xref: /openbmc/linux/mm/mmap.c (revision 9ffc93f2)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38 
39 #include "internal.h"
40 
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)	(0)
43 #endif
44 
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)		(addr)
47 #endif
48 
49 static void unmap_region(struct mm_struct *mm,
50 		struct vm_area_struct *vma, struct vm_area_struct *prev,
51 		unsigned long start, unsigned long end);
52 
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58 
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type	prot
64  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
65  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
66  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
67  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
68  *
69  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
70  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
71  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78 
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 	return __pgprot(pgprot_val(protection_map[vm_flags &
82 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86 
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 /*
91  * Make sure vm_committed_as in one cacheline and not cacheline shared with
92  * other variables. It can be updated by several CPUs frequently.
93  */
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95 
96 /*
97  * Check that a process has enough memory to allocate a new virtual
98  * mapping. 0 means there is enough memory for the allocation to
99  * succeed and -ENOMEM implies there is not.
100  *
101  * We currently support three overcommit policies, which are set via the
102  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
103  *
104  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105  * Additional code 2002 Jul 20 by Robert Love.
106  *
107  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108  *
109  * Note this is a helper function intended to be used by LSMs which
110  * wish to use this logic.
111  */
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113 {
114 	unsigned long free, allowed;
115 
116 	vm_acct_memory(pages);
117 
118 	/*
119 	 * Sometimes we want to use more memory than we have
120 	 */
121 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122 		return 0;
123 
124 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125 		free = global_page_state(NR_FREE_PAGES);
126 		free += global_page_state(NR_FILE_PAGES);
127 
128 		/*
129 		 * shmem pages shouldn't be counted as free in this
130 		 * case, they can't be purged, only swapped out, and
131 		 * that won't affect the overall amount of available
132 		 * memory in the system.
133 		 */
134 		free -= global_page_state(NR_SHMEM);
135 
136 		free += nr_swap_pages;
137 
138 		/*
139 		 * Any slabs which are created with the
140 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141 		 * which are reclaimable, under pressure.  The dentry
142 		 * cache and most inode caches should fall into this
143 		 */
144 		free += global_page_state(NR_SLAB_RECLAIMABLE);
145 
146 		/*
147 		 * Leave reserved pages. The pages are not for anonymous pages.
148 		 */
149 		if (free <= totalreserve_pages)
150 			goto error;
151 		else
152 			free -= totalreserve_pages;
153 
154 		/*
155 		 * Leave the last 3% for root
156 		 */
157 		if (!cap_sys_admin)
158 			free -= free / 32;
159 
160 		if (free > pages)
161 			return 0;
162 
163 		goto error;
164 	}
165 
166 	allowed = (totalram_pages - hugetlb_total_pages())
167 	       	* sysctl_overcommit_ratio / 100;
168 	/*
169 	 * Leave the last 3% for root
170 	 */
171 	if (!cap_sys_admin)
172 		allowed -= allowed / 32;
173 	allowed += total_swap_pages;
174 
175 	/* Don't let a single process grow too big:
176 	   leave 3% of the size of this process for other processes */
177 	if (mm)
178 		allowed -= mm->total_vm / 32;
179 
180 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
181 		return 0;
182 error:
183 	vm_unacct_memory(pages);
184 
185 	return -ENOMEM;
186 }
187 
188 /*
189  * Requires inode->i_mapping->i_mmap_mutex
190  */
191 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
192 		struct file *file, struct address_space *mapping)
193 {
194 	if (vma->vm_flags & VM_DENYWRITE)
195 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
196 	if (vma->vm_flags & VM_SHARED)
197 		mapping->i_mmap_writable--;
198 
199 	flush_dcache_mmap_lock(mapping);
200 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
201 		list_del_init(&vma->shared.vm_set.list);
202 	else
203 		vma_prio_tree_remove(vma, &mapping->i_mmap);
204 	flush_dcache_mmap_unlock(mapping);
205 }
206 
207 /*
208  * Unlink a file-based vm structure from its prio_tree, to hide
209  * vma from rmap and vmtruncate before freeing its page tables.
210  */
211 void unlink_file_vma(struct vm_area_struct *vma)
212 {
213 	struct file *file = vma->vm_file;
214 
215 	if (file) {
216 		struct address_space *mapping = file->f_mapping;
217 		mutex_lock(&mapping->i_mmap_mutex);
218 		__remove_shared_vm_struct(vma, file, mapping);
219 		mutex_unlock(&mapping->i_mmap_mutex);
220 	}
221 }
222 
223 /*
224  * Close a vm structure and free it, returning the next.
225  */
226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
227 {
228 	struct vm_area_struct *next = vma->vm_next;
229 
230 	might_sleep();
231 	if (vma->vm_ops && vma->vm_ops->close)
232 		vma->vm_ops->close(vma);
233 	if (vma->vm_file) {
234 		fput(vma->vm_file);
235 		if (vma->vm_flags & VM_EXECUTABLE)
236 			removed_exe_file_vma(vma->vm_mm);
237 	}
238 	mpol_put(vma_policy(vma));
239 	kmem_cache_free(vm_area_cachep, vma);
240 	return next;
241 }
242 
243 SYSCALL_DEFINE1(brk, unsigned long, brk)
244 {
245 	unsigned long rlim, retval;
246 	unsigned long newbrk, oldbrk;
247 	struct mm_struct *mm = current->mm;
248 	unsigned long min_brk;
249 
250 	down_write(&mm->mmap_sem);
251 
252 #ifdef CONFIG_COMPAT_BRK
253 	/*
254 	 * CONFIG_COMPAT_BRK can still be overridden by setting
255 	 * randomize_va_space to 2, which will still cause mm->start_brk
256 	 * to be arbitrarily shifted
257 	 */
258 	if (current->brk_randomized)
259 		min_brk = mm->start_brk;
260 	else
261 		min_brk = mm->end_data;
262 #else
263 	min_brk = mm->start_brk;
264 #endif
265 	if (brk < min_brk)
266 		goto out;
267 
268 	/*
269 	 * Check against rlimit here. If this check is done later after the test
270 	 * of oldbrk with newbrk then it can escape the test and let the data
271 	 * segment grow beyond its set limit the in case where the limit is
272 	 * not page aligned -Ram Gupta
273 	 */
274 	rlim = rlimit(RLIMIT_DATA);
275 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276 			(mm->end_data - mm->start_data) > rlim)
277 		goto out;
278 
279 	newbrk = PAGE_ALIGN(brk);
280 	oldbrk = PAGE_ALIGN(mm->brk);
281 	if (oldbrk == newbrk)
282 		goto set_brk;
283 
284 	/* Always allow shrinking brk. */
285 	if (brk <= mm->brk) {
286 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287 			goto set_brk;
288 		goto out;
289 	}
290 
291 	/* Check against existing mmap mappings. */
292 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293 		goto out;
294 
295 	/* Ok, looks good - let it rip. */
296 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297 		goto out;
298 set_brk:
299 	mm->brk = brk;
300 out:
301 	retval = mm->brk;
302 	up_write(&mm->mmap_sem);
303 	return retval;
304 }
305 
306 #ifdef DEBUG_MM_RB
307 static int browse_rb(struct rb_root *root)
308 {
309 	int i = 0, j;
310 	struct rb_node *nd, *pn = NULL;
311 	unsigned long prev = 0, pend = 0;
312 
313 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314 		struct vm_area_struct *vma;
315 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316 		if (vma->vm_start < prev)
317 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318 		if (vma->vm_start < pend)
319 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320 		if (vma->vm_start > vma->vm_end)
321 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322 		i++;
323 		pn = nd;
324 		prev = vma->vm_start;
325 		pend = vma->vm_end;
326 	}
327 	j = 0;
328 	for (nd = pn; nd; nd = rb_prev(nd)) {
329 		j++;
330 	}
331 	if (i != j)
332 		printk("backwards %d, forwards %d\n", j, i), i = 0;
333 	return i;
334 }
335 
336 void validate_mm(struct mm_struct *mm)
337 {
338 	int bug = 0;
339 	int i = 0;
340 	struct vm_area_struct *tmp = mm->mmap;
341 	while (tmp) {
342 		tmp = tmp->vm_next;
343 		i++;
344 	}
345 	if (i != mm->map_count)
346 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347 	i = browse_rb(&mm->mm_rb);
348 	if (i != mm->map_count)
349 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350 	BUG_ON(bug);
351 }
352 #else
353 #define validate_mm(mm) do { } while (0)
354 #endif
355 
356 static struct vm_area_struct *
357 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
358 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
359 		struct rb_node ** rb_parent)
360 {
361 	struct vm_area_struct * vma;
362 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
363 
364 	__rb_link = &mm->mm_rb.rb_node;
365 	rb_prev = __rb_parent = NULL;
366 	vma = NULL;
367 
368 	while (*__rb_link) {
369 		struct vm_area_struct *vma_tmp;
370 
371 		__rb_parent = *__rb_link;
372 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
373 
374 		if (vma_tmp->vm_end > addr) {
375 			vma = vma_tmp;
376 			if (vma_tmp->vm_start <= addr)
377 				break;
378 			__rb_link = &__rb_parent->rb_left;
379 		} else {
380 			rb_prev = __rb_parent;
381 			__rb_link = &__rb_parent->rb_right;
382 		}
383 	}
384 
385 	*pprev = NULL;
386 	if (rb_prev)
387 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
388 	*rb_link = __rb_link;
389 	*rb_parent = __rb_parent;
390 	return vma;
391 }
392 
393 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
394 		struct rb_node **rb_link, struct rb_node *rb_parent)
395 {
396 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
397 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
398 }
399 
400 static void __vma_link_file(struct vm_area_struct *vma)
401 {
402 	struct file *file;
403 
404 	file = vma->vm_file;
405 	if (file) {
406 		struct address_space *mapping = file->f_mapping;
407 
408 		if (vma->vm_flags & VM_DENYWRITE)
409 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
410 		if (vma->vm_flags & VM_SHARED)
411 			mapping->i_mmap_writable++;
412 
413 		flush_dcache_mmap_lock(mapping);
414 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
415 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
416 		else
417 			vma_prio_tree_insert(vma, &mapping->i_mmap);
418 		flush_dcache_mmap_unlock(mapping);
419 	}
420 }
421 
422 static void
423 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
424 	struct vm_area_struct *prev, struct rb_node **rb_link,
425 	struct rb_node *rb_parent)
426 {
427 	__vma_link_list(mm, vma, prev, rb_parent);
428 	__vma_link_rb(mm, vma, rb_link, rb_parent);
429 }
430 
431 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432 			struct vm_area_struct *prev, struct rb_node **rb_link,
433 			struct rb_node *rb_parent)
434 {
435 	struct address_space *mapping = NULL;
436 
437 	if (vma->vm_file)
438 		mapping = vma->vm_file->f_mapping;
439 
440 	if (mapping)
441 		mutex_lock(&mapping->i_mmap_mutex);
442 
443 	__vma_link(mm, vma, prev, rb_link, rb_parent);
444 	__vma_link_file(vma);
445 
446 	if (mapping)
447 		mutex_unlock(&mapping->i_mmap_mutex);
448 
449 	mm->map_count++;
450 	validate_mm(mm);
451 }
452 
453 /*
454  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
455  * mm's list and rbtree.  It has already been inserted into the prio_tree.
