1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 struct vm_area_struct *next, unsigned long start, 82 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 83 84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 85 { 86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 87 } 88 89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 90 void vma_set_page_prot(struct vm_area_struct *vma) 91 { 92 unsigned long vm_flags = vma->vm_flags; 93 pgprot_t vm_page_prot; 94 95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 96 if (vma_wants_writenotify(vma, vm_page_prot)) { 97 vm_flags &= ~VM_SHARED; 98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 99 } 100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 102 } 103 104 /* 105 * Requires inode->i_mapping->i_mmap_rwsem 106 */ 107 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 108 struct file *file, struct address_space *mapping) 109 { 110 if (vma->vm_flags & VM_SHARED) 111 mapping_unmap_writable(mapping); 112 113 flush_dcache_mmap_lock(mapping); 114 vma_interval_tree_remove(vma, &mapping->i_mmap); 115 flush_dcache_mmap_unlock(mapping); 116 } 117 118 /* 119 * Unlink a file-based vm structure from its interval tree, to hide 120 * vma from rmap and vmtruncate before freeing its page tables. 121 */ 122 void unlink_file_vma(struct vm_area_struct *vma) 123 { 124 struct file *file = vma->vm_file; 125 126 if (file) { 127 struct address_space *mapping = file->f_mapping; 128 i_mmap_lock_write(mapping); 129 __remove_shared_vm_struct(vma, file, mapping); 130 i_mmap_unlock_write(mapping); 131 } 132 } 133 134 /* 135 * Close a vm structure and free it. 136 */ 137 static void remove_vma(struct vm_area_struct *vma, bool unreachable) 138 { 139 might_sleep(); 140 if (vma->vm_ops && vma->vm_ops->close) 141 vma->vm_ops->close(vma); 142 if (vma->vm_file) 143 fput(vma->vm_file); 144 mpol_put(vma_policy(vma)); 145 if (unreachable) 146 __vm_area_free(vma); 147 else 148 vm_area_free(vma); 149 } 150 151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 152 unsigned long min) 153 { 154 return mas_prev(&vmi->mas, min); 155 } 156 157 /* 158 * check_brk_limits() - Use platform specific check of range & verify mlock 159 * limits. 160 * @addr: The address to check 161 * @len: The size of increase. 162 * 163 * Return: 0 on success. 164 */ 165 static int check_brk_limits(unsigned long addr, unsigned long len) 166 { 167 unsigned long mapped_addr; 168 169 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 170 if (IS_ERR_VALUE(mapped_addr)) 171 return mapped_addr; 172 173 return mlock_future_ok(current->mm, current->mm->def_flags, len) 174 ? 0 : -EAGAIN; 175 } 176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 177 unsigned long addr, unsigned long request, unsigned long flags); 178 SYSCALL_DEFINE1(brk, unsigned long, brk) 179 { 180 unsigned long newbrk, oldbrk, origbrk; 181 struct mm_struct *mm = current->mm; 182 struct vm_area_struct *brkvma, *next = NULL; 183 unsigned long min_brk; 184 bool populate = false; 185 LIST_HEAD(uf); 186 struct vma_iterator vmi; 187 188 if (mmap_write_lock_killable(mm)) 189 return -EINTR; 190 191 origbrk = mm->brk; 192 193 #ifdef CONFIG_COMPAT_BRK 194 /* 195 * CONFIG_COMPAT_BRK can still be overridden by setting 196 * randomize_va_space to 2, which will still cause mm->start_brk 197 * to be arbitrarily shifted 198 */ 199 if (current->brk_randomized) 200 min_brk = mm->start_brk; 201 else 202 min_brk = mm->end_data; 203 #else 204 min_brk = mm->start_brk; 205 #endif 206 if (brk < min_brk) 207 goto out; 208 209 /* 210 * Check against rlimit here. If this check is done later after the test 211 * of oldbrk with newbrk then it can escape the test and let the data 212 * segment grow beyond its set limit the in case where the limit is 213 * not page aligned -Ram Gupta 214 */ 215 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 216 mm->end_data, mm->start_data)) 217 goto out; 218 219 newbrk = PAGE_ALIGN(brk); 220 oldbrk = PAGE_ALIGN(mm->brk); 221 if (oldbrk == newbrk) { 222 mm->brk = brk; 223 goto success; 224 } 225 226 /* Always allow shrinking brk. */ 227 if (brk <= mm->brk) { 228 /* Search one past newbrk */ 229 vma_iter_init(&vmi, mm, newbrk); 230 brkvma = vma_find(&vmi, oldbrk); 231 if (!brkvma || brkvma->vm_start >= oldbrk) 232 goto out; /* mapping intersects with an existing non-brk vma. */ 233 /* 234 * mm->brk must be protected by write mmap_lock. 235 * do_vma_munmap() will drop the lock on success, so update it 236 * before calling do_vma_munmap(). 237 */ 238 mm->brk = brk; 239 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true)) 240 goto out; 241 242 goto success_unlocked; 243 } 244 245 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 246 goto out; 247 248 /* 249 * Only check if the next VMA is within the stack_guard_gap of the 250 * expansion area 251 */ 252 vma_iter_init(&vmi, mm, oldbrk); 253 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 254 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 255 goto out; 256 257 brkvma = vma_prev_limit(&vmi, mm->start_brk); 258 /* Ok, looks good - let it rip. */ 259 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 260 goto out; 261 262 mm->brk = brk; 263 if (mm->def_flags & VM_LOCKED) 264 populate = true; 265 266 success: 267 mmap_write_unlock(mm); 268 success_unlocked: 269 userfaultfd_unmap_complete(mm, &uf); 270 if (populate) 271 mm_populate(oldbrk, newbrk - oldbrk); 272 return brk; 273 274 out: 275 mm->brk = origbrk; 276 mmap_write_unlock(mm); 277 return origbrk; 278 } 279 280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 281 static void validate_mm(struct mm_struct *mm) 282 { 283 int bug = 0; 284 int i = 0; 285 struct vm_area_struct *vma; 286 VMA_ITERATOR(vmi, mm, 0); 287 288 mt_validate(&mm->mm_mt); 289 for_each_vma(vmi, vma) { 290 #ifdef CONFIG_DEBUG_VM_RB 291 struct anon_vma *anon_vma = vma->anon_vma; 292 struct anon_vma_chain *avc; 293 #endif 294 unsigned long vmi_start, vmi_end; 295 bool warn = 0; 296 297 vmi_start = vma_iter_addr(&vmi); 298 vmi_end = vma_iter_end(&vmi); 299 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 300 warn = 1; 301 302 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 303 warn = 1; 304 305 if (warn) { 306 pr_emerg("issue in %s\n", current->comm); 307 dump_stack(); 308 dump_vma(vma); 309 pr_emerg("tree range: %px start %lx end %lx\n", vma, 310 vmi_start, vmi_end - 1); 311 vma_iter_dump_tree(&vmi); 312 } 313 314 #ifdef CONFIG_DEBUG_VM_RB 315 if (anon_vma) { 316 anon_vma_lock_read(anon_vma); 317 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 318 anon_vma_interval_tree_verify(avc); 319 anon_vma_unlock_read(anon_vma); 320 } 321 #endif 322 i++; 323 } 324 if (i != mm->map_count) { 325 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 326 bug = 1; 327 } 328 VM_BUG_ON_MM(bug, mm); 329 } 330 331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 332 #define validate_mm(mm) do { } while (0) 333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 334 335 /* 336 * vma has some anon_vma assigned, and is already inserted on that 337 * anon_vma's interval trees. 338 * 339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 340 * vma must be removed from the anon_vma's interval trees using 341 * anon_vma_interval_tree_pre_update_vma(). 342 * 343 * After the update, the vma will be reinserted using 344 * anon_vma_interval_tree_post_update_vma(). 345 * 346 * The entire update must be protected by exclusive mmap_lock and by 347 * the root anon_vma's mutex. 348 */ 349 static inline void 350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 351 { 352 struct anon_vma_chain *avc; 353 354 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 355 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 356 } 357 358 static inline void 359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 360 { 361 struct anon_vma_chain *avc; 362 363 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 364 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 365 } 366 367 static unsigned long count_vma_pages_range(struct mm_struct *mm, 368 unsigned long addr, unsigned long end) 369 { 370 VMA_ITERATOR(vmi, mm, addr); 371 struct vm_area_struct *vma; 372 unsigned long nr_pages = 0; 373 374 for_each_vma_range(vmi, vma, end) { 375 unsigned long vm_start = max(addr, vma->vm_start); 376 unsigned long vm_end = min(end, vma->vm_end); 377 378 nr_pages += PHYS_PFN(vm_end - vm_start); 379 } 380 381 return nr_pages; 382 } 383 384 static void __vma_link_file(struct vm_area_struct *vma, 385 struct address_space *mapping) 386 { 387 if (vma->vm_flags & VM_SHARED) 388 mapping_allow_writable(mapping); 389 390 flush_dcache_mmap_lock(mapping); 391 vma_interval_tree_insert(vma, &mapping->i_mmap); 392 flush_dcache_mmap_unlock(mapping); 393 } 394 395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 396 { 397 VMA_ITERATOR(vmi, mm, 0); 398 struct address_space *mapping = NULL; 399 400 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 401 if (vma_iter_prealloc(&vmi, vma)) 402 return -ENOMEM; 403 404 vma_start_write(vma); 405 406 vma_iter_store(&vmi, vma); 407 408 if (vma->vm_file) { 409 mapping = vma->vm_file->f_mapping; 410 i_mmap_lock_write(mapping); 411 __vma_link_file(vma, mapping); 412 i_mmap_unlock_write(mapping); 413 } 414 415 mm->map_count++; 416 validate_mm(mm); 417 return 0; 418 } 419 420 /* 421 * init_multi_vma_prep() - Initializer for struct vma_prepare 422 * @vp: The vma_prepare struct 423 * @vma: The vma that will be altered once locked 424 * @next: The next vma if it is to be adjusted 425 * @remove: The first vma to be removed 426 * @remove2: The second vma to be removed 427 */ 428 static inline void init_multi_vma_prep(struct vma_prepare *vp, 429 struct vm_area_struct *vma, struct vm_area_struct *next, 430 struct vm_area_struct *remove, struct vm_area_struct *remove2) 431 { 432 memset(vp, 0, sizeof(struct vma_prepare)); 433 vp->vma = vma; 434 vp->anon_vma = vma->anon_vma; 435 vp->remove = remove; 436 vp->remove2 = remove2; 437 vp->adj_next = next; 438 if (!vp->anon_vma && next) 439 vp->anon_vma = next->anon_vma; 440 441 vp->file = vma->vm_file; 442 if (vp->file) 443 vp->mapping = vma->vm_file->f_mapping; 444 445 } 446 447 /* 448 * init_vma_prep() - Initializer wrapper for vma_prepare struct 449 * @vp: The vma_prepare struct 450 * @vma: The vma that will be altered once locked 451 */ 452 static inline void init_vma_prep(struct vma_prepare *vp, 453 struct vm_area_struct *vma) 454 { 455 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 456 } 457 458 459 /* 460 * vma_prepare() - Helper function for handling locking VMAs prior to altering 461 * @vp: The initialized vma_prepare struct 462 */ 463 static inline void vma_prepare(struct vma_prepare *vp) 464 { 465 if (vp->file) { 466 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 467 468 if (vp->adj_next) 469 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 470 vp->adj_next->vm_end); 471 472 i_mmap_lock_write(vp->mapping); 473 if (vp->insert && vp->insert->vm_file) { 474 /* 475 * Put into interval tree now, so instantiated pages 476 * are visible to arm/parisc __flush_dcache_page 477 * throughout; but we cannot insert into address 478 * space until vma start or end is updated. 479 */ 480 __vma_link_file(vp->insert, 481 vp->insert->vm_file->f_mapping); 482 } 483 } 484 485 if (vp->anon_vma) { 486 anon_vma_lock_write(vp->anon_vma); 487 anon_vma_interval_tree_pre_update_vma(vp->vma); 488 if (vp->adj_next) 489 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 490 } 491 492 if (vp->file) { 493 flush_dcache_mmap_lock(vp->mapping); 494 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 495 if (vp->adj_next) 496 vma_interval_tree_remove(vp->adj_next, 497 &vp->mapping->i_mmap); 498 } 499 500 } 501 502 /* 503 * vma_complete- Helper function for handling the unlocking after altering VMAs, 504 * or for inserting a VMA. 505 * 506 * @vp: The vma_prepare struct 507 * @vmi: The vma iterator 508 * @mm: The mm_struct 509 */ 510 static inline void vma_complete(struct vma_prepare *vp, 511 struct vma_iterator *vmi, struct mm_struct *mm) 512 { 513 if (vp->file) { 514 if (vp->adj_next) 515 vma_interval_tree_insert(vp->adj_next, 516 &vp->mapping->i_mmap); 517 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 518 flush_dcache_mmap_unlock(vp->mapping); 519 } 520 521 if (vp->remove && vp->file) { 522 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping); 523 if (vp->remove2) 524 __remove_shared_vm_struct(vp->remove2, vp->file, 525 vp->mapping); 526 } else if (vp->insert) { 527 /* 528 * split_vma has split insert from vma, and needs 529 * us to insert it before dropping the locks 530 * (it may either follow vma or precede it). 531 */ 532 vma_iter_store(vmi, vp->insert); 533 mm->map_count++; 534 } 535 536 if (vp->anon_vma) { 537 anon_vma_interval_tree_post_update_vma(vp->vma); 538 if (vp->adj_next) 539 anon_vma_interval_tree_post_update_vma(vp->adj_next); 540 anon_vma_unlock_write(vp->anon_vma); 541 } 542 543 if (vp->file) { 544 i_mmap_unlock_write(vp->mapping); 545 uprobe_mmap(vp->vma); 546 547 if (vp->adj_next) 548 uprobe_mmap(vp->adj_next); 549 } 550 551 if (vp->remove) { 552 again: 553 vma_mark_detached(vp->remove, true); 554 if (vp->file) { 555 uprobe_munmap(vp->remove, vp->remove->vm_start, 556 vp->remove->vm_end); 557 fput(vp->file); 558 } 559 if (vp->remove->anon_vma) 560 anon_vma_merge(vp->vma, vp->remove); 561 mm->map_count--; 562 mpol_put(vma_policy(vp->remove)); 563 if (!vp->remove2) 564 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 565 vm_area_free(vp->remove); 566 567 /* 568 * In mprotect's case 6 (see comments on vma_merge), 569 * we are removing both mid and next vmas 570 */ 571 if (vp->remove2) { 572 vp->remove = vp->remove2; 573 vp->remove2 = NULL; 574 goto again; 575 } 576 } 577 if (vp->insert && vp->file) 578 uprobe_mmap(vp->insert); 579 validate_mm(mm); 580 } 581 582 /* 583 * dup_anon_vma() - Helper function to duplicate anon_vma 584 * @dst: The destination VMA 585 * @src: The source VMA 586 * @dup: Pointer to the destination VMA when successful. 587 * 588 * Returns: 0 on success. 