1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 struct vm_area_struct *next, unsigned long start, 82 unsigned long end, bool mm_wr_locked); 83 84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 85 { 86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 87 } 88 89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 90 void vma_set_page_prot(struct vm_area_struct *vma) 91 { 92 unsigned long vm_flags = vma->vm_flags; 93 pgprot_t vm_page_prot; 94 95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 96 if (vma_wants_writenotify(vma, vm_page_prot)) { 97 vm_flags &= ~VM_SHARED; 98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 99 } 100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 102 } 103 104 /* 105 * Requires inode->i_mapping->i_mmap_rwsem 106 */ 107 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 108 struct file *file, struct address_space *mapping) 109 { 110 if (vma->vm_flags & VM_SHARED) 111 mapping_unmap_writable(mapping); 112 113 flush_dcache_mmap_lock(mapping); 114 vma_interval_tree_remove(vma, &mapping->i_mmap); 115 flush_dcache_mmap_unlock(mapping); 116 } 117 118 /* 119 * Unlink a file-based vm structure from its interval tree, to hide 120 * vma from rmap and vmtruncate before freeing its page tables. 121 */ 122 void unlink_file_vma(struct vm_area_struct *vma) 123 { 124 struct file *file = vma->vm_file; 125 126 if (file) { 127 struct address_space *mapping = file->f_mapping; 128 i_mmap_lock_write(mapping); 129 __remove_shared_vm_struct(vma, file, mapping); 130 i_mmap_unlock_write(mapping); 131 } 132 } 133 134 /* 135 * Close a vm structure and free it. 136 */ 137 static void remove_vma(struct vm_area_struct *vma, bool unreachable) 138 { 139 might_sleep(); 140 if (vma->vm_ops && vma->vm_ops->close) 141 vma->vm_ops->close(vma); 142 if (vma->vm_file) 143 fput(vma->vm_file); 144 mpol_put(vma_policy(vma)); 145 if (unreachable) 146 __vm_area_free(vma); 147 else 148 vm_area_free(vma); 149 } 150 151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 152 unsigned long min) 153 { 154 return mas_prev(&vmi->mas, min); 155 } 156 157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 158 unsigned long start, unsigned long end, gfp_t gfp) 159 { 160 vmi->mas.index = start; 161 vmi->mas.last = end - 1; 162 mas_store_gfp(&vmi->mas, NULL, gfp); 163 if (unlikely(mas_is_err(&vmi->mas))) 164 return -ENOMEM; 165 166 return 0; 167 } 168 169 /* 170 * check_brk_limits() - Use platform specific check of range & verify mlock 171 * limits. 172 * @addr: The address to check 173 * @len: The size of increase. 174 * 175 * Return: 0 on success. 176 */ 177 static int check_brk_limits(unsigned long addr, unsigned long len) 178 { 179 unsigned long mapped_addr; 180 181 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 182 if (IS_ERR_VALUE(mapped_addr)) 183 return mapped_addr; 184 185 return mlock_future_ok(current->mm, current->mm->def_flags, len) 186 ? 0 : -EAGAIN; 187 } 188 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 189 unsigned long addr, unsigned long request, unsigned long flags); 190 SYSCALL_DEFINE1(brk, unsigned long, brk) 191 { 192 unsigned long newbrk, oldbrk, origbrk; 193 struct mm_struct *mm = current->mm; 194 struct vm_area_struct *brkvma, *next = NULL; 195 unsigned long min_brk; 196 bool populate = false; 197 LIST_HEAD(uf); 198 struct vma_iterator vmi; 199 200 if (mmap_write_lock_killable(mm)) 201 return -EINTR; 202 203 origbrk = mm->brk; 204 205 #ifdef CONFIG_COMPAT_BRK 206 /* 207 * CONFIG_COMPAT_BRK can still be overridden by setting 208 * randomize_va_space to 2, which will still cause mm->start_brk 209 * to be arbitrarily shifted 210 */ 211 if (current->brk_randomized) 212 min_brk = mm->start_brk; 213 else 214 min_brk = mm->end_data; 215 #else 216 min_brk = mm->start_brk; 217 #endif 218 if (brk < min_brk) 219 goto out; 220 221 /* 222 * Check against rlimit here. If this check is done later after the test 223 * of oldbrk with newbrk then it can escape the test and let the data 224 * segment grow beyond its set limit the in case where the limit is 225 * not page aligned -Ram Gupta 226 */ 227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 228 mm->end_data, mm->start_data)) 229 goto out; 230 231 newbrk = PAGE_ALIGN(brk); 232 oldbrk = PAGE_ALIGN(mm->brk); 233 if (oldbrk == newbrk) { 234 mm->brk = brk; 235 goto success; 236 } 237 238 /* Always allow shrinking brk. */ 239 if (brk <= mm->brk) { 240 /* Search one past newbrk */ 241 vma_iter_init(&vmi, mm, newbrk); 242 brkvma = vma_find(&vmi, oldbrk); 243 if (!brkvma || brkvma->vm_start >= oldbrk) 244 goto out; /* mapping intersects with an existing non-brk vma. */ 245 /* 246 * mm->brk must be protected by write mmap_lock. 247 * do_vma_munmap() will drop the lock on success, so update it 248 * before calling do_vma_munmap(). 