 1971 vma = find_vma(mm, addr); 1972 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1973 (!vma || addr + len <= vma->vm_start)) 1974 return addr; 1975 } 1976 1977 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1978 info.length = len; 1979 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1980 info.high_limit = mm->mmap_base; 1981 info.align_mask = 0; 1982 addr = vm_unmapped_area(&info); 1983 1984 /* 1985 * A failed mmap() very likely causes application failure, 1986 * so fall back to the bottom-up function here. This scenario 1987 * can happen with large stack limits and large mmap() 1988 * allocations. 1989 */ 1990 if (offset_in_page(addr)) { 1991 VM_BUG_ON(addr != -ENOMEM); 1992 info.flags = 0; 1993 info.low_limit = TASK_UNMAPPED_BASE; 1994 info.high_limit = TASK_SIZE; 1995 addr = vm_unmapped_area(&info); 1996 } 1997 1998 return addr; 1999 } 2000 #endif 2001 2002 unsigned long 2003 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2004 unsigned long pgoff, unsigned long flags) 2005 { 2006 unsigned long (*get_area)(struct file *, unsigned long, 2007 unsigned long, unsigned long, unsigned long); 2008 2009 unsigned long error = arch_mmap_check(addr, len, flags); 2010 if (error) 2011 return error; 2012 2013 /* Careful about overflows.. */ 2014 if (len > TASK_SIZE) 2015 return -ENOMEM; 2016 2017 get_area = current->mm->get_unmapped_area; 2018 if (file && file->f_op->get_unmapped_area) 2019 get_area = file->f_op->get_unmapped_area; 2020 addr = get_area(file, addr, len, pgoff, flags); 2021 if (IS_ERR_VALUE(addr)) 2022 return addr; 2023 2024 if (addr > TASK_SIZE - len) 2025 return -ENOMEM; 2026 if (offset_in_page(addr)) 2027 return -EINVAL; 2028 2029 addr = arch_rebalance_pgtables(addr, len); 2030 error = security_mmap_addr(addr); 2031 return error ? error : addr; 2032 } 2033 2034 EXPORT_SYMBOL(get_unmapped_area); 2035 2036 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2037 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2038 { 2039 struct rb_node *rb_node; 2040 struct vm_area_struct *vma; 2041 2042 /* Check the cache first. */ 2043 vma = vmacache_find(mm, addr); 2044 if (likely(vma)) 2045 return vma; 2046 2047 rb_node = mm->mm_rb.rb_node; 2048 2049 while (rb_node) { 2050 struct vm_area_struct *tmp; 2051 2052 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2053 2054 if (tmp->vm_end > addr) { 2055 vma = tmp; 2056 if (tmp->vm_start <= addr) 2057 break; 2058 rb_node = rb_node->rb_left; 2059 } else 2060 rb_node = rb_node->rb_right; 2061 } 2062 2063 if (vma) 2064 vmacache_update(addr, vma); 2065 return vma; 2066 } 2067 2068 EXPORT_SYMBOL(find_vma); 2069 2070 /* 2071 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2072 */ 2073 struct vm_area_struct * 2074 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2075 struct vm_area_struct **pprev) 2076 { 2077 struct vm_area_struct *vma; 2078 2079 vma = find_vma(mm, addr); 2080 if (vma) { 2081 *pprev = vma->vm_prev; 2082 } else { 2083 struct rb_node *rb_node = mm->mm_rb.rb_node; 2084 *pprev = NULL; 2085 while (rb_node) { 2086 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2087 rb_node = rb_node->rb_right; 2088 } 2089 } 2090 return vma; 2091 } 2092 2093 /* 2094 * Verify that the stack growth is acceptable and 2095 * update accounting. This is shared with both the 2096 * grow-up and grow-down cases. 2097 */ 2098 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2099 { 2100 struct mm_struct *mm = vma->vm_mm; 2101 struct rlimit *rlim = current->signal->rlim; 2102 unsigned long new_start, actual_size; 2103 2104 /* address space limit tests */ 2105 if (!may_expand_vm(mm, grow)) 2106 return -ENOMEM; 2107 2108 /* Stack limit test */ 2109 actual_size = size; 2110 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN))) 2111 actual_size -= PAGE_SIZE; 2112 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2113 return -ENOMEM; 2114 2115 /* mlock limit tests */ 2116 if (vma->vm_flags & VM_LOCKED) { 2117 unsigned long locked; 2118 unsigned long limit; 2119 locked = mm->locked_vm + grow; 2120 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2121 limit >>= PAGE_SHIFT; 2122 if (locked > limit && !capable(CAP_IPC_LOCK)) 2123 return -ENOMEM; 2124 } 2125 2126 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2127 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2128 vma->vm_end - size; 2129 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2130 return -EFAULT; 2131 2132 /* 2133 * Overcommit.. This must be the final test, as it will 2134 * update security statistics. 2135 */ 2136 if (security_vm_enough_memory_mm(mm, grow)) 2137 return -ENOMEM; 2138 2139 return 0; 2140 } 2141 2142 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2143 /* 2144 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2145 * vma is the last one with address > vma->vm_end. Have to extend vma. 2146 */ 2147 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2148 { 2149 struct mm_struct *mm = vma->vm_mm; 2150 int error; 2151 2152 if (!(vma->vm_flags & VM_GROWSUP)) 2153 return -EFAULT; 2154 2155 /* 2156 * We must make sure the anon_vma is allocated 2157 * so that the anon_vma locking is not a noop. 2158 */ 2159 if (unlikely(anon_vma_prepare(vma))) 2160 return -ENOMEM; 2161 vma_lock_anon_vma(vma); 2162 2163 /* 2164 * vma->vm_start/vm_end cannot change under us because the caller 2165 * is required to hold the mmap_sem in read mode. We need the 2166 * anon_vma lock to serialize against concurrent expand_stacks. 