xref: /openbmc/linux/mm/mmap.c (revision 97da55fc)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34 #include <linux/rbtree_augmented.h>
35 #include <linux/sched/sysctl.h>
36 
37 #include <asm/uaccess.h>
38 #include <asm/cacheflush.h>
39 #include <asm/tlb.h>
40 #include <asm/mmu_context.h>
41 
42 #include "internal.h"
43 
44 #ifndef arch_mmap_check
45 #define arch_mmap_check(addr, len, flags)	(0)
46 #endif
47 
48 #ifndef arch_rebalance_pgtables
49 #define arch_rebalance_pgtables(addr, len)		(addr)
50 #endif
51 
52 static void unmap_region(struct mm_struct *mm,
53 		struct vm_area_struct *vma, struct vm_area_struct *prev,
54 		unsigned long start, unsigned long end);
55 
56 /* description of effects of mapping type and prot in current implementation.
57  * this is due to the limited x86 page protection hardware.  The expected
58  * behavior is in parens:
59  *
60  * map_type	prot
61  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
62  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
63  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
64  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
65  *
66  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
67  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
68  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
69  *
70  */
71 pgprot_t protection_map[16] = {
72 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
73 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
74 };
75 
76 pgprot_t vm_get_page_prot(unsigned long vm_flags)
77 {
78 	return __pgprot(pgprot_val(protection_map[vm_flags &
79 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
80 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
81 }
82 EXPORT_SYMBOL(vm_get_page_prot);
83 
84 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
85 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
86 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
87 /*
88  * Make sure vm_committed_as in one cacheline and not cacheline shared with
89  * other variables. It can be updated by several CPUs frequently.
90  */
91 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
92 
93 /*
94  * The global memory commitment made in the system can be a metric
95  * that can be used to drive ballooning decisions when Linux is hosted
96  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
97  * balancing memory across competing virtual machines that are hosted.
98  * Several metrics drive this policy engine including the guest reported
99  * memory commitment.
100  */
101 unsigned long vm_memory_committed(void)
102 {
103 	return percpu_counter_read_positive(&vm_committed_as);
104 }
105 EXPORT_SYMBOL_GPL(vm_memory_committed);
106 
107 /*
108  * Check that a process has enough memory to allocate a new virtual
109  * mapping. 0 means there is enough memory for the allocation to
110  * succeed and -ENOMEM implies there is not.
111  *
112  * We currently support three overcommit policies, which are set via the
113  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
114  *
115  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
116  * Additional code 2002 Jul 20 by Robert Love.
117  *
118  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
119  *
120  * Note this is a helper function intended to be used by LSMs which
121  * wish to use this logic.
122  */
123 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
124 {
125 	unsigned long free, allowed;
126 
127 	vm_acct_memory(pages);
128 
129 	/*
130 	 * Sometimes we want to use more memory than we have
131 	 */
132 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
133 		return 0;
134 
135 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
136 		free = global_page_state(NR_FREE_PAGES);
137 		free += global_page_state(NR_FILE_PAGES);
138 
139 		/*
140 		 * shmem pages shouldn't be counted as free in this
141 		 * case, they can't be purged, only swapped out, and
142 		 * that won't affect the overall amount of available
143 		 * memory in the system.
144 		 */
145 		free -= global_page_state(NR_SHMEM);
146 
147 		free += get_nr_swap_pages();
148 
149 		/*
150 		 * Any slabs which are created with the
151 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
152 		 * which are reclaimable, under pressure.  The dentry
153 		 * cache and most inode caches should fall into this
154 		 */
155 		free += global_page_state(NR_SLAB_RECLAIMABLE);
156 
157 		/*
158 		 * Leave reserved pages. The pages are not for anonymous pages.
159 		 */
160 		if (free <= totalreserve_pages)
161 			goto error;
162 		else
163 			free -= totalreserve_pages;
164 
165 		/*
166 		 * Leave the last 3% for root
167 		 */
168 		if (!cap_sys_admin)
169 			free -= free / 32;
170 
171 		if (free > pages)
172 			return 0;
173 
174 		goto error;
175 	}
176 
177 	allowed = (totalram_pages - hugetlb_total_pages())
178 	       	* sysctl_overcommit_ratio / 100;
179 	/*
180 	 * Leave the last 3% for root
181 	 */
182 	if (!cap_sys_admin)
183 		allowed -= allowed / 32;
184 	allowed += total_swap_pages;
185 
186 	/* Don't let a single process grow too big:
187 	   leave 3% of the size of this process for other processes */
188 	if (mm)
189 		allowed -= mm->total_vm / 32;
190 
191 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
192 		return 0;
193 error:
194 	vm_unacct_memory(pages);
195 
196 	return -ENOMEM;
197 }
198 
199 /*
200  * Requires inode->i_mapping->i_mmap_mutex
201  */
202 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
203 		struct file *file, struct address_space *mapping)
204 {
205 	if (vma->vm_flags & VM_DENYWRITE)
206 		atomic_inc(&file_inode(file)->i_writecount);
207 	if (vma->vm_flags & VM_SHARED)
208 		mapping->i_mmap_writable--;
209 
210 	flush_dcache_mmap_lock(mapping);
211 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
212 		list_del_init(&vma->shared.nonlinear);
213 	else
214 		vma_interval_tree_remove(vma, &mapping->i_mmap);
215 	flush_dcache_mmap_unlock(mapping);
216 }
217 
218 /*
219  * Unlink a file-based vm structure from its interval tree, to hide
220  * vma from rmap and vmtruncate before freeing its page tables.
221  */
222 void unlink_file_vma(struct vm_area_struct *vma)
223 {
224 	struct file *file = vma->vm_file;
225 
226 	if (file) {
227 		struct address_space *mapping = file->f_mapping;
228 		mutex_lock(&mapping->i_mmap_mutex);
229 		__remove_shared_vm_struct(vma, file, mapping);
230 		mutex_unlock(&mapping->i_mmap_mutex);
231 	}
232 }
233 
234 /*
235  * Close a vm structure and free it, returning the next.
236  */
237 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
238 {
239 	struct vm_area_struct *next = vma->vm_next;
240 
241 	might_sleep();
242 	if (vma->vm_ops && vma->vm_ops->close)
243 		vma->vm_ops->close(vma);
244 	if (vma->vm_file)
245 		fput(vma->vm_file);
246 	mpol_put(vma_policy(vma));
247 	kmem_cache_free(vm_area_cachep, vma);
248 	return next;
249 }
250 
251 static unsigned long do_brk(unsigned long addr, unsigned long len);
252 
253 SYSCALL_DEFINE1(brk, unsigned long, brk)
254 {
255 	unsigned long rlim, retval;
256 	unsigned long newbrk, oldbrk;
257 	struct mm_struct *mm = current->mm;
258 	unsigned long min_brk;
259 	bool populate;
260 
261 	down_write(&mm->mmap_sem);
262 
263 #ifdef CONFIG_COMPAT_BRK
264 	/*
265 	 * CONFIG_COMPAT_BRK can still be overridden by setting
266 	 * randomize_va_space to 2, which will still cause mm->start_brk
267 	 * to be arbitrarily shifted
268 	 */
269 	if (current->brk_randomized)
270 		min_brk = mm->start_brk;
271 	else
272 		min_brk = mm->end_data;
273 #else
274 	min_brk = mm->start_brk;
275 #endif
276 	if (brk < min_brk)
277 		goto out;
278 
279 	/*
280 	 * Check against rlimit here. If this check is done later after the test
281 	 * of oldbrk with newbrk then it can escape the test and let the data
282 	 * segment grow beyond its set limit the in case where the limit is
283 	 * not page aligned -Ram Gupta
284 	 */
285 	rlim = rlimit(RLIMIT_DATA);
286 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
287 			(mm->end_data - mm->start_data) > rlim)
288 		goto out;
289 
290 	newbrk = PAGE_ALIGN(brk);
291 	oldbrk = PAGE_ALIGN(mm->brk);
292 	if (oldbrk == newbrk)
293 		goto set_brk;
294 
295 	/* Always allow shrinking brk. */
296 	if (brk <= mm->brk) {
297 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
298 			goto set_brk;
299 		goto out;
300 	}
301 
302 	/* Check against existing mmap mappings. */
303 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
304 		goto out;
305 
306 	/* Ok, looks good - let it rip. */
307 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
308 		goto out;
309 
310 set_brk:
311 	mm->brk = brk;
312 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
313 	up_write(&mm->mmap_sem);
314 	if (populate)
315 		mm_populate(oldbrk, newbrk - oldbrk);
316 	return brk;
317 
318 out:
319 	retval = mm->brk;
320 	up_write(&mm->mmap_sem);
321 	return retval;
322 }
323 
324 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
325 {
326 	unsigned long max, subtree_gap;
327 	max = vma->vm_start;
328 	if (vma->vm_prev)
329 		max -= vma->vm_prev->vm_end;
330 	if (vma->vm_rb.rb_left) {
331 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
332 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
333 		if (subtree_gap > max)
334 			max = subtree_gap;
335 	}
336 	if (vma->vm_rb.rb_right) {
337 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
338 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
339 		if (subtree_gap > max)
340 			max = subtree_gap;
341 	}
342 	return max;
343 }
344 
345 #ifdef CONFIG_DEBUG_VM_RB
346 static int browse_rb(struct rb_root *root)
347 {
348 	int i = 0, j, bug = 0;
349 	struct rb_node *nd, *pn = NULL;
350 	unsigned long prev = 0, pend = 0;
351 
352 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
353 		struct vm_area_struct *vma;
354 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
355 		if (vma->vm_start < prev) {
356 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
357 			bug = 1;
358 		}
359 		if (vma->vm_start < pend) {
360 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
361 			bug = 1;
362 		}
363 		if (vma->vm_start > vma->vm_end) {
364 			printk("vm_end %lx < vm_start %lx\n",
365 				vma->vm_end, vma->vm_start);
366 			bug = 1;
367 		}
368 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
369 			printk("free gap %lx, correct %lx\n",
370 			       vma->rb_subtree_gap,
371 			       vma_compute_subtree_gap(vma));
372 			bug = 1;
373 		}
374 		i++;
375 		pn = nd;
376 		prev = vma->vm_start;
377 		pend = vma->vm_end;
378 	}
379 	j = 0;
380 	for (nd = pn; nd; nd = rb_prev(nd))
381 		j++;
382 	if (i != j) {
383 		printk("backwards %d, forwards %d\n", j, i);
384 		bug = 1;
385 	}
386 	return bug ? -1 : i;
387 }
388 
389 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
390 {
391 	struct rb_node *nd;
392 
393 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
394 		struct vm_area_struct *vma;
395 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
396 		BUG_ON(vma != ignore &&
397 		       vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
398 	}
399 }
400 
401 void validate_mm(struct mm_struct *mm)
402 {
403 	int bug = 0;
404 	int i = 0;
405 	unsigned long highest_address = 0;
406 	struct vm_area_struct *vma = mm->mmap;
407 	while (vma) {
408 		struct anon_vma_chain *avc;
409 		vma_lock_anon_vma(vma);
410 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
411 			anon_vma_interval_tree_verify(avc);
412 		vma_unlock_anon_vma(vma);
413 		highest_address = vma->vm_end;
414 		vma = vma->vm_next;
415 		i++;
416 	}
417 	if (i != mm->map_count) {
418 		printk("map_count %d vm_next %d\n", mm->map_count, i);
419 		bug = 1;
420 	}
421 	if (highest_address != mm->highest_vm_end) {
422 		printk("mm->highest_vm_end %lx, found %lx\n",
423 		       mm->highest_vm_end, highest_address);
424 		bug = 1;
425 	}
426 	i = browse_rb(&mm->mm_rb);
427 	if (i != mm->map_count) {
428 		printk("map_count %d rb %d\n", mm->map_count, i);
429 		bug = 1;
430 	}
431 	BUG_ON(bug);
432 }
433 #else
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
436 #endif
437 
438 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
439 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
440 
441 /*
442  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
443  * vma->vm_prev->vm_end values changed, without modifying the vma's position
444  * in the rbtree.