249 */ 250 mm->brk = brk; 251 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true)) 252 goto out; 253 254 goto success_unlocked; 255 } 256 257 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 258 goto out; 259 260 /* 261 * Only check if the next VMA is within the stack_guard_gap of the 262 * expansion area 263 */ 264 vma_iter_init(&vmi, mm, oldbrk); 265 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 266 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 267 goto out; 268 269 brkvma = vma_prev_limit(&vmi, mm->start_brk); 270 /* Ok, looks good - let it rip. */ 271 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 272 goto out; 273 274 mm->brk = brk; 275 if (mm->def_flags & VM_LOCKED) 276 populate = true; 277 278 success: 279 mmap_write_unlock(mm); 280 success_unlocked: 281 userfaultfd_unmap_complete(mm, &uf); 282 if (populate) 283 mm_populate(oldbrk, newbrk - oldbrk); 284 return brk; 285 286 out: 287 mm->brk = origbrk; 288 mmap_write_unlock(mm); 289 return origbrk; 290 } 291 292 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 293 static void validate_mm(struct mm_struct *mm) 294 { 295 int bug = 0; 296 int i = 0; 297 struct vm_area_struct *vma; 298 VMA_ITERATOR(vmi, mm, 0); 299 300 mt_validate(&mm->mm_mt); 301 for_each_vma(vmi, vma) { 302 #ifdef CONFIG_DEBUG_VM_RB 303 struct anon_vma *anon_vma = vma->anon_vma; 304 struct anon_vma_chain *avc; 305 #endif 306 unsigned long vmi_start, vmi_end; 307 bool warn = 0; 308 309 vmi_start = vma_iter_addr(&vmi); 310 vmi_end = vma_iter_end(&vmi); 311 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 312 warn = 1; 313 314 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 315 warn = 1; 316 317 if (warn) { 318 pr_emerg("issue in %s\n", current->comm); 319 dump_stack(); 320 dump_vma(vma); 321 pr_emerg("tree range: %px start %lx end %lx\n", vma, 322 vmi_start, vmi_end - 1); 323 vma_iter_dump_tree(&vmi); 324 } 325 326 #ifdef CONFIG_DEBUG_VM_RB 327 if (anon_vma) { 328 anon_vma_lock_read(anon_vma); 329 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 330 anon_vma_interval_tree_verify(avc); 331 anon_vma_unlock_read(anon_vma); 332 } 333 #endif 334 i++; 335 } 336 if (i != mm->map_count) { 337 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 338 bug = 1; 339 } 340 VM_BUG_ON_MM(bug, mm); 341 } 342 343 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 344 #define validate_mm(mm) do { } while (0) 345 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 346 347 /* 348 * vma has some anon_vma assigned, and is already inserted on that 349 * anon_vma's interval trees. 350 * 351 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 352 * vma must be removed from the anon_vma's interval trees using 353 * anon_vma_interval_tree_pre_update_vma(). 354 * 355 * After the update, the vma will be reinserted using 356 * anon_vma_interval_tree_post_update_vma(). 357 * 358 * The entire update must be protected by exclusive mmap_lock and by 359 * the root anon_vma's mutex. 360 */ 361 static inline void 362 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 363 { 364 struct anon_vma_chain *avc; 365 366 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 367 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 368 } 369 370 static inline void 371 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 372 { 373 struct anon_vma_chain *avc; 374 375 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 376 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 377 } 378 379 static unsigned long count_vma_pages_range(struct mm_struct *mm, 380 unsigned long addr, unsigned long end) 381 { 382 VMA_ITERATOR(vmi, mm, addr); 383 struct vm_area_struct *vma; 384 unsigned long nr_pages = 0; 385 386 for_each_vma_range(vmi, vma, end) { 387 unsigned long vm_start = max(addr, vma->vm_start); 388 unsigned long vm_end = min(end, vma->vm_end); 389 390 nr_pages += PHYS_PFN(vm_end - vm_start); 391 } 392 393 return nr_pages; 394 } 395 396 static void __vma_link_file(struct vm_area_struct *vma, 397 struct address_space *mapping) 398 { 399 if (vma->vm_flags & VM_SHARED) 400 mapping_allow_writable(mapping); 401 402 flush_dcache_mmap_lock(mapping); 403 vma_interval_tree_insert(vma, &mapping->i_mmap); 404 flush_dcache_mmap_unlock(mapping); 405 } 406 407 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 408 { 409 VMA_ITERATOR(vmi, mm, 0); 410 struct address_space *mapping = NULL; 411 412 if (vma_iter_prealloc(&vmi)) 413 return -ENOMEM; 414 415 if (vma->vm_file) { 416 mapping = vma->vm_file->f_mapping; 417 i_mmap_lock_write(mapping); 418 } 419 420 vma_iter_store(&vmi, vma); 421 422 if (mapping) { 423 __vma_link_file(vma, mapping); 424 i_mmap_unlock_write(mapping); 425 } 426 427 mm->map_count++; 428 validate_mm(mm); 429 return 0; 430 } 431 432 /* 433 * init_multi_vma_prep() - Initializer for struct vma_prepare 434 * @vp: The vma_prepare struct 435 * @vma: The vma that will be altered once locked 436 * @next: The next vma if it is to be adjusted 437 * @remove: The first vma to be removed 438 * @remove2: The second vma to be removed 439 */ 440 static inline void init_multi_vma_prep(struct vma_prepare *vp, 441 struct vm_area_struct *vma, struct vm_area_struct *next, 442 struct vm_area_struct *remove, struct vm_area_struct *remove2) 443 { 444 memset(vp, 0, sizeof(struct vma_prepare)); 445 vp->vma = vma; 446 vp->anon_vma = vma->anon_vma; 447 vp->remove = remove; 448 vp->remove2 = remove2; 449 vp->adj_next = next; 450 if (!vp->anon_vma && next) 451 vp->anon_vma = next->anon_vma; 452 453 vp->file = vma->vm_file; 454 if (vp->file) 455 vp->mapping = vma->vm_file->f_mapping; 456 457 } 458 459 /* 460 * init_vma_prep() - Initializer wrapper for vma_prepare struct 461 * @vp: The vma_prepare struct 462 * @vma: The vma that will be altered once locked 463 */ 464 static inline void init_vma_prep(struct vma_prepare *vp, 465 struct vm_area_struct *vma) 466 { 467 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 468 } 469 470 471 /* 472 * vma_prepare() - Helper function for handling locking VMAs prior to altering 473 * @vp: The initialized vma_prepare struct 474 */ 475 static inline void vma_prepare(struct vma_prepare *vp) 476 { 477 vma_start_write(vp->vma); 478 if (vp->adj_next) 479 vma_start_write(vp->adj_next); 480 /* vp->insert is always a newly created VMA, no need for locking */ 481 if (vp->remove) 482 vma_start_write(vp->remove); 483 if (vp->remove2) 484 vma_start_write(vp->remove2); 485 486 if (vp->file) { 487 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 488 489 if (vp->adj_next) 490 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 491 vp->adj_next->vm_end); 492 493 i_mmap_lock_write(vp->mapping); 494 if (vp->insert && vp->insert->vm_file) { 495 /* 496 * Put into interval tree now, so instantiated pages 497 * are visible to arm/parisc __flush_dcache_page 498 * throughout; but we cannot insert into address 499 * space until vma start or end is updated. 500 */ 501 __vma_link_file(vp->insert, 502 vp->insert->vm_file->f_mapping); 503 } 504 } 505 506 if (vp->anon_vma) { 507 anon_vma_lock_write(vp->anon_vma); 508 anon_vma_interval_tree_pre_update_vma(vp->vma); 509 if (vp->adj_next) 510 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 511 } 512 513 if (vp->file) { 514 flush_dcache_mmap_lock(vp->mapping); 515 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 516 if (vp->adj_next) 517 vma_interval_tree_remove(vp->adj_next, 518 &vp->mapping->i_mmap); 519 } 520 521 } 522 523 /* 524 * vma_complete- Helper function for handling the unlocking after altering VMAs, 525 * or for inserting a VMA. 526 * 527 * @vp: The vma_prepare struct 528 * @vmi: The vma iterator 529 * @mm: The mm_struct 530 */ 531 static inline void vma_complete(struct vma_prepare *vp, 532 struct vma_iterator *vmi, struct mm_struct *mm) 533 { 534 if (vp->file) { 535 if (vp->adj_next) 536 vma_interval_tree_insert(vp->adj_next, 537 &vp->mapping->i_mmap); 538 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 539 flush_dcache_mmap_unlock(vp->mapping); 540 } 541 542 if (vp->remove && vp->file) { 543 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping); 544 if (vp->remove2) 545 __remove_shared_vm_struct(vp->remove2, vp->file, 546 vp->mapping); 547 } else if (vp->insert) { 548 /* 549 * split_vma has split insert from vma, and needs 550 * us to insert it before dropping the locks 551 * (it may either follow vma or precede it). 