xref: /openbmc/linux/mm/mmap.c (revision 9b133f8d)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38 
39 #include "internal.h"
40 
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)	(0)
43 #endif
44 
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)		(addr)
47 #endif
48 
49 static void unmap_region(struct mm_struct *mm,
50 		struct vm_area_struct *vma, struct vm_area_struct *prev,
51 		unsigned long start, unsigned long end);
52 
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58 
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type	prot
64  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
65  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
66  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
67  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
68  *
69  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
70  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
71  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78 
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 	return __pgprot(pgprot_val(protection_map[vm_flags &
82 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86 
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 /*
91  * Make sure vm_committed_as in one cacheline and not cacheline shared with
92  * other variables. It can be updated by several CPUs frequently.
93  */
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95 
96 /*
97  * Check that a process has enough memory to allocate a new virtual
98  * mapping. 0 means there is enough memory for the allocation to
99  * succeed and -ENOMEM implies there is not.
100  *
101  * We currently support three overcommit policies, which are set via the
102  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
103  *
104  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105  * Additional code 2002 Jul 20 by Robert Love.
106  *
107  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108  *
109  * Note this is a helper function intended to be used by LSMs which
110  * wish to use this logic.
111  */
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113 {
114 	unsigned long free, allowed;
115 
116 	vm_acct_memory(pages);
117 
118 	/*
119 	 * Sometimes we want to use more memory than we have
120 	 */
121 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122 		return 0;
123 
124 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125 		free = global_page_state(NR_FREE_PAGES);
126 		free += global_page_state(NR_FILE_PAGES);
127 
128 		/*
129 		 * shmem pages shouldn't be counted as free in this
130 		 * case, they can't be purged, only swapped out, and
131 		 * that won't affect the overall amount of available
132 		 * memory in the system.
133 		 */
134 		free -= global_page_state(NR_SHMEM);
135 
136 		free += nr_swap_pages;
137 
138 		/*
139 		 * Any slabs which are created with the
140 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141 		 * which are reclaimable, under pressure.  The dentry
142 		 * cache and most inode caches should fall into this
143 		 */
144 		free += global_page_state(NR_SLAB_RECLAIMABLE);
145 
146 		/*
147 		 * Leave reserved pages. The pages are not for anonymous pages.
148 		 */
149 		if (free <= totalreserve_pages)
150 			goto error;
151 		else
152 			free -= totalreserve_pages;
153 
154 		/*
155 		 * Leave the last 3% for root
156 		 */
157 		if (!cap_sys_admin)
158 			free -= free / 32;
159 
160 		if (free > pages)
161 			return 0;
162 
163 		goto error;
164 	}
165 
166 	allowed = (totalram_pages - hugetlb_total_pages())
167 	       	* sysctl_overcommit_ratio / 100;
168 	/*
169 	 * Leave the last 3% for root
170 	 */
171 	if (!cap_sys_admin)
172 		allowed -= allowed / 32;
173 	allowed += total_swap_pages;
174 
175 	/* Don't let a single process grow too big:
176 	   leave 3% of the size of this process for other processes */
177 	if (mm)
178 		allowed -= mm->total_vm / 32;
179 
180 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
181 		return 0;
182 error:
183 	vm_unacct_memory(pages);
184 
185 	return -ENOMEM;
186 }
187 
188 /*
189  * Requires inode->i_mapping->i_mmap_mutex
190  */
191 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
192 		struct file *file, struct address_space *mapping)
193 {
194 	if (vma->vm_flags & VM_DENYWRITE)
195 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
196 	if (vma->vm_flags & VM_SHARED)
197 		mapping->i_mmap_writable--;
198 
199 	flush_dcache_mmap_lock(mapping);
200 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
201 		list_del_init(&vma->shared.vm_set.list);
202 	else
203 		vma_prio_tree_remove(vma, &mapping->i_mmap);
204 	flush_dcache_mmap_unlock(mapping);
205 }
206 
207 /*
208  * Unlink a file-based vm structure from its prio_tree, to hide
209  * vma from rmap and vmtruncate before freeing its page tables.
210  */
211 void unlink_file_vma(struct vm_area_struct *vma)
212 {
213 	struct file *file = vma->vm_file;
214 
215 	if (file) {
216 		struct address_space *mapping = file->f_mapping;
217 		mutex_lock(&mapping->i_mmap_mutex);
218 		__remove_shared_vm_struct(vma, file, mapping);
219 		mutex_unlock(&mapping->i_mmap_mutex);
220 	}
221 }
222 
223 /*
224  * Close a vm structure and free it, returning the next.
225  */
226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
227 {
228 	struct vm_area_struct *next = vma->vm_next;
229 
230 	might_sleep();
231 	if (vma->vm_ops && vma->vm_ops->close)
232 		vma->vm_ops->close(vma);
233 	if (vma->vm_file) {
234 		fput(vma->vm_file);
235 		if (vma->vm_flags & VM_EXECUTABLE)
236 			removed_exe_file_vma(vma->vm_mm);
237 	}
238 	mpol_put(vma_policy(vma));
239 	kmem_cache_free(vm_area_cachep, vma);
240 	return next;
241 }
242 
243 SYSCALL_DEFINE1(brk, unsigned long, brk)
244 {
245 	unsigned long rlim, retval;
246 	unsigned long newbrk, oldbrk;
247 	struct mm_struct *mm = current->mm;
248 	unsigned long min_brk;
249 
250 	down_write(&mm->mmap_sem);
251 
252 #ifdef CONFIG_COMPAT_BRK
253 	/*
254 	 * CONFIG_COMPAT_BRK can still be overridden by setting
255 	 * randomize_va_space to 2, which will still cause mm->start_brk
256 	 * to be arbitrarily shifted
257 	 */
258 	if (current->brk_randomized)
259 		min_brk = mm->start_brk;
260 	else
261 		min_brk = mm->end_data;
262 #else
263 	min_brk = mm->start_brk;
264 #endif
265 	if (brk < min_brk)
266 		goto out;
267 
268 	/*
269 	 * Check against rlimit here. If this check is done later after the test
270 	 * of oldbrk with newbrk then it can escape the test and let the data
271 	 * segment grow beyond its set limit the in case where the limit is
272 	 * not page aligned -Ram Gupta
273 	 */
274 	rlim = rlimit(RLIMIT_DATA);
275 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276 			(mm->end_data - mm->start_data) > rlim)
277 		goto out;
278 
279 	newbrk = PAGE_ALIGN(brk);
280 	oldbrk = PAGE_ALIGN(mm->brk);
281 	if (oldbrk == newbrk)
282 		goto set_brk;
283 
284 	/* Always allow shrinking brk. */
285 	if (brk <= mm->brk) {
286 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287 			goto set_brk;
288 		goto out;
289 	}
290 
291 	/* Check against existing mmap mappings. */
292 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293 		goto out;
294 
295 	/* Ok, looks good - let it rip. */
296 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297 		goto out;
298 set_brk:
299 	mm->brk = brk;
300 out:
301 	retval = mm->brk;
302 	up_write(&mm->mmap_sem);
303 	return retval;
304 }
305 
306 #ifdef DEBUG_MM_RB
307 static int browse_rb(struct rb_root *root)
308 {
309 	int i = 0, j;
310 	struct rb_node *nd, *pn = NULL;
311 	unsigned long prev = 0, pend = 0;
312 
313 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314 		struct vm_area_struct *vma;
315 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316 		if (vma->vm_start < prev)
317 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318 		if (vma->vm_start < pend)
319 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320 		if (vma->vm_start > vma->vm_end)
321 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322 		i++;
323 		pn = nd;
324 		prev = vma->vm_start;
325 		pend = vma->vm_end;
326 	}
327 	j = 0;
328 	for (nd = pn; nd; nd = rb_prev(nd)) {
329 		j++;
330 	}
331 	if (i != j)
332 		printk("backwards %d, forwards %d\n", j, i), i = 0;
333 	return i;
334 }
335 
336 void validate_mm(struct mm_struct *mm)
337 {
338 	int bug = 0;
339 	int i = 0;
340 	struct vm_area_struct *tmp = mm->mmap;
341 	while (tmp) {
342 		tmp = tmp->vm_next;
343 		i++;
344 	}
345 	if (i != mm->map_count)
346 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347 	i = browse_rb(&mm->mm_rb);
348 	if (i != mm->map_count)
349 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350 	BUG_ON(bug);
351 }
352 #else
353 #define validate_mm(mm) do { } while (0)
354 #endif
355 
356 static struct vm_area_struct *
357 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
358 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
359 		struct rb_node ** rb_parent)
360 {
361 	struct vm_area_struct * vma;
362 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
363 
364 	__rb_link = &mm->mm_rb.rb_node;
365 	rb_prev = __rb_parent = NULL;
366 	vma = NULL;
367 
368 	while (*__rb_link) {
369 		struct vm_area_struct *vma_tmp;
370 
371 		__rb_parent = *__rb_link;
372 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
373 
374 		if (vma_tmp->vm_end > addr) {
375 			vma = vma_tmp;
376 			if (vma_tmp->vm_start <= addr)
377 				break;
378 			__rb_link = &__rb_parent->rb_left;
379 		} else {
380 			rb_prev = __rb_parent;
381 			__rb_link = &__rb_parent->rb_right;
382 		}
383 	}
384 
385 	*pprev = NULL;
386 	if (rb_prev)
387 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
388 	*rb_link = __rb_link;
389 	*rb_parent = __rb_parent;
390 	return vma;
391 }
392 
393 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
394 		struct rb_node **rb_link, struct rb_node *rb_parent)
395 {
396 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
397 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
398 }
399 
400 static void __vma_link_file(struct vm_area_struct *vma)
401 {
402 	struct file *file;
403 
404 	file = vma->vm_file;
405 	if (file) {
406 		struct address_space *mapping = file->f_mapping;
407 
408 		if (vma->vm_flags & VM_DENYWRITE)
409 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
410 		if (vma->vm_flags & VM_SHARED)
411 			mapping->i_mmap_writable++;
412 
413 		flush_dcache_mmap_lock(mapping);
414 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
415 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
416 		else
417 			vma_prio_tree_insert(vma, &mapping->i_mmap);
418 		flush_dcache_mmap_unlock(mapping);
419 	}
420 }
421 
422 static void
423 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
424 	struct vm_area_struct *prev, struct rb_node **rb_link,
425 	struct rb_node *rb_parent)
426 {
427 	__vma_link_list(mm, vma, prev, rb_parent);
428 	__vma_link_rb(mm, vma, rb_link, rb_parent);
429 }
430 
431 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432 			struct vm_area_struct *prev, struct rb_node **rb_link,
433 			struct rb_node *rb_parent)
434 {
435 	struct address_space *mapping = NULL;
436 
437 	if (vma->vm_file)
438 		mapping = vma->vm_file->f_mapping;
439 
440 	if (mapping)
441 		mutex_lock(&mapping->i_mmap_mutex);
442 
443 	__vma_link(mm, vma, prev, rb_link, rb_parent);
444 	__vma_link_file(vma);
445 
446 	if (mapping)
447 		mutex_unlock(&mapping->i_mmap_mutex);
448 
449 	mm->map_count++;
450 	validate_mm(mm);
451 }
452 
453 /*
454  * Helper for vma_adjust in the split_vma insert case:
455  * insert vm structure into list and rbtree and anon_vma,
456  * but it has already been inserted into prio_tree earlier.