456  */
457 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
458 {
459 	struct vm_area_struct *__vma, *prev;
460 	struct rb_node **rb_link, *rb_parent;
461 
462 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
463 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
464 	__vma_link(mm, vma, prev, rb_link, rb_parent);
465 	mm->map_count++;
466 }
467 
468 static inline void
469 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
470 		struct vm_area_struct *prev)
471 {
472 	struct vm_area_struct *next = vma->vm_next;
473 
474 	prev->vm_next = next;
475 	if (next)
476 		next->vm_prev = prev;
477 	rb_erase(&vma->vm_rb, &mm->mm_rb);
478 	if (mm->mmap_cache == vma)
479 		mm->mmap_cache = prev;
480 }
481 
482 /*
483  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
484  * is already present in an i_mmap tree without adjusting the tree.
485  * The following helper function should be used when such adjustments
486  * are necessary.  The "insert" vma (if any) is to be inserted
487  * before we drop the necessary locks.
488  */
489 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
490 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
491 {
492 	struct mm_struct *mm = vma->vm_mm;
493 	struct vm_area_struct *next = vma->vm_next;
494 	struct vm_area_struct *importer = NULL;
495 	struct address_space *mapping = NULL;
496 	struct prio_tree_root *root = NULL;
497 	struct anon_vma *anon_vma = NULL;
498 	struct file *file = vma->vm_file;
499 	long adjust_next = 0;
500 	int remove_next = 0;
501 
502 	if (next && !insert) {
503 		struct vm_area_struct *exporter = NULL;
504 
505 		if (end >= next->vm_end) {
506 			/*
507 			 * vma expands, overlapping all the next, and
508 			 * perhaps the one after too (mprotect case 6).
509 			 */
510 again:			remove_next = 1 + (end > next->vm_end);
511 			end = next->vm_end;
512 			exporter = next;
513 			importer = vma;
514 		} else if (end > next->vm_start) {
515 			/*
516 			 * vma expands, overlapping part of the next:
517 			 * mprotect case 5 shifting the boundary up.
518 			 */
519 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
520 			exporter = next;
521 			importer = vma;
522 		} else if (end < vma->vm_end) {
523 			/*
524 			 * vma shrinks, and !insert tells it's not
525 			 * split_vma inserting another: so it must be
526 			 * mprotect case 4 shifting the boundary down.
527 			 */
528 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
529 			exporter = vma;
530 			importer = next;
531 		}
532 
533 		/*
534 		 * Easily overlooked: when mprotect shifts the boundary,
535 		 * make sure the expanding vma has anon_vma set if the
536 		 * shrinking vma had, to cover any anon pages imported.
537 		 */
538 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
539 			if (anon_vma_clone(importer, exporter))
540 				return -ENOMEM;
541 			importer->anon_vma = exporter->anon_vma;
542 		}
543 	}
544 
545 	if (file) {
546 		mapping = file->f_mapping;
547 		if (!(vma->vm_flags & VM_NONLINEAR))
548 			root = &mapping->i_mmap;
549 		mutex_lock(&mapping->i_mmap_mutex);
550 		if (insert) {
551 			/*
552 			 * Put into prio_tree now, so instantiated pages
553 			 * are visible to arm/parisc __flush_dcache_page
554 			 * throughout; but we cannot insert into address
555 			 * space until vma start or end is updated.
556 			 */
557 			__vma_link_file(insert);
558 		}
559 	}
560 
561 	vma_adjust_trans_huge(vma, start, end, adjust_next);
562 
563 	/*
564 	 * When changing only vma->vm_end, we don't really need anon_vma
565 	 * lock. This is a fairly rare case by itself, but the anon_vma
566 	 * lock may be shared between many sibling processes.  Skipping
567 	 * the lock for brk adjustments makes a difference sometimes.
568 	 */
569 	if (vma->anon_vma && (importer || start != vma->vm_start)) {
570 		anon_vma = vma->anon_vma;
571 		anon_vma_lock(anon_vma);
572 	}
573 
574 	if (root) {
575 		flush_dcache_mmap_lock(mapping);
576 		vma_prio_tree_remove(vma, root);
577 		if (adjust_next)
578 			vma_prio_tree_remove(next, root);
579 	}
580 
581 	vma->vm_start = start;
582 	vma->vm_end = end;
583 	vma->vm_pgoff = pgoff;
584 	if (adjust_next) {
585 		next->vm_start += adjust_next << PAGE_SHIFT;
586 		next->vm_pgoff += adjust_next;
587 	}
588 
589 	if (root) {
590 		if (adjust_next)
591 			vma_prio_tree_insert(next, root);
592 		vma_prio_tree_insert(vma, root);
593 		flush_dcache_mmap_unlock(mapping);
594 	}
595 
596 	if (remove_next) {
597 		/*
598 		 * vma_merge has merged next into vma, and needs
599 		 * us to remove next before dropping the locks.
600 		 */
601 		__vma_unlink(mm, next, vma);
602 		if (file)
603 			__remove_shared_vm_struct(next, file, mapping);
604 	} else if (insert) {
605 		/*
606 		 * split_vma has split insert from vma, and needs
607 		 * us to insert it before dropping the locks
608 		 * (it may either follow vma or precede it).
609 		 */
610 		__insert_vm_struct(mm, insert);
611 	}
612 
613 	if (anon_vma)
614 		anon_vma_unlock(anon_vma);
615 	if (mapping)
616 		mutex_unlock(&mapping->i_mmap_mutex);
617 
618 	if (remove_next) {
619 		if (file) {
620 			fput(file);
621 			if (next->vm_flags & VM_EXECUTABLE)
622 				removed_exe_file_vma(mm);
623 		}
624 		if (next->anon_vma)
625 			anon_vma_merge(vma, next);
626 		mm->map_count--;
627 		mpol_put(vma_policy(next));
628 		kmem_cache_free(vm_area_cachep, next);
629 		/*
630 		 * In mprotect's case 6 (see comments on vma_merge),
631 		 * we must remove another next too. It would clutter
632 		 * up the code too much to do both in one go.
633 		 */
634 		if (remove_next == 2) {
635 			next = vma->vm_next;
636 			goto again;
637 		}
638 	}
639 
640 	validate_mm(mm);
641 
642 	return 0;
643 }
644 
645 /*
646  * If the vma has a ->close operation then the driver probably needs to release
647  * per-vma resources, so we don't attempt to merge those.
648  */
649 static inline int is_mergeable_vma(struct vm_area_struct *vma,
650 			struct file *file, unsigned long vm_flags)
651 {
652 	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
653 	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
654 		return 0;
655 	if (vma->vm_file != file)
656 		return 0;
657 	if (vma->vm_ops && vma->vm_ops->close)
658 		return 0;
659 	return 1;
660 }
661 
662 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
663 					struct anon_vma *anon_vma2,
664 					struct vm_area_struct *vma)
665 {
666 	/*
667 	 * The list_is_singular() test is to avoid merging VMA cloned from
668 	 * parents. This can improve scalability caused by anon_vma lock.
669 	 */
670 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
671 		list_is_singular(&vma->anon_vma_chain)))
672 		return 1;
673 	return anon_vma1 == anon_vma2;
674 }
675 
676 /*
677  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
678  * in front of (at a lower virtual address and file offset than) the vma.
679  *
680  * We cannot merge two vmas if they have differently assigned (non-NULL)
681  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
682  *
683  * We don't check here for the merged mmap wrapping around the end of pagecache
684  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
685  * wrap, nor mmaps which cover the final page at index -1UL.
686  */
687 static int
688 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
689 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
690 {
691 	if (is_mergeable_vma(vma, file, vm_flags) &&
692 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
693 		if (vma->vm_pgoff == vm_pgoff)
694 			return 1;
695 	}
696 	return 0;
697 }
698 
699 /*
700  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
701  * beyond (at a higher virtual address and file offset than) the vma.
702  *
703  * We cannot merge two vmas if they have differently assigned (non-NULL)
704  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
705  */
706 static int
707 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
708 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
709 {
710 	if (is_mergeable_vma(vma, file, vm_flags) &&
711 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
712 		pgoff_t vm_pglen;
713 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
714 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
715 			return 1;
716 	}
717 	return 0;
718 }
719 
720 /*
721  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
722  * whether that can be merged with its predecessor or its successor.
723  * Or both (it neatly fills a hole).
724  *
725  * In most cases - when called for mmap, brk or mremap - [addr,end) is
726  * certain not to be mapped by the time vma_merge is called; but when
727  * called for mprotect, it is certain to be already mapped (either at
728  * an offset within prev, or at the start of next), and the flags of
729  * this area are about to be changed to vm_flags - and the no-change
730  * case has already been eliminated.