445  */
446 static void vma_gap_update(struct vm_area_struct *vma)
447 {
448 	/*
449 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
450 	 * function that does exacltly what we want.
451 	 */
452 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
453 }
454 
455 static inline void vma_rb_insert(struct vm_area_struct *vma,
456 				 struct rb_root *root)
457 {
458 	/* All rb_subtree_gap values must be consistent prior to insertion */
459 	validate_mm_rb(root, NULL);
460 
461 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
462 }
463 
464 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
465 {
466 	/*
467 	 * All rb_subtree_gap values must be consistent prior to erase,
468 	 * with the possible exception of the vma being erased.
469 	 */
470 	validate_mm_rb(root, vma);
471 
472 	/*
473 	 * Note rb_erase_augmented is a fairly large inline function,
474 	 * so make sure we instantiate it only once with our desired
475 	 * augmented rbtree callbacks.
476 	 */
477 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
478 }
479 
480 /*
481  * vma has some anon_vma assigned, and is already inserted on that
482  * anon_vma's interval trees.
483  *
484  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
485  * vma must be removed from the anon_vma's interval trees using
486  * anon_vma_interval_tree_pre_update_vma().
487  *
488  * After the update, the vma will be reinserted using
489  * anon_vma_interval_tree_post_update_vma().
490  *
491  * The entire update must be protected by exclusive mmap_sem and by
492  * the root anon_vma's mutex.
493  */
494 static inline void
495 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
496 {
497 	struct anon_vma_chain *avc;
498 
499 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
500 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
501 }
502 
503 static inline void
504 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
505 {
506 	struct anon_vma_chain *avc;
507 
508 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
509 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
510 }
511 
512 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
513 		unsigned long end, struct vm_area_struct **pprev,
514 		struct rb_node ***rb_link, struct rb_node **rb_parent)
515 {
516 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
517 
518 	__rb_link = &mm->mm_rb.rb_node;
519 	rb_prev = __rb_parent = NULL;
520 
521 	while (*__rb_link) {
522 		struct vm_area_struct *vma_tmp;
523 
524 		__rb_parent = *__rb_link;
525 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
526 
527 		if (vma_tmp->vm_end > addr) {
528 			/* Fail if an existing vma overlaps the area */
529 			if (vma_tmp->vm_start < end)
530 				return -ENOMEM;
531 			__rb_link = &__rb_parent->rb_left;
532 		} else {
533 			rb_prev = __rb_parent;
534 			__rb_link = &__rb_parent->rb_right;
535 		}
536 	}
537 
538 	*pprev = NULL;
539 	if (rb_prev)
540 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
541 	*rb_link = __rb_link;
542 	*rb_parent = __rb_parent;
543 	return 0;
544 }
545 
546 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
547 		struct rb_node **rb_link, struct rb_node *rb_parent)
548 {
549 	/* Update tracking information for the gap following the new vma. */
550 	if (vma->vm_next)
551 		vma_gap_update(vma->vm_next);
552 	else
553 		mm->highest_vm_end = vma->vm_end;
554 
555 	/*
556 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
557 	 * correct insertion point for that vma. As a result, we could not
558 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
559 	 * So, we first insert the vma with a zero rb_subtree_gap value
560 	 * (to be consistent with what we did on the way down), and then
561 	 * immediately update the gap to the correct value. Finally we
562 	 * rebalance the rbtree after all augmented values have been set.
563 	 */
564 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
565 	vma->rb_subtree_gap = 0;
566 	vma_gap_update(vma);
567 	vma_rb_insert(vma, &mm->mm_rb);
568 }
569 
570 static void __vma_link_file(struct vm_area_struct *vma)
571 {
572 	struct file *file;
573 
574 	file = vma->vm_file;
575 	if (file) {
576 		struct address_space *mapping = file->f_mapping;
577 
578 		if (vma->vm_flags & VM_DENYWRITE)
579 			atomic_dec(&file_inode(file)->i_writecount);
580 		if (vma->vm_flags & VM_SHARED)
581 			mapping->i_mmap_writable++;
582 
583 		flush_dcache_mmap_lock(mapping);
584 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
585 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
586 		else
587 			vma_interval_tree_insert(vma, &mapping->i_mmap);
588 		flush_dcache_mmap_unlock(mapping);
589 	}
590 }
591 
592 static void
593 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
594 	struct vm_area_struct *prev, struct rb_node **rb_link,
595 	struct rb_node *rb_parent)
596 {
597 	__vma_link_list(mm, vma, prev, rb_parent);
598 	__vma_link_rb(mm, vma, rb_link, rb_parent);
599 }
600 
601 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
602 			struct vm_area_struct *prev, struct rb_node **rb_link,
603 			struct rb_node *rb_parent)
604 {
605 	struct address_space *mapping = NULL;
606 
607 	if (vma->vm_file)
608 		mapping = vma->vm_file->f_mapping;
609 
610 	if (mapping)
611 		mutex_lock(&mapping->i_mmap_mutex);
612 
613 	__vma_link(mm, vma, prev, rb_link, rb_parent);
614 	__vma_link_file(vma);
615 
616 	if (mapping)
617 		mutex_unlock(&mapping->i_mmap_mutex);
618 
619 	mm->map_count++;
620 	validate_mm(mm);
621 }
622 
623 /*
624  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
625  * mm's list and rbtree.  It has already been inserted into the interval tree.
626  */
627 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
628 {
629 	struct vm_area_struct *prev;
630 	struct rb_node **rb_link, *rb_parent;
631 
632 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
633 			   &prev, &rb_link, &rb_parent))
634 		BUG();
635 	__vma_link(mm, vma, prev, rb_link, rb_parent);
636 	mm->map_count++;
637 }
638 
639 static inline void
640 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
641 		struct vm_area_struct *prev)
642 {
643 	struct vm_area_struct *next;
644 
645 	vma_rb_erase(vma, &mm->mm_rb);
646 	prev->vm_next = next = vma->vm_next;
647 	if (next)
648 		next->vm_prev = prev;
649 	if (mm->mmap_cache == vma)
650 		mm->mmap_cache = prev;
651 }
652 
653 /*
654  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
655  * is already present in an i_mmap tree without adjusting the tree.
656  * The following helper function should be used when such adjustments
657  * are necessary.  The "insert" vma (if any) is to be inserted
658  * before we drop the necessary locks.
659  */
660 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
661 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
662 {
663 	struct mm_struct *mm = vma->vm_mm;
664 	struct vm_area_struct *next = vma->vm_next;
665 	struct vm_area_struct *importer = NULL;
666 	struct address_space *mapping = NULL;
667 	struct rb_root *root = NULL;
668 	struct anon_vma *anon_vma = NULL;
669 	struct file *file = vma->vm_file;
670 	bool start_changed = false, end_changed = false;
671 	long adjust_next = 0;
672 	int remove_next = 0;
673 
674 	if (next && !insert) {
675 		struct vm_area_struct *exporter = NULL;
676 
677 		if (end >= next->vm_end) {
678 			/*
679 			 * vma expands, overlapping all the next, and
680 			 * perhaps the one after too (mprotect case 6).
681 			 */
682 again:			remove_next = 1 + (end > next->vm_end);
683 			end = next->vm_end;
684 			exporter = next;
685 			importer = vma;
686 		} else if (end > next->vm_start) {
687 			/*
688 			 * vma expands, overlapping part of the next:
689 			 * mprotect case 5 shifting the boundary up.
690 			 */
691 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
692 			exporter = next;
693 			importer = vma;
694 		} else if (end < vma->vm_end) {
695 			/*
696 			 * vma shrinks, and !insert tells it's not
697 			 * split_vma inserting another: so it must be
698 			 * mprotect case 4 shifting the boundary down.
699 			 */
700 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
701 			exporter = vma;
702 			importer = next;
703 		}
704 
705 		/*
706 		 * Easily overlooked: when mprotect shifts the boundary,
707 		 * make sure the expanding vma has anon_vma set if the
708 		 * shrinking vma had, to cover any anon pages imported.
709 		 */
710 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
711 			if (anon_vma_clone(importer, exporter))
712 				return -ENOMEM;
713 			importer->anon_vma = exporter->anon_vma;
714 		}
715 	}
716 
717 	if (file) {
718 		mapping = file->f_mapping;
719 		if (!(vma->vm_flags & VM_NONLINEAR)) {
720 			root = &mapping->i_mmap;
721 			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
722 
723 			if (adjust_next)
724 				uprobe_munmap(next, next->vm_start,
725 							next->vm_end);
726 		}
727 
728 		mutex_lock(&mapping->i_mmap_mutex);
729 		if (insert) {
730 			/*
731 			 * Put into interval tree now, so instantiated pages
732 			 * are visible to arm/parisc __flush_dcache_page
733 			 * throughout; but we cannot insert into address
734 			 * space until vma start or end is updated.
735 			 */
736 			__vma_link_file(insert);
737 		}
738 	}
739 
740 	vma_adjust_trans_huge(vma, start, end, adjust_next);
741 
742 	anon_vma = vma->anon_vma;
743 	if (!anon_vma && adjust_next)
744 		anon_vma = next->anon_vma;
745 	if (anon_vma) {
746 		VM_BUG_ON(adjust_next && next->anon_vma &&
747 			  anon_vma != next->anon_vma);
748 		anon_vma_lock_write(anon_vma);
749 		anon_vma_interval_tree_pre_update_vma(vma);
750 		if (adjust_next)
751 			anon_vma_interval_tree_pre_update_vma(next);
752 	}
753 
754 	if (root) {
755 		flush_dcache_mmap_lock(mapping);
756 		vma_interval_tree_remove(vma, root);
757 		if (adjust_next)
758 			vma_interval_tree_remove(next, root);
759 	}
760 
761 	if (start != vma->vm_start) {
762 		vma->vm_start = start;
763 		start_changed = true;
764 	}
765 	if (end != vma->vm_end) {
766 		vma->vm_end = end;
767 		end_changed = true;
768 	}
769 	vma->vm_pgoff = pgoff;
770 	if (adjust_next) {
771 		next->vm_start += adjust_next << PAGE_SHIFT;
772 		next->vm_pgoff += adjust_next;
773 	}
774 
775 	if (root) {
776 		if (adjust_next)
777 			vma_interval_tree_insert(next, root);
778 		vma_interval_tree_insert(vma, root);
779 		flush_dcache_mmap_unlock(mapping);
780 	}
781 
782 	if (remove_next) {
783 		/*
784 		 * vma_merge has merged next into vma, and needs
785 		 * us to remove next before dropping the locks.
786 		 */
787 		__vma_unlink(mm, next, vma);
788 		if (file)
789 			__remove_shared_vm_struct(next, file, mapping);
790 	} else if (insert) {
791 		/*
792 		 * split_vma has split insert from vma, and needs
793 		 * us to insert it before dropping the locks
794 		 * (it may either follow vma or precede it).
795 		 */
796 		__insert_vm_struct(mm, insert);
797 	} else {
798 		if (start_changed)
799 			vma_gap_update(vma);
800 		if (end_changed) {
801 			if (!next)
802 				mm->highest_vm_end = end;
803 			else if (!adjust_next)
804 				vma_gap_update(next);
805 		}
806 	}
807 
808 	if (anon_vma) {
809 		anon_vma_interval_tree_post_update_vma(vma);
810 		if (adjust_next)
811 			anon_vma_interval_tree_post_update_vma(next);
812 		anon_vma_unlock_write(anon_vma);
813 	}
814 	if (mapping)
815 		mutex_unlock(&mapping->i_mmap_mutex);
816 
817 	if (root) {
818 		uprobe_mmap(vma);
819 
820 		if (adjust_next)
821 			uprobe_mmap(next);
822 	}
823 
824 	if (remove_next) {
825 		if (file) {
826 			uprobe_munmap(next, next->vm_start, next->vm_end);
827 			fput(file);
828 		}
829 		if (next->anon_vma)
830 			anon_vma_merge(vma, next);
831 		mm->map_count--;
832 		mpol_put(vma_policy(next));
833 		kmem_cache_free(vm_area_cachep, next);
834 		/*
835 		 * In mprotect's case 6 (see comments on vma_merge),
836 		 * we must remove another next too. It would clutter
837 		 * up the code too much to do both in one go.