457  */
458 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
459 {
460 	struct vm_area_struct *__vma, *prev;
461 	struct rb_node **rb_link, *rb_parent;
462 
463 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
464 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
465 	__vma_link(mm, vma, prev, rb_link, rb_parent);
466 	mm->map_count++;
467 }
468 
469 static inline void
470 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
471 		struct vm_area_struct *prev)
472 {
473 	struct vm_area_struct *next = vma->vm_next;
474 
475 	prev->vm_next = next;
476 	if (next)
477 		next->vm_prev = prev;
478 	rb_erase(&vma->vm_rb, &mm->mm_rb);
479 	if (mm->mmap_cache == vma)
480 		mm->mmap_cache = prev;
481 }
482 
483 /*
484  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
485  * is already present in an i_mmap tree without adjusting the tree.
486  * The following helper function should be used when such adjustments
487  * are necessary.  The "insert" vma (if any) is to be inserted
488  * before we drop the necessary locks.
489  */
490 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
491 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
492 {
493 	struct mm_struct *mm = vma->vm_mm;
494 	struct vm_area_struct *next = vma->vm_next;
495 	struct vm_area_struct *importer = NULL;
496 	struct address_space *mapping = NULL;
497 	struct prio_tree_root *root = NULL;
498 	struct anon_vma *anon_vma = NULL;
499 	struct file *file = vma->vm_file;
500 	long adjust_next = 0;
501 	int remove_next = 0;
502 
503 	if (next && !insert) {
504 		struct vm_area_struct *exporter = NULL;
505 
506 		if (end >= next->vm_end) {
507 			/*
508 			 * vma expands, overlapping all the next, and
509 			 * perhaps the one after too (mprotect case 6).
510 			 */
511 again:			remove_next = 1 + (end > next->vm_end);
512 			end = next->vm_end;
513 			exporter = next;
514 			importer = vma;
515 		} else if (end > next->vm_start) {
516 			/*
517 			 * vma expands, overlapping part of the next:
518 			 * mprotect case 5 shifting the boundary up.
519 			 */
520 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
521 			exporter = next;
522 			importer = vma;
523 		} else if (end < vma->vm_end) {
524 			/*
525 			 * vma shrinks, and !insert tells it's not
526 			 * split_vma inserting another: so it must be
527 			 * mprotect case 4 shifting the boundary down.
528 			 */
529 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
530 			exporter = vma;
531 			importer = next;
532 		}
533 
534 		/*
535 		 * Easily overlooked: when mprotect shifts the boundary,
536 		 * make sure the expanding vma has anon_vma set if the
537 		 * shrinking vma had, to cover any anon pages imported.
538 		 */
539 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
540 			if (anon_vma_clone(importer, exporter))
541 				return -ENOMEM;
542 			importer->anon_vma = exporter->anon_vma;
543 		}
544 	}
545 
546 	if (file) {
547 		mapping = file->f_mapping;
548 		if (!(vma->vm_flags & VM_NONLINEAR))
549 			root = &mapping->i_mmap;
550 		mutex_lock(&mapping->i_mmap_mutex);
551 		if (insert) {
552 			/*
553 			 * Put into prio_tree now, so instantiated pages
554 			 * are visible to arm/parisc __flush_dcache_page
555 			 * throughout; but we cannot insert into address
556 			 * space until vma start or end is updated.
557 			 */
558 			__vma_link_file(insert);
559 		}
560 	}
561 
562 	vma_adjust_trans_huge(vma, start, end, adjust_next);
563 
564 	/*
565 	 * When changing only vma->vm_end, we don't really need anon_vma
566 	 * lock. This is a fairly rare case by itself, but the anon_vma
567 	 * lock may be shared between many sibling processes.  Skipping
568 	 * the lock for brk adjustments makes a difference sometimes.
569 	 */
570 	if (vma->anon_vma && (importer || start != vma->vm_start)) {
571 		anon_vma = vma->anon_vma;
572 		anon_vma_lock(anon_vma);
573 	}
574 
575 	if (root) {
576 		flush_dcache_mmap_lock(mapping);
577 		vma_prio_tree_remove(vma, root);
578 		if (adjust_next)
579 			vma_prio_tree_remove(next, root);
580 	}
581 
582 	vma->vm_start = start;
583 	vma->vm_end = end;
584 	vma->vm_pgoff = pgoff;
585 	if (adjust_next) {
586 		next->vm_start += adjust_next << PAGE_SHIFT;
587 		next->vm_pgoff += adjust_next;
588 	}
589 
590 	if (root) {
591 		if (adjust_next)
592 			vma_prio_tree_insert(next, root);
593 		vma_prio_tree_insert(vma, root);
594 		flush_dcache_mmap_unlock(mapping);
595 	}
596 
597 	if (remove_next) {
598 		/*
599 		 * vma_merge has merged next into vma, and needs
600 		 * us to remove next before dropping the locks.
601 		 */
602 		__vma_unlink(mm, next, vma);
603 		if (file)
604 			__remove_shared_vm_struct(next, file, mapping);
605 	} else if (insert) {
606 		/*
607 		 * split_vma has split insert from vma, and needs
608 		 * us to insert it before dropping the locks
609 		 * (it may either follow vma or precede it).
610 		 */
611 		__insert_vm_struct(mm, insert);
612 	}
613 
614 	if (anon_vma)
615 		anon_vma_unlock(anon_vma);
616 	if (mapping)
617 		mutex_unlock(&mapping->i_mmap_mutex);
618 
619 	if (remove_next) {
620 		if (file) {
621 			fput(file);
622 			if (next->vm_flags & VM_EXECUTABLE)
623 				removed_exe_file_vma(mm);
624 		}
625 		if (next->anon_vma)
626 			anon_vma_merge(vma, next);
627 		mm->map_count--;
628 		mpol_put(vma_policy(next));
629 		kmem_cache_free(vm_area_cachep, next);
630 		/*
631 		 * In mprotect's case 6 (see comments on vma_merge),
632 		 * we must remove another next too. It would clutter
633 		 * up the code too much to do both in one go.
634 		 */
635 		if (remove_next == 2) {
636 			next = vma->vm_next;
637 			goto again;
638 		}
639 	}
640 
641 	validate_mm(mm);
642 
643 	return 0;
644 }
645 
646 /*
647  * If the vma has a ->close operation then the driver probably needs to release
648  * per-vma resources, so we don't attempt to merge those.
649  */
650 static inline int is_mergeable_vma(struct vm_area_struct *vma,
651 			struct file *file, unsigned long vm_flags)
652 {
653 	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
654 	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
655 		return 0;
656 	if (vma->vm_file != file)
657 		return 0;
658 	if (vma->vm_ops && vma->vm_ops->close)
659 		return 0;
660 	return 1;
661 }
662 
663 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
664 					struct anon_vma *anon_vma2,
665 					struct vm_area_struct *vma)
666 {
667 	/*
668 	 * The list_is_singular() test is to avoid merging VMA cloned from
669 	 * parents. This can improve scalability caused by anon_vma lock.
670 	 */
671 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
672 		list_is_singular(&vma->anon_vma_chain)))
673 		return 1;
674 	return anon_vma1 == anon_vma2;
675 }
676 
677 /*
678  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
679  * in front of (at a lower virtual address and file offset than) the vma.
680  *
681  * We cannot merge two vmas if they have differently assigned (non-NULL)
682  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
683  *
684  * We don't check here for the merged mmap wrapping around the end of pagecache
685  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
686  * wrap, nor mmaps which cover the final page at index -1UL.
687  */
688 static int
689 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
690 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
691 {
692 	if (is_mergeable_vma(vma, file, vm_flags) &&
693 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
694 		if (vma->vm_pgoff == vm_pgoff)
695 			return 1;
696 	}
697 	return 0;
698 }
699 
700 /*
701  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
702  * beyond (at a higher virtual address and file offset than) the vma.
703  *
704  * We cannot merge two vmas if they have differently assigned (non-NULL)
705  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
706  */
707 static int
708 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
709 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
710 {
711 	if (is_mergeable_vma(vma, file, vm_flags) &&
712 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
713 		pgoff_t vm_pglen;
714 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
715 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
716 			return 1;
717 	}
718 	return 0;
719 }
720 
721 /*
722  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
723  * whether that can be merged with its predecessor or its successor.
724  * Or both (it neatly fills a hole).
725  *
726  * In most cases - when called for mmap, brk or mremap - [addr,end) is
727  * certain not to be mapped by the time vma_merge is called; but when
728  * called for mprotect, it is certain to be already mapped (either at
729  * an offset within prev, or at the start of next), and the flags of
730  * this area are about to be changed to vm_flags - and the no-change
731  * case has already been eliminated.