589 */ 590 static inline int dup_anon_vma(struct vm_area_struct *dst, 591 struct vm_area_struct *src, struct vm_area_struct **dup) 592 { 593 /* 594 * Easily overlooked: when mprotect shifts the boundary, make sure the 595 * expanding vma has anon_vma set if the shrinking vma had, to cover any 596 * anon pages imported. 597 */ 598 if (src->anon_vma && !dst->anon_vma) { 599 int ret; 600 601 vma_assert_write_locked(dst); 602 dst->anon_vma = src->anon_vma; 603 ret = anon_vma_clone(dst, src); 604 if (ret) 605 return ret; 606 607 *dup = dst; 608 } 609 610 return 0; 611 } 612 613 /* 614 * vma_expand - Expand an existing VMA 615 * 616 * @vmi: The vma iterator 617 * @vma: The vma to expand 618 * @start: The start of the vma 619 * @end: The exclusive end of the vma 620 * @pgoff: The page offset of vma 621 * @next: The current of next vma. 622 * 623 * Expand @vma to @start and @end. Can expand off the start and end. Will 624 * expand over @next if it's different from @vma and @end == @next->vm_end. 625 * Checking if the @vma can expand and merge with @next needs to be handled by 626 * the caller. 627 * 628 * Returns: 0 on success 629 */ 630 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 631 unsigned long start, unsigned long end, pgoff_t pgoff, 632 struct vm_area_struct *next) 633 { 634 struct vm_area_struct *anon_dup = NULL; 635 bool remove_next = false; 636 struct vma_prepare vp; 637 638 vma_start_write(vma); 639 if (next && (vma != next) && (end == next->vm_end)) { 640 int ret; 641 642 remove_next = true; 643 vma_start_write(next); 644 ret = dup_anon_vma(vma, next, &anon_dup); 645 if (ret) 646 return ret; 647 } 648 649 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 650 /* Not merging but overwriting any part of next is not handled. */ 651 VM_WARN_ON(next && !vp.remove && 652 next != vma && end > next->vm_start); 653 /* Only handles expanding */ 654 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 655 656 /* Note: vma iterator must be pointing to 'start' */ 657 vma_iter_config(vmi, start, end); 658 if (vma_iter_prealloc(vmi, vma)) 659 goto nomem; 660 661 vma_prepare(&vp); 662 vma_adjust_trans_huge(vma, start, end, 0); 663 vma->vm_start = start; 664 vma->vm_end = end; 665 vma->vm_pgoff = pgoff; 666 vma_iter_store(vmi, vma); 667 668 vma_complete(&vp, vmi, vma->vm_mm); 669 return 0; 670 671 nomem: 672 if (anon_dup) 673 unlink_anon_vmas(anon_dup); 674 return -ENOMEM; 675 } 676 677 /* 678 * vma_shrink() - Reduce an existing VMAs memory area 679 * @vmi: The vma iterator 680 * @vma: The VMA to modify 681 * @start: The new start 682 * @end: The new end 683 * 684 * Returns: 0 on success, -ENOMEM otherwise 685 */ 686 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 687 unsigned long start, unsigned long end, pgoff_t pgoff) 688 { 689 struct vma_prepare vp; 690 691 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 692 693 if (vma->vm_start < start) 694 vma_iter_config(vmi, vma->vm_start, start); 695 else 696 vma_iter_config(vmi, end, vma->vm_end); 697 698 if (vma_iter_prealloc(vmi, NULL)) 699 return -ENOMEM; 700 701 vma_start_write(vma); 702 703 init_vma_prep(&vp, vma); 704 vma_prepare(&vp); 705 vma_adjust_trans_huge(vma, start, end, 0); 706 707 vma_iter_clear(vmi); 708 vma->vm_start = start; 709 vma->vm_end = end; 710 vma->vm_pgoff = pgoff; 711 vma_complete(&vp, vmi, vma->vm_mm); 712 return 0; 713 } 714 715 /* 716 * If the vma has a ->close operation then the driver probably needs to release 717 * per-vma resources, so we don't attempt to merge those if the caller indicates 718 * the current vma may be removed as part of the merge. 719 */ 720 static inline bool is_mergeable_vma(struct vm_area_struct *vma, 721 struct file *file, unsigned long vm_flags, 722 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 723 struct anon_vma_name *anon_name, bool may_remove_vma) 724 { 725 /* 726 * VM_SOFTDIRTY should not prevent from VMA merging, if we 727 * match the flags but dirty bit -- the caller should mark 728 * merged VMA as dirty. If dirty bit won't be excluded from 729 * comparison, we increase pressure on the memory system forcing 730 * the kernel to generate new VMAs when old one could be 731 * extended instead. 732 */ 733 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 734 return false; 735 if (vma->vm_file != file) 736 return false; 737 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 738 return false; 739 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 740 return false; 741 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 742 return false; 743 return true; 744 } 745 746 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 747 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 748 { 749 /* 750 * The list_is_singular() test is to avoid merging VMA cloned from 751 * parents. This can improve scalability caused by anon_vma lock. 752 */ 753 if ((!anon_vma1 || !anon_vma2) && (!vma || 754 list_is_singular(&vma->anon_vma_chain))) 755 return true; 756 return anon_vma1 == anon_vma2; 757 } 758 759 /* 760 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 761 * in front of (at a lower virtual address and file offset than) the vma. 762 * 763 * We cannot merge two vmas if they have differently assigned (non-NULL) 764 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 765 * 766 * We don't check here for the merged mmap wrapping around the end of pagecache 767 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 768 * wrap, nor mmaps which cover the final page at index -1UL. 769 * 770 * We assume the vma may be removed as part of the merge. 771 */ 772 static bool 773 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 774 struct anon_vma *anon_vma, struct file *file, 775 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 776 struct anon_vma_name *anon_name) 777 { 778 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 779 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 780 if (vma->vm_pgoff == vm_pgoff) 781 return true; 782 } 783 return false; 784 } 785 786 /* 787 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 788 * beyond (at a higher virtual address and file offset than) the vma. 789 * 790 * We cannot merge two vmas if they have differently assigned (non-NULL) 791 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 792 * 793 * We assume that vma is not removed as part of the merge. 794 */ 795 static bool 796 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 797 struct anon_vma *anon_vma, struct file *file, 798 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 799 struct anon_vma_name *anon_name) 800 { 801 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 802 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 803 pgoff_t vm_pglen; 804 vm_pglen = vma_pages(vma); 805 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 806 return true; 807 } 808 return false; 809 } 810 811 /* 812 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 813 * figure out whether that can be merged with its predecessor or its 814 * successor. Or both (it neatly fills a hole). 815 * 816 * In most cases - when called for mmap, brk or mremap - [addr,end) is 817 * certain not to be mapped by the time vma_merge is called; but when 818 * called for mprotect, it is certain to be already mapped (either at 819 * an offset within prev, or at the start of next), and the flags of 820 * this area are about to be changed to vm_flags - and the no-change 821 * case has already been eliminated. 822 * 823 * The following mprotect cases have to be considered, where **** is 824 * the area passed down from mprotect_fixup, never extending beyond one 825 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 826 * at the same address as **** and is of the same or larger span, and 827 * NNNN the next vma after ****: 828 * 829 * **** **** **** 830 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 831 * cannot merge might become might become 832 * PPNNNNNNNNNN PPPPPPPPPPCC 833 * mmap, brk or case 4 below case 5 below 834 * mremap move: 835 * **** **** 836 * PPPP NNNN PPPPCCCCNNNN 837 * might become might become 838 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 839 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 840 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 841 * 842 * It is important for case 8 that the vma CCCC overlapping the 843 * region **** is never going to extended over NNNN. Instead NNNN must 844 * be extended in region **** and CCCC must be removed. This way in 845 * all cases where vma_merge succeeds, the moment vma_merge drops the 846 * rmap_locks, the properties of the merged vma will be already 847 * correct for the whole merged range. Some of those properties like 848 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 849 * be correct for the whole merged range immediately after the 850 * rmap_locks are released. Otherwise if NNNN would be removed and 851 * CCCC would be extended over the NNNN range, remove_migration_ptes 852 * or other rmap walkers (if working on addresses beyond the "end" 853 * parameter) may establish ptes with the wrong permissions of CCCC 854 * instead of the right permissions of NNNN. 855 * 856 * In the code below: 857 * PPPP is represented by *prev 858 * CCCC is represented by *curr or not represented at all (NULL) 859 * NNNN is represented by *next or not represented at all (NULL) 860 * **** is not represented - it will be merged and the vma containing the 861 * area is returned, or the function will return NULL 862 */ 863 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm, 864 struct vm_area_struct *prev, unsigned long addr, 865 unsigned long end, unsigned long vm_flags, 866 struct anon_vma *anon_vma, struct file *file, 867 pgoff_t pgoff, struct mempolicy *policy, 868 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 869 struct anon_vma_name *anon_name) 870 { 871 struct vm_area_struct *curr, *next, *res; 872 struct vm_area_struct *vma, *adjust, *remove, *remove2; 873 struct vm_area_struct *anon_dup = NULL; 874 struct vma_prepare vp; 875 pgoff_t vma_pgoff; 876 int err = 0; 877 bool merge_prev = false; 878 bool merge_next = false; 879 bool vma_expanded = false; 880 unsigned long vma_start = addr; 881 unsigned long vma_end = end; 882 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 883 long adj_start = 0; 884 885 /* 886 * We later require that vma->vm_flags == vm_flags, 887 * so this tests vma->vm_flags & VM_SPECIAL, too. 888 */ 889 if (vm_flags & VM_SPECIAL) 890 return NULL; 891 892 /* Does the input range span an existing VMA? (cases 5 - 8) */ 893 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 894 895 if (!curr || /* cases 1 - 4 */ 896 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 897 next = vma_lookup(mm, end); 898 else 899 next = NULL; /* case 5 */ 900 901 if (prev) { 902 vma_start = prev->vm_start; 903 vma_pgoff = prev->vm_pgoff; 904 905 /* Can we merge the predecessor? */ 906 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 907 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 908 pgoff, vm_userfaultfd_ctx, anon_name)) { 909 merge_prev = true; 910 vma_prev(vmi); 911 } 912 } 913 914 /* Can we merge the successor? */ 915 if (next && mpol_equal(policy, vma_policy(next)) && 916 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 917 vm_userfaultfd_ctx, anon_name)) { 918 merge_next = true; 919 } 920 921 /* Verify some invariant that must be enforced by the caller. */ 922 VM_WARN_ON(prev && addr <= prev->vm_start); 923 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 924 VM_WARN_ON(addr >= end); 925 926 if (!merge_prev && !merge_next) 927 return NULL; /* Not mergeable. */ 928 929 if (merge_prev) 930 vma_start_write(prev); 931 932 res = vma = prev; 933 remove = remove2 = adjust = NULL; 934 935 /* Can we merge both the predecessor and the successor? */ 936 if (merge_prev && merge_next && 937 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 938 vma_start_write(next); 939 remove = next; /* case 1 */ 940 vma_end = next->vm_end; 941 err = dup_anon_vma(prev, next, &anon_dup); 942 if (curr) { /* case 6 */ 943 vma_start_write(curr); 944 remove = curr; 945 remove2 = next; 946 if (!next->anon_vma) 947 err = dup_anon_vma(prev, curr, &anon_dup); 948 } 949 } else if (merge_prev) { /* case 2 */ 950 if (curr) { 951 vma_start_write(curr); 952 err = dup_anon_vma(prev, curr, &anon_dup); 953 if (end == curr->vm_end) { /* case 7 */ 954 remove = curr; 955 } else { /* case 5 */ 956 adjust = curr; 957 adj_start = (end - curr->vm_start); 958 } 959 } 960 } else { /* merge_next */ 961 vma_start_write(next); 962 res = next; 963 if (prev && addr < prev->vm_end) { /* case 4 */ 964 vma_start_write(prev); 965 vma_end = addr; 966 adjust = next; 967 adj_start = -(prev->vm_end - addr); 968 err = dup_anon_vma(next, prev, &anon_dup); 969 } else { 970 /* 971 * Note that cases 3 and 8 are the ONLY ones where prev 972 * is permitted to be (but is not necessarily) NULL. 973 */ 974 vma = next; /* case 3 */ 975 vma_start = addr; 976 vma_end = next->vm_end; 977 vma_pgoff = next->vm_pgoff - pglen; 978 if (curr) { /* case 8 */ 979 vma_pgoff = curr->vm_pgoff; 980 vma_start_write(curr); 981 remove = curr; 982 err = dup_anon_vma(next, curr, &anon_dup); 983 } 984 } 985 } 986 987 /* Error in anon_vma clone. */ 988 if (err) 989 goto anon_vma_fail; 990 991 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 992 vma_expanded = true; 993 994 if (vma_expanded) { 995 vma_iter_config(vmi, vma_start, vma_end); 996 } else { 997 vma_iter_config(vmi, adjust->vm_start + adj_start, 998 adjust->vm_end); 999 } 1000 1001 if (vma_iter_prealloc(vmi, vma)) 1002 goto prealloc_fail; 1003 1004 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 1005 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 1006 vp.anon_vma != adjust->anon_vma); 1007 1008 vma_prepare(&vp); 1009 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1010 1011 vma->vm_start = vma_start; 1012 vma->vm_end = vma_end; 1013 vma->vm_pgoff = vma_pgoff; 1014 1015 if (vma_expanded) 1016 vma_iter_store(vmi, vma); 1017 1018 if (adj_start) { 1019 adjust->vm_start += adj_start; 1020 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1021 if (adj_start < 0) { 1022 WARN_ON(vma_expanded); 1023 vma_iter_store(vmi, next); 1024 } 1025 } 1026 1027 vma_complete(&vp, vmi, mm); 1028 khugepaged_enter_vma(res, vm_flags); 1029 return res; 1030 1031 prealloc_fail: 1032 if (anon_dup) 1033 unlink_anon_vmas(anon_dup); 1034 1035 anon_vma_fail: 1036 vma_iter_set(vmi, addr); 1037 vma_iter_load(vmi); 1038 return NULL; 1039 } 1040 1041 /* 1042 * Rough compatibility check to quickly see if it's even worth looking 1043 * at sharing an anon_vma. 1044 * 1045 * They need to have the same vm_file, and the flags can only differ 1046 * in things that mprotect may change. 