838 		 */
839 		next = vma->vm_next;
840 		if (remove_next == 2)
841 			goto again;
842 		else if (next)
843 			vma_gap_update(next);
844 		else
845 			mm->highest_vm_end = end;
846 	}
847 	if (insert && file)
848 		uprobe_mmap(insert);
849 
850 	validate_mm(mm);
851 
852 	return 0;
853 }
854 
855 /*
856  * If the vma has a ->close operation then the driver probably needs to release
857  * per-vma resources, so we don't attempt to merge those.
858  */
859 static inline int is_mergeable_vma(struct vm_area_struct *vma,
860 			struct file *file, unsigned long vm_flags)
861 {
862 	if (vma->vm_flags ^ vm_flags)
863 		return 0;
864 	if (vma->vm_file != file)
865 		return 0;
866 	if (vma->vm_ops && vma->vm_ops->close)
867 		return 0;
868 	return 1;
869 }
870 
871 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
872 					struct anon_vma *anon_vma2,
873 					struct vm_area_struct *vma)
874 {
875 	/*
876 	 * The list_is_singular() test is to avoid merging VMA cloned from
877 	 * parents. This can improve scalability caused by anon_vma lock.
878 	 */
879 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
880 		list_is_singular(&vma->anon_vma_chain)))
881 		return 1;
882 	return anon_vma1 == anon_vma2;
883 }
884 
885 /*
886  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
887  * in front of (at a lower virtual address and file offset than) the vma.
888  *
889  * We cannot merge two vmas if they have differently assigned (non-NULL)
890  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
891  *
892  * We don't check here for the merged mmap wrapping around the end of pagecache
893  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
894  * wrap, nor mmaps which cover the final page at index -1UL.
895  */
896 static int
897 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
898 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
899 {
900 	if (is_mergeable_vma(vma, file, vm_flags) &&
901 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
902 		if (vma->vm_pgoff == vm_pgoff)
903 			return 1;
904 	}
905 	return 0;
906 }
907 
908 /*
909  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
910  * beyond (at a higher virtual address and file offset than) the vma.
911  *
912  * We cannot merge two vmas if they have differently assigned (non-NULL)
913  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
914  */
915 static int
916 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
917 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
918 {
919 	if (is_mergeable_vma(vma, file, vm_flags) &&
920 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
921 		pgoff_t vm_pglen;
922 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
923 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
924 			return 1;
925 	}
926 	return 0;
927 }
928 
929 /*
930  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
931  * whether that can be merged with its predecessor or its successor.
932  * Or both (it neatly fills a hole).
933  *
934  * In most cases - when called for mmap, brk or mremap - [addr,end) is
935  * certain not to be mapped by the time vma_merge is called; but when
936  * called for mprotect, it is certain to be already mapped (either at
937  * an offset within prev, or at the start of next), and the flags of
938  * this area are about to be changed to vm_flags - and the no-change
939  * case has already been eliminated.
940  *
941  * The following mprotect cases have to be considered, where AAAA is
942  * the area passed down from mprotect_fixup, never extending beyond one
943  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
944  *
945  *     AAAA             AAAA                AAAA          AAAA
946  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
947  *    cannot merge    might become    might become    might become
948  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
949  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
950  *    mremap move:                                    PPPPNNNNNNNN 8
951  *        AAAA
952  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
953  *    might become    case 1 below    case 2 below    case 3 below
954  *
955  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
956  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
957  */
958 struct vm_area_struct *vma_merge(struct mm_struct *mm,
959 			struct vm_area_struct *prev, unsigned long addr,
960 			unsigned long end, unsigned long vm_flags,
961 		     	struct anon_vma *anon_vma, struct file *file,
962 			pgoff_t pgoff, struct mempolicy *policy)
963 {
964 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
965 	struct vm_area_struct *area, *next;
966 	int err;
967 
968 	/*
969 	 * We later require that vma->vm_flags == vm_flags,
970 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
971 	 */
972 	if (vm_flags & VM_SPECIAL)
973 		return NULL;
974 
975 	if (prev)
976 		next = prev->vm_next;
977 	else
978 		next = mm->mmap;
979 	area = next;
980 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
981 		next = next->vm_next;
982 
983 	/*
984 	 * Can it merge with the predecessor?
985 	 */
986 	if (prev && prev->vm_end == addr &&
987   			mpol_equal(vma_policy(prev), policy) &&
988 			can_vma_merge_after(prev, vm_flags,
989 						anon_vma, file, pgoff)) {
990 		/*
991 		 * OK, it can.  Can we now merge in the successor as well?
992 		 */
993 		if (next && end == next->vm_start &&
994 				mpol_equal(policy, vma_policy(next)) &&
995 				can_vma_merge_before(next, vm_flags,
996 					anon_vma, file, pgoff+pglen) &&
997 				is_mergeable_anon_vma(prev->anon_vma,
998 						      next->anon_vma, NULL)) {
999 							/* cases 1, 6 */
1000 			err = vma_adjust(prev, prev->vm_start,
1001 				next->vm_end, prev->vm_pgoff, NULL);
1002 		} else					/* cases 2, 5, 7 */
1003 			err = vma_adjust(prev, prev->vm_start,
1004 				end, prev->vm_pgoff, NULL);
1005 		if (err)
1006 			return NULL;
1007 		khugepaged_enter_vma_merge(prev);
1008 		return prev;
1009 	}
1010 
1011 	/*
1012 	 * Can this new request be merged in front of next?
1013 	 */
1014 	if (next && end == next->vm_start &&
1015  			mpol_equal(policy, vma_policy(next)) &&
1016 			can_vma_merge_before(next, vm_flags,
1017 					anon_vma, file, pgoff+pglen)) {
1018 		if (prev && addr < prev->vm_end)	/* case 4 */
1019 			err = vma_adjust(prev, prev->vm_start,
1020 				addr, prev->vm_pgoff, NULL);
1021 		else					/* cases 3, 8 */
1022 			err = vma_adjust(area, addr, next->vm_end,
1023 				next->vm_pgoff - pglen, NULL);
1024 		if (err)
1025 			return NULL;
1026 		khugepaged_enter_vma_merge(area);
1027 		return area;
1028 	}
1029 
1030 	return NULL;
1031 }
1032 
1033 /*
1034  * Rough compatbility check to quickly see if it's even worth looking
1035  * at sharing an anon_vma.
1036  *
1037  * They need to have the same vm_file, and the flags can only differ
1038  * in things that mprotect may change.
1039  *
1040  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1041  * we can merge the two vma's. For example, we refuse to merge a vma if
1042  * there is a vm_ops->close() function, because that indicates that the
1043  * driver is doing some kind of reference counting. But that doesn't
1044  * really matter for the anon_vma sharing case.
1045  */
1046 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1047 {
1048 	return a->vm_end == b->vm_start &&
1049 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1050 		a->vm_file == b->vm_file &&
1051 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1052 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1053 }
1054 
1055 /*
1056  * Do some basic sanity checking to see if we can re-use the anon_vma
1057  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1058  * the same as 'old', the other will be the new one that is trying
1059  * to share the anon_vma.
1060  *
1061  * NOTE! This runs with mm_sem held for reading, so it is possible that
1062  * the anon_vma of 'old' is concurrently in the process of being set up
1063  * by another page fault trying to merge _that_. But that's ok: if it
1064  * is being set up, that automatically means that it will be a singleton
1065  * acceptable for merging, so we can do all of this optimistically. But
1066  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1067  *
1068  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1069  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1070  * is to return an anon_vma that is "complex" due to having gone through
1071  * a fork).
1072  *
1073  * We also make sure that the two vma's are compatible (adjacent,
1074  * and with the same memory policies). That's all stable, even with just
1075  * a read lock on the mm_sem.
1076  */
1077 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1078 {
1079 	if (anon_vma_compatible(a, b)) {
1080 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1081 
1082 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1083 			return anon_vma;
1084 	}
1085 	return NULL;
1086 }
1087 
1088 /*
1089  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1090  * neighbouring vmas for a suitable anon_vma, before it goes off
1091  * to allocate a new anon_vma.  It checks because a repetitive
1092  * sequence of mprotects and faults may otherwise lead to distinct
1093  * anon_vmas being allocated, preventing vma merge in subsequent
1094  * mprotect.
1095  */
1096 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1097 {
1098 	struct anon_vma *anon_vma;
1099 	struct vm_area_struct *near;
1100 
1101 	near = vma->vm_next;
1102 	if (!near)
1103 		goto try_prev;
1104 
1105 	anon_vma = reusable_anon_vma(near, vma, near);
1106 	if (anon_vma)
1107 		return anon_vma;
1108 try_prev:
1109 	near = vma->vm_prev;
1110 	if (!near)
1111 		goto none;
1112 
1113 	anon_vma = reusable_anon_vma(near, near, vma);
1114 	if (anon_vma)
1115 		return anon_vma;
1116 none:
1117 	/*
1118 	 * There's no absolute need to look only at touching neighbours:
1119 	 * we could search further afield for "compatible" anon_vmas.
1120 	 * But it would probably just be a waste of time searching,
1121 	 * or lead to too many vmas hanging off the same anon_vma.
1122 	 * We're trying to allow mprotect remerging later on,
1123 	 * not trying to minimize memory used for anon_vmas.
1124 	 */
1125 	return NULL;
1126 }
1127 
1128 #ifdef CONFIG_PROC_FS
1129 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1130 						struct file *file, long pages)
1131 {
1132 	const unsigned long stack_flags
1133 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1134 
1135 	mm->total_vm += pages;
1136 
1137 	if (file) {
1138 		mm->shared_vm += pages;
1139 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1140 			mm->exec_vm += pages;
1141 	} else if (flags & stack_flags)
1142 		mm->stack_vm += pages;
1143 }
1144 #endif /* CONFIG_PROC_FS */
1145 
1146 /*
1147  * If a hint addr is less than mmap_min_addr change hint to be as
1148  * low as possible but still greater than mmap_min_addr
1149  */
1150 static inline unsigned long round_hint_to_min(unsigned long hint)
1151 {
1152 	hint &= PAGE_MASK;
1153 	if (((void *)hint != NULL) &&
1154 	    (hint < mmap_min_addr))
1155 		return PAGE_ALIGN(mmap_min_addr);
1156 	return hint;
1157 }
1158 
1159 /*
1160  * The caller must hold down_write(&current->mm->mmap_sem).
1161  */
1162 
1163 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1164 			unsigned long len, unsigned long prot,
1165 			unsigned long flags, unsigned long pgoff,
1166 			unsigned long *populate)
1167 {
1168 	struct mm_struct * mm = current->mm;
1169 	struct inode *inode;
1170 	vm_flags_t vm_flags;
1171 
1172 	*populate = 0;
1173 
1174 	/*
1175 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1176 	 *
1177 	 * (the exception is when the underlying filesystem is noexec
1178 	 *  mounted, in which case we dont add PROT_EXEC.)
1179 	 */
1180 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1181 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1182 			prot |= PROT_EXEC;
1183 
1184 	if (!len)
1185 		return -EINVAL;
1186 
1187 	if (!(flags & MAP_FIXED))
1188 		addr = round_hint_to_min(addr);
1189 
1190 	/* Careful about overflows.. */
1191 	len = PAGE_ALIGN(len);
1192 	if (!len)
1193 		return -ENOMEM;
1194 
1195 	/* offset overflow? */
1196 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1197                return -EOVERFLOW;
1198 
1199 	/* Too many mappings? */
1200 	if (mm->map_count > sysctl_max_map_count)
1201 		return -ENOMEM;
1202 
1203 	/* Obtain the address to map to. we verify (or select) it and ensure
1204 	 * that it represents a valid section of the address space.
1205 	 */
1206 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1207 	if (addr & ~PAGE_MASK)
1208 		return addr;
1209 
1210 	/* Do simple checking here so the lower-level routines won't have
1211 	 * to. we assume access permissions have been handled by the open
1212 	 * of the memory object, so we don't do any here.
