1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/export.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 #include <linux/audit.h> 32 #include <linux/khugepaged.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/cacheflush.h> 36 #include <asm/tlb.h> 37 #include <asm/mmu_context.h> 38 39 #include "internal.h" 40 41 #ifndef arch_mmap_check 42 #define arch_mmap_check(addr, len, flags) (0) 43 #endif 44 45 #ifndef arch_rebalance_pgtables 46 #define arch_rebalance_pgtables(addr, len) (addr) 47 #endif 48 49 static void unmap_region(struct mm_struct *mm, 50 struct vm_area_struct *vma, struct vm_area_struct *prev, 51 unsigned long start, unsigned long end); 52 53 /* 54 * WARNING: the debugging will use recursive algorithms so never enable this 55 * unless you know what you are doing. 56 */ 57 #undef DEBUG_MM_RB 58 59 /* description of effects of mapping type and prot in current implementation. 60 * this is due to the limited x86 page protection hardware. The expected 61 * behavior is in parens: 62 * 63 * map_type prot 64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 66 * w: (no) no w: (no) no w: (yes) yes w: (no) no 67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 68 * 69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 70 * w: (no) no w: (no) no w: (copy) copy w: (no) no 71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 72 * 73 */ 74 pgprot_t protection_map[16] = { 75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 77 }; 78 79 pgprot_t vm_get_page_prot(unsigned long vm_flags) 80 { 81 return __pgprot(pgprot_val(protection_map[vm_flags & 82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 83 pgprot_val(arch_vm_get_page_prot(vm_flags))); 84 } 85 EXPORT_SYMBOL(vm_get_page_prot); 86 87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 90 /* 91 * Make sure vm_committed_as in one cacheline and not cacheline shared with 92 * other variables. It can be updated by several CPUs frequently. 93 */ 94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 95 96 /* 97 * Check that a process has enough memory to allocate a new virtual 98 * mapping. 0 means there is enough memory for the allocation to 99 * succeed and -ENOMEM implies there is not. 100 * 101 * We currently support three overcommit policies, which are set via the 102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 103 * 104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 105 * Additional code 2002 Jul 20 by Robert Love. 106 * 107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 108 * 109 * Note this is a helper function intended to be used by LSMs which 110 * wish to use this logic. 111 */ 112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 113 { 114 unsigned long free, allowed; 115 116 vm_acct_memory(pages); 117 118 /* 119 * Sometimes we want to use more memory than we have 120 */ 121 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 122 return 0; 123 124 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 125 free = global_page_state(NR_FREE_PAGES); 126 free += global_page_state(NR_FILE_PAGES); 127 128 /* 129 * shmem pages shouldn't be counted as free in this 130 * case, they can't be purged, only swapped out, and 131 * that won't affect the overall amount of available 132 * memory in the system. 133 */ 134 free -= global_page_state(NR_SHMEM); 135 136 free += nr_swap_pages; 137 138 /* 139 * Any slabs which are created with the 140 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 141 * which are reclaimable, under pressure. The dentry 142 * cache and most inode caches should fall into this 143 */ 144 free += global_page_state(NR_SLAB_RECLAIMABLE); 145 146 /* 147 * Leave reserved pages. The pages are not for anonymous pages. 148 */ 149 if (free <= totalreserve_pages) 150 goto error; 151 else 152 free -= totalreserve_pages; 153 154 /* 155 * Leave the last 3% for root 156 */ 157 if (!cap_sys_admin) 158 free -= free / 32; 159 160 if (free > pages) 161 return 0; 162 163 goto error; 164 } 165 166 allowed = (totalram_pages - hugetlb_total_pages()) 167 * sysctl_overcommit_ratio / 100; 168 /* 169 * Leave the last 3% for root 170 */ 171 if (!cap_sys_admin) 172 allowed -= allowed / 32; 173 allowed += total_swap_pages; 174 175 /* Don't let a single process grow too big: 176 leave 3% of the size of this process for other processes */ 177 if (mm) 178 allowed -= mm->total_vm / 32; 179 180 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 181 return 0; 182 error: 183 vm_unacct_memory(pages); 184 185 return -ENOMEM; 186 } 187 188 /* 189 * Requires inode->i_mapping->i_mmap_mutex 190 */ 191 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 192 struct file *file, struct address_space *mapping) 193 { 194 if (vma->vm_flags & VM_DENYWRITE) 195 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 196 if (vma->vm_flags & VM_SHARED) 197 mapping->i_mmap_writable--; 198 199 flush_dcache_mmap_lock(mapping); 200 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 201 list_del_init(&vma->shared.vm_set.list); 202 else 203 vma_prio_tree_remove(vma, &mapping->i_mmap); 204 flush_dcache_mmap_unlock(mapping); 205 } 206 207 /* 208 * Unlink a file-based vm structure from its prio_tree, to hide 209 * vma from rmap and vmtruncate before freeing its page tables. 210 */ 211 void unlink_file_vma(struct vm_area_struct *vma) 212 { 213 struct file *file = vma->vm_file; 214 215 if (file) { 216 struct address_space *mapping = file->f_mapping; 217 mutex_lock(&mapping->i_mmap_mutex); 218 __remove_shared_vm_struct(vma, file, mapping); 219 mutex_unlock(&mapping->i_mmap_mutex); 220 } 221 } 222 223 /* 224 * Close a vm structure and free it, returning the next. 225 */ 226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 227 { 228 struct vm_area_struct *next = vma->vm_next; 229 230 might_sleep(); 231 if (vma->vm_ops && vma->vm_ops->close) 232 vma->vm_ops->close(vma); 233 if (vma->vm_file) { 234 fput(vma->vm_file); 235 if (vma->vm_flags & VM_EXECUTABLE) 236 removed_exe_file_vma(vma->vm_mm); 237 } 238 mpol_put(vma_policy(vma)); 239 kmem_cache_free(vm_area_cachep, vma); 240 return next; 241 } 242 243 SYSCALL_DEFINE1(brk, unsigned long, brk) 244 { 245 unsigned long rlim, retval; 246 unsigned long newbrk, oldbrk; 247 struct mm_struct *mm = current->mm; 248 unsigned long min_brk; 249 250 down_write(&mm->mmap_sem); 251 252 #ifdef CONFIG_COMPAT_BRK 253 /* 254 * CONFIG_COMPAT_BRK can still be overridden by setting 255 * randomize_va_space to 2, which will still cause mm->start_brk 256 * to be arbitrarily shifted 257 */ 258 if (current->brk_randomized) 259 min_brk = mm->start_brk; 260 else 261 min_brk = mm->end_data; 262 #else 263 min_brk = mm->start_brk; 264 #endif 265 if (brk < min_brk) 266 goto out; 267 268 /* 269 * Check against rlimit here. If this check is done later after the test 270 * of oldbrk with newbrk then it can escape the test and let the data 271 * segment grow beyond its set limit the in case where the limit is 272 * not page aligned -Ram Gupta 273 */ 274 rlim = rlimit(RLIMIT_DATA); 275 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 276 (mm->end_data - mm->start_data) > rlim) 277 goto out; 278 279 newbrk = PAGE_ALIGN(brk); 280 oldbrk = PAGE_ALIGN(mm->brk); 281 if (oldbrk == newbrk) 282 goto set_brk; 283 284 /* Always allow shrinking brk. */ 285 if (brk <= mm->brk) { 286 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 287 goto set_brk; 288 goto out; 289 } 290 291 /* Check against existing mmap mappings. */ 292 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 293 goto out; 294 295 /* Ok, looks good - let it rip. */ 296 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 297 goto out; 298 set_brk: 299 mm->brk = brk; 300 out: 301 retval = mm->brk; 302 up_write(&mm->mmap_sem); 303 return retval; 304 } 305 306 #ifdef DEBUG_MM_RB 307 static int browse_rb(struct rb_root *root) 308 { 309 int i = 0, j; 310 struct rb_node *nd, *pn = NULL; 311 unsigned long prev = 0, pend = 0; 312 313 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 314 struct vm_area_struct *vma; 315 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 316 if (vma->vm_start < prev) 317 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 318 if (vma->vm_start < pend) 319 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 320 if (vma->vm_start > vma->vm_end) 321 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 322 i++; 323 pn = nd; 324 prev = vma->vm_start; 325 pend = vma->vm_end; 326 } 327 j = 0; 328 for (nd = pn; nd; nd = rb_prev(nd)) { 329 j++; 330 } 331 if (i != j) 332 printk("backwards %d, forwards %d\n", j, i), i = 0; 333 return i; 334 } 335 336 void validate_mm(struct mm_struct *mm) 337 { 338 int bug = 0; 339 int i = 0; 340 struct vm_area_struct *tmp = mm->mmap; 341 while (tmp) { 342 tmp = tmp->vm_next; 343 i++; 344 } 345 if (i != mm->map_count) 346 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 347 i = browse_rb(&mm->mm_rb); 348 if (i != mm->map_count) 349 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 350 BUG_ON(bug); 351 } 352 #else 353 #define validate_mm(mm) do { } while (0) 354 #endif 355 356 static struct vm_area_struct * 357 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 358 struct vm_area_struct **pprev, struct rb_node ***rb_link, 359 struct rb_node ** rb_parent) 360 { 361 struct vm_area_struct * vma; 362 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 363 364 __rb_link = &mm->mm_rb.rb_node; 365 rb_prev = __rb_parent = NULL; 366 vma = NULL; 367 368 while (*__rb_link) { 369 struct vm_area_struct *vma_tmp; 370 371 __rb_parent = *__rb_link; 372 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 373 374 if (vma_tmp->vm_end > addr) { 375 vma = vma_tmp; 376 if (vma_tmp->vm_start <= addr) 377 break; 378 __rb_link = &__rb_parent->rb_left; 379 } else { 380 rb_prev = __rb_parent; 381 __rb_link = &__rb_parent->rb_right; 382 } 383 } 384 385 *pprev = NULL; 386 if (rb_prev) 387 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 388 *rb_link = __rb_link; 389 *rb_parent = __rb_parent; 390 return vma; 391 } 392 393 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 394 struct rb_node **rb_link, struct rb_node *rb_parent) 395 { 396 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 397 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 398 } 399 400 static void __vma_link_file(struct vm_area_struct *vma) 401 { 402 struct file *file; 403 404 file = vma->vm_file; 405 if (file) { 406 struct address_space *mapping = file->f_mapping; 407 408 if (vma->vm_flags & VM_DENYWRITE) 409 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 410 if (vma->vm_flags & VM_SHARED) 411 mapping->i_mmap_writable++; 412 413 flush_dcache_mmap_lock(mapping); 414 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 415 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 416 else 417 vma_prio_tree_insert(vma, &mapping->i_mmap); 418 flush_dcache_mmap_unlock(mapping); 419 } 420 } 421 422 static void 423 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 424 struct vm_area_struct *prev, struct rb_node **rb_link, 425 struct rb_node *rb_parent) 426 { 427 __vma_link_list(mm, vma, prev, rb_parent); 428 __vma_link_rb(mm, vma, rb_link, rb_parent); 429 } 430 431 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 432 struct vm_area_struct *prev, struct rb_node **rb_link, 433 struct rb_node *rb_parent) 434 { 435 struct address_space *mapping = NULL; 436 437 if (vma->vm_file) 438 mapping = vma->vm_file->f_mapping; 439 440 if (mapping) 441 mutex_lock(&mapping->i_mmap_mutex); 442 443 __vma_link(mm, vma, prev, rb_link, rb_parent); 444 __vma_link_file(vma); 445 446 if (mapping) 447 mutex_unlock(&mapping->i_mmap_mutex); 448 449 mm->map_count++; 450 validate_mm(mm); 451 } 452 453 /* 454 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 455 * mm's list and rbtree. It has already been inserted into the prio_tree. 456 */ 457 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 458 { 459 struct vm_area_struct *__vma, *prev; 460 struct rb_node **rb_link, *rb_parent; 461 462 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 463 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 464 __vma_link(mm, vma, prev, rb_link, rb_parent); 465 mm->map_count++; 466 } 467 468 static inline void 469 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 470 struct vm_area_struct *prev) 471 { 472 struct vm_area_struct *next = vma->vm_next; 473 474 prev->vm_next = next; 475 if (next) 476 next->vm_prev = prev; 477 rb_erase(&vma->vm_rb, &mm->mm_rb); 478 if (mm->mmap_cache == vma) 479 mm->mmap_cache = prev; 480 } 481 482 /* 483 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 484 * is already present in an i_mmap tree without adjusting the tree. 485 * The following helper function should be used when such adjustments 486 * are necessary. The "insert" vma (if any) is to be inserted 487 * before we drop the necessary locks. 488 */ 489 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 490 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 491 { 492 struct mm_struct *mm = vma->vm_mm; 493 struct vm_area_struct *next = vma->vm_next; 494 struct vm_area_struct *importer = NULL; 495 struct address_space *mapping = NULL; 496 struct prio_tree_root *root = NULL; 497 struct anon_vma *anon_vma = NULL; 498 struct file *file = vma->vm_file; 499 long adjust_next = 0; 500 int remove_next = 0; 501 502 if (next && !insert) { 503 struct vm_area_struct *exporter = NULL; 504 505 if (end >= next->vm_end) { 506 /* 507 * vma expands, overlapping all the next, and 508 * perhaps the one after too (mprotect case 6). 509 */ 510 again: remove_next = 1 + (end > next->vm_end); 511 end = next->vm_end; 512 exporter = next; 513 importer = vma; 514 } else if (end > next->vm_start) { 515 /* 516 * vma expands, overlapping part of the next: 517 * mprotect case 5 shifting the boundary up. 518 */ 519 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 520 exporter = next; 521 importer = vma; 522 } else if (end < vma->vm_end) { 523 /* 524 * vma shrinks, and !insert tells it's not 525 * split_vma inserting another: so it must be 526 * mprotect case 4 shifting the boundary down. 527 */ 528 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 529 exporter = vma; 530 importer = next; 531 } 532 533 /* 534 * Easily overlooked: when mprotect shifts the boundary, 535 * make sure the expanding vma has anon_vma set if the 536 * shrinking vma had, to cover any anon pages imported. 537 */ 538 if (exporter && exporter->anon_vma && !importer->anon_vma) { 539 if (anon_vma_clone(importer, exporter)) 540 return -ENOMEM; 541 importer->anon_vma = exporter->anon_vma; 542 } 543 } 544 545 if (file) { 546 mapping = file->f_mapping; 547 if (!(vma->vm_flags & VM_NONLINEAR)) 548 root = &mapping->i_mmap; 549 mutex_lock(&mapping->i_mmap_mutex); 550 if (insert) { 551 /* 552 * Put into prio_tree now, so instantiated pages 553 * are visible to arm/parisc __flush_dcache_page 554 * throughout; but we cannot insert into address 555 * space until vma start or end is updated. 556 */ 557 __vma_link_file(insert); 558 } 559 } 560 561 vma_adjust_trans_huge(vma, start, end, adjust_next); 562 563 /* 564 * When changing only vma->vm_end, we don't really need anon_vma 565 * lock. This is a fairly rare case by itself, but the anon_vma 566 * lock may be shared between many sibling processes. Skipping 567 * the lock for brk adjustments makes a difference sometimes. 568 */ 569 if (vma->anon_vma && (importer || start != vma->vm_start)) { 570 anon_vma = vma->anon_vma; 571 anon_vma_lock(anon_vma); 572 } 573 574 if (root) { 575 flush_dcache_mmap_lock(mapping); 576 vma_prio_tree_remove(vma, root); 577 if (adjust_next) 578 vma_prio_tree_remove(next, root); 579 } 580 581 vma->vm_start = start; 582 vma->vm_end = end; 583 vma->vm_pgoff = pgoff; 584 if (adjust_next) { 585 next->vm_start += adjust_next << PAGE_SHIFT; 586 next->vm_pgoff += adjust_next; 587 } 588 589 if (root) { 590 if (adjust_next) 591 vma_prio_tree_insert(next, root); 592 vma_prio_tree_insert(vma, root); 593 flush_dcache_mmap_unlock(mapping); 594 } 595 596 if (remove_next) { 597 /* 598 * vma_merge has merged next into vma, and needs 599 * us to remove next before dropping the locks. 600 */ 601 __vma_unlink(mm, next, vma); 602 if (file) 603 __remove_shared_vm_struct(next, file, mapping); 604 } else if (insert) { 605 /* 606 * split_vma has split insert from vma, and needs 607 * us to insert it before dropping the locks 608 * (it may either follow vma or precede it). 609 */ 610 __insert_vm_struct(mm, insert); 611 } 612 613 if (anon_vma) 614 anon_vma_unlock(anon_vma); 615 if (mapping) 616 mutex_unlock(&mapping->i_mmap_mutex); 617 618 if (remove_next) { 619 if (file) { 620 fput(file); 621 if (next->vm_flags & VM_EXECUTABLE) 622 removed_exe_file_vma(mm); 623 } 624 if (next->anon_vma) 625 anon_vma_merge(vma, next); 626 mm->map_count--; 627 mpol_put(vma_policy(next)); 628 kmem_cache_free(vm_area_cachep, next); 629 /* 630 * In mprotect's case 6 (see comments on vma_merge), 631 * we must remove another next too. It would clutter 632 * up the code too much to do both in one go. 633 */ 634 if (remove_next == 2) { 635 next = vma->vm_next; 636 goto again; 637 } 638 } 639 640 validate_mm(mm); 641 642 return 0; 643 } 644 645 /* 646 * If the vma has a ->close operation then the driver probably needs to release 647 * per-vma resources, so we don't attempt to merge those. 648 */ 649 static inline int is_mergeable_vma(struct vm_area_struct *vma, 650 struct file *file, unsigned long vm_flags) 651 { 652 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 653 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 654 return 0; 655 if (vma->vm_file != file) 656 return 0; 657 if (vma->vm_ops && vma->vm_ops->close) 658 return 0; 659 return 1; 660 } 661 662 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 663 struct anon_vma *anon_vma2, 664 struct vm_area_struct *vma) 665 { 666 /* 667 * The list_is_singular() test is to avoid merging VMA cloned from 668 * parents. This can improve scalability caused by anon_vma lock. 669 */ 670 if ((!anon_vma1 || !anon_vma2) && (!vma || 671 list_is_singular(&vma->anon_vma_chain))) 672 return 1; 673 return anon_vma1 == anon_vma2; 674 } 675 676 /* 677 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 678 * in front of (at a lower virtual address and file offset than) the vma. 679 * 680 * We cannot merge two vmas if they have differently assigned (non-NULL) 681 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 682 * 683 * We don't check here for the merged mmap wrapping around the end of pagecache 684 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 685 * wrap, nor mmaps which cover the final page at index -1UL. 686 */ 687 static int 688 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 689 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 690 { 691 if (is_mergeable_vma(vma, file, vm_flags) && 692 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 693 if (vma->vm_pgoff == vm_pgoff) 694 return 1; 695 } 696 return 0; 697 } 698 699 /* 700 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 701 * beyond (at a higher virtual address and file offset than) the vma. 702 * 703 * We cannot merge two vmas if they have differently assigned (non-NULL) 704 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 705 */ 706 static int 707 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 708 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 709 { 710 if (is_mergeable_vma(vma, file, vm_flags) && 711 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 712 pgoff_t vm_pglen; 713 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 714 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 715 return 1; 716 } 717 return 0; 718 } 719 720 /* 721 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 722 * whether that can be merged with its predecessor or its successor. 