xref: /openbmc/linux/mm/mmap.c (revision 92a2c6b2)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49 
50 #include "internal.h"
51 
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags)	(0)
54 #endif
55 
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len)		(addr)
58 #endif
59 
60 static void unmap_region(struct mm_struct *mm,
61 		struct vm_area_struct *vma, struct vm_area_struct *prev,
62 		unsigned long start, unsigned long end);
63 
64 /* description of effects of mapping type and prot in current implementation.
65  * this is due to the limited x86 page protection hardware.  The expected
66  * behavior is in parens:
67  *
68  * map_type	prot
69  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
70  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
71  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
72  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
73  *
74  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
75  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
76  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
77  *
78  */
79 pgprot_t protection_map[16] = {
80 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83 
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86 	return __pgprot(pgprot_val(protection_map[vm_flags &
87 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91 
92 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
93 {
94 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
95 }
96 
97 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
98 void vma_set_page_prot(struct vm_area_struct *vma)
99 {
100 	unsigned long vm_flags = vma->vm_flags;
101 
102 	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
103 	if (vma_wants_writenotify(vma)) {
104 		vm_flags &= ~VM_SHARED;
105 		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
106 						     vm_flags);
107 	}
108 }
109 
110 
111 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
112 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
113 unsigned long sysctl_overcommit_kbytes __read_mostly;
114 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
115 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
116 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
117 /*
118  * Make sure vm_committed_as in one cacheline and not cacheline shared with
119  * other variables. It can be updated by several CPUs frequently.
120  */
121 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
122 
123 /*
124  * The global memory commitment made in the system can be a metric
125  * that can be used to drive ballooning decisions when Linux is hosted
126  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
127  * balancing memory across competing virtual machines that are hosted.
128  * Several metrics drive this policy engine including the guest reported
129  * memory commitment.
130  */
131 unsigned long vm_memory_committed(void)
132 {
133 	return percpu_counter_read_positive(&vm_committed_as);
134 }
135 EXPORT_SYMBOL_GPL(vm_memory_committed);
136 
137 /*
138  * Check that a process has enough memory to allocate a new virtual
139  * mapping. 0 means there is enough memory for the allocation to
140  * succeed and -ENOMEM implies there is not.
141  *
142  * We currently support three overcommit policies, which are set via the
143  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
144  *
145  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
146  * Additional code 2002 Jul 20 by Robert Love.
147  *
148  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
149  *
150  * Note this is a helper function intended to be used by LSMs which
151  * wish to use this logic.
152  */
153 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
154 {
155 	long free, allowed, reserve;
156 
157 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
158 			-(s64)vm_committed_as_batch * num_online_cpus(),
159 			"memory commitment underflow");
160 
161 	vm_acct_memory(pages);
162 
163 	/*
164 	 * Sometimes we want to use more memory than we have
165 	 */
166 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
167 		return 0;
168 
169 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
170 		free = global_page_state(NR_FREE_PAGES);
171 		free += global_page_state(NR_FILE_PAGES);
172 
173 		/*
174 		 * shmem pages shouldn't be counted as free in this
175 		 * case, they can't be purged, only swapped out, and
176 		 * that won't affect the overall amount of available
177 		 * memory in the system.
178 		 */
179 		free -= global_page_state(NR_SHMEM);
180 
181 		free += get_nr_swap_pages();
182 
183 		/*
184 		 * Any slabs which are created with the
185 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
186 		 * which are reclaimable, under pressure.  The dentry
187 		 * cache and most inode caches should fall into this
188 		 */
189 		free += global_page_state(NR_SLAB_RECLAIMABLE);
190 
191 		/*
192 		 * Leave reserved pages. The pages are not for anonymous pages.
193 		 */
194 		if (free <= totalreserve_pages)
195 			goto error;
196 		else
197 			free -= totalreserve_pages;
198 
199 		/*
200 		 * Reserve some for root
201 		 */
202 		if (!cap_sys_admin)
203 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
204 
205 		if (free > pages)
206 			return 0;
207 
208 		goto error;
209 	}
210 
211 	allowed = vm_commit_limit();
212 	/*
213 	 * Reserve some for root
214 	 */
215 	if (!cap_sys_admin)
216 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
217 
218 	/*
219 	 * Don't let a single process grow so big a user can't recover
220 	 */
221 	if (mm) {
222 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
223 		allowed -= min_t(long, mm->total_vm / 32, reserve);
224 	}
225 
226 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
227 		return 0;
228 error:
229 	vm_unacct_memory(pages);
230 
231 	return -ENOMEM;
232 }
233 
234 /*
235  * Requires inode->i_mapping->i_mmap_rwsem
236  */
237 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
238 		struct file *file, struct address_space *mapping)
239 {
240 	if (vma->vm_flags & VM_DENYWRITE)
241 		atomic_inc(&file_inode(file)->i_writecount);
242 	if (vma->vm_flags & VM_SHARED)
243 		mapping_unmap_writable(mapping);
244 
245 	flush_dcache_mmap_lock(mapping);
246 	vma_interval_tree_remove(vma, &mapping->i_mmap);
247 	flush_dcache_mmap_unlock(mapping);
248 }
249 
250 /*
251  * Unlink a file-based vm structure from its interval tree, to hide
252  * vma from rmap and vmtruncate before freeing its page tables.
253  */
254 void unlink_file_vma(struct vm_area_struct *vma)
255 {
256 	struct file *file = vma->vm_file;
257 
258 	if (file) {
259 		struct address_space *mapping = file->f_mapping;
260 		i_mmap_lock_write(mapping);
261 		__remove_shared_vm_struct(vma, file, mapping);
262 		i_mmap_unlock_write(mapping);
263 	}
264 }
265 
266 /*
267  * Close a vm structure and free it, returning the next.
268  */
269 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
270 {
271 	struct vm_area_struct *next = vma->vm_next;
272 
273 	might_sleep();
274 	if (vma->vm_ops && vma->vm_ops->close)
275 		vma->vm_ops->close(vma);
276 	if (vma->vm_file)
277 		fput(vma->vm_file);
278 	mpol_put(vma_policy(vma));
279 	kmem_cache_free(vm_area_cachep, vma);
280 	return next;
281 }
282 
283 static unsigned long do_brk(unsigned long addr, unsigned long len);
284 
285 SYSCALL_DEFINE1(brk, unsigned long, brk)
286 {
287 	unsigned long retval;
288 	unsigned long newbrk, oldbrk;
289 	struct mm_struct *mm = current->mm;
290 	unsigned long min_brk;
291 	bool populate;
292 
293 	down_write(&mm->mmap_sem);
294 
295 #ifdef CONFIG_COMPAT_BRK
296 	/*
297 	 * CONFIG_COMPAT_BRK can still be overridden by setting
298 	 * randomize_va_space to 2, which will still cause mm->start_brk
299 	 * to be arbitrarily shifted
300 	 */
301 	if (current->brk_randomized)
302 		min_brk = mm->start_brk;
303 	else
304 		min_brk = mm->end_data;
305 #else
306 	min_brk = mm->start_brk;
307 #endif
308 	if (brk < min_brk)
309 		goto out;
310 
311 	/*
312 	 * Check against rlimit here. If this check is done later after the test
313 	 * of oldbrk with newbrk then it can escape the test and let the data
314 	 * segment grow beyond its set limit the in case where the limit is
315 	 * not page aligned -Ram Gupta
316 	 */
317 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
318 			      mm->end_data, mm->start_data))
319 		goto out;
320 
321 	newbrk = PAGE_ALIGN(brk);
322 	oldbrk = PAGE_ALIGN(mm->brk);
323 	if (oldbrk == newbrk)
324 		goto set_brk;
325 
326 	/* Always allow shrinking brk. */
327 	if (brk <= mm->brk) {
328 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
329 			goto set_brk;
330 		goto out;
331 	}
332 
333 	/* Check against existing mmap mappings. */
334 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
335 		goto out;
336 
337 	/* Ok, looks good - let it rip. */
338 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
339 		goto out;
340 
341 set_brk:
342 	mm->brk = brk;
343 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
344 	up_write(&mm->mmap_sem);
345 	if (populate)
346 		mm_populate(oldbrk, newbrk - oldbrk);
347 	return brk;
348 
349 out:
350 	retval = mm->brk;
351 	up_write(&mm->mmap_sem);
352 	return retval;
353 }
354 
355 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
356 {
357 	unsigned long max, subtree_gap;
358 	max = vma->vm_start;
359 	if (vma->vm_prev)
360 		max -= vma->vm_prev->vm_end;
361 	if (vma->vm_rb.rb_left) {
362 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
363 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
364 		if (subtree_gap > max)
365 			max = subtree_gap;
366 	}
367 	if (vma->vm_rb.rb_right) {
368 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
369 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
370 		if (subtree_gap > max)
371 			max = subtree_gap;
372 	}
373 	return max;
374 }
375 
376 #ifdef CONFIG_DEBUG_VM_RB
377 static int browse_rb(struct rb_root *root)
378 {
379 	int i = 0, j, bug = 0;
380 	struct rb_node *nd, *pn = NULL;
381 	unsigned long prev = 0, pend = 0;
382 
383 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
384 		struct vm_area_struct *vma;
385 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
386 		if (vma->vm_start < prev) {
387 			pr_emerg("vm_start %lx < prev %lx\n",
388 				  vma->vm_start, prev);
389 			bug = 1;
390 		}
391 		if (vma->vm_start < pend) {
392 			pr_emerg("vm_start %lx < pend %lx\n",
393 				  vma->vm_start, pend);
394 			bug = 1;
395 		}
396 		if (vma->vm_start > vma->vm_end) {
397 			pr_emerg("vm_start %lx > vm_end %lx\n",
398 				  vma->vm_start, vma->vm_end);
399 			bug = 1;
400 		}
401 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
402 			pr_emerg("free gap %lx, correct %lx\n",
403 			       vma->rb_subtree_gap,
404 			       vma_compute_subtree_gap(vma));
405 			bug = 1;
406 		}
407 		i++;
408 		pn = nd;
409 		prev = vma->vm_start;
410 		pend = vma->vm_end;
411 	}
412 	j = 0;
413 	for (nd = pn; nd; nd = rb_prev(nd))
414 		j++;
415 	if (i != j) {
416 		pr_emerg("backwards %d, forwards %d\n", j, i);
417 		bug = 1;
418 	}
419 	return bug ? -1 : i;
420 }
421 
422 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
423 {
424 	struct rb_node *nd;
425 
426 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
427 		struct vm_area_struct *vma;
428 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
429 		VM_BUG_ON_VMA(vma != ignore &&
430 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
431 			vma);
432 	}
433 }
434 
435 static void validate_mm(struct mm_struct *mm)
436 {
437 	int bug = 0;
438 	int i = 0;
439 	unsigned long highest_address = 0;
440 	struct vm_area_struct *vma = mm->mmap;
441 
442 	while (vma) {
443 		struct anon_vma_chain *avc;
444 
445 		vma_lock_anon_vma(vma);
446 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
447 			anon_vma_interval_tree_verify(avc);
448 		vma_unlock_anon_vma(vma);
449 		highest_address = vma->vm_end;
450 		vma = vma->vm_next;
451 		i++;
452 	}
453 	if (i != mm->map_count) {
454 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
455 		bug = 1;
456 	}
457 	if (highest_address != mm->highest_vm_end) {
458 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
459 			  mm->highest_vm_end, highest_address);
460 		bug = 1;
461 	}
462 	i = browse_rb(&mm->mm_rb);
463 	if (i != mm->map_count) {
464 		if (i != -1)
465 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
466 		bug = 1;
467 	}
468 	VM_BUG_ON_MM(bug, mm);
469 }
470 #else
471 #define validate_mm_rb(root, ignore) do { } while (0)
472 #define validate_mm(mm) do { } while (0)
473 #endif
474 
475 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
476 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
477 
478 /*
479  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
480  * vma->vm_prev->vm_end values changed, without modifying the vma's position
481  * in the rbtree.
482  */
483 static void vma_gap_update(struct vm_area_struct *vma)
484 {
485 	/*
486 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
487 	 * function that does exacltly what we want.
488 	 */
489 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
490 }
491 
492 static inline void vma_rb_insert(struct vm_area_struct *vma,
493 				 struct rb_root *root)
494 {
495 	/* All rb_subtree_gap values must be consistent prior to insertion */
496 	validate_mm_rb(root, NULL);
497 
498 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
499 }
500 
501 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
502 {
503 	/*
504 	 * All rb_subtree_gap values must be consistent prior to erase,
505 	 * with the possible exception of the vma being erased.
506 	 */
507 	validate_mm_rb(root, vma);
508 
509 	/*
510 	 * Note rb_erase_augmented is a fairly large inline function,
511 	 * so make sure we instantiate it only once with our desired
512 	 * augmented rbtree callbacks.
513 	 */
514 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
515 }
516 
517 /*
518  * vma has some anon_vma assigned, and is already inserted on that
519  * anon_vma's interval trees.