1213 	 */
1214 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1215 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1216 
1217 	if (flags & MAP_LOCKED)
1218 		if (!can_do_mlock())
1219 			return -EPERM;
1220 
1221 	/* mlock MCL_FUTURE? */
1222 	if (vm_flags & VM_LOCKED) {
1223 		unsigned long locked, lock_limit;
1224 		locked = len >> PAGE_SHIFT;
1225 		locked += mm->locked_vm;
1226 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1227 		lock_limit >>= PAGE_SHIFT;
1228 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1229 			return -EAGAIN;
1230 	}
1231 
1232 	inode = file ? file_inode(file) : NULL;
1233 
1234 	if (file) {
1235 		switch (flags & MAP_TYPE) {
1236 		case MAP_SHARED:
1237 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1238 				return -EACCES;
1239 
1240 			/*
1241 			 * Make sure we don't allow writing to an append-only
1242 			 * file..
1243 			 */
1244 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1245 				return -EACCES;
1246 
1247 			/*
1248 			 * Make sure there are no mandatory locks on the file.
1249 			 */
1250 			if (locks_verify_locked(inode))
1251 				return -EAGAIN;
1252 
1253 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1254 			if (!(file->f_mode & FMODE_WRITE))
1255 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1256 
1257 			/* fall through */
1258 		case MAP_PRIVATE:
1259 			if (!(file->f_mode & FMODE_READ))
1260 				return -EACCES;
1261 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1262 				if (vm_flags & VM_EXEC)
1263 					return -EPERM;
1264 				vm_flags &= ~VM_MAYEXEC;
1265 			}
1266 
1267 			if (!file->f_op || !file->f_op->mmap)
1268 				return -ENODEV;
1269 			break;
1270 
1271 		default:
1272 			return -EINVAL;
1273 		}
1274 	} else {
1275 		switch (flags & MAP_TYPE) {
1276 		case MAP_SHARED:
1277 			/*
1278 			 * Ignore pgoff.
1279 			 */
1280 			pgoff = 0;
1281 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1282 			break;
1283 		case MAP_PRIVATE:
1284 			/*
1285 			 * Set pgoff according to addr for anon_vma.
1286 			 */
1287 			pgoff = addr >> PAGE_SHIFT;
1288 			break;
1289 		default:
1290 			return -EINVAL;
1291 		}
1292 	}
1293 
1294 	/*
1295 	 * Set 'VM_NORESERVE' if we should not account for the
1296 	 * memory use of this mapping.
1297 	 */
1298 	if (flags & MAP_NORESERVE) {
1299 		/* We honor MAP_NORESERVE if allowed to overcommit */
1300 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1301 			vm_flags |= VM_NORESERVE;
1302 
1303 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1304 		if (file && is_file_hugepages(file))
1305 			vm_flags |= VM_NORESERVE;
1306 	}
1307 
1308 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1309 	if (!IS_ERR_VALUE(addr) && (vm_flags & VM_POPULATE))
1310 		*populate = len;
1311 	return addr;
1312 }
1313 
1314 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1315 		unsigned long, prot, unsigned long, flags,
1316 		unsigned long, fd, unsigned long, pgoff)
1317 {
1318 	struct file *file = NULL;
1319 	unsigned long retval = -EBADF;
1320 
1321 	if (!(flags & MAP_ANONYMOUS)) {
1322 		audit_mmap_fd(fd, flags);
1323 		if (unlikely(flags & MAP_HUGETLB))
1324 			return -EINVAL;
1325 		file = fget(fd);
1326 		if (!file)
1327 			goto out;
1328 	} else if (flags & MAP_HUGETLB) {
1329 		struct user_struct *user = NULL;
1330 		/*
1331 		 * VM_NORESERVE is used because the reservations will be
1332 		 * taken when vm_ops->mmap() is called
1333 		 * A dummy user value is used because we are not locking
1334 		 * memory so no accounting is necessary
1335 		 */
1336 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1337 				VM_NORESERVE,
1338 				&user, HUGETLB_ANONHUGE_INODE,
1339 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1340 		if (IS_ERR(file))
1341 			return PTR_ERR(file);
1342 	}
1343 
1344 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1345 
1346 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1347 	if (file)
1348 		fput(file);
1349 out:
1350 	return retval;
1351 }
1352 
1353 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1354 struct mmap_arg_struct {
1355 	unsigned long addr;
1356 	unsigned long len;
1357 	unsigned long prot;
1358 	unsigned long flags;
1359 	unsigned long fd;
1360 	unsigned long offset;
1361 };
1362 
1363 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1364 {
1365 	struct mmap_arg_struct a;
1366 
1367 	if (copy_from_user(&a, arg, sizeof(a)))
1368 		return -EFAULT;
1369 	if (a.offset & ~PAGE_MASK)
1370 		return -EINVAL;
1371 
1372 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1373 			      a.offset >> PAGE_SHIFT);
1374 }
1375 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1376 
1377 /*
1378  * Some shared mappigns will want the pages marked read-only
1379  * to track write events. If so, we'll downgrade vm_page_prot
1380  * to the private version (using protection_map[] without the
1381  * VM_SHARED bit).
1382  */
1383 int vma_wants_writenotify(struct vm_area_struct *vma)
1384 {
1385 	vm_flags_t vm_flags = vma->vm_flags;
1386 
1387 	/* If it was private or non-writable, the write bit is already clear */
1388 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1389 		return 0;
1390 
1391 	/* The backer wishes to know when pages are first written to? */
1392 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1393 		return 1;
1394 
1395 	/* The open routine did something to the protections already? */
1396 	if (pgprot_val(vma->vm_page_prot) !=
1397 	    pgprot_val(vm_get_page_prot(vm_flags)))
1398 		return 0;
1399 
1400 	/* Specialty mapping? */
1401 	if (vm_flags & VM_PFNMAP)
1402 		return 0;
1403 
1404 	/* Can the mapping track the dirty pages? */
1405 	return vma->vm_file && vma->vm_file->f_mapping &&
1406 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1407 }
1408 
1409 /*
1410  * We account for memory if it's a private writeable mapping,
1411  * not hugepages and VM_NORESERVE wasn't set.
1412  */
1413 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1414 {
1415 	/*
1416 	 * hugetlb has its own accounting separate from the core VM
1417 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1418 	 */
1419 	if (file && is_file_hugepages(file))
1420 		return 0;
1421 
1422 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1423 }
1424 
1425 unsigned long mmap_region(struct file *file, unsigned long addr,
1426 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1427 {
1428 	struct mm_struct *mm = current->mm;
1429 	struct vm_area_struct *vma, *prev;
1430 	int correct_wcount = 0;
1431 	int error;
1432 	struct rb_node **rb_link, *rb_parent;
1433 	unsigned long charged = 0;
1434 	struct inode *inode =  file ? file_inode(file) : NULL;
1435 
1436 	/* Clear old maps */
1437 	error = -ENOMEM;
1438 munmap_back:
1439 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1440 		if (do_munmap(mm, addr, len))
1441 			return -ENOMEM;
1442 		goto munmap_back;
1443 	}
1444 
1445 	/* Check against address space limit. */
1446 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1447 		return -ENOMEM;
1448 
1449 	/*
1450 	 * Private writable mapping: check memory availability
1451 	 */
1452 	if (accountable_mapping(file, vm_flags)) {
1453 		charged = len >> PAGE_SHIFT;
1454 		if (security_vm_enough_memory_mm(mm, charged))
1455 			return -ENOMEM;
1456 		vm_flags |= VM_ACCOUNT;
1457 	}
1458 
1459 	/*
1460 	 * Can we just expand an old mapping?
1461 	 */
1462 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1463 	if (vma)
1464 		goto out;
1465 
1466 	/*
1467 	 * Determine the object being mapped and call the appropriate
1468 	 * specific mapper. the address has already been validated, but
1469 	 * not unmapped, but the maps are removed from the list.
1470 	 */
1471 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1472 	if (!vma) {
1473 		error = -ENOMEM;
1474 		goto unacct_error;
1475 	}
1476 
1477 	vma->vm_mm = mm;
1478 	vma->vm_start = addr;
1479 	vma->vm_end = addr + len;
1480 	vma->vm_flags = vm_flags;
1481 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1482 	vma->vm_pgoff = pgoff;
1483 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1484 
1485 	error = -EINVAL;	/* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1486 
1487 	if (file) {
1488 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1489 			goto free_vma;
1490 		if (vm_flags & VM_DENYWRITE) {
1491 			error = deny_write_access(file);
1492 			if (error)
1493 				goto free_vma;
1494 			correct_wcount = 1;
1495 		}
1496 		vma->vm_file = get_file(file);
1497 		error = file->f_op->mmap(file, vma);
1498 		if (error)
1499 			goto unmap_and_free_vma;
1500 
1501 		/* Can addr have changed??
1502 		 *
1503 		 * Answer: Yes, several device drivers can do it in their
1504 		 *         f_op->mmap method. -DaveM
1505 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1506 		 *      be updated for vma_link()
1507 		 */
1508 		WARN_ON_ONCE(addr != vma->vm_start);
1509 
1510 		addr = vma->vm_start;
1511 		pgoff = vma->vm_pgoff;
1512 		vm_flags = vma->vm_flags;
1513 	} else if (vm_flags & VM_SHARED) {
1514 		if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1515 			goto free_vma;
1516 		error = shmem_zero_setup(vma);
1517 		if (error)
1518 			goto free_vma;
1519 	}
1520 
1521 	if (vma_wants_writenotify(vma)) {
1522 		pgprot_t pprot = vma->vm_page_prot;
1523 
1524 		/* Can vma->vm_page_prot have changed??
1525 		 *
1526 		 * Answer: Yes, drivers may have changed it in their
1527 		 *         f_op->mmap method.
1528 		 *
1529 		 * Ensures that vmas marked as uncached stay that way.