552 */ 553 vma_iter_store(vmi, vp->insert); 554 mm->map_count++; 555 } 556 557 if (vp->anon_vma) { 558 anon_vma_interval_tree_post_update_vma(vp->vma); 559 if (vp->adj_next) 560 anon_vma_interval_tree_post_update_vma(vp->adj_next); 561 anon_vma_unlock_write(vp->anon_vma); 562 } 563 564 if (vp->file) { 565 i_mmap_unlock_write(vp->mapping); 566 uprobe_mmap(vp->vma); 567 568 if (vp->adj_next) 569 uprobe_mmap(vp->adj_next); 570 } 571 572 if (vp->remove) { 573 again: 574 vma_mark_detached(vp->remove, true); 575 if (vp->file) { 576 uprobe_munmap(vp->remove, vp->remove->vm_start, 577 vp->remove->vm_end); 578 fput(vp->file); 579 } 580 if (vp->remove->anon_vma) 581 anon_vma_merge(vp->vma, vp->remove); 582 mm->map_count--; 583 mpol_put(vma_policy(vp->remove)); 584 if (!vp->remove2) 585 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 586 vm_area_free(vp->remove); 587 588 /* 589 * In mprotect's case 6 (see comments on vma_merge), 590 * we are removing both mid and next vmas 591 */ 592 if (vp->remove2) { 593 vp->remove = vp->remove2; 594 vp->remove2 = NULL; 595 goto again; 596 } 597 } 598 if (vp->insert && vp->file) 599 uprobe_mmap(vp->insert); 600 } 601 602 /* 603 * dup_anon_vma() - Helper function to duplicate anon_vma 604 * @dst: The destination VMA 605 * @src: The source VMA 606 * 607 * Returns: 0 on success. 608 */ 609 static inline int dup_anon_vma(struct vm_area_struct *dst, 610 struct vm_area_struct *src) 611 { 612 /* 613 * Easily overlooked: when mprotect shifts the boundary, make sure the 614 * expanding vma has anon_vma set if the shrinking vma had, to cover any 615 * anon pages imported. 616 */ 617 if (src->anon_vma && !dst->anon_vma) { 618 vma_start_write(dst); 619 dst->anon_vma = src->anon_vma; 620 return anon_vma_clone(dst, src); 621 } 622 623 return 0; 624 } 625 626 /* 627 * vma_expand - Expand an existing VMA 628 * 629 * @vmi: The vma iterator 630 * @vma: The vma to expand 631 * @start: The start of the vma 632 * @end: The exclusive end of the vma 633 * @pgoff: The page offset of vma 634 * @next: The current of next vma. 635 * 636 * Expand @vma to @start and @end. Can expand off the start and end. Will 637 * expand over @next if it's different from @vma and @end == @next->vm_end. 638 * Checking if the @vma can expand and merge with @next needs to be handled by 639 * the caller. 640 * 641 * Returns: 0 on success 642 */ 643 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 644 unsigned long start, unsigned long end, pgoff_t pgoff, 645 struct vm_area_struct *next) 646 { 647 bool remove_next = false; 648 struct vma_prepare vp; 649 650 if (next && (vma != next) && (end == next->vm_end)) { 651 int ret; 652 653 remove_next = true; 654 ret = dup_anon_vma(vma, next); 655 if (ret) 656 return ret; 657 } 658 659 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 660 /* Not merging but overwriting any part of next is not handled. */ 661 VM_WARN_ON(next && !vp.remove && 662 next != vma && end > next->vm_start); 663 /* Only handles expanding */ 664 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 665 666 if (vma_iter_prealloc(vmi)) 667 goto nomem; 668 669 vma_prepare(&vp); 670 vma_adjust_trans_huge(vma, start, end, 0); 671 /* VMA iterator points to previous, so set to start if necessary */ 672 if (vma_iter_addr(vmi) != start) 673 vma_iter_set(vmi, start); 674 675 vma->vm_start = start; 676 vma->vm_end = end; 677 vma->vm_pgoff = pgoff; 678 /* Note: mas must be pointing to the expanding VMA */ 679 vma_iter_store(vmi, vma); 680 681 vma_complete(&vp, vmi, vma->vm_mm); 682 validate_mm(vma->vm_mm); 683 return 0; 684 685 nomem: 686 return -ENOMEM; 687 } 688 689 /* 690 * vma_shrink() - Reduce an existing VMAs memory area 691 * @vmi: The vma iterator 692 * @vma: The VMA to modify 693 * @start: The new start 694 * @end: The new end 695 * 696 * Returns: 0 on success, -ENOMEM otherwise 697 */ 698 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 699 unsigned long start, unsigned long end, pgoff_t pgoff) 700 { 701 struct vma_prepare vp; 702 703 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 704 705 if (vma_iter_prealloc(vmi)) 706 return -ENOMEM; 707 708 init_vma_prep(&vp, vma); 709 vma_prepare(&vp); 710 vma_adjust_trans_huge(vma, start, end, 0); 711 712 if (vma->vm_start < start) 713 vma_iter_clear(vmi, vma->vm_start, start); 714 715 if (vma->vm_end > end) 716 vma_iter_clear(vmi, end, vma->vm_end); 717 718 vma->vm_start = start; 719 vma->vm_end = end; 720 vma->vm_pgoff = pgoff; 721 vma_complete(&vp, vmi, vma->vm_mm); 722 validate_mm(vma->vm_mm); 723 return 0; 724 } 725 726 /* 727 * If the vma has a ->close operation then the driver probably needs to release 728 * per-vma resources, so we don't attempt to merge those if the caller indicates 729 * the current vma may be removed as part of the merge. 730 */ 731 static inline bool is_mergeable_vma(struct vm_area_struct *vma, 732 struct file *file, unsigned long vm_flags, 733 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 734 struct anon_vma_name *anon_name, bool may_remove_vma) 735 { 736 /* 737 * VM_SOFTDIRTY should not prevent from VMA merging, if we 738 * match the flags but dirty bit -- the caller should mark 739 * merged VMA as dirty. If dirty bit won't be excluded from 740 * comparison, we increase pressure on the memory system forcing 741 * the kernel to generate new VMAs when old one could be 742 * extended instead. 