2167 * Also guard against wrapping around to address 0. 2168 */ 2169 if (address < PAGE_ALIGN(address+4)) 2170 address = PAGE_ALIGN(address+4); 2171 else { 2172 vma_unlock_anon_vma(vma); 2173 return -ENOMEM; 2174 } 2175 error = 0; 2176 2177 /* Somebody else might have raced and expanded it already */ 2178 if (address > vma->vm_end) { 2179 unsigned long size, grow; 2180 2181 size = address - vma->vm_start; 2182 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2183 2184 error = -ENOMEM; 2185 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2186 error = acct_stack_growth(vma, size, grow); 2187 if (!error) { 2188 /* 2189 * vma_gap_update() doesn't support concurrent 2190 * updates, but we only hold a shared mmap_sem 2191 * lock here, so we need to protect against 2192 * concurrent vma expansions. 2193 * vma_lock_anon_vma() doesn't help here, as 2194 * we don't guarantee that all growable vmas 2195 * in a mm share the same root anon vma. 2196 * So, we reuse mm->page_table_lock to guard 2197 * against concurrent vma expansions. 2198 */ 2199 spin_lock(&mm->page_table_lock); 2200 if (vma->vm_flags & VM_LOCKED) 2201 mm->locked_vm += grow; 2202 vm_stat_account(mm, vma->vm_flags, 2203 vma->vm_file, grow); 2204 anon_vma_interval_tree_pre_update_vma(vma); 2205 vma->vm_end = address; 2206 anon_vma_interval_tree_post_update_vma(vma); 2207 if (vma->vm_next) 2208 vma_gap_update(vma->vm_next); 2209 else 2210 mm->highest_vm_end = address; 2211 spin_unlock(&mm->page_table_lock); 2212 2213 perf_event_mmap(vma); 2214 } 2215 } 2216 } 2217 vma_unlock_anon_vma(vma); 2218 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2219 validate_mm(mm); 2220 return error; 2221 } 2222 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2223 2224 /* 2225 * vma is the first one with address < vma->vm_start. Have to extend vma. 2226 */ 2227 int expand_downwards(struct vm_area_struct *vma, 2228 unsigned long address) 2229 { 2230 struct mm_struct *mm = vma->vm_mm; 2231 int error; 2232 2233 /* 2234 * We must make sure the anon_vma is allocated 2235 * so that the anon_vma locking is not a noop. 2236 */ 2237 if (unlikely(anon_vma_prepare(vma))) 2238 return -ENOMEM; 2239 2240 address &= PAGE_MASK; 2241 error = security_mmap_addr(address); 2242 if (error) 2243 return error; 2244 2245 vma_lock_anon_vma(vma); 2246 2247 /* 2248 * vma->vm_start/vm_end cannot change under us because the caller 2249 * is required to hold the mmap_sem in read mode. We need the 2250 * anon_vma lock to serialize against concurrent expand_stacks. 2251 */ 2252 2253 /* Somebody else might have raced and expanded it already */ 2254 if (address < vma->vm_start) { 2255 unsigned long size, grow; 2256 2257 size = vma->vm_end - address; 2258 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2259 2260 error = -ENOMEM; 2261 if (grow <= vma->vm_pgoff) { 2262 error = acct_stack_growth(vma, size, grow); 2263 if (!error) { 2264 /* 2265 * vma_gap_update() doesn't support concurrent 2266 * updates, but we only hold a shared mmap_sem 2267 * lock here, so we need to protect against 2268 * concurrent vma expansions. 2269 * vma_lock_anon_vma() doesn't help here, as 2270 * we don't guarantee that all growable vmas 2271 * in a mm share the same root anon vma. 2272 * So, we reuse mm->page_table_lock to guard 2273 * against concurrent vma expansions. 2274 */ 2275 spin_lock(&mm->page_table_lock); 2276 if (vma->vm_flags & VM_LOCKED) 2277 mm->locked_vm += grow; 2278 vm_stat_account(mm, vma->vm_flags, 2279 vma->vm_file, grow); 2280 anon_vma_interval_tree_pre_update_vma(vma); 2281 vma->vm_start = address; 2282 vma->vm_pgoff -= grow; 2283 anon_vma_interval_tree_post_update_vma(vma); 2284 vma_gap_update(vma); 2285 spin_unlock(&mm->page_table_lock); 2286 2287 perf_event_mmap(vma); 2288 } 2289 } 2290 } 2291 vma_unlock_anon_vma(vma); 2292 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2293 validate_mm(mm); 2294 return error; 2295 } 2296 2297 /* 2298 * Note how expand_stack() refuses to expand the stack all the way to 2299 * abut the next virtual mapping, *unless* that mapping itself is also 2300 * a stack mapping. We want to leave room for a guard page, after all 2301 * (the guard page itself is not added here, that is done by the 2302 * actual page faulting logic) 2303 * 2304 * This matches the behavior of the guard page logic (see mm/memory.c: 2305 * check_stack_guard_page()), which only allows the guard page to be 2306 * removed under these circumstances. 2307 */ 2308 #ifdef CONFIG_STACK_GROWSUP 2309 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2310 { 2311 struct vm_area_struct *next; 2312 2313 address &= PAGE_MASK; 2314 next = vma->vm_next; 2315 if (next && next->vm_start == address + PAGE_SIZE) { 2316 if (!