1530 		 */
1531 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1532 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1533 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1534 	}
1535 
1536 	vma_link(mm, vma, prev, rb_link, rb_parent);
1537 	file = vma->vm_file;
1538 
1539 	/* Once vma denies write, undo our temporary denial count */
1540 	if (correct_wcount)
1541 		atomic_inc(&inode->i_writecount);
1542 out:
1543 	perf_event_mmap(vma);
1544 
1545 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1546 	if (vm_flags & VM_LOCKED) {
1547 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1548 					vma == get_gate_vma(current->mm)))
1549 			mm->locked_vm += (len >> PAGE_SHIFT);
1550 		else
1551 			vma->vm_flags &= ~VM_LOCKED;
1552 	}
1553 
1554 	if (file)
1555 		uprobe_mmap(vma);
1556 
1557 	return addr;
1558 
1559 unmap_and_free_vma:
1560 	if (correct_wcount)
1561 		atomic_inc(&inode->i_writecount);
1562 	vma->vm_file = NULL;
1563 	fput(file);
1564 
1565 	/* Undo any partial mapping done by a device driver. */
1566 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1567 	charged = 0;
1568 free_vma:
1569 	kmem_cache_free(vm_area_cachep, vma);
1570 unacct_error:
1571 	if (charged)
1572 		vm_unacct_memory(charged);
1573 	return error;
1574 }
1575 
1576 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1577 {
1578 	/*
1579 	 * We implement the search by looking for an rbtree node that
1580 	 * immediately follows a suitable gap. That is,
1581 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1582 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1583 	 * - gap_end - gap_start >= length
1584 	 */
1585 
1586 	struct mm_struct *mm = current->mm;
1587 	struct vm_area_struct *vma;
1588 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1589 
1590 	/* Adjust search length to account for worst case alignment overhead */
1591 	length = info->length + info->align_mask;
1592 	if (length < info->length)
1593 		return -ENOMEM;
1594 
1595 	/* Adjust search limits by the desired length */
1596 	if (info->high_limit < length)
1597 		return -ENOMEM;
1598 	high_limit = info->high_limit - length;
1599 
1600 	if (info->low_limit > high_limit)
1601 		return -ENOMEM;
1602 	low_limit = info->low_limit + length;
1603 
1604 	/* Check if rbtree root looks promising */
1605 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1606 		goto check_highest;
1607 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1608 	if (vma->rb_subtree_gap < length)
1609 		goto check_highest;
1610 
1611 	while (true) {
1612 		/* Visit left subtree if it looks promising */
1613 		gap_end = vma->vm_start;
1614 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1615 			struct vm_area_struct *left =
1616 				rb_entry(vma->vm_rb.rb_left,
1617 					 struct vm_area_struct, vm_rb);
1618 			if (left->rb_subtree_gap >= length) {
1619 				vma = left;
1620 				continue;
1621 			}
1622 		}
1623 
1624 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1625 check_current:
1626 		/* Check if current node has a suitable gap */
1627 		if (gap_start > high_limit)
1628 			return -ENOMEM;
1629 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1630 			goto found;
1631 
1632 		/* Visit right subtree if it looks promising */
1633 		if (vma->vm_rb.rb_right) {
1634 			struct vm_area_struct *right =
1635 				rb_entry(vma->vm_rb.rb_right,
1636 					 struct vm_area_struct, vm_rb);
1637 			if (right->rb_subtree_gap >= length) {
1638 				vma = right;
1639 				continue;
1640 			}
1641 		}
1642 
1643 		/* Go back up the rbtree to find next candidate node */
1644 		while (true) {
1645 			struct rb_node *prev = &vma->vm_rb;
1646 			if (!rb_parent(prev))
1647 				goto check_highest;
1648 			vma = rb_entry(rb_parent(prev),
1649 				       struct vm_area_struct, vm_rb);
1650 			if (prev == vma->vm_rb.rb_left) {
1651 				gap_start = vma->vm_prev->vm_end;
1652 				gap_end = vma->vm_start;
1653 				goto check_current;
1654 			}
1655 		}
1656 	}
1657 
1658 check_highest:
1659 	/* Check highest gap, which does not precede any rbtree node */
1660 	gap_start = mm->highest_vm_end;
1661 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1662 	if (gap_start > high_limit)
1663 		return -ENOMEM;
1664 
1665 found:
1666 	/* We found a suitable gap. Clip it with the original low_limit. */
1667 	if (gap_start < info->low_limit)
1668 		gap_start = info->low_limit;
1669 
1670 	/* Adjust gap address to the desired alignment */
1671 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1672 
1673 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1674 	VM_BUG_ON(gap_start + info->length > gap_end);
1675 	return gap_start;
1676 }
1677 
1678 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1679 {
1680 	struct mm_struct *mm = current->mm;
1681 	struct vm_area_struct *vma;
1682 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1683 
1684 	/* Adjust search length to account for worst case alignment overhead */
1685 	length = info->length + info->align_mask;
1686 	if (length < info->length)
1687 		return -ENOMEM;
1688 
1689 	/*
1690 	 * Adjust search limits by the desired length.
1691 	 * See implementation comment at top of unmapped_area().
1692 	 */
1693 	gap_end = info->high_limit;
1694 	if (gap_end < length)
1695 		return -ENOMEM;
1696 	high_limit = gap_end - length;
1697 
1698 	if (info->low_limit > high_limit)
1699 		return -ENOMEM;
1700 	low_limit = info->low_limit + length;
1701 
1702 	/* Check highest gap, which does not precede any rbtree node */
1703 	gap_start = mm->highest_vm_end;
1704 	if (gap_start <= high_limit)
1705 		goto found_highest;
1706 
1707 	/* Check if rbtree root looks promising */
1708 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1709 		return -ENOMEM;
1710 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1711 	if (vma->rb_subtree_gap < length)
1712 		return -ENOMEM;
1713 
1714 	while (true) {
1715 		/* Visit right subtree if it looks promising */
1716 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1717 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1718 			struct vm_area_struct *right =
1719 				rb_entry(vma->vm_rb.rb_right,
1720 					 struct vm_area_struct, vm_rb);
1721 			if (right->rb_subtree_gap >= length) {
1722 				vma = right;
1723 				continue;
1724 			}
1725 		}
1726 
1727 check_current:
1728 		/* Check if current node has a suitable gap */
1729 		gap_end = vma->vm_start;
1730 		if (gap_end < low_limit)
1731 			return -ENOMEM;
1732 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1733 			goto found;
1734 
1735 		/* Visit left subtree if it looks promising */
1736 		if (vma->vm_rb.rb_left) {
1737 			struct vm_area_struct *left =
1738 				rb_entry(vma->vm_rb.rb_left,
1739 					 struct vm_area_struct, vm_rb);
1740 			if (left->rb_subtree_gap >= length) {
1741 				vma = left;
1742 				continue;
1743 			}
1744 		}
1745 
1746 		/* Go back up the rbtree to find next candidate node */
1747 		while (true) {
1748 			struct rb_node *prev = &vma->vm_rb;
1749 			if (!rb_parent(prev))
1750 				return -ENOMEM;
1751 			vma = rb_entry(rb_parent(prev),
1752 				       struct vm_area_struct, vm_rb);
1753 			if (prev == vma->vm_rb.rb_right) {
1754 				gap_start = vma->vm_prev ?
1755 					vma->vm_prev->vm_end : 0;
1756 				goto check_current;
1757 			}
1758 		}
1759 	}
1760 
1761 found:
1762 	/* We found a suitable gap. Clip it with the original high_limit. */
1763 	if (gap_end > info->high_limit)
1764 		gap_end = info->high_limit;
1765 
1766 found_highest:
1767 	/* Compute highest gap address at the desired alignment */
1768 	gap_end -= info->length;
1769 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1770 
1771 	VM_BUG_ON(gap_end < info->low_limit);
1772 	VM_BUG_ON(gap_end < gap_start);
1773 	return gap_end;
1774 }
1775 
1776 /* Get an address range which is currently unmapped.
1777  * For shmat() with addr=0.
1778  *
1779  * Ugly calling convention alert:
1780  * Return value with the low bits set means error value,
1781  * ie
1782  *	if (ret & ~PAGE_MASK)
1783  *		error = ret;
1784  *
1785  * This function "knows" that -ENOMEM has the bits set.
1786  */
1787 #ifndef HAVE_ARCH_UNMAPPED_AREA
1788 unsigned long
1789 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1790 		unsigned long len, unsigned long pgoff, unsigned long flags)
1791 {
1792 	struct mm_struct *mm = current->mm;
1793 	struct vm_area_struct *vma;
1794 	struct vm_unmapped_area_info info;
1795 
1796 	if (len > TASK_SIZE)
1797 		return -ENOMEM;
1798 
1799 	if (flags & MAP_FIXED)
1800 		return addr;
1801 
1802 	if (addr) {
1803 		addr = PAGE_ALIGN(addr);
1804 		vma = find_vma(mm, addr);
1805 		if (TASK_SIZE - len >= addr &&
1806 		    (!vma || addr + len <= vma->vm_start))
1807 			return addr;
1808 	}
1809 
1810 	info.flags = 0;
1811 	info.length = len;
1812 	info.low_limit = TASK_UNMAPPED_BASE;
1813 	info.high_limit = TASK_SIZE;
1814 	info.align_mask = 0;
1815 	return vm_unmapped_area(&info);
1816 }
1817 #endif
1818 
1819 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1820 {
1821 	/*
1822 	 * Is this a new hole at the lowest possible address?
1823 	 */
1824 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1825 		mm->free_area_cache = addr;
1826 }
1827 
1828 /*
1829  * This mmap-allocator allocates new areas top-down from below the
1830  * stack's low limit (the base):
1831  */
1832 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1833 unsigned long
1834 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1835 			  const unsigned long len, const unsigned long pgoff,
1836 			  const unsigned long flags)
1837 {
1838 	struct vm_area_struct *vma;
1839 	struct mm_struct *mm = current->mm;
1840 	unsigned long addr = addr0;
1841 	struct vm_unmapped_area_info info;
1842 
1843 	/* requested length too big for entire address space */
1844 	if (len > TASK_SIZE)
1845 		return -ENOMEM;
1846 
1847 	if (flags & MAP_FIXED)
1848 		return addr;
1849 
1850 	/* requesting a specific address */
1851 	if (addr) {
1852 		addr = PAGE_ALIGN(addr);
1853 		vma = find_vma(mm, addr);
1854 		if (TASK_SIZE - len >= addr &&
1855 				(!vma || addr + len <= vma->vm_start))
1856 			return addr;
1857 	}
1858 
1859 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1860 	info.length = len;
1861 	info.low_limit = PAGE_SIZE;
1862 	info.high_limit = mm->mmap_base;
1863 	info.align_mask = 0;
1864 	addr = vm_unmapped_area(&info);
1865 
1866 	/*
1867 	 * A failed mmap() very likely causes application failure,
1868 	 * so fall back to the bottom-up function here. This scenario
1869 	 * can happen with large stack limits and large mmap()
1870 	 * allocations.
1871 	 */
1872 	if (addr & ~PAGE_MASK) {
1873 		VM_BUG_ON(addr != -ENOMEM);
1874 		info.flags = 0;
1875 		info.low_limit = TASK_UNMAPPED_BASE;
1876 		info.high_limit = TASK_SIZE;
1877 		addr = vm_unmapped_area(&info);
1878 	}
1879 
1880 	return addr;
1881 }
1882 #endif
1883 
1884 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1885 {
1886 	/*
1887 	 * Is this a new hole at the highest possible address?
1888 	 */
1889 	if (addr > mm->free_area_cache)
1890 		mm->free_area_cache = addr;
1891 
1892 	/* dont allow allocations above current base */
1893 	if (mm->free_area_cache > mm->mmap_base)
1894 		mm->free_area_cache = mm->mmap_base;
1895 }
1896 
1897 unsigned long
1898 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1899 		unsigned long pgoff, unsigned long flags)
1900 {
1901 	unsigned long (*get_area)(struct file *, unsigned long,
1902 				  unsigned long, unsigned long, unsigned long);
1903 
1904 	unsigned long error = arch_mmap_check(addr, len, flags);
1905 	if (error)
1906 		return error;
1907 
1908 	/* Careful about overflows.. */
1909 	if (len > TASK_SIZE)
1910 		return -ENOMEM;
1911 
1912 	get_area = current->mm->get_unmapped_area;
1913 	if (file && file->f_op && file->f_op->get_unmapped_area)
1914 		get_area = file->f_op->get_unmapped_area;
1915 	addr = get_area(file, addr, len, pgoff, flags);
1916 	if (IS_ERR_VALUE(addr))
1917 		return addr;
1918 
1919 	if (addr > TASK_SIZE - len)
1920 		return -ENOMEM;
1921 	if (addr & ~PAGE_MASK)
1922 		return -EINVAL;
1923 
1924 	addr = arch_rebalance_pgtables(addr, len);
1925 	error = security_mmap_addr(addr);
1926 	return error ? error : addr;
1927 }
1928 
1929 EXPORT_SYMBOL(get_unmapped_area);
1930 
1931 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1932 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1933 {
1934 	struct vm_area_struct *vma = NULL;
1935 
1936 	if (WARN_ON_ONCE(!mm))		/* Remove this in linux-3.6 */
1937 		return NULL;
1938 
1939 	/* Check the cache first. */
1940 	/* (Cache hit rate is typically around 35%.) */
1941 	vma = mm->mmap_cache;
1942 	if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1943 		struct rb_node *rb_node;
1944 
1945 		rb_node = mm->mm_rb.rb_node;
1946 		vma = NULL;
1947 
1948 		while (rb_node) {
1949 			struct vm_area_struct *vma_tmp;
1950 
1951 			vma_tmp = rb_entry(rb_node,
1952 					   struct vm_area_struct, vm_rb);
1953 
1954 			if (vma_tmp->vm_end > addr) {
1955 				vma = vma_tmp;
1956 				if (vma_tmp->vm_start <= addr)
1957 					break;
1958 				rb_node = rb_node->rb_left;
1959 			} else
1960 				rb_node = rb_node->rb_right;
1961 		}
1962 		if (vma)
1963 			mm->mmap_cache = vma;
1964 	}
1965 	return vma;
1966 }
1967 
1968 EXPORT_SYMBOL(find_vma);
1969 
1970 /*
1971  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1972  */
1973 struct vm_area_struct *
1974 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1975 			struct vm_area_struct **pprev)
1976 {
1977 	struct vm_area_struct *vma;
1978 
1979 	vma = find_vma(mm, addr);
1980 	if (vma) {
1981 		*pprev = vma->vm_prev;
1982 	} else {
1983 		struct rb_node *rb_node = mm->mm_rb.rb_node;
1984 		*pprev = NULL;
1985 		while (rb_node) {
1986 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1987 			rb_node = rb_node->rb_right;
1988 		}
1989 	}
1990 	return vma;
1991 }
1992 
1993 /*
1994  * Verify that the stack growth is acceptable and
1995  * update accounting. This is shared with both the
1996  * grow-up and grow-down cases.