723 * Or both (it neatly fills a hole). 724 * 725 * In most cases - when called for mmap, brk or mremap - [addr,end) is 726 * certain not to be mapped by the time vma_merge is called; but when 727 * called for mprotect, it is certain to be already mapped (either at 728 * an offset within prev, or at the start of next), and the flags of 729 * this area are about to be changed to vm_flags - and the no-change 730 * case has already been eliminated. 731 * 732 * The following mprotect cases have to be considered, where AAAA is 733 * the area passed down from mprotect_fixup, never extending beyond one 734 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 735 * 736 * AAAA AAAA AAAA AAAA 737 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 738 * cannot merge might become might become might become 739 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 740 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 741 * mremap move: PPPPNNNNNNNN 8 742 * AAAA 743 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 744 * might become case 1 below case 2 below case 3 below 745 * 746 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 747 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 748 */ 749 struct vm_area_struct *vma_merge(struct mm_struct *mm, 750 struct vm_area_struct *prev, unsigned long addr, 751 unsigned long end, unsigned long vm_flags, 752 struct anon_vma *anon_vma, struct file *file, 753 pgoff_t pgoff, struct mempolicy *policy) 754 { 755 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 756 struct vm_area_struct *area, *next; 757 int err; 758 759 /* 760 * We later require that vma->vm_flags == vm_flags, 761 * so this tests vma->vm_flags & VM_SPECIAL, too. 762 */ 763 if (vm_flags & VM_SPECIAL) 764 return NULL; 765 766 if (prev) 767 next = prev->vm_next; 768 else 769 next = mm->mmap; 770 area = next; 771 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 772 next = next->vm_next; 773 774 /* 775 * Can it merge with the predecessor? 776 */ 777 if (prev && prev->vm_end == addr && 778 mpol_equal(vma_policy(prev), policy) && 779 can_vma_merge_after(prev, vm_flags, 780 anon_vma, file, pgoff)) { 781 /* 782 * OK, it can. Can we now merge in the successor as well? 783 */ 784 if (next && end == next->vm_start && 785 mpol_equal(policy, vma_policy(next)) && 786 can_vma_merge_before(next, vm_flags, 787 anon_vma, file, pgoff+pglen) && 788 is_mergeable_anon_vma(prev->anon_vma, 789 next->anon_vma, NULL)) { 790 /* cases 1, 6 */ 791 err = vma_adjust(prev, prev->vm_start, 792 next->vm_end, prev->vm_pgoff, NULL); 793 } else /* cases 2, 5, 7 */ 794 err = vma_adjust(prev, prev->vm_start, 795 end, prev->vm_pgoff, NULL); 796 if (err) 797 return NULL; 798 khugepaged_enter_vma_merge(prev); 799 return prev; 800 } 801 802 /* 803 * Can this new request be merged in front of next? 804 */ 805 if (next && end == next->vm_start && 806 mpol_equal(policy, vma_policy(next)) && 807 can_vma_merge_before(next, vm_flags, 808 anon_vma, file, pgoff+pglen)) { 809 if (prev && addr < prev->vm_end) /* case 4 */ 810 err = vma_adjust(prev, prev->vm_start, 811 addr, prev->vm_pgoff, NULL); 812 else /* cases 3, 8 */ 813 err = vma_adjust(area, addr, next->vm_end, 814 next->vm_pgoff - pglen, NULL); 815 if (err) 816 return NULL; 817 khugepaged_enter_vma_merge(area); 818 return area; 819 } 820 821 return NULL; 822 } 823 824 /* 825 * Rough compatbility check to quickly see if it's even worth looking 826 * at sharing an anon_vma. 827 * 828 * They need to have the same vm_file, and the flags can only differ 829 * in things that mprotect may change. 830 * 831 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 832 * we can merge the two vma's. For example, we refuse to merge a vma if 833 * there is a vm_ops->close() function, because that indicates that the 834 * driver is doing some kind of reference counting. But that doesn't 835 * really matter for the anon_vma sharing case. 836 */ 837 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 838 { 839 return a->vm_end == b->vm_start && 840 mpol_equal(vma_policy(a), vma_policy(b)) && 841 a->vm_file == b->vm_file && 842 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 843 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 844 } 845 846 /* 847 * Do some basic sanity checking to see if we can re-use the anon_vma 848 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 849 * the same as 'old', the other will be the new one that is trying 850 * to share the anon_vma. 851 * 852 * NOTE! This runs with mm_sem held for reading, so it is possible that 853 * the anon_vma of 'old' is concurrently in the process of being set up 854 * by another page fault trying to merge _that_. But that's ok: if it 855 * is being set up, that automatically means that it will be a singleton 856 * acceptable for merging, so we can do all of this optimistically. But 857 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 858 * 859 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 860 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 861 * is to return an anon_vma that is "complex" due to having gone through 862 * a fork). 863 * 864 * We also make sure that the two vma's are compatible (adjacent, 865 * and with the same memory policies). That's all stable, even with just 866 * a read lock on the mm_sem. 867 */ 868 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 869 { 870 if (anon_vma_compatible(a, b)) { 871 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 872 873 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 874 return anon_vma; 875 } 876 return NULL; 877 } 878 879 /* 880 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 881 * neighbouring vmas for a suitable anon_vma, before it goes off 882 * to allocate a new anon_vma. It checks because a repetitive 883 * sequence of mprotects and faults may otherwise lead to distinct 884 * anon_vmas being allocated, preventing vma merge in subsequent 885 * mprotect. 886 */ 887 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 888 { 889 struct anon_vma *anon_vma; 890 struct vm_area_struct *near; 891 892 near = vma->vm_next; 893 if (!near) 894 goto try_prev; 895 896 anon_vma = reusable_anon_vma(near, vma, near); 897 if (anon_vma) 898 return anon_vma; 899 try_prev: 900 near = vma->vm_prev; 901 if (!near) 902 goto none; 903 904 anon_vma = reusable_anon_vma(near, near, vma); 905 if (anon_vma) 906 return anon_vma; 907 none: 908 /* 909 * There's no absolute need to look only at touching neighbours: 910 * we could search further afield for "compatible" anon_vmas. 911 * But it would probably just be a waste of time searching, 912 * or lead to too many vmas hanging off the same anon_vma. 913 * We're trying to allow mprotect remerging later on, 914 * not trying to minimize memory used for anon_vmas. 915 */ 916 return NULL; 917 } 918 919 #ifdef CONFIG_PROC_FS 920 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 921 struct file *file, long pages) 922 { 923 const unsigned long stack_flags 924 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 925 926 if (file) { 927 mm->shared_vm += pages; 928 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 929 mm->exec_vm += pages; 930 } else if (flags & stack_flags) 931 mm->stack_vm += pages; 932 if (flags & (VM_RESERVED|VM_IO)) 933 mm->reserved_vm += pages; 934 } 935 #endif /* CONFIG_PROC_FS */ 936 937 /* 938 * If a hint addr is less than mmap_min_addr change hint to be as 939 * low as possible but still greater than mmap_min_addr 940 */ 941 static inline unsigned long round_hint_to_min(unsigned long hint) 942 { 943 hint &= PAGE_MASK; 944 if (((void *)hint != NULL) && 945 (hint < mmap_min_addr)) 946 return PAGE_ALIGN(mmap_min_addr); 947 return hint; 948 } 949 950 /* 951 * The caller must hold down_write(¤t->mm->mmap_sem). 952 */ 953 954 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 955 unsigned long len, unsigned long prot, 956 unsigned long flags, unsigned long pgoff) 957 { 958 struct mm_struct * mm = current->mm; 959 struct inode *inode; 960 vm_flags_t vm_flags; 961 int error; 962 unsigned long reqprot = prot; 963 964 /* 965 * Does the application expect PROT_READ to imply PROT_EXEC? 966 * 967 * (the exception is when the underlying filesystem is noexec 968 * mounted, in which case we dont add PROT_EXEC.) 969 */ 970 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 971 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 972 prot |= PROT_EXEC; 973 974 if (!len) 975 return -EINVAL; 976 977 if (!(flags & MAP_FIXED)) 978 addr = round_hint_to_min(addr); 979 980 /* Careful about overflows.. */ 981 len = PAGE_ALIGN(len); 982 if (!len) 983 return -ENOMEM; 984 985 /* offset overflow? */ 986 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 987 return -EOVERFLOW; 988 989 /* Too many mappings? */ 990 if (mm->map_count > sysctl_max_map_count) 991 return -ENOMEM; 992 993 /* Obtain the address to map to. we verify (or select) it and ensure 994 * that it represents a valid section of the address space. 