(next->vm_flags & VM_GROWSUP)) 2317 return -ENOMEM; 2318 } 2319 return expand_upwards(vma, address); 2320 } 2321 2322 struct vm_area_struct * 2323 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2324 { 2325 struct vm_area_struct *vma, *prev; 2326 2327 addr &= PAGE_MASK; 2328 vma = find_vma_prev(mm, addr, &prev); 2329 if (vma && (vma->vm_start <= addr)) 2330 return vma; 2331 if (!prev || expand_stack(prev, addr)) 2332 return NULL; 2333 if (prev->vm_flags & VM_LOCKED) 2334 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2335 return prev; 2336 } 2337 #else 2338 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2339 { 2340 struct vm_area_struct *prev; 2341 2342 address &= PAGE_MASK; 2343 prev = vma->vm_prev; 2344 if (prev && prev->vm_end == address) { 2345 if (!(prev->vm_flags & VM_GROWSDOWN)) 2346 return -ENOMEM; 2347 } 2348 return expand_downwards(vma, address); 2349 } 2350 2351 struct vm_area_struct * 2352 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2353 { 2354 struct vm_area_struct *vma; 2355 unsigned long start; 2356 2357 addr &= PAGE_MASK; 2358 vma = find_vma(mm, addr); 2359 if (!vma) 2360 return NULL; 2361 if (vma->vm_start <= addr) 2362 return vma; 2363 if (!(vma->vm_flags & VM_GROWSDOWN)) 2364 return NULL; 2365 start = vma->vm_start; 2366 if (expand_stack(vma, addr)) 2367 return NULL; 2368 if (vma->vm_flags & VM_LOCKED) 2369 populate_vma_page_range(vma, addr, start, NULL); 2370 return vma; 2371 } 2372 #endif 2373 2374 EXPORT_SYMBOL_GPL(find_extend_vma); 2375 2376 /* 2377 * Ok - we have the memory areas we should free on the vma list, 2378 * so release them, and do the vma updates. 2379 * 2380 * Called with the mm semaphore held. 2381 */ 2382 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2383 { 2384 unsigned long nr_accounted = 0; 2385 2386 /* Update high watermark before we lower total_vm */ 2387 update_hiwater_vm(mm); 2388 do { 2389 long nrpages = vma_pages(vma); 2390 2391 if (vma->vm_flags & VM_ACCOUNT) 2392 nr_accounted += nrpages; 2393 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 2394 vma = remove_vma(vma); 2395 } while (vma); 2396 vm_unacct_memory(nr_accounted); 2397 validate_mm(mm); 2398 } 2399 2400 /* 2401 * Get rid of page table information in the indicated region. 2402 * 2403 * Called with the mm semaphore held. 2404 */ 2405 static void unmap_region(struct mm_struct *mm, 2406 struct vm_area_struct *vma, struct vm_area_struct *prev, 2407 unsigned long start, unsigned long end) 2408 { 2409 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2410 struct mmu_gather tlb; 2411 2412 lru_add_drain(); 2413 tlb_gather_mmu(&tlb, mm, start, end); 2414 update_hiwater_rss(mm); 2415 unmap_vmas(&tlb, vma, start, end); 2416 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2417 next ? next->vm_start : USER_PGTABLES_CEILING); 2418 tlb_finish_mmu(&tlb, start, end); 2419 } 2420 2421 /* 2422 * Create a list of vma's touched by the unmap, removing them from the mm's 2423 * vma list as we go.. 2424 */ 2425 static void 2426 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2427 struct vm_area_struct *prev, unsigned long end) 2428 { 2429 struct vm_area_struct **insertion_point; 2430 struct vm_area_struct *tail_vma = NULL; 2431 2432 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2433 vma->vm_prev = NULL; 2434 do { 2435 vma_rb_erase(vma, &mm->mm_rb); 2436 mm->map_count--; 2437 tail_vma = vma; 2438 vma = vma->vm_next; 2439 } while (vma && vma->vm_start < end); 2440 *insertion_point = vma; 2441 if (vma) { 2442 vma->vm_prev = prev; 2443 vma_gap_update(vma); 2444 } else 2445 mm->highest_vm_end = prev ? prev->vm_end : 0; 2446 tail_vma->vm_next = NULL; 2447 2448 /* Kill the cache */ 2449 vmacache_invalidate(mm); 2450 } 2451 2452 /* 2453 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2454 * munmap path where it doesn't make sense to fail. 2455 */ 2456 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2457 unsigned long addr, int new_below) 2458 { 2459 struct vm_area_struct *new; 2460 int err; 2461 2462 if (is_vm_hugetlb_page(vma) && (addr & 2463 ~(huge_page_mask(hstate_vma(vma))))) 2464 return -EINVAL; 2465 2466 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2467 if (!new) 2468 return -ENOMEM; 2469 2470 /* most fields are the same, copy all, and then fixup */ 2471 *new = *vma; 2472 2473 INIT_LIST_HEAD(&new->anon_vma_chain); 2474 2475 if (new_below) 2476 new->vm_end = addr; 2477 else { 2478 new->vm_start = addr; 2479 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2480 } 2481 2482 err = vma_dup_policy(vma, new); 2483 if (err) 2484 goto out_free_vma; 2485 2486 err = anon_vma_clone(new, vma); 2487 if (err) 2488 goto out_free_mpol; 2489 2490 if (new->vm_file) 2491 get_file(new->vm_file); 2492 2493 if (new->vm_ops && new->vm_ops->open) 2494 new->vm_ops->open(new); 2495 2496 if (new_below) 2497 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2498 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2499 else 2500 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2501 2502 /* Success. */ 2503 if (!err) 2504 return 0; 2505 2506 /* Clean everything up if vma_adjust failed. */ 2507 if (new->vm_ops && new->vm_ops->close) 2508 new->vm_ops->close(new); 2509 if (new->vm_file) 2510 fput(new->vm_file); 2511 unlink_anon_vmas(new); 2512 out_free_mpol: 2513 mpol_put(vma_policy(new)); 2514 out_free_vma: 2515 kmem_cache_free(vm_area_cachep, new); 2516 return err; 2517 } 2518 2519 /* 2520 * Split a vma into two pieces at address 'addr', a new vma is allocated 2521 * either for the first part or the tail. 2522 */ 2523 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2524 unsigned long addr, int new_below) 2525 { 2526 if (mm->map_count >= sysctl_max_map_count) 2527 return -ENOMEM; 2528 2529 return __split_vma(mm, vma, addr, new_below); 2530 } 2531 2532 /* Munmap is split into 2 main parts -- this part which finds 2533 * what needs doing, and the areas themselves, which do the 2534 * work. This now handles partial unmappings. 