731  *
732  * The following mprotect cases have to be considered, where AAAA is
733  * the area passed down from mprotect_fixup, never extending beyond one
734  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
735  *
736  *     AAAA             AAAA                AAAA          AAAA
737  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
738  *    cannot merge    might become    might become    might become
739  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
740  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
741  *    mremap move:                                    PPPPNNNNNNNN 8
742  *        AAAA
743  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
744  *    might become    case 1 below    case 2 below    case 3 below
745  *
746  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
747  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
748  */
749 struct vm_area_struct *vma_merge(struct mm_struct *mm,
750 			struct vm_area_struct *prev, unsigned long addr,
751 			unsigned long end, unsigned long vm_flags,
752 		     	struct anon_vma *anon_vma, struct file *file,
753 			pgoff_t pgoff, struct mempolicy *policy)
754 {
755 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
756 	struct vm_area_struct *area, *next;
757 	int err;
758 
759 	/*
760 	 * We later require that vma->vm_flags == vm_flags,
761 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
762 	 */
763 	if (vm_flags & VM_SPECIAL)
764 		return NULL;
765 
766 	if (prev)
767 		next = prev->vm_next;
768 	else
769 		next = mm->mmap;
770 	area = next;
771 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
772 		next = next->vm_next;
773 
774 	/*
775 	 * Can it merge with the predecessor?
776 	 */
777 	if (prev && prev->vm_end == addr &&
778   			mpol_equal(vma_policy(prev), policy) &&
779 			can_vma_merge_after(prev, vm_flags,
780 						anon_vma, file, pgoff)) {
781 		/*
782 		 * OK, it can.  Can we now merge in the successor as well?
783 		 */
784 		if (next && end == next->vm_start &&
785 				mpol_equal(policy, vma_policy(next)) &&
786 				can_vma_merge_before(next, vm_flags,
787 					anon_vma, file, pgoff+pglen) &&
788 				is_mergeable_anon_vma(prev->anon_vma,
789 						      next->anon_vma, NULL)) {
790 							/* cases 1, 6 */
791 			err = vma_adjust(prev, prev->vm_start,
792 				next->vm_end, prev->vm_pgoff, NULL);
793 		} else					/* cases 2, 5, 7 */
794 			err = vma_adjust(prev, prev->vm_start,
795 				end, prev->vm_pgoff, NULL);
796 		if (err)
797 			return NULL;
798 		khugepaged_enter_vma_merge(prev);
799 		return prev;
800 	}
801 
802 	/*
803 	 * Can this new request be merged in front of next?
804 	 */
805 	if (next && end == next->vm_start &&
806  			mpol_equal(policy, vma_policy(next)) &&
807 			can_vma_merge_before(next, vm_flags,
808 					anon_vma, file, pgoff+pglen)) {
809 		if (prev && addr < prev->vm_end)	/* case 4 */
810 			err = vma_adjust(prev, prev->vm_start,
811 				addr, prev->vm_pgoff, NULL);
812 		else					/* cases 3, 8 */
813 			err = vma_adjust(area, addr, next->vm_end,
814 				next->vm_pgoff - pglen, NULL);
815 		if (err)
816 			return NULL;
817 		khugepaged_enter_vma_merge(area);
818 		return area;
819 	}
820 
821 	return NULL;
822 }
823 
824 /*
825  * Rough compatbility check to quickly see if it's even worth looking
826  * at sharing an anon_vma.
827  *
828  * They need to have the same vm_file, and the flags can only differ
829  * in things that mprotect may change.
830  *
831  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
832  * we can merge the two vma's. For example, we refuse to merge a vma if
833  * there is a vm_ops->close() function, because that indicates that the
834  * driver is doing some kind of reference counting. But that doesn't
835  * really matter for the anon_vma sharing case.
836  */
837 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
838 {
839 	return a->vm_end == b->vm_start &&
840 		mpol_equal(vma_policy(a), vma_policy(b)) &&
841 		a->vm_file == b->vm_file &&
842 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
843 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
844 }
845 
846 /*
847  * Do some basic sanity checking to see if we can re-use the anon_vma
848  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
849  * the same as 'old', the other will be the new one that is trying
850  * to share the anon_vma.
851  *
852  * NOTE! This runs with mm_sem held for reading, so it is possible that
853  * the anon_vma of 'old' is concurrently in the process of being set up
854  * by another page fault trying to merge _that_. But that's ok: if it
855  * is being set up, that automatically means that it will be a singleton
856  * acceptable for merging, so we can do all of this optimistically. But
857  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
858  *
859  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
860  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
861  * is to return an anon_vma that is "complex" due to having gone through
862  * a fork).
863  *
864  * We also make sure that the two vma's are compatible (adjacent,
865  * and with the same memory policies). That's all stable, even with just
866  * a read lock on the mm_sem.
867  */
868 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
869 {
870 	if (anon_vma_compatible(a, b)) {
871 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
872 
873 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
874 			return anon_vma;
875 	}
876 	return NULL;
877 }
878 
879 /*
880  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
881  * neighbouring vmas for a suitable anon_vma, before it goes off
882  * to allocate a new anon_vma.  It checks because a repetitive
883  * sequence of mprotects and faults may otherwise lead to distinct
884  * anon_vmas being allocated, preventing vma merge in subsequent
885  * mprotect.
886  */
887 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
888 {
889 	struct anon_vma *anon_vma;
890 	struct vm_area_struct *near;
891 
892 	near = vma->vm_next;
893 	if (!near)
894 		goto try_prev;
895 
896 	anon_vma = reusable_anon_vma(near, vma, near);
897 	if (anon_vma)
898 		return anon_vma;
899 try_prev:
900 	near = vma->vm_prev;
901 	if (!near)
902 		goto none;
903 
904 	anon_vma = reusable_anon_vma(near, near, vma);
905 	if (anon_vma)
906 		return anon_vma;
907 none:
908 	/*
909 	 * There's no absolute need to look only at touching neighbours:
910 	 * we could search further afield for "compatible" anon_vmas.
911 	 * But it would probably just be a waste of time searching,
912 	 * or lead to too many vmas hanging off the same anon_vma.
913 	 * We're trying to allow mprotect remerging later on,
914 	 * not trying to minimize memory used for anon_vmas.
915 	 */
916 	return NULL;
917 }
918 
919 #ifdef CONFIG_PROC_FS
920 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
921 						struct file *file, long pages)
922 {
923 	const unsigned long stack_flags
924 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
925 
926 	if (file) {
927 		mm->shared_vm += pages;
928 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
929 			mm->exec_vm += pages;
930 	} else if (flags & stack_flags)
931 		mm->stack_vm += pages;
932 	if (flags & (VM_RESERVED|VM_IO))
933 		mm->reserved_vm += pages;
934 }
935 #endif /* CONFIG_PROC_FS */
936 
937 /*
938  * If a hint addr is less than mmap_min_addr change hint to be as
939  * low as possible but still greater than mmap_min_addr
940  */
941 static inline unsigned long round_hint_to_min(unsigned long hint)
942 {
943 	hint &= PAGE_MASK;
944 	if (((void *)hint != NULL) &&
945 	    (hint < mmap_min_addr))
946 		return PAGE_ALIGN(mmap_min_addr);
947 	return hint;
948 }
949 
950 /*
951  * The caller must hold down_write(&current->mm->mmap_sem).
952  */
953 
954 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
955 			unsigned long len, unsigned long prot,
956 			unsigned long flags, unsigned long pgoff)
957 {
958 	struct mm_struct * mm = current->mm;
959 	struct inode *inode;
960 	vm_flags_t vm_flags;
961 	int error;
962 	unsigned long reqprot = prot;
963 
964 	/*
965 	 * Does the application expect PROT_READ to imply PROT_EXEC?
966 	 *
967 	 * (the exception is when the underlying filesystem is noexec
968 	 *  mounted, in which case we dont add PROT_EXEC.)
969 	 */
970 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
971 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
972 			prot |= PROT_EXEC;
973 
974 	if (!len)
975 		return -EINVAL;
976 
977 	if (!(flags & MAP_FIXED))
978 		addr = round_hint_to_min(addr);
979 
980 	/* Careful about overflows.. */
981 	len = PAGE_ALIGN(len);
982 	if (!len)
983 		return -ENOMEM;
984 
985 	/* offset overflow? */
986 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
987                return -EOVERFLOW;
988 
989 	/* Too many mappings? */
990 	if (mm->map_count > sysctl_max_map_count)
991 		return -ENOMEM;
992 
993 	/* Obtain the address to map to. we verify (or select) it and ensure
994 	 * that it represents a valid section of the address space.
995 	 */
996 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
997 	if (addr & ~PAGE_MASK)
998 		return addr;
999 
1000 	/* Do simple checking here so the lower-level routines won't have
1001 	 * to. we assume access permissions have been handled by the open
1002 	 * of the memory object, so we don't do any here.
1003 	 */
1004 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1005 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1006 
1007 	if (flags & MAP_LOCKED)
1008 		if (!can_do_mlock())
1009 			return -EPERM;
1010 
1011 	/* mlock MCL_FUTURE? */
1012 	if (vm_flags & VM_LOCKED) {
1013 		unsigned long locked, lock_limit;
1014 		locked = len >> PAGE_SHIFT;
1015 		locked += mm->locked_vm;
1016 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1017 		lock_limit >>= PAGE_SHIFT;
1018 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1019 			return -EAGAIN;
1020 	}
1021 
1022 	inode = file ? file->f_path.dentry->d_inode : NULL;
1023 
1024 	if (file) {
1025 		switch (flags & MAP_TYPE) {
1026 		case MAP_SHARED:
1027 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1028 				return -EACCES;
1029 
1030 			/*
1031 			 * Make sure we don't allow writing to an append-only
1032 			 * file..
1033 			 */
1034 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1035 				return -EACCES;
1036 
1037 			/*
1038 			 * Make sure there are no mandatory locks on the file.
1039 			 */
1040 			if (locks_verify_locked(inode))
1041 				return -EAGAIN;
1042 
1043 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1044 			if (!(file->f_mode & FMODE_WRITE))
1045 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1046 
1047 			/* fall through */
1048 		case MAP_PRIVATE:
1049 			if (!(file->f_mode & FMODE_READ))
1050 				return -EACCES;
1051 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1052 				if (vm_flags & VM_EXEC)
1053 					return -EPERM;
1054 				vm_flags &= ~VM_MAYEXEC;
1055 			}
1056 
1057 			if (!file->f_op || !file->f_op->mmap)
1058 				return -ENODEV;
1059 			break;
1060 
1061 		default:
1062 			return -EINVAL;
1063 		}
1064 	} else {
1065 		switch (flags & MAP_TYPE) {
1066 		case MAP_SHARED:
1067 			/*
1068 			 * Ignore pgoff.