995 */ 996 addr = get_unmapped_area(file, addr, len, pgoff, flags); 997 if (addr & ~PAGE_MASK) 998 return addr; 999 1000 /* Do simple checking here so the lower-level routines won't have 1001 * to. we assume access permissions have been handled by the open 1002 * of the memory object, so we don't do any here. 1003 */ 1004 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1005 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1006 1007 if (flags & MAP_LOCKED) 1008 if (!can_do_mlock()) 1009 return -EPERM; 1010 1011 /* mlock MCL_FUTURE? */ 1012 if (vm_flags & VM_LOCKED) { 1013 unsigned long locked, lock_limit; 1014 locked = len >> PAGE_SHIFT; 1015 locked += mm->locked_vm; 1016 lock_limit = rlimit(RLIMIT_MEMLOCK); 1017 lock_limit >>= PAGE_SHIFT; 1018 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1019 return -EAGAIN; 1020 } 1021 1022 inode = file ? file->f_path.dentry->d_inode : NULL; 1023 1024 if (file) { 1025 switch (flags & MAP_TYPE) { 1026 case MAP_SHARED: 1027 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1028 return -EACCES; 1029 1030 /* 1031 * Make sure we don't allow writing to an append-only 1032 * file.. 1033 */ 1034 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1035 return -EACCES; 1036 1037 /* 1038 * Make sure there are no mandatory locks on the file. 1039 */ 1040 if (locks_verify_locked(inode)) 1041 return -EAGAIN; 1042 1043 vm_flags |= VM_SHARED | VM_MAYSHARE; 1044 if (!(file->f_mode & FMODE_WRITE)) 1045 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1046 1047 /* fall through */ 1048 case MAP_PRIVATE: 1049 if (!(file->f_mode & FMODE_READ)) 1050 return -EACCES; 1051 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1052 if (vm_flags & VM_EXEC) 1053 return -EPERM; 1054 vm_flags &= ~VM_MAYEXEC; 1055 } 1056 1057 if (!file->f_op || !file->f_op->mmap) 1058 return -ENODEV; 1059 break; 1060 1061 default: 1062 return -EINVAL; 1063 } 1064 } else { 1065 switch (flags & MAP_TYPE) { 1066 case MAP_SHARED: 1067 /* 1068 * Ignore pgoff. 1069 */ 1070 pgoff = 0; 1071 vm_flags |= VM_SHARED | VM_MAYSHARE; 1072 break; 1073 case MAP_PRIVATE: 1074 /* 1075 * Set pgoff according to addr for anon_vma. 1076 */ 1077 pgoff = addr >> PAGE_SHIFT; 1078 break; 1079 default: 1080 return -EINVAL; 1081 } 1082 } 1083 1084 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1085 if (error) 1086 return error; 1087 1088 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1089 } 1090 EXPORT_SYMBOL(do_mmap_pgoff); 1091 1092 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1093 unsigned long, prot, unsigned long, flags, 1094 unsigned long, fd, unsigned long, pgoff) 1095 { 1096 struct file *file = NULL; 1097 unsigned long retval = -EBADF; 1098 1099 if (!(flags & MAP_ANONYMOUS)) { 1100 audit_mmap_fd(fd, flags); 1101 if (unlikely(flags & MAP_HUGETLB)) 1102 return -EINVAL; 1103 file = fget(fd); 1104 if (!file) 1105 goto out; 1106 } else if (flags & MAP_HUGETLB) { 1107 struct user_struct *user = NULL; 1108 /* 1109 * VM_NORESERVE is used because the reservations will be 1110 * taken when vm_ops->mmap() is called 1111 * A dummy user value is used because we are not locking 1112 * memory so no accounting is necessary 1113 */ 1114 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len, 1115 VM_NORESERVE, &user, 1116 HUGETLB_ANONHUGE_INODE); 1117 if (IS_ERR(file)) 1118 return PTR_ERR(file); 1119 } 1120 1121 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1122 1123 down_write(¤t->mm->mmap_sem); 1124 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1125 up_write(¤t->mm->mmap_sem); 1126 1127 if (file) 1128 fput(file); 1129 out: 1130 return retval; 1131 } 1132 1133 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1134 struct mmap_arg_struct { 1135 unsigned long addr; 1136 unsigned long len; 1137 unsigned long prot; 1138 unsigned long flags; 1139 unsigned long fd; 1140 unsigned long offset; 1141 }; 1142 1143 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1144 { 1145 struct mmap_arg_struct a; 1146 1147 if (copy_from_user(&a, arg, sizeof(a))) 1148 return -EFAULT; 1149 if (a.offset & ~PAGE_MASK) 1150 return -EINVAL; 1151 1152 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1153 a.offset >> PAGE_SHIFT); 1154 } 1155 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1156 1157 /* 1158 * Some shared mappigns will want the pages marked read-only 1159 * to track write events. If so, we'll downgrade vm_page_prot 1160 * to the private version (using protection_map[] without the 1161 * VM_SHARED bit). 1162 */ 1163 int vma_wants_writenotify(struct vm_area_struct *vma) 1164 { 1165 vm_flags_t vm_flags = vma->vm_flags; 1166 1167 /* If it was private or non-writable, the write bit is already clear */ 1168 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1169 return 0; 1170 1171 /* The backer wishes to know when pages are first written to? */ 1172 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1173 return 1; 1174 1175 /* The open routine did something to the protections already? */ 1176 if (pgprot_val(vma->vm_page_prot) != 1177 pgprot_val(vm_get_page_prot(vm_flags))) 1178 return 0; 1179 1180 /* Specialty mapping? */ 1181 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1182 return 0; 1183 1184 /* Can the mapping track the dirty pages? */ 1185 return vma->vm_file && vma->vm_file->f_mapping && 1186 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1187 } 1188 1189 /* 1190 * We account for memory if it's a private writeable mapping, 1191 * not hugepages and VM_NORESERVE wasn't set. 1192 */ 1193 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1194 { 1195 /* 1196 * hugetlb has its own accounting separate from the core VM 1197 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1198 */ 1199 if (file && is_file_hugepages(file)) 1200 return 0; 1201 1202 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1203 } 1204 1205 unsigned long mmap_region(struct file *file, unsigned long addr, 1206 unsigned long len, unsigned long flags, 1207 vm_flags_t vm_flags, unsigned long pgoff) 1208 { 1209 struct mm_struct *mm = current->mm; 1210 struct vm_area_struct *vma, *prev; 1211 int correct_wcount = 0; 1212 int error; 1213 struct rb_node **rb_link, *rb_parent; 1214 unsigned long charged = 0; 1215 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1216 1217 /* Clear old maps */ 1218 error = -ENOMEM; 1219 munmap_back: 1220 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1221 if (vma && vma->vm_start < addr + len) { 1222 if (do_munmap(mm, addr, len)) 1223 return -ENOMEM; 1224 goto munmap_back; 1225 } 1226 1227 /* Check against address space limit. */ 1228 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1229 return -ENOMEM; 1230 1231 /* 1232 * Set 'VM_NORESERVE' if we should not account for the 1233 * memory use of this mapping. 1234 */ 1235 if ((flags & MAP_NORESERVE)) { 1236 /* We honor MAP_NORESERVE if allowed to overcommit */ 1237 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1238 vm_flags |= VM_NORESERVE; 1239 1240 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1241 if (file && is_file_hugepages(file)) 1242 vm_flags |= VM_NORESERVE; 1243 } 1244 1245 /* 1246 * Private writable mapping: check memory availability 1247 */ 1248 if (accountable_mapping(file, vm_flags)) { 1249 charged = len >> PAGE_SHIFT; 1250 if (security_vm_enough_memory_mm(mm, charged)) 1251 return -ENOMEM; 1252 vm_flags |= VM_ACCOUNT; 1253 } 1254 1255 /* 1256 * Can we just expand an old mapping? 1257 */ 1258 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1259 if (vma) 1260 goto out; 1261 1262 /* 1263 * Determine the object being mapped and call the appropriate 1264 * specific mapper. the address has already been validated, but 1265 * not unmapped, but the maps are removed from the list. 1266 */ 1267 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1268 if (!vma) { 1269 error = -ENOMEM; 1270 goto unacct_error; 1271 } 1272 1273 vma->vm_mm = mm; 1274 vma->vm_start = addr; 1275 vma->vm_end = addr + len; 1276 vma->vm_flags = vm_flags; 1277 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1278 vma->vm_pgoff = pgoff; 1279 INIT_LIST_HEAD(&vma->anon_vma_chain); 1280 1281 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */ 1282 1283 if (file) { 1284 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1285 goto free_vma; 1286 if (vm_flags & VM_DENYWRITE) { 1287 error = deny_write_access(file); 1288 if (error) 1289 goto free_vma; 1290 correct_wcount = 1; 1291 } 1292 vma->vm_file = file; 1293 get_file(file); 1294 error = file->f_op->mmap(file, vma); 1295 if (error) 1296 goto unmap_and_free_vma; 1297 if (vm_flags & VM_EXECUTABLE) 1298 added_exe_file_vma(mm); 1299 1300 /* Can addr have changed?? 1301 * 1302 * Answer: Yes, several device drivers can do it in their 1303 * f_op->mmap method. -DaveM 1304 */ 1305 addr = vma->vm_start; 1306 pgoff = vma->vm_pgoff; 1307 vm_flags = vma->vm_flags; 1308 } else if (vm_flags & VM_SHARED) { 1309 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP))) 1310 goto free_vma; 1311 error = shmem_zero_setup(vma); 1312 if (error) 1313 goto free_vma; 1314 } 1315 1316 if (vma_wants_writenotify(vma)) { 1317 pgprot_t pprot = vma->vm_page_prot; 1318 1319 /* Can vma->vm_page_prot have changed?? 1320 * 1321 * Answer: Yes, drivers may have changed it in their 1322 * f_op->mmap method. 