2535 * Jeremy Fitzhardinge <jeremy@goop.org> 2536 */ 2537 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2538 { 2539 unsigned long end; 2540 struct vm_area_struct *vma, *prev, *last; 2541 2542 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2543 return -EINVAL; 2544 2545 len = PAGE_ALIGN(len); 2546 if (len == 0) 2547 return -EINVAL; 2548 2549 /* Find the first overlapping VMA */ 2550 vma = find_vma(mm, start); 2551 if (!vma) 2552 return 0; 2553 prev = vma->vm_prev; 2554 /* we have start < vma->vm_end */ 2555 2556 /* if it doesn't overlap, we have nothing.. */ 2557 end = start + len; 2558 if (vma->vm_start >= end) 2559 return 0; 2560 2561 /* 2562 * If we need to split any vma, do it now to save pain later. 2563 * 2564 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2565 * unmapped vm_area_struct will remain in use: so lower split_vma 2566 * places tmp vma above, and higher split_vma places tmp vma below. 2567 */ 2568 if (start > vma->vm_start) { 2569 int error; 2570 2571 /* 2572 * Make sure that map_count on return from munmap() will 2573 * not exceed its limit; but let map_count go just above 2574 * its limit temporarily, to help free resources as expected. 2575 */ 2576 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2577 return -ENOMEM; 2578 2579 error = __split_vma(mm, vma, start, 0); 2580 if (error) 2581 return error; 2582 prev = vma; 2583 } 2584 2585 /* Does it split the last one? */ 2586 last = find_vma(mm, end); 2587 if (last && end > last->vm_start) { 2588 int error = __split_vma(mm, last, end, 1); 2589 if (error) 2590 return error; 2591 } 2592 vma = prev ? prev->vm_next : mm->mmap; 2593 2594 /* 2595 * unlock any mlock()ed ranges before detaching vmas 2596 */ 2597 if (mm->locked_vm) { 2598 struct vm_area_struct *tmp = vma; 2599 while (tmp && tmp->vm_start < end) { 2600 if (tmp->vm_flags & VM_LOCKED) { 2601 mm->locked_vm -= vma_pages(tmp); 2602 munlock_vma_pages_all(tmp); 2603 } 2604 tmp = tmp->vm_next; 2605 } 2606 } 2607 2608 /* 2609 * Remove the vma's, and unmap the actual pages 2610 */ 2611 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2612 unmap_region(mm, vma, prev, start, end); 2613 2614 arch_unmap(mm, vma, start, end); 2615 2616 /* Fix up all other VM information */ 2617 remove_vma_list(mm, vma); 2618 2619 return 0; 2620 } 2621 2622 int vm_munmap(unsigned long start, size_t len) 2623 { 2624 int ret; 2625 struct mm_struct *mm = current->mm; 2626 2627 down_write(&mm->mmap_sem); 2628 ret = do_munmap(mm, start, len); 2629 up_write(&mm->mmap_sem); 2630 return ret; 2631 } 2632 EXPORT_SYMBOL(vm_munmap); 2633 2634 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2635 { 2636 profile_munmap(addr); 2637 return vm_munmap(addr, len); 2638 } 2639 2640 2641 /* 2642 * Emulation of deprecated remap_file_pages() syscall. 2643 */ 2644 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2645 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2646 { 2647 2648 struct mm_struct *mm = current->mm; 2649 struct vm_area_struct *vma; 2650 unsigned long populate = 0; 2651 unsigned long ret = -EINVAL; 2652 struct file *file; 2653 2654 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. " 2655 "See Documentation/vm/remap_file_pages.txt.\n", 2656 current->comm, current->pid); 2657 2658 if (prot) 2659 return ret; 2660 start = start & PAGE_MASK; 2661 size = size & PAGE_MASK; 2662 2663 if (start + size <= start) 2664 return ret; 2665 2666 /* Does pgoff wrap? */ 2667 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2668 return ret; 2669 2670 down_write(&mm->mmap_sem); 2671 vma = find_vma(mm, start); 2672 2673 if (!vma || !(vma->vm_flags & VM_SHARED)) 2674 goto out; 2675 2676 if (start < vma->vm_start || start + size > vma->vm_end) 2677 goto out; 2678 2679 if (pgoff == linear_page_index(vma, start)) { 2680 ret = 0; 2681 goto out; 2682 } 2683 2684 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2685 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2686 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2687 2688 flags &= MAP_NONBLOCK; 2689 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2690 if (vma->vm_flags & VM_LOCKED) { 2691 flags |= MAP_LOCKED; 2692 /* drop PG_Mlocked flag for over-mapped range */ 2693 munlock_vma_pages_range(vma, start, start + size); 2694 } 2695 2696 file = get_file(vma->vm_file); 2697 ret = do_mmap_pgoff(vma->vm_file, start, size, 2698 prot, flags, pgoff, &populate); 2699 fput(file); 2700 out: 2701 up_write(&mm->mmap_sem); 2702 if (populate) 2703 mm_populate(ret, populate); 2704 if (!IS_ERR_VALUE(ret)) 2705 ret = 0; 2706 return ret; 2707 } 2708 2709 static inline void verify_mm_writelocked(struct mm_struct *mm) 2710 { 2711 #ifdef CONFIG_DEBUG_VM 2712 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2713 WARN_ON(1); 2714 up_read(&mm->mmap_sem); 2715 } 2716 #endif 2717 } 2718 2719 /* 2720 * this is really a simplified "do_mmap". it only handles 2721 * anonymous maps. eventually we may be able to do some 2722 * brk-specific accounting here. 2723 */ 2724 static unsigned long do_brk(unsigned long addr, unsigned long len) 2725 { 2726 struct mm_struct *mm = current->mm; 2727 struct vm_area_struct *vma, *prev; 2728 unsigned long flags; 2729 struct rb_node **rb_link, *rb_parent; 2730 pgoff_t pgoff = addr >> PAGE_SHIFT; 2731 int error; 2732 2733 len = PAGE_ALIGN(len); 2734 if (!len) 2735 return addr; 2736 2737 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2738 2739 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2740 if (offset_in_page(error)) 2741 return error; 2742 2743 error = mlock_future_check(mm, mm->def_flags, len); 2744 if (error) 2745 return error; 2746 2747 /* 2748 * mm->mmap_sem is required to protect against another thread 2749 * changing the mappings in case we sleep. 