732  *
733  * The following mprotect cases have to be considered, where AAAA is
734  * the area passed down from mprotect_fixup, never extending beyond one
735  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
736  *
737  *     AAAA             AAAA                AAAA          AAAA
738  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
739  *    cannot merge    might become    might become    might become
740  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
741  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
742  *    mremap move:                                    PPPPNNNNNNNN 8
743  *        AAAA
744  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
745  *    might become    case 1 below    case 2 below    case 3 below
746  *
747  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
748  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
749  */
750 struct vm_area_struct *vma_merge(struct mm_struct *mm,
751 			struct vm_area_struct *prev, unsigned long addr,
752 			unsigned long end, unsigned long vm_flags,
753 		     	struct anon_vma *anon_vma, struct file *file,
754 			pgoff_t pgoff, struct mempolicy *policy)
755 {
756 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
757 	struct vm_area_struct *area, *next;
758 	int err;
759 
760 	/*
761 	 * We later require that vma->vm_flags == vm_flags,
762 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
763 	 */
764 	if (vm_flags & VM_SPECIAL)
765 		return NULL;
766 
767 	if (prev)
768 		next = prev->vm_next;
769 	else
770 		next = mm->mmap;
771 	area = next;
772 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
773 		next = next->vm_next;
774 
775 	/*
776 	 * Can it merge with the predecessor?
777 	 */
778 	if (prev && prev->vm_end == addr &&
779   			mpol_equal(vma_policy(prev), policy) &&
780 			can_vma_merge_after(prev, vm_flags,
781 						anon_vma, file, pgoff)) {
782 		/*
783 		 * OK, it can.  Can we now merge in the successor as well?
784 		 */
785 		if (next && end == next->vm_start &&
786 				mpol_equal(policy, vma_policy(next)) &&
787 				can_vma_merge_before(next, vm_flags,
788 					anon_vma, file, pgoff+pglen) &&
789 				is_mergeable_anon_vma(prev->anon_vma,
790 						      next->anon_vma, NULL)) {
791 							/* cases 1, 6 */
792 			err = vma_adjust(prev, prev->vm_start,
793 				next->vm_end, prev->vm_pgoff, NULL);
794 		} else					/* cases 2, 5, 7 */
795 			err = vma_adjust(prev, prev->vm_start,
796 				end, prev->vm_pgoff, NULL);
797 		if (err)
798 			return NULL;
799 		khugepaged_enter_vma_merge(prev);
800 		return prev;
801 	}
802 
803 	/*
804 	 * Can this new request be merged in front of next?
805 	 */
806 	if (next && end == next->vm_start &&
807  			mpol_equal(policy, vma_policy(next)) &&
808 			can_vma_merge_before(next, vm_flags,
809 					anon_vma, file, pgoff+pglen)) {
810 		if (prev && addr < prev->vm_end)	/* case 4 */
811 			err = vma_adjust(prev, prev->vm_start,
812 				addr, prev->vm_pgoff, NULL);
813 		else					/* cases 3, 8 */
814 			err = vma_adjust(area, addr, next->vm_end,
815 				next->vm_pgoff - pglen, NULL);
816 		if (err)
817 			return NULL;
818 		khugepaged_enter_vma_merge(area);
819 		return area;
820 	}
821 
822 	return NULL;
823 }
824 
825 /*
826  * Rough compatbility check to quickly see if it's even worth looking
827  * at sharing an anon_vma.
828  *
829  * They need to have the same vm_file, and the flags can only differ
830  * in things that mprotect may change.
831  *
832  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
833  * we can merge the two vma's. For example, we refuse to merge a vma if
834  * there is a vm_ops->close() function, because that indicates that the
835  * driver is doing some kind of reference counting. But that doesn't
836  * really matter for the anon_vma sharing case.
837  */
838 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
839 {
840 	return a->vm_end == b->vm_start &&
841 		mpol_equal(vma_policy(a), vma_policy(b)) &&
842 		a->vm_file == b->vm_file &&
843 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
844 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
845 }
846 
847 /*
848  * Do some basic sanity checking to see if we can re-use the anon_vma
849  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
850  * the same as 'old', the other will be the new one that is trying
851  * to share the anon_vma.
852  *
853  * NOTE! This runs with mm_sem held for reading, so it is possible that
854  * the anon_vma of 'old' is concurrently in the process of being set up
855  * by another page fault trying to merge _that_. But that's ok: if it
856  * is being set up, that automatically means that it will be a singleton
857  * acceptable for merging, so we can do all of this optimistically. But
858  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
859  *
860  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
861  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
862  * is to return an anon_vma that is "complex" due to having gone through
863  * a fork).
864  *
865  * We also make sure that the two vma's are compatible (adjacent,
866  * and with the same memory policies). That's all stable, even with just
867  * a read lock on the mm_sem.
868  */
869 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
870 {
871 	if (anon_vma_compatible(a, b)) {
872 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
873 
874 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
875 			return anon_vma;
876 	}
877 	return NULL;
878 }
879 
880 /*
881  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
882  * neighbouring vmas for a suitable anon_vma, before it goes off
883  * to allocate a new anon_vma.  It checks because a repetitive
884  * sequence of mprotects and faults may otherwise lead to distinct
885  * anon_vmas being allocated, preventing vma merge in subsequent
886  * mprotect.
887  */
888 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
889 {
890 	struct anon_vma *anon_vma;
891 	struct vm_area_struct *near;
892 
893 	near = vma->vm_next;
894 	if (!near)
895 		goto try_prev;
896 
897 	anon_vma = reusable_anon_vma(near, vma, near);
898 	if (anon_vma)
899 		return anon_vma;
900 try_prev:
901 	near = vma->vm_prev;
902 	if (!near)
903 		goto none;
904 
905 	anon_vma = reusable_anon_vma(near, near, vma);
906 	if (anon_vma)
907 		return anon_vma;
908 none:
909 	/*
910 	 * There's no absolute need to look only at touching neighbours:
911 	 * we could search further afield for "compatible" anon_vmas.
912 	 * But it would probably just be a waste of time searching,
913 	 * or lead to too many vmas hanging off the same anon_vma.
914 	 * We're trying to allow mprotect remerging later on,
915 	 * not trying to minimize memory used for anon_vmas.
916 	 */
917 	return NULL;
918 }
919 
920 #ifdef CONFIG_PROC_FS
921 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
922 						struct file *file, long pages)
923 {
924 	const unsigned long stack_flags
925 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
926 
927 	if (file) {
928 		mm->shared_vm += pages;
929 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
930 			mm->exec_vm += pages;
931 	} else if (flags & stack_flags)
932 		mm->stack_vm += pages;
933 	if (flags & (VM_RESERVED|VM_IO))
934 		mm->reserved_vm += pages;
935 }
936 #endif /* CONFIG_PROC_FS */
937 
938 /*
939  * The caller must hold down_write(&current->mm->mmap_sem).
940  */
941 
942 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
943 			unsigned long len, unsigned long prot,
944 			unsigned long flags, unsigned long pgoff)
945 {
946 	struct mm_struct * mm = current->mm;
947 	struct inode *inode;
948 	vm_flags_t vm_flags;
949 	int error;
950 	unsigned long reqprot = prot;
951 
952 	/*
953 	 * Does the application expect PROT_READ to imply PROT_EXEC?
954 	 *
955 	 * (the exception is when the underlying filesystem is noexec
956 	 *  mounted, in which case we dont add PROT_EXEC.)
957 	 */
958 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
959 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
960 			prot |= PROT_EXEC;
961 
962 	if (!len)
963 		return -EINVAL;
964 
965 	if (!(flags & MAP_FIXED))
966 		addr = round_hint_to_min(addr);
967 
968 	/* Careful about overflows.. */
969 	len = PAGE_ALIGN(len);
970 	if (!len)
971 		return -ENOMEM;
972 
973 	/* offset overflow? */
974 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
975                return -EOVERFLOW;
976 
977 	/* Too many mappings? */
978 	if (mm->map_count > sysctl_max_map_count)
979 		return -ENOMEM;
980 
981 	/* Obtain the address to map to. we verify (or select) it and ensure
982 	 * that it represents a valid section of the address space.
983 	 */
984 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
985 	if (addr & ~PAGE_MASK)
986 		return addr;
987 
988 	/* Do simple checking here so the lower-level routines won't have
989 	 * to. we assume access permissions have been handled by the open
990 	 * of the memory object, so we don't do any here.
991 	 */
992 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
993 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
994 
995 	if (flags & MAP_LOCKED)
996 		if (!can_do_mlock())
997 			return -EPERM;
998 
999 	/* mlock MCL_FUTURE? */
1000 	if (vm_flags & VM_LOCKED) {
1001 		unsigned long locked, lock_limit;
1002 		locked = len >> PAGE_SHIFT;
1003 		locked += mm->locked_vm;
1004 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1005 		lock_limit >>= PAGE_SHIFT;
1006 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1007 			return -EAGAIN;
1008 	}
1009 
1010 	inode = file ? file->f_path.dentry->d_inode : NULL;
1011 
1012 	if (file) {
1013 		switch (flags & MAP_TYPE) {
1014 		case MAP_SHARED:
1015 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1016 				return -EACCES;
1017 
1018 			/*
1019 			 * Make sure we don't allow writing to an append-only
1020 			 * file..
1021 			 */
1022 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1023 				return -EACCES;
1024 
1025 			/*
1026 			 * Make sure there are no mandatory locks on the file.
1027 			 */
1028 			if (locks_verify_locked(inode))
1029 				return -EAGAIN;
1030 
1031 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1032 			if (!(file->f_mode & FMODE_WRITE))
1033 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1034 
1035 			/* fall through */
1036 		case MAP_PRIVATE:
1037 			if (!(file->f_mode & FMODE_READ))
1038 				return -EACCES;
1039 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1040 				if (vm_flags & VM_EXEC)
1041 					return -EPERM;
1042 				vm_flags &= ~VM_MAYEXEC;
1043 			}
1044 
1045 			if (!file->f_op || !file->f_op->mmap)
1046 				return -ENODEV;
1047 			break;
1048 
1049 		default:
1050 			return -EINVAL;
1051 		}
1052 	} else {
1053 		switch (flags & MAP_TYPE) {
1054 		case MAP_SHARED:
1055 			/*
1056 			 * Ignore pgoff.