520  *
521  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
522  * vma must be removed from the anon_vma's interval trees using
523  * anon_vma_interval_tree_pre_update_vma().
524  *
525  * After the update, the vma will be reinserted using
526  * anon_vma_interval_tree_post_update_vma().
527  *
528  * The entire update must be protected by exclusive mmap_sem and by
529  * the root anon_vma's mutex.
530  */
531 static inline void
532 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
533 {
534 	struct anon_vma_chain *avc;
535 
536 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
537 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
538 }
539 
540 static inline void
541 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
542 {
543 	struct anon_vma_chain *avc;
544 
545 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
546 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
547 }
548 
549 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
550 		unsigned long end, struct vm_area_struct **pprev,
551 		struct rb_node ***rb_link, struct rb_node **rb_parent)
552 {
553 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
554 
555 	__rb_link = &mm->mm_rb.rb_node;
556 	rb_prev = __rb_parent = NULL;
557 
558 	while (*__rb_link) {
559 		struct vm_area_struct *vma_tmp;
560 
561 		__rb_parent = *__rb_link;
562 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
563 
564 		if (vma_tmp->vm_end > addr) {
565 			/* Fail if an existing vma overlaps the area */
566 			if (vma_tmp->vm_start < end)
567 				return -ENOMEM;
568 			__rb_link = &__rb_parent->rb_left;
569 		} else {
570 			rb_prev = __rb_parent;
571 			__rb_link = &__rb_parent->rb_right;
572 		}
573 	}
574 
575 	*pprev = NULL;
576 	if (rb_prev)
577 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
578 	*rb_link = __rb_link;
579 	*rb_parent = __rb_parent;
580 	return 0;
581 }
582 
583 static unsigned long count_vma_pages_range(struct mm_struct *mm,
584 		unsigned long addr, unsigned long end)
585 {
586 	unsigned long nr_pages = 0;
587 	struct vm_area_struct *vma;
588 
589 	/* Find first overlaping mapping */
590 	vma = find_vma_intersection(mm, addr, end);
591 	if (!vma)
592 		return 0;
593 
594 	nr_pages = (min(end, vma->vm_end) -
595 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
596 
597 	/* Iterate over the rest of the overlaps */
598 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
599 		unsigned long overlap_len;
600 
601 		if (vma->vm_start > end)
602 			break;
603 
604 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
605 		nr_pages += overlap_len >> PAGE_SHIFT;
606 	}
607 
608 	return nr_pages;
609 }
610 
611 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
612 		struct rb_node **rb_link, struct rb_node *rb_parent)
613 {
614 	/* Update tracking information for the gap following the new vma. */
615 	if (vma->vm_next)
616 		vma_gap_update(vma->vm_next);
617 	else
618 		mm->highest_vm_end = vma->vm_end;
619 
620 	/*
621 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
622 	 * correct insertion point for that vma. As a result, we could not
623 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
624 	 * So, we first insert the vma with a zero rb_subtree_gap value
625 	 * (to be consistent with what we did on the way down), and then
626 	 * immediately update the gap to the correct value. Finally we
627 	 * rebalance the rbtree after all augmented values have been set.
628 	 */
629 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
630 	vma->rb_subtree_gap = 0;
631 	vma_gap_update(vma);
632 	vma_rb_insert(vma, &mm->mm_rb);
633 }
634 
635 static void __vma_link_file(struct vm_area_struct *vma)
636 {
637 	struct file *file;
638 
639 	file = vma->vm_file;
640 	if (file) {
641 		struct address_space *mapping = file->f_mapping;
642 
643 		if (vma->vm_flags & VM_DENYWRITE)
644 			atomic_dec(&file_inode(file)->i_writecount);
645 		if (vma->vm_flags & VM_SHARED)
646 			atomic_inc(&mapping->i_mmap_writable);
647 
648 		flush_dcache_mmap_lock(mapping);
649 		vma_interval_tree_insert(vma, &mapping->i_mmap);
650 		flush_dcache_mmap_unlock(mapping);
651 	}
652 }
653 
654 static void
655 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
656 	struct vm_area_struct *prev, struct rb_node **rb_link,
657 	struct rb_node *rb_parent)
658 {
659 	__vma_link_list(mm, vma, prev, rb_parent);
660 	__vma_link_rb(mm, vma, rb_link, rb_parent);
661 }
662 
663 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
664 			struct vm_area_struct *prev, struct rb_node **rb_link,
665 			struct rb_node *rb_parent)
666 {
667 	struct address_space *mapping = NULL;
668 
669 	if (vma->vm_file) {
670 		mapping = vma->vm_file->f_mapping;
671 		i_mmap_lock_write(mapping);
672 	}
673 
674 	__vma_link(mm, vma, prev, rb_link, rb_parent);
675 	__vma_link_file(vma);
676 
677 	if (mapping)
678 		i_mmap_unlock_write(mapping);
679 
680 	mm->map_count++;
681 	validate_mm(mm);
682 }
683 
684 /*
685  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
686  * mm's list and rbtree.  It has already been inserted into the interval tree.
687  */
688 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
689 {
690 	struct vm_area_struct *prev;
691 	struct rb_node **rb_link, *rb_parent;
692 
693 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
694 			   &prev, &rb_link, &rb_parent))
695 		BUG();
696 	__vma_link(mm, vma, prev, rb_link, rb_parent);
697 	mm->map_count++;
698 }
699 
700 static inline void
701 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
702 		struct vm_area_struct *prev)
703 {
704 	struct vm_area_struct *next;
705 
706 	vma_rb_erase(vma, &mm->mm_rb);
707 	prev->vm_next = next = vma->vm_next;
708 	if (next)
709 		next->vm_prev = prev;
710 
711 	/* Kill the cache */
712 	vmacache_invalidate(mm);
713 }
714 
715 /*
716  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
717  * is already present in an i_mmap tree without adjusting the tree.
718  * The following helper function should be used when such adjustments
719  * are necessary.  The "insert" vma (if any) is to be inserted
720  * before we drop the necessary locks.
721  */
722 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
723 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
724 {
725 	struct mm_struct *mm = vma->vm_mm;
726 	struct vm_area_struct *next = vma->vm_next;
727 	struct vm_area_struct *importer = NULL;
728 	struct address_space *mapping = NULL;
729 	struct rb_root *root = NULL;
730 	struct anon_vma *anon_vma = NULL;
731 	struct file *file = vma->vm_file;
732 	bool start_changed = false, end_changed = false;
733 	long adjust_next = 0;
734 	int remove_next = 0;
735 
736 	if (next && !insert) {
737 		struct vm_area_struct *exporter = NULL;
738 
739 		if (end >= next->vm_end) {
740 			/*
741 			 * vma expands, overlapping all the next, and
742 			 * perhaps the one after too (mprotect case 6).
743 			 */
744 again:			remove_next = 1 + (end > next->vm_end);
745 			end = next->vm_end;
746 			exporter = next;
747 			importer = vma;
748 		} else if (end > next->vm_start) {
749 			/*
750 			 * vma expands, overlapping part of the next:
751 			 * mprotect case 5 shifting the boundary up.
752 			 */
753 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
754 			exporter = next;
755 			importer = vma;
756 		} else if (end < vma->vm_end) {
757 			/*
758 			 * vma shrinks, and !insert tells it's not
759 			 * split_vma inserting another: so it must be
760 			 * mprotect case 4 shifting the boundary down.
761 			 */
762 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
763 			exporter = vma;
764 			importer = next;
765 		}
766 
767 		/*
768 		 * Easily overlooked: when mprotect shifts the boundary,
769 		 * make sure the expanding vma has anon_vma set if the
770 		 * shrinking vma had, to cover any anon pages imported.
771 		 */
772 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
773 			int error;
774 
775 			importer->anon_vma = exporter->anon_vma;
776 			error = anon_vma_clone(importer, exporter);
777 			if (error) {
778 				importer->anon_vma = NULL;
779 				return error;
780 			}
781 		}
782 	}
783 
784 	if (file) {
785 		mapping = file->f_mapping;
786 		root = &mapping->i_mmap;
787 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
788 
789 		if (adjust_next)
790 			uprobe_munmap(next, next->vm_start, next->vm_end);
791 
792 		i_mmap_lock_write(mapping);
793 		if (insert) {
794 			/*
795 			 * Put into interval tree now, so instantiated pages
796 			 * are visible to arm/parisc __flush_dcache_page
797 			 * throughout; but we cannot insert into address
798 			 * space until vma start or end is updated.
799 			 */
800 			__vma_link_file(insert);
801 		}
802 	}
803 
804 	vma_adjust_trans_huge(vma, start, end, adjust_next);
805 
806 	anon_vma = vma->anon_vma;
807 	if (!anon_vma && adjust_next)
808 		anon_vma = next->anon_vma;
809 	if (anon_vma) {
810 		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
811 			  anon_vma != next->anon_vma, next);
812 		anon_vma_lock_write(anon_vma);
813 		anon_vma_interval_tree_pre_update_vma(vma);
814 		if (adjust_next)
815 			anon_vma_interval_tree_pre_update_vma(next);
816 	}
817 
818 	if (root) {
819 		flush_dcache_mmap_lock(mapping);
820 		vma_interval_tree_remove(vma, root);
821 		if (adjust_next)
822 			vma_interval_tree_remove(next, root);
823 	}
824 
825 	if (start != vma->vm_start) {
826 		vma->vm_start = start;
827 		start_changed = true;
828 	}
829 	if (end != vma->vm_end) {
830 		vma->vm_end = end;
831 		end_changed = true;
832 	}
833 	vma->vm_pgoff = pgoff;
834 	if (adjust_next) {
835 		next->vm_start += adjust_next << PAGE_SHIFT;
836 		next->vm_pgoff += adjust_next;
837 	}
838 
839 	if (root) {
840 		if (adjust_next)
841 			vma_interval_tree_insert(next, root);
842 		vma_interval_tree_insert(vma, root);
843 		flush_dcache_mmap_unlock(mapping);
844 	}
845 
846 	if (remove_next) {
847 		/*
848 		 * vma_merge has merged next into vma, and needs
849 		 * us to remove next before dropping the locks.
850 		 */
851 		__vma_unlink(mm, next, vma);
852 		if (file)
853 			__remove_shared_vm_struct(next, file, mapping);
854 	} else if (insert) {
855 		/*
856 		 * split_vma has split insert from vma, and needs
857 		 * us to insert it before dropping the locks
858 		 * (it may either follow vma or precede it).
859 		 */
860 		__insert_vm_struct(mm, insert);
861 	} else {
862 		if (start_changed)
863 			vma_gap_update(vma);
864 		if (end_changed) {
865 			if (!next)
866 				mm->highest_vm_end = end;
867 			else if (!adjust_next)
868 				vma_gap_update(next);
869 		}
870 	}
871 
872 	if (anon_vma) {
873 		anon_vma_interval_tree_post_update_vma(vma);
874 		if (adjust_next)
875 			anon_vma_interval_tree_post_update_vma(next);
876 		anon_vma_unlock_write(anon_vma);
877 	}
878 	if (mapping)
879 		i_mmap_unlock_write(mapping);
880 
881 	if (root) {
882 		uprobe_mmap(vma);
883 
884 		if (adjust_next)
885 			uprobe_mmap(next);
886 	}
887 
888 	if (remove_next) {
889 		if (file) {
890 			uprobe_munmap(next, next->vm_start, next->vm_end);
891 			fput(file);
892 		}
893 		if (next->anon_vma)
894 			anon_vma_merge(vma, next);
895 		mm->map_count--;
896 		mpol_put(vma_policy(next));
897 		kmem_cache_free(vm_area_cachep, next);
898 		/*
899 		 * In mprotect's case 6 (see comments on vma_merge),
900 		 * we must remove another next too. It would clutter
901 		 * up the code too much to do both in one go.
902 		 */
903 		next = vma->vm_next;
904 		if (remove_next == 2)
905 			goto again;
906 		else if (next)
907 			vma_gap_update(next);
908 		else
909 			mm->highest_vm_end = end;
910 	}
911 	if (insert && file)
912 		uprobe_mmap(insert);
913 
914 	validate_mm(mm);
915 
916 	return 0;
917 }
918 
919 /*
920  * If the vma has a ->close operation then the driver probably needs to release
921  * per-vma resources, so we don't attempt to merge those.
922  */
923 static inline int is_mergeable_vma(struct vm_area_struct *vma,
924 			struct file *file, unsigned long vm_flags)
925 {
926 	/*
927 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
928 	 * match the flags but dirty bit -- the caller should mark
929 	 * merged VMA as dirty. If dirty bit won't be excluded from
930 	 * comparison, we increase pressue on the memory system forcing
931 	 * the kernel to generate new VMAs when old one could be
932 	 * extended instead.
933 	 */
934 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
935 		return 0;
936 	if (vma->vm_file != file)
937 		return 0;
938 	if (vma->vm_ops && vma->vm_ops->close)
939 		return 0;
940 	return 1;
941 }
942 
943 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
944 					struct anon_vma *anon_vma2,
945 					struct vm_area_struct *vma)
946 {
947 	/*
948 	 * The list_is_singular() test is to avoid merging VMA cloned from
949 	 * parents. This can improve scalability caused by anon_vma lock.