2750 */ 2751 verify_mm_writelocked(mm); 2752 2753 /* 2754 * Clear old maps. this also does some error checking for us 2755 */ 2756 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2757 &rb_parent)) { 2758 if (do_munmap(mm, addr, len)) 2759 return -ENOMEM; 2760 } 2761 2762 /* Check against address space limits *after* clearing old maps... */ 2763 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2764 return -ENOMEM; 2765 2766 if (mm->map_count > sysctl_max_map_count) 2767 return -ENOMEM; 2768 2769 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2770 return -ENOMEM; 2771 2772 /* Can we just expand an old private anonymous mapping? */ 2773 vma = vma_merge(mm, prev, addr, addr + len, flags, 2774 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 2775 if (vma) 2776 goto out; 2777 2778 /* 2779 * create a vma struct for an anonymous mapping 2780 */ 2781 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2782 if (!vma) { 2783 vm_unacct_memory(len >> PAGE_SHIFT); 2784 return -ENOMEM; 2785 } 2786 2787 INIT_LIST_HEAD(&vma->anon_vma_chain); 2788 vma->vm_mm = mm; 2789 vma->vm_start = addr; 2790 vma->vm_end = addr + len; 2791 vma->vm_pgoff = pgoff; 2792 vma->vm_flags = flags; 2793 vma->vm_page_prot = vm_get_page_prot(flags); 2794 vma_link(mm, vma, prev, rb_link, rb_parent); 2795 out: 2796 perf_event_mmap(vma); 2797 mm->total_vm += len >> PAGE_SHIFT; 2798 if (flags & VM_LOCKED) 2799 mm->locked_vm += (len >> PAGE_SHIFT); 2800 vma->vm_flags |= VM_SOFTDIRTY; 2801 return addr; 2802 } 2803 2804 unsigned long vm_brk(unsigned long addr, unsigned long len) 2805 { 2806 struct mm_struct *mm = current->mm; 2807 unsigned long ret; 2808 bool populate; 2809 2810 down_write(&mm->mmap_sem); 2811 ret = do_brk(addr, len); 2812 populate = ((mm->def_flags & VM_LOCKED) != 0); 2813 up_write(&mm->mmap_sem); 2814 if (populate) 2815 mm_populate(addr, len); 2816 return ret; 2817 } 2818 EXPORT_SYMBOL(vm_brk); 2819 2820 /* Release all mmaps. */ 2821 void exit_mmap(struct mm_struct *mm) 2822 { 2823 struct mmu_gather tlb; 2824 struct vm_area_struct *vma; 2825 unsigned long nr_accounted = 0; 2826 2827 /* mm's last user has gone, and its about to be pulled down */ 2828 mmu_notifier_release(mm); 2829 2830 if (mm->locked_vm) { 2831 vma = mm->mmap; 2832 while (vma) { 2833 if (vma->vm_flags & VM_LOCKED) 2834 munlock_vma_pages_all(vma); 2835 vma = vma->vm_next; 2836 } 2837 } 2838 2839 arch_exit_mmap(mm); 2840 2841 vma = mm->mmap; 2842 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2843 return; 2844 2845 lru_add_drain(); 2846 flush_cache_mm(mm); 2847 tlb_gather_mmu(&tlb, mm, 0, -1); 2848 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2849 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2850 unmap_vmas(&tlb, vma, 0, -1); 2851 2852 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2853 tlb_finish_mmu(&tlb, 0, -1); 2854 2855 /* 2856 * Walk the list again, actually closing and freeing it, 2857 * with preemption enabled, without holding any MM locks. 2858 */ 2859 while (vma) { 2860 if (vma->vm_flags & VM_ACCOUNT) 2861 nr_accounted += vma_pages(vma); 2862 vma = remove_vma(vma); 2863 } 2864 vm_unacct_memory(nr_accounted); 2865 } 2866 2867 /* Insert vm structure into process list sorted by address 2868 * and into the inode's i_mmap tree. If vm_file is non-NULL 2869 * then i_mmap_rwsem is taken here. 2870 */ 2871 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2872 { 2873 struct vm_area_struct *prev; 2874 struct rb_node **rb_link, *rb_parent; 2875 2876 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2877 &prev, &rb_link, &rb_parent)) 2878 return -ENOMEM; 2879 if ((vma->vm_flags & VM_ACCOUNT) && 2880 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2881 return -ENOMEM; 2882 2883 /* 2884 * The vm_pgoff of a purely anonymous vma should be irrelevant 2885 * until its first write fault, when page's anon_vma and index 2886 * are set. But now set the vm_pgoff it will almost certainly 2887 * end up with (unless mremap moves it elsewhere before that 2888 * first wfault), so /proc/pid/maps tells a consistent story. 2889 * 2890 * By setting it to reflect the virtual start address of the 2891 * vma, merges and splits can happen in a seamless way, just 2892 * using the existing file pgoff checks and manipulations. 