1323 * 1324 * Ensures that vmas marked as uncached stay that way. 1325 */ 1326 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1327 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1328 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1329 } 1330 1331 vma_link(mm, vma, prev, rb_link, rb_parent); 1332 file = vma->vm_file; 1333 1334 /* Once vma denies write, undo our temporary denial count */ 1335 if (correct_wcount) 1336 atomic_inc(&inode->i_writecount); 1337 out: 1338 perf_event_mmap(vma); 1339 1340 mm->total_vm += len >> PAGE_SHIFT; 1341 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1342 if (vm_flags & VM_LOCKED) { 1343 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1344 mm->locked_vm += (len >> PAGE_SHIFT); 1345 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1346 make_pages_present(addr, addr + len); 1347 return addr; 1348 1349 unmap_and_free_vma: 1350 if (correct_wcount) 1351 atomic_inc(&inode->i_writecount); 1352 vma->vm_file = NULL; 1353 fput(file); 1354 1355 /* Undo any partial mapping done by a device driver. */ 1356 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1357 charged = 0; 1358 free_vma: 1359 kmem_cache_free(vm_area_cachep, vma); 1360 unacct_error: 1361 if (charged) 1362 vm_unacct_memory(charged); 1363 return error; 1364 } 1365 1366 /* Get an address range which is currently unmapped. 1367 * For shmat() with addr=0. 1368 * 1369 * Ugly calling convention alert: 1370 * Return value with the low bits set means error value, 1371 * ie 1372 * if (ret & ~PAGE_MASK) 1373 * error = ret; 1374 * 1375 * This function "knows" that -ENOMEM has the bits set. 1376 */ 1377 #ifndef HAVE_ARCH_UNMAPPED_AREA 1378 unsigned long 1379 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1380 unsigned long len, unsigned long pgoff, unsigned long flags) 1381 { 1382 struct mm_struct *mm = current->mm; 1383 struct vm_area_struct *vma; 1384 unsigned long start_addr; 1385 1386 if (len > TASK_SIZE) 1387 return -ENOMEM; 1388 1389 if (flags & MAP_FIXED) 1390 return addr; 1391 1392 if (addr) { 1393 addr = PAGE_ALIGN(addr); 1394 vma = find_vma(mm, addr); 1395 if (TASK_SIZE - len >= addr && 1396 (!vma || addr + len <= vma->vm_start)) 1397 return addr; 1398 } 1399 if (len > mm->cached_hole_size) { 1400 start_addr = addr = mm->free_area_cache; 1401 } else { 1402 start_addr = addr = TASK_UNMAPPED_BASE; 1403 mm->cached_hole_size = 0; 1404 } 1405 1406 full_search: 1407 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1408 /* At this point: (!vma || addr < vma->vm_end). */ 1409 if (TASK_SIZE - len < addr) { 1410 /* 1411 * Start a new search - just in case we missed 1412 * some holes. 1413 */ 1414 if (start_addr != TASK_UNMAPPED_BASE) { 1415 addr = TASK_UNMAPPED_BASE; 1416 start_addr = addr; 1417 mm->cached_hole_size = 0; 1418 goto full_search; 1419 } 1420 return -ENOMEM; 1421 } 1422 if (!vma || addr + len <= vma->vm_start) { 1423 /* 1424 * Remember the place where we stopped the search: 1425 */ 1426 mm->free_area_cache = addr + len; 1427 return addr; 1428 } 1429 if (addr + mm->cached_hole_size < vma->vm_start) 1430 mm->cached_hole_size = vma->vm_start - addr; 1431 addr = vma->vm_end; 1432 } 1433 } 1434 #endif 1435 1436 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1437 { 1438 /* 1439 * Is this a new hole at the lowest possible address? 1440 */ 1441 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) 1442 mm->free_area_cache = addr; 1443 } 1444 1445 /* 1446 * This mmap-allocator allocates new areas top-down from below the 1447 * stack's low limit (the base): 1448 */ 1449 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1450 unsigned long 1451 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1452 const unsigned long len, const unsigned long pgoff, 1453 const unsigned long flags) 1454 { 1455 struct vm_area_struct *vma; 1456 struct mm_struct *mm = current->mm; 1457 unsigned long addr = addr0, start_addr; 1458 1459 /* requested length too big for entire address space */ 1460 if (len > TASK_SIZE) 1461 return -ENOMEM; 1462 1463 if (flags & MAP_FIXED) 1464 return addr; 1465 1466 /* requesting a specific address */ 1467 if (addr) { 1468 addr = PAGE_ALIGN(addr); 1469 vma = find_vma(mm, addr); 1470 if (TASK_SIZE - len >= addr && 1471 (!vma || addr + len <= vma->vm_start)) 1472 return addr; 1473 } 1474 1475 /* check if free_area_cache is useful for us */ 1476 if (len <= mm->cached_hole_size) { 1477 mm->cached_hole_size = 0; 1478 mm->free_area_cache = mm->mmap_base; 1479 } 1480 1481 try_again: 1482 /* either no address requested or can't fit in requested address hole */ 1483 start_addr = addr = mm->free_area_cache; 1484 1485 if (addr < len) 1486 goto fail; 1487 1488 addr -= len; 1489 do { 1490 /* 1491 * Lookup failure means no vma is above this address, 1492 * else if new region fits below vma->vm_start, 1493 * return with success: 1494 */ 1495 vma = find_vma(mm, addr); 1496 if (!vma || addr+len <= vma->vm_start) 1497 /* remember the address as a hint for next time */ 1498 return (mm->free_area_cache = addr); 1499 1500 /* remember the largest hole we saw so far */ 1501 if (addr + mm->cached_hole_size < vma->vm_start) 1502 mm->cached_hole_size = vma->vm_start - addr; 1503 1504 /* try just below the current vma->vm_start */ 1505 addr = vma->vm_start-len; 1506 } while (len < vma->vm_start); 1507 1508 fail: 1509 /* 1510 * if hint left us with no space for the requested 1511 * mapping then try again: 1512 * 1513 * Note: this is different with the case of bottomup 1514 * which does the fully line-search, but we use find_vma 1515 * here that causes some holes skipped. 1516 */ 1517 if (start_addr != mm->mmap_base) { 1518 mm->free_area_cache = mm->mmap_base; 1519 mm->cached_hole_size = 0; 1520 goto try_again; 1521 } 1522 1523 /* 1524 * A failed mmap() very likely causes application failure, 1525 * so fall back to the bottom-up function here. This scenario 1526 * can happen with large stack limits and large mmap() 1527 * allocations. 1528 */ 1529 mm->cached_hole_size = ~0UL; 1530 mm->free_area_cache = TASK_UNMAPPED_BASE; 1531 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1532 /* 1533 * Restore the topdown base: 1534 */ 1535 mm->free_area_cache = mm->mmap_base; 1536 mm->cached_hole_size = ~0UL; 1537 1538 return addr; 1539 } 1540 #endif 1541 1542 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1543 { 1544 /* 1545 * Is this a new hole at the highest possible address? 1546 */ 1547 if (addr > mm->free_area_cache) 1548 mm->free_area_cache = addr; 1549 1550 /* dont allow allocations above current base */ 1551 if (mm->free_area_cache > mm->mmap_base) 1552 mm->free_area_cache = mm->mmap_base; 1553 } 1554 1555 unsigned long 1556 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1557 unsigned long pgoff, unsigned long flags) 1558 { 1559 unsigned long (*get_area)(struct file *, unsigned long, 1560 unsigned long, unsigned long, unsigned long); 1561 1562 unsigned long error = arch_mmap_check(addr, len, flags); 1563 if (error) 1564 return error; 1565 1566 /* Careful about overflows.. */ 1567 if (len > TASK_SIZE) 1568 return -ENOMEM; 1569 1570 get_area = current->mm->get_unmapped_area; 1571 if (file && file->f_op && file->f_op->get_unmapped_area) 1572 get_area = file->f_op->get_unmapped_area; 1573 addr = get_area(file, addr, len, pgoff, flags); 1574 if (IS_ERR_VALUE(addr)) 1575 return addr; 1576 1577 if (addr > TASK_SIZE - len) 1578 return -ENOMEM; 1579 if (addr & ~PAGE_MASK) 1580 return -EINVAL; 1581 1582 return arch_rebalance_pgtables(addr, len); 1583 } 1584 1585 EXPORT_SYMBOL(get_unmapped_area); 1586 1587 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1588 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1589 { 1590 struct vm_area_struct *vma = NULL; 1591 1592 if (mm) { 1593 /* Check the cache first. */ 1594 /* (Cache hit rate is typically around 35%.) */ 1595 vma = mm->mmap_cache; 1596 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1597 struct rb_node * rb_node; 1598 1599 rb_node = mm->mm_rb.rb_node; 1600 vma = NULL; 1601 1602 while (rb_node) { 1603 struct vm_area_struct * vma_tmp; 1604 1605 vma_tmp = rb_entry(rb_node, 1606 struct vm_area_struct, vm_rb); 1607 1608 if (vma_tmp->vm_end > addr) { 1609 vma = vma_tmp; 1610 if (vma_tmp->vm_start <= addr) 1611 break; 1612 rb_node = rb_node->rb_left; 1613 } else 1614 rb_node = rb_node->rb_right; 1615 } 1616 if (vma) 1617 mm->mmap_cache = vma; 1618 } 1619 } 1620 return vma; 1621 } 1622 1623 EXPORT_SYMBOL(find_vma); 1624 1625 /* 1626 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 1627 */ 1628 struct vm_area_struct * 1629 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1630 struct vm_area_struct **pprev) 1631 { 1632 struct vm_area_struct *vma; 1633 1634 vma = find_vma(mm, addr); 1635 if (vma) { 1636 *pprev = vma->vm_prev; 1637 } else { 1638 struct rb_node *rb_node = mm->mm_rb.rb_node; 1639 *pprev = NULL; 1640 while (rb_node) { 1641 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1642 rb_node = rb_node->rb_right; 1643 } 1644 } 1645 return vma; 1646 } 1647 1648 /* 1649 * Verify that the stack growth is acceptable and 1650 * update accounting. This is shared with both the 1651 * grow-up and grow-down cases. 1652 */ 1653 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1654 { 1655 struct mm_struct *mm = vma->vm_mm; 1656 struct rlimit *rlim = current->signal->rlim; 1657 unsigned long new_start; 1658 1659 /* address space limit tests */ 1660 if (!may_expand_vm(mm, grow)) 1661 return -ENOMEM; 1662 1663 /* Stack limit test */ 1664 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1665 return -ENOMEM; 1666 1667 /* mlock limit tests */ 1668 if (vma->vm_flags & VM_LOCKED) { 1669 unsigned long locked; 1670 unsigned long limit; 1671 locked = mm->locked_vm + grow; 1672 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1673 limit >>= PAGE_SHIFT; 1674 if (locked > limit && !capable(CAP_IPC_LOCK)) 1675 return -ENOMEM; 1676 } 1677 1678 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1679 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1680 vma->vm_end - size; 1681 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1682 return -EFAULT; 1683 1684 /* 1685 * Overcommit.. This must be the final test, as it will 1686 * update security statistics. 