1047 * 1048 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1049 * we can merge the two vma's. For example, we refuse to merge a vma if 1050 * there is a vm_ops->close() function, because that indicates that the 1051 * driver is doing some kind of reference counting. But that doesn't 1052 * really matter for the anon_vma sharing case. 1053 */ 1054 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1055 { 1056 return a->vm_end == b->vm_start && 1057 mpol_equal(vma_policy(a), vma_policy(b)) && 1058 a->vm_file == b->vm_file && 1059 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1060 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1061 } 1062 1063 /* 1064 * Do some basic sanity checking to see if we can re-use the anon_vma 1065 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1066 * the same as 'old', the other will be the new one that is trying 1067 * to share the anon_vma. 1068 * 1069 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1070 * the anon_vma of 'old' is concurrently in the process of being set up 1071 * by another page fault trying to merge _that_. But that's ok: if it 1072 * is being set up, that automatically means that it will be a singleton 1073 * acceptable for merging, so we can do all of this optimistically. But 1074 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1075 * 1076 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1077 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1078 * is to return an anon_vma that is "complex" due to having gone through 1079 * a fork). 1080 * 1081 * We also make sure that the two vma's are compatible (adjacent, 1082 * and with the same memory policies). That's all stable, even with just 1083 * a read lock on the mmap_lock. 1084 */ 1085 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1086 { 1087 if (anon_vma_compatible(a, b)) { 1088 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1089 1090 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1091 return anon_vma; 1092 } 1093 return NULL; 1094 } 1095 1096 /* 1097 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1098 * neighbouring vmas for a suitable anon_vma, before it goes off 1099 * to allocate a new anon_vma. It checks because a repetitive 1100 * sequence of mprotects and faults may otherwise lead to distinct 1101 * anon_vmas being allocated, preventing vma merge in subsequent 1102 * mprotect. 1103 */ 1104 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1105 { 1106 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end); 1107 struct anon_vma *anon_vma = NULL; 1108 struct vm_area_struct *prev, *next; 1109 1110 /* Try next first. */ 1111 next = mas_walk(&mas); 1112 if (next) { 1113 anon_vma = reusable_anon_vma(next, vma, next); 1114 if (anon_vma) 1115 return anon_vma; 1116 } 1117 1118 prev = mas_prev(&mas, 0); 1119 VM_BUG_ON_VMA(prev != vma, vma); 1120 prev = mas_prev(&mas, 0); 1121 /* Try prev next. */ 1122 if (prev) 1123 anon_vma = reusable_anon_vma(prev, prev, vma); 1124 1125 /* 1126 * We might reach here with anon_vma == NULL if we can't find 1127 * any reusable anon_vma. 1128 * There's no absolute need to look only at touching neighbours: 1129 * we could search further afield for "compatible" anon_vmas. 1130 * But it would probably just be a waste of time searching, 1131 * or lead to too many vmas hanging off the same anon_vma. 1132 * We're trying to allow mprotect remerging later on, 1133 * not trying to minimize memory used for anon_vmas. 1134 */ 1135 return anon_vma; 1136 } 1137 1138 /* 1139 * If a hint addr is less than mmap_min_addr change hint to be as 1140 * low as possible but still greater than mmap_min_addr 1141 */ 1142 static inline unsigned long round_hint_to_min(unsigned long hint) 1143 { 1144 hint &= PAGE_MASK; 1145 if (((void *)hint != NULL) && 1146 (hint < mmap_min_addr)) 1147 return PAGE_ALIGN(mmap_min_addr); 1148 return hint; 1149 } 1150 1151 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 1152 unsigned long bytes) 1153 { 1154 unsigned long locked_pages, limit_pages; 1155 1156 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 1157 return true; 1158 1159 locked_pages = bytes >> PAGE_SHIFT; 1160 locked_pages += mm->locked_vm; 1161 1162 limit_pages = rlimit(RLIMIT_MEMLOCK); 1163 limit_pages >>= PAGE_SHIFT; 1164 1165 return locked_pages <= limit_pages; 1166 } 1167 1168 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1169 { 1170 if (S_ISREG(inode->i_mode)) 1171 return MAX_LFS_FILESIZE; 1172 1173 if (S_ISBLK(inode->i_mode)) 1174 return MAX_LFS_FILESIZE; 1175 1176 if (S_ISSOCK(inode->i_mode)) 1177 return MAX_LFS_FILESIZE; 1178 1179 /* Special "we do even unsigned file positions" case */ 1180 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1181 return 0; 1182 1183 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1184 return ULONG_MAX; 1185 } 1186 1187 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1188 unsigned long pgoff, unsigned long len) 1189 { 1190 u64 maxsize = file_mmap_size_max(file, inode); 1191 1192 if (maxsize && len > maxsize) 1193 return false; 1194 maxsize -= len; 1195 if (pgoff > maxsize >> PAGE_SHIFT) 1196 return false; 1197 return true; 1198 } 1199 1200 /* 1201 * The caller must write-lock current->mm->mmap_lock. 1202 */ 1203 unsigned long do_mmap(struct file *file, unsigned long addr, 1204 unsigned long len, unsigned long prot, 1205 unsigned long flags, vm_flags_t vm_flags, 1206 unsigned long pgoff, unsigned long *populate, 1207 struct list_head *uf) 1208 { 1209 struct mm_struct *mm = current->mm; 1210 int pkey = 0; 1211 1212 *populate = 0; 1213 1214 if (!len) 1215 return -EINVAL; 1216 1217 /* 1218 * Does the application expect PROT_READ to imply PROT_EXEC? 1219 * 1220 * (the exception is when the underlying filesystem is noexec 1221 * mounted, in which case we dont add PROT_EXEC.) 1222 */ 1223 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1224 if (!(file && path_noexec(&file->f_path))) 1225 prot |= PROT_EXEC; 1226 1227 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1228 if (flags & MAP_FIXED_NOREPLACE) 1229 flags |= MAP_FIXED; 1230 1231 if (!(flags & MAP_FIXED)) 1232 addr = round_hint_to_min(addr); 1233 1234 /* Careful about overflows.. */ 1235 len = PAGE_ALIGN(len); 1236 if (!len) 1237 return -ENOMEM; 1238 1239 /* offset overflow? */ 1240 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1241 return -EOVERFLOW; 1242 1243 /* Too many mappings? */ 1244 if (mm->map_count > sysctl_max_map_count) 1245 return -ENOMEM; 1246 1247 /* Obtain the address to map to. we verify (or select) it and ensure 1248 * that it represents a valid section of the address space. 1249 */ 1250 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1251 if (IS_ERR_VALUE(addr)) 1252 return addr; 1253 1254 if (flags & MAP_FIXED_NOREPLACE) { 1255 if (find_vma_intersection(mm, addr, addr + len)) 1256 return -EEXIST; 1257 } 1258 1259 if (prot == PROT_EXEC) { 1260 pkey = execute_only_pkey(mm); 1261 if (pkey < 0) 1262 pkey = 0; 1263 } 1264 1265 /* Do simple checking here so the lower-level routines won't have 1266 * to. we assume access permissions have been handled by the open 1267 * of the memory object, so we don't do any here. 1268 */ 1269 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1270 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1271 1272 if (flags & MAP_LOCKED) 1273 if (!can_do_mlock()) 1274 return -EPERM; 1275 1276 if (!mlock_future_ok(mm, vm_flags, len)) 1277 return -EAGAIN; 1278 1279 if (file) { 1280 struct inode *inode = file_inode(file); 1281 unsigned long flags_mask; 1282 1283 if (!file_mmap_ok(file, inode, pgoff, len)) 1284 return -EOVERFLOW; 1285 1286 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1287 1288 switch (flags & MAP_TYPE) { 1289 case MAP_SHARED: 1290 /* 1291 * Force use of MAP_SHARED_VALIDATE with non-legacy 1292 * flags. E.g. MAP_SYNC is dangerous to use with 1293 * MAP_SHARED as you don't know which consistency model 1294 * you will get. We silently ignore unsupported flags 1295 * with MAP_SHARED to preserve backward compatibility. 1296 */ 1297 flags &= LEGACY_MAP_MASK; 1298 fallthrough; 1299 case MAP_SHARED_VALIDATE: 1300 if (flags & ~flags_mask) 1301 return -EOPNOTSUPP; 1302 if (prot & PROT_WRITE) { 1303 if (!(file->f_mode & FMODE_WRITE)) 1304 return -EACCES; 1305 if (IS_SWAPFILE(file->f_mapping->host)) 1306 return -ETXTBSY; 1307 } 1308 1309 /* 1310 * Make sure we don't allow writing to an append-only 1311 * file.. 1312 */ 1313 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1314 return -EACCES; 1315 1316 vm_flags |= VM_SHARED | VM_MAYSHARE; 1317 if (!(file->f_mode & FMODE_WRITE)) 1318 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1319 fallthrough; 1320 case MAP_PRIVATE: 1321 if (!(file->f_mode & FMODE_READ)) 1322 return -EACCES; 1323 if (path_noexec(&file->f_path)) { 1324 if (vm_flags & VM_EXEC) 1325 return -EPERM; 1326 vm_flags &= ~VM_MAYEXEC; 1327 } 1328 1329 if (!file->f_op->mmap) 1330 return -ENODEV; 1331 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1332 return -EINVAL; 1333 break; 1334 1335 default: 1336 return -EINVAL; 1337 } 1338 } else { 1339 switch (flags & MAP_TYPE) { 1340 case MAP_SHARED: 1341 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1342 return -EINVAL; 1343 /* 1344 * Ignore pgoff. 1345 */ 1346 pgoff = 0; 1347 vm_flags |= VM_SHARED | VM_MAYSHARE; 1348 break; 1349 case MAP_PRIVATE: 1350 /* 1351 * Set pgoff according to addr for anon_vma. 1352 */ 1353 pgoff = addr >> PAGE_SHIFT; 1354 break; 1355 default: 1356 return -EINVAL; 1357 } 1358 } 1359 1360 /* 1361 * Set 'VM_NORESERVE' if we should not account for the 1362 * memory use of this mapping. 1363 */ 1364 if (flags & MAP_NORESERVE) { 1365 /* We honor MAP_NORESERVE if allowed to overcommit */ 1366 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1367 vm_flags |= VM_NORESERVE; 1368 1369 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1370 if (file && is_file_hugepages(file)) 1371 vm_flags |= VM_NORESERVE; 1372 } 1373 1374 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1375 if (!IS_ERR_VALUE(addr) && 1376 ((vm_flags & VM_LOCKED) || 1377 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1378 *populate = len; 1379 return addr; 1380 } 1381 1382 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1383 unsigned long prot, unsigned long flags, 1384 unsigned long fd, unsigned long pgoff) 1385 { 1386 struct file *file = NULL; 1387 unsigned long retval; 1388 1389 if (!(flags & MAP_ANONYMOUS)) { 1390 audit_mmap_fd(fd, flags); 1391 file = fget(fd); 1392 if (!file) 1393 return -EBADF; 1394 if (is_file_hugepages(file)) { 1395 len = ALIGN(len, huge_page_size(hstate_file(file))); 1396 } else if (unlikely(flags & MAP_HUGETLB)) { 1397 retval = -EINVAL; 1398 goto out_fput; 1399 } 1400 } else if (flags & MAP_HUGETLB) { 1401 struct hstate *hs; 1402 1403 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1404 if (!hs) 1405 return -EINVAL; 1406 1407 len = ALIGN(len, huge_page_size(hs)); 1408 /* 1409 * VM_NORESERVE is used because the reservations will be 1410 * taken when vm_ops->mmap() is called 1411 */ 1412 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1413 VM_NORESERVE, 1414 HUGETLB_ANONHUGE_INODE, 1415 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1416 if (IS_ERR(file)) 1417 return PTR_ERR(file); 1418 } 1419 1420 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1421 out_fput: 1422 if (file) 1423 fput(file); 1424 return retval; 1425 } 1426 1427 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1428 unsigned long, prot, unsigned long, flags, 1429 unsigned long, fd, unsigned long, pgoff) 1430 { 1431 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1432 } 1433 1434 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1435 struct mmap_arg_struct { 1436 unsigned long addr; 1437 unsigned long len; 1438 unsigned long prot; 1439 unsigned long flags; 1440 unsigned long fd; 1441 unsigned long offset; 1442 }; 1443 1444 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1445 { 1446 struct mmap_arg_struct a; 1447 1448 if (copy_from_user(&a, arg, sizeof(a))) 1449 return -EFAULT; 1450 if (offset_in_page(a.offset)) 1451 return -EINVAL; 1452 1453 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1454 a.offset >> PAGE_SHIFT); 1455 } 1456 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1457 1458 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1459 { 1460 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1461 } 1462 1463 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1464 { 1465 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1466 (VM_WRITE | VM_SHARED); 1467 } 1468 1469 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1470 { 1471 /* No managed pages to writeback. */ 1472 if (vma->vm_flags & VM_PFNMAP) 1473 return false; 1474 1475 return vma->vm_file && vma->vm_file->f_mapping && 1476 mapping_can_writeback(vma->vm_file->f_mapping); 1477 } 1478 1479 /* 1480 * Does this VMA require the underlying folios to have their dirty state 1481 * tracked? 1482 */ 1483 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1484 { 1485 /* Only shared, writable VMAs require dirty tracking. */ 1486 if (!vma_is_shared_writable(vma)) 1487 return false; 1488 1489 /* Does the filesystem need to be notified? */ 1490 if (vm_ops_needs_writenotify(vma->vm_ops)) 1491 return true; 1492 1493 /* 1494 * Even if the filesystem doesn't indicate a need for writenotify, if it 1495 * can writeback, dirty tracking is still required. 1496 */ 1497 return vma_fs_can_writeback(vma); 1498 } 1499 1500 /* 1501 * Some shared mappings will want the pages marked read-only 1502 * to track write events. If so, we'll downgrade vm_page_prot 1503 * to the private version (using protection_map[] without the 1504 * VM_SHARED bit). 