1057 			 */
1058 			pgoff = 0;
1059 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1060 			break;
1061 		case MAP_PRIVATE:
1062 			/*
1063 			 * Set pgoff according to addr for anon_vma.
1064 			 */
1065 			pgoff = addr >> PAGE_SHIFT;
1066 			break;
1067 		default:
1068 			return -EINVAL;
1069 		}
1070 	}
1071 
1072 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1073 	if (error)
1074 		return error;
1075 
1076 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1077 }
1078 EXPORT_SYMBOL(do_mmap_pgoff);
1079 
1080 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1081 		unsigned long, prot, unsigned long, flags,
1082 		unsigned long, fd, unsigned long, pgoff)
1083 {
1084 	struct file *file = NULL;
1085 	unsigned long retval = -EBADF;
1086 
1087 	if (!(flags & MAP_ANONYMOUS)) {
1088 		audit_mmap_fd(fd, flags);
1089 		if (unlikely(flags & MAP_HUGETLB))
1090 			return -EINVAL;
1091 		file = fget(fd);
1092 		if (!file)
1093 			goto out;
1094 	} else if (flags & MAP_HUGETLB) {
1095 		struct user_struct *user = NULL;
1096 		/*
1097 		 * VM_NORESERVE is used because the reservations will be
1098 		 * taken when vm_ops->mmap() is called
1099 		 * A dummy user value is used because we are not locking
1100 		 * memory so no accounting is necessary
1101 		 */
1102 		len = ALIGN(len, huge_page_size(&default_hstate));
1103 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1104 						&user, HUGETLB_ANONHUGE_INODE);
1105 		if (IS_ERR(file))
1106 			return PTR_ERR(file);
1107 	}
1108 
1109 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1110 
1111 	down_write(&current->mm->mmap_sem);
1112 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1113 	up_write(&current->mm->mmap_sem);
1114 
1115 	if (file)
1116 		fput(file);
1117 out:
1118 	return retval;
1119 }
1120 
1121 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1122 struct mmap_arg_struct {
1123 	unsigned long addr;
1124 	unsigned long len;
1125 	unsigned long prot;
1126 	unsigned long flags;
1127 	unsigned long fd;
1128 	unsigned long offset;
1129 };
1130 
1131 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1132 {
1133 	struct mmap_arg_struct a;
1134 
1135 	if (copy_from_user(&a, arg, sizeof(a)))
1136 		return -EFAULT;
1137 	if (a.offset & ~PAGE_MASK)
1138 		return -EINVAL;
1139 
1140 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1141 			      a.offset >> PAGE_SHIFT);
1142 }
1143 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1144 
1145 /*
1146  * Some shared mappigns will want the pages marked read-only
1147  * to track write events. If so, we'll downgrade vm_page_prot
1148  * to the private version (using protection_map[] without the
1149  * VM_SHARED bit).
1150  */
1151 int vma_wants_writenotify(struct vm_area_struct *vma)
1152 {
1153 	vm_flags_t vm_flags = vma->vm_flags;
1154 
1155 	/* If it was private or non-writable, the write bit is already clear */
1156 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1157 		return 0;
1158 
1159 	/* The backer wishes to know when pages are first written to? */
1160 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1161 		return 1;
1162 
1163 	/* The open routine did something to the protections already? */
1164 	if (pgprot_val(vma->vm_page_prot) !=
1165 	    pgprot_val(vm_get_page_prot(vm_flags)))
1166 		return 0;
1167 
1168 	/* Specialty mapping? */
1169 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1170 		return 0;
1171 
1172 	/* Can the mapping track the dirty pages? */
1173 	return vma->vm_file && vma->vm_file->f_mapping &&
1174 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1175 }
1176 
1177 /*
1178  * We account for memory if it's a private writeable mapping,
1179  * not hugepages and VM_NORESERVE wasn't set.
1180  */
1181 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1182 {
1183 	/*
1184 	 * hugetlb has its own accounting separate from the core VM
1185 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1186 	 */
1187 	if (file && is_file_hugepages(file))
1188 		return 0;
1189 
1190 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1191 }
1192 
1193 unsigned long mmap_region(struct file *file, unsigned long addr,
1194 			  unsigned long len, unsigned long flags,
1195 			  vm_flags_t vm_flags, unsigned long pgoff)
1196 {
1197 	struct mm_struct *mm = current->mm;
1198 	struct vm_area_struct *vma, *prev;
1199 	int correct_wcount = 0;
1200 	int error;
1201 	struct rb_node **rb_link, *rb_parent;
1202 	unsigned long charged = 0;
1203 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1204 
1205 	/* Clear old maps */
1206 	error = -ENOMEM;
1207 munmap_back:
1208 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1209 	if (vma && vma->vm_start < addr + len) {
1210 		if (do_munmap(mm, addr, len))
1211 			return -ENOMEM;
1212 		goto munmap_back;
1213 	}
1214 
1215 	/* Check against address space limit. */
1216 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1217 		return -ENOMEM;
1218 
1219 	/*
1220 	 * Set 'VM_NORESERVE' if we should not account for the
1221 	 * memory use of this mapping.
1222 	 */
1223 	if ((flags & MAP_NORESERVE)) {
1224 		/* We honor MAP_NORESERVE if allowed to overcommit */
1225 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1226 			vm_flags |= VM_NORESERVE;
1227 
1228 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1229 		if (file && is_file_hugepages(file))
1230 			vm_flags |= VM_NORESERVE;
1231 	}
1232 
1233 	/*
1234 	 * Private writable mapping: check memory availability
1235 	 */
1236 	if (accountable_mapping(file, vm_flags)) {
1237 		charged = len >> PAGE_SHIFT;
1238 		if (security_vm_enough_memory(charged))
1239 			return -ENOMEM;
1240 		vm_flags |= VM_ACCOUNT;
1241 	}
1242 
1243 	/*
1244 	 * Can we just expand an old mapping?
1245 	 */
1246 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1247 	if (vma)
1248 		goto out;
1249 
1250 	/*
1251 	 * Determine the object being mapped and call the appropriate
1252 	 * specific mapper. the address has already been validated, but
1253 	 * not unmapped, but the maps are removed from the list.
1254 	 */
1255 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1256 	if (!vma) {
1257 		error = -ENOMEM;
1258 		goto unacct_error;
1259 	}
1260 
1261 	vma->vm_mm = mm;
1262 	vma->vm_start = addr;
1263 	vma->vm_end = addr + len;
1264 	vma->vm_flags = vm_flags;
1265 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1266 	vma->vm_pgoff = pgoff;
1267 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1268 
1269 	if (file) {
1270 		error = -EINVAL;
1271 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1272 			goto free_vma;
1273 		if (vm_flags & VM_DENYWRITE) {
1274 			error = deny_write_access(file);
1275 			if (error)
1276 				goto free_vma;
1277 			correct_wcount = 1;
1278 		}
1279 		vma->vm_file = file;
1280 		get_file(file);
1281 		error = file->f_op->mmap(file, vma);
1282 		if (error)
1283 			goto unmap_and_free_vma;
1284 		if (vm_flags & VM_EXECUTABLE)
1285 			added_exe_file_vma(mm);
1286 
1287 		/* Can addr have changed??
1288 		 *
1289 		 * Answer: Yes, several device drivers can do it in their
1290 		 *         f_op->mmap method. -DaveM
1291 		 */
1292 		addr = vma->vm_start;
1293 		pgoff = vma->vm_pgoff;
1294 		vm_flags = vma->vm_flags;
1295 	} else if (vm_flags & VM_SHARED) {
1296 		error = shmem_zero_setup(vma);
1297 		if (error)
1298 			goto free_vma;
1299 	}
1300 
1301 	if (vma_wants_writenotify(vma)) {
1302 		pgprot_t pprot = vma->vm_page_prot;
1303 
1304 		/* Can vma->vm_page_prot have changed??
1305 		 *
1306 		 * Answer: Yes, drivers may have changed it in their
1307 		 *         f_op->mmap method.
1308 		 *
1309 		 * Ensures that vmas marked as uncached stay that way.
1310 		 */
1311 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1312 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1313 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1314 	}
1315 
1316 	vma_link(mm, vma, prev, rb_link, rb_parent);
1317 	file = vma->vm_file;
1318 
1319 	/* Once vma denies write, undo our temporary denial count */
1320 	if (correct_wcount)
1321 		atomic_inc(&inode->i_writecount);
1322 out:
1323 	perf_event_mmap(vma);
1324 
1325 	mm->total_vm += len >> PAGE_SHIFT;
1326 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1327 	if (vm_flags & VM_LOCKED) {
1328 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1329 			mm->locked_vm += (len >> PAGE_SHIFT);
1330 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1331 		make_pages_present(addr, addr + len);
1332 	return addr;
1333 
1334 unmap_and_free_vma:
1335 	if (correct_wcount)
1336 		atomic_inc(&inode->i_writecount);
1337 	vma->vm_file = NULL;
1338 	fput(file);
1339 
1340 	/* Undo any partial mapping done by a device driver. */
1341 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1342 	charged = 0;
1343 free_vma:
1344 	kmem_cache_free(vm_area_cachep, vma);
1345 unacct_error:
1346 	if (charged)
1347 		vm_unacct_memory(charged);
1348 	return error;
1349 }
1350 
1351 /* Get an address range which is currently unmapped.
1352  * For shmat() with addr=0.
1353  *
1354  * Ugly calling convention alert:
1355  * Return value with the low bits set means error value,
1356  * ie
1357  *	if (ret & ~PAGE_MASK)
1358  *		error = ret;
1359  *
1360  * This function "knows" that -ENOMEM has the bits set.