1997  */
1998 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1999 {
2000 	struct mm_struct *mm = vma->vm_mm;
2001 	struct rlimit *rlim = current->signal->rlim;
2002 	unsigned long new_start;
2003 
2004 	/* address space limit tests */
2005 	if (!may_expand_vm(mm, grow))
2006 		return -ENOMEM;
2007 
2008 	/* Stack limit test */
2009 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2010 		return -ENOMEM;
2011 
2012 	/* mlock limit tests */
2013 	if (vma->vm_flags & VM_LOCKED) {
2014 		unsigned long locked;
2015 		unsigned long limit;
2016 		locked = mm->locked_vm + grow;
2017 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2018 		limit >>= PAGE_SHIFT;
2019 		if (locked > limit && !capable(CAP_IPC_LOCK))
2020 			return -ENOMEM;
2021 	}
2022 
2023 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2024 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2025 			vma->vm_end - size;
2026 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2027 		return -EFAULT;
2028 
2029 	/*
2030 	 * Overcommit..  This must be the final test, as it will
2031 	 * update security statistics.
2032 	 */
2033 	if (security_vm_enough_memory_mm(mm, grow))
2034 		return -ENOMEM;
2035 
2036 	/* Ok, everything looks good - let it rip */
2037 	if (vma->vm_flags & VM_LOCKED)
2038 		mm->locked_vm += grow;
2039 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2040 	return 0;
2041 }
2042 
2043 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2044 /*
2045  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2046  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2047  */
2048 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2049 {
2050 	int error;
2051 
2052 	if (!(vma->vm_flags & VM_GROWSUP))
2053 		return -EFAULT;
2054 
2055 	/*
2056 	 * We must make sure the anon_vma is allocated
2057 	 * so that the anon_vma locking is not a noop.
2058 	 */
2059 	if (unlikely(anon_vma_prepare(vma)))
2060 		return -ENOMEM;
2061 	vma_lock_anon_vma(vma);
2062 
2063 	/*
2064 	 * vma->vm_start/vm_end cannot change under us because the caller
2065 	 * is required to hold the mmap_sem in read mode.  We need the
2066 	 * anon_vma lock to serialize against concurrent expand_stacks.
2067 	 * Also guard against wrapping around to address 0.
2068 	 */
2069 	if (address < PAGE_ALIGN(address+4))
2070 		address = PAGE_ALIGN(address+4);
2071 	else {
2072 		vma_unlock_anon_vma(vma);
2073 		return -ENOMEM;
2074 	}
2075 	error = 0;
2076 
2077 	/* Somebody else might have raced and expanded it already */
2078 	if (address > vma->vm_end) {
2079 		unsigned long size, grow;
2080 
2081 		size = address - vma->vm_start;
2082 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2083 
2084 		error = -ENOMEM;
2085 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2086 			error = acct_stack_growth(vma, size, grow);
2087 			if (!error) {
2088 				/*
2089 				 * vma_gap_update() doesn't support concurrent
2090 				 * updates, but we only hold a shared mmap_sem
2091 				 * lock here, so we need to protect against
2092 				 * concurrent vma expansions.
2093 				 * vma_lock_anon_vma() doesn't help here, as
2094 				 * we don't guarantee that all growable vmas
2095 				 * in a mm share the same root anon vma.
2096 				 * So, we reuse mm->page_table_lock to guard
2097 				 * against concurrent vma expansions.
2098 				 */
2099 				spin_lock(&vma->vm_mm->page_table_lock);
2100 				anon_vma_interval_tree_pre_update_vma(vma);
2101 				vma->vm_end = address;
2102 				anon_vma_interval_tree_post_update_vma(vma);
2103 				if (vma->vm_next)
2104 					vma_gap_update(vma->vm_next);
2105 				else
2106 					vma->vm_mm->highest_vm_end = address;
2107 				spin_unlock(&vma->vm_mm->page_table_lock);
2108 
2109 				perf_event_mmap(vma);
2110 			}
2111 		}
2112 	}
2113 	vma_unlock_anon_vma(vma);
2114 	khugepaged_enter_vma_merge(vma);
2115 	validate_mm(vma->vm_mm);
2116 	return error;
2117 }
2118 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2119 
2120 /*
2121  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2122  */
2123 int expand_downwards(struct vm_area_struct *vma,
2124 				   unsigned long address)
2125 {
2126 	int error;
2127 
2128 	/*
2129 	 * We must make sure the anon_vma is allocated
2130 	 * so that the anon_vma locking is not a noop.
2131 	 */
2132 	if (unlikely(anon_vma_prepare(vma)))
2133 		return -ENOMEM;
2134 
2135 	address &= PAGE_MASK;
2136 	error = security_mmap_addr(address);
2137 	if (error)
2138 		return error;
2139 
2140 	vma_lock_anon_vma(vma);
2141 
2142 	/*
2143 	 * vma->vm_start/vm_end cannot change under us because the caller
2144 	 * is required to hold the mmap_sem in read mode.  We need the
2145 	 * anon_vma lock to serialize against concurrent expand_stacks.
2146 	 */
2147 
2148 	/* Somebody else might have raced and expanded it already */
2149 	if (address < vma->vm_start) {
2150 		unsigned long size, grow;
2151 
2152 		size = vma->vm_end - address;
2153 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2154 
2155 		error = -ENOMEM;
2156 		if (grow <= vma->vm_pgoff) {
2157 			error = acct_stack_growth(vma, size, grow);
2158 			if (!error) {
2159 				/*
2160 				 * vma_gap_update() doesn't support concurrent
2161 				 * updates, but we only hold a shared mmap_sem
2162 				 * lock here, so we need to protect against
2163 				 * concurrent vma expansions.
2164 				 * vma_lock_anon_vma() doesn't help here, as
2165 				 * we don't guarantee that all growable vmas
2166 				 * in a mm share the same root anon vma.
2167 				 * So, we reuse mm->page_table_lock to guard
2168 				 * against concurrent vma expansions.
2169 				 */
2170 				spin_lock(&vma->vm_mm->page_table_lock);
2171 				anon_vma_interval_tree_pre_update_vma(vma);
2172 				vma->vm_start = address;
2173 				vma->vm_pgoff -= grow;
2174 				anon_vma_interval_tree_post_update_vma(vma);
2175 				vma_gap_update(vma);
2176 				spin_unlock(&vma->vm_mm->page_table_lock);
2177 
2178 				perf_event_mmap(vma);
2179 			}
2180 		}
2181 	}
2182 	vma_unlock_anon_vma(vma);
2183 	khugepaged_enter_vma_merge(vma);
2184 	validate_mm(vma->vm_mm);
2185 	return error;
2186 }
2187 
2188 /*
2189  * Note how expand_stack() refuses to expand the stack all the way to
2190  * abut the next virtual mapping, *unless* that mapping itself is also
2191  * a stack mapping. We want to leave room for a guard page, after all
2192  * (the guard page itself is not added here, that is done by the
2193  * actual page faulting logic)
2194  *
2195  * This matches the behavior of the guard page logic (see mm/memory.c:
2196  * check_stack_guard_page()), which only allows the guard page to be
2197  * removed under these circumstances.
2198  */
2199 #ifdef CONFIG_STACK_GROWSUP
2200 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2201 {
2202 	struct vm_area_struct *next;
2203 
2204 	address &= PAGE_MASK;
2205 	next = vma->vm_next;
2206 	if (next && next->vm_start == address + PAGE_SIZE) {
2207 		if (!(next->vm_flags & VM_GROWSUP))
2208 			return -ENOMEM;
2209 	}
2210 	return expand_upwards(vma, address);
2211 }
2212 
2213 struct vm_area_struct *
2214 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2215 {
2216 	struct vm_area_struct *vma, *prev;
2217 
2218 	addr &= PAGE_MASK;
2219 	vma = find_vma_prev(mm, addr, &prev);
2220 	if (vma && (vma->vm_start <= addr))
2221 		return vma;
2222 	if (!prev || expand_stack(prev, addr))
2223 		return NULL;
2224 	if (prev->vm_flags & VM_LOCKED)
2225 		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2226 	return prev;
2227 }
2228 #else
2229 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2230 {
2231 	struct vm_area_struct *prev;
2232 
2233 	address &= PAGE_MASK;
2234 	prev = vma->vm_prev;
2235 	if (prev && prev->vm_end == address) {
2236 		if (!(prev->vm_flags & VM_GROWSDOWN))
2237 			return -ENOMEM;
2238 	}
2239 	return expand_downwards(vma, address);
2240 }
2241 
2242 struct vm_area_struct *
2243 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2244 {
2245 	struct vm_area_struct * vma;
2246 	unsigned long start;
2247 
2248 	addr &= PAGE_MASK;
2249 	vma = find_vma(mm,addr);
2250 	if (!vma)
2251 		return NULL;
2252 	if (vma->vm_start <= addr)
2253 		return vma;
2254 	if (!(vma->vm_flags & VM_GROWSDOWN))
2255 		return NULL;
2256 	start = vma->vm_start;
2257 	if (expand_stack(vma, addr))
2258 		return NULL;
2259 	if (vma->vm_flags & VM_LOCKED)
2260 		__mlock_vma_pages_range(vma, addr, start, NULL);
2261 	return vma;
2262 }
2263 #endif
2264 
2265 /*
2266  * Ok - we have the memory areas we should free on the vma list,
2267  * so release them, and do the vma updates.
2268  *
2269  * Called with the mm semaphore held.
2270  */
2271 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2272 {
2273 	unsigned long nr_accounted = 0;
2274 
2275 	/* Update high watermark before we lower total_vm */
2276 	update_hiwater_vm(mm);
2277 	do {
2278 		long nrpages = vma_pages(vma);
2279 
2280 		if (vma->vm_flags & VM_ACCOUNT)
2281 			nr_accounted += nrpages;
2282 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2283 		vma = remove_vma(vma);
2284 	} while (vma);
2285 	vm_unacct_memory(nr_accounted);
2286 	validate_mm(mm);
2287 }
2288 
2289 /*
2290  * Get rid of page table information in the indicated region.
2291  *
2292  * Called with the mm semaphore held.
2293  */
2294 static void unmap_region(struct mm_struct *mm,
2295 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2296 		unsigned long start, unsigned long end)
2297 {
2298 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2299 	struct mmu_gather tlb;
2300 
2301 	lru_add_drain();
2302 	tlb_gather_mmu(&tlb, mm, 0);
2303 	update_hiwater_rss(mm);
2304 	unmap_vmas(&tlb, vma, start, end);
2305 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2306 				 next ? next->vm_start : 0);
2307 	tlb_finish_mmu(&tlb, start, end);
2308 }
2309 
2310 /*
2311  * Create a list of vma's touched by the unmap, removing them from the mm's
2312  * vma list as we go..
2313  */
2314 static void
2315 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2316 	struct vm_area_struct *prev, unsigned long end)
2317 {
2318 	struct vm_area_struct **insertion_point;
2319 	struct vm_area_struct *tail_vma = NULL;
2320 	unsigned long addr;
2321 
2322 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2323 	vma->vm_prev = NULL;
2324 	do {
2325 		vma_rb_erase(vma, &mm->mm_rb);
2326 		mm->map_count--;
2327 		tail_vma = vma;
2328 		vma = vma->vm_next;
2329 	} while (vma && vma->vm_start < end);
2330 	*insertion_point = vma;
2331 	if (vma) {
2332 		vma->vm_prev = prev;
2333 		vma_gap_update(vma);
2334 	} else
2335 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2336 	tail_vma->vm_next = NULL;
2337 	if (mm->unmap_area == arch_unmap_area)
2338 		addr = prev ? prev->vm_end : mm->mmap_base;
2339 	else
2340 		addr = vma ?  vma->vm_start : mm->mmap_base;
2341 	mm->unmap_area(mm, addr);
2342 	mm->mmap_cache = NULL;		/* Kill the cache. */
2343 }
2344 
2345 /*
2346  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2347  * munmap path where it doesn't make sense to fail.