1505 */ 1506 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1507 { 1508 /* If it was private or non-writable, the write bit is already clear */ 1509 if (!vma_is_shared_writable(vma)) 1510 return 0; 1511 1512 /* The backer wishes to know when pages are first written to? */ 1513 if (vm_ops_needs_writenotify(vma->vm_ops)) 1514 return 1; 1515 1516 /* The open routine did something to the protections that pgprot_modify 1517 * won't preserve? */ 1518 if (pgprot_val(vm_page_prot) != 1519 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1520 return 0; 1521 1522 /* 1523 * Do we need to track softdirty? hugetlb does not support softdirty 1524 * tracking yet. 1525 */ 1526 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1527 return 1; 1528 1529 /* Do we need write faults for uffd-wp tracking? */ 1530 if (userfaultfd_wp(vma)) 1531 return 1; 1532 1533 /* Can the mapping track the dirty pages? */ 1534 return vma_fs_can_writeback(vma); 1535 } 1536 1537 /* 1538 * We account for memory if it's a private writeable mapping, 1539 * not hugepages and VM_NORESERVE wasn't set. 1540 */ 1541 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1542 { 1543 /* 1544 * hugetlb has its own accounting separate from the core VM 1545 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1546 */ 1547 if (file && is_file_hugepages(file)) 1548 return 0; 1549 1550 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1551 } 1552 1553 /** 1554 * unmapped_area() - Find an area between the low_limit and the high_limit with 1555 * the correct alignment and offset, all from @info. Note: current->mm is used 1556 * for the search. 1557 * 1558 * @info: The unmapped area information including the range [low_limit - 1559 * high_limit), the alignment offset and mask. 1560 * 1561 * Return: A memory address or -ENOMEM. 1562 */ 1563 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1564 { 1565 unsigned long length, gap; 1566 unsigned long low_limit, high_limit; 1567 struct vm_area_struct *tmp; 1568 1569 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1570 1571 /* Adjust search length to account for worst case alignment overhead */ 1572 length = info->length + info->align_mask; 1573 if (length < info->length) 1574 return -ENOMEM; 1575 1576 low_limit = info->low_limit; 1577 if (low_limit < mmap_min_addr) 1578 low_limit = mmap_min_addr; 1579 high_limit = info->high_limit; 1580 retry: 1581 if (mas_empty_area(&mas, low_limit, high_limit - 1, length)) 1582 return -ENOMEM; 1583 1584 gap = mas.index; 1585 gap += (info->align_offset - gap) & info->align_mask; 1586 tmp = mas_next(&mas, ULONG_MAX); 1587 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1588 if (vm_start_gap(tmp) < gap + length - 1) { 1589 low_limit = tmp->vm_end; 1590 mas_reset(&mas); 1591 goto retry; 1592 } 1593 } else { 1594 tmp = mas_prev(&mas, 0); 1595 if (tmp && vm_end_gap(tmp) > gap) { 1596 low_limit = vm_end_gap(tmp); 1597 mas_reset(&mas); 1598 goto retry; 1599 } 1600 } 1601 1602 return gap; 1603 } 1604 1605 /** 1606 * unmapped_area_topdown() - Find an area between the low_limit and the 1607 * high_limit with the correct alignment and offset at the highest available 1608 * address, all from @info. Note: current->mm is used for the search. 1609 * 1610 * @info: The unmapped area information including the range [low_limit - 1611 * high_limit), the alignment offset and mask. 1612 * 1613 * Return: A memory address or -ENOMEM. 1614 */ 1615 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1616 { 1617 unsigned long length, gap, gap_end; 1618 unsigned long low_limit, high_limit; 1619 struct vm_area_struct *tmp; 1620 1621 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1622 /* Adjust search length to account for worst case alignment overhead */ 1623 length = info->length + info->align_mask; 1624 if (length < info->length) 1625 return -ENOMEM; 1626 1627 low_limit = info->low_limit; 1628 if (low_limit < mmap_min_addr) 1629 low_limit = mmap_min_addr; 1630 high_limit = info->high_limit; 1631 retry: 1632 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length)) 1633 return -ENOMEM; 1634 1635 gap = mas.last + 1 - info->length; 1636 gap -= (gap - info->align_offset) & info->align_mask; 1637 gap_end = mas.last; 1638 tmp = mas_next(&mas, ULONG_MAX); 1639 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1640 if (vm_start_gap(tmp) <= gap_end) { 1641 high_limit = vm_start_gap(tmp); 1642 mas_reset(&mas); 1643 goto retry; 1644 } 1645 } else { 1646 tmp = mas_prev(&mas, 0); 1647 if (tmp && vm_end_gap(tmp) > gap) { 1648 high_limit = tmp->vm_start; 1649 mas_reset(&mas); 1650 goto retry; 1651 } 1652 } 1653 1654 return gap; 1655 } 1656 1657 /* 1658 * Search for an unmapped address range. 1659 * 1660 * We are looking for a range that: 1661 * - does not intersect with any VMA; 1662 * - is contained within the [low_limit, high_limit) interval; 1663 * - is at least the desired size. 1664 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1665 */ 1666 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1667 { 1668 unsigned long addr; 1669 1670 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1671 addr = unmapped_area_topdown(info); 1672 else 1673 addr = unmapped_area(info); 1674 1675 trace_vm_unmapped_area(addr, info); 1676 return addr; 1677 } 1678 1679 /* Get an address range which is currently unmapped. 1680 * For shmat() with addr=0. 1681 * 1682 * Ugly calling convention alert: 1683 * Return value with the low bits set means error value, 1684 * ie 1685 * if (ret & ~PAGE_MASK) 1686 * error = ret; 1687 * 1688 * This function "knows" that -ENOMEM has the bits set. 1689 */ 1690 unsigned long 1691 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1692 unsigned long len, unsigned long pgoff, 1693 unsigned long flags) 1694 { 1695 struct mm_struct *mm = current->mm; 1696 struct vm_area_struct *vma, *prev; 1697 struct vm_unmapped_area_info info; 1698 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1699 1700 if (len > mmap_end - mmap_min_addr) 1701 return -ENOMEM; 1702 1703 if (flags & MAP_FIXED) 1704 return addr; 1705 1706 if (addr) { 1707 addr = PAGE_ALIGN(addr); 1708 vma = find_vma_prev(mm, addr, &prev); 1709 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1710 (!vma || addr + len <= vm_start_gap(vma)) && 1711 (!prev || addr >= vm_end_gap(prev))) 1712 return addr; 1713 } 1714 1715 info.flags = 0; 1716 info.length = len; 1717 info.low_limit = mm->mmap_base; 1718 info.high_limit = mmap_end; 1719 info.align_mask = 0; 1720 info.align_offset = 0; 1721 return vm_unmapped_area(&info); 1722 } 1723 1724 #ifndef HAVE_ARCH_UNMAPPED_AREA 1725 unsigned long 1726 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1727 unsigned long len, unsigned long pgoff, 1728 unsigned long flags) 1729 { 1730 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1731 } 1732 #endif 1733 1734 /* 1735 * This mmap-allocator allocates new areas top-down from below the 1736 * stack's low limit (the base): 1737 */ 1738 unsigned long 1739 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1740 unsigned long len, unsigned long pgoff, 1741 unsigned long flags) 1742 { 1743 struct vm_area_struct *vma, *prev; 1744 struct mm_struct *mm = current->mm; 1745 struct vm_unmapped_area_info info; 1746 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1747 1748 /* requested length too big for entire address space */ 1749 if (len > mmap_end - mmap_min_addr) 1750 return -ENOMEM; 1751 1752 if (flags & MAP_FIXED) 1753 return addr; 1754 1755 /* requesting a specific address */ 1756 if (addr) { 1757 addr = PAGE_ALIGN(addr); 1758 vma = find_vma_prev(mm, addr, &prev); 1759 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1760 (!vma || addr + len <= vm_start_gap(vma)) && 1761 (!prev || addr >= vm_end_gap(prev))) 1762 return addr; 1763 } 1764 1765 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1766 info.length = len; 1767 info.low_limit = PAGE_SIZE; 1768 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1769 info.align_mask = 0; 1770 info.align_offset = 0; 1771 addr = vm_unmapped_area(&info); 1772 1773 /* 1774 * A failed mmap() very likely causes application failure, 1775 * so fall back to the bottom-up function here. This scenario 1776 * can happen with large stack limits and large mmap() 1777 * allocations. 1778 */ 1779 if (offset_in_page(addr)) { 1780 VM_BUG_ON(addr != -ENOMEM); 1781 info.flags = 0; 1782 info.low_limit = TASK_UNMAPPED_BASE; 1783 info.high_limit = mmap_end; 1784 addr = vm_unmapped_area(&info); 1785 } 1786 1787 return addr; 1788 } 1789 1790 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1791 unsigned long 1792 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1793 unsigned long len, unsigned long pgoff, 1794 unsigned long flags) 1795 { 1796 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1797 } 1798 #endif 1799 1800 unsigned long 1801 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1802 unsigned long pgoff, unsigned long flags) 1803 { 1804 unsigned long (*get_area)(struct file *, unsigned long, 1805 unsigned long, unsigned long, unsigned long); 1806 1807 unsigned long error = arch_mmap_check(addr, len, flags); 1808 if (error) 1809 return error; 1810 1811 /* Careful about overflows.. */ 1812 if (len > TASK_SIZE) 1813 return -ENOMEM; 1814 1815 get_area = current->mm->get_unmapped_area; 1816 if (file) { 1817 if (file->f_op->get_unmapped_area) 1818 get_area = file->f_op->get_unmapped_area; 1819 } else if (flags & MAP_SHARED) { 1820 /* 1821 * mmap_region() will call shmem_zero_setup() to create a file, 1822 * so use shmem's get_unmapped_area in case it can be huge. 1823 * do_mmap() will clear pgoff, so match alignment. 1824 */ 1825 pgoff = 0; 1826 get_area = shmem_get_unmapped_area; 1827 } 1828 1829 addr = get_area(file, addr, len, pgoff, flags); 1830 if (IS_ERR_VALUE(addr)) 1831 return addr; 1832 1833 if (addr > TASK_SIZE - len) 1834 return -ENOMEM; 1835 if (offset_in_page(addr)) 1836 return -EINVAL; 1837 1838 error = security_mmap_addr(addr); 1839 return error ? error : addr; 1840 } 1841 1842 EXPORT_SYMBOL(get_unmapped_area); 1843 1844 /** 1845 * find_vma_intersection() - Look up the first VMA which intersects the interval 1846 * @mm: The process address space. 1847 * @start_addr: The inclusive start user address. 1848 * @end_addr: The exclusive end user address. 1849 * 1850 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1851 * start_addr < end_addr. 1852 */ 1853 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1854 unsigned long start_addr, 1855 unsigned long end_addr) 1856 { 1857 unsigned long index = start_addr; 1858 1859 mmap_assert_locked(mm); 1860 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1861 } 1862 EXPORT_SYMBOL(find_vma_intersection); 1863 1864 /** 1865 * find_vma() - Find the VMA for a given address, or the next VMA. 1866 * @mm: The mm_struct to check 1867 * @addr: The address 1868 * 1869 * Returns: The VMA associated with addr, or the next VMA. 1870 * May return %NULL in the case of no VMA at addr or above. 1871 */ 1872 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1873 { 1874 unsigned long index = addr; 1875 1876 mmap_assert_locked(mm); 1877 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1878 } 1879 EXPORT_SYMBOL(find_vma); 1880 1881 /** 1882 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1883 * set %pprev to the previous VMA, if any. 1884 * @mm: The mm_struct to check 1885 * @addr: The address 1886 * @pprev: The pointer to set to the previous VMA 1887 * 1888 * Note that RCU lock is missing here since the external mmap_lock() is used 1889 * instead. 1890 * 1891 * Returns: The VMA associated with @addr, or the next vma. 1892 * May return %NULL in the case of no vma at addr or above. 1893 */ 1894 struct vm_area_struct * 1895 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1896 struct vm_area_struct **pprev) 1897 { 1898 struct vm_area_struct *vma; 1899 MA_STATE(mas, &mm->mm_mt, addr, addr); 1900 1901 vma = mas_walk(&mas); 1902 *pprev = mas_prev(&mas, 0); 1903 if (!vma) 1904 vma = mas_next(&mas, ULONG_MAX); 1905 return vma; 1906 } 1907 1908 /* 1909 * Verify that the stack growth is acceptable and 1910 * update accounting. This is shared with both the 1911 * grow-up and grow-down cases. 1912 */ 1913 static int acct_stack_growth(struct vm_area_struct *vma, 1914 unsigned long size, unsigned long grow) 1915 { 1916 struct mm_struct *mm = vma->vm_mm; 1917 unsigned long new_start; 1918 1919 /* address space limit tests */ 1920 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1921 return -ENOMEM; 1922 1923 /* Stack limit test */ 1924 if (size > rlimit(RLIMIT_STACK)) 1925 return -ENOMEM; 1926 1927 /* mlock limit tests */ 1928 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1929 return -ENOMEM; 1930 1931 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1932 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1933 vma->vm_end - size; 1934 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1935 return -EFAULT; 1936 1937 /* 1938 * Overcommit.. This must be the final test, as it will 1939 * update security statistics. 1940 */ 1941 if (security_vm_enough_memory_mm(mm, grow)) 1942 return -ENOMEM; 1943 1944 return 0; 1945 } 1946 1947 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1948 /* 1949 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1950 * vma is the last one with address > vma->vm_end. Have to extend vma. 1951 */ 1952 static int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1953 { 1954 struct mm_struct *mm = vma->vm_mm; 1955 struct vm_area_struct *next; 1956 unsigned long gap_addr; 1957 int error = 0; 1958 MA_STATE(mas, &mm->mm_mt, vma->vm_start, address); 1959 1960 if (!(vma->vm_flags & VM_GROWSUP)) 1961 return -EFAULT; 1962 1963 /* Guard against exceeding limits of the address space. */ 1964 address &= PAGE_MASK; 1965 if (address >= (TASK_SIZE & PAGE_MASK)) 1966 return -ENOMEM; 1967 address += PAGE_SIZE; 1968 1969 /* Enforce stack_guard_gap */ 1970 gap_addr = address + stack_guard_gap; 1971 1972 /* Guard against overflow */ 1973 if (gap_addr < address || gap_addr > TASK_SIZE) 1974 gap_addr = TASK_SIZE; 1975 1976 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1977 if (next && vma_is_accessible(next)) { 1978 if (!