1687 */ 1688 if (security_vm_enough_memory_mm(mm, grow)) 1689 return -ENOMEM; 1690 1691 /* Ok, everything looks good - let it rip */ 1692 mm->total_vm += grow; 1693 if (vma->vm_flags & VM_LOCKED) 1694 mm->locked_vm += grow; 1695 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1696 return 0; 1697 } 1698 1699 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1700 /* 1701 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1702 * vma is the last one with address > vma->vm_end. Have to extend vma. 1703 */ 1704 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1705 { 1706 int error; 1707 1708 if (!(vma->vm_flags & VM_GROWSUP)) 1709 return -EFAULT; 1710 1711 /* 1712 * We must make sure the anon_vma is allocated 1713 * so that the anon_vma locking is not a noop. 1714 */ 1715 if (unlikely(anon_vma_prepare(vma))) 1716 return -ENOMEM; 1717 vma_lock_anon_vma(vma); 1718 1719 /* 1720 * vma->vm_start/vm_end cannot change under us because the caller 1721 * is required to hold the mmap_sem in read mode. We need the 1722 * anon_vma lock to serialize against concurrent expand_stacks. 1723 * Also guard against wrapping around to address 0. 1724 */ 1725 if (address < PAGE_ALIGN(address+4)) 1726 address = PAGE_ALIGN(address+4); 1727 else { 1728 vma_unlock_anon_vma(vma); 1729 return -ENOMEM; 1730 } 1731 error = 0; 1732 1733 /* Somebody else might have raced and expanded it already */ 1734 if (address > vma->vm_end) { 1735 unsigned long size, grow; 1736 1737 size = address - vma->vm_start; 1738 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1739 1740 error = -ENOMEM; 1741 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1742 error = acct_stack_growth(vma, size, grow); 1743 if (!error) { 1744 vma->vm_end = address; 1745 perf_event_mmap(vma); 1746 } 1747 } 1748 } 1749 vma_unlock_anon_vma(vma); 1750 khugepaged_enter_vma_merge(vma); 1751 return error; 1752 } 1753 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1754 1755 /* 1756 * vma is the first one with address < vma->vm_start. Have to extend vma. 1757 */ 1758 int expand_downwards(struct vm_area_struct *vma, 1759 unsigned long address) 1760 { 1761 int error; 1762 1763 /* 1764 * We must make sure the anon_vma is allocated 1765 * so that the anon_vma locking is not a noop. 1766 */ 1767 if (unlikely(anon_vma_prepare(vma))) 1768 return -ENOMEM; 1769 1770 address &= PAGE_MASK; 1771 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1772 if (error) 1773 return error; 1774 1775 vma_lock_anon_vma(vma); 1776 1777 /* 1778 * vma->vm_start/vm_end cannot change under us because the caller 1779 * is required to hold the mmap_sem in read mode. We need the 1780 * anon_vma lock to serialize against concurrent expand_stacks. 1781 */ 1782 1783 /* Somebody else might have raced and expanded it already */ 1784 if (address < vma->vm_start) { 1785 unsigned long size, grow; 1786 1787 size = vma->vm_end - address; 1788 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1789 1790 error = -ENOMEM; 1791 if (grow <= vma->vm_pgoff) { 1792 error = acct_stack_growth(vma, size, grow); 1793 if (!error) { 1794 vma->vm_start = address; 1795 vma->vm_pgoff -= grow; 1796 perf_event_mmap(vma); 1797 } 1798 } 1799 } 1800 vma_unlock_anon_vma(vma); 1801 khugepaged_enter_vma_merge(vma); 1802 return error; 1803 } 1804 1805 #ifdef CONFIG_STACK_GROWSUP 1806 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1807 { 1808 return expand_upwards(vma, address); 1809 } 1810 1811 struct vm_area_struct * 1812 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1813 { 1814 struct vm_area_struct *vma, *prev; 1815 1816 addr &= PAGE_MASK; 1817 vma = find_vma_prev(mm, addr, &prev); 1818 if (vma && (vma->vm_start <= addr)) 1819 return vma; 1820 if (!prev || expand_stack(prev, addr)) 1821 return NULL; 1822 if (prev->vm_flags & VM_LOCKED) { 1823 mlock_vma_pages_range(prev, addr, prev->vm_end); 1824 } 1825 return prev; 1826 } 1827 #else 1828 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1829 { 1830 return expand_downwards(vma, address); 1831 } 1832 1833 struct vm_area_struct * 1834 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1835 { 1836 struct vm_area_struct * vma; 1837 unsigned long start; 1838 1839 addr &= PAGE_MASK; 1840 vma = find_vma(mm,addr); 1841 if (!vma) 1842 return NULL; 1843 if (vma->vm_start <= addr) 1844 return vma; 1845 if (!(vma->vm_flags & VM_GROWSDOWN)) 1846 return NULL; 1847 start = vma->vm_start; 1848 if (expand_stack(vma, addr)) 1849 return NULL; 1850 if (vma->vm_flags & VM_LOCKED) { 1851 mlock_vma_pages_range(vma, addr, start); 1852 } 1853 return vma; 1854 } 1855 #endif 1856 1857 /* 1858 * Ok - we have the memory areas we should free on the vma list, 1859 * so release them, and do the vma updates. 1860 * 1861 * Called with the mm semaphore held. 1862 */ 1863 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1864 { 1865 /* Update high watermark before we lower total_vm */ 1866 update_hiwater_vm(mm); 1867 do { 1868 long nrpages = vma_pages(vma); 1869 1870 mm->total_vm -= nrpages; 1871 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1872 vma = remove_vma(vma); 1873 } while (vma); 1874 validate_mm(mm); 1875 } 1876 1877 /* 1878 * Get rid of page table information in the indicated region. 1879 * 1880 * Called with the mm semaphore held. 1881 */ 1882 static void unmap_region(struct mm_struct *mm, 1883 struct vm_area_struct *vma, struct vm_area_struct *prev, 1884 unsigned long start, unsigned long end) 1885 { 1886 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1887 struct mmu_gather tlb; 1888 unsigned long nr_accounted = 0; 1889 1890 lru_add_drain(); 1891 tlb_gather_mmu(&tlb, mm, 0); 1892 update_hiwater_rss(mm); 1893 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1894 vm_unacct_memory(nr_accounted); 1895 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 1896 next ? next->vm_start : 0); 1897 tlb_finish_mmu(&tlb, start, end); 1898 } 1899 1900 /* 1901 * Create a list of vma's touched by the unmap, removing them from the mm's 1902 * vma list as we go.. 1903 */ 1904 static void 1905 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1906 struct vm_area_struct *prev, unsigned long end) 1907 { 1908 struct vm_area_struct **insertion_point; 1909 struct vm_area_struct *tail_vma = NULL; 1910 unsigned long addr; 1911 1912 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1913 vma->vm_prev = NULL; 1914 do { 1915 rb_erase(&vma->vm_rb, &mm->mm_rb); 1916 mm->map_count--; 1917 tail_vma = vma; 1918 vma = vma->vm_next; 1919 } while (vma && vma->vm_start < end); 1920 *insertion_point = vma; 1921 if (vma) 1922 vma->vm_prev = prev; 1923 tail_vma->vm_next = NULL; 1924 if (mm->unmap_area == arch_unmap_area) 1925 addr = prev ? prev->vm_end : mm->mmap_base; 1926 else 1927 addr = vma ? vma->vm_start : mm->mmap_base; 1928 mm->unmap_area(mm, addr); 1929 mm->mmap_cache = NULL; /* Kill the cache. */ 1930 } 1931 1932 /* 1933 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1934 * munmap path where it doesn't make sense to fail. 1935 */ 1936 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1937 unsigned long addr, int new_below) 1938 { 1939 struct mempolicy *pol; 1940 struct vm_area_struct *new; 1941 int err = -ENOMEM; 1942 1943 if (is_vm_hugetlb_page(vma) && (addr & 1944 ~(huge_page_mask(hstate_vma(vma))))) 1945 return -EINVAL; 1946 1947 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1948 if (!new) 1949 goto out_err; 1950 1951 /* most fields are the same, copy all, and then fixup */ 1952 *new = *vma; 1953 1954 INIT_LIST_HEAD(&new->anon_vma_chain); 1955 1956 if (new_below) 1957 new->vm_end = addr; 1958 else { 1959 new->vm_start = addr; 1960 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1961 } 1962 1963 pol = mpol_dup(vma_policy(vma)); 1964 if (IS_ERR(pol)) { 1965 err = PTR_ERR(pol); 1966 goto out_free_vma; 1967 } 1968 vma_set_policy(new, pol); 1969 1970 if (anon_vma_clone(new, vma)) 1971 goto out_free_mpol; 1972 1973 if (new->vm_file) { 1974 get_file(new->vm_file); 1975 if (vma->vm_flags & VM_EXECUTABLE) 1976 added_exe_file_vma(mm); 1977 } 1978 1979 if (new->vm_ops && new->vm_ops->open) 1980 new->vm_ops->open(new); 1981 1982 if (new_below) 1983 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1984 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1985 else 1986 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1987 1988 /* Success. */ 1989 if (!err) 1990 return 0; 1991 1992 /* Clean everything up if vma_adjust failed. */ 1993 if (new->vm_ops && new->vm_ops->close) 1994 new->vm_ops->close(new); 1995 if (new->vm_file) { 1996 if (vma->vm_flags & VM_EXECUTABLE) 1997 removed_exe_file_vma(mm); 1998 fput(new->vm_file); 1999 } 2000 unlink_anon_vmas(new); 2001 out_free_mpol: 2002 mpol_put(pol); 2003 out_free_vma: 2004 kmem_cache_free(vm_area_cachep, new); 2005 out_err: 2006 return err; 2007 } 2008 2009 /* 2010 * Split a vma into two pieces at address 'addr', a new vma is allocated 2011 * either for the first part or the tail. 2012 */ 2013 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2014 unsigned long addr, int new_below) 2015 { 2016 if (mm->map_count >= sysctl_max_map_count) 2017 return -ENOMEM; 2018 2019 return __split_vma(mm, vma, addr, new_below); 2020 } 2021 2022 /* Munmap is split into 2 main parts -- this part which finds 2023 * what needs doing, and the areas themselves, which do the 2024 * work. This now handles partial unmappings. 