950 	 */
951 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
952 		list_is_singular(&vma->anon_vma_chain)))
953 		return 1;
954 	return anon_vma1 == anon_vma2;
955 }
956 
957 /*
958  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
959  * in front of (at a lower virtual address and file offset than) the vma.
960  *
961  * We cannot merge two vmas if they have differently assigned (non-NULL)
962  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
963  *
964  * We don't check here for the merged mmap wrapping around the end of pagecache
965  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
966  * wrap, nor mmaps which cover the final page at index -1UL.
967  */
968 static int
969 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
970 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
971 {
972 	if (is_mergeable_vma(vma, file, vm_flags) &&
973 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
974 		if (vma->vm_pgoff == vm_pgoff)
975 			return 1;
976 	}
977 	return 0;
978 }
979 
980 /*
981  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
982  * beyond (at a higher virtual address and file offset than) the vma.
983  *
984  * We cannot merge two vmas if they have differently assigned (non-NULL)
985  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
986  */
987 static int
988 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
989 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
990 {
991 	if (is_mergeable_vma(vma, file, vm_flags) &&
992 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
993 		pgoff_t vm_pglen;
994 		vm_pglen = vma_pages(vma);
995 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
996 			return 1;
997 	}
998 	return 0;
999 }
1000 
1001 /*
1002  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1003  * whether that can be merged with its predecessor or its successor.
1004  * Or both (it neatly fills a hole).
1005  *
1006  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1007  * certain not to be mapped by the time vma_merge is called; but when
1008  * called for mprotect, it is certain to be already mapped (either at
1009  * an offset within prev, or at the start of next), and the flags of
1010  * this area are about to be changed to vm_flags - and the no-change
1011  * case has already been eliminated.
1012  *
1013  * The following mprotect cases have to be considered, where AAAA is
1014  * the area passed down from mprotect_fixup, never extending beyond one
1015  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1016  *
1017  *     AAAA             AAAA                AAAA          AAAA
1018  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1019  *    cannot merge    might become    might become    might become
1020  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1021  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1022  *    mremap move:                                    PPPPNNNNNNNN 8
1023  *        AAAA
1024  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1025  *    might become    case 1 below    case 2 below    case 3 below
1026  *
1027  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1028  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1029  */
1030 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1031 			struct vm_area_struct *prev, unsigned long addr,
1032 			unsigned long end, unsigned long vm_flags,
1033 			struct anon_vma *anon_vma, struct file *file,
1034 			pgoff_t pgoff, struct mempolicy *policy)
1035 {
1036 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1037 	struct vm_area_struct *area, *next;
1038 	int err;
1039 
1040 	/*
1041 	 * We later require that vma->vm_flags == vm_flags,
1042 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1043 	 */
1044 	if (vm_flags & VM_SPECIAL)
1045 		return NULL;
1046 
1047 	if (prev)
1048 		next = prev->vm_next;
1049 	else
1050 		next = mm->mmap;
1051 	area = next;
1052 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1053 		next = next->vm_next;
1054 
1055 	/*
1056 	 * Can it merge with the predecessor?
1057 	 */
1058 	if (prev && prev->vm_end == addr &&
1059 			mpol_equal(vma_policy(prev), policy) &&
1060 			can_vma_merge_after(prev, vm_flags,
1061 						anon_vma, file, pgoff)) {
1062 		/*
1063 		 * OK, it can.  Can we now merge in the successor as well?
1064 		 */
1065 		if (next && end == next->vm_start &&
1066 				mpol_equal(policy, vma_policy(next)) &&
1067 				can_vma_merge_before(next, vm_flags,
1068 					anon_vma, file, pgoff+pglen) &&
1069 				is_mergeable_anon_vma(prev->anon_vma,
1070 						      next->anon_vma, NULL)) {
1071 							/* cases 1, 6 */
1072 			err = vma_adjust(prev, prev->vm_start,
1073 				next->vm_end, prev->vm_pgoff, NULL);
1074 		} else					/* cases 2, 5, 7 */
1075 			err = vma_adjust(prev, prev->vm_start,
1076 				end, prev->vm_pgoff, NULL);
1077 		if (err)
1078 			return NULL;
1079 		khugepaged_enter_vma_merge(prev, vm_flags);
1080 		return prev;
1081 	}
1082 
1083 	/*
1084 	 * Can this new request be merged in front of next?
1085 	 */
1086 	if (next && end == next->vm_start &&
1087 			mpol_equal(policy, vma_policy(next)) &&
1088 			can_vma_merge_before(next, vm_flags,
1089 					anon_vma, file, pgoff+pglen)) {
1090 		if (prev && addr < prev->vm_end)	/* case 4 */
1091 			err = vma_adjust(prev, prev->vm_start,
1092 				addr, prev->vm_pgoff, NULL);
1093 		else					/* cases 3, 8 */
1094 			err = vma_adjust(area, addr, next->vm_end,
1095 				next->vm_pgoff - pglen, NULL);
1096 		if (err)
1097 			return NULL;
1098 		khugepaged_enter_vma_merge(area, vm_flags);
1099 		return area;
1100 	}
1101 
1102 	return NULL;
1103 }
1104 
1105 /*
1106  * Rough compatbility check to quickly see if it's even worth looking
1107  * at sharing an anon_vma.
1108  *
1109  * They need to have the same vm_file, and the flags can only differ
1110  * in things that mprotect may change.
1111  *
1112  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1113  * we can merge the two vma's. For example, we refuse to merge a vma if
1114  * there is a vm_ops->close() function, because that indicates that the
1115  * driver is doing some kind of reference counting. But that doesn't
1116  * really matter for the anon_vma sharing case.
1117  */
1118 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1119 {
1120 	return a->vm_end == b->vm_start &&
1121 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1122 		a->vm_file == b->vm_file &&
1123 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1124 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1125 }
1126 
1127 /*
1128  * Do some basic sanity checking to see if we can re-use the anon_vma
1129  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1130  * the same as 'old', the other will be the new one that is trying
1131  * to share the anon_vma.
1132  *
1133  * NOTE! This runs with mm_sem held for reading, so it is possible that
1134  * the anon_vma of 'old' is concurrently in the process of being set up
1135  * by another page fault trying to merge _that_. But that's ok: if it
1136  * is being set up, that automatically means that it will be a singleton
1137  * acceptable for merging, so we can do all of this optimistically. But
1138  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1139  *
1140  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1141  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1142  * is to return an anon_vma that is "complex" due to having gone through
1143  * a fork).
1144  *
1145  * We also make sure that the two vma's are compatible (adjacent,
1146  * and with the same memory policies). That's all stable, even with just
1147  * a read lock on the mm_sem.
1148  */
1149 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1150 {
1151 	if (anon_vma_compatible(a, b)) {
1152 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1153 
1154 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1155 			return anon_vma;
1156 	}
1157 	return NULL;
1158 }
1159 
1160 /*
1161  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1162  * neighbouring vmas for a suitable anon_vma, before it goes off
1163  * to allocate a new anon_vma.  It checks because a repetitive
1164  * sequence of mprotects and faults may otherwise lead to distinct
1165  * anon_vmas being allocated, preventing vma merge in subsequent
1166  * mprotect.
1167  */
1168 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1169 {
1170 	struct anon_vma *anon_vma;
1171 	struct vm_area_struct *near;
1172 
1173 	near = vma->vm_next;
1174 	if (!near)
1175 		goto try_prev;
1176 
1177 	anon_vma = reusable_anon_vma(near, vma, near);
1178 	if (anon_vma)
1179 		return anon_vma;
1180 try_prev:
1181 	near = vma->vm_prev;
1182 	if (!near)
1183 		goto none;
1184 
1185 	anon_vma = reusable_anon_vma(near, near, vma);
1186 	if (anon_vma)
1187 		return anon_vma;
1188 none:
1189 	/*
1190 	 * There's no absolute need to look only at touching neighbours:
1191 	 * we could search further afield for "compatible" anon_vmas.
1192 	 * But it would probably just be a waste of time searching,
1193 	 * or lead to too many vmas hanging off the same anon_vma.
1194 	 * We're trying to allow mprotect remerging later on,
1195 	 * not trying to minimize memory used for anon_vmas.
1196 	 */
1197 	return NULL;
1198 }
1199 
1200 #ifdef CONFIG_PROC_FS
1201 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1202 						struct file *file, long pages)
1203 {
1204 	const unsigned long stack_flags
1205 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1206 
1207 	mm->total_vm += pages;
1208 
1209 	if (file) {
1210 		mm->shared_vm += pages;
1211 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1212 			mm->exec_vm += pages;
1213 	} else if (flags & stack_flags)
1214 		mm->stack_vm += pages;
1215 }
1216 #endif /* CONFIG_PROC_FS */
1217 
1218 /*
1219  * If a hint addr is less than mmap_min_addr change hint to be as
1220  * low as possible but still greater than mmap_min_addr
1221  */
1222 static inline unsigned long round_hint_to_min(unsigned long hint)
1223 {
1224 	hint &= PAGE_MASK;
1225 	if (((void *)hint != NULL) &&
1226 	    (hint < mmap_min_addr))
1227 		return PAGE_ALIGN(mmap_min_addr);
1228 	return hint;
1229 }
1230 
1231 static inline int mlock_future_check(struct mm_struct *mm,
1232 				     unsigned long flags,
1233 				     unsigned long len)
1234 {
1235 	unsigned long locked, lock_limit;
1236 
1237 	/*  mlock MCL_FUTURE? */
1238 	if (flags & VM_LOCKED) {
1239 		locked = len >> PAGE_SHIFT;
1240 		locked += mm->locked_vm;
1241 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1242 		lock_limit >>= PAGE_SHIFT;
1243 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1244 			return -EAGAIN;
1245 	}
1246 	return 0;
1247 }
1248 
1249 /*
1250  * The caller must hold down_write(&current->mm->mmap_sem).
1251  */
1252 
1253 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1254 			unsigned long len, unsigned long prot,
1255 			unsigned long flags, unsigned long pgoff,
1256 			unsigned long *populate)
1257 {
1258 	struct mm_struct *mm = current->mm;
1259 	vm_flags_t vm_flags;
1260 
1261 	*populate = 0;
1262 
1263 	/*
1264 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1265 	 *
1266 	 * (the exception is when the underlying filesystem is noexec
1267 	 *  mounted, in which case we dont add PROT_EXEC.)
1268 	 */
1269 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1270 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1271 			prot |= PROT_EXEC;
1272 
1273 	if (!len)
1274 		return -EINVAL;
1275 
1276 	if (!(flags & MAP_FIXED))
1277 		addr = round_hint_to_min(addr);
1278 
1279 	/* Careful about overflows.. */
1280 	len = PAGE_ALIGN(len);
1281 	if (!len)
1282 		return -ENOMEM;
1283 
1284 	/* offset overflow? */
1285 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1286 		return -EOVERFLOW;
1287 
1288 	/* Too many mappings? */
1289 	if (mm->map_count > sysctl_max_map_count)
1290 		return -ENOMEM;
1291 
1292 	/* Obtain the address to map to. we verify (or select) it and ensure
1293 	 * that it represents a valid section of the address space.
1294 	 */
1295 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1296 	if (addr & ~PAGE_MASK)
1297 		return addr;
1298 
1299 	/* Do simple checking here so the lower-level routines won't have
1300 	 * to. we assume access permissions have been handled by the open
1301 	 * of the memory object, so we don't do any here.
1302 	 */
1303 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1304 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1305 
1306 	if (flags & MAP_LOCKED)
1307 		if (!can_do_mlock())
1308 			return -EPERM;
1309 
1310 	if (mlock_future_check(mm, vm_flags, len))
1311 		return -EAGAIN;
1312 
1313 	if (file) {
1314 		struct inode *inode = file_inode(file);
1315 
1316 		switch (flags & MAP_TYPE) {
1317 		case MAP_SHARED:
1318 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1319 				return -EACCES;
1320 
1321 			/*
1322 			 * Make sure we don't allow writing to an append-only
1323 			 * file..
1324 			 */
1325 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1326 				return -EACCES;
1327 
1328 			/*
1329 			 * Make sure there are no mandatory locks on the file.
1330 			 */
1331 			if (locks_verify_locked(file))
1332 				return -EAGAIN;
1333 
1334 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1335 			if (!(file->f_mode & FMODE_WRITE))
1336 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1337 
1338 			/* fall through */
1339 		case MAP_PRIVATE:
1340 			if (!(file->f_mode & FMODE_READ))
1341 				return -EACCES;
1342 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1343 				if (vm_flags & VM_EXEC)
1344 					return -EPERM;
1345 				vm_flags &= ~VM_MAYEXEC;
1346 			}
1347 
1348 			if (!file->f_op->mmap)
1349 				return -ENODEV;
1350 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1351 				return -EINVAL;
1352 			break;
1353 
1354 		default:
1355 			return -EINVAL;
1356 		}
1357 	} else {
1358 		switch (flags & MAP_TYPE) {
1359 		case MAP_SHARED:
1360 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1361 				return -EINVAL;
1362 			/*
1363 			 * Ignore pgoff.