1069 			 */
1070 			pgoff = 0;
1071 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1072 			break;
1073 		case MAP_PRIVATE:
1074 			/*
1075 			 * Set pgoff according to addr for anon_vma.
1076 			 */
1077 			pgoff = addr >> PAGE_SHIFT;
1078 			break;
1079 		default:
1080 			return -EINVAL;
1081 		}
1082 	}
1083 
1084 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1085 	if (error)
1086 		return error;
1087 
1088 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1089 }
1090 EXPORT_SYMBOL(do_mmap_pgoff);
1091 
1092 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1093 		unsigned long, prot, unsigned long, flags,
1094 		unsigned long, fd, unsigned long, pgoff)
1095 {
1096 	struct file *file = NULL;
1097 	unsigned long retval = -EBADF;
1098 
1099 	if (!(flags & MAP_ANONYMOUS)) {
1100 		audit_mmap_fd(fd, flags);
1101 		if (unlikely(flags & MAP_HUGETLB))
1102 			return -EINVAL;
1103 		file = fget(fd);
1104 		if (!file)
1105 			goto out;
1106 	} else if (flags & MAP_HUGETLB) {
1107 		struct user_struct *user = NULL;
1108 		/*
1109 		 * VM_NORESERVE is used because the reservations will be
1110 		 * taken when vm_ops->mmap() is called
1111 		 * A dummy user value is used because we are not locking
1112 		 * memory so no accounting is necessary
1113 		 */
1114 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1115 						VM_NORESERVE, &user,
1116 						HUGETLB_ANONHUGE_INODE);
1117 		if (IS_ERR(file))
1118 			return PTR_ERR(file);
1119 	}
1120 
1121 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1122 
1123 	down_write(&current->mm->mmap_sem);
1124 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1125 	up_write(&current->mm->mmap_sem);
1126 
1127 	if (file)
1128 		fput(file);
1129 out:
1130 	return retval;
1131 }
1132 
1133 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1134 struct mmap_arg_struct {
1135 	unsigned long addr;
1136 	unsigned long len;
1137 	unsigned long prot;
1138 	unsigned long flags;
1139 	unsigned long fd;
1140 	unsigned long offset;
1141 };
1142 
1143 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1144 {
1145 	struct mmap_arg_struct a;
1146 
1147 	if (copy_from_user(&a, arg, sizeof(a)))
1148 		return -EFAULT;
1149 	if (a.offset & ~PAGE_MASK)
1150 		return -EINVAL;
1151 
1152 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1153 			      a.offset >> PAGE_SHIFT);
1154 }
1155 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1156 
1157 /*
1158  * Some shared mappigns will want the pages marked read-only
1159  * to track write events. If so, we'll downgrade vm_page_prot
1160  * to the private version (using protection_map[] without the
1161  * VM_SHARED bit).
1162  */
1163 int vma_wants_writenotify(struct vm_area_struct *vma)
1164 {
1165 	vm_flags_t vm_flags = vma->vm_flags;
1166 
1167 	/* If it was private or non-writable, the write bit is already clear */
1168 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1169 		return 0;
1170 
1171 	/* The backer wishes to know when pages are first written to? */
1172 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1173 		return 1;
1174 
1175 	/* The open routine did something to the protections already? */
1176 	if (pgprot_val(vma->vm_page_prot) !=
1177 	    pgprot_val(vm_get_page_prot(vm_flags)))
1178 		return 0;
1179 
1180 	/* Specialty mapping? */
1181 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1182 		return 0;
1183 
1184 	/* Can the mapping track the dirty pages? */
1185 	return vma->vm_file && vma->vm_file->f_mapping &&
1186 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1187 }
1188 
1189 /*
1190  * We account for memory if it's a private writeable mapping,
1191  * not hugepages and VM_NORESERVE wasn't set.
1192  */
1193 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1194 {
1195 	/*
1196 	 * hugetlb has its own accounting separate from the core VM
1197 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1198 	 */
1199 	if (file && is_file_hugepages(file))
1200 		return 0;
1201 
1202 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1203 }
1204 
1205 unsigned long mmap_region(struct file *file, unsigned long addr,
1206 			  unsigned long len, unsigned long flags,
1207 			  vm_flags_t vm_flags, unsigned long pgoff)
1208 {
1209 	struct mm_struct *mm = current->mm;
1210 	struct vm_area_struct *vma, *prev;
1211 	int correct_wcount = 0;
1212 	int error;
1213 	struct rb_node **rb_link, *rb_parent;
1214 	unsigned long charged = 0;
1215 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1216 
1217 	/* Clear old maps */
1218 	error = -ENOMEM;
1219 munmap_back:
1220 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1221 	if (vma && vma->vm_start < addr + len) {
1222 		if (do_munmap(mm, addr, len))
1223 			return -ENOMEM;
1224 		goto munmap_back;
1225 	}
1226 
1227 	/* Check against address space limit. */
1228 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1229 		return -ENOMEM;
1230 
1231 	/*
1232 	 * Set 'VM_NORESERVE' if we should not account for the
1233 	 * memory use of this mapping.
1234 	 */
1235 	if ((flags & MAP_NORESERVE)) {
1236 		/* We honor MAP_NORESERVE if allowed to overcommit */
1237 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1238 			vm_flags |= VM_NORESERVE;
1239 
1240 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1241 		if (file && is_file_hugepages(file))
1242 			vm_flags |= VM_NORESERVE;
1243 	}
1244 
1245 	/*
1246 	 * Private writable mapping: check memory availability
1247 	 */
1248 	if (accountable_mapping(file, vm_flags)) {
1249 		charged = len >> PAGE_SHIFT;
1250 		if (security_vm_enough_memory_mm(mm, charged))
1251 			return -ENOMEM;
1252 		vm_flags |= VM_ACCOUNT;
1253 	}
1254 
1255 	/*
1256 	 * Can we just expand an old mapping?
1257 	 */
1258 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1259 	if (vma)
1260 		goto out;
1261 
1262 	/*
1263 	 * Determine the object being mapped and call the appropriate
1264 	 * specific mapper. the address has already been validated, but
1265 	 * not unmapped, but the maps are removed from the list.
1266 	 */
1267 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1268 	if (!vma) {
1269 		error = -ENOMEM;
1270 		goto unacct_error;
1271 	}
1272 
1273 	vma->vm_mm = mm;
1274 	vma->vm_start = addr;
1275 	vma->vm_end = addr + len;
1276 	vma->vm_flags = vm_flags;
1277 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1278 	vma->vm_pgoff = pgoff;
1279 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1280 
1281 	error = -EINVAL;	/* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1282 
1283 	if (file) {
1284 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1285 			goto free_vma;
1286 		if (vm_flags & VM_DENYWRITE) {
1287 			error = deny_write_access(file);
1288 			if (error)
1289 				goto free_vma;
1290 			correct_wcount = 1;
1291 		}
1292 		vma->vm_file = file;
1293 		get_file(file);
1294 		error = file->f_op->mmap(file, vma);
1295 		if (error)
1296 			goto unmap_and_free_vma;
1297 		if (vm_flags & VM_EXECUTABLE)
1298 			added_exe_file_vma(mm);
1299 
1300 		/* Can addr have changed??
1301 		 *
1302 		 * Answer: Yes, several device drivers can do it in their
1303 		 *         f_op->mmap method. -DaveM
1304 		 */
1305 		addr = vma->vm_start;
1306 		pgoff = vma->vm_pgoff;
1307 		vm_flags = vma->vm_flags;
1308 	} else if (vm_flags & VM_SHARED) {
1309 		if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1310 			goto free_vma;
1311 		error = shmem_zero_setup(vma);
1312 		if (error)
1313 			goto free_vma;
1314 	}
1315 
1316 	if (vma_wants_writenotify(vma)) {
1317 		pgprot_t pprot = vma->vm_page_prot;
1318 
1319 		/* Can vma->vm_page_prot have changed??
1320 		 *
1321 		 * Answer: Yes, drivers may have changed it in their
1322 		 *         f_op->mmap method.
1323 		 *
1324 		 * Ensures that vmas marked as uncached stay that way.
1325 		 */
1326 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1327 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1328 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1329 	}
1330 
1331 	vma_link(mm, vma, prev, rb_link, rb_parent);
1332 	file = vma->vm_file;
1333 
1334 	/* Once vma denies write, undo our temporary denial count */
1335 	if (correct_wcount)
1336 		atomic_inc(&inode->i_writecount);
1337 out:
1338 	perf_event_mmap(vma);
1339 
1340 	mm->total_vm += len >> PAGE_SHIFT;
1341 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1342 	if (vm_flags & VM_LOCKED) {
1343 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1344 			mm->locked_vm += (len >> PAGE_SHIFT);
1345 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1346 		make_pages_present(addr, addr + len);
1347 	return addr;
1348 
1349 unmap_and_free_vma:
1350 	if (correct_wcount)
1351 		atomic_inc(&inode->i_writecount);
1352 	vma->vm_file = NULL;
1353 	fput(file);
1354 
1355 	/* Undo any partial mapping done by a device driver. */
1356 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1357 	charged = 0;
1358 free_vma:
1359 	kmem_cache_free(vm_area_cachep, vma);
1360 unacct_error:
1361 	if (charged)
1362 		vm_unacct_memory(charged);
1363 	return error;
1364 }
1365 
1366 /* Get an address range which is currently unmapped.
1367  * For shmat() with addr=0.
1368  *
1369  * Ugly calling convention alert:
1370  * Return value with the low bits set means error value,
1371  * ie
1372  *	if (ret & ~PAGE_MASK)
1373  *		error = ret;
1374  *
1375  * This function "knows" that -ENOMEM has the bits set.