(next->vm_flags & VM_GROWSUP)) 1979 return -ENOMEM; 1980 /* Check that both stack segments have the same anon_vma? */ 1981 } 1982 1983 if (next) 1984 mas_prev_range(&mas, address); 1985 1986 __mas_set_range(&mas, vma->vm_start, address - 1); 1987 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 1988 return -ENOMEM; 1989 1990 /* We must make sure the anon_vma is allocated. */ 1991 if (unlikely(anon_vma_prepare(vma))) { 1992 mas_destroy(&mas); 1993 return -ENOMEM; 1994 } 1995 1996 /* Lock the VMA before expanding to prevent concurrent page faults */ 1997 vma_start_write(vma); 1998 /* 1999 * vma->vm_start/vm_end cannot change under us because the caller 2000 * is required to hold the mmap_lock in read mode. We need the 2001 * anon_vma lock to serialize against concurrent expand_stacks. 2002 */ 2003 anon_vma_lock_write(vma->anon_vma); 2004 2005 /* Somebody else might have raced and expanded it already */ 2006 if (address > vma->vm_end) { 2007 unsigned long size, grow; 2008 2009 size = address - vma->vm_start; 2010 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2011 2012 error = -ENOMEM; 2013 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2014 error = acct_stack_growth(vma, size, grow); 2015 if (!error) { 2016 /* 2017 * We only hold a shared mmap_lock lock here, so 2018 * we need to protect against concurrent vma 2019 * expansions. anon_vma_lock_write() doesn't 2020 * help here, as we don't guarantee that all 2021 * growable vmas in a mm share the same root 2022 * anon vma. So, we reuse mm->page_table_lock 2023 * to guard against concurrent vma expansions. 2024 */ 2025 spin_lock(&mm->page_table_lock); 2026 if (vma->vm_flags & VM_LOCKED) 2027 mm->locked_vm += grow; 2028 vm_stat_account(mm, vma->vm_flags, grow); 2029 anon_vma_interval_tree_pre_update_vma(vma); 2030 vma->vm_end = address; 2031 /* Overwrite old entry in mtree. */ 2032 mas_store_prealloc(&mas, vma); 2033 anon_vma_interval_tree_post_update_vma(vma); 2034 spin_unlock(&mm->page_table_lock); 2035 2036 perf_event_mmap(vma); 2037 } 2038 } 2039 } 2040 anon_vma_unlock_write(vma->anon_vma); 2041 khugepaged_enter_vma(vma, vma->vm_flags); 2042 mas_destroy(&mas); 2043 validate_mm(mm); 2044 return error; 2045 } 2046 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2047 2048 /* 2049 * vma is the first one with address < vma->vm_start. Have to extend vma. 2050 * mmap_lock held for writing. 2051 */ 2052 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2053 { 2054 struct mm_struct *mm = vma->vm_mm; 2055 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start); 2056 struct vm_area_struct *prev; 2057 int error = 0; 2058 2059 if (!(vma->vm_flags & VM_GROWSDOWN)) 2060 return -EFAULT; 2061 2062 address &= PAGE_MASK; 2063 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2064 return -EPERM; 2065 2066 /* Enforce stack_guard_gap */ 2067 prev = mas_prev(&mas, 0); 2068 /* Check that both stack segments have the same anon_vma? */ 2069 if (prev) { 2070 if (!(prev->vm_flags & VM_GROWSDOWN) && 2071 vma_is_accessible(prev) && 2072 (address - prev->vm_end < stack_guard_gap)) 2073 return -ENOMEM; 2074 } 2075 2076 if (prev) 2077 mas_next_range(&mas, vma->vm_start); 2078 2079 __mas_set_range(&mas, address, vma->vm_end - 1); 2080 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 2081 return -ENOMEM; 2082 2083 /* We must make sure the anon_vma is allocated. */ 2084 if (unlikely(anon_vma_prepare(vma))) { 2085 mas_destroy(&mas); 2086 return -ENOMEM; 2087 } 2088 2089 /* Lock the VMA before expanding to prevent concurrent page faults */ 2090 vma_start_write(vma); 2091 /* 2092 * vma->vm_start/vm_end cannot change under us because the caller 2093 * is required to hold the mmap_lock in read mode. We need the 2094 * anon_vma lock to serialize against concurrent expand_stacks. 2095 */ 2096 anon_vma_lock_write(vma->anon_vma); 2097 2098 /* Somebody else might have raced and expanded it already */ 2099 if (address < vma->vm_start) { 2100 unsigned long size, grow; 2101 2102 size = vma->vm_end - address; 2103 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2104 2105 error = -ENOMEM; 2106 if (grow <= vma->vm_pgoff) { 2107 error = acct_stack_growth(vma, size, grow); 2108 if (!error) { 2109 /* 2110 * We only hold a shared mmap_lock lock here, so 2111 * we need to protect against concurrent vma 2112 * expansions. anon_vma_lock_write() doesn't 2113 * help here, as we don't guarantee that all 2114 * growable vmas in a mm share the same root 2115 * anon vma. So, we reuse mm->page_table_lock 2116 * to guard against concurrent vma expansions. 2117 */ 2118 spin_lock(&mm->page_table_lock); 2119 if (vma->vm_flags & VM_LOCKED) 2120 mm->locked_vm += grow; 2121 vm_stat_account(mm, vma->vm_flags, grow); 2122 anon_vma_interval_tree_pre_update_vma(vma); 2123 vma->vm_start = address; 2124 vma->vm_pgoff -= grow; 2125 /* Overwrite old entry in mtree. */ 2126 mas_store_prealloc(&mas, vma); 2127 anon_vma_interval_tree_post_update_vma(vma); 2128 spin_unlock(&mm->page_table_lock); 2129 2130 perf_event_mmap(vma); 2131 } 2132 } 2133 } 2134 anon_vma_unlock_write(vma->anon_vma); 2135 khugepaged_enter_vma(vma, vma->vm_flags); 2136 mas_destroy(&mas); 2137 validate_mm(mm); 2138 return error; 2139 } 2140 2141 /* enforced gap between the expanding stack and other mappings. */ 2142 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2143 2144 static int __init cmdline_parse_stack_guard_gap(char *p) 2145 { 2146 unsigned long val; 2147 char *endptr; 2148 2149 val = simple_strtoul(p, &endptr, 10); 2150 if (!*endptr) 2151 stack_guard_gap = val << PAGE_SHIFT; 2152 2153 return 1; 2154 } 2155 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2156 2157 #ifdef CONFIG_STACK_GROWSUP 2158 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2159 { 2160 return expand_upwards(vma, address); 2161 } 2162 2163 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2164 { 2165 struct vm_area_struct *vma, *prev; 2166 2167 addr &= PAGE_MASK; 2168 vma = find_vma_prev(mm, addr, &prev); 2169 if (vma && (vma->vm_start <= addr)) 2170 return vma; 2171 if (!prev) 2172 return NULL; 2173 if (expand_stack_locked(prev, addr)) 2174 return NULL; 2175 if (prev->vm_flags & VM_LOCKED) 2176 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2177 return prev; 2178 } 2179 #else 2180 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2181 { 2182 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 2183 return -EINVAL; 2184 return expand_downwards(vma, address); 2185 } 2186 2187 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2188 { 2189 struct vm_area_struct *vma; 2190 unsigned long start; 2191 2192 addr &= PAGE_MASK; 2193 vma = find_vma(mm, addr); 2194 if (!vma) 2195 return NULL; 2196 if (vma->vm_start <= addr) 2197 return vma; 2198 start = vma->vm_start; 2199 if (expand_stack_locked(vma, addr)) 2200 return NULL; 2201 if (vma->vm_flags & VM_LOCKED) 2202 populate_vma_page_range(vma, addr, start, NULL); 2203 return vma; 2204 } 2205 #endif 2206 2207 /* 2208 * IA64 has some horrid mapping rules: it can expand both up and down, 2209 * but with various special rules. 2210 * 2211 * We'll get rid of this architecture eventually, so the ugliness is 2212 * temporary. 2213 */ 2214 #ifdef CONFIG_IA64 2215 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr) 2216 { 2217 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) && 2218 REGION_OFFSET(addr) < RGN_MAP_LIMIT; 2219 } 2220 2221 /* 2222 * IA64 stacks grow down, but there's a special register backing store 2223 * that can grow up. Only sequentially, though, so the new address must 2224 * match vm_end. 2225 */ 2226 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr) 2227 { 2228 if (!vma_expand_ok(vma, addr)) 2229 return -EFAULT; 2230 if (vma->vm_end != (addr & PAGE_MASK)) 2231 return -EFAULT; 2232 return expand_upwards(vma, addr); 2233 } 2234 2235 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr) 2236 { 2237 if (!vma_expand_ok(vma, addr)) 2238 return -EFAULT; 2239 return expand_downwards(vma, addr); 2240 } 2241 2242 #elif defined(CONFIG_STACK_GROWSUP) 2243 2244 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 2245 #define vma_expand_down(vma, addr) (-EFAULT) 2246 2247 #else 2248 2249 #define vma_expand_up(vma,addr) (-EFAULT) 2250 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 2251 2252 #endif 2253 2254 /* 2255 * expand_stack(): legacy interface for page faulting. Don't use unless 2256 * you have to. 2257 * 2258 * This is called with the mm locked for reading, drops the lock, takes 2259 * the lock for writing, tries to look up a vma again, expands it if 2260 * necessary, and downgrades the lock to reading again. 2261 * 2262 * If no vma is found or it can't be expanded, it returns NULL and has 2263 * dropped the lock. 2264 */ 2265 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 2266 { 2267 struct vm_area_struct *vma, *prev; 2268 2269 mmap_read_unlock(mm); 2270 if (mmap_write_lock_killable(mm)) 2271 return NULL; 2272 2273 vma = find_vma_prev(mm, addr, &prev); 2274 if (vma && vma->vm_start <= addr) 2275 goto success; 2276 2277 if (prev && !vma_expand_up(prev, addr)) { 2278 vma = prev; 2279 goto success; 2280 } 2281 2282 if (vma && !vma_expand_down(vma, addr)) 2283 goto success; 2284 2285 mmap_write_unlock(mm); 2286 return NULL; 2287 2288 success: 2289 mmap_write_downgrade(mm); 2290 return vma; 2291 } 2292 2293 /* 2294 * Ok - we have the memory areas we should free on a maple tree so release them, 2295 * and do the vma updates. 2296 * 2297 * Called with the mm semaphore held. 2298 */ 2299 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2300 { 2301 unsigned long nr_accounted = 0; 2302 struct vm_area_struct *vma; 2303 2304 /* Update high watermark before we lower total_vm */ 2305 update_hiwater_vm(mm); 2306 mas_for_each(mas, vma, ULONG_MAX) { 2307 long nrpages = vma_pages(vma); 2308 2309 if (vma->vm_flags & VM_ACCOUNT) 2310 nr_accounted += nrpages; 2311 vm_stat_account(mm, vma->vm_flags, -nrpages); 2312 remove_vma(vma, false); 2313 } 2314 vm_unacct_memory(nr_accounted); 2315 } 2316 2317 /* 2318 * Get rid of page table information in the indicated region. 2319 * 2320 * Called with the mm semaphore held. 2321 */ 2322 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 2323 struct vm_area_struct *vma, struct vm_area_struct *prev, 2324 struct vm_area_struct *next, unsigned long start, 2325 unsigned long end, unsigned long tree_end, bool mm_wr_locked) 2326 { 2327 struct mmu_gather tlb; 2328 unsigned long mt_start = mas->index; 2329 2330 lru_add_drain(); 2331 tlb_gather_mmu(&tlb, mm); 2332 update_hiwater_rss(mm); 2333 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked); 2334 mas_set(mas, mt_start); 2335 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2336 next ? next->vm_start : USER_PGTABLES_CEILING, 2337 mm_wr_locked); 2338 tlb_finish_mmu(&tlb); 2339 } 2340 2341 /* 2342 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2343 * has already been checked or doesn't make sense to fail. 2344 * VMA Iterator will point to the end VMA. 2345 */ 2346 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2347 unsigned long addr, int new_below) 2348 { 2349 struct vma_prepare vp; 2350 struct vm_area_struct *new; 2351 int err; 2352 2353 WARN_ON(vma->vm_start >= addr); 2354 WARN_ON(vma->vm_end <= addr); 2355 2356 if (vma->vm_ops && vma->vm_ops->may_split) { 2357 err = vma->vm_ops->may_split(vma, addr); 2358 if (err) 2359 return err; 2360 } 2361 2362 new = vm_area_dup(vma); 2363 if (!new) 2364 return -ENOMEM; 2365 2366 if (new_below) { 2367 new->vm_end = addr; 2368 } else { 2369 new->vm_start = addr; 2370 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2371 } 2372 2373 err = -ENOMEM; 2374 vma_iter_config(vmi, new->vm_start, new->vm_end); 2375 if (vma_iter_prealloc(vmi, new)) 2376 goto out_free_vma; 2377 2378 err = vma_dup_policy(vma, new); 2379 if (err) 2380 goto out_free_vmi; 2381 2382 err = anon_vma_clone(new, vma); 2383 if (err) 2384 goto out_free_mpol; 2385 2386 if (new->vm_file) 2387 get_file(new->vm_file); 2388 2389 if (new->vm_ops && new->vm_ops->open) 2390 new->vm_ops->open(new); 2391 2392 vma_start_write(vma); 2393 vma_start_write(new); 2394 2395 init_vma_prep(&vp, vma); 2396 vp.insert = new; 2397 vma_prepare(&vp); 2398 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 2399 2400 if (new_below) { 2401 vma->vm_start = addr; 2402 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 2403 } else { 2404 vma->vm_end = addr; 2405 } 2406 2407 /* vma_complete stores the new vma */ 2408 vma_complete(&vp, vmi, vma->vm_mm); 2409 2410 /* Success. */ 2411 if (new_below) 2412 vma_next(vmi); 2413 return 0; 2414 2415 out_free_mpol: 2416 mpol_put(vma_policy(new)); 2417 out_free_vmi: 2418 vma_iter_free(vmi); 2419 out_free_vma: 2420 vm_area_free(new); 2421 return err; 2422 } 2423 2424 /* 2425 * Split a vma into two pieces at address 'addr', a new vma is allocated 2426 * either for the first part or the tail. 2427 */ 2428 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2429 unsigned long addr, int new_below) 2430 { 2431 if (vma->vm_mm->map_count >= sysctl_max_map_count) 2432 return -ENOMEM; 2433 2434 return __split_vma(vmi, vma, addr, new_below); 2435 } 2436 2437 /* 2438 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 2439 * @vmi: The vma iterator 2440 * @vma: The starting vm_area_struct 2441 * @mm: The mm_struct 2442 * @start: The aligned start address to munmap. 2443 * @end: The aligned end address to munmap. 2444 * @uf: The userfaultfd list_head 2445 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 2446 * success. 2447 * 2448 * Return: 0 on success and drops the lock if so directed, error and leaves the 2449 * lock held otherwise. 2450 */ 2451 static int 2452 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2453 struct mm_struct *mm, unsigned long start, 2454 unsigned long end, struct list_head *uf, bool unlock) 2455 { 2456 struct vm_area_struct *prev, *next = NULL; 2457 struct maple_tree mt_detach; 2458 int count = 0; 2459 int error = -ENOMEM; 2460 unsigned long locked_vm = 0; 2461 MA_STATE(mas_detach, &mt_detach, 0, 0); 2462 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2463 mt_on_stack(mt_detach); 2464 2465 /* 2466 * If we need to split any vma, do it now to save pain later. 2467 * 2468 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2469 * unmapped vm_area_struct will remain in use: so lower split_vma 2470 * places tmp vma above, and higher split_vma places tmp vma below. 