2893 * Similarly in do_mmap_pgoff and in do_brk. 2894 */ 2895 if (vma_is_anonymous(vma)) { 2896 BUG_ON(vma->anon_vma); 2897 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2898 } 2899 2900 vma_link(mm, vma, prev, rb_link, rb_parent); 2901 return 0; 2902 } 2903 2904 /* 2905 * Copy the vma structure to a new location in the same mm, 2906 * prior to moving page table entries, to effect an mremap move. 2907 */ 2908 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2909 unsigned long addr, unsigned long len, pgoff_t pgoff, 2910 bool *need_rmap_locks) 2911 { 2912 struct vm_area_struct *vma = *vmap; 2913 unsigned long vma_start = vma->vm_start; 2914 struct mm_struct *mm = vma->vm_mm; 2915 struct vm_area_struct *new_vma, *prev; 2916 struct rb_node **rb_link, *rb_parent; 2917 bool faulted_in_anon_vma = true; 2918 2919 /* 2920 * If anonymous vma has not yet been faulted, update new pgoff 2921 * to match new location, to increase its chance of merging. 2922 */ 2923 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 2924 pgoff = addr >> PAGE_SHIFT; 2925 faulted_in_anon_vma = false; 2926 } 2927 2928 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2929 return NULL; /* should never get here */ 2930 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2931 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 2932 vma->vm_userfaultfd_ctx); 2933 if (new_vma) { 2934 /* 2935 * Source vma may have been merged into new_vma 2936 */ 2937 if (unlikely(vma_start >= new_vma->vm_start && 2938 vma_start < new_vma->vm_end)) { 2939 /* 2940 * The only way we can get a vma_merge with 2941 * self during an mremap is if the vma hasn't 2942 * been faulted in yet and we were allowed to 2943 * reset the dst vma->vm_pgoff to the 2944 * destination address of the mremap to allow 2945 * the merge to happen. mremap must change the 2946 * vm_pgoff linearity between src and dst vmas 2947 * (in turn preventing a vma_merge) to be 2948 * safe. It is only safe to keep the vm_pgoff 2949 * linear if there are no pages mapped yet. 2950 */ 2951 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 2952 *vmap = vma = new_vma; 2953 } 2954 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2955 } else { 2956 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2957 if (!new_vma) 2958 goto out; 2959 *new_vma = *vma; 2960 new_vma->vm_start = addr; 2961 new_vma->vm_end = addr + len; 2962 new_vma->vm_pgoff = pgoff; 2963 if (vma_dup_policy(vma, new_vma)) 2964 goto out_free_vma; 2965 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2966 if (anon_vma_clone(new_vma, vma)) 2967 goto out_free_mempol; 2968 if (new_vma->vm_file) 2969 get_file(new_vma->vm_file); 2970 if (new_vma->vm_ops && new_vma->vm_ops->open) 2971 new_vma->vm_ops->open(new_vma); 2972 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2973 *need_rmap_locks = false; 2974 } 2975 return new_vma; 2976 2977 out_free_mempol: 2978 mpol_put(vma_policy(new_vma)); 2979 out_free_vma: 2980 kmem_cache_free(vm_area_cachep, new_vma); 2981 out: 2982 return NULL; 2983 } 2984 2985 /* 2986 * Return true if the calling process may expand its vm space by the passed 2987 * number of pages 2988 */ 2989 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2990 { 2991 unsigned long cur = mm->total_vm; /* pages */ 2992 unsigned long lim; 2993 2994 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2995 2996 if (cur + npages > lim) 2997 return 0; 2998 return 1; 2999 } 3000 3001 static int special_mapping_fault(struct vm_area_struct *vma, 3002 struct vm_fault *vmf); 3003 3004 /* 3005 * Having a close hook prevents vma merging regardless of flags. 3006 */ 3007 static void special_mapping_close(struct vm_area_struct *vma) 3008 { 3009 } 3010 3011 static const char *special_mapping_name(struct vm_area_struct *vma) 3012 { 3013 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3014 } 3015 3016 static const struct vm_operations_struct special_mapping_vmops = { 3017 .close = special_mapping_close, 3018 .fault = special_mapping_fault, 3019 .name = special_mapping_name, 3020 }; 3021 3022 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3023 .close = special_mapping_close, 3024 .fault = special_mapping_fault, 3025 }; 3026 3027 static int special_mapping_fault(struct vm_area_struct *vma, 3028 struct vm_fault *vmf) 3029 { 3030 pgoff_t pgoff; 3031 struct page **pages; 3032 3033 if (vma->vm_ops == &legacy_special_mapping_vmops) 3034 pages = vma->vm_private_data; 3035 else 3036 pages = ((struct vm_special_mapping *)vma->vm_private_data)-> 3037 pages; 3038 3039 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3040 pgoff--; 3041 3042 if (*pages) { 3043 struct page *page = *pages; 3044 get_page(page); 3045 vmf->page = page; 3046 return 0; 3047 } 3048 3049 return VM_FAULT_SIGBUS; 3050 } 3051 3052 static struct vm_area_struct *__install_special_mapping( 3053 struct mm_struct *mm, 3054 unsigned long addr, unsigned long len, 3055 unsigned long vm_flags, void *priv, 3056 const struct vm_operations_struct *ops) 3057 { 3058 int ret; 3059 struct vm_area_struct *vma; 3060 3061 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 3062 if (unlikely(vma == NULL)) 3063 return ERR_PTR(-ENOMEM); 3064 3065 INIT_LIST_HEAD(&vma->anon_vma_chain); 3066 vma->vm_mm = mm; 3067 vma->vm_start = addr; 3068 vma->vm_end = addr + len; 3069 3070 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3071 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3072 3073 vma->vm_ops = ops; 3074 vma->vm_private_data = priv; 3075 3076 ret = insert_vm_struct(mm, vma); 3077 if (ret) 3078 goto out; 3079 3080 mm->total_vm += len >> PAGE_SHIFT; 3081 3082 perf_event_mmap(vma); 3083 3084 return vma; 3085 3086 out: 3087 kmem_cache_free(vm_area_cachep, vma); 3088 return ERR_PTR(ret); 3089 } 3090 3091 /* 3092 * Called with mm->mmap_sem held for writing. 