1376  */
1377 #ifndef HAVE_ARCH_UNMAPPED_AREA
1378 unsigned long
1379 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1380 		unsigned long len, unsigned long pgoff, unsigned long flags)
1381 {
1382 	struct mm_struct *mm = current->mm;
1383 	struct vm_area_struct *vma;
1384 	unsigned long start_addr;
1385 
1386 	if (len > TASK_SIZE)
1387 		return -ENOMEM;
1388 
1389 	if (flags & MAP_FIXED)
1390 		return addr;
1391 
1392 	if (addr) {
1393 		addr = PAGE_ALIGN(addr);
1394 		vma = find_vma(mm, addr);
1395 		if (TASK_SIZE - len >= addr &&
1396 		    (!vma || addr + len <= vma->vm_start))
1397 			return addr;
1398 	}
1399 	if (len > mm->cached_hole_size) {
1400 	        start_addr = addr = mm->free_area_cache;
1401 	} else {
1402 	        start_addr = addr = TASK_UNMAPPED_BASE;
1403 	        mm->cached_hole_size = 0;
1404 	}
1405 
1406 full_search:
1407 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1408 		/* At this point:  (!vma || addr < vma->vm_end). */
1409 		if (TASK_SIZE - len < addr) {
1410 			/*
1411 			 * Start a new search - just in case we missed
1412 			 * some holes.
1413 			 */
1414 			if (start_addr != TASK_UNMAPPED_BASE) {
1415 				addr = TASK_UNMAPPED_BASE;
1416 			        start_addr = addr;
1417 				mm->cached_hole_size = 0;
1418 				goto full_search;
1419 			}
1420 			return -ENOMEM;
1421 		}
1422 		if (!vma || addr + len <= vma->vm_start) {
1423 			/*
1424 			 * Remember the place where we stopped the search:
1425 			 */
1426 			mm->free_area_cache = addr + len;
1427 			return addr;
1428 		}
1429 		if (addr + mm->cached_hole_size < vma->vm_start)
1430 		        mm->cached_hole_size = vma->vm_start - addr;
1431 		addr = vma->vm_end;
1432 	}
1433 }
1434 #endif
1435 
1436 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1437 {
1438 	/*
1439 	 * Is this a new hole at the lowest possible address?
1440 	 */
1441 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1442 		mm->free_area_cache = addr;
1443 }
1444 
1445 /*
1446  * This mmap-allocator allocates new areas top-down from below the
1447  * stack's low limit (the base):
1448  */
1449 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1450 unsigned long
1451 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1452 			  const unsigned long len, const unsigned long pgoff,
1453 			  const unsigned long flags)
1454 {
1455 	struct vm_area_struct *vma;
1456 	struct mm_struct *mm = current->mm;
1457 	unsigned long addr = addr0, start_addr;
1458 
1459 	/* requested length too big for entire address space */
1460 	if (len > TASK_SIZE)
1461 		return -ENOMEM;
1462 
1463 	if (flags & MAP_FIXED)
1464 		return addr;
1465 
1466 	/* requesting a specific address */
1467 	if (addr) {
1468 		addr = PAGE_ALIGN(addr);
1469 		vma = find_vma(mm, addr);
1470 		if (TASK_SIZE - len >= addr &&
1471 				(!vma || addr + len <= vma->vm_start))
1472 			return addr;
1473 	}
1474 
1475 	/* check if free_area_cache is useful for us */
1476 	if (len <= mm->cached_hole_size) {
1477  	        mm->cached_hole_size = 0;
1478  		mm->free_area_cache = mm->mmap_base;
1479  	}
1480 
1481 try_again:
1482 	/* either no address requested or can't fit in requested address hole */
1483 	start_addr = addr = mm->free_area_cache;
1484 
1485 	if (addr < len)
1486 		goto fail;
1487 
1488 	addr -= len;
1489 	do {
1490 		/*
1491 		 * Lookup failure means no vma is above this address,
1492 		 * else if new region fits below vma->vm_start,
1493 		 * return with success:
1494 		 */
1495 		vma = find_vma(mm, addr);
1496 		if (!vma || addr+len <= vma->vm_start)
1497 			/* remember the address as a hint for next time */
1498 			return (mm->free_area_cache = addr);
1499 
1500  		/* remember the largest hole we saw so far */
1501  		if (addr + mm->cached_hole_size < vma->vm_start)
1502  		        mm->cached_hole_size = vma->vm_start - addr;
1503 
1504 		/* try just below the current vma->vm_start */
1505 		addr = vma->vm_start-len;
1506 	} while (len < vma->vm_start);
1507 
1508 fail:
1509 	/*
1510 	 * if hint left us with no space for the requested
1511 	 * mapping then try again:
1512 	 *
1513 	 * Note: this is different with the case of bottomup
1514 	 * which does the fully line-search, but we use find_vma
1515 	 * here that causes some holes skipped.
1516 	 */
1517 	if (start_addr != mm->mmap_base) {
1518 		mm->free_area_cache = mm->mmap_base;
1519 		mm->cached_hole_size = 0;
1520 		goto try_again;
1521 	}
1522 
1523 	/*
1524 	 * A failed mmap() very likely causes application failure,
1525 	 * so fall back to the bottom-up function here. This scenario
1526 	 * can happen with large stack limits and large mmap()
1527 	 * allocations.
1528 	 */
1529 	mm->cached_hole_size = ~0UL;
1530   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1531 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1532 	/*
1533 	 * Restore the topdown base:
1534 	 */
1535 	mm->free_area_cache = mm->mmap_base;
1536 	mm->cached_hole_size = ~0UL;
1537 
1538 	return addr;
1539 }
1540 #endif
1541 
1542 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1543 {
1544 	/*
1545 	 * Is this a new hole at the highest possible address?
1546 	 */
1547 	if (addr > mm->free_area_cache)
1548 		mm->free_area_cache = addr;
1549 
1550 	/* dont allow allocations above current base */
1551 	if (mm->free_area_cache > mm->mmap_base)
1552 		mm->free_area_cache = mm->mmap_base;
1553 }
1554 
1555 unsigned long
1556 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1557 		unsigned long pgoff, unsigned long flags)
1558 {
1559 	unsigned long (*get_area)(struct file *, unsigned long,
1560 				  unsigned long, unsigned long, unsigned long);
1561 
1562 	unsigned long error = arch_mmap_check(addr, len, flags);
1563 	if (error)
1564 		return error;
1565 
1566 	/* Careful about overflows.. */
1567 	if (len > TASK_SIZE)
1568 		return -ENOMEM;
1569 
1570 	get_area = current->mm->get_unmapped_area;
1571 	if (file && file->f_op && file->f_op->get_unmapped_area)
1572 		get_area = file->f_op->get_unmapped_area;
1573 	addr = get_area(file, addr, len, pgoff, flags);
1574 	if (IS_ERR_VALUE(addr))
1575 		return addr;
1576 
1577 	if (addr > TASK_SIZE - len)
1578 		return -ENOMEM;
1579 	if (addr & ~PAGE_MASK)
1580 		return -EINVAL;
1581 
1582 	return arch_rebalance_pgtables(addr, len);
1583 }
1584 
1585 EXPORT_SYMBOL(get_unmapped_area);
1586 
1587 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1588 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1589 {
1590 	struct vm_area_struct *vma = NULL;
1591 
1592 	if (mm) {
1593 		/* Check the cache first. */
1594 		/* (Cache hit rate is typically around 35%.) */
1595 		vma = mm->mmap_cache;
1596 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1597 			struct rb_node * rb_node;
1598 
1599 			rb_node = mm->mm_rb.rb_node;
1600 			vma = NULL;
1601 
1602 			while (rb_node) {
1603 				struct vm_area_struct * vma_tmp;
1604 
1605 				vma_tmp = rb_entry(rb_node,
1606 						struct vm_area_struct, vm_rb);
1607 
1608 				if (vma_tmp->vm_end > addr) {
1609 					vma = vma_tmp;
1610 					if (vma_tmp->vm_start <= addr)
1611 						break;
1612 					rb_node = rb_node->rb_left;
1613 				} else
1614 					rb_node = rb_node->rb_right;
1615 			}
1616 			if (vma)
1617 				mm->mmap_cache = vma;
1618 		}
1619 	}
1620 	return vma;
1621 }
1622 
1623 EXPORT_SYMBOL(find_vma);
1624 
1625 /*
1626  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1627  */
1628 struct vm_area_struct *
1629 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1630 			struct vm_area_struct **pprev)
1631 {
1632 	struct vm_area_struct *vma;
1633 
1634 	vma = find_vma(mm, addr);
1635 	if (vma) {
1636 		*pprev = vma->vm_prev;
1637 	} else {
1638 		struct rb_node *rb_node = mm->mm_rb.rb_node;
1639 		*pprev = NULL;
1640 		while (rb_node) {
1641 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1642 			rb_node = rb_node->rb_right;
1643 		}
1644 	}
1645 	return vma;
1646 }
1647 
1648 /*
1649  * Verify that the stack growth is acceptable and
1650  * update accounting. This is shared with both the
1651  * grow-up and grow-down cases.
1652  */
1653 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1654 {
1655 	struct mm_struct *mm = vma->vm_mm;
1656 	struct rlimit *rlim = current->signal->rlim;
1657 	unsigned long new_start;
1658 
1659 	/* address space limit tests */
1660 	if (!may_expand_vm(mm, grow))
1661 		return -ENOMEM;
1662 
1663 	/* Stack limit test */
1664 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1665 		return -ENOMEM;
1666 
1667 	/* mlock limit tests */
1668 	if (vma->vm_flags & VM_LOCKED) {
1669 		unsigned long locked;
1670 		unsigned long limit;
1671 		locked = mm->locked_vm + grow;
1672 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1673 		limit >>= PAGE_SHIFT;
1674 		if (locked > limit && !capable(CAP_IPC_LOCK))
1675 			return -ENOMEM;
1676 	}
1677 
1678 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1679 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1680 			vma->vm_end - size;
1681 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1682 		return -EFAULT;
1683 
1684 	/*
1685 	 * Overcommit..  This must be the final test, as it will
1686 	 * update security statistics.
1687 	 */
1688 	if (security_vm_enough_memory_mm(mm, grow))
1689 		return -ENOMEM;
1690 
1691 	/* Ok, everything looks good - let it rip */
1692 	mm->total_vm += grow;
1693 	if (vma->vm_flags & VM_LOCKED)
1694 		mm->locked_vm += grow;
1695 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1696 	return 0;
1697 }
1698 
1699 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1700 /*
1701  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1702  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1703  */
1704 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1705 {
1706 	int error;
1707 
1708 	if (!(vma->vm_flags & VM_GROWSUP))
1709 		return -EFAULT;
1710 
1711 	/*
1712 	 * We must make sure the anon_vma is allocated
1713 	 * so that the anon_vma locking is not a noop.