2471 */ 2472 2473 /* Does it split the first one? */ 2474 if (start > vma->vm_start) { 2475 2476 /* 2477 * Make sure that map_count on return from munmap() will 2478 * not exceed its limit; but let map_count go just above 2479 * its limit temporarily, to help free resources as expected. 2480 */ 2481 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2482 goto map_count_exceeded; 2483 2484 error = __split_vma(vmi, vma, start, 1); 2485 if (error) 2486 goto start_split_failed; 2487 } 2488 2489 /* 2490 * Detach a range of VMAs from the mm. Using next as a temp variable as 2491 * it is always overwritten. 2492 */ 2493 next = vma; 2494 do { 2495 /* Does it split the end? */ 2496 if (next->vm_end > end) { 2497 error = __split_vma(vmi, next, end, 0); 2498 if (error) 2499 goto end_split_failed; 2500 } 2501 vma_start_write(next); 2502 mas_set(&mas_detach, count); 2503 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL); 2504 if (error) 2505 goto munmap_gather_failed; 2506 vma_mark_detached(next, true); 2507 if (next->vm_flags & VM_LOCKED) 2508 locked_vm += vma_pages(next); 2509 2510 count++; 2511 if (unlikely(uf)) { 2512 /* 2513 * If userfaultfd_unmap_prep returns an error the vmas 2514 * will remain split, but userland will get a 2515 * highly unexpected error anyway. This is no 2516 * different than the case where the first of the two 2517 * __split_vma fails, but we don't undo the first 2518 * split, despite we could. This is unlikely enough 2519 * failure that it's not worth optimizing it for. 2520 */ 2521 error = userfaultfd_unmap_prep(next, start, end, uf); 2522 2523 if (error) 2524 goto userfaultfd_error; 2525 } 2526 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2527 BUG_ON(next->vm_start < start); 2528 BUG_ON(next->vm_start > end); 2529 #endif 2530 } for_each_vma_range(*vmi, next, end); 2531 2532 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2533 /* Make sure no VMAs are about to be lost. */ 2534 { 2535 MA_STATE(test, &mt_detach, 0, 0); 2536 struct vm_area_struct *vma_mas, *vma_test; 2537 int test_count = 0; 2538 2539 vma_iter_set(vmi, start); 2540 rcu_read_lock(); 2541 vma_test = mas_find(&test, count - 1); 2542 for_each_vma_range(*vmi, vma_mas, end) { 2543 BUG_ON(vma_mas != vma_test); 2544 test_count++; 2545 vma_test = mas_next(&test, count - 1); 2546 } 2547 rcu_read_unlock(); 2548 BUG_ON(count != test_count); 2549 } 2550 #endif 2551 2552 while (vma_iter_addr(vmi) > start) 2553 vma_iter_prev_range(vmi); 2554 2555 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 2556 if (error) 2557 goto clear_tree_failed; 2558 2559 /* Point of no return */ 2560 mm->locked_vm -= locked_vm; 2561 mm->map_count -= count; 2562 if (unlock) 2563 mmap_write_downgrade(mm); 2564 2565 prev = vma_iter_prev_range(vmi); 2566 next = vma_next(vmi); 2567 if (next) 2568 vma_iter_prev_range(vmi); 2569 2570 /* 2571 * We can free page tables without write-locking mmap_lock because VMAs 2572 * were isolated before we downgraded mmap_lock. 2573 */ 2574 mas_set(&mas_detach, 1); 2575 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count, 2576 !unlock); 2577 /* Statistics and freeing VMAs */ 2578 mas_set(&mas_detach, 0); 2579 remove_mt(mm, &mas_detach); 2580 validate_mm(mm); 2581 if (unlock) 2582 mmap_read_unlock(mm); 2583 2584 __mt_destroy(&mt_detach); 2585 return 0; 2586 2587 clear_tree_failed: 2588 userfaultfd_error: 2589 munmap_gather_failed: 2590 end_split_failed: 2591 mas_set(&mas_detach, 0); 2592 mas_for_each(&mas_detach, next, end) 2593 vma_mark_detached(next, false); 2594 2595 __mt_destroy(&mt_detach); 2596 start_split_failed: 2597 map_count_exceeded: 2598 validate_mm(mm); 2599 return error; 2600 } 2601 2602 /* 2603 * do_vmi_munmap() - munmap a given range. 2604 * @vmi: The vma iterator 2605 * @mm: The mm_struct 2606 * @start: The start address to munmap 2607 * @len: The length of the range to munmap 2608 * @uf: The userfaultfd list_head 2609 * @unlock: set to true if the user wants to drop the mmap_lock on success 2610 * 2611 * This function takes a @mas that is either pointing to the previous VMA or set 2612 * to MA_START and sets it up to remove the mapping(s). The @len will be 2613 * aligned and any arch_unmap work will be preformed. 2614 * 2615 * Return: 0 on success and drops the lock if so directed, error and leaves the 2616 * lock held otherwise. 2617 */ 2618 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 2619 unsigned long start, size_t len, struct list_head *uf, 2620 bool unlock) 2621 { 2622 unsigned long end; 2623 struct vm_area_struct *vma; 2624 2625 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2626 return -EINVAL; 2627 2628 end = start + PAGE_ALIGN(len); 2629 if (end == start) 2630 return -EINVAL; 2631 2632 /* arch_unmap() might do unmaps itself. */ 2633 arch_unmap(mm, start, end); 2634 2635 /* Find the first overlapping VMA */ 2636 vma = vma_find(vmi, end); 2637 if (!vma) { 2638 if (unlock) 2639 mmap_write_unlock(mm); 2640 return 0; 2641 } 2642 2643 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 2644 } 2645 2646 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2647 * @mm: The mm_struct 2648 * @start: The start address to munmap 2649 * @len: The length to be munmapped. 2650 * @uf: The userfaultfd list_head 2651 * 2652 * Return: 0 on success, error otherwise. 2653 */ 2654 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2655 struct list_head *uf) 2656 { 2657 VMA_ITERATOR(vmi, mm, start); 2658 2659 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 2660 } 2661 2662 unsigned long mmap_region(struct file *file, unsigned long addr, 2663 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2664 struct list_head *uf) 2665 { 2666 struct mm_struct *mm = current->mm; 2667 struct vm_area_struct *vma = NULL; 2668 struct vm_area_struct *next, *prev, *merge; 2669 pgoff_t pglen = len >> PAGE_SHIFT; 2670 unsigned long charged = 0; 2671 unsigned long end = addr + len; 2672 unsigned long merge_start = addr, merge_end = end; 2673 pgoff_t vm_pgoff; 2674 int error; 2675 VMA_ITERATOR(vmi, mm, addr); 2676 2677 /* Check against address space limit. */ 2678 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2679 unsigned long nr_pages; 2680 2681 /* 2682 * MAP_FIXED may remove pages of mappings that intersects with 2683 * requested mapping. Account for the pages it would unmap. 2684 */ 2685 nr_pages = count_vma_pages_range(mm, addr, end); 2686 2687 if (!may_expand_vm(mm, vm_flags, 2688 (len >> PAGE_SHIFT) - nr_pages)) 2689 return -ENOMEM; 2690 } 2691 2692 /* Unmap any existing mapping in the area */ 2693 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false)) 2694 return -ENOMEM; 2695 2696 /* 2697 * Private writable mapping: check memory availability 2698 */ 2699 if (accountable_mapping(file, vm_flags)) { 2700 charged = len >> PAGE_SHIFT; 2701 if (security_vm_enough_memory_mm(mm, charged)) 2702 return -ENOMEM; 2703 vm_flags |= VM_ACCOUNT; 2704 } 2705 2706 next = vma_next(&vmi); 2707 prev = vma_prev(&vmi); 2708 if (vm_flags & VM_SPECIAL) { 2709 if (prev) 2710 vma_iter_next_range(&vmi); 2711 goto cannot_expand; 2712 } 2713 2714 /* Attempt to expand an old mapping */ 2715 /* Check next */ 2716 if (next && next->vm_start == end && !vma_policy(next) && 2717 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2718 NULL_VM_UFFD_CTX, NULL)) { 2719 merge_end = next->vm_end; 2720 vma = next; 2721 vm_pgoff = next->vm_pgoff - pglen; 2722 } 2723 2724 /* Check prev */ 2725 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2726 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2727 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2728 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2729 NULL_VM_UFFD_CTX, NULL))) { 2730 merge_start = prev->vm_start; 2731 vma = prev; 2732 vm_pgoff = prev->vm_pgoff; 2733 } else if (prev) { 2734 vma_iter_next_range(&vmi); 2735 } 2736 2737 /* Actually expand, if possible */ 2738 if (vma && 2739 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { 2740 khugepaged_enter_vma(vma, vm_flags); 2741 goto expanded; 2742 } 2743 2744 if (vma == prev) 2745 vma_iter_set(&vmi, addr); 2746 cannot_expand: 2747 2748 /* 2749 * Determine the object being mapped and call the appropriate 2750 * specific mapper. the address has already been validated, but 2751 * not unmapped, but the maps are removed from the list. 2752 */ 2753 vma = vm_area_alloc(mm); 2754 if (!vma) { 2755 error = -ENOMEM; 2756 goto unacct_error; 2757 } 2758 2759 vma_iter_config(&vmi, addr, end); 2760 vma->vm_start = addr; 2761 vma->vm_end = end; 2762 vm_flags_init(vma, vm_flags); 2763 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2764 vma->vm_pgoff = pgoff; 2765 2766 if (file) { 2767 if (vm_flags & VM_SHARED) { 2768 error = mapping_map_writable(file->f_mapping); 2769 if (error) 2770 goto free_vma; 2771 } 2772 2773 vma->vm_file = get_file(file); 2774 error = call_mmap(file, vma); 2775 if (error) 2776 goto unmap_and_free_vma; 2777 2778 /* 2779 * Expansion is handled above, merging is handled below. 2780 * Drivers should not alter the address of the VMA. 2781 */ 2782 error = -EINVAL; 2783 if (WARN_ON((addr != vma->vm_start))) 2784 goto close_and_free_vma; 2785 2786 vma_iter_config(&vmi, addr, end); 2787 /* 2788 * If vm_flags changed after call_mmap(), we should try merge 2789 * vma again as we may succeed this time. 2790 */ 2791 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2792 merge = vma_merge(&vmi, mm, prev, vma->vm_start, 2793 vma->vm_end, vma->vm_flags, NULL, 2794 vma->vm_file, vma->vm_pgoff, NULL, 2795 NULL_VM_UFFD_CTX, NULL); 2796 if (merge) { 2797 /* 2798 * ->mmap() can change vma->vm_file and fput 2799 * the original file. So fput the vma->vm_file 2800 * here or we would add an extra fput for file 2801 * and cause general protection fault 2802 * ultimately. 2803 */ 2804 fput(vma->vm_file); 2805 vm_area_free(vma); 2806 vma = merge; 2807 /* Update vm_flags to pick up the change. */ 2808 vm_flags = vma->vm_flags; 2809 goto unmap_writable; 2810 } 2811 } 2812 2813 vm_flags = vma->vm_flags; 2814 } else if (vm_flags & VM_SHARED) { 2815 error = shmem_zero_setup(vma); 2816 if (error) 2817 goto free_vma; 2818 } else { 2819 vma_set_anonymous(vma); 2820 } 2821 2822 if (map_deny_write_exec(vma, vma->vm_flags)) { 2823 error = -EACCES; 2824 goto close_and_free_vma; 2825 } 2826 2827 /* Allow architectures to sanity-check the vm_flags */ 2828 error = -EINVAL; 2829 if (!arch_validate_flags(vma->vm_flags)) 2830 goto close_and_free_vma; 2831 2832 error = -ENOMEM; 2833 if (vma_iter_prealloc(&vmi, vma)) 2834 goto close_and_free_vma; 2835 2836 /* Lock the VMA since it is modified after insertion into VMA tree */ 2837 vma_start_write(vma); 2838 vma_iter_store(&vmi, vma); 2839 mm->map_count++; 2840 if (vma->vm_file) { 2841 i_mmap_lock_write(vma->vm_file->f_mapping); 2842 if (vma->vm_flags & VM_SHARED) 2843 mapping_allow_writable(vma->vm_file->f_mapping); 2844 2845 flush_dcache_mmap_lock(vma->vm_file->f_mapping); 2846 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap); 2847 flush_dcache_mmap_unlock(vma->vm_file->f_mapping); 2848 i_mmap_unlock_write(vma->vm_file->f_mapping); 2849 } 2850 2851 /* 2852 * vma_merge() calls khugepaged_enter_vma() either, the below 2853 * call covers the non-merge case. 2854 */ 2855 khugepaged_enter_vma(vma, vma->vm_flags); 2856 2857 /* Once vma denies write, undo our temporary denial count */ 2858 unmap_writable: 2859 if (file && vm_flags & VM_SHARED) 2860 mapping_unmap_writable(file->f_mapping); 2861 file = vma->vm_file; 2862 ksm_add_vma(vma); 2863 expanded: 2864 perf_event_mmap(vma); 2865 2866 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 2867 if (vm_flags & VM_LOCKED) { 2868 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2869 is_vm_hugetlb_page(vma) || 2870 vma == get_gate_vma(current->mm)) 2871 vm_flags_clear(vma, VM_LOCKED_MASK); 2872 else 2873 mm->locked_vm += (len >> PAGE_SHIFT); 2874 } 2875 2876 if (file) 2877 uprobe_mmap(vma); 2878 2879 /* 2880 * New (or expanded) vma always get soft dirty status. 2881 * Otherwise user-space soft-dirty page tracker won't 2882 * be able to distinguish situation when vma area unmapped, 2883 * then new mapped in-place (which must be aimed as 2884 * a completely new data area). 2885 */ 2886 vm_flags_set(vma, VM_SOFTDIRTY); 2887 2888 vma_set_page_prot(vma); 2889 2890 validate_mm(mm); 2891 return addr; 2892 2893 close_and_free_vma: 2894 if (file && vma->vm_ops && vma->vm_ops->close) 2895 vma->vm_ops->close(vma); 2896 2897 if (file || vma->vm_file) { 2898 unmap_and_free_vma: 2899 fput(vma->vm_file); 2900 vma->vm_file = NULL; 2901 2902 vma_iter_set(&vmi, vma->vm_end); 2903 /* Undo any partial mapping done by a device driver. */ 2904 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start, 2905 vma->vm_end, vma->vm_end, true); 2906 } 2907 if (file && (vm_flags & VM_SHARED)) 2908 mapping_unmap_writable(file->f_mapping); 2909 free_vma: 2910 vm_area_free(vma); 2911 unacct_error: 2912 if (charged) 2913 vm_unacct_memory(charged); 2914 validate_mm(mm); 2915 return error; 2916 } 2917 2918 static int __vm_munmap(unsigned long start, size_t len, bool unlock) 2919 { 2920 int ret; 2921 struct mm_struct *mm = current->mm; 2922 LIST_HEAD(uf); 2923 VMA_ITERATOR(vmi, mm, start); 2924 2925 if (mmap_write_lock_killable(mm)) 2926 return -EINTR; 2927 2928 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 2929 if (ret || !unlock) 2930 mmap_write_unlock(mm); 2931 2932 userfaultfd_unmap_complete(mm, &uf); 2933 return ret; 2934 } 2935 2936 int vm_munmap(unsigned long start, size_t len) 2937 { 2938 return __vm_munmap(start, len, false); 2939 } 2940 EXPORT_SYMBOL(vm_munmap); 2941 2942 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2943 { 2944 addr = untagged_addr(addr); 2945 return __vm_munmap(addr, len, true); 2946 } 2947 2948 2949 /* 2950 * Emulation of deprecated remap_file_pages() syscall. 2951 */ 2952 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2953 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2954 { 2955 2956 struct mm_struct *mm = current->mm; 2957 struct vm_area_struct *vma; 2958 unsigned long populate = 0; 2959 unsigned long ret = -EINVAL; 2960 struct file *file; 2961 2962 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 2963 current->comm, current->pid); 2964 2965 if (prot) 2966 return ret; 2967 start = start & PAGE_MASK; 2968 size = size & PAGE_MASK; 2969 2970 if (start + size <= start) 2971 return ret; 2972 2973 /* Does pgoff wrap? */ 2974 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2975 return ret; 2976 2977 if (mmap_write_lock_killable(mm)) 2978 return -EINTR; 2979 2980 vma = vma_lookup(mm, start); 2981 2982 if (!vma || !