2025 * Jeremy Fitzhardinge <jeremy@goop.org> 2026 */ 2027 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2028 { 2029 unsigned long end; 2030 struct vm_area_struct *vma, *prev, *last; 2031 2032 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2033 return -EINVAL; 2034 2035 if ((len = PAGE_ALIGN(len)) == 0) 2036 return -EINVAL; 2037 2038 /* Find the first overlapping VMA */ 2039 vma = find_vma(mm, start); 2040 if (!vma) 2041 return 0; 2042 prev = vma->vm_prev; 2043 /* we have start < vma->vm_end */ 2044 2045 /* if it doesn't overlap, we have nothing.. */ 2046 end = start + len; 2047 if (vma->vm_start >= end) 2048 return 0; 2049 2050 /* 2051 * If we need to split any vma, do it now to save pain later. 2052 * 2053 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2054 * unmapped vm_area_struct will remain in use: so lower split_vma 2055 * places tmp vma above, and higher split_vma places tmp vma below. 2056 */ 2057 if (start > vma->vm_start) { 2058 int error; 2059 2060 /* 2061 * Make sure that map_count on return from munmap() will 2062 * not exceed its limit; but let map_count go just above 2063 * its limit temporarily, to help free resources as expected. 2064 */ 2065 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2066 return -ENOMEM; 2067 2068 error = __split_vma(mm, vma, start, 0); 2069 if (error) 2070 return error; 2071 prev = vma; 2072 } 2073 2074 /* Does it split the last one? */ 2075 last = find_vma(mm, end); 2076 if (last && end > last->vm_start) { 2077 int error = __split_vma(mm, last, end, 1); 2078 if (error) 2079 return error; 2080 } 2081 vma = prev? prev->vm_next: mm->mmap; 2082 2083 /* 2084 * unlock any mlock()ed ranges before detaching vmas 2085 */ 2086 if (mm->locked_vm) { 2087 struct vm_area_struct *tmp = vma; 2088 while (tmp && tmp->vm_start < end) { 2089 if (tmp->vm_flags & VM_LOCKED) { 2090 mm->locked_vm -= vma_pages(tmp); 2091 munlock_vma_pages_all(tmp); 2092 } 2093 tmp = tmp->vm_next; 2094 } 2095 } 2096 2097 /* 2098 * Remove the vma's, and unmap the actual pages 2099 */ 2100 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2101 unmap_region(mm, vma, prev, start, end); 2102 2103 /* Fix up all other VM information */ 2104 remove_vma_list(mm, vma); 2105 2106 return 0; 2107 } 2108 2109 EXPORT_SYMBOL(do_munmap); 2110 2111 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2112 { 2113 int ret; 2114 struct mm_struct *mm = current->mm; 2115 2116 profile_munmap(addr); 2117 2118 down_write(&mm->mmap_sem); 2119 ret = do_munmap(mm, addr, len); 2120 up_write(&mm->mmap_sem); 2121 return ret; 2122 } 2123 2124 static inline void verify_mm_writelocked(struct mm_struct *mm) 2125 { 2126 #ifdef CONFIG_DEBUG_VM 2127 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2128 WARN_ON(1); 2129 up_read(&mm->mmap_sem); 2130 } 2131 #endif 2132 } 2133 2134 /* 2135 * this is really a simplified "do_mmap". it only handles 2136 * anonymous maps. eventually we may be able to do some 2137 * brk-specific accounting here. 2138 */ 2139 unsigned long do_brk(unsigned long addr, unsigned long len) 2140 { 2141 struct mm_struct * mm = current->mm; 2142 struct vm_area_struct * vma, * prev; 2143 unsigned long flags; 2144 struct rb_node ** rb_link, * rb_parent; 2145 pgoff_t pgoff = addr >> PAGE_SHIFT; 2146 int error; 2147 2148 len = PAGE_ALIGN(len); 2149 if (!len) 2150 return addr; 2151 2152 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2153 if (error) 2154 return error; 2155 2156 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2157 2158 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2159 if (error & ~PAGE_MASK) 2160 return error; 2161 2162 /* 2163 * mlock MCL_FUTURE? 2164 */ 2165 if (mm->def_flags & VM_LOCKED) { 2166 unsigned long locked, lock_limit; 2167 locked = len >> PAGE_SHIFT; 2168 locked += mm->locked_vm; 2169 lock_limit = rlimit(RLIMIT_MEMLOCK); 2170 lock_limit >>= PAGE_SHIFT; 2171 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2172 return -EAGAIN; 2173 } 2174 2175 /* 2176 * mm->mmap_sem is required to protect against another thread 2177 * changing the mappings in case we sleep. 2178 */ 2179 verify_mm_writelocked(mm); 2180 2181 /* 2182 * Clear old maps. this also does some error checking for us 2183 */ 2184 munmap_back: 2185 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2186 if (vma && vma->vm_start < addr + len) { 2187 if (do_munmap(mm, addr, len)) 2188 return -ENOMEM; 2189 goto munmap_back; 2190 } 2191 2192 /* Check against address space limits *after* clearing old maps... */ 2193 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2194 return -ENOMEM; 2195 2196 if (mm->map_count > sysctl_max_map_count) 2197 return -ENOMEM; 2198 2199 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2200 return -ENOMEM; 2201 2202 /* Can we just expand an old private anonymous mapping? */ 2203 vma = vma_merge(mm, prev, addr, addr + len, flags, 2204 NULL, NULL, pgoff, NULL); 2205 if (vma) 2206 goto out; 2207 2208 /* 2209 * create a vma struct for an anonymous mapping 2210 */ 2211 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2212 if (!vma) { 2213 vm_unacct_memory(len >> PAGE_SHIFT); 2214 return -ENOMEM; 2215 } 2216 2217 INIT_LIST_HEAD(&vma->anon_vma_chain); 2218 vma->vm_mm = mm; 2219 vma->vm_start = addr; 2220 vma->vm_end = addr + len; 2221 vma->vm_pgoff = pgoff; 2222 vma->vm_flags = flags; 2223 vma->vm_page_prot = vm_get_page_prot(flags); 2224 vma_link(mm, vma, prev, rb_link, rb_parent); 2225 out: 2226 perf_event_mmap(vma); 2227 mm->total_vm += len >> PAGE_SHIFT; 2228 if (flags & VM_LOCKED) { 2229 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2230 mm->locked_vm += (len >> PAGE_SHIFT); 2231 } 2232 return addr; 2233 } 2234 2235 EXPORT_SYMBOL(do_brk); 2236 2237 /* Release all mmaps. */ 2238 void exit_mmap(struct mm_struct *mm) 2239 { 2240 struct mmu_gather tlb; 2241 struct vm_area_struct *vma; 2242 unsigned long nr_accounted = 0; 2243 2244 /* mm's last user has gone, and its about to be pulled down */ 2245 mmu_notifier_release(mm); 2246 2247 if (mm->locked_vm) { 2248 vma = mm->mmap; 2249 while (vma) { 2250 if (vma->vm_flags & VM_LOCKED) 2251 munlock_vma_pages_all(vma); 2252 vma = vma->vm_next; 2253 } 2254 } 2255 2256 arch_exit_mmap(mm); 2257 2258 vma = mm->mmap; 2259 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2260 return; 2261 2262 lru_add_drain(); 2263 flush_cache_mm(mm); 2264 tlb_gather_mmu(&tlb, mm, 1); 2265 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2266 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2267 unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2268 vm_unacct_memory(nr_accounted); 2269 2270 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 2271 tlb_finish_mmu(&tlb, 0, -1); 2272 2273 /* 2274 * Walk the list again, actually closing and freeing it, 2275 * with preemption enabled, without holding any MM locks. 2276 */ 2277 while (vma) 2278 vma = remove_vma(vma); 2279 2280 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2281 } 2282 2283 /* Insert vm structure into process list sorted by address 2284 * and into the inode's i_mmap tree. If vm_file is non-NULL 2285 * then i_mmap_mutex is taken here. 2286 */ 2287 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2288 { 2289 struct vm_area_struct * __vma, * prev; 2290 struct rb_node ** rb_link, * rb_parent; 2291 2292 /* 2293 * The vm_pgoff of a purely anonymous vma should be irrelevant 2294 * until its first write fault, when page's anon_vma and index 2295 * are set. But now set the vm_pgoff it will almost certainly 2296 * end up with (unless mremap moves it elsewhere before that 2297 * first wfault), so /proc/pid/maps tells a consistent story. 2298 * 2299 * By setting it to reflect the virtual start address of the 2300 * vma, merges and splits can happen in a seamless way, just 2301 * using the existing file pgoff checks and manipulations. 2302 * Similarly in do_mmap_pgoff and in do_brk. 2303 */ 2304 if (!vma->vm_file) { 2305 BUG_ON(vma->anon_vma); 2306 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2307 } 2308 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2309 if (__vma && __vma->vm_start < vma->vm_end) 2310 return -ENOMEM; 2311 if ((vma->vm_flags & VM_ACCOUNT) && 2312 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2313 return -ENOMEM; 2314 vma_link(mm, vma, prev, rb_link, rb_parent); 2315 return 0; 2316 } 2317 2318 /* 2319 * Copy the vma structure to a new location in the same mm, 2320 * prior to moving page table entries, to effect an mremap move. 2321 */ 2322 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2323 unsigned long addr, unsigned long len, pgoff_t pgoff) 2324 { 2325 struct vm_area_struct *vma = *vmap; 2326 unsigned long vma_start = vma->vm_start; 2327 struct mm_struct *mm = vma->vm_mm; 2328 struct vm_area_struct *new_vma, *prev; 2329 struct rb_node **rb_link, *rb_parent; 2330 struct mempolicy *pol; 2331 bool faulted_in_anon_vma = true; 2332 2333 /* 2334 * If anonymous vma has not yet been faulted, update new pgoff 2335 * to match new location, to increase its chance of merging. 