2348  */
2349 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2350 	      unsigned long addr, int new_below)
2351 {
2352 	struct mempolicy *pol;
2353 	struct vm_area_struct *new;
2354 	int err = -ENOMEM;
2355 
2356 	if (is_vm_hugetlb_page(vma) && (addr &
2357 					~(huge_page_mask(hstate_vma(vma)))))
2358 		return -EINVAL;
2359 
2360 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2361 	if (!new)
2362 		goto out_err;
2363 
2364 	/* most fields are the same, copy all, and then fixup */
2365 	*new = *vma;
2366 
2367 	INIT_LIST_HEAD(&new->anon_vma_chain);
2368 
2369 	if (new_below)
2370 		new->vm_end = addr;
2371 	else {
2372 		new->vm_start = addr;
2373 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2374 	}
2375 
2376 	pol = mpol_dup(vma_policy(vma));
2377 	if (IS_ERR(pol)) {
2378 		err = PTR_ERR(pol);
2379 		goto out_free_vma;
2380 	}
2381 	vma_set_policy(new, pol);
2382 
2383 	if (anon_vma_clone(new, vma))
2384 		goto out_free_mpol;
2385 
2386 	if (new->vm_file)
2387 		get_file(new->vm_file);
2388 
2389 	if (new->vm_ops && new->vm_ops->open)
2390 		new->vm_ops->open(new);
2391 
2392 	if (new_below)
2393 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2394 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2395 	else
2396 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2397 
2398 	/* Success. */
2399 	if (!err)
2400 		return 0;
2401 
2402 	/* Clean everything up if vma_adjust failed. */
2403 	if (new->vm_ops && new->vm_ops->close)
2404 		new->vm_ops->close(new);
2405 	if (new->vm_file)
2406 		fput(new->vm_file);
2407 	unlink_anon_vmas(new);
2408  out_free_mpol:
2409 	mpol_put(pol);
2410  out_free_vma:
2411 	kmem_cache_free(vm_area_cachep, new);
2412  out_err:
2413 	return err;
2414 }
2415 
2416 /*
2417  * Split a vma into two pieces at address 'addr', a new vma is allocated
2418  * either for the first part or the tail.
2419  */
2420 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2421 	      unsigned long addr, int new_below)
2422 {
2423 	if (mm->map_count >= sysctl_max_map_count)
2424 		return -ENOMEM;
2425 
2426 	return __split_vma(mm, vma, addr, new_below);
2427 }
2428 
2429 /* Munmap is split into 2 main parts -- this part which finds
2430  * what needs doing, and the areas themselves, which do the
2431  * work.  This now handles partial unmappings.
2432  * Jeremy Fitzhardinge <jeremy@goop.org>
2433  */
2434 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2435 {
2436 	unsigned long end;
2437 	struct vm_area_struct *vma, *prev, *last;
2438 
2439 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2440 		return -EINVAL;
2441 
2442 	if ((len = PAGE_ALIGN(len)) == 0)
2443 		return -EINVAL;
2444 
2445 	/* Find the first overlapping VMA */
2446 	vma = find_vma(mm, start);
2447 	if (!vma)
2448 		return 0;
2449 	prev = vma->vm_prev;
2450 	/* we have  start < vma->vm_end  */
2451 
2452 	/* if it doesn't overlap, we have nothing.. */
2453 	end = start + len;
2454 	if (vma->vm_start >= end)
2455 		return 0;
2456 
2457 	/*
2458 	 * If we need to split any vma, do it now to save pain later.
2459 	 *
2460 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2461 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2462 	 * places tmp vma above, and higher split_vma places tmp vma below.
2463 	 */
2464 	if (start > vma->vm_start) {
2465 		int error;
2466 
2467 		/*
2468 		 * Make sure that map_count on return from munmap() will
2469 		 * not exceed its limit; but let map_count go just above
2470 		 * its limit temporarily, to help free resources as expected.
2471 		 */
2472 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2473 			return -ENOMEM;
2474 
2475 		error = __split_vma(mm, vma, start, 0);
2476 		if (error)
2477 			return error;
2478 		prev = vma;
2479 	}
2480 
2481 	/* Does it split the last one? */
2482 	last = find_vma(mm, end);
2483 	if (last && end > last->vm_start) {
2484 		int error = __split_vma(mm, last, end, 1);
2485 		if (error)
2486 			return error;
2487 	}
2488 	vma = prev? prev->vm_next: mm->mmap;
2489 
2490 	/*
2491 	 * unlock any mlock()ed ranges before detaching vmas
2492 	 */
2493 	if (mm->locked_vm) {
2494 		struct vm_area_struct *tmp = vma;
2495 		while (tmp && tmp->vm_start < end) {
2496 			if (tmp->vm_flags & VM_LOCKED) {
2497 				mm->locked_vm -= vma_pages(tmp);
2498 				munlock_vma_pages_all(tmp);
2499 			}
2500 			tmp = tmp->vm_next;
2501 		}
2502 	}
2503 
2504 	/*
2505 	 * Remove the vma's, and unmap the actual pages
2506 	 */
2507 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2508 	unmap_region(mm, vma, prev, start, end);
2509 
2510 	/* Fix up all other VM information */
2511 	remove_vma_list(mm, vma);
2512 
2513 	return 0;
2514 }
2515 
2516 int vm_munmap(unsigned long start, size_t len)
2517 {
2518 	int ret;
2519 	struct mm_struct *mm = current->mm;
2520 
2521 	down_write(&mm->mmap_sem);
2522 	ret = do_munmap(mm, start, len);
2523 	up_write(&mm->mmap_sem);
2524 	return ret;
2525 }
2526 EXPORT_SYMBOL(vm_munmap);
2527 
2528 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2529 {
2530 	profile_munmap(addr);
2531 	return vm_munmap(addr, len);
2532 }
2533 
2534 static inline void verify_mm_writelocked(struct mm_struct *mm)
2535 {
2536 #ifdef CONFIG_DEBUG_VM
2537 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2538 		WARN_ON(1);
2539 		up_read(&mm->mmap_sem);
2540 	}
2541 #endif
2542 }
2543 
2544 /*
2545  *  this is really a simplified "do_mmap".  it only handles
2546  *  anonymous maps.  eventually we may be able to do some
2547  *  brk-specific accounting here.
2548  */
2549 static unsigned long do_brk(unsigned long addr, unsigned long len)
2550 {
2551 	struct mm_struct * mm = current->mm;
2552 	struct vm_area_struct * vma, * prev;
2553 	unsigned long flags;
2554 	struct rb_node ** rb_link, * rb_parent;
2555 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2556 	int error;
2557 
2558 	len = PAGE_ALIGN(len);
2559 	if (!len)
2560 		return addr;
2561 
2562 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2563 
2564 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2565 	if (error & ~PAGE_MASK)
2566 		return error;
2567 
2568 	/*
2569 	 * mlock MCL_FUTURE?
2570 	 */
2571 	if (mm->def_flags & VM_LOCKED) {
2572 		unsigned long locked, lock_limit;
2573 		locked = len >> PAGE_SHIFT;
2574 		locked += mm->locked_vm;
2575 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2576 		lock_limit >>= PAGE_SHIFT;
2577 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2578 			return -EAGAIN;
2579 	}
2580 
2581 	/*
2582 	 * mm->mmap_sem is required to protect against another thread
2583 	 * changing the mappings in case we sleep.
2584 	 */
2585 	verify_mm_writelocked(mm);
2586 
2587 	/*
2588 	 * Clear old maps.  this also does some error checking for us
2589 	 */
2590  munmap_back:
2591 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2592 		if (do_munmap(mm, addr, len))
2593 			return -ENOMEM;
2594 		goto munmap_back;
2595 	}
2596 
2597 	/* Check against address space limits *after* clearing old maps... */
2598 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2599 		return -ENOMEM;
2600 
2601 	if (mm->map_count > sysctl_max_map_count)
2602 		return -ENOMEM;
2603 
2604 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2605 		return -ENOMEM;
2606 
2607 	/* Can we just expand an old private anonymous mapping? */
2608 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2609 					NULL, NULL, pgoff, NULL);
2610 	if (vma)
2611 		goto out;
2612 
2613 	/*
2614 	 * create a vma struct for an anonymous mapping
2615 	 */
2616 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2617 	if (!vma) {
2618 		vm_unacct_memory(len >> PAGE_SHIFT);
2619 		return -ENOMEM;
2620 	}
2621 
2622 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2623 	vma->vm_mm = mm;
2624 	vma->vm_start = addr;
2625 	vma->vm_end = addr + len;
2626 	vma->vm_pgoff = pgoff;
2627 	vma->vm_flags = flags;
2628 	vma->vm_page_prot = vm_get_page_prot(flags);
2629 	vma_link(mm, vma, prev, rb_link, rb_parent);
2630 out:
2631 	perf_event_mmap(vma);
2632 	mm->total_vm += len >> PAGE_SHIFT;
2633 	if (flags & VM_LOCKED)
2634 		mm->locked_vm += (len >> PAGE_SHIFT);
2635 	return addr;
2636 }
2637 
2638 unsigned long vm_brk(unsigned long addr, unsigned long len)
2639 {
2640 	struct mm_struct *mm = current->mm;
2641 	unsigned long ret;
2642 	bool populate;
2643 
2644 	down_write(&mm->mmap_sem);
2645 	ret = do_brk(addr, len);
2646 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2647 	up_write(&mm->mmap_sem);
2648 	if (populate)
2649 		mm_populate(addr, len);
2650 	return ret;
2651 }
2652 EXPORT_SYMBOL(vm_brk);
2653 
2654 /* Release all mmaps. */
2655 void exit_mmap(struct mm_struct *mm)
2656 {
2657 	struct mmu_gather tlb;
2658 	struct vm_area_struct *vma;
2659 	unsigned long nr_accounted = 0;
2660 
2661 	/* mm's last user has gone, and its about to be pulled down */
2662 	mmu_notifier_release(mm);
2663 
2664 	if (mm->locked_vm) {
2665 		vma = mm->mmap;
2666 		while (vma) {
2667 			if (vma->vm_flags & VM_LOCKED)
2668 				munlock_vma_pages_all(vma);
2669 			vma = vma->vm_next;
2670 		}
2671 	}
2672 
2673 	arch_exit_mmap(mm);
2674 
2675 	vma = mm->mmap;
2676 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2677 		return;
2678 
2679 	lru_add_drain();
2680 	flush_cache_mm(mm);
2681 	tlb_gather_mmu(&tlb, mm, 1);
2682 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2683 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2684 	unmap_vmas(&tlb, vma, 0, -1);
2685 
2686 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2687 	tlb_finish_mmu(&tlb, 0, -1);
2688 
2689 	/*
2690 	 * Walk the list again, actually closing and freeing it,
2691 	 * with preemption enabled, without holding any MM locks.
2692 	 */
2693 	while (vma) {
2694 		if (vma->vm_flags & VM_ACCOUNT)
2695 			nr_accounted += vma_pages(vma);
2696 		vma = remove_vma(vma);
2697 	}
2698 	vm_unacct_memory(nr_accounted);
2699 
2700 	WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2701 }
2702 
2703 /* Insert vm structure into process list sorted by address
2704  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2705  * then i_mmap_mutex is taken here.
2706  */
2707 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2708 {
2709 	struct vm_area_struct *prev;
2710 	struct rb_node **rb_link, *rb_parent;
2711 
2712 	/*
2713 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2714 	 * until its first write fault, when page's anon_vma and index
2715 	 * are set.  But now set the vm_pgoff it will almost certainly
2716 	 * end up with (unless mremap moves it elsewhere before that
2717 	 * first wfault), so /proc/pid/maps tells a consistent story.
2718 	 *
2719 	 * By setting it to reflect the virtual start address of the
2720 	 * vma, merges and splits can happen in a seamless way, just
2721 	 * using the existing file pgoff checks and manipulations.