(vma->vm_flags & VM_SHARED)) 2983 goto out; 2984 2985 if (start + size > vma->vm_end) { 2986 VMA_ITERATOR(vmi, mm, vma->vm_end); 2987 struct vm_area_struct *next, *prev = vma; 2988 2989 for_each_vma_range(vmi, next, start + size) { 2990 /* hole between vmas ? */ 2991 if (next->vm_start != prev->vm_end) 2992 goto out; 2993 2994 if (next->vm_file != vma->vm_file) 2995 goto out; 2996 2997 if (next->vm_flags != vma->vm_flags) 2998 goto out; 2999 3000 if (start + size <= next->vm_end) 3001 break; 3002 3003 prev = next; 3004 } 3005 3006 if (!next) 3007 goto out; 3008 } 3009 3010 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 3011 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 3012 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 3013 3014 flags &= MAP_NONBLOCK; 3015 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 3016 if (vma->vm_flags & VM_LOCKED) 3017 flags |= MAP_LOCKED; 3018 3019 file = get_file(vma->vm_file); 3020 ret = do_mmap(vma->vm_file, start, size, 3021 prot, flags, 0, pgoff, &populate, NULL); 3022 fput(file); 3023 out: 3024 mmap_write_unlock(mm); 3025 if (populate) 3026 mm_populate(ret, populate); 3027 if (!IS_ERR_VALUE(ret)) 3028 ret = 0; 3029 return ret; 3030 } 3031 3032 /* 3033 * do_vma_munmap() - Unmap a full or partial vma. 3034 * @vmi: The vma iterator pointing at the vma 3035 * @vma: The first vma to be munmapped 3036 * @start: the start of the address to unmap 3037 * @end: The end of the address to unmap 3038 * @uf: The userfaultfd list_head 3039 * @unlock: Drop the lock on success 3040 * 3041 * unmaps a VMA mapping when the vma iterator is already in position. 3042 * Does not handle alignment. 3043 * 3044 * Return: 0 on success drops the lock of so directed, error on failure and will 3045 * still hold the lock. 3046 */ 3047 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3048 unsigned long start, unsigned long end, struct list_head *uf, 3049 bool unlock) 3050 { 3051 struct mm_struct *mm = vma->vm_mm; 3052 3053 arch_unmap(mm, start, end); 3054 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 3055 } 3056 3057 /* 3058 * do_brk_flags() - Increase the brk vma if the flags match. 3059 * @vmi: The vma iterator 3060 * @addr: The start address 3061 * @len: The length of the increase 3062 * @vma: The vma, 3063 * @flags: The VMA Flags 3064 * 3065 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 3066 * do not match then create a new anonymous VMA. Eventually we may be able to 3067 * do some brk-specific accounting here. 3068 */ 3069 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 3070 unsigned long addr, unsigned long len, unsigned long flags) 3071 { 3072 struct mm_struct *mm = current->mm; 3073 struct vma_prepare vp; 3074 3075 /* 3076 * Check against address space limits by the changed size 3077 * Note: This happens *after* clearing old mappings in some code paths. 3078 */ 3079 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3080 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3081 return -ENOMEM; 3082 3083 if (mm->map_count > sysctl_max_map_count) 3084 return -ENOMEM; 3085 3086 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3087 return -ENOMEM; 3088 3089 /* 3090 * Expand the existing vma if possible; Note that singular lists do not 3091 * occur after forking, so the expand will only happen on new VMAs. 3092 */ 3093 if (vma && vma->vm_end == addr && !vma_policy(vma) && 3094 can_vma_merge_after(vma, flags, NULL, NULL, 3095 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { 3096 vma_iter_config(vmi, vma->vm_start, addr + len); 3097 if (vma_iter_prealloc(vmi, vma)) 3098 goto unacct_fail; 3099 3100 vma_start_write(vma); 3101 3102 init_vma_prep(&vp, vma); 3103 vma_prepare(&vp); 3104 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 3105 vma->vm_end = addr + len; 3106 vm_flags_set(vma, VM_SOFTDIRTY); 3107 vma_iter_store(vmi, vma); 3108 3109 vma_complete(&vp, vmi, mm); 3110 khugepaged_enter_vma(vma, flags); 3111 goto out; 3112 } 3113 3114 if (vma) 3115 vma_iter_next_range(vmi); 3116 /* create a vma struct for an anonymous mapping */ 3117 vma = vm_area_alloc(mm); 3118 if (!vma) 3119 goto unacct_fail; 3120 3121 vma_set_anonymous(vma); 3122 vma->vm_start = addr; 3123 vma->vm_end = addr + len; 3124 vma->vm_pgoff = addr >> PAGE_SHIFT; 3125 vm_flags_init(vma, flags); 3126 vma->vm_page_prot = vm_get_page_prot(flags); 3127 vma_start_write(vma); 3128 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 3129 goto mas_store_fail; 3130 3131 mm->map_count++; 3132 validate_mm(mm); 3133 ksm_add_vma(vma); 3134 out: 3135 perf_event_mmap(vma); 3136 mm->total_vm += len >> PAGE_SHIFT; 3137 mm->data_vm += len >> PAGE_SHIFT; 3138 if (flags & VM_LOCKED) 3139 mm->locked_vm += (len >> PAGE_SHIFT); 3140 vm_flags_set(vma, VM_SOFTDIRTY); 3141 return 0; 3142 3143 mas_store_fail: 3144 vm_area_free(vma); 3145 unacct_fail: 3146 vm_unacct_memory(len >> PAGE_SHIFT); 3147 return -ENOMEM; 3148 } 3149 3150 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3151 { 3152 struct mm_struct *mm = current->mm; 3153 struct vm_area_struct *vma = NULL; 3154 unsigned long len; 3155 int ret; 3156 bool populate; 3157 LIST_HEAD(uf); 3158 VMA_ITERATOR(vmi, mm, addr); 3159 3160 len = PAGE_ALIGN(request); 3161 if (len < request) 3162 return -ENOMEM; 3163 if (!len) 3164 return 0; 3165 3166 /* Until we need other flags, refuse anything except VM_EXEC. */ 3167 if ((flags & (~VM_EXEC)) != 0) 3168 return -EINVAL; 3169 3170 if (mmap_write_lock_killable(mm)) 3171 return -EINTR; 3172 3173 ret = check_brk_limits(addr, len); 3174 if (ret) 3175 goto limits_failed; 3176 3177 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 3178 if (ret) 3179 goto munmap_failed; 3180 3181 vma = vma_prev(&vmi); 3182 ret = do_brk_flags(&vmi, vma, addr, len, flags); 3183 populate = ((mm->def_flags & VM_LOCKED) != 0); 3184 mmap_write_unlock(mm); 3185 userfaultfd_unmap_complete(mm, &uf); 3186 if (populate && !ret) 3187 mm_populate(addr, len); 3188 return ret; 3189 3190 munmap_failed: 3191 limits_failed: 3192 mmap_write_unlock(mm); 3193 return ret; 3194 } 3195 EXPORT_SYMBOL(vm_brk_flags); 3196 3197 int vm_brk(unsigned long addr, unsigned long len) 3198 { 3199 return vm_brk_flags(addr, len, 0); 3200 } 3201 EXPORT_SYMBOL(vm_brk); 3202 3203 /* Release all mmaps. */ 3204 void exit_mmap(struct mm_struct *mm) 3205 { 3206 struct mmu_gather tlb; 3207 struct vm_area_struct *vma; 3208 unsigned long nr_accounted = 0; 3209 MA_STATE(mas, &mm->mm_mt, 0, 0); 3210 int count = 0; 3211 3212 /* mm's last user has gone, and its about to be pulled down */ 3213 mmu_notifier_release(mm); 3214 3215 mmap_read_lock(mm); 3216 arch_exit_mmap(mm); 3217 3218 vma = mas_find(&mas, ULONG_MAX); 3219 if (!vma) { 3220 /* Can happen if dup_mmap() received an OOM */ 3221 mmap_read_unlock(mm); 3222 return; 3223 } 3224 3225 lru_add_drain(); 3226 flush_cache_mm(mm); 3227 tlb_gather_mmu_fullmm(&tlb, mm); 3228 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3229 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3230 unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false); 3231 mmap_read_unlock(mm); 3232 3233 /* 3234 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3235 * because the memory has been already freed. 3236 */ 3237 set_bit(MMF_OOM_SKIP, &mm->flags); 3238 mmap_write_lock(mm); 3239 mt_clear_in_rcu(&mm->mm_mt); 3240 mas_set(&mas, vma->vm_end); 3241 free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS, 3242 USER_PGTABLES_CEILING, true); 3243 tlb_finish_mmu(&tlb); 3244 3245 /* 3246 * Walk the list again, actually closing and freeing it, with preemption 3247 * enabled, without holding any MM locks besides the unreachable 3248 * mmap_write_lock. 3249 */ 3250 mas_set(&mas, vma->vm_end); 3251 do { 3252 if (vma->vm_flags & VM_ACCOUNT) 3253 nr_accounted += vma_pages(vma); 3254 remove_vma(vma, true); 3255 count++; 3256 cond_resched(); 3257 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL); 3258 3259 BUG_ON(count != mm->map_count); 3260 3261 trace_exit_mmap(mm); 3262 __mt_destroy(&mm->mm_mt); 3263 mmap_write_unlock(mm); 3264 vm_unacct_memory(nr_accounted); 3265 } 3266 3267 /* Insert vm structure into process list sorted by address 3268 * and into the inode's i_mmap tree. If vm_file is non-NULL 3269 * then i_mmap_rwsem is taken here. 3270 */ 3271 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3272 { 3273 unsigned long charged = vma_pages(vma); 3274 3275 3276 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3277 return -ENOMEM; 3278 3279 if ((vma->vm_flags & VM_ACCOUNT) && 3280 security_vm_enough_memory_mm(mm, charged)) 3281 return -ENOMEM; 3282 3283 /* 3284 * The vm_pgoff of a purely anonymous vma should be irrelevant 3285 * until its first write fault, when page's anon_vma and index 3286 * are set. But now set the vm_pgoff it will almost certainly 3287 * end up with (unless mremap moves it elsewhere before that 3288 * first wfault), so /proc/pid/maps tells a consistent story. 3289 * 3290 * By setting it to reflect the virtual start address of the 3291 * vma, merges and splits can happen in a seamless way, just 3292 * using the existing file pgoff checks and manipulations. 3293 * Similarly in do_mmap and in do_brk_flags. 3294 */ 3295 if (vma_is_anonymous(vma)) { 3296 BUG_ON(vma->anon_vma); 3297 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3298 } 3299 3300 if (vma_link(mm, vma)) { 3301 vm_unacct_memory(charged); 3302 return -ENOMEM; 3303 } 3304 3305 return 0; 3306 } 3307 3308 /* 3309 * Copy the vma structure to a new location in the same mm, 3310 * prior to moving page table entries, to effect an mremap move. 3311 */ 3312 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3313 unsigned long addr, unsigned long len, pgoff_t pgoff, 3314 bool *need_rmap_locks) 3315 { 3316 struct vm_area_struct *vma = *vmap; 3317 unsigned long vma_start = vma->vm_start; 3318 struct mm_struct *mm = vma->vm_mm; 3319 struct vm_area_struct *new_vma, *prev; 3320 bool faulted_in_anon_vma = true; 3321 VMA_ITERATOR(vmi, mm, addr); 3322 3323 /* 3324 * If anonymous vma has not yet been faulted, update new pgoff 3325 * to match new location, to increase its chance of merging. 3326 */ 3327 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3328 pgoff = addr >> PAGE_SHIFT; 3329 faulted_in_anon_vma = false; 3330 } 3331 3332 new_vma = find_vma_prev(mm, addr, &prev); 3333 if (new_vma && new_vma->vm_start < addr + len) 3334 return NULL; /* should never get here */ 3335 3336 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags, 3337 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3338 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3339 if (new_vma) { 3340 /* 3341 * Source vma may have been merged into new_vma 3342 */ 3343 if (unlikely(vma_start >= new_vma->vm_start && 3344 vma_start < new_vma->vm_end)) { 3345 /* 3346 * The only way we can get a vma_merge with 3347 * self during an mremap is if the vma hasn't 3348 * been faulted in yet and we were allowed to 3349 * reset the dst vma->vm_pgoff to the 3350 * destination address of the mremap to allow 3351 * the merge to happen. mremap must change the 3352 * vm_pgoff linearity between src and dst vmas 3353 * (in turn preventing a vma_merge) to be 3354 * safe. It is only safe to keep the vm_pgoff 3355 * linear if there are no pages mapped yet. 3356 */ 3357 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3358 *vmap = vma = new_vma; 3359 } 3360 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3361 } else { 3362 new_vma = vm_area_dup(vma); 3363 if (!new_vma) 3364 goto out; 3365 new_vma->vm_start = addr; 3366 new_vma->vm_end = addr + len; 3367 new_vma->vm_pgoff = pgoff; 3368 if (vma_dup_policy(vma, new_vma)) 3369 goto out_free_vma; 3370 if (anon_vma_clone(new_vma, vma)) 3371 goto out_free_mempol; 3372 if (new_vma->vm_file) 3373 get_file(new_vma->vm_file); 3374 if (new_vma->vm_ops && new_vma->vm_ops->open) 3375 new_vma->vm_ops->open(new_vma); 3376 if (vma_link(mm, new_vma)) 3377 goto out_vma_link; 3378 *need_rmap_locks = false; 3379 } 3380 return new_vma; 3381 3382 out_vma_link: 3383 if (new_vma->vm_ops && new_vma->vm_ops->close) 3384 new_vma->vm_ops->close(new_vma); 3385 3386 if (new_vma->vm_file) 3387 fput(new_vma->vm_file); 3388 3389 unlink_anon_vmas(new_vma); 3390 out_free_mempol: 3391 mpol_put(vma_policy(new_vma)); 3392 out_free_vma: 3393 vm_area_free(new_vma); 3394 out: 3395 return NULL; 3396 } 3397 3398 /* 3399 * Return true if the calling process may expand its vm space by the passed 3400 * number of pages 3401 */ 3402 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3403 { 3404 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3405 return false; 3406 3407 if (is_data_mapping(flags) && 3408 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3409 /* Workaround for Valgrind */ 3410 if (rlimit(RLIMIT_DATA) == 0 && 3411 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3412 return true; 3413 3414 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3415 current->comm, current->pid, 3416 (mm->data_vm + npages) << PAGE_SHIFT, 3417 rlimit(RLIMIT_DATA), 3418 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3419 3420 if (!ignore_rlimit_data) 3421 return false; 3422 } 3423 3424 return true; 3425 } 3426 3427 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3428 { 3429 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3430 3431 if (is_exec_mapping(flags)) 3432 mm->exec_vm += npages; 3433 else if (is_stack_mapping(flags)) 3434 mm->stack_vm += npages; 3435 else if (is_data_mapping(flags)) 3436 mm->data_vm += npages; 3437 } 3438 3439 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3440 3441 /* 3442 * Having a close hook prevents vma merging regardless of flags. 