1364 			 */
1365 			pgoff = 0;
1366 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1367 			break;
1368 		case MAP_PRIVATE:
1369 			/*
1370 			 * Set pgoff according to addr for anon_vma.
1371 			 */
1372 			pgoff = addr >> PAGE_SHIFT;
1373 			break;
1374 		default:
1375 			return -EINVAL;
1376 		}
1377 	}
1378 
1379 	/*
1380 	 * Set 'VM_NORESERVE' if we should not account for the
1381 	 * memory use of this mapping.
1382 	 */
1383 	if (flags & MAP_NORESERVE) {
1384 		/* We honor MAP_NORESERVE if allowed to overcommit */
1385 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1386 			vm_flags |= VM_NORESERVE;
1387 
1388 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1389 		if (file && is_file_hugepages(file))
1390 			vm_flags |= VM_NORESERVE;
1391 	}
1392 
1393 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1394 	if (!IS_ERR_VALUE(addr) &&
1395 	    ((vm_flags & VM_LOCKED) ||
1396 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1397 		*populate = len;
1398 	return addr;
1399 }
1400 
1401 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1402 		unsigned long, prot, unsigned long, flags,
1403 		unsigned long, fd, unsigned long, pgoff)
1404 {
1405 	struct file *file = NULL;
1406 	unsigned long retval = -EBADF;
1407 
1408 	if (!(flags & MAP_ANONYMOUS)) {
1409 		audit_mmap_fd(fd, flags);
1410 		file = fget(fd);
1411 		if (!file)
1412 			goto out;
1413 		if (is_file_hugepages(file))
1414 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1415 		retval = -EINVAL;
1416 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1417 			goto out_fput;
1418 	} else if (flags & MAP_HUGETLB) {
1419 		struct user_struct *user = NULL;
1420 		struct hstate *hs;
1421 
1422 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1423 		if (!hs)
1424 			return -EINVAL;
1425 
1426 		len = ALIGN(len, huge_page_size(hs));
1427 		/*
1428 		 * VM_NORESERVE is used because the reservations will be
1429 		 * taken when vm_ops->mmap() is called
1430 		 * A dummy user value is used because we are not locking
1431 		 * memory so no accounting is necessary
1432 		 */
1433 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1434 				VM_NORESERVE,
1435 				&user, HUGETLB_ANONHUGE_INODE,
1436 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1437 		if (IS_ERR(file))
1438 			return PTR_ERR(file);
1439 	}
1440 
1441 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1442 
1443 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1444 out_fput:
1445 	if (file)
1446 		fput(file);
1447 out:
1448 	return retval;
1449 }
1450 
1451 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1452 struct mmap_arg_struct {
1453 	unsigned long addr;
1454 	unsigned long len;
1455 	unsigned long prot;
1456 	unsigned long flags;
1457 	unsigned long fd;
1458 	unsigned long offset;
1459 };
1460 
1461 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1462 {
1463 	struct mmap_arg_struct a;
1464 
1465 	if (copy_from_user(&a, arg, sizeof(a)))
1466 		return -EFAULT;
1467 	if (a.offset & ~PAGE_MASK)
1468 		return -EINVAL;
1469 
1470 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1471 			      a.offset >> PAGE_SHIFT);
1472 }
1473 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1474 
1475 /*
1476  * Some shared mappigns will want the pages marked read-only
1477  * to track write events. If so, we'll downgrade vm_page_prot
1478  * to the private version (using protection_map[] without the
1479  * VM_SHARED bit).
1480  */
1481 int vma_wants_writenotify(struct vm_area_struct *vma)
1482 {
1483 	vm_flags_t vm_flags = vma->vm_flags;
1484 
1485 	/* If it was private or non-writable, the write bit is already clear */
1486 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1487 		return 0;
1488 
1489 	/* The backer wishes to know when pages are first written to? */
1490 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1491 		return 1;
1492 
1493 	/* The open routine did something to the protections that pgprot_modify
1494 	 * won't preserve? */
1495 	if (pgprot_val(vma->vm_page_prot) !=
1496 	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1497 		return 0;
1498 
1499 	/* Do we need to track softdirty? */
1500 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1501 		return 1;
1502 
1503 	/* Specialty mapping? */
1504 	if (vm_flags & VM_PFNMAP)
1505 		return 0;
1506 
1507 	/* Can the mapping track the dirty pages? */
1508 	return vma->vm_file && vma->vm_file->f_mapping &&
1509 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1510 }
1511 
1512 /*
1513  * We account for memory if it's a private writeable mapping,
1514  * not hugepages and VM_NORESERVE wasn't set.
1515  */
1516 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1517 {
1518 	/*
1519 	 * hugetlb has its own accounting separate from the core VM
1520 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1521 	 */
1522 	if (file && is_file_hugepages(file))
1523 		return 0;
1524 
1525 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1526 }
1527 
1528 unsigned long mmap_region(struct file *file, unsigned long addr,
1529 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1530 {
1531 	struct mm_struct *mm = current->mm;
1532 	struct vm_area_struct *vma, *prev;
1533 	int error;
1534 	struct rb_node **rb_link, *rb_parent;
1535 	unsigned long charged = 0;
1536 
1537 	/* Check against address space limit. */
1538 	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1539 		unsigned long nr_pages;
1540 
1541 		/*
1542 		 * MAP_FIXED may remove pages of mappings that intersects with
1543 		 * requested mapping. Account for the pages it would unmap.
1544 		 */
1545 		if (!(vm_flags & MAP_FIXED))
1546 			return -ENOMEM;
1547 
1548 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1549 
1550 		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1551 			return -ENOMEM;
1552 	}
1553 
1554 	/* Clear old maps */
1555 	error = -ENOMEM;
1556 munmap_back:
1557 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1558 		if (do_munmap(mm, addr, len))
1559 			return -ENOMEM;
1560 		goto munmap_back;
1561 	}
1562 
1563 	/*
1564 	 * Private writable mapping: check memory availability
1565 	 */
1566 	if (accountable_mapping(file, vm_flags)) {
1567 		charged = len >> PAGE_SHIFT;
1568 		if (security_vm_enough_memory_mm(mm, charged))
1569 			return -ENOMEM;
1570 		vm_flags |= VM_ACCOUNT;
1571 	}
1572 
1573 	/*
1574 	 * Can we just expand an old mapping?
1575 	 */
1576 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1577 	if (vma)
1578 		goto out;
1579 
1580 	/*
1581 	 * Determine the object being mapped and call the appropriate
1582 	 * specific mapper. the address has already been validated, but
1583 	 * not unmapped, but the maps are removed from the list.
1584 	 */
1585 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1586 	if (!vma) {
1587 		error = -ENOMEM;
1588 		goto unacct_error;
1589 	}
1590 
1591 	vma->vm_mm = mm;
1592 	vma->vm_start = addr;
1593 	vma->vm_end = addr + len;
1594 	vma->vm_flags = vm_flags;
1595 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1596 	vma->vm_pgoff = pgoff;
1597 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1598 
1599 	if (file) {
1600 		if (vm_flags & VM_DENYWRITE) {
1601 			error = deny_write_access(file);
1602 			if (error)
1603 				goto free_vma;
1604 		}
1605 		if (vm_flags & VM_SHARED) {
1606 			error = mapping_map_writable(file->f_mapping);
1607 			if (error)
1608 				goto allow_write_and_free_vma;
1609 		}
1610 
1611 		/* ->mmap() can change vma->vm_file, but must guarantee that
1612 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1613 		 * and map writably if VM_SHARED is set. This usually means the
1614 		 * new file must not have been exposed to user-space, yet.
1615 		 */
1616 		vma->vm_file = get_file(file);
1617 		error = file->f_op->mmap(file, vma);
1618 		if (error)
1619 			goto unmap_and_free_vma;
1620 
1621 		/* Can addr have changed??
1622 		 *
1623 		 * Answer: Yes, several device drivers can do it in their
1624 		 *         f_op->mmap method. -DaveM
1625 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1626 		 *      be updated for vma_link()
1627 		 */
1628 		WARN_ON_ONCE(addr != vma->vm_start);
1629 
1630 		addr = vma->vm_start;
1631 		vm_flags = vma->vm_flags;
1632 	} else if (vm_flags & VM_SHARED) {
1633 		error = shmem_zero_setup(vma);
1634 		if (error)
1635 			goto free_vma;
1636 	}
1637 
1638 	vma_link(mm, vma, prev, rb_link, rb_parent);
1639 	/* Once vma denies write, undo our temporary denial count */
1640 	if (file) {
1641 		if (vm_flags & VM_SHARED)
1642 			mapping_unmap_writable(file->f_mapping);
1643 		if (vm_flags & VM_DENYWRITE)
1644 			allow_write_access(file);
1645 	}
1646 	file = vma->vm_file;
1647 out:
1648 	perf_event_mmap(vma);
1649 
1650 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1651 	if (vm_flags & VM_LOCKED) {
1652 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1653 					vma == get_gate_vma(current->mm)))
1654 			mm->locked_vm += (len >> PAGE_SHIFT);
1655 		else
1656 			vma->vm_flags &= ~VM_LOCKED;
1657 	}
1658 
1659 	if (file)
1660 		uprobe_mmap(vma);
1661 
1662 	/*
1663 	 * New (or expanded) vma always get soft dirty status.
1664 	 * Otherwise user-space soft-dirty page tracker won't
1665 	 * be able to distinguish situation when vma area unmapped,
1666 	 * then new mapped in-place (which must be aimed as
1667 	 * a completely new data area).
1668 	 */
1669 	vma->vm_flags |= VM_SOFTDIRTY;
1670 
1671 	vma_set_page_prot(vma);
1672 
1673 	return addr;
1674 
1675 unmap_and_free_vma:
1676 	vma->vm_file = NULL;
1677 	fput(file);
1678 
1679 	/* Undo any partial mapping done by a device driver. */
1680 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1681 	charged = 0;
1682 	if (vm_flags & VM_SHARED)
1683 		mapping_unmap_writable(file->f_mapping);
1684 allow_write_and_free_vma:
1685 	if (vm_flags & VM_DENYWRITE)
1686 		allow_write_access(file);
1687 free_vma:
1688 	kmem_cache_free(vm_area_cachep, vma);
1689 unacct_error:
1690 	if (charged)
1691 		vm_unacct_memory(charged);
1692 	return error;
1693 }
1694 
1695 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1696 {
1697 	/*
1698 	 * We implement the search by looking for an rbtree node that
1699 	 * immediately follows a suitable gap. That is,
1700 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1701 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1702 	 * - gap_end - gap_start >= length
1703 	 */
1704 
1705 	struct mm_struct *mm = current->mm;
1706 	struct vm_area_struct *vma;
1707 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1708 
1709 	/* Adjust search length to account for worst case alignment overhead */
1710 	length = info->length + info->align_mask;
1711 	if (length < info->length)
1712 		return -ENOMEM;
1713 
1714 	/* Adjust search limits by the desired length */
1715 	if (info->high_limit < length)
1716 		return -ENOMEM;
1717 	high_limit = info->high_limit - length;
1718 
1719 	if (info->low_limit > high_limit)
1720 		return -ENOMEM;
1721 	low_limit = info->low_limit + length;
1722 
1723 	/* Check if rbtree root looks promising */
1724 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1725 		goto check_highest;
1726 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1727 	if (vma->rb_subtree_gap < length)
1728 		goto check_highest;
1729 
1730 	while (true) {
1731 		/* Visit left subtree if it looks promising */
1732 		gap_end = vma->vm_start;
1733 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1734 			struct vm_area_struct *left =
1735 				rb_entry(vma->vm_rb.rb_left,
1736 					 struct vm_area_struct, vm_rb);
1737 			if (left->rb_subtree_gap >= length) {
1738 				vma = left;
1739 				continue;
1740 			}
1741 		}
1742 
1743 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1744 check_current:
1745 		/* Check if current node has a suitable gap */
1746 		if (gap_start > high_limit)
1747 			return -ENOMEM;
1748 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1749 			goto found;
1750 
1751 		/* Visit right subtree if it looks promising */
1752 		if (vma->vm_rb.rb_right) {
1753 			struct vm_area_struct *right =
1754 				rb_entry(vma->vm_rb.rb_right,
1755 					 struct vm_area_struct, vm_rb);
1756 			if (right->rb_subtree_gap >= length) {
1757 				vma = right;
1758 				continue;
1759 			}
1760 		}
1761 
1762 		/* Go back up the rbtree to find next candidate node */
1763 		while (true) {
1764 			struct rb_node *prev = &vma->vm_rb;
1765 			if (!rb_parent(prev))
1766 				goto check_highest;
1767 			vma = rb_entry(rb_parent(prev),
1768 				       struct vm_area_struct, vm_rb);
1769 			if (prev == vma->vm_rb.rb_left) {
1770 				gap_start = vma->vm_prev->vm_end;
1771 				gap_end = vma->vm_start;
1772 				goto check_current;
1773 			}
1774 		}
1775 	}
1776 
1777 check_highest:
1778 	/* Check highest gap, which does not precede any rbtree node */
1779 	gap_start = mm->highest_vm_end;
1780 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1781 	if (gap_start > high_limit)
1782 		return -ENOMEM;
1783 
1784 found:
1785 	/* We found a suitable gap. Clip it with the original low_limit. */
1786 	if (gap_start < info->low_limit)
1787 		gap_start = info->low_limit;
1788 
1789 	/* Adjust gap address to the desired alignment */
1790 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1791 
1792 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1793 	VM_BUG_ON(gap_start + info->length > gap_end);
1794 	return gap_start;
1795 }
1796 
1797 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1798 {
1799 	struct mm_struct *mm = current->mm;
1800 	struct vm_area_struct *vma;
1801 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1802 
1803 	/* Adjust search length to account for worst case alignment overhead */
1804 	length = info->length + info->align_mask;
1805 	if (length < info->length)
1806 		return -ENOMEM;
1807 
1808 	/*
1809 	 * Adjust search limits by the desired length.