1361  */
1362 #ifndef HAVE_ARCH_UNMAPPED_AREA
1363 unsigned long
1364 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1365 		unsigned long len, unsigned long pgoff, unsigned long flags)
1366 {
1367 	struct mm_struct *mm = current->mm;
1368 	struct vm_area_struct *vma;
1369 	unsigned long start_addr;
1370 
1371 	if (len > TASK_SIZE)
1372 		return -ENOMEM;
1373 
1374 	if (flags & MAP_FIXED)
1375 		return addr;
1376 
1377 	if (addr) {
1378 		addr = PAGE_ALIGN(addr);
1379 		vma = find_vma(mm, addr);
1380 		if (TASK_SIZE - len >= addr &&
1381 		    (!vma || addr + len <= vma->vm_start))
1382 			return addr;
1383 	}
1384 	if (len > mm->cached_hole_size) {
1385 	        start_addr = addr = mm->free_area_cache;
1386 	} else {
1387 	        start_addr = addr = TASK_UNMAPPED_BASE;
1388 	        mm->cached_hole_size = 0;
1389 	}
1390 
1391 full_search:
1392 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1393 		/* At this point:  (!vma || addr < vma->vm_end). */
1394 		if (TASK_SIZE - len < addr) {
1395 			/*
1396 			 * Start a new search - just in case we missed
1397 			 * some holes.
1398 			 */
1399 			if (start_addr != TASK_UNMAPPED_BASE) {
1400 				addr = TASK_UNMAPPED_BASE;
1401 			        start_addr = addr;
1402 				mm->cached_hole_size = 0;
1403 				goto full_search;
1404 			}
1405 			return -ENOMEM;
1406 		}
1407 		if (!vma || addr + len <= vma->vm_start) {
1408 			/*
1409 			 * Remember the place where we stopped the search:
1410 			 */
1411 			mm->free_area_cache = addr + len;
1412 			return addr;
1413 		}
1414 		if (addr + mm->cached_hole_size < vma->vm_start)
1415 		        mm->cached_hole_size = vma->vm_start - addr;
1416 		addr = vma->vm_end;
1417 	}
1418 }
1419 #endif
1420 
1421 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1422 {
1423 	/*
1424 	 * Is this a new hole at the lowest possible address?
1425 	 */
1426 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1427 		mm->free_area_cache = addr;
1428 		mm->cached_hole_size = ~0UL;
1429 	}
1430 }
1431 
1432 /*
1433  * This mmap-allocator allocates new areas top-down from below the
1434  * stack's low limit (the base):
1435  */
1436 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1437 unsigned long
1438 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1439 			  const unsigned long len, const unsigned long pgoff,
1440 			  const unsigned long flags)
1441 {
1442 	struct vm_area_struct *vma;
1443 	struct mm_struct *mm = current->mm;
1444 	unsigned long addr = addr0;
1445 
1446 	/* requested length too big for entire address space */
1447 	if (len > TASK_SIZE)
1448 		return -ENOMEM;
1449 
1450 	if (flags & MAP_FIXED)
1451 		return addr;
1452 
1453 	/* requesting a specific address */
1454 	if (addr) {
1455 		addr = PAGE_ALIGN(addr);
1456 		vma = find_vma(mm, addr);
1457 		if (TASK_SIZE - len >= addr &&
1458 				(!vma || addr + len <= vma->vm_start))
1459 			return addr;
1460 	}
1461 
1462 	/* check if free_area_cache is useful for us */
1463 	if (len <= mm->cached_hole_size) {
1464  	        mm->cached_hole_size = 0;
1465  		mm->free_area_cache = mm->mmap_base;
1466  	}
1467 
1468 	/* either no address requested or can't fit in requested address hole */
1469 	addr = mm->free_area_cache;
1470 
1471 	/* make sure it can fit in the remaining address space */
1472 	if (addr > len) {
1473 		vma = find_vma(mm, addr-len);
1474 		if (!vma || addr <= vma->vm_start)
1475 			/* remember the address as a hint for next time */
1476 			return (mm->free_area_cache = addr-len);
1477 	}
1478 
1479 	if (mm->mmap_base < len)
1480 		goto bottomup;
1481 
1482 	addr = mm->mmap_base-len;
1483 
1484 	do {
1485 		/*
1486 		 * Lookup failure means no vma is above this address,
1487 		 * else if new region fits below vma->vm_start,
1488 		 * return with success:
1489 		 */
1490 		vma = find_vma(mm, addr);
1491 		if (!vma || addr+len <= vma->vm_start)
1492 			/* remember the address as a hint for next time */
1493 			return (mm->free_area_cache = addr);
1494 
1495  		/* remember the largest hole we saw so far */
1496  		if (addr + mm->cached_hole_size < vma->vm_start)
1497  		        mm->cached_hole_size = vma->vm_start - addr;
1498 
1499 		/* try just below the current vma->vm_start */
1500 		addr = vma->vm_start-len;
1501 	} while (len < vma->vm_start);
1502 
1503 bottomup:
1504 	/*
1505 	 * A failed mmap() very likely causes application failure,
1506 	 * so fall back to the bottom-up function here. This scenario
1507 	 * can happen with large stack limits and large mmap()
1508 	 * allocations.
1509 	 */
1510 	mm->cached_hole_size = ~0UL;
1511   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1512 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1513 	/*
1514 	 * Restore the topdown base:
1515 	 */
1516 	mm->free_area_cache = mm->mmap_base;
1517 	mm->cached_hole_size = ~0UL;
1518 
1519 	return addr;
1520 }
1521 #endif
1522 
1523 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1524 {
1525 	/*
1526 	 * Is this a new hole at the highest possible address?
1527 	 */
1528 	if (addr > mm->free_area_cache)
1529 		mm->free_area_cache = addr;
1530 
1531 	/* dont allow allocations above current base */
1532 	if (mm->free_area_cache > mm->mmap_base)
1533 		mm->free_area_cache = mm->mmap_base;
1534 }
1535 
1536 unsigned long
1537 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1538 		unsigned long pgoff, unsigned long flags)
1539 {
1540 	unsigned long (*get_area)(struct file *, unsigned long,
1541 				  unsigned long, unsigned long, unsigned long);
1542 
1543 	unsigned long error = arch_mmap_check(addr, len, flags);
1544 	if (error)
1545 		return error;
1546 
1547 	/* Careful about overflows.. */
1548 	if (len > TASK_SIZE)
1549 		return -ENOMEM;
1550 
1551 	get_area = current->mm->get_unmapped_area;
1552 	if (file && file->f_op && file->f_op->get_unmapped_area)
1553 		get_area = file->f_op->get_unmapped_area;
1554 	addr = get_area(file, addr, len, pgoff, flags);
1555 	if (IS_ERR_VALUE(addr))
1556 		return addr;
1557 
1558 	if (addr > TASK_SIZE - len)
1559 		return -ENOMEM;
1560 	if (addr & ~PAGE_MASK)
1561 		return -EINVAL;
1562 
1563 	return arch_rebalance_pgtables(addr, len);
1564 }
1565 
1566 EXPORT_SYMBOL(get_unmapped_area);
1567 
1568 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1569 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1570 {
1571 	struct vm_area_struct *vma = NULL;
1572 
1573 	if (mm) {
1574 		/* Check the cache first. */
1575 		/* (Cache hit rate is typically around 35%.) */
1576 		vma = mm->mmap_cache;
1577 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1578 			struct rb_node * rb_node;
1579 
1580 			rb_node = mm->mm_rb.rb_node;
1581 			vma = NULL;
1582 
1583 			while (rb_node) {
1584 				struct vm_area_struct * vma_tmp;
1585 
1586 				vma_tmp = rb_entry(rb_node,
1587 						struct vm_area_struct, vm_rb);
1588 
1589 				if (vma_tmp->vm_end > addr) {
1590 					vma = vma_tmp;
1591 					if (vma_tmp->vm_start <= addr)
1592 						break;
1593 					rb_node = rb_node->rb_left;
1594 				} else
1595 					rb_node = rb_node->rb_right;
1596 			}
1597 			if (vma)
1598 				mm->mmap_cache = vma;
1599 		}
1600 	}
1601 	return vma;
1602 }
1603 
1604 EXPORT_SYMBOL(find_vma);
1605 
1606 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1607 struct vm_area_struct *
1608 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1609 			struct vm_area_struct **pprev)
1610 {
1611 	struct vm_area_struct *vma = NULL, *prev = NULL;
1612 	struct rb_node *rb_node;
1613 	if (!mm)
1614 		goto out;
1615 
1616 	/* Guard against addr being lower than the first VMA */
1617 	vma = mm->mmap;
1618 
1619 	/* Go through the RB tree quickly. */
1620 	rb_node = mm->mm_rb.rb_node;
1621 
1622 	while (rb_node) {
1623 		struct vm_area_struct *vma_tmp;
1624 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1625 
1626 		if (addr < vma_tmp->vm_end) {
1627 			rb_node = rb_node->rb_left;
1628 		} else {
1629 			prev = vma_tmp;
1630 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1631 				break;
1632 			rb_node = rb_node->rb_right;
1633 		}
1634 	}
1635 
1636 out:
1637 	*pprev = prev;
1638 	return prev ? prev->vm_next : vma;
1639 }
1640 
1641 /*
1642  * Verify that the stack growth is acceptable and
1643  * update accounting. This is shared with both the
1644  * grow-up and grow-down cases.
1645  */
1646 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1647 {
1648 	struct mm_struct *mm = vma->vm_mm;
1649 	struct rlimit *rlim = current->signal->rlim;
1650 	unsigned long new_start;
1651 
1652 	/* address space limit tests */
1653 	if (!may_expand_vm(mm, grow))
1654 		return -ENOMEM;
1655 
1656 	/* Stack limit test */
1657 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1658 		return -ENOMEM;
1659 
1660 	/* mlock limit tests */
1661 	if (vma->vm_flags & VM_LOCKED) {
1662 		unsigned long locked;
1663 		unsigned long limit;
1664 		locked = mm->locked_vm + grow;
1665 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1666 		limit >>= PAGE_SHIFT;
1667 		if (locked > limit && !capable(CAP_IPC_LOCK))
1668 			return -ENOMEM;
1669 	}
1670 
1671 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1672 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1673 			vma->vm_end - size;
1674 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1675 		return -EFAULT;
1676 
1677 	/*
1678 	 * Overcommit..  This must be the final test, as it will
1679 	 * update security statistics.