2722 	 * Similarly in do_mmap_pgoff and in do_brk.
2723 	 */
2724 	if (!vma->vm_file) {
2725 		BUG_ON(vma->anon_vma);
2726 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2727 	}
2728 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2729 			   &prev, &rb_link, &rb_parent))
2730 		return -ENOMEM;
2731 	if ((vma->vm_flags & VM_ACCOUNT) &&
2732 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2733 		return -ENOMEM;
2734 
2735 	vma_link(mm, vma, prev, rb_link, rb_parent);
2736 	return 0;
2737 }
2738 
2739 /*
2740  * Copy the vma structure to a new location in the same mm,
2741  * prior to moving page table entries, to effect an mremap move.
2742  */
2743 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2744 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2745 	bool *need_rmap_locks)
2746 {
2747 	struct vm_area_struct *vma = *vmap;
2748 	unsigned long vma_start = vma->vm_start;
2749 	struct mm_struct *mm = vma->vm_mm;
2750 	struct vm_area_struct *new_vma, *prev;
2751 	struct rb_node **rb_link, *rb_parent;
2752 	struct mempolicy *pol;
2753 	bool faulted_in_anon_vma = true;
2754 
2755 	/*
2756 	 * If anonymous vma has not yet been faulted, update new pgoff
2757 	 * to match new location, to increase its chance of merging.
2758 	 */
2759 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2760 		pgoff = addr >> PAGE_SHIFT;
2761 		faulted_in_anon_vma = false;
2762 	}
2763 
2764 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2765 		return NULL;	/* should never get here */
2766 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2767 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2768 	if (new_vma) {
2769 		/*
2770 		 * Source vma may have been merged into new_vma
2771 		 */
2772 		if (unlikely(vma_start >= new_vma->vm_start &&
2773 			     vma_start < new_vma->vm_end)) {
2774 			/*
2775 			 * The only way we can get a vma_merge with
2776 			 * self during an mremap is if the vma hasn't
2777 			 * been faulted in yet and we were allowed to
2778 			 * reset the dst vma->vm_pgoff to the
2779 			 * destination address of the mremap to allow
2780 			 * the merge to happen. mremap must change the
2781 			 * vm_pgoff linearity between src and dst vmas
2782 			 * (in turn preventing a vma_merge) to be
2783 			 * safe. It is only safe to keep the vm_pgoff
2784 			 * linear if there are no pages mapped yet.
2785 			 */
2786 			VM_BUG_ON(faulted_in_anon_vma);
2787 			*vmap = vma = new_vma;
2788 		}
2789 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2790 	} else {
2791 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2792 		if (new_vma) {
2793 			*new_vma = *vma;
2794 			new_vma->vm_start = addr;
2795 			new_vma->vm_end = addr + len;
2796 			new_vma->vm_pgoff = pgoff;
2797 			pol = mpol_dup(vma_policy(vma));
2798 			if (IS_ERR(pol))
2799 				goto out_free_vma;
2800 			vma_set_policy(new_vma, pol);
2801 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2802 			if (anon_vma_clone(new_vma, vma))
2803 				goto out_free_mempol;
2804 			if (new_vma->vm_file)
2805 				get_file(new_vma->vm_file);
2806 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2807 				new_vma->vm_ops->open(new_vma);
2808 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2809 			*need_rmap_locks = false;
2810 		}
2811 	}
2812 	return new_vma;
2813 
2814  out_free_mempol:
2815 	mpol_put(pol);
2816  out_free_vma:
2817 	kmem_cache_free(vm_area_cachep, new_vma);
2818 	return NULL;
2819 }
2820 
2821 /*
2822  * Return true if the calling process may expand its vm space by the passed
2823  * number of pages
2824  */
2825 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2826 {
2827 	unsigned long cur = mm->total_vm;	/* pages */
2828 	unsigned long lim;
2829 
2830 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2831 
2832 	if (cur + npages > lim)
2833 		return 0;
2834 	return 1;
2835 }
2836 
2837 
2838 static int special_mapping_fault(struct vm_area_struct *vma,
2839 				struct vm_fault *vmf)
2840 {
2841 	pgoff_t pgoff;
2842 	struct page **pages;
2843 
2844 	/*
2845 	 * special mappings have no vm_file, and in that case, the mm
2846 	 * uses vm_pgoff internally. So we have to subtract it from here.
2847 	 * We are allowed to do this because we are the mm; do not copy
2848 	 * this code into drivers!
2849 	 */
2850 	pgoff = vmf->pgoff - vma->vm_pgoff;
2851 
2852 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2853 		pgoff--;
2854 
2855 	if (*pages) {
2856 		struct page *page = *pages;
2857 		get_page(page);
2858 		vmf->page = page;
2859 		return 0;
2860 	}
2861 
2862 	return VM_FAULT_SIGBUS;
2863 }
2864 
2865 /*
2866  * Having a close hook prevents vma merging regardless of flags.
2867  */
2868 static void special_mapping_close(struct vm_area_struct *vma)
2869 {
2870 }
2871 
2872 static const struct vm_operations_struct special_mapping_vmops = {
2873 	.close = special_mapping_close,
2874 	.fault = special_mapping_fault,
2875 };
2876 
2877 /*
2878  * Called with mm->mmap_sem held for writing.
2879  * Insert a new vma covering the given region, with the given flags.
2880  * Its pages are supplied by the given array of struct page *.
2881  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2882  * The region past the last page supplied will always produce SIGBUS.
2883  * The array pointer and the pages it points to are assumed to stay alive
2884  * for as long as this mapping might exist.
2885  */
2886 int install_special_mapping(struct mm_struct *mm,
2887 			    unsigned long addr, unsigned long len,
2888 			    unsigned long vm_flags, struct page **pages)
2889 {
2890 	int ret;
2891 	struct vm_area_struct *vma;
2892 
2893 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2894 	if (unlikely(vma == NULL))
2895 		return -ENOMEM;
2896 
2897 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2898 	vma->vm_mm = mm;
2899 	vma->vm_start = addr;
2900 	vma->vm_end = addr + len;
2901 
2902 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2903 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2904 
2905 	vma->vm_ops = &special_mapping_vmops;
2906 	vma->vm_private_data = pages;
2907 
2908 	ret = insert_vm_struct(mm, vma);
2909 	if (ret)
2910 		goto out;
2911 
2912 	mm->total_vm += len >> PAGE_SHIFT;
2913 
2914 	perf_event_mmap(vma);
2915 
2916 	return 0;
2917 
2918 out:
2919 	kmem_cache_free(vm_area_cachep, vma);
2920 	return ret;
2921 }
2922 
2923 static DEFINE_MUTEX(mm_all_locks_mutex);
2924 
2925 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2926 {
2927 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2928 		/*
2929 		 * The LSB of head.next can't change from under us
2930 		 * because we hold the mm_all_locks_mutex.
2931 		 */
2932 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2933 		/*
2934 		 * We can safely modify head.next after taking the
2935 		 * anon_vma->root->rwsem. If some other vma in this mm shares
2936 		 * the same anon_vma we won't take it again.
2937 		 *
2938 		 * No need of atomic instructions here, head.next
2939 		 * can't change from under us thanks to the
2940 		 * anon_vma->root->rwsem.
2941 		 */
2942 		if (__test_and_set_bit(0, (unsigned long *)
2943 				       &anon_vma->root->rb_root.rb_node))
2944 			BUG();
2945 	}
2946 }
2947 
2948 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2949 {
2950 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2951 		/*
2952 		 * AS_MM_ALL_LOCKS can't change from under us because
2953 		 * we hold the mm_all_locks_mutex.
2954 		 *
2955 		 * Operations on ->flags have to be atomic because
2956 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2957 		 * mm_all_locks_mutex, there may be other cpus
2958 		 * changing other bitflags in parallel to us.
2959 		 */
2960 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2961 			BUG();
2962 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2963 	}
2964 }
2965 
2966 /*
2967  * This operation locks against the VM for all pte/vma/mm related
2968  * operations that could ever happen on a certain mm. This includes
2969  * vmtruncate, try_to_unmap, and all page faults.
2970  *
2971  * The caller must take the mmap_sem in write mode before calling
2972  * mm_take_all_locks(). The caller isn't allowed to release the
2973  * mmap_sem until mm_drop_all_locks() returns.
2974  *
2975  * mmap_sem in write mode is required in order to block all operations
2976  * that could modify pagetables and free pages without need of
2977  * altering the vma layout (for example populate_range() with
2978  * nonlinear vmas). It's also needed in write mode to avoid new
2979  * anon_vmas to be associated with existing vmas.
2980  *
2981  * A single task can't take more than one mm_take_all_locks() in a row
2982  * or it would deadlock.
2983  *
2984  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2985  * mapping->flags avoid to take the same lock twice, if more than one
2986  * vma in this mm is backed by the same anon_vma or address_space.
2987  *
2988  * We can take all the locks in random order because the VM code
2989  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
2990  * takes more than one of them in a row. Secondly we're protected
2991  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2992  *
2993  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2994  * that may have to take thousand of locks.
2995  *
2996  * mm_take_all_locks() can fail if it's interrupted by signals.
2997  */
2998 int mm_take_all_locks(struct mm_struct *mm)
2999 {
3000 	struct vm_area_struct *vma;
3001 	struct anon_vma_chain *avc;
3002 
3003 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3004 
3005 	mutex_lock(&mm_all_locks_mutex);
3006 
3007 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3008 		if (signal_pending(current))
3009 			goto out_unlock;
3010 		if (vma->vm_file && vma->vm_file->f_mapping)
3011 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3012 	}
3013 
3014 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3015 		if (signal_pending(current))
3016 			goto out_unlock;
3017 		if (vma->anon_vma)
3018 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3019 				vm_lock_anon_vma(mm, avc->anon_vma);
3020 	}
3021 
3022 	return 0;
3023 
3024 out_unlock:
3025 	mm_drop_all_locks(mm);
3026 	return -EINTR;
3027 }
3028 
3029 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3030 {
3031 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3032 		/*
3033 		 * The LSB of head.next can't change to 0 from under
3034 		 * us because we hold the mm_all_locks_mutex.
3035 		 *
3036 		 * We must however clear the bitflag before unlocking
3037 		 * the vma so the users using the anon_vma->rb_root will
3038 		 * never see our bitflag.
3039 		 *
3040 		 * No need of atomic instructions here, head.next
3041 		 * can't change from under us until we release the
3042 		 * anon_vma->root->rwsem.
3043 		 */
3044 		if (!__test_and_clear_bit(0, (unsigned long *)
3045 					  &anon_vma->root->rb_root.rb_node))
3046 			BUG();
3047 		anon_vma_unlock_write(anon_vma);
3048 	}
3049 }
3050 
3051 static void vm_unlock_mapping(struct address_space *mapping)
3052 {
3053 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3054 		/*
3055 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3056 		 * because we hold the mm_all_locks_mutex.
3057 		 */
3058 		mutex_unlock(&mapping->i_mmap_mutex);
3059 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3060 					&mapping->flags))
3061 			BUG();
3062 	}
3063 }
3064 
3065 /*
3066  * The mmap_sem cannot be released by the caller until
3067  * mm_drop_all_locks() returns.
3068  */
3069 void mm_drop_all_locks(struct mm_struct *mm)
3070 {
3071 	struct vm_area_struct *vma;
3072 	struct anon_vma_chain *avc;
3073 
3074 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3075 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3076 
3077 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3078 		if (vma->anon_vma)
3079 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3080 				vm_unlock_anon_vma(avc->anon_vma);
3081 		if (vma->vm_file && vma->vm_file->f_mapping)
3082 			vm_unlock_mapping(vma->vm_file->f_mapping);
3083 	}
3084 
3085 	mutex_unlock(&mm_all_locks_mutex);
3086 }
3087 
3088 /*
3089  * initialise the VMA slab
3090  */
3091 void __init mmap_init(void)
3092 {
3093 	int ret;
3094 
3095 	ret = percpu_counter_init(&vm_committed_as, 0);
3096 	VM_BUG_ON(ret);
3097 }
3098