743 */ 744 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 745 return false; 746 if (vma->vm_file != file) 747 return false; 748 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 749 return false; 750 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 751 return false; 752 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 753 return false; 754 return true; 755 } 756 757 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 758 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 759 { 760 /* 761 * The list_is_singular() test is to avoid merging VMA cloned from 762 * parents. This can improve scalability caused by anon_vma lock. 763 */ 764 if ((!anon_vma1 || !anon_vma2) && (!vma || 765 list_is_singular(&vma->anon_vma_chain))) 766 return true; 767 return anon_vma1 == anon_vma2; 768 } 769 770 /* 771 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 772 * in front of (at a lower virtual address and file offset than) the vma. 773 * 774 * We cannot merge two vmas if they have differently assigned (non-NULL) 775 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 776 * 777 * We don't check here for the merged mmap wrapping around the end of pagecache 778 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 779 * wrap, nor mmaps which cover the final page at index -1UL. 780 * 781 * We assume the vma may be removed as part of the merge. 782 */ 783 static bool 784 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 785 struct anon_vma *anon_vma, struct file *file, 786 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 787 struct anon_vma_name *anon_name) 788 { 789 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 790 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 791 if (vma->vm_pgoff == vm_pgoff) 792 return true; 793 } 794 return false; 795 } 796 797 /* 798 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 799 * beyond (at a higher virtual address and file offset than) the vma. 800 * 801 * We cannot merge two vmas if they have differently assigned (non-NULL) 802 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 803 * 804 * We assume that vma is not removed as part of the merge. 805 */ 806 static bool 807 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 808 struct anon_vma *anon_vma, struct file *file, 809 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 810 struct anon_vma_name *anon_name) 811 { 812 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 813 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 814 pgoff_t vm_pglen; 815 vm_pglen = vma_pages(vma); 816 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 817 return true; 818 } 819 return false; 820 } 821 822 /* 823 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 824 * figure out whether that can be merged with its predecessor or its 825 * successor. Or both (it neatly fills a hole). 826 * 827 * In most cases - when called for mmap, brk or mremap - [addr,end) is 828 * certain not to be mapped by the time vma_merge is called; but when 829 * called for mprotect, it is certain to be already mapped (either at 830 * an offset within prev, or at the start of next), and the flags of 831 * this area are about to be changed to vm_flags - and the no-change 832 * case has already been eliminated. 833 * 834 * The following mprotect cases have to be considered, where **** is 835 * the area passed down from mprotect_fixup, never extending beyond one 836 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 837 * at the same address as **** and is of the same or larger span, and 838 * NNNN the next vma after ****: 839 * 840 * **** **** **** 841 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 842 * cannot merge might become might become 843 * PPNNNNNNNNNN PPPPPPPPPPCC 844 * mmap, brk or case 4 below case 5 below 845 * mremap move: 846 * **** **** 847 * PPPP NNNN PPPPCCCCNNNN 848 * might become might become 849 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 850 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 851 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 852 * 853 * It is important for case 8 that the vma CCCC overlapping the 854 * region **** is never going to extended over NNNN. Instead NNNN must 855 * be extended in region **** and CCCC must be removed. This way in 856 * all cases where vma_merge succeeds, the moment vma_merge drops the 857 * rmap_locks, the properties of the merged vma will be already 858 * correct for the whole merged