1680 	 */
1681 	if (security_vm_enough_memory_mm(mm, grow))
1682 		return -ENOMEM;
1683 
1684 	/* Ok, everything looks good - let it rip */
1685 	mm->total_vm += grow;
1686 	if (vma->vm_flags & VM_LOCKED)
1687 		mm->locked_vm += grow;
1688 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1689 	return 0;
1690 }
1691 
1692 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1693 /*
1694  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1695  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1696  */
1697 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1698 {
1699 	int error;
1700 
1701 	if (!(vma->vm_flags & VM_GROWSUP))
1702 		return -EFAULT;
1703 
1704 	/*
1705 	 * We must make sure the anon_vma is allocated
1706 	 * so that the anon_vma locking is not a noop.
1707 	 */
1708 	if (unlikely(anon_vma_prepare(vma)))
1709 		return -ENOMEM;
1710 	vma_lock_anon_vma(vma);
1711 
1712 	/*
1713 	 * vma->vm_start/vm_end cannot change under us because the caller
1714 	 * is required to hold the mmap_sem in read mode.  We need the
1715 	 * anon_vma lock to serialize against concurrent expand_stacks.
1716 	 * Also guard against wrapping around to address 0.
1717 	 */
1718 	if (address < PAGE_ALIGN(address+4))
1719 		address = PAGE_ALIGN(address+4);
1720 	else {
1721 		vma_unlock_anon_vma(vma);
1722 		return -ENOMEM;
1723 	}
1724 	error = 0;
1725 
1726 	/* Somebody else might have raced and expanded it already */
1727 	if (address > vma->vm_end) {
1728 		unsigned long size, grow;
1729 
1730 		size = address - vma->vm_start;
1731 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1732 
1733 		error = -ENOMEM;
1734 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1735 			error = acct_stack_growth(vma, size, grow);
1736 			if (!error) {
1737 				vma->vm_end = address;
1738 				perf_event_mmap(vma);
1739 			}
1740 		}
1741 	}
1742 	vma_unlock_anon_vma(vma);
1743 	khugepaged_enter_vma_merge(vma);
1744 	return error;
1745 }
1746 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1747 
1748 /*
1749  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1750  */
1751 int expand_downwards(struct vm_area_struct *vma,
1752 				   unsigned long address)
1753 {
1754 	int error;
1755 
1756 	/*
1757 	 * We must make sure the anon_vma is allocated
1758 	 * so that the anon_vma locking is not a noop.
1759 	 */
1760 	if (unlikely(anon_vma_prepare(vma)))
1761 		return -ENOMEM;
1762 
1763 	address &= PAGE_MASK;
1764 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1765 	if (error)
1766 		return error;
1767 
1768 	vma_lock_anon_vma(vma);
1769 
1770 	/*
1771 	 * vma->vm_start/vm_end cannot change under us because the caller
1772 	 * is required to hold the mmap_sem in read mode.  We need the
1773 	 * anon_vma lock to serialize against concurrent expand_stacks.
1774 	 */
1775 
1776 	/* Somebody else might have raced and expanded it already */
1777 	if (address < vma->vm_start) {
1778 		unsigned long size, grow;
1779 
1780 		size = vma->vm_end - address;
1781 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1782 
1783 		error = -ENOMEM;
1784 		if (grow <= vma->vm_pgoff) {
1785 			error = acct_stack_growth(vma, size, grow);
1786 			if (!error) {
1787 				vma->vm_start = address;
1788 				vma->vm_pgoff -= grow;
1789 				perf_event_mmap(vma);
1790 			}
1791 		}
1792 	}
1793 	vma_unlock_anon_vma(vma);
1794 	khugepaged_enter_vma_merge(vma);
1795 	return error;
1796 }
1797 
1798 #ifdef CONFIG_STACK_GROWSUP
1799 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1800 {
1801 	return expand_upwards(vma, address);
1802 }
1803 
1804 struct vm_area_struct *
1805 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1806 {
1807 	struct vm_area_struct *vma, *prev;
1808 
1809 	addr &= PAGE_MASK;
1810 	vma = find_vma_prev(mm, addr, &prev);
1811 	if (vma && (vma->vm_start <= addr))
1812 		return vma;
1813 	if (!prev || expand_stack(prev, addr))
1814 		return NULL;
1815 	if (prev->vm_flags & VM_LOCKED) {
1816 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1817 	}
1818 	return prev;
1819 }
1820 #else
1821 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1822 {
1823 	return expand_downwards(vma, address);
1824 }
1825 
1826 struct vm_area_struct *
1827 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1828 {
1829 	struct vm_area_struct * vma;
1830 	unsigned long start;
1831 
1832 	addr &= PAGE_MASK;
1833 	vma = find_vma(mm,addr);
1834 	if (!vma)
1835 		return NULL;
1836 	if (vma->vm_start <= addr)
1837 		return vma;
1838 	if (!(vma->vm_flags & VM_GROWSDOWN))
1839 		return NULL;
1840 	start = vma->vm_start;
1841 	if (expand_stack(vma, addr))
1842 		return NULL;
1843 	if (vma->vm_flags & VM_LOCKED) {
1844 		mlock_vma_pages_range(vma, addr, start);
1845 	}
1846 	return vma;
1847 }
1848 #endif
1849 
1850 /*
1851  * Ok - we have the memory areas we should free on the vma list,
1852  * so release them, and do the vma updates.
1853  *
1854  * Called with the mm semaphore held.
1855  */
1856 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1857 {
1858 	/* Update high watermark before we lower total_vm */
1859 	update_hiwater_vm(mm);
1860 	do {
1861 		long nrpages = vma_pages(vma);
1862 
1863 		mm->total_vm -= nrpages;
1864 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1865 		vma = remove_vma(vma);
1866 	} while (vma);
1867 	validate_mm(mm);
1868 }
1869 
1870 /*
1871  * Get rid of page table information in the indicated region.
1872  *
1873  * Called with the mm semaphore held.
1874  */
1875 static void unmap_region(struct mm_struct *mm,
1876 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1877 		unsigned long start, unsigned long end)
1878 {
1879 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1880 	struct mmu_gather tlb;
1881 	unsigned long nr_accounted = 0;
1882 
1883 	lru_add_drain();
1884 	tlb_gather_mmu(&tlb, mm, 0);
1885 	update_hiwater_rss(mm);
1886 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1887 	vm_unacct_memory(nr_accounted);
1888 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1889 				 next ? next->vm_start : 0);
1890 	tlb_finish_mmu(&tlb, start, end);
1891 }
1892 
1893 /*
1894  * Create a list of vma's touched by the unmap, removing them from the mm's
1895  * vma list as we go..
1896  */
1897 static void
1898 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1899 	struct vm_area_struct *prev, unsigned long end)
1900 {
1901 	struct vm_area_struct **insertion_point;
1902 	struct vm_area_struct *tail_vma = NULL;
1903 	unsigned long addr;
1904 
1905 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1906 	vma->vm_prev = NULL;
1907 	do {
1908 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1909 		mm->map_count--;
1910 		tail_vma = vma;
1911 		vma = vma->vm_next;
1912 	} while (vma && vma->vm_start < end);
1913 	*insertion_point = vma;
1914 	if (vma)
1915 		vma->vm_prev = prev;
1916 	tail_vma->vm_next = NULL;
1917 	if (mm->unmap_area == arch_unmap_area)
1918 		addr = prev ? prev->vm_end : mm->mmap_base;
1919 	else
1920 		addr = vma ?  vma->vm_start : mm->mmap_base;
1921 	mm->unmap_area(mm, addr);
1922 	mm->mmap_cache = NULL;		/* Kill the cache. */
1923 }
1924 
1925 /*
1926  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1927  * munmap path where it doesn't make sense to fail.
1928  */
1929 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1930 	      unsigned long addr, int new_below)
1931 {
1932 	struct mempolicy *pol;
1933 	struct vm_area_struct *new;
1934 	int err = -ENOMEM;
1935 
1936 	if (is_vm_hugetlb_page(vma) && (addr &
1937 					~(huge_page_mask(hstate_vma(vma)))))
1938 		return -EINVAL;
1939 
1940 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1941 	if (!new)
1942 		goto out_err;
1943 
1944 	/* most fields are the same, copy all, and then fixup */
1945 	*new = *vma;
1946 
1947 	INIT_LIST_HEAD(&new->anon_vma_chain);
1948 
1949 	if (new_below)
1950 		new->vm_end = addr;
1951 	else {
1952 		new->vm_start = addr;
1953 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1954 	}
1955 
1956 	pol = mpol_dup(vma_policy(vma));
1957 	if (IS_ERR(pol)) {
1958 		err = PTR_ERR(pol);
1959 		goto out_free_vma;
1960 	}
1961 	vma_set_policy(new, pol);
1962 
1963 	if (anon_vma_clone(new, vma))
1964 		goto out_free_mpol;
1965 
1966 	if (new->vm_file) {
1967 		get_file(new->vm_file);
1968 		if (vma->vm_flags & VM_EXECUTABLE)
1969 			added_exe_file_vma(mm);
1970 	}
1971 
1972 	if (new->vm_ops && new->vm_ops->open)
1973 		new->vm_ops->open(new);
1974 
1975 	if (new_below)
1976 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1977 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1978 	else
1979 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1980 
1981 	/* Success. */
1982 	if (!err)
1983 		return 0;
1984 
1985 	/* Clean everything up if vma_adjust failed. */
1986 	if (new->vm_ops && new->vm_ops->close)
1987 		new->vm_ops->close(new);
1988 	if (new->vm_file) {
1989 		if (vma->vm_flags & VM_EXECUTABLE)
1990 			removed_exe_file_vma(mm);
1991 		fput(new->vm_file);
1992 	}
1993 	unlink_anon_vmas(new);
1994  out_free_mpol:
1995 	mpol_put(pol);
1996  out_free_vma:
1997 	kmem_cache_free(vm_area_cachep, new);
1998  out_err:
1999 	return err;
2000 }
2001 
2002 /*
2003  * Split a vma into two pieces at address 'addr', a new vma is allocated
2004  * either for the first part or the tail.
2005  */
2006 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2007 	      unsigned long addr, int new_below)
2008 {
2009 	if (mm->map_count >= sysctl_max_map_count)
2010 		return -ENOMEM;
2011 
2012 	return __split_vma(mm, vma, addr, new_below);
2013 }
2014 
2015 /* Munmap is split into 2 main parts -- this part which finds
2016  * what needs doing, and the areas themselves, which do the
2017  * work.  This now handles partial unmappings.