3093 * Insert a new vma covering the given region, with the given flags. 3094 * Its pages are supplied by the given array of struct page *. 3095 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3096 * The region past the last page supplied will always produce SIGBUS. 3097 * The array pointer and the pages it points to are assumed to stay alive 3098 * for as long as this mapping might exist. 3099 */ 3100 struct vm_area_struct *_install_special_mapping( 3101 struct mm_struct *mm, 3102 unsigned long addr, unsigned long len, 3103 unsigned long vm_flags, const struct vm_special_mapping *spec) 3104 { 3105 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3106 &special_mapping_vmops); 3107 } 3108 3109 int install_special_mapping(struct mm_struct *mm, 3110 unsigned long addr, unsigned long len, 3111 unsigned long vm_flags, struct page **pages) 3112 { 3113 struct vm_area_struct *vma = __install_special_mapping( 3114 mm, addr, len, vm_flags, (void *)pages, 3115 &legacy_special_mapping_vmops); 3116 3117 return PTR_ERR_OR_ZERO(vma); 3118 } 3119 3120 static DEFINE_MUTEX(mm_all_locks_mutex); 3121 3122 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3123 { 3124 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3125 /* 3126 * The LSB of head.next can't change from under us 3127 * because we hold the mm_all_locks_mutex. 3128 */ 3129 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3130 /* 3131 * We can safely modify head.next after taking the 3132 * anon_vma->root->rwsem. If some other vma in this mm shares 3133 * the same anon_vma we won't take it again. 3134 * 3135 * No need of atomic instructions here, head.next 3136 * can't change from under us thanks to the 3137 * anon_vma->root->rwsem. 3138 */ 3139 if (__test_and_set_bit(0, (unsigned long *) 3140 &anon_vma->root->rb_root.rb_node)) 3141 BUG(); 3142 } 3143 } 3144 3145 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3146 { 3147 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3148 /* 3149 * AS_MM_ALL_LOCKS can't change from under us because 3150 * we hold the mm_all_locks_mutex. 3151 * 3152 * Operations on ->flags have to be atomic because 3153 * even if AS_MM_ALL_LOCKS is stable thanks to the 3154 * mm_all_locks_mutex, there may be other cpus 3155 * changing other bitflags in parallel to us. 3156 */ 3157 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3158 BUG(); 3159 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3160 } 3161 } 3162 3163 /* 3164 * This operation locks against the VM for all pte/vma/mm related 3165 * operations that could ever happen on a certain mm. This includes 3166 * vmtruncate, try_to_unmap, and all page faults. 3167 * 3168 * The caller must take the mmap_sem in write mode before calling 3169 * mm_take_all_locks(). The caller isn't allowed to release the 3170 * mmap_sem until mm_drop_all_locks() returns. 3171 * 3172 * mmap_sem in write mode is required in order to block all operations 3173 * that could modify pagetables and free pages without need of 3174 * altering the vma layout. It's also needed in write mode to avoid new 3175 * anon_vmas to be associated with existing vmas. 3176 * 3177 * A single task can't take more than one mm_take_all_locks() in a row 3178 * or it would deadlock. 3179 * 3180 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3181 * mapping->flags avoid to take the same lock twice, if more than one 3182 * vma in this mm is backed by the same anon_vma or address_space. 3183 * 3184 * We can take all the locks in random order because the VM code 3185 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never 3186 * takes more than one of them in a row. Secondly we're protected 3187 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 3188 * 3189 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3190 * that may have to take thousand of locks. 3191 * 3192 * mm_take_all_locks() can fail if it's interrupted by signals. 3193 */ 3194 int mm_take_all_locks(struct mm_struct *mm) 3195 { 3196 struct vm_area_struct *vma; 3197 struct anon_vma_chain *avc; 3198 3199 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3200 3201 mutex_lock(&mm_all_locks_mutex); 3202 3203 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3204 if (signal_pending(current)) 3205 goto out_unlock; 3206 if (vma->vm_file && vma->vm_file->f_mapping) 3207 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3208 } 3209 3210 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3211 if (signal_pending(current)) 3212 goto out_unlock; 3213 if (vma->anon_vma) 3214 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3215 vm_lock_anon_vma(mm, avc->anon_vma); 3216 } 3217 3218 return 0; 3219 3220 out_unlock: 3221 mm_drop_all_locks(mm); 3222 return -EINTR; 3223 } 3224 3225 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3226 { 3227 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3228 /* 3229 * The LSB of head.next can't change to 0 from under 3230 * us because we hold the mm_all_locks_mutex. 