range. Some of those properties like 859 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 860 * be correct for the whole merged range immediately after the 861 * rmap_locks are released. Otherwise if NNNN would be removed and 862 * CCCC would be extended over the NNNN range, remove_migration_ptes 863 * or other rmap walkers (if working on addresses beyond the "end" 864 * parameter) may establish ptes with the wrong permissions of CCCC 865 * instead of the right permissions of NNNN. 866 * 867 * In the code below: 868 * PPPP is represented by *prev 869 * CCCC is represented by *curr or not represented at all (NULL) 870 * NNNN is represented by *next or not represented at all (NULL) 871 * **** is not represented - it will be merged and the vma containing the 872 * area is returned, or the function will return NULL 873 */ 874 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm, 875 struct vm_area_struct *prev, unsigned long addr, 876 unsigned long end, unsigned long vm_flags, 877 struct anon_vma *anon_vma, struct file *file, 878 pgoff_t pgoff, struct mempolicy *policy, 879 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 880 struct anon_vma_name *anon_name) 881 { 882 struct vm_area_struct *curr, *next, *res; 883 struct vm_area_struct *vma, *adjust, *remove, *remove2; 884 struct vma_prepare vp; 885 pgoff_t vma_pgoff; 886 int err = 0; 887 bool merge_prev = false; 888 bool merge_next = false; 889 bool vma_expanded = false; 890 unsigned long vma_start = addr; 891 unsigned long vma_end = end; 892 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 893 long adj_start = 0; 894 895 validate_mm(mm); 896 /* 897 * We later require that vma->vm_flags == vm_flags, 898 * so this tests vma->vm_flags & VM_SPECIAL, too. 899 */ 900 if (vm_flags & VM_SPECIAL) 901 return NULL; 902 903 /* Does the input range span an existing VMA? (cases 5 - 8) */ 904 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 905 906 if (!curr || /* cases 1 - 4 */ 907 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 908 next = vma_lookup(mm, end); 909 else 910 next = NULL; /* case 5 */ 911 912 if (prev) { 913 vma_start = prev->vm_start; 914 vma_pgoff = prev->vm_pgoff; 915 916 /* Can we merge the predecessor? */ 917 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 918 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 919 pgoff, vm_userfaultfd_ctx, anon_name)) { 920 merge_prev = true; 921 vma_prev(vmi); 922 } 923 } 924 925 /* Can we merge the successor? */ 926 if (next && mpol_equal(policy, vma_policy(next)) && 927 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 928 vm_userfaultfd_ctx, anon_name)) { 929 merge_next = true; 930 } 931 932 /* Verify some invariant that must be enforced by the caller. */ 933 VM_WARN_ON(prev && addr <= prev->vm_start); 934 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 935 VM_WARN_ON(addr >= end); 936 937 if (!merge_prev && !merge_next) 938 return NULL; /* Not mergeable. */ 939 940 res = vma = prev; 941 remove = remove2 = adjust = NULL; 942 943 /* Can we merge both the predecessor and the successor? */ 944 if (merge_prev && merge_next && 945 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 946 remove = next; /* case 1 */ 947 vma_end = next->vm_end; 948 err = dup_anon_vma(prev, next); 949 if (curr) { /* case 6 */ 950 remove = curr; 951 remove2 = next; 952 if (!next->anon_vma) 953 err = dup_anon_vma(prev, curr); 954 } 955 } else if (merge_prev) { /* case 2 */ 956 if (curr) { 957 err = dup_anon_vma(prev, curr); 958 if (end == curr->vm_end) { /* case 7 */ 959 remove = curr; 960 } else { /* case 5 */ 961 adjust = curr; 962 adj_start = (end - curr->vm_start); 963 } 964 } 965 } else { /* merge_next */ 966 res = next; 967 if (prev && addr < prev->vm_end) { /* case 4 */ 968 vma_end = addr; 969 adjust = next; 970 adj_start = -(prev->vm_end - addr); 971 err = dup_anon_vma(next, prev); 972 } else { 973 /* 974 * Note that cases 3 and 8 are the ONLY ones where prev 975 * is permitted to be (but is not necessarily) NULL. 976 */ 977 vma = next; /* case 3 */ 978 vma_start = addr; 979 vma_end = next->vm_end; 980 vma_pgoff = next->vm_pgoff - pglen; 981 if (curr) { /* case 8 */ 982 vma_pgoff = curr->vm_pgoff; 983 remove = curr; 984 err = dup_anon_vma(next, curr); 985 } 986 } 987 } 988 989 /* Error in anon_vma clone. */ 990 if (err) 991 return NULL; 992 993 if (vma_iter_prealloc(vmi)) 994 return NULL; 995 996 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 997 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 998 vp.anon_vma != adjust->anon_vma); 999 1000 vma_prepare(&vp); 1001 