2018  * Jeremy Fitzhardinge <jeremy@goop.org>
2019  */
2020 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2021 {
2022 	unsigned long end;
2023 	struct vm_area_struct *vma, *prev, *last;
2024 
2025 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2026 		return -EINVAL;
2027 
2028 	if ((len = PAGE_ALIGN(len)) == 0)
2029 		return -EINVAL;
2030 
2031 	/* Find the first overlapping VMA */
2032 	vma = find_vma(mm, start);
2033 	if (!vma)
2034 		return 0;
2035 	prev = vma->vm_prev;
2036 	/* we have  start < vma->vm_end  */
2037 
2038 	/* if it doesn't overlap, we have nothing.. */
2039 	end = start + len;
2040 	if (vma->vm_start >= end)
2041 		return 0;
2042 
2043 	/*
2044 	 * If we need to split any vma, do it now to save pain later.
2045 	 *
2046 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2047 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2048 	 * places tmp vma above, and higher split_vma places tmp vma below.
2049 	 */
2050 	if (start > vma->vm_start) {
2051 		int error;
2052 
2053 		/*
2054 		 * Make sure that map_count on return from munmap() will
2055 		 * not exceed its limit; but let map_count go just above
2056 		 * its limit temporarily, to help free resources as expected.
2057 		 */
2058 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2059 			return -ENOMEM;
2060 
2061 		error = __split_vma(mm, vma, start, 0);
2062 		if (error)
2063 			return error;
2064 		prev = vma;
2065 	}
2066 
2067 	/* Does it split the last one? */
2068 	last = find_vma(mm, end);
2069 	if (last && end > last->vm_start) {
2070 		int error = __split_vma(mm, last, end, 1);
2071 		if (error)
2072 			return error;
2073 	}
2074 	vma = prev? prev->vm_next: mm->mmap;
2075 
2076 	/*
2077 	 * unlock any mlock()ed ranges before detaching vmas
2078 	 */
2079 	if (mm->locked_vm) {
2080 		struct vm_area_struct *tmp = vma;
2081 		while (tmp && tmp->vm_start < end) {
2082 			if (tmp->vm_flags & VM_LOCKED) {
2083 				mm->locked_vm -= vma_pages(tmp);
2084 				munlock_vma_pages_all(tmp);
2085 			}
2086 			tmp = tmp->vm_next;
2087 		}
2088 	}
2089 
2090 	/*
2091 	 * Remove the vma's, and unmap the actual pages
2092 	 */
2093 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2094 	unmap_region(mm, vma, prev, start, end);
2095 
2096 	/* Fix up all other VM information */
2097 	remove_vma_list(mm, vma);
2098 
2099 	return 0;
2100 }
2101 
2102 EXPORT_SYMBOL(do_munmap);
2103 
2104 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2105 {
2106 	int ret;
2107 	struct mm_struct *mm = current->mm;
2108 
2109 	profile_munmap(addr);
2110 
2111 	down_write(&mm->mmap_sem);
2112 	ret = do_munmap(mm, addr, len);
2113 	up_write(&mm->mmap_sem);
2114 	return ret;
2115 }
2116 
2117 static inline void verify_mm_writelocked(struct mm_struct *mm)
2118 {
2119 #ifdef CONFIG_DEBUG_VM
2120 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2121 		WARN_ON(1);
2122 		up_read(&mm->mmap_sem);
2123 	}
2124 #endif
2125 }
2126 
2127 /*
2128  *  this is really a simplified "do_mmap".  it only handles
2129  *  anonymous maps.  eventually we may be able to do some
2130  *  brk-specific accounting here.
2131  */
2132 unsigned long do_brk(unsigned long addr, unsigned long len)
2133 {
2134 	struct mm_struct * mm = current->mm;
2135 	struct vm_area_struct * vma, * prev;
2136 	unsigned long flags;
2137 	struct rb_node ** rb_link, * rb_parent;
2138 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2139 	int error;
2140 
2141 	len = PAGE_ALIGN(len);
2142 	if (!len)
2143 		return addr;
2144 
2145 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2146 	if (error)
2147 		return error;
2148 
2149 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2150 
2151 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2152 	if (error & ~PAGE_MASK)
2153 		return error;
2154 
2155 	/*
2156 	 * mlock MCL_FUTURE?
2157 	 */
2158 	if (mm->def_flags & VM_LOCKED) {
2159 		unsigned long locked, lock_limit;
2160 		locked = len >> PAGE_SHIFT;
2161 		locked += mm->locked_vm;
2162 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2163 		lock_limit >>= PAGE_SHIFT;
2164 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2165 			return -EAGAIN;
2166 	}
2167 
2168 	/*
2169 	 * mm->mmap_sem is required to protect against another thread
2170 	 * changing the mappings in case we sleep.
2171 	 */
2172 	verify_mm_writelocked(mm);
2173 
2174 	/*
2175 	 * Clear old maps.  this also does some error checking for us
2176 	 */
2177  munmap_back:
2178 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2179 	if (vma && vma->vm_start < addr + len) {
2180 		if (do_munmap(mm, addr, len))
2181 			return -ENOMEM;
2182 		goto munmap_back;
2183 	}
2184 
2185 	/* Check against address space limits *after* clearing old maps... */
2186 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2187 		return -ENOMEM;
2188 
2189 	if (mm->map_count > sysctl_max_map_count)
2190 		return -ENOMEM;
2191 
2192 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2193 		return -ENOMEM;
2194 
2195 	/* Can we just expand an old private anonymous mapping? */
2196 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2197 					NULL, NULL, pgoff, NULL);
2198 	if (vma)
2199 		goto out;
2200 
2201 	/*
2202 	 * create a vma struct for an anonymous mapping
2203 	 */
2204 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2205 	if (!vma) {
2206 		vm_unacct_memory(len >> PAGE_SHIFT);
2207 		return -ENOMEM;
2208 	}
2209 
2210 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2211 	vma->vm_mm = mm;
2212 	vma->vm_start = addr;
2213 	vma->vm_end = addr + len;
2214 	vma->vm_pgoff = pgoff;
2215 	vma->vm_flags = flags;
2216 	vma->vm_page_prot = vm_get_page_prot(flags);
2217 	vma_link(mm, vma, prev, rb_link, rb_parent);
2218 out:
2219 	perf_event_mmap(vma);
2220 	mm->total_vm += len >> PAGE_SHIFT;
2221 	if (flags & VM_LOCKED) {
2222 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2223 			mm->locked_vm += (len >> PAGE_SHIFT);
2224 	}
2225 	return addr;
2226 }
2227 
2228 EXPORT_SYMBOL(do_brk);
2229 
2230 /* Release all mmaps. */
2231 void exit_mmap(struct mm_struct *mm)
2232 {
2233 	struct mmu_gather tlb;
2234 	struct vm_area_struct *vma;
2235 	unsigned long nr_accounted = 0;
2236 	unsigned long end;
2237 
2238 	/* mm's last user has gone, and its about to be pulled down */
2239 	mmu_notifier_release(mm);
2240 
2241 	if (mm->locked_vm) {
2242 		vma = mm->mmap;
2243 		while (vma) {
2244 			if (vma->vm_flags & VM_LOCKED)
2245 				munlock_vma_pages_all(vma);
2246 			vma = vma->vm_next;
2247 		}
2248 	}
2249 
2250 	arch_exit_mmap(mm);
2251 
2252 	vma = mm->mmap;
2253 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2254 		return;
2255 
2256 	lru_add_drain();
2257 	flush_cache_mm(mm);
2258 	tlb_gather_mmu(&tlb, mm, 1);
2259 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2260 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2261 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2262 	vm_unacct_memory(nr_accounted);
2263 
2264 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2265 	tlb_finish_mmu(&tlb, 0, end);
2266 
2267 	/*
2268 	 * Walk the list again, actually closing and freeing it,
2269 	 * with preemption enabled, without holding any MM locks.
2270 	 */
2271 	while (vma)
2272 		vma = remove_vma(vma);
2273 
2274 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2275 }
2276 
2277 /* Insert vm structure into process list sorted by address
2278  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2279  * then i_mmap_mutex is taken here.
2280  */
2281 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2282 {
2283 	struct vm_area_struct * __vma, * prev;
2284 	struct rb_node ** rb_link, * rb_parent;
2285 
2286 	/*
2287 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2288 	 * until its first write fault, when page's anon_vma and index
2289 	 * are set.  But now set the vm_pgoff it will almost certainly
2290 	 * end up with (unless mremap moves it elsewhere before that
2291 	 * first wfault), so /proc/pid/maps tells a consistent story.
2292 	 *
2293 	 * By setting it to reflect the virtual start address of the
2294 	 * vma, merges and splits can happen in a seamless way, just
2295 	 * using the existing file pgoff checks and manipulations.
2296 	 * Similarly in do_mmap_pgoff and in do_brk.
2297 	 */
2298 	if (!vma->vm_file) {
2299 		BUG_ON(vma->anon_vma);
2300 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2301 	}
2302 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2303 	if (__vma && __vma->vm_start < vma->vm_end)
2304 		return -ENOMEM;
2305 	if ((vma->vm_flags & VM_ACCOUNT) &&
2306 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2307 		return -ENOMEM;
2308 	vma_link(mm, vma, prev, rb_link, rb_parent);
2309 	return 0;
2310 }
2311 
2312 /*
2313  * Copy the vma structure to a new location in the same mm,
2314  * prior to moving page table entries, to effect an mremap move.
2315  */
2316 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2317 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2318 {
2319 	struct vm_area_struct *vma = *vmap;
2320 	unsigned long vma_start = vma->vm_start;
2321 	struct mm_struct *mm = vma->vm_mm;
2322 	struct vm_area_struct *new_vma, *prev;
2323 	struct rb_node **rb_link, *rb_parent;
2324 	struct mempolicy *pol;
2325 
2326 	/*
2327 	 * If anonymous vma has not yet been faulted, update new pgoff
2328 	 * to match new location, to increase its chance of merging.