1810 	 * See implementation comment at top of unmapped_area().
1811 	 */
1812 	gap_end = info->high_limit;
1813 	if (gap_end < length)
1814 		return -ENOMEM;
1815 	high_limit = gap_end - length;
1816 
1817 	if (info->low_limit > high_limit)
1818 		return -ENOMEM;
1819 	low_limit = info->low_limit + length;
1820 
1821 	/* Check highest gap, which does not precede any rbtree node */
1822 	gap_start = mm->highest_vm_end;
1823 	if (gap_start <= high_limit)
1824 		goto found_highest;
1825 
1826 	/* Check if rbtree root looks promising */
1827 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1828 		return -ENOMEM;
1829 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1830 	if (vma->rb_subtree_gap < length)
1831 		return -ENOMEM;
1832 
1833 	while (true) {
1834 		/* Visit right subtree if it looks promising */
1835 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1836 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1837 			struct vm_area_struct *right =
1838 				rb_entry(vma->vm_rb.rb_right,
1839 					 struct vm_area_struct, vm_rb);
1840 			if (right->rb_subtree_gap >= length) {
1841 				vma = right;
1842 				continue;
1843 			}
1844 		}
1845 
1846 check_current:
1847 		/* Check if current node has a suitable gap */
1848 		gap_end = vma->vm_start;
1849 		if (gap_end < low_limit)
1850 			return -ENOMEM;
1851 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1852 			goto found;
1853 
1854 		/* Visit left subtree if it looks promising */
1855 		if (vma->vm_rb.rb_left) {
1856 			struct vm_area_struct *left =
1857 				rb_entry(vma->vm_rb.rb_left,
1858 					 struct vm_area_struct, vm_rb);
1859 			if (left->rb_subtree_gap >= length) {
1860 				vma = left;
1861 				continue;
1862 			}
1863 		}
1864 
1865 		/* Go back up the rbtree to find next candidate node */
1866 		while (true) {
1867 			struct rb_node *prev = &vma->vm_rb;
1868 			if (!rb_parent(prev))
1869 				return -ENOMEM;
1870 			vma = rb_entry(rb_parent(prev),
1871 				       struct vm_area_struct, vm_rb);
1872 			if (prev == vma->vm_rb.rb_right) {
1873 				gap_start = vma->vm_prev ?
1874 					vma->vm_prev->vm_end : 0;
1875 				goto check_current;
1876 			}
1877 		}
1878 	}
1879 
1880 found:
1881 	/* We found a suitable gap. Clip it with the original high_limit. */
1882 	if (gap_end > info->high_limit)
1883 		gap_end = info->high_limit;
1884 
1885 found_highest:
1886 	/* Compute highest gap address at the desired alignment */
1887 	gap_end -= info->length;
1888 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1889 
1890 	VM_BUG_ON(gap_end < info->low_limit);
1891 	VM_BUG_ON(gap_end < gap_start);
1892 	return gap_end;
1893 }
1894 
1895 /* Get an address range which is currently unmapped.
1896  * For shmat() with addr=0.
1897  *
1898  * Ugly calling convention alert:
1899  * Return value with the low bits set means error value,
1900  * ie
1901  *	if (ret & ~PAGE_MASK)
1902  *		error = ret;
1903  *
1904  * This function "knows" that -ENOMEM has the bits set.
1905  */
1906 #ifndef HAVE_ARCH_UNMAPPED_AREA
1907 unsigned long
1908 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1909 		unsigned long len, unsigned long pgoff, unsigned long flags)
1910 {
1911 	struct mm_struct *mm = current->mm;
1912 	struct vm_area_struct *vma;
1913 	struct vm_unmapped_area_info info;
1914 
1915 	if (len > TASK_SIZE - mmap_min_addr)
1916 		return -ENOMEM;
1917 
1918 	if (flags & MAP_FIXED)
1919 		return addr;
1920 
1921 	if (addr) {
1922 		addr = PAGE_ALIGN(addr);
1923 		vma = find_vma(mm, addr);
1924 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1925 		    (!vma || addr + len <= vma->vm_start))
1926 			return addr;
1927 	}
1928 
1929 	info.flags = 0;
1930 	info.length = len;
1931 	info.low_limit = mm->mmap_base;
1932 	info.high_limit = TASK_SIZE;
1933 	info.align_mask = 0;
1934 	return vm_unmapped_area(&info);
1935 }
1936 #endif
1937 
1938 /*
1939  * This mmap-allocator allocates new areas top-down from below the
1940  * stack's low limit (the base):
1941  */
1942 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1943 unsigned long
1944 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1945 			  const unsigned long len, const unsigned long pgoff,
1946 			  const unsigned long flags)
1947 {
1948 	struct vm_area_struct *vma;
1949 	struct mm_struct *mm = current->mm;
1950 	unsigned long addr = addr0;
1951 	struct vm_unmapped_area_info info;
1952 
1953 	/* requested length too big for entire address space */
1954 	if (len > TASK_SIZE - mmap_min_addr)
1955 		return -ENOMEM;
1956 
1957 	if (flags & MAP_FIXED)
1958 		return addr;
1959 
1960 	/* requesting a specific address */
1961 	if (addr) {
1962 		addr = PAGE_ALIGN(addr);
1963 		vma = find_vma(mm, addr);
1964 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1965 				(!vma || addr + len <= vma->vm_start))
1966 			return addr;
1967 	}
1968 
1969 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1970 	info.length = len;
1971 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1972 	info.high_limit = mm->mmap_base;
1973 	info.align_mask = 0;
1974 	addr = vm_unmapped_area(&info);
1975 
1976 	/*
1977 	 * A failed mmap() very likely causes application failure,
1978 	 * so fall back to the bottom-up function here. This scenario
1979 	 * can happen with large stack limits and large mmap()
1980 	 * allocations.
1981 	 */
1982 	if (addr & ~PAGE_MASK) {
1983 		VM_BUG_ON(addr != -ENOMEM);
1984 		info.flags = 0;
1985 		info.low_limit = TASK_UNMAPPED_BASE;
1986 		info.high_limit = TASK_SIZE;
1987 		addr = vm_unmapped_area(&info);
1988 	}
1989 
1990 	return addr;
1991 }
1992 #endif
1993 
1994 unsigned long
1995 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1996 		unsigned long pgoff, unsigned long flags)
1997 {
1998 	unsigned long (*get_area)(struct file *, unsigned long,
1999 				  unsigned long, unsigned long, unsigned long);
2000 
2001 	unsigned long error = arch_mmap_check(addr, len, flags);
2002 	if (error)
2003 		return error;
2004 
2005 	/* Careful about overflows.. */
2006 	if (len > TASK_SIZE)
2007 		return -ENOMEM;
2008 
2009 	get_area = current->mm->get_unmapped_area;
2010 	if (file && file->f_op->get_unmapped_area)
2011 		get_area = file->f_op->get_unmapped_area;
2012 	addr = get_area(file, addr, len, pgoff, flags);
2013 	if (IS_ERR_VALUE(addr))
2014 		return addr;
2015 
2016 	if (addr > TASK_SIZE - len)
2017 		return -ENOMEM;
2018 	if (addr & ~PAGE_MASK)
2019 		return -EINVAL;
2020 
2021 	addr = arch_rebalance_pgtables(addr, len);
2022 	error = security_mmap_addr(addr);
2023 	return error ? error : addr;
2024 }
2025 
2026 EXPORT_SYMBOL(get_unmapped_area);
2027 
2028 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2029 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2030 {
2031 	struct rb_node *rb_node;
2032 	struct vm_area_struct *vma;
2033 
2034 	/* Check the cache first. */
2035 	vma = vmacache_find(mm, addr);
2036 	if (likely(vma))
2037 		return vma;
2038 
2039 	rb_node = mm->mm_rb.rb_node;
2040 	vma = NULL;
2041 
2042 	while (rb_node) {
2043 		struct vm_area_struct *tmp;
2044 
2045 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2046 
2047 		if (tmp->vm_end > addr) {
2048 			vma = tmp;
2049 			if (tmp->vm_start <= addr)
2050 				break;
2051 			rb_node = rb_node->rb_left;
2052 		} else
2053 			rb_node = rb_node->rb_right;
2054 	}
2055 
2056 	if (vma)
2057 		vmacache_update(addr, vma);
2058 	return vma;
2059 }
2060 
2061 EXPORT_SYMBOL(find_vma);
2062 
2063 /*
2064  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2065  */
2066 struct vm_area_struct *
2067 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2068 			struct vm_area_struct **pprev)
2069 {
2070 	struct vm_area_struct *vma;
2071 
2072 	vma = find_vma(mm, addr);
2073 	if (vma) {
2074 		*pprev = vma->vm_prev;
2075 	} else {
2076 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2077 		*pprev = NULL;
2078 		while (rb_node) {
2079 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2080 			rb_node = rb_node->rb_right;
2081 		}
2082 	}
2083 	return vma;
2084 }
2085 
2086 /*
2087  * Verify that the stack growth is acceptable and
2088  * update accounting. This is shared with both the
2089  * grow-up and grow-down cases.
2090  */
2091 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2092 {
2093 	struct mm_struct *mm = vma->vm_mm;
2094 	struct rlimit *rlim = current->signal->rlim;
2095 	unsigned long new_start, actual_size;
2096 
2097 	/* address space limit tests */
2098 	if (!may_expand_vm(mm, grow))
2099 		return -ENOMEM;
2100 
2101 	/* Stack limit test */
2102 	actual_size = size;
2103 	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2104 		actual_size -= PAGE_SIZE;
2105 	if (actual_size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2106 		return -ENOMEM;
2107 
2108 	/* mlock limit tests */
2109 	if (vma->vm_flags & VM_LOCKED) {
2110 		unsigned long locked;
2111 		unsigned long limit;
2112 		locked = mm->locked_vm + grow;
2113 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2114 		limit >>= PAGE_SHIFT;
2115 		if (locked > limit && !capable(CAP_IPC_LOCK))
2116 			return -ENOMEM;
2117 	}
2118 
2119 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2120 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2121 			vma->vm_end - size;
2122 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2123 		return -EFAULT;
2124 
2125 	/*
2126 	 * Overcommit..  This must be the final test, as it will
2127 	 * update security statistics.
2128 	 */
2129 	if (security_vm_enough_memory_mm(mm, grow))
2130 		return -ENOMEM;
2131 
2132 	/* Ok, everything looks good - let it rip */
2133 	if (vma->vm_flags & VM_LOCKED)
2134 		mm->locked_vm += grow;
2135 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2136 	return 0;
2137 }
2138 
2139 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2140 /*
2141  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2142  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2143  */
2144 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2145 {
2146 	int error;
2147 
2148 	if (!(vma->vm_flags & VM_GROWSUP))
2149 		return -EFAULT;
2150 
2151 	/*
2152 	 * We must make sure the anon_vma is allocated
2153 	 * so that the anon_vma locking is not a noop.
2154 	 */
2155 	if (unlikely(anon_vma_prepare(vma)))
2156 		return -ENOMEM;
2157 	vma_lock_anon_vma(vma);
2158 
2159 	/*
2160 	 * vma->vm_start/vm_end cannot change under us because the caller
2161 	 * is required to hold the mmap_sem in read mode.  We need the
2162 	 * anon_vma lock to serialize against concurrent expand_stacks.
2163 	 * Also guard against wrapping around to address 0.