1714 	 */
1715 	if (unlikely(anon_vma_prepare(vma)))
1716 		return -ENOMEM;
1717 	vma_lock_anon_vma(vma);
1718 
1719 	/*
1720 	 * vma->vm_start/vm_end cannot change under us because the caller
1721 	 * is required to hold the mmap_sem in read mode.  We need the
1722 	 * anon_vma lock to serialize against concurrent expand_stacks.
1723 	 * Also guard against wrapping around to address 0.
1724 	 */
1725 	if (address < PAGE_ALIGN(address+4))
1726 		address = PAGE_ALIGN(address+4);
1727 	else {
1728 		vma_unlock_anon_vma(vma);
1729 		return -ENOMEM;
1730 	}
1731 	error = 0;
1732 
1733 	/* Somebody else might have raced and expanded it already */
1734 	if (address > vma->vm_end) {
1735 		unsigned long size, grow;
1736 
1737 		size = address - vma->vm_start;
1738 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1739 
1740 		error = -ENOMEM;
1741 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1742 			error = acct_stack_growth(vma, size, grow);
1743 			if (!error) {
1744 				vma->vm_end = address;
1745 				perf_event_mmap(vma);
1746 			}
1747 		}
1748 	}
1749 	vma_unlock_anon_vma(vma);
1750 	khugepaged_enter_vma_merge(vma);
1751 	return error;
1752 }
1753 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1754 
1755 /*
1756  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1757  */
1758 int expand_downwards(struct vm_area_struct *vma,
1759 				   unsigned long address)
1760 {
1761 	int error;
1762 
1763 	/*
1764 	 * We must make sure the anon_vma is allocated
1765 	 * so that the anon_vma locking is not a noop.
1766 	 */
1767 	if (unlikely(anon_vma_prepare(vma)))
1768 		return -ENOMEM;
1769 
1770 	address &= PAGE_MASK;
1771 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1772 	if (error)
1773 		return error;
1774 
1775 	vma_lock_anon_vma(vma);
1776 
1777 	/*
1778 	 * vma->vm_start/vm_end cannot change under us because the caller
1779 	 * is required to hold the mmap_sem in read mode.  We need the
1780 	 * anon_vma lock to serialize against concurrent expand_stacks.
1781 	 */
1782 
1783 	/* Somebody else might have raced and expanded it already */
1784 	if (address < vma->vm_start) {
1785 		unsigned long size, grow;
1786 
1787 		size = vma->vm_end - address;
1788 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1789 
1790 		error = -ENOMEM;
1791 		if (grow <= vma->vm_pgoff) {
1792 			error = acct_stack_growth(vma, size, grow);
1793 			if (!error) {
1794 				vma->vm_start = address;
1795 				vma->vm_pgoff -= grow;
1796 				perf_event_mmap(vma);
1797 			}
1798 		}
1799 	}
1800 	vma_unlock_anon_vma(vma);
1801 	khugepaged_enter_vma_merge(vma);
1802 	return error;
1803 }
1804 
1805 #ifdef CONFIG_STACK_GROWSUP
1806 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1807 {
1808 	return expand_upwards(vma, address);
1809 }
1810 
1811 struct vm_area_struct *
1812 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1813 {
1814 	struct vm_area_struct *vma, *prev;
1815 
1816 	addr &= PAGE_MASK;
1817 	vma = find_vma_prev(mm, addr, &prev);
1818 	if (vma && (vma->vm_start <= addr))
1819 		return vma;
1820 	if (!prev || expand_stack(prev, addr))
1821 		return NULL;
1822 	if (prev->vm_flags & VM_LOCKED) {
1823 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1824 	}
1825 	return prev;
1826 }
1827 #else
1828 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1829 {
1830 	return expand_downwards(vma, address);
1831 }
1832 
1833 struct vm_area_struct *
1834 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1835 {
1836 	struct vm_area_struct * vma;
1837 	unsigned long start;
1838 
1839 	addr &= PAGE_MASK;
1840 	vma = find_vma(mm,addr);
1841 	if (!vma)
1842 		return NULL;
1843 	if (vma->vm_start <= addr)
1844 		return vma;
1845 	if (!(vma->vm_flags & VM_GROWSDOWN))
1846 		return NULL;
1847 	start = vma->vm_start;
1848 	if (expand_stack(vma, addr))
1849 		return NULL;
1850 	if (vma->vm_flags & VM_LOCKED) {
1851 		mlock_vma_pages_range(vma, addr, start);
1852 	}
1853 	return vma;
1854 }
1855 #endif
1856 
1857 /*
1858  * Ok - we have the memory areas we should free on the vma list,
1859  * so release them, and do the vma updates.
1860  *
1861  * Called with the mm semaphore held.
1862  */
1863 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1864 {
1865 	/* Update high watermark before we lower total_vm */
1866 	update_hiwater_vm(mm);
1867 	do {
1868 		long nrpages = vma_pages(vma);
1869 
1870 		mm->total_vm -= nrpages;
1871 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1872 		vma = remove_vma(vma);
1873 	} while (vma);
1874 	validate_mm(mm);
1875 }
1876 
1877 /*
1878  * Get rid of page table information in the indicated region.
1879  *
1880  * Called with the mm semaphore held.
1881  */
1882 static void unmap_region(struct mm_struct *mm,
1883 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1884 		unsigned long start, unsigned long end)
1885 {
1886 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1887 	struct mmu_gather tlb;
1888 	unsigned long nr_accounted = 0;
1889 
1890 	lru_add_drain();
1891 	tlb_gather_mmu(&tlb, mm, 0);
1892 	update_hiwater_rss(mm);
1893 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1894 	vm_unacct_memory(nr_accounted);
1895 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1896 				 next ? next->vm_start : 0);
1897 	tlb_finish_mmu(&tlb, start, end);
1898 }
1899 
1900 /*
1901  * Create a list of vma's touched by the unmap, removing them from the mm's
1902  * vma list as we go..
1903  */
1904 static void
1905 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1906 	struct vm_area_struct *prev, unsigned long end)
1907 {
1908 	struct vm_area_struct **insertion_point;
1909 	struct vm_area_struct *tail_vma = NULL;
1910 	unsigned long addr;
1911 
1912 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1913 	vma->vm_prev = NULL;
1914 	do {
1915 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1916 		mm->map_count--;
1917 		tail_vma = vma;
1918 		vma = vma->vm_next;
1919 	} while (vma && vma->vm_start < end);
1920 	*insertion_point = vma;
1921 	if (vma)
1922 		vma->vm_prev = prev;
1923 	tail_vma->vm_next = NULL;
1924 	if (mm->unmap_area == arch_unmap_area)
1925 		addr = prev ? prev->vm_end : mm->mmap_base;
1926 	else
1927 		addr = vma ?  vma->vm_start : mm->mmap_base;
1928 	mm->unmap_area(mm, addr);
1929 	mm->mmap_cache = NULL;		/* Kill the cache. */
1930 }
1931 
1932 /*
1933  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1934  * munmap path where it doesn't make sense to fail.
1935  */
1936 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1937 	      unsigned long addr, int new_below)
1938 {
1939 	struct mempolicy *pol;
1940 	struct vm_area_struct *new;
1941 	int err = -ENOMEM;
1942 
1943 	if (is_vm_hugetlb_page(vma) && (addr &
1944 					~(huge_page_mask(hstate_vma(vma)))))
1945 		return -EINVAL;
1946 
1947 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1948 	if (!new)
1949 		goto out_err;
1950 
1951 	/* most fields are the same, copy all, and then fixup */
1952 	*new = *vma;
1953 
1954 	INIT_LIST_HEAD(&new->anon_vma_chain);
1955 
1956 	if (new_below)
1957 		new->vm_end = addr;
1958 	else {
1959 		new->vm_start = addr;
1960 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1961 	}
1962 
1963 	pol = mpol_dup(vma_policy(vma));
1964 	if (IS_ERR(pol)) {
1965 		err = PTR_ERR(pol);
1966 		goto out_free_vma;
1967 	}
1968 	vma_set_policy(new, pol);
1969 
1970 	if (anon_vma_clone(new, vma))
1971 		goto out_free_mpol;
1972 
1973 	if (new->vm_file) {
1974 		get_file(new->vm_file);
1975 		if (vma->vm_flags & VM_EXECUTABLE)
1976 			added_exe_file_vma(mm);
1977 	}
1978 
1979 	if (new->vm_ops && new->vm_ops->open)
1980 		new->vm_ops->open(new);
1981 
1982 	if (new_below)
1983 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1984 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1985 	else
1986 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1987 
1988 	/* Success. */
1989 	if (!err)
1990 		return 0;
1991 
1992 	/* Clean everything up if vma_adjust failed. */
1993 	if (new->vm_ops && new->vm_ops->close)
1994 		new->vm_ops->close(new);
1995 	if (new->vm_file) {
1996 		if (vma->vm_flags & VM_EXECUTABLE)
1997 			removed_exe_file_vma(mm);
1998 		fput(new->vm_file);
1999 	}
2000 	unlink_anon_vmas(new);
2001  out_free_mpol:
2002 	mpol_put(pol);
2003  out_free_vma:
2004 	kmem_cache_free(vm_area_cachep, new);
2005  out_err:
2006 	return err;
2007 }
2008 
2009 /*
2010  * Split a vma into two pieces at address 'addr', a new vma is allocated
2011  * either for the first part or the tail.
2012  */
2013 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2014 	      unsigned long addr, int new_below)
2015 {
2016 	if (mm->map_count >= sysctl_max_map_count)
2017 		return -ENOMEM;
2018 
2019 	return __split_vma(mm, vma, addr, new_below);
2020 }
2021 
2022 /* Munmap is split into 2 main parts -- this part which finds
2023  * what needs doing, and the areas themselves, which do the
2024  * work.  This now handles partial unmappings.