3231 * 3232 * We must however clear the bitflag before unlocking 3233 * the vma so the users using the anon_vma->rb_root will 3234 * never see our bitflag. 3235 * 3236 * No need of atomic instructions here, head.next 3237 * can't change from under us until we release the 3238 * anon_vma->root->rwsem. 3239 */ 3240 if (!__test_and_clear_bit(0, (unsigned long *) 3241 &anon_vma->root->rb_root.rb_node)) 3242 BUG(); 3243 anon_vma_unlock_write(anon_vma); 3244 } 3245 } 3246 3247 static void vm_unlock_mapping(struct address_space *mapping) 3248 { 3249 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3250 /* 3251 * AS_MM_ALL_LOCKS can't change to 0 from under us 3252 * because we hold the mm_all_locks_mutex. 3253 */ 3254 i_mmap_unlock_write(mapping); 3255 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3256 &mapping->flags)) 3257 BUG(); 3258 } 3259 } 3260 3261 /* 3262 * The mmap_sem cannot be released by the caller until 3263 * mm_drop_all_locks() returns. 3264 */ 3265 void mm_drop_all_locks(struct mm_struct *mm) 3266 { 3267 struct vm_area_struct *vma; 3268 struct anon_vma_chain *avc; 3269 3270 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3271 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3272 3273 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3274 if (vma->anon_vma) 3275 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3276 vm_unlock_anon_vma(avc->anon_vma); 3277 if (vma->vm_file && vma->vm_file->f_mapping) 3278 vm_unlock_mapping(vma->vm_file->f_mapping); 3279 } 3280 3281 mutex_unlock(&mm_all_locks_mutex); 3282 } 3283 3284 /* 3285 * initialise the VMA slab 3286 */ 3287 void __init mmap_init(void) 3288 { 3289 int ret; 3290 3291 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3292 VM_BUG_ON(ret); 3293 } 3294 3295 /* 3296 * Initialise sysctl_user_reserve_kbytes. 3297 * 3298 * This is intended to prevent a user from starting a single memory hogging 3299 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3300 * mode. 3301 * 3302 * The default value is min(3% of free memory, 128MB) 3303 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3304 */ 3305 static int init_user_reserve(void) 3306 { 3307 unsigned long free_kbytes; 3308 3309 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3310 3311 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3312 return 0; 3313 } 3314 subsys_initcall(init_user_reserve); 3315 3316 /* 3317 * Initialise sysctl_admin_reserve_kbytes. 3318 * 3319 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3320 * to log in and kill a memory hogging process. 3321 * 3322 * Systems with more than 256MB will reserve 8MB, enough to recover 3323 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3324 * only reserve 3% of free pages by default. 3325 */ 3326 static int init_admin_reserve(void) 3327 { 3328 unsigned long free_kbytes; 3329 3330 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3331 3332 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3333 return 0; 3334 } 3335 subsys_initcall(init_admin_reserve); 3336 3337 /* 3338 * Reinititalise user and admin reserves if memory is added or removed. 3339 * 3340 * The default user reserve max is 128MB, and the default max for the 3341 * admin reserve is 8MB. These are usually, but not always, enough to 3342 * enable recovery from a memory hogging process using login/sshd, a shell, 3343 * and tools like top. It may make sense to increase or even disable the 3344 * reserve depending on the existence of swap or variations in the recovery 3345 * tools. So, the admin may have changed them. 3346 * 3347 * If memory is added and the reserves have been eliminated or increased above 3348 * the default max, then we'll trust the admin. 3349 * 3350 * If memory is removed and there isn't enough free memory, then we 3351 * need to reset the reserves. 3352 * 3353 * Otherwise keep the reserve set by the admin. 3354 */ 3355 static int reserve_mem_notifier(struct notifier_block *nb, 3356 unsigned long action, void *data) 3357 { 3358 unsigned long tmp, free_kbytes; 3359 3360 switch (action) { 3361 case MEM_ONLINE: 3362 /* Default max is 128MB. Leave alone if modified by operator. */ 3363 tmp = sysctl_user_reserve_kbytes; 3364 if (0 < tmp && tmp < (1UL << 17)) 3365 init_user_reserve(); 3366 3367 /* Default max is 8MB. Leave alone if modified by operator. */ 3368 tmp = sysctl_admin_reserve_kbytes; 3369 if (0 < tmp && tmp < (1UL << 13)) 3370 init_admin_reserve(); 3371 3372 break; 3373 case MEM_OFFLINE: 3374 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3375 3376 if (sysctl_user_reserve_kbytes > free_kbytes) { 3377 init_user_reserve(); 3378 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3379 sysctl_user_reserve_kbytes); 3380 } 3381 3382 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3383 init_admin_reserve(); 3384 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3385 sysctl_admin_reserve_kbytes); 3386 } 3387 break; 3388 default: 3389 break; 3390 } 3391 return NOTIFY_OK; 3392 } 3393 3394 static struct notifier_block reserve_mem_nb = { 3395 .notifier_call = reserve_mem_notifier, 3396 }; 3397 3398 static int __meminit init_reserve_notifier(void) 3399 { 3400 if (register_hotmemory_notifier(&reserve_mem_nb)) 3401 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3402 3403 return 0; 3404 } 3405 subsys_initcall(init_reserve_notifier); 3406