2164 	 */
2165 	if (address < PAGE_ALIGN(address+4))
2166 		address = PAGE_ALIGN(address+4);
2167 	else {
2168 		vma_unlock_anon_vma(vma);
2169 		return -ENOMEM;
2170 	}
2171 	error = 0;
2172 
2173 	/* Somebody else might have raced and expanded it already */
2174 	if (address > vma->vm_end) {
2175 		unsigned long size, grow;
2176 
2177 		size = address - vma->vm_start;
2178 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2179 
2180 		error = -ENOMEM;
2181 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2182 			error = acct_stack_growth(vma, size, grow);
2183 			if (!error) {
2184 				/*
2185 				 * vma_gap_update() doesn't support concurrent
2186 				 * updates, but we only hold a shared mmap_sem
2187 				 * lock here, so we need to protect against
2188 				 * concurrent vma expansions.
2189 				 * vma_lock_anon_vma() doesn't help here, as
2190 				 * we don't guarantee that all growable vmas
2191 				 * in a mm share the same root anon vma.
2192 				 * So, we reuse mm->page_table_lock to guard
2193 				 * against concurrent vma expansions.
2194 				 */
2195 				spin_lock(&vma->vm_mm->page_table_lock);
2196 				anon_vma_interval_tree_pre_update_vma(vma);
2197 				vma->vm_end = address;
2198 				anon_vma_interval_tree_post_update_vma(vma);
2199 				if (vma->vm_next)
2200 					vma_gap_update(vma->vm_next);
2201 				else
2202 					vma->vm_mm->highest_vm_end = address;
2203 				spin_unlock(&vma->vm_mm->page_table_lock);
2204 
2205 				perf_event_mmap(vma);
2206 			}
2207 		}
2208 	}
2209 	vma_unlock_anon_vma(vma);
2210 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2211 	validate_mm(vma->vm_mm);
2212 	return error;
2213 }
2214 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2215 
2216 /*
2217  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2218  */
2219 int expand_downwards(struct vm_area_struct *vma,
2220 				   unsigned long address)
2221 {
2222 	int error;
2223 
2224 	/*
2225 	 * We must make sure the anon_vma is allocated
2226 	 * so that the anon_vma locking is not a noop.
2227 	 */
2228 	if (unlikely(anon_vma_prepare(vma)))
2229 		return -ENOMEM;
2230 
2231 	address &= PAGE_MASK;
2232 	error = security_mmap_addr(address);
2233 	if (error)
2234 		return error;
2235 
2236 	vma_lock_anon_vma(vma);
2237 
2238 	/*
2239 	 * vma->vm_start/vm_end cannot change under us because the caller
2240 	 * is required to hold the mmap_sem in read mode.  We need the
2241 	 * anon_vma lock to serialize against concurrent expand_stacks.
2242 	 */
2243 
2244 	/* Somebody else might have raced and expanded it already */
2245 	if (address < vma->vm_start) {
2246 		unsigned long size, grow;
2247 
2248 		size = vma->vm_end - address;
2249 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2250 
2251 		error = -ENOMEM;
2252 		if (grow <= vma->vm_pgoff) {
2253 			error = acct_stack_growth(vma, size, grow);
2254 			if (!error) {
2255 				/*
2256 				 * vma_gap_update() doesn't support concurrent
2257 				 * updates, but we only hold a shared mmap_sem
2258 				 * lock here, so we need to protect against
2259 				 * concurrent vma expansions.
2260 				 * vma_lock_anon_vma() doesn't help here, as
2261 				 * we don't guarantee that all growable vmas
2262 				 * in a mm share the same root anon vma.
2263 				 * So, we reuse mm->page_table_lock to guard
2264 				 * against concurrent vma expansions.
2265 				 */
2266 				spin_lock(&vma->vm_mm->page_table_lock);
2267 				anon_vma_interval_tree_pre_update_vma(vma);
2268 				vma->vm_start = address;
2269 				vma->vm_pgoff -= grow;
2270 				anon_vma_interval_tree_post_update_vma(vma);
2271 				vma_gap_update(vma);
2272 				spin_unlock(&vma->vm_mm->page_table_lock);
2273 
2274 				perf_event_mmap(vma);
2275 			}
2276 		}
2277 	}
2278 	vma_unlock_anon_vma(vma);
2279 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2280 	validate_mm(vma->vm_mm);
2281 	return error;
2282 }
2283 
2284 /*
2285  * Note how expand_stack() refuses to expand the stack all the way to
2286  * abut the next virtual mapping, *unless* that mapping itself is also
2287  * a stack mapping. We want to leave room for a guard page, after all
2288  * (the guard page itself is not added here, that is done by the
2289  * actual page faulting logic)
2290  *
2291  * This matches the behavior of the guard page logic (see mm/memory.c:
2292  * check_stack_guard_page()), which only allows the guard page to be
2293  * removed under these circumstances.
2294  */
2295 #ifdef CONFIG_STACK_GROWSUP
2296 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2297 {
2298 	struct vm_area_struct *next;
2299 
2300 	address &= PAGE_MASK;
2301 	next = vma->vm_next;
2302 	if (next && next->vm_start == address + PAGE_SIZE) {
2303 		if (!(next->vm_flags & VM_GROWSUP))
2304 			return -ENOMEM;
2305 	}
2306 	return expand_upwards(vma, address);
2307 }
2308 
2309 struct vm_area_struct *
2310 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2311 {
2312 	struct vm_area_struct *vma, *prev;
2313 
2314 	addr &= PAGE_MASK;
2315 	vma = find_vma_prev(mm, addr, &prev);
2316 	if (vma && (vma->vm_start <= addr))
2317 		return vma;
2318 	if (!prev || expand_stack(prev, addr))
2319 		return NULL;
2320 	if (prev->vm_flags & VM_LOCKED)
2321 		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2322 	return prev;
2323 }
2324 #else
2325 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2326 {
2327 	struct vm_area_struct *prev;
2328 
2329 	address &= PAGE_MASK;
2330 	prev = vma->vm_prev;
2331 	if (prev && prev->vm_end == address) {
2332 		if (!(prev->vm_flags & VM_GROWSDOWN))
2333 			return -ENOMEM;
2334 	}
2335 	return expand_downwards(vma, address);
2336 }
2337 
2338 struct vm_area_struct *
2339 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2340 {
2341 	struct vm_area_struct *vma;
2342 	unsigned long start;
2343 
2344 	addr &= PAGE_MASK;
2345 	vma = find_vma(mm, addr);
2346 	if (!vma)
2347 		return NULL;
2348 	if (vma->vm_start <= addr)
2349 		return vma;
2350 	if (!(vma->vm_flags & VM_GROWSDOWN))
2351 		return NULL;
2352 	start = vma->vm_start;
2353 	if (expand_stack(vma, addr))
2354 		return NULL;
2355 	if (vma->vm_flags & VM_LOCKED)
2356 		__mlock_vma_pages_range(vma, addr, start, NULL);
2357 	return vma;
2358 }
2359 #endif
2360 
2361 EXPORT_SYMBOL_GPL(find_extend_vma);
2362 
2363 /*
2364  * Ok - we have the memory areas we should free on the vma list,
2365  * so release them, and do the vma updates.
2366  *
2367  * Called with the mm semaphore held.
2368  */
2369 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2370 {
2371 	unsigned long nr_accounted = 0;
2372 
2373 	/* Update high watermark before we lower total_vm */
2374 	update_hiwater_vm(mm);
2375 	do {
2376 		long nrpages = vma_pages(vma);
2377 
2378 		if (vma->vm_flags & VM_ACCOUNT)
2379 			nr_accounted += nrpages;
2380 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2381 		vma = remove_vma(vma);
2382 	} while (vma);
2383 	vm_unacct_memory(nr_accounted);
2384 	validate_mm(mm);
2385 }
2386 
2387 /*
2388  * Get rid of page table information in the indicated region.
2389  *
2390  * Called with the mm semaphore held.
2391  */
2392 static void unmap_region(struct mm_struct *mm,
2393 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2394 		unsigned long start, unsigned long end)
2395 {
2396 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2397 	struct mmu_gather tlb;
2398 
2399 	lru_add_drain();
2400 	tlb_gather_mmu(&tlb, mm, start, end);
2401 	update_hiwater_rss(mm);
2402 	unmap_vmas(&tlb, vma, start, end);
2403 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2404 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2405 	tlb_finish_mmu(&tlb, start, end);
2406 }
2407 
2408 /*
2409  * Create a list of vma's touched by the unmap, removing them from the mm's
2410  * vma list as we go..
2411  */
2412 static void
2413 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2414 	struct vm_area_struct *prev, unsigned long end)
2415 {
2416 	struct vm_area_struct **insertion_point;
2417 	struct vm_area_struct *tail_vma = NULL;
2418 
2419 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2420 	vma->vm_prev = NULL;
2421 	do {
2422 		vma_rb_erase(vma, &mm->mm_rb);
2423 		mm->map_count--;
2424 		tail_vma = vma;
2425 		vma = vma->vm_next;
2426 	} while (vma && vma->vm_start < end);
2427 	*insertion_point = vma;
2428 	if (vma) {
2429 		vma->vm_prev = prev;
2430 		vma_gap_update(vma);
2431 	} else
2432 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2433 	tail_vma->vm_next = NULL;
2434 
2435 	/* Kill the cache */
2436 	vmacache_invalidate(mm);
2437 }
2438 
2439 /*
2440  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2441  * munmap path where it doesn't make sense to fail.
2442  */
2443 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2444 	      unsigned long addr, int new_below)
2445 {
2446 	struct vm_area_struct *new;
2447 	int err = -ENOMEM;
2448 
2449 	if (is_vm_hugetlb_page(vma) && (addr &
2450 					~(huge_page_mask(hstate_vma(vma)))))
2451 		return -EINVAL;
2452 
2453 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2454 	if (!new)
2455 		goto out_err;
2456 
2457 	/* most fields are the same, copy all, and then fixup */
2458 	*new = *vma;
2459 
2460 	INIT_LIST_HEAD(&new->anon_vma_chain);
2461 
2462 	if (new_below)
2463 		new->vm_end = addr;
2464 	else {
2465 		new->vm_start = addr;
2466 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2467 	}
2468 
2469 	err = vma_dup_policy(vma, new);
2470 	if (err)
2471 		goto out_free_vma;
2472 
2473 	err = anon_vma_clone(new, vma);
2474 	if (err)
2475 		goto out_free_mpol;
2476 
2477 	if (new->vm_file)
2478 		get_file(new->vm_file);
2479 
2480 	if (new->vm_ops && new->vm_ops->open)
2481 		new->vm_ops->open(new);
2482 
2483 	if (new_below)
2484 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2485 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2486 	else
2487 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2488 
2489 	/* Success. */
2490 	if (!err)
2491 		return 0;
2492 
2493 	/* Clean everything up if vma_adjust failed. */
2494 	if (new->vm_ops && new->vm_ops->close)
2495 		new->vm_ops->close(new);
2496 	if (new->vm_file)
2497 		fput(new->vm_file);
2498 	unlink_anon_vmas(new);
2499  out_free_mpol:
2500 	mpol_put(vma_policy(new));
2501  out_free_vma:
2502 	kmem_cache_free(vm_area_cachep, new);
2503  out_err:
2504 	return err;
2505 }
2506 
2507 /*
2508  * Split a vma into two pieces at address 'addr', a new vma is allocated
2509  * either for the first part or the tail.
2510  */
2511 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2512 	      unsigned long addr, int new_below)
2513 {
2514 	if (mm->map_count >= sysctl_max_map_count)
2515 		return -ENOMEM;
2516 
2517 	return __split_vma(mm, vma, addr, new_below);
2518 }
2519 
2520 /* Munmap is split into 2 main parts -- this part which finds
2521  * what needs doing, and the areas themselves, which do the
2522  * work.  This now handles partial unmappings.
2523  * Jeremy Fitzhardinge <jeremy@goop.org>
2524  */
2525 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2526 {
2527 	unsigned long end;
2528 	struct vm_area_struct *vma, *prev, *last;
2529 
2530 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2531 		return -EINVAL;
2532 
2533 	len = PAGE_ALIGN(len);
2534 	if (len == 0)
2535 		return -EINVAL;
2536 
2537 	/* Find the first overlapping VMA */
2538 	vma = find_vma(mm, start);
2539 	if (!vma)
2540 		return 0;
2541 	prev = vma->vm_prev;
2542 	/* we have  start < vma->vm_end  */
2543 
2544 	/* if it doesn't overlap, we have nothing.. */
2545 	end = start + len;
2546 	if (vma->vm_start >= end)
2547 		return 0;
2548 
2549 	/*
2550 	 * If we need to split any vma, do it now to save pain later.
2551 	 *
2552 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2553 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2554 	 * places tmp vma above, and higher split_vma places tmp vma below.
2555 	 */
2556 	if (start > vma->vm_start) {
2557 		int error;
2558 
2559 		/*
2560 		 * Make sure that map_count on return from munmap() will
2561 		 * not exceed its limit; but let map_count go just above
2562 		 * its limit temporarily, to help free resources as expected.