2025  * Jeremy Fitzhardinge <jeremy@goop.org>
2026  */
2027 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2028 {
2029 	unsigned long end;
2030 	struct vm_area_struct *vma, *prev, *last;
2031 
2032 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2033 		return -EINVAL;
2034 
2035 	if ((len = PAGE_ALIGN(len)) == 0)
2036 		return -EINVAL;
2037 
2038 	/* Find the first overlapping VMA */
2039 	vma = find_vma(mm, start);
2040 	if (!vma)
2041 		return 0;
2042 	prev = vma->vm_prev;
2043 	/* we have  start < vma->vm_end  */
2044 
2045 	/* if it doesn't overlap, we have nothing.. */
2046 	end = start + len;
2047 	if (vma->vm_start >= end)
2048 		return 0;
2049 
2050 	/*
2051 	 * If we need to split any vma, do it now to save pain later.
2052 	 *
2053 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2054 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2055 	 * places tmp vma above, and higher split_vma places tmp vma below.
2056 	 */
2057 	if (start > vma->vm_start) {
2058 		int error;
2059 
2060 		/*
2061 		 * Make sure that map_count on return from munmap() will
2062 		 * not exceed its limit; but let map_count go just above
2063 		 * its limit temporarily, to help free resources as expected.
2064 		 */
2065 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2066 			return -ENOMEM;
2067 
2068 		error = __split_vma(mm, vma, start, 0);
2069 		if (error)
2070 			return error;
2071 		prev = vma;
2072 	}
2073 
2074 	/* Does it split the last one? */
2075 	last = find_vma(mm, end);
2076 	if (last && end > last->vm_start) {
2077 		int error = __split_vma(mm, last, end, 1);
2078 		if (error)
2079 			return error;
2080 	}
2081 	vma = prev? prev->vm_next: mm->mmap;
2082 
2083 	/*
2084 	 * unlock any mlock()ed ranges before detaching vmas
2085 	 */
2086 	if (mm->locked_vm) {
2087 		struct vm_area_struct *tmp = vma;
2088 		while (tmp && tmp->vm_start < end) {
2089 			if (tmp->vm_flags & VM_LOCKED) {
2090 				mm->locked_vm -= vma_pages(tmp);
2091 				munlock_vma_pages_all(tmp);
2092 			}
2093 			tmp = tmp->vm_next;
2094 		}
2095 	}
2096 
2097 	/*
2098 	 * Remove the vma's, and unmap the actual pages
2099 	 */
2100 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2101 	unmap_region(mm, vma, prev, start, end);
2102 
2103 	/* Fix up all other VM information */
2104 	remove_vma_list(mm, vma);
2105 
2106 	return 0;
2107 }
2108 
2109 EXPORT_SYMBOL(do_munmap);
2110 
2111 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2112 {
2113 	int ret;
2114 	struct mm_struct *mm = current->mm;
2115 
2116 	profile_munmap(addr);
2117 
2118 	down_write(&mm->mmap_sem);
2119 	ret = do_munmap(mm, addr, len);
2120 	up_write(&mm->mmap_sem);
2121 	return ret;
2122 }
2123 
2124 static inline void verify_mm_writelocked(struct mm_struct *mm)
2125 {
2126 #ifdef CONFIG_DEBUG_VM
2127 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2128 		WARN_ON(1);
2129 		up_read(&mm->mmap_sem);
2130 	}
2131 #endif
2132 }
2133 
2134 /*
2135  *  this is really a simplified "do_mmap".  it only handles
2136  *  anonymous maps.  eventually we may be able to do some
2137  *  brk-specific accounting here.
2138  */
2139 unsigned long do_brk(unsigned long addr, unsigned long len)
2140 {
2141 	struct mm_struct * mm = current->mm;
2142 	struct vm_area_struct * vma, * prev;
2143 	unsigned long flags;
2144 	struct rb_node ** rb_link, * rb_parent;
2145 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2146 	int error;
2147 
2148 	len = PAGE_ALIGN(len);
2149 	if (!len)
2150 		return addr;
2151 
2152 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2153 	if (error)
2154 		return error;
2155 
2156 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2157 
2158 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2159 	if (error & ~PAGE_MASK)
2160 		return error;
2161 
2162 	/*
2163 	 * mlock MCL_FUTURE?
2164 	 */
2165 	if (mm->def_flags & VM_LOCKED) {
2166 		unsigned long locked, lock_limit;
2167 		locked = len >> PAGE_SHIFT;
2168 		locked += mm->locked_vm;
2169 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2170 		lock_limit >>= PAGE_SHIFT;
2171 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2172 			return -EAGAIN;
2173 	}
2174 
2175 	/*
2176 	 * mm->mmap_sem is required to protect against another thread
2177 	 * changing the mappings in case we sleep.
2178 	 */
2179 	verify_mm_writelocked(mm);
2180 
2181 	/*
2182 	 * Clear old maps.  this also does some error checking for us
2183 	 */
2184  munmap_back:
2185 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2186 	if (vma && vma->vm_start < addr + len) {
2187 		if (do_munmap(mm, addr, len))
2188 			return -ENOMEM;
2189 		goto munmap_back;
2190 	}
2191 
2192 	/* Check against address space limits *after* clearing old maps... */
2193 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2194 		return -ENOMEM;
2195 
2196 	if (mm->map_count > sysctl_max_map_count)
2197 		return -ENOMEM;
2198 
2199 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2200 		return -ENOMEM;
2201 
2202 	/* Can we just expand an old private anonymous mapping? */
2203 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2204 					NULL, NULL, pgoff, NULL);
2205 	if (vma)
2206 		goto out;
2207 
2208 	/*
2209 	 * create a vma struct for an anonymous mapping
2210 	 */
2211 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2212 	if (!vma) {
2213 		vm_unacct_memory(len >> PAGE_SHIFT);
2214 		return -ENOMEM;
2215 	}
2216 
2217 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2218 	vma->vm_mm = mm;
2219 	vma->vm_start = addr;
2220 	vma->vm_end = addr + len;
2221 	vma->vm_pgoff = pgoff;
2222 	vma->vm_flags = flags;
2223 	vma->vm_page_prot = vm_get_page_prot(flags);
2224 	vma_link(mm, vma, prev, rb_link, rb_parent);
2225 out:
2226 	perf_event_mmap(vma);
2227 	mm->total_vm += len >> PAGE_SHIFT;
2228 	if (flags & VM_LOCKED) {
2229 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2230 			mm->locked_vm += (len >> PAGE_SHIFT);
2231 	}
2232 	return addr;
2233 }
2234 
2235 EXPORT_SYMBOL(do_brk);
2236 
2237 /* Release all mmaps. */
2238 void exit_mmap(struct mm_struct *mm)
2239 {
2240 	struct mmu_gather tlb;
2241 	struct vm_area_struct *vma;
2242 	unsigned long nr_accounted = 0;
2243 
2244 	/* mm's last user has gone, and its about to be pulled down */
2245 	mmu_notifier_release(mm);
2246 
2247 	if (mm->locked_vm) {
2248 		vma = mm->mmap;
2249 		while (vma) {
2250 			if (vma->vm_flags & VM_LOCKED)
2251 				munlock_vma_pages_all(vma);
2252 			vma = vma->vm_next;
2253 		}
2254 	}
2255 
2256 	arch_exit_mmap(mm);
2257 
2258 	vma = mm->mmap;
2259 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2260 		return;
2261 
2262 	lru_add_drain();
2263 	flush_cache_mm(mm);
2264 	tlb_gather_mmu(&tlb, mm, 1);
2265 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2266 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2267 	unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2268 	vm_unacct_memory(nr_accounted);
2269 
2270 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2271 	tlb_finish_mmu(&tlb, 0, -1);
2272 
2273 	/*
2274 	 * Walk the list again, actually closing and freeing it,
2275 	 * with preemption enabled, without holding any MM locks.
2276 	 */
2277 	while (vma)
2278 		vma = remove_vma(vma);
2279 
2280 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2281 }
2282 
2283 /* Insert vm structure into process list sorted by address
2284  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2285  * then i_mmap_mutex is taken here.
2286  */
2287 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2288 {
2289 	struct vm_area_struct * __vma, * prev;
2290 	struct rb_node ** rb_link, * rb_parent;
2291 
2292 	/*
2293 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2294 	 * until its first write fault, when page's anon_vma and index
2295 	 * are set.  But now set the vm_pgoff it will almost certainly
2296 	 * end up with (unless mremap moves it elsewhere before that
2297 	 * first wfault), so /proc/pid/maps tells a consistent story.
2298 	 *
2299 	 * By setting it to reflect the virtual start address of the
2300 	 * vma, merges and splits can happen in a seamless way, just
2301 	 * using the existing file pgoff checks and manipulations.
2302 	 * Similarly in do_mmap_pgoff and in do_brk.
2303 	 */
2304 	if (!vma->vm_file) {
2305 		BUG_ON(vma->anon_vma);
2306 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2307 	}
2308 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2309 	if (__vma && __vma->vm_start < vma->vm_end)
2310 		return -ENOMEM;
2311 	if ((vma->vm_flags & VM_ACCOUNT) &&
2312 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2313 		return -ENOMEM;
2314 	vma_link(mm, vma, prev, rb_link, rb_parent);
2315 	return 0;
2316 }
2317 
2318 /*
2319  * Copy the vma structure to a new location in the same mm,
2320  * prior to moving page table entries, to effect an mremap move.
2321  */
2322 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2323 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2324 {
2325 	struct vm_area_struct *vma = *vmap;
2326 	unsigned long vma_start = vma->vm_start;
2327 	struct mm_struct *mm = vma->vm_mm;
2328 	struct vm_area_struct *new_vma, *prev;
2329 	struct rb_node **rb_link, *rb_parent;
2330 	struct mempolicy *pol;
2331 	bool faulted_in_anon_vma = true;
2332 
2333 	/*
2334 	 * If anonymous vma has not yet been faulted, update new pgoff
2335 	 * to match new location, to increase its chance of merging.
2336 	 */
2337 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2338 		pgoff = addr >> PAGE_SHIFT;
2339 		faulted_in_anon_vma = false;
2340 	}
2341 
2342 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2343 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2344 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2345 	if (new_vma) {
2346 		/*
2347 		 * Source vma may have been merged into new_vma
2348 		 */
2349 		if (unlikely(vma_start >= new_vma->vm_start &&
2350 			     vma_start < new_vma->vm_end)) {
2351 			/*
2352 			 * The only way we can get a vma_merge with
2353 			 * self during an mremap is if the vma hasn't
2354 			 * been faulted in yet and we were allowed to
2355 			 * reset the dst vma->vm_pgoff to the
2356 			 * destination address of the mremap to allow
2357 			 * the merge to happen. mremap must change the
2358 			 * vm_pgoff linearity between src and dst vmas
2359 			 * (in turn preventing a vma_merge) to be
2360 			 * safe. It is only safe to keep the vm_pgoff
2361 			 * linear if there are no pages mapped yet.