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1002 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 1003 vma_expanded = true; 1004 1005 vma->vm_start = vma_start; 1006 vma->vm_end = vma_end; 1007 vma->vm_pgoff = vma_pgoff; 1008 1009 if (vma_expanded) 1010 vma_iter_store(vmi, vma); 1011 1012 if (adj_start) { 1013 adjust->vm_start += adj_start; 1014 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1015 if (adj_start < 0) { 1016 WARN_ON(vma_expanded); 1017 vma_iter_store(vmi, next); 1018 } 1019 } 1020 1021 vma_complete(&vp, vmi, mm); 1022 vma_iter_free(vmi); 1023 validate_mm(mm); 1024 khugepaged_enter_vma(res, vm_flags); 1025 1026 return res; 1027 } 1028 1029 /* 1030 * Rough compatibility check to quickly see if it's even worth looking 1031 * at sharing an anon_vma. 1032 * 1033 * They need to have the same vm_file, and the flags can only differ 1034 * in things that mprotect may change. 1035 * 1036 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1037 * we can merge the two vma's. For example, we refuse to merge a vma if 1038 * there is a vm_ops->close() function, because that indicates that the 1039 * driver is doing some kind of reference counting. But that doesn't 1040 * really matter for the anon_vma sharing case. 1041 */ 1042 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1043 { 1044 return a->vm_end == b->vm_start && 1045 mpol_equal(vma_policy(a), vma_policy(b)) && 1046 a->vm_file == b->vm_file && 1047 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1048 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1049 } 1050 1051 /* 1052 * Do some basic sanity checking to see if we can re-use the anon_vma 1053 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1054 * the same as 'old', the other will be the new one that is trying 1055 * to share the anon_vma. 1056 * 1057 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1058 * the anon_vma of 'old' is concurrently in the process of being set up 1059 * by another page fault trying to merge _that_. But that's ok: if it 1060 * is being set up, that automatically means that it will be a singleton 1061 * acceptable for merging, so we can do all of this optimistically. But 1062 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1063 * 1064 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1065 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1066 * is to return an anon_vma that is "complex" due to having gone through 1067 * a fork). 1068 * 1069 * We also make sure that the two vma's are compatible (adjacent, 1070 * and with the same memory policies). That's all stable, even with just 1071 * a read lock on the mmap_lock. 1072 */ 1073 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1074 { 1075 if (anon_vma_compatible(a, b)) { 1076 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1077 1078 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1079 return anon_vma; 1080 } 1081 return NULL; 1082 } 1083 1084 /* 1085 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1086 * neighbouring vmas for a suitable anon_vma, before it goes off 1087 * to allocate a new anon_vma. It checks because a repetitive 1088 * sequence of mprotects and faults may otherwise lead to distinct 1089 * anon_vmas being allocated, preventing vma merge in subsequent 1090 * mprotect. 1091 */ 1092 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1093 { 1094 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end); 1095 struct anon_vma *anon_vma = NULL; 1096 struct vm_area_struct *prev, *next; 1097 1098 /* Try next first. */ 1099 next = mas_walk(&mas); 1100 if (next) { 1101 anon_vma = reusable_anon_vma(next, vma, next); 1102 if (anon_vma) 1103 return anon_vma; 1104 } 1105 1106 prev = mas_prev(&mas, 0); 1107 VM_BUG_ON_VMA(prev != vma, vma); 1108 prev = mas_prev(&mas, 0); 1109 /* Try prev next. */ 1110 if (prev) 1111 anon_vma = reusable_anon_vma(prev, prev, vma); 1112 1113 /* 1114 * We might reach here with anon_vma == NULL if we can't find 1115 * any reusable anon_vma. 1116 * There's no absolute need to look only at touching neighbours: 1117 * we could search further afield for "compatible" anon_vmas. 1118 * But it would probably just be a waste of time searching, 1119 * or lead to too many vmas hanging off the same anon_vma. 1120 * We're trying to allow mprotect remerging later on, 1121 * not trying to minimize memory used for anon_vmas. 1122 */ 1123 return anon_vma; 1124 } 1125 1126 /* 1127 * If a hint addr is less than mmap_min_addr change hint to be as 1128 * low as possible but still greater than mmap_min_addr 1129 */ 1130 static inline unsigned long round_hint_to_min(unsigned long