2329 	 */
2330 	if (!vma->vm_file && !vma->anon_vma)
2331 		pgoff = addr >> PAGE_SHIFT;
2332 
2333 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2334 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2335 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2336 	if (new_vma) {
2337 		/*
2338 		 * Source vma may have been merged into new_vma
2339 		 */
2340 		if (vma_start >= new_vma->vm_start &&
2341 		    vma_start < new_vma->vm_end)
2342 			*vmap = new_vma;
2343 	} else {
2344 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2345 		if (new_vma) {
2346 			*new_vma = *vma;
2347 			pol = mpol_dup(vma_policy(vma));
2348 			if (IS_ERR(pol))
2349 				goto out_free_vma;
2350 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2351 			if (anon_vma_clone(new_vma, vma))
2352 				goto out_free_mempol;
2353 			vma_set_policy(new_vma, pol);
2354 			new_vma->vm_start = addr;
2355 			new_vma->vm_end = addr + len;
2356 			new_vma->vm_pgoff = pgoff;
2357 			if (new_vma->vm_file) {
2358 				get_file(new_vma->vm_file);
2359 				if (vma->vm_flags & VM_EXECUTABLE)
2360 					added_exe_file_vma(mm);
2361 			}
2362 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2363 				new_vma->vm_ops->open(new_vma);
2364 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2365 		}
2366 	}
2367 	return new_vma;
2368 
2369  out_free_mempol:
2370 	mpol_put(pol);
2371  out_free_vma:
2372 	kmem_cache_free(vm_area_cachep, new_vma);
2373 	return NULL;
2374 }
2375 
2376 /*
2377  * Return true if the calling process may expand its vm space by the passed
2378  * number of pages
2379  */
2380 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2381 {
2382 	unsigned long cur = mm->total_vm;	/* pages */
2383 	unsigned long lim;
2384 
2385 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2386 
2387 	if (cur + npages > lim)
2388 		return 0;
2389 	return 1;
2390 }
2391 
2392 
2393 static int special_mapping_fault(struct vm_area_struct *vma,
2394 				struct vm_fault *vmf)
2395 {
2396 	pgoff_t pgoff;
2397 	struct page **pages;
2398 
2399 	/*
2400 	 * special mappings have no vm_file, and in that case, the mm
2401 	 * uses vm_pgoff internally. So we have to subtract it from here.
2402 	 * We are allowed to do this because we are the mm; do not copy
2403 	 * this code into drivers!
2404 	 */
2405 	pgoff = vmf->pgoff - vma->vm_pgoff;
2406 
2407 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2408 		pgoff--;
2409 
2410 	if (*pages) {
2411 		struct page *page = *pages;
2412 		get_page(page);
2413 		vmf->page = page;
2414 		return 0;
2415 	}
2416 
2417 	return VM_FAULT_SIGBUS;
2418 }
2419 
2420 /*
2421  * Having a close hook prevents vma merging regardless of flags.
2422  */
2423 static void special_mapping_close(struct vm_area_struct *vma)
2424 {
2425 }
2426 
2427 static const struct vm_operations_struct special_mapping_vmops = {
2428 	.close = special_mapping_close,
2429 	.fault = special_mapping_fault,
2430 };
2431 
2432 /*
2433  * Called with mm->mmap_sem held for writing.
2434  * Insert a new vma covering the given region, with the given flags.
2435  * Its pages are supplied by the given array of struct page *.
2436  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2437  * The region past the last page supplied will always produce SIGBUS.
2438  * The array pointer and the pages it points to are assumed to stay alive
2439  * for as long as this mapping might exist.
2440  */
2441 int install_special_mapping(struct mm_struct *mm,
2442 			    unsigned long addr, unsigned long len,
2443 			    unsigned long vm_flags, struct page **pages)
2444 {
2445 	int ret;
2446 	struct vm_area_struct *vma;
2447 
2448 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2449 	if (unlikely(vma == NULL))
2450 		return -ENOMEM;
2451 
2452 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2453 	vma->vm_mm = mm;
2454 	vma->vm_start = addr;
2455 	vma->vm_end = addr + len;
2456 
2457 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2458 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2459 
2460 	vma->vm_ops = &special_mapping_vmops;
2461 	vma->vm_private_data = pages;
2462 
2463 	ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2464 	if (ret)
2465 		goto out;
2466 
2467 	ret = insert_vm_struct(mm, vma);
2468 	if (ret)
2469 		goto out;
2470 
2471 	mm->total_vm += len >> PAGE_SHIFT;
2472 
2473 	perf_event_mmap(vma);
2474 
2475 	return 0;
2476 
2477 out:
2478 	kmem_cache_free(vm_area_cachep, vma);
2479 	return ret;
2480 }
2481 
2482 static DEFINE_MUTEX(mm_all_locks_mutex);
2483 
2484 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2485 {
2486 	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2487 		/*
2488 		 * The LSB of head.next can't change from under us
2489 		 * because we hold the mm_all_locks_mutex.
2490 		 */
2491 		mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2492 		/*
2493 		 * We can safely modify head.next after taking the
2494 		 * anon_vma->root->mutex. If some other vma in this mm shares
2495 		 * the same anon_vma we won't take it again.
2496 		 *
2497 		 * No need of atomic instructions here, head.next
2498 		 * can't change from under us thanks to the
2499 		 * anon_vma->root->mutex.
2500 		 */
2501 		if (__test_and_set_bit(0, (unsigned long *)
2502 				       &anon_vma->root->head.next))
2503 			BUG();
2504 	}
2505 }
2506 
2507 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2508 {
2509 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2510 		/*
2511 		 * AS_MM_ALL_LOCKS can't change from under us because
2512 		 * we hold the mm_all_locks_mutex.
2513 		 *
2514 		 * Operations on ->flags have to be atomic because
2515 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2516 		 * mm_all_locks_mutex, there may be other cpus
2517 		 * changing other bitflags in parallel to us.
2518 		 */
2519 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2520 			BUG();
2521 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2522 	}
2523 }
2524 
2525 /*
2526  * This operation locks against the VM for all pte/vma/mm related
2527  * operations that could ever happen on a certain mm. This includes
2528  * vmtruncate, try_to_unmap, and all page faults.
2529  *
2530  * The caller must take the mmap_sem in write mode before calling
2531  * mm_take_all_locks(). The caller isn't allowed to release the
2532  * mmap_sem until mm_drop_all_locks() returns.
2533  *
2534  * mmap_sem in write mode is required in order to block all operations
2535  * that could modify pagetables and free pages without need of
2536  * altering the vma layout (for example populate_range() with
2537  * nonlinear vmas). It's also needed in write mode to avoid new
2538  * anon_vmas to be associated with existing vmas.
2539  *
2540  * A single task can't take more than one mm_take_all_locks() in a row
2541  * or it would deadlock.
2542  *
2543  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2544  * mapping->flags avoid to take the same lock twice, if more than one
2545  * vma in this mm is backed by the same anon_vma or address_space.
2546  *
2547  * We can take all the locks in random order because the VM code
2548  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2549  * takes more than one of them in a row. Secondly we're protected
2550  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2551  *
2552  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2553  * that may have to take thousand of locks.
2554  *
2555  * mm_take_all_locks() can fail if it's interrupted by signals.
2556  */
2557 int mm_take_all_locks(struct mm_struct *mm)
2558 {
2559 	struct vm_area_struct *vma;
2560 	struct anon_vma_chain *avc;
2561 	int ret = -EINTR;
2562 
2563 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2564 
2565 	mutex_lock(&mm_all_locks_mutex);
2566 
2567 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2568 		if (signal_pending(current))
2569 			goto out_unlock;
2570 		if (vma->vm_file && vma->vm_file->f_mapping)
2571 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2572 	}
2573 
2574 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2575 		if (signal_pending(current))
2576 			goto out_unlock;
2577 		if (vma->anon_vma)
2578 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2579 				vm_lock_anon_vma(mm, avc->anon_vma);
2580 	}
2581 
2582 	ret = 0;
2583 
2584 out_unlock:
2585 	if (ret)
2586 		mm_drop_all_locks(mm);
2587 
2588 	return ret;
2589 }
2590 
2591 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2592 {
2593 	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2594 		/*
2595 		 * The LSB of head.next can't change to 0 from under
2596 		 * us because we hold the mm_all_locks_mutex.
2597 		 *
2598 		 * We must however clear the bitflag before unlocking
2599 		 * the vma so the users using the anon_vma->head will
2600 		 * never see our bitflag.
2601 		 *
2602 		 * No need of atomic instructions here, head.next
2603 		 * can't change from under us until we release the
2604 		 * anon_vma->root->mutex.
2605 		 */
2606 		if (!__test_and_clear_bit(0, (unsigned long *)
2607 					  &anon_vma->root->head.next))
2608 			BUG();
2609 		anon_vma_unlock(anon_vma);
2610 	}
2611 }
2612 
2613 static void vm_unlock_mapping(struct address_space *mapping)
2614 {
2615 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2616 		/*
2617 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2618 		 * because we hold the mm_all_locks_mutex.
2619 		 */
2620 		mutex_unlock(&mapping->i_mmap_mutex);
2621 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2622 					&mapping->flags))
2623 			BUG();
2624 	}
2625 }
2626 
2627 /*
2628  * The mmap_sem cannot be released by the caller until
2629  * mm_drop_all_locks() returns.
2630  */
2631 void mm_drop_all_locks(struct mm_struct *mm)
2632 {
2633 	struct vm_area_struct *vma;
2634 	struct anon_vma_chain *avc;
2635 
2636 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2637 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2638 
2639 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2640 		if (vma->anon_vma)
2641 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2642 				vm_unlock_anon_vma(avc->anon_vma);
2643 		if (vma->vm_file && vma->vm_file->f_mapping)
2644 			vm_unlock_mapping(vma->vm_file->f_mapping);
2645 	}
2646 
2647 	mutex_unlock(&mm_all_locks_mutex);
2648 }
2649 
2650 /*
2651  * initialise the VMA slab
2652  */
2653 void __init mmap_init(void)
2654 {
2655 	int ret;
2656 
2657 	ret = percpu_counter_init(&vm_committed_as, 0);
2658 	VM_BUG_ON(ret);
2659 }
2660