2563 		 */
2564 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2565 			return -ENOMEM;
2566 
2567 		error = __split_vma(mm, vma, start, 0);
2568 		if (error)
2569 			return error;
2570 		prev = vma;
2571 	}
2572 
2573 	/* Does it split the last one? */
2574 	last = find_vma(mm, end);
2575 	if (last && end > last->vm_start) {
2576 		int error = __split_vma(mm, last, end, 1);
2577 		if (error)
2578 			return error;
2579 	}
2580 	vma = prev ? prev->vm_next : mm->mmap;
2581 
2582 	/*
2583 	 * unlock any mlock()ed ranges before detaching vmas
2584 	 */
2585 	if (mm->locked_vm) {
2586 		struct vm_area_struct *tmp = vma;
2587 		while (tmp && tmp->vm_start < end) {
2588 			if (tmp->vm_flags & VM_LOCKED) {
2589 				mm->locked_vm -= vma_pages(tmp);
2590 				munlock_vma_pages_all(tmp);
2591 			}
2592 			tmp = tmp->vm_next;
2593 		}
2594 	}
2595 
2596 	/*
2597 	 * Remove the vma's, and unmap the actual pages
2598 	 */
2599 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2600 	unmap_region(mm, vma, prev, start, end);
2601 
2602 	arch_unmap(mm, vma, start, end);
2603 
2604 	/* Fix up all other VM information */
2605 	remove_vma_list(mm, vma);
2606 
2607 	return 0;
2608 }
2609 
2610 int vm_munmap(unsigned long start, size_t len)
2611 {
2612 	int ret;
2613 	struct mm_struct *mm = current->mm;
2614 
2615 	down_write(&mm->mmap_sem);
2616 	ret = do_munmap(mm, start, len);
2617 	up_write(&mm->mmap_sem);
2618 	return ret;
2619 }
2620 EXPORT_SYMBOL(vm_munmap);
2621 
2622 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2623 {
2624 	profile_munmap(addr);
2625 	return vm_munmap(addr, len);
2626 }
2627 
2628 
2629 /*
2630  * Emulation of deprecated remap_file_pages() syscall.
2631  */
2632 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2633 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2634 {
2635 
2636 	struct mm_struct *mm = current->mm;
2637 	struct vm_area_struct *vma;
2638 	unsigned long populate = 0;
2639 	unsigned long ret = -EINVAL;
2640 	struct file *file;
2641 
2642 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2643 			"See Documentation/vm/remap_file_pages.txt.\n",
2644 			current->comm, current->pid);
2645 
2646 	if (prot)
2647 		return ret;
2648 	start = start & PAGE_MASK;
2649 	size = size & PAGE_MASK;
2650 
2651 	if (start + size <= start)
2652 		return ret;
2653 
2654 	/* Does pgoff wrap? */
2655 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2656 		return ret;
2657 
2658 	down_write(&mm->mmap_sem);
2659 	vma = find_vma(mm, start);
2660 
2661 	if (!vma || !(vma->vm_flags & VM_SHARED))
2662 		goto out;
2663 
2664 	if (start < vma->vm_start || start + size > vma->vm_end)
2665 		goto out;
2666 
2667 	if (pgoff == linear_page_index(vma, start)) {
2668 		ret = 0;
2669 		goto out;
2670 	}
2671 
2672 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2673 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2674 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2675 
2676 	flags &= MAP_NONBLOCK;
2677 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2678 	if (vma->vm_flags & VM_LOCKED) {
2679 		flags |= MAP_LOCKED;
2680 		/* drop PG_Mlocked flag for over-mapped range */
2681 		munlock_vma_pages_range(vma, start, start + size);
2682 	}
2683 
2684 	file = get_file(vma->vm_file);
2685 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2686 			prot, flags, pgoff, &populate);
2687 	fput(file);
2688 out:
2689 	up_write(&mm->mmap_sem);
2690 	if (populate)
2691 		mm_populate(ret, populate);
2692 	if (!IS_ERR_VALUE(ret))
2693 		ret = 0;
2694 	return ret;
2695 }
2696 
2697 static inline void verify_mm_writelocked(struct mm_struct *mm)
2698 {
2699 #ifdef CONFIG_DEBUG_VM
2700 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2701 		WARN_ON(1);
2702 		up_read(&mm->mmap_sem);
2703 	}
2704 #endif
2705 }
2706 
2707 /*
2708  *  this is really a simplified "do_mmap".  it only handles
2709  *  anonymous maps.  eventually we may be able to do some
2710  *  brk-specific accounting here.
2711  */
2712 static unsigned long do_brk(unsigned long addr, unsigned long len)
2713 {
2714 	struct mm_struct *mm = current->mm;
2715 	struct vm_area_struct *vma, *prev;
2716 	unsigned long flags;
2717 	struct rb_node **rb_link, *rb_parent;
2718 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2719 	int error;
2720 
2721 	len = PAGE_ALIGN(len);
2722 	if (!len)
2723 		return addr;
2724 
2725 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2726 
2727 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2728 	if (error & ~PAGE_MASK)
2729 		return error;
2730 
2731 	error = mlock_future_check(mm, mm->def_flags, len);
2732 	if (error)
2733 		return error;
2734 
2735 	/*
2736 	 * mm->mmap_sem is required to protect against another thread
2737 	 * changing the mappings in case we sleep.
2738 	 */
2739 	verify_mm_writelocked(mm);
2740 
2741 	/*
2742 	 * Clear old maps.  this also does some error checking for us
2743 	 */
2744  munmap_back:
2745 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2746 		if (do_munmap(mm, addr, len))
2747 			return -ENOMEM;
2748 		goto munmap_back;
2749 	}
2750 
2751 	/* Check against address space limits *after* clearing old maps... */
2752 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2753 		return -ENOMEM;
2754 
2755 	if (mm->map_count > sysctl_max_map_count)
2756 		return -ENOMEM;
2757 
2758 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2759 		return -ENOMEM;
2760 
2761 	/* Can we just expand an old private anonymous mapping? */
2762 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2763 					NULL, NULL, pgoff, NULL);
2764 	if (vma)
2765 		goto out;
2766 
2767 	/*
2768 	 * create a vma struct for an anonymous mapping
2769 	 */
2770 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2771 	if (!vma) {
2772 		vm_unacct_memory(len >> PAGE_SHIFT);
2773 		return -ENOMEM;
2774 	}
2775 
2776 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2777 	vma->vm_mm = mm;
2778 	vma->vm_start = addr;
2779 	vma->vm_end = addr + len;
2780 	vma->vm_pgoff = pgoff;
2781 	vma->vm_flags = flags;
2782 	vma->vm_page_prot = vm_get_page_prot(flags);
2783 	vma_link(mm, vma, prev, rb_link, rb_parent);
2784 out:
2785 	perf_event_mmap(vma);
2786 	mm->total_vm += len >> PAGE_SHIFT;
2787 	if (flags & VM_LOCKED)
2788 		mm->locked_vm += (len >> PAGE_SHIFT);
2789 	vma->vm_flags |= VM_SOFTDIRTY;
2790 	return addr;
2791 }
2792 
2793 unsigned long vm_brk(unsigned long addr, unsigned long len)
2794 {
2795 	struct mm_struct *mm = current->mm;
2796 	unsigned long ret;
2797 	bool populate;
2798 
2799 	down_write(&mm->mmap_sem);
2800 	ret = do_brk(addr, len);
2801 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2802 	up_write(&mm->mmap_sem);
2803 	if (populate)
2804 		mm_populate(addr, len);
2805 	return ret;
2806 }
2807 EXPORT_SYMBOL(vm_brk);
2808 
2809 /* Release all mmaps. */
2810 void exit_mmap(struct mm_struct *mm)
2811 {
2812 	struct mmu_gather tlb;
2813 	struct vm_area_struct *vma;
2814 	unsigned long nr_accounted = 0;
2815 
2816 	/* mm's last user has gone, and its about to be pulled down */
2817 	mmu_notifier_release(mm);
2818 
2819 	if (mm->locked_vm) {
2820 		vma = mm->mmap;
2821 		while (vma) {
2822 			if (vma->vm_flags & VM_LOCKED)
2823 				munlock_vma_pages_all(vma);
2824 			vma = vma->vm_next;
2825 		}
2826 	}
2827 
2828 	arch_exit_mmap(mm);
2829 
2830 	vma = mm->mmap;
2831 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2832 		return;
2833 
2834 	lru_add_drain();
2835 	flush_cache_mm(mm);
2836 	tlb_gather_mmu(&tlb, mm, 0, -1);
2837 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2838 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2839 	unmap_vmas(&tlb, vma, 0, -1);
2840 
2841 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2842 	tlb_finish_mmu(&tlb, 0, -1);
2843 
2844 	/*
2845 	 * Walk the list again, actually closing and freeing it,
2846 	 * with preemption enabled, without holding any MM locks.
2847 	 */
2848 	while (vma) {
2849 		if (vma->vm_flags & VM_ACCOUNT)
2850 			nr_accounted += vma_pages(vma);
2851 		vma = remove_vma(vma);
2852 	}
2853 	vm_unacct_memory(nr_accounted);
2854 }
2855 
2856 /* Insert vm structure into process list sorted by address
2857  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2858  * then i_mmap_rwsem is taken here.
2859  */
2860 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2861 {
2862 	struct vm_area_struct *prev;
2863 	struct rb_node **rb_link, *rb_parent;
2864 
2865 	/*
2866 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2867 	 * until its first write fault, when page's anon_vma and index
2868 	 * are set.  But now set the vm_pgoff it will almost certainly
2869 	 * end up with (unless mremap moves it elsewhere before that
2870 	 * first wfault), so /proc/pid/maps tells a consistent story.
2871 	 *
2872 	 * By setting it to reflect the virtual start address of the
2873 	 * vma, merges and splits can happen in a seamless way, just
2874 	 * using the existing file pgoff checks and manipulations.
2875 	 * Similarly in do_mmap_pgoff and in do_brk.
2876 	 */
2877 	if (!vma->vm_file) {
2878 		BUG_ON(vma->anon_vma);
2879 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2880 	}
2881 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2882 			   &prev, &rb_link, &rb_parent))
2883 		return -ENOMEM;
2884 	if ((vma->vm_flags & VM_ACCOUNT) &&
2885 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2886 		return -ENOMEM;
2887 
2888 	vma_link(mm, vma, prev, rb_link, rb_parent);
2889 	return 0;
2890 }
2891 
2892 /*
2893  * Copy the vma structure to a new location in the same mm,
2894  * prior to moving page table entries, to effect an mremap move.
2895  */
2896 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2897 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2898 	bool *need_rmap_locks)
2899 {
2900 	struct vm_area_struct *vma = *vmap;
2901 	unsigned long vma_start = vma->vm_start;
2902 	struct mm_struct *mm = vma->vm_mm;
2903 	struct vm_area_struct *new_vma, *prev;
2904 	struct rb_node **rb_link, *rb_parent;
2905 	bool faulted_in_anon_vma = true;
2906 
2907 	/*
2908 	 * If anonymous vma has not yet been faulted, update new pgoff
2909 	 * to match new location, to increase its chance of merging.
2910 	 */
2911 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2912 		pgoff = addr >> PAGE_SHIFT;
2913 		faulted_in_anon_vma = false;
2914 	}
2915 
2916 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2917 		return NULL;	/* should never get here */
2918 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2919 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2920 	if (new_vma) {
2921 		/*
2922 		 * Source vma may have been merged into new_vma
2923 		 */
2924 		if (unlikely(vma_start >= new_vma->vm_start &&
2925 			     vma_start < new_vma->vm_end)) {
2926 			/*
2927 			 * The only way we can get a vma_merge with
2928 			 * self during an mremap is if the vma hasn't
2929 			 * been faulted in yet and we were allowed to
2930 			 * reset the dst vma->vm_pgoff to the
2931 			 * destination address of the mremap to allow
2932 			 * the merge to happen. mremap must change the
2933 			 * vm_pgoff linearity between src and dst vmas
2934 			 * (in turn preventing a vma_merge) to be
2935 			 * safe. It is only safe to keep the vm_pgoff
2936 			 * linear if there are no pages mapped yet.
2937 			 */
2938 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2939 			*vmap = vma = new_vma;
2940 		}
2941 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2942 	} else {
2943 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2944 		if (new_vma) {
2945 			*new_vma = *vma;
2946 			new_vma->vm_start = addr;
2947 			new_vma->vm_end = addr + len;
2948 			new_vma->vm_pgoff = pgoff;
2949 			if (vma_dup_policy(vma, new_vma))
2950 				goto out_free_vma;
2951 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2952 			if (anon_vma_clone(new_vma, vma))
2953 				goto out_free_mempol;
2954 			if (new_vma->vm_file)
2955 				get_file(new_vma->vm_file);
2956 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2957 				new_vma->vm_ops->open(new_vma);
2958 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2959 			*need_rmap_locks = false;
2960 		}
2961 	}
2962 	return new_vma;
2963 
2964  out_free_mempol:
2965 	mpol_put(vma_policy(new_vma));
2966  out_free_vma:
2967 	kmem_cache_free(vm_area_cachep, new_vma);
2968 	return NULL;
2969 }
2970 
2971 /*
2972  * Return true if the calling process may expand its vm space by the passed
2973  * number of pages
2974  */
2975 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2976 {
2977 	unsigned long cur = mm->total_vm;	/* pages */
2978 	unsigned long lim;
2979 
2980 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2981 
2982 	if (cur + npages > lim)
2983 		return 0;
2984 	return 1;
2985 }
2986 
2987 static int special_mapping_fault(struct vm_area_struct *vma,
2988 				 struct vm_fault *vmf);
2989 
2990 /*
2991  * Having a close hook prevents vma merging regardless of flags.