2336 */ 2337 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2338 pgoff = addr >> PAGE_SHIFT; 2339 faulted_in_anon_vma = false; 2340 } 2341 2342 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2343 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2344 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2345 if (new_vma) { 2346 /* 2347 * Source vma may have been merged into new_vma 2348 */ 2349 if (unlikely(vma_start >= new_vma->vm_start && 2350 vma_start < new_vma->vm_end)) { 2351 /* 2352 * The only way we can get a vma_merge with 2353 * self during an mremap is if the vma hasn't 2354 * been faulted in yet and we were allowed to 2355 * reset the dst vma->vm_pgoff to the 2356 * destination address of the mremap to allow 2357 * the merge to happen. mremap must change the 2358 * vm_pgoff linearity between src and dst vmas 2359 * (in turn preventing a vma_merge) to be 2360 * safe. It is only safe to keep the vm_pgoff 2361 * linear if there are no pages mapped yet. 2362 */ 2363 VM_BUG_ON(faulted_in_anon_vma); 2364 *vmap = new_vma; 2365 } else 2366 anon_vma_moveto_tail(new_vma); 2367 } else { 2368 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2369 if (new_vma) { 2370 *new_vma = *vma; 2371 pol = mpol_dup(vma_policy(vma)); 2372 if (IS_ERR(pol)) 2373 goto out_free_vma; 2374 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2375 if (anon_vma_clone(new_vma, vma)) 2376 goto out_free_mempol; 2377 vma_set_policy(new_vma, pol); 2378 new_vma->vm_start = addr; 2379 new_vma->vm_end = addr + len; 2380 new_vma->vm_pgoff = pgoff; 2381 if (new_vma->vm_file) { 2382 get_file(new_vma->vm_file); 2383 if (vma->vm_flags & VM_EXECUTABLE) 2384 added_exe_file_vma(mm); 2385 } 2386 if (new_vma->vm_ops && new_vma->vm_ops->open) 2387 new_vma->vm_ops->open(new_vma); 2388 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2389 } 2390 } 2391 return new_vma; 2392 2393 out_free_mempol: 2394 mpol_put(pol); 2395 out_free_vma: 2396 kmem_cache_free(vm_area_cachep, new_vma); 2397 return NULL; 2398 } 2399 2400 /* 2401 * Return true if the calling process may expand its vm space by the passed 2402 * number of pages 2403 */ 2404 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2405 { 2406 unsigned long cur = mm->total_vm; /* pages */ 2407 unsigned long lim; 2408 2409 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2410 2411 if (cur + npages > lim) 2412 return 0; 2413 return 1; 2414 } 2415 2416 2417 static int special_mapping_fault(struct vm_area_struct *vma, 2418 struct vm_fault *vmf) 2419 { 2420 pgoff_t pgoff; 2421 struct page **pages; 2422 2423 /* 2424 * special mappings have no vm_file, and in that case, the mm 2425 * uses vm_pgoff internally. So we have to subtract it from here. 2426 * We are allowed to do this because we are the mm; do not copy 2427 * this code into drivers! 2428 */ 2429 pgoff = vmf->pgoff - vma->vm_pgoff; 2430 2431 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2432 pgoff--; 2433 2434 if (*pages) { 2435 struct page *page = *pages; 2436 get_page(page); 2437 vmf->page = page; 2438 return 0; 2439 } 2440 2441 return VM_FAULT_SIGBUS; 2442 } 2443 2444 /* 2445 * Having a close hook prevents vma merging regardless of flags. 2446 */ 2447 static void special_mapping_close(struct vm_area_struct *vma) 2448 { 2449 } 2450 2451 static const struct vm_operations_struct special_mapping_vmops = { 2452 .close = special_mapping_close, 2453 .fault = special_mapping_fault, 2454 }; 2455 2456 /* 2457 * Called with mm->mmap_sem held for writing. 2458 * Insert a new vma covering the given region, with the given flags. 2459 * Its pages are supplied by the given array of struct page *. 2460 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2461 * The region past the last page supplied will always produce SIGBUS. 2462 * The array pointer and the pages it points to are assumed to stay alive 2463 * for as long as this mapping might exist. 2464 */ 2465 int install_special_mapping(struct mm_struct *mm, 2466 unsigned long addr, unsigned long len, 2467 unsigned long vm_flags, struct page **pages) 2468 { 2469 int ret; 2470 struct vm_area_struct *vma; 2471 2472 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2473 if (unlikely(vma == NULL)) 2474 return -ENOMEM; 2475 2476 INIT_LIST_HEAD(&vma->anon_vma_chain); 2477 vma->vm_mm = mm; 2478 vma->vm_start = addr; 2479 vma->vm_end = addr + len; 2480 2481 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2482 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2483 2484 vma->vm_ops = &special_mapping_vmops; 2485 vma->vm_private_data = pages; 2486 2487 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 2488 if (ret) 2489 goto out; 2490 2491 ret = insert_vm_struct(mm, vma); 2492 if (ret) 2493 goto out; 2494 2495 mm->total_vm += len >> PAGE_SHIFT; 2496 2497 perf_event_mmap(vma); 2498 2499 return 0; 2500 2501 out: 2502 kmem_cache_free(vm_area_cachep, vma); 2503 return ret; 2504 } 2505 2506 static DEFINE_MUTEX(mm_all_locks_mutex); 2507 2508 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2509 { 2510 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2511 /* 2512 * The LSB of head.next can't change from under us 2513 * because we hold the mm_all_locks_mutex. 2514 */ 2515 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem); 2516 /* 2517 * We can safely modify head.next after taking the 2518 * anon_vma->root->mutex. If some other vma in this mm shares 2519 * the same anon_vma we won't take it again. 2520 * 2521 * No need of atomic instructions here, head.next 2522 * can't change from under us thanks to the 2523 * anon_vma->root->mutex. 2524 */ 2525 if (__test_and_set_bit(0, (unsigned long *) 2526 &anon_vma->root->head.next)) 2527 BUG(); 2528 } 2529 } 2530 2531 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2532 { 2533 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2534 /* 2535 * AS_MM_ALL_LOCKS can't change from under us because 2536 * we hold the mm_all_locks_mutex. 2537 * 2538 * Operations on ->flags have to be atomic because 2539 * even if AS_MM_ALL_LOCKS is stable thanks to the 2540 * mm_all_locks_mutex, there may be other cpus 2541 * changing other bitflags in parallel to us. 2542 */ 2543 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2544 BUG(); 2545 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 2546 } 2547 } 2548 2549 /* 2550 * This operation locks against the VM for all pte/vma/mm related 2551 * operations that could ever happen on a certain mm. This includes 2552 * vmtruncate, try_to_unmap, and all page faults. 2553 * 2554 * The caller must take the mmap_sem in write mode before calling 2555 * mm_take_all_locks(). The caller isn't allowed to release the 2556 * mmap_sem until mm_drop_all_locks() returns. 2557 * 2558 * mmap_sem in write mode is required in order to block all operations 2559 * that could modify pagetables and free pages without need of 2560 * altering the vma layout (for example populate_range() with 2561 * nonlinear vmas). It's also needed in write mode to avoid new 2562 * anon_vmas to be associated with existing vmas. 2563 * 2564 * A single task can't take more than one mm_take_all_locks() in a row 2565 * or it would deadlock. 2566 * 2567 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2568 * mapping->flags avoid to take the same lock twice, if more than one 2569 * vma in this mm is backed by the same anon_vma or address_space. 2570 * 2571 * We can take all the locks in random order because the VM code 2572 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never 2573 * takes more than one of them in a row. Secondly we're protected 2574 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2575 * 2576 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2577 * that may have to take thousand of locks. 2578 * 2579 * mm_take_all_locks() can fail if it's interrupted by signals. 2580 */ 2581 int mm_take_all_locks(struct mm_struct *mm) 2582 { 2583 struct vm_area_struct *vma; 2584 struct anon_vma_chain *avc; 2585 2586 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2587 2588 mutex_lock(&mm_all_locks_mutex); 2589 2590 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2591 if (signal_pending(current)) 2592 goto out_unlock; 2593 if (vma->vm_file && vma->vm_file->f_mapping) 2594 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2595 } 2596 2597 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2598 if (signal_pending(current)) 2599 goto out_unlock; 2600 if (vma->anon_vma) 2601 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2602 vm_lock_anon_vma(mm, avc->anon_vma); 2603 } 2604 2605 return 0; 2606 2607 out_unlock: 2608 mm_drop_all_locks(mm); 2609 return -EINTR; 2610 } 2611 2612 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2613 { 2614 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2615 /* 2616 * The LSB of head.next can't change to 0 from under 2617 * us because we hold the mm_all_locks_mutex. 2618 * 2619 * We must however clear the bitflag before unlocking 2620 * the vma so the users using the anon_vma->head will 2621 * never see our bitflag. 2622 * 2623 * No need of atomic instructions here, head.next 2624 * can't change from under us until we release the 2625 * anon_vma->root->mutex. 2626 */ 2627 if (!__test_and_clear_bit(0, (unsigned long *) 2628 &anon_vma->root->head.next)) 2629 BUG(); 2630 anon_vma_unlock(anon_vma); 2631 } 2632 } 2633 2634 static void vm_unlock_mapping(struct address_space *mapping) 2635 { 2636 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2637 /* 2638 * AS_MM_ALL_LOCKS can't change to 0 from under us 2639 * because we hold the mm_all_locks_mutex. 2640 */ 2641 mutex_unlock(&mapping->i_mmap_mutex); 2642 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2643 &mapping->flags)) 2644 BUG(); 2645 } 2646 } 2647 2648 /* 2649 * The mmap_sem cannot be released by the caller until 2650 * mm_drop_all_locks() returns. 2651 */ 2652 void mm_drop_all_locks(struct mm_struct *mm) 2653 { 2654 struct vm_area_struct *vma; 2655 struct anon_vma_chain *avc; 2656 2657 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2658 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2659 2660 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2661 if (vma->anon_vma) 2662 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2663 vm_unlock_anon_vma(avc->anon_vma); 2664 if (vma->vm_file && vma->vm_file->f_mapping) 2665 vm_unlock_mapping(vma->vm_file->f_mapping); 2666 } 2667 2668 mutex_unlock(&mm_all_locks_mutex); 2669 } 2670 2671 /* 2672 * initialise the VMA slab 2673 */ 2674 void __init mmap_init(void) 2675 { 2676 int ret; 2677 2678 ret = percpu_counter_init(&vm_committed_as, 0); 2679 VM_BUG_ON(ret); 2680 } 2681