3443 */ 3444 static void special_mapping_close(struct vm_area_struct *vma) 3445 { 3446 } 3447 3448 static const char *special_mapping_name(struct vm_area_struct *vma) 3449 { 3450 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3451 } 3452 3453 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3454 { 3455 struct vm_special_mapping *sm = new_vma->vm_private_data; 3456 3457 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3458 return -EFAULT; 3459 3460 if (sm->mremap) 3461 return sm->mremap(sm, new_vma); 3462 3463 return 0; 3464 } 3465 3466 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3467 { 3468 /* 3469 * Forbid splitting special mappings - kernel has expectations over 3470 * the number of pages in mapping. Together with VM_DONTEXPAND 3471 * the size of vma should stay the same over the special mapping's 3472 * lifetime. 3473 */ 3474 return -EINVAL; 3475 } 3476 3477 static const struct vm_operations_struct special_mapping_vmops = { 3478 .close = special_mapping_close, 3479 .fault = special_mapping_fault, 3480 .mremap = special_mapping_mremap, 3481 .name = special_mapping_name, 3482 /* vDSO code relies that VVAR can't be accessed remotely */ 3483 .access = NULL, 3484 .may_split = special_mapping_split, 3485 }; 3486 3487 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3488 .close = special_mapping_close, 3489 .fault = special_mapping_fault, 3490 }; 3491 3492 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3493 { 3494 struct vm_area_struct *vma = vmf->vma; 3495 pgoff_t pgoff; 3496 struct page **pages; 3497 3498 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3499 pages = vma->vm_private_data; 3500 } else { 3501 struct vm_special_mapping *sm = vma->vm_private_data; 3502 3503 if (sm->fault) 3504 return sm->fault(sm, vmf->vma, vmf); 3505 3506 pages = sm->pages; 3507 } 3508 3509 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3510 pgoff--; 3511 3512 if (*pages) { 3513 struct page *page = *pages; 3514 get_page(page); 3515 vmf->page = page; 3516 return 0; 3517 } 3518 3519 return VM_FAULT_SIGBUS; 3520 } 3521 3522 static struct vm_area_struct *__install_special_mapping( 3523 struct mm_struct *mm, 3524 unsigned long addr, unsigned long len, 3525 unsigned long vm_flags, void *priv, 3526 const struct vm_operations_struct *ops) 3527 { 3528 int ret; 3529 struct vm_area_struct *vma; 3530 3531 vma = vm_area_alloc(mm); 3532 if (unlikely(vma == NULL)) 3533 return ERR_PTR(-ENOMEM); 3534 3535 vma->vm_start = addr; 3536 vma->vm_end = addr + len; 3537 3538 vm_flags_init(vma, (vm_flags | mm->def_flags | 3539 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 3540 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3541 3542 vma->vm_ops = ops; 3543 vma->vm_private_data = priv; 3544 3545 ret = insert_vm_struct(mm, vma); 3546 if (ret) 3547 goto out; 3548 3549 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3550 3551 perf_event_mmap(vma); 3552 3553 return vma; 3554 3555 out: 3556 vm_area_free(vma); 3557 return ERR_PTR(ret); 3558 } 3559 3560 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3561 const struct vm_special_mapping *sm) 3562 { 3563 return vma->vm_private_data == sm && 3564 (vma->vm_ops == &special_mapping_vmops || 3565 vma->vm_ops == &legacy_special_mapping_vmops); 3566 } 3567 3568 /* 3569 * Called with mm->mmap_lock held for writing. 3570 * Insert a new vma covering the given region, with the given flags. 3571 * Its pages are supplied by the given array of struct page *. 3572 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3573 * The region past the last page supplied will always produce SIGBUS. 3574 * The array pointer and the pages it points to are assumed to stay alive 3575 * for as long as this mapping might exist. 3576 */ 3577 struct vm_area_struct *_install_special_mapping( 3578 struct mm_struct *mm, 3579 unsigned long addr, unsigned long len, 3580 unsigned long vm_flags, const struct vm_special_mapping *spec) 3581 { 3582 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3583 &special_mapping_vmops); 3584 } 3585 3586 int install_special_mapping(struct mm_struct *mm, 3587 unsigned long addr, unsigned long len, 3588 unsigned long vm_flags, struct page **pages) 3589 { 3590 struct vm_area_struct *vma = __install_special_mapping( 3591 mm, addr, len, vm_flags, (void *)pages, 3592 &legacy_special_mapping_vmops); 3593 3594 return PTR_ERR_OR_ZERO(vma); 3595 } 3596 3597 static DEFINE_MUTEX(mm_all_locks_mutex); 3598 3599 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3600 { 3601 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3602 /* 3603 * The LSB of head.next can't change from under us 3604 * because we hold the mm_all_locks_mutex. 3605 */ 3606 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3607 /* 3608 * We can safely modify head.next after taking the 3609 * anon_vma->root->rwsem. If some other vma in this mm shares 3610 * the same anon_vma we won't take it again. 3611 * 3612 * No need of atomic instructions here, head.next 3613 * can't change from under us thanks to the 3614 * anon_vma->root->rwsem. 3615 */ 3616 if (__test_and_set_bit(0, (unsigned long *) 3617 &anon_vma->root->rb_root.rb_root.rb_node)) 3618 BUG(); 3619 } 3620 } 3621 3622 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3623 { 3624 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3625 /* 3626 * AS_MM_ALL_LOCKS can't change from under us because 3627 * we hold the mm_all_locks_mutex. 3628 * 3629 * Operations on ->flags have to be atomic because 3630 * even if AS_MM_ALL_LOCKS is stable thanks to the 3631 * mm_all_locks_mutex, there may be other cpus 3632 * changing other bitflags in parallel to us. 3633 */ 3634 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3635 BUG(); 3636 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3637 } 3638 } 3639 3640 /* 3641 * This operation locks against the VM for all pte/vma/mm related 3642 * operations that could ever happen on a certain mm. This includes 3643 * vmtruncate, try_to_unmap, and all page faults. 3644 * 3645 * The caller must take the mmap_lock in write mode before calling 3646 * mm_take_all_locks(). The caller isn't allowed to release the 3647 * mmap_lock until mm_drop_all_locks() returns. 3648 * 3649 * mmap_lock in write mode is required in order to block all operations 3650 * that could modify pagetables and free pages without need of 3651 * altering the vma layout. It's also needed in write mode to avoid new 3652 * anon_vmas to be associated with existing vmas. 3653 * 3654 * A single task can't take more than one mm_take_all_locks() in a row 3655 * or it would deadlock. 3656 * 3657 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3658 * mapping->flags avoid to take the same lock twice, if more than one 3659 * vma in this mm is backed by the same anon_vma or address_space. 3660 * 3661 * We take locks in following order, accordingly to comment at beginning 3662 * of mm/rmap.c: 3663 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3664 * hugetlb mapping); 3665 * - all vmas marked locked 3666 * - all i_mmap_rwsem locks; 3667 * - all anon_vma->rwseml 3668 * 3669 * We can take all locks within these types randomly because the VM code 3670 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3671 * mm_all_locks_mutex. 3672 * 3673 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3674 * that may have to take thousand of locks. 3675 * 3676 * mm_take_all_locks() can fail if it's interrupted by signals. 3677 */ 3678 int mm_take_all_locks(struct mm_struct *mm) 3679 { 3680 struct vm_area_struct *vma; 3681 struct anon_vma_chain *avc; 3682 MA_STATE(mas, &mm->mm_mt, 0, 0); 3683 3684 mmap_assert_write_locked(mm); 3685 3686 mutex_lock(&mm_all_locks_mutex); 3687 3688 /* 3689 * vma_start_write() does not have a complement in mm_drop_all_locks() 3690 * because vma_start_write() is always asymmetrical; it marks a VMA as 3691 * being written to until mmap_write_unlock() or mmap_write_downgrade() 3692 * is reached. 3693 */ 3694 mas_for_each(&mas, vma, ULONG_MAX) { 3695 if (signal_pending(current)) 3696 goto out_unlock; 3697 vma_start_write(vma); 3698 } 3699 3700 mas_set(&mas, 0); 3701 mas_for_each(&mas, vma, ULONG_MAX) { 3702 if (signal_pending(current)) 3703 goto out_unlock; 3704 if (vma->vm_file && vma->vm_file->f_mapping && 3705 is_vm_hugetlb_page(vma)) 3706 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3707 } 3708 3709 mas_set(&mas, 0); 3710 mas_for_each(&mas, vma, ULONG_MAX) { 3711 if (signal_pending(current)) 3712 goto out_unlock; 3713 if (vma->vm_file && vma->vm_file->f_mapping && 3714 !is_vm_hugetlb_page(vma)) 3715 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3716 } 3717 3718 mas_set(&mas, 0); 3719 mas_for_each(&mas, vma, ULONG_MAX) { 3720 if (signal_pending(current)) 3721 goto out_unlock; 3722 if (vma->anon_vma) 3723 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3724 vm_lock_anon_vma(mm, avc->anon_vma); 3725 } 3726 3727 return 0; 3728 3729 out_unlock: 3730 mm_drop_all_locks(mm); 3731 return -EINTR; 3732 } 3733 3734 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3735 { 3736 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3737 /* 3738 * The LSB of head.next can't change to 0 from under 3739 * us because we hold the mm_all_locks_mutex. 3740 * 3741 * We must however clear the bitflag before unlocking 3742 * the vma so the users using the anon_vma->rb_root will 3743 * never see our bitflag. 3744 * 3745 * No need of atomic instructions here, head.next 3746 * can't change from under us until we release the 3747 * anon_vma->root->rwsem. 3748 */ 3749 if (!__test_and_clear_bit(0, (unsigned long *) 3750 &anon_vma->root->rb_root.rb_root.rb_node)) 3751 BUG(); 3752 anon_vma_unlock_write(anon_vma); 3753 } 3754 } 3755 3756 static void vm_unlock_mapping(struct address_space *mapping) 3757 { 3758 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3759 /* 3760 * AS_MM_ALL_LOCKS can't change to 0 from under us 3761 * because we hold the mm_all_locks_mutex. 3762 */ 3763 i_mmap_unlock_write(mapping); 3764 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3765 &mapping->flags)) 3766 BUG(); 3767 } 3768 } 3769 3770 /* 3771 * The mmap_lock cannot be released by the caller until 3772 * mm_drop_all_locks() returns. 3773 */ 3774 void mm_drop_all_locks(struct mm_struct *mm) 3775 { 3776 struct vm_area_struct *vma; 3777 struct anon_vma_chain *avc; 3778 MA_STATE(mas, &mm->mm_mt, 0, 0); 3779 3780 mmap_assert_write_locked(mm); 3781 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3782 3783 mas_for_each(&mas, vma, ULONG_MAX) { 3784 if (vma->anon_vma) 3785 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3786 vm_unlock_anon_vma(avc->anon_vma); 3787 if (vma->vm_file && vma->vm_file->f_mapping) 3788 vm_unlock_mapping(vma->vm_file->f_mapping); 3789 } 3790 3791 mutex_unlock(&mm_all_locks_mutex); 3792 } 3793 3794 /* 3795 * initialise the percpu counter for VM 3796 */ 3797 void __init mmap_init(void) 3798 { 3799 int ret; 3800 3801 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3802 VM_BUG_ON(ret); 3803 } 3804 3805 /* 3806 * Initialise sysctl_user_reserve_kbytes. 3807 * 3808 * This is intended to prevent a user from starting a single memory hogging 3809 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3810 * mode. 3811 * 3812 * The default value is min(3% of free memory, 128MB) 3813 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3814 */ 3815 static int init_user_reserve(void) 3816 { 3817 unsigned long free_kbytes; 3818 3819 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3820 3821 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3822 return 0; 3823 } 3824 subsys_initcall(init_user_reserve); 3825 3826 /* 3827 * Initialise sysctl_admin_reserve_kbytes. 3828 * 3829 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3830 * to log in and kill a memory hogging process. 3831 * 3832 * Systems with more than 256MB will reserve 8MB, enough to recover 3833 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3834 * only reserve 3% of free pages by default. 3835 */ 3836 static int init_admin_reserve(void) 3837 { 3838 unsigned long free_kbytes; 3839 3840 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3841 3842 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3843 return 0; 3844 } 3845 subsys_initcall(init_admin_reserve); 3846 3847 /* 3848 * Reinititalise user and admin reserves if memory is added or removed. 3849 * 3850 * The default user reserve max is 128MB, and the default max for the 3851 * admin reserve is 8MB. These are usually, but not always, enough to 3852 * enable recovery from a memory hogging process using login/sshd, a shell, 3853 * and tools like top. It may make sense to increase or even disable the 3854 * reserve depending on the existence of swap or variations in the recovery 3855 * tools. So, the admin may have changed them. 3856 * 3857 * If memory is added and the reserves have been eliminated or increased above 3858 * the default max, then we'll trust the admin. 3859 * 3860 * If memory is removed and there isn't enough free memory, then we 3861 * need to reset the reserves. 3862 * 3863 * Otherwise keep the reserve set by the admin. 3864 */ 3865 static int reserve_mem_notifier(struct notifier_block *nb, 3866 unsigned long action, void *data) 3867 { 3868 unsigned long tmp, free_kbytes; 3869 3870 switch (action) { 3871 case MEM_ONLINE: 3872 /* Default max is 128MB. Leave alone if modified by operator. */ 3873 tmp = sysctl_user_reserve_kbytes; 3874 if (0 < tmp && tmp < (1UL << 17)) 3875 init_user_reserve(); 3876 3877 /* Default max is 8MB. Leave alone if modified by operator. */ 3878 tmp = sysctl_admin_reserve_kbytes; 3879 if (0 < tmp && tmp < (1UL << 13)) 3880 init_admin_reserve(); 3881 3882 break; 3883 case MEM_OFFLINE: 3884 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3885 3886 if (sysctl_user_reserve_kbytes > free_kbytes) { 3887 init_user_reserve(); 3888 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3889 sysctl_user_reserve_kbytes); 3890 } 3891 3892 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3893 init_admin_reserve(); 3894 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3895 sysctl_admin_reserve_kbytes); 3896 } 3897 break; 3898 default: 3899 break; 3900 } 3901 return NOTIFY_OK; 3902 } 3903 3904 static int __meminit init_reserve_notifier(void) 3905 { 3906 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 3907 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3908 3909 return 0; 3910 } 3911 subsys_initcall(init_reserve_notifier); 3912