2992  */
2993 static void special_mapping_close(struct vm_area_struct *vma)
2994 {
2995 }
2996 
2997 static const char *special_mapping_name(struct vm_area_struct *vma)
2998 {
2999 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3000 }
3001 
3002 static const struct vm_operations_struct special_mapping_vmops = {
3003 	.close = special_mapping_close,
3004 	.fault = special_mapping_fault,
3005 	.name = special_mapping_name,
3006 };
3007 
3008 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3009 	.close = special_mapping_close,
3010 	.fault = special_mapping_fault,
3011 };
3012 
3013 static int special_mapping_fault(struct vm_area_struct *vma,
3014 				struct vm_fault *vmf)
3015 {
3016 	pgoff_t pgoff;
3017 	struct page **pages;
3018 
3019 	/*
3020 	 * special mappings have no vm_file, and in that case, the mm
3021 	 * uses vm_pgoff internally. So we have to subtract it from here.
3022 	 * We are allowed to do this because we are the mm; do not copy
3023 	 * this code into drivers!
3024 	 */
3025 	pgoff = vmf->pgoff - vma->vm_pgoff;
3026 
3027 	if (vma->vm_ops == &legacy_special_mapping_vmops)
3028 		pages = vma->vm_private_data;
3029 	else
3030 		pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3031 			pages;
3032 
3033 	for (; pgoff && *pages; ++pages)
3034 		pgoff--;
3035 
3036 	if (*pages) {
3037 		struct page *page = *pages;
3038 		get_page(page);
3039 		vmf->page = page;
3040 		return 0;
3041 	}
3042 
3043 	return VM_FAULT_SIGBUS;
3044 }
3045 
3046 static struct vm_area_struct *__install_special_mapping(
3047 	struct mm_struct *mm,
3048 	unsigned long addr, unsigned long len,
3049 	unsigned long vm_flags, const struct vm_operations_struct *ops,
3050 	void *priv)
3051 {
3052 	int ret;
3053 	struct vm_area_struct *vma;
3054 
3055 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3056 	if (unlikely(vma == NULL))
3057 		return ERR_PTR(-ENOMEM);
3058 
3059 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3060 	vma->vm_mm = mm;
3061 	vma->vm_start = addr;
3062 	vma->vm_end = addr + len;
3063 
3064 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3065 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3066 
3067 	vma->vm_ops = ops;
3068 	vma->vm_private_data = priv;
3069 
3070 	ret = insert_vm_struct(mm, vma);
3071 	if (ret)
3072 		goto out;
3073 
3074 	mm->total_vm += len >> PAGE_SHIFT;
3075 
3076 	perf_event_mmap(vma);
3077 
3078 	return vma;
3079 
3080 out:
3081 	kmem_cache_free(vm_area_cachep, vma);
3082 	return ERR_PTR(ret);
3083 }
3084 
3085 /*
3086  * Called with mm->mmap_sem held for writing.
3087  * Insert a new vma covering the given region, with the given flags.
3088  * Its pages are supplied by the given array of struct page *.
3089  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3090  * The region past the last page supplied will always produce SIGBUS.
3091  * The array pointer and the pages it points to are assumed to stay alive
3092  * for as long as this mapping might exist.
3093  */
3094 struct vm_area_struct *_install_special_mapping(
3095 	struct mm_struct *mm,
3096 	unsigned long addr, unsigned long len,
3097 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3098 {
3099 	return __install_special_mapping(mm, addr, len, vm_flags,
3100 					 &special_mapping_vmops, (void *)spec);
3101 }
3102 
3103 int install_special_mapping(struct mm_struct *mm,
3104 			    unsigned long addr, unsigned long len,
3105 			    unsigned long vm_flags, struct page **pages)
3106 {
3107 	struct vm_area_struct *vma = __install_special_mapping(
3108 		mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3109 		(void *)pages);
3110 
3111 	return PTR_ERR_OR_ZERO(vma);
3112 }
3113 
3114 static DEFINE_MUTEX(mm_all_locks_mutex);
3115 
3116 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3117 {
3118 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3119 		/*
3120 		 * The LSB of head.next can't change from under us
3121 		 * because we hold the mm_all_locks_mutex.
3122 		 */
3123 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3124 		/*
3125 		 * We can safely modify head.next after taking the
3126 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3127 		 * the same anon_vma we won't take it again.
3128 		 *
3129 		 * No need of atomic instructions here, head.next
3130 		 * can't change from under us thanks to the
3131 		 * anon_vma->root->rwsem.
3132 		 */
3133 		if (__test_and_set_bit(0, (unsigned long *)
3134 				       &anon_vma->root->rb_root.rb_node))
3135 			BUG();
3136 	}
3137 }
3138 
3139 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3140 {
3141 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3142 		/*
3143 		 * AS_MM_ALL_LOCKS can't change from under us because
3144 		 * we hold the mm_all_locks_mutex.
3145 		 *
3146 		 * Operations on ->flags have to be atomic because
3147 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3148 		 * mm_all_locks_mutex, there may be other cpus
3149 		 * changing other bitflags in parallel to us.
3150 		 */
3151 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3152 			BUG();
3153 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3154 	}
3155 }
3156 
3157 /*
3158  * This operation locks against the VM for all pte/vma/mm related
3159  * operations that could ever happen on a certain mm. This includes
3160  * vmtruncate, try_to_unmap, and all page faults.
3161  *
3162  * The caller must take the mmap_sem in write mode before calling
3163  * mm_take_all_locks(). The caller isn't allowed to release the
3164  * mmap_sem until mm_drop_all_locks() returns.
3165  *
3166  * mmap_sem in write mode is required in order to block all operations
3167  * that could modify pagetables and free pages without need of
3168  * altering the vma layout. It's also needed in write mode to avoid new
3169  * anon_vmas to be associated with existing vmas.
3170  *
3171  * A single task can't take more than one mm_take_all_locks() in a row
3172  * or it would deadlock.
3173  *
3174  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3175  * mapping->flags avoid to take the same lock twice, if more than one
3176  * vma in this mm is backed by the same anon_vma or address_space.
3177  *
3178  * We can take all the locks in random order because the VM code
3179  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3180  * takes more than one of them in a row. Secondly we're protected
3181  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3182  *
3183  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3184  * that may have to take thousand of locks.
3185  *
3186  * mm_take_all_locks() can fail if it's interrupted by signals.
3187  */
3188 int mm_take_all_locks(struct mm_struct *mm)
3189 {
3190 	struct vm_area_struct *vma;
3191 	struct anon_vma_chain *avc;
3192 
3193 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3194 
3195 	mutex_lock(&mm_all_locks_mutex);
3196 
3197 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3198 		if (signal_pending(current))
3199 			goto out_unlock;
3200 		if (vma->vm_file && vma->vm_file->f_mapping)
3201 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3202 	}
3203 
3204 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3205 		if (signal_pending(current))
3206 			goto out_unlock;
3207 		if (vma->anon_vma)
3208 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3209 				vm_lock_anon_vma(mm, avc->anon_vma);
3210 	}
3211 
3212 	return 0;
3213 
3214 out_unlock:
3215 	mm_drop_all_locks(mm);
3216 	return -EINTR;
3217 }
3218 
3219 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3220 {
3221 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3222 		/*
3223 		 * The LSB of head.next can't change to 0 from under
3224 		 * us because we hold the mm_all_locks_mutex.
3225 		 *
3226 		 * We must however clear the bitflag before unlocking
3227 		 * the vma so the users using the anon_vma->rb_root will
3228 		 * never see our bitflag.
3229 		 *
3230 		 * No need of atomic instructions here, head.next
3231 		 * can't change from under us until we release the
3232 		 * anon_vma->root->rwsem.
3233 		 */
3234 		if (!__test_and_clear_bit(0, (unsigned long *)
3235 					  &anon_vma->root->rb_root.rb_node))
3236 			BUG();
3237 		anon_vma_unlock_write(anon_vma);
3238 	}
3239 }
3240 
3241 static void vm_unlock_mapping(struct address_space *mapping)
3242 {
3243 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3244 		/*
3245 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3246 		 * because we hold the mm_all_locks_mutex.
3247 		 */
3248 		i_mmap_unlock_write(mapping);
3249 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3250 					&mapping->flags))
3251 			BUG();
3252 	}
3253 }
3254 
3255 /*
3256  * The mmap_sem cannot be released by the caller until
3257  * mm_drop_all_locks() returns.
3258  */
3259 void mm_drop_all_locks(struct mm_struct *mm)
3260 {
3261 	struct vm_area_struct *vma;
3262 	struct anon_vma_chain *avc;
3263 
3264 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3265 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3266 
3267 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3268 		if (vma->anon_vma)
3269 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3270 				vm_unlock_anon_vma(avc->anon_vma);
3271 		if (vma->vm_file && vma->vm_file->f_mapping)
3272 			vm_unlock_mapping(vma->vm_file->f_mapping);
3273 	}
3274 
3275 	mutex_unlock(&mm_all_locks_mutex);
3276 }
3277 
3278 /*
3279  * initialise the VMA slab
3280  */
3281 void __init mmap_init(void)
3282 {
3283 	int ret;
3284 
3285 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3286 	VM_BUG_ON(ret);
3287 }
3288 
3289 /*
3290  * Initialise sysctl_user_reserve_kbytes.
3291  *
3292  * This is intended to prevent a user from starting a single memory hogging
3293  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3294  * mode.
3295  *
3296  * The default value is min(3% of free memory, 128MB)
3297  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3298  */
3299 static int init_user_reserve(void)
3300 {
3301 	unsigned long free_kbytes;
3302 
3303 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3304 
3305 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3306 	return 0;
3307 }
3308 subsys_initcall(init_user_reserve);
3309 
3310 /*
3311  * Initialise sysctl_admin_reserve_kbytes.
3312  *
3313  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3314  * to log in and kill a memory hogging process.
3315  *
3316  * Systems with more than 256MB will reserve 8MB, enough to recover
3317  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3318  * only reserve 3% of free pages by default.
3319  */
3320 static int init_admin_reserve(void)
3321 {
3322 	unsigned long free_kbytes;
3323 
3324 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3325 
3326 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3327 	return 0;
3328 }
3329 subsys_initcall(init_admin_reserve);
3330 
3331 /*
3332  * Reinititalise user and admin reserves if memory is added or removed.
3333  *
3334  * The default user reserve max is 128MB, and the default max for the
3335  * admin reserve is 8MB. These are usually, but not always, enough to
3336  * enable recovery from a memory hogging process using login/sshd, a shell,
3337  * and tools like top. It may make sense to increase or even disable the
3338  * reserve depending on the existence of swap or variations in the recovery
3339  * tools. So, the admin may have changed them.
3340  *
3341  * If memory is added and the reserves have been eliminated or increased above
3342  * the default max, then we'll trust the admin.
3343  *
3344  * If memory is removed and there isn't enough free memory, then we
3345  * need to reset the reserves.
3346  *
3347  * Otherwise keep the reserve set by the admin.
3348  */
3349 static int reserve_mem_notifier(struct notifier_block *nb,
3350 			     unsigned long action, void *data)
3351 {
3352 	unsigned long tmp, free_kbytes;
3353 
3354 	switch (action) {
3355 	case MEM_ONLINE:
3356 		/* Default max is 128MB. Leave alone if modified by operator. */
3357 		tmp = sysctl_user_reserve_kbytes;
3358 		if (0 < tmp && tmp < (1UL << 17))
3359 			init_user_reserve();
3360 
3361 		/* Default max is 8MB.  Leave alone if modified by operator. */
3362 		tmp = sysctl_admin_reserve_kbytes;
3363 		if (0 < tmp && tmp < (1UL << 13))
3364 			init_admin_reserve();
3365 
3366 		break;
3367 	case MEM_OFFLINE:
3368 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3369 
3370 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3371 			init_user_reserve();
3372 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3373 				sysctl_user_reserve_kbytes);
3374 		}
3375 
3376 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3377 			init_admin_reserve();
3378 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3379 				sysctl_admin_reserve_kbytes);
3380 		}
3381 		break;
3382 	default:
3383 		break;
3384 	}
3385 	return NOTIFY_OK;
3386 }
3387 
3388 static struct notifier_block reserve_mem_nb = {
3389 	.notifier_call = reserve_mem_notifier,
3390 };
3391 
3392 static int __meminit init_reserve_notifier(void)
3393 {
3394 	if (register_hotmemory_notifier(&reserve_mem_nb))
3395 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3396 
3397 	return 0;
3398 }
3399 subsys_initcall(init_reserve_notifier);
3400