2362 			 */
2363 			VM_BUG_ON(faulted_in_anon_vma);
2364 			*vmap = new_vma;
2365 		} else
2366 			anon_vma_moveto_tail(new_vma);
2367 	} else {
2368 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2369 		if (new_vma) {
2370 			*new_vma = *vma;
2371 			pol = mpol_dup(vma_policy(vma));
2372 			if (IS_ERR(pol))
2373 				goto out_free_vma;
2374 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2375 			if (anon_vma_clone(new_vma, vma))
2376 				goto out_free_mempol;
2377 			vma_set_policy(new_vma, pol);
2378 			new_vma->vm_start = addr;
2379 			new_vma->vm_end = addr + len;
2380 			new_vma->vm_pgoff = pgoff;
2381 			if (new_vma->vm_file) {
2382 				get_file(new_vma->vm_file);
2383 				if (vma->vm_flags & VM_EXECUTABLE)
2384 					added_exe_file_vma(mm);
2385 			}
2386 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2387 				new_vma->vm_ops->open(new_vma);
2388 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2389 		}
2390 	}
2391 	return new_vma;
2392 
2393  out_free_mempol:
2394 	mpol_put(pol);
2395  out_free_vma:
2396 	kmem_cache_free(vm_area_cachep, new_vma);
2397 	return NULL;
2398 }
2399 
2400 /*
2401  * Return true if the calling process may expand its vm space by the passed
2402  * number of pages
2403  */
2404 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2405 {
2406 	unsigned long cur = mm->total_vm;	/* pages */
2407 	unsigned long lim;
2408 
2409 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2410 
2411 	if (cur + npages > lim)
2412 		return 0;
2413 	return 1;
2414 }
2415 
2416 
2417 static int special_mapping_fault(struct vm_area_struct *vma,
2418 				struct vm_fault *vmf)
2419 {
2420 	pgoff_t pgoff;
2421 	struct page **pages;
2422 
2423 	/*
2424 	 * special mappings have no vm_file, and in that case, the mm
2425 	 * uses vm_pgoff internally. So we have to subtract it from here.
2426 	 * We are allowed to do this because we are the mm; do not copy
2427 	 * this code into drivers!
2428 	 */
2429 	pgoff = vmf->pgoff - vma->vm_pgoff;
2430 
2431 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2432 		pgoff--;
2433 
2434 	if (*pages) {
2435 		struct page *page = *pages;
2436 		get_page(page);
2437 		vmf->page = page;
2438 		return 0;
2439 	}
2440 
2441 	return VM_FAULT_SIGBUS;
2442 }
2443 
2444 /*
2445  * Having a close hook prevents vma merging regardless of flags.
2446  */
2447 static void special_mapping_close(struct vm_area_struct *vma)
2448 {
2449 }
2450 
2451 static const struct vm_operations_struct special_mapping_vmops = {
2452 	.close = special_mapping_close,
2453 	.fault = special_mapping_fault,
2454 };
2455 
2456 /*
2457  * Called with mm->mmap_sem held for writing.
2458  * Insert a new vma covering the given region, with the given flags.
2459  * Its pages are supplied by the given array of struct page *.
2460  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2461  * The region past the last page supplied will always produce SIGBUS.
2462  * The array pointer and the pages it points to are assumed to stay alive
2463  * for as long as this mapping might exist.
2464  */
2465 int install_special_mapping(struct mm_struct *mm,
2466 			    unsigned long addr, unsigned long len,
2467 			    unsigned long vm_flags, struct page **pages)
2468 {
2469 	int ret;
2470 	struct vm_area_struct *vma;
2471 
2472 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2473 	if (unlikely(vma == NULL))
2474 		return -ENOMEM;
2475 
2476 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2477 	vma->vm_mm = mm;
2478 	vma->vm_start = addr;
2479 	vma->vm_end = addr + len;
2480 
2481 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2482 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2483 
2484 	vma->vm_ops = &special_mapping_vmops;
2485 	vma->vm_private_data = pages;
2486 
2487 	ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2488 	if (ret)
2489 		goto out;
2490 
2491 	ret = insert_vm_struct(mm, vma);
2492 	if (ret)
2493 		goto out;
2494 
2495 	mm->total_vm += len >> PAGE_SHIFT;
2496 
2497 	perf_event_mmap(vma);
2498 
2499 	return 0;
2500 
2501 out:
2502 	kmem_cache_free(vm_area_cachep, vma);
2503 	return ret;
2504 }
2505 
2506 static DEFINE_MUTEX(mm_all_locks_mutex);
2507 
2508 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2509 {
2510 	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2511 		/*
2512 		 * The LSB of head.next can't change from under us
2513 		 * because we hold the mm_all_locks_mutex.
2514 		 */
2515 		mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2516 		/*
2517 		 * We can safely modify head.next after taking the
2518 		 * anon_vma->root->mutex. If some other vma in this mm shares
2519 		 * the same anon_vma we won't take it again.
2520 		 *
2521 		 * No need of atomic instructions here, head.next
2522 		 * can't change from under us thanks to the
2523 		 * anon_vma->root->mutex.
2524 		 */
2525 		if (__test_and_set_bit(0, (unsigned long *)
2526 				       &anon_vma->root->head.next))
2527 			BUG();
2528 	}
2529 }
2530 
2531 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2532 {
2533 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2534 		/*
2535 		 * AS_MM_ALL_LOCKS can't change from under us because
2536 		 * we hold the mm_all_locks_mutex.
2537 		 *
2538 		 * Operations on ->flags have to be atomic because
2539 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2540 		 * mm_all_locks_mutex, there may be other cpus
2541 		 * changing other bitflags in parallel to us.
2542 		 */
2543 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2544 			BUG();
2545 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2546 	}
2547 }
2548 
2549 /*
2550  * This operation locks against the VM for all pte/vma/mm related
2551  * operations that could ever happen on a certain mm. This includes
2552  * vmtruncate, try_to_unmap, and all page faults.
2553  *
2554  * The caller must take the mmap_sem in write mode before calling
2555  * mm_take_all_locks(). The caller isn't allowed to release the
2556  * mmap_sem until mm_drop_all_locks() returns.
2557  *
2558  * mmap_sem in write mode is required in order to block all operations
2559  * that could modify pagetables and free pages without need of
2560  * altering the vma layout (for example populate_range() with
2561  * nonlinear vmas). It's also needed in write mode to avoid new
2562  * anon_vmas to be associated with existing vmas.
2563  *
2564  * A single task can't take more than one mm_take_all_locks() in a row
2565  * or it would deadlock.
2566  *
2567  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2568  * mapping->flags avoid to take the same lock twice, if more than one
2569  * vma in this mm is backed by the same anon_vma or address_space.
2570  *
2571  * We can take all the locks in random order because the VM code
2572  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2573  * takes more than one of them in a row. Secondly we're protected
2574  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2575  *
2576  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2577  * that may have to take thousand of locks.
2578  *
2579  * mm_take_all_locks() can fail if it's interrupted by signals.
2580  */
2581 int mm_take_all_locks(struct mm_struct *mm)
2582 {
2583 	struct vm_area_struct *vma;
2584 	struct anon_vma_chain *avc;
2585 
2586 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2587 
2588 	mutex_lock(&mm_all_locks_mutex);
2589 
2590 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2591 		if (signal_pending(current))
2592 			goto out_unlock;
2593 		if (vma->vm_file && vma->vm_file->f_mapping)
2594 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2595 	}
2596 
2597 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2598 		if (signal_pending(current))
2599 			goto out_unlock;
2600 		if (vma->anon_vma)
2601 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2602 				vm_lock_anon_vma(mm, avc->anon_vma);
2603 	}
2604 
2605 	return 0;
2606 
2607 out_unlock:
2608 	mm_drop_all_locks(mm);
2609 	return -EINTR;
2610 }
2611 
2612 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2613 {
2614 	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2615 		/*
2616 		 * The LSB of head.next can't change to 0 from under
2617 		 * us because we hold the mm_all_locks_mutex.
2618 		 *
2619 		 * We must however clear the bitflag before unlocking
2620 		 * the vma so the users using the anon_vma->head will
2621 		 * never see our bitflag.
2622 		 *
2623 		 * No need of atomic instructions here, head.next
2624 		 * can't change from under us until we release the
2625 		 * anon_vma->root->mutex.
2626 		 */
2627 		if (!__test_and_clear_bit(0, (unsigned long *)
2628 					  &anon_vma->root->head.next))
2629 			BUG();
2630 		anon_vma_unlock(anon_vma);
2631 	}
2632 }
2633 
2634 static void vm_unlock_mapping(struct address_space *mapping)
2635 {
2636 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2637 		/*
2638 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2639 		 * because we hold the mm_all_locks_mutex.
2640 		 */
2641 		mutex_unlock(&mapping->i_mmap_mutex);
2642 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2643 					&mapping->flags))
2644 			BUG();
2645 	}
2646 }
2647 
2648 /*
2649  * The mmap_sem cannot be released by the caller until
2650  * mm_drop_all_locks() returns.
2651  */
2652 void mm_drop_all_locks(struct mm_struct *mm)
2653 {
2654 	struct vm_area_struct *vma;
2655 	struct anon_vma_chain *avc;
2656 
2657 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2658 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2659 
2660 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2661 		if (vma->anon_vma)
2662 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2663 				vm_unlock_anon_vma(avc->anon_vma);
2664 		if (vma->vm_file && vma->vm_file->f_mapping)
2665 			vm_unlock_mapping(vma->vm_file->f_mapping);
2666 	}
2667 
2668 	mutex_unlock(&mm_all_locks_mutex);
2669 }
2670 
2671 /*
2672  * initialise the VMA slab
2673  */
2674 void __init mmap_init(void)
2675 {
2676 	int ret;
2677 
2678 	ret = percpu_counter_init(&vm_committed_as, 0);
2679 	VM_BUG_ON(ret);
2680 }
2681