hint) 1131 { 1132 hint &= PAGE_MASK; 1133 if (((void *)hint != NULL) && 1134 (hint < mmap_min_addr)) 1135 return PAGE_ALIGN(mmap_min_addr); 1136 return hint; 1137 } 1138 1139 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 1140 unsigned long bytes) 1141 { 1142 unsigned long locked_pages, limit_pages; 1143 1144 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 1145 return true; 1146 1147 locked_pages = bytes >> PAGE_SHIFT; 1148 locked_pages += mm->locked_vm; 1149 1150 limit_pages = rlimit(RLIMIT_MEMLOCK); 1151 limit_pages >>= PAGE_SHIFT; 1152 1153 return locked_pages <= limit_pages; 1154 } 1155 1156 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1157 { 1158 if (S_ISREG(inode->i_mode)) 1159 return MAX_LFS_FILESIZE; 1160 1161 if (S_ISBLK(inode->i_mode)) 1162 return MAX_LFS_FILESIZE; 1163 1164 if (S_ISSOCK(inode->i_mode)) 1165 return MAX_LFS_FILESIZE; 1166 1167 /* Special "we do even unsigned file positions" case */ 1168 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1169 return 0; 1170 1171 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1172 return ULONG_MAX; 1173 } 1174 1175 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1176 unsigned long pgoff, unsigned long len) 1177 { 1178 u64 maxsize = file_mmap_size_max(file, inode); 1179 1180 if (maxsize && len > maxsize) 1181 return false; 1182 maxsize -= len; 1183 if (pgoff > maxsize >> PAGE_SHIFT) 1184 return false; 1185 return true; 1186 } 1187 1188 /* 1189 * The caller must write-lock current->mm->mmap_lock. 1190 */ 1191 unsigned long do_mmap(struct file *file, unsigned long addr, 1192 unsigned long len, unsigned long prot, 1193 unsigned long flags, unsigned long pgoff, 1194 unsigned long *populate, struct list_head *uf) 1195 { 1196 struct mm_struct *mm = current->mm; 1197 vm_flags_t vm_flags; 1198 int pkey = 0; 1199 1200 validate_mm(mm); 1201 *populate = 0; 1202 1203 if (!len) 1204 return -EINVAL; 1205 1206 /* 1207 * Does the application expect PROT_READ to imply PROT_EXEC? 1208 * 1209 * (the exception is when the underlying filesystem is noexec 1210 * mounted, in which case we dont add PROT_EXEC.) 1211 */ 1212 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1213 if (!(file && path_noexec(&file->f_path))) 1214 prot |= PROT_EXEC; 1215 1216 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1217 if (flags & MAP_FIXED_NOREPLACE) 1218 flags |= MAP_FIXED; 1219 1220 if (!(flags & MAP_FIXED)) 1221 addr = round_hint_to_min(addr); 1222 1223 /* Careful about overflows.. */ 1224 len = PAGE_ALIGN(len); 1225 if (!len) 1226 return -ENOMEM; 1227 1228 /* offset overflow? */ 1229 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1230 return -EOVERFLOW; 1231 1232 /* Too many mappings? */ 1233 if (mm->map_count > sysctl_max_map_count) 1234 return -ENOMEM; 1235 1236 /* Obtain the address to map to. we verify (or select) it and ensure 1237 * that it represents a valid section of the address space. 1238 */ 1239 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1240 if (IS_ERR_VALUE(addr)) 1241 return addr; 1242 1243 if (flags & MAP_FIXED_NOREPLACE) { 1244 if (find_vma_intersection(mm, addr, addr + len)) 1245 return -EEXIST; 1246 } 1247 1248 if (prot == PROT_EXEC) { 1249 pkey = execute_only_pkey(mm); 1250 if (pkey < 0) 1251 pkey = 0; 1252 } 1253 1254 /* Do simple checking here so the lower-level routines won't have 1255 * to. we assume access permissions have been handled by the open 1256 * of the memory object, so we don't do any here. 1257 */ 1258 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1259 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1260 1261 if (flags & MAP_LOCKED) 1262 if (!can_do_mlock()) 1263 return -EPERM; 1264 1265 if (!mlock_future_ok(mm, vm_flags, len)) 1266 return -EAGAIN; 1267 1268 if (file) { 1269 struct inode *inode = file_inode(file); 1270 unsigned long flags_mask; 1271 1272 if (!file_mmap_ok(file, inode, pgoff, len)) 1273 return -EOVERFLOW; 1274 1275 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1276 1277 switch (flags & MAP_TYPE) { 1278 case MAP_SHARED: 1279 /* 1280 * Force use of MAP_SHARED_VALIDATE with non-legacy 1281 * flags. E.g. MAP_SYNC is dangerous to use with 1282 * MAP_SHARED as you don't know which consistency model 1283 * you will get. We silently ignore unsupported flags 1284 * with MAP_SHARED to preserve backward compatibility. 1285 */ 1286 flags &= LEGACY_MAP_MASK; 1287 fallthrough; 1288 case MAP_SHARED_VALIDATE: 1289 if (flags & ~flags_mask) 1290 return -EOPNOTSUPP; 1291 if (prot & PROT_WRITE) { 1292 if (!(file->f_mode & FMODE_WRITE)) 1293 return -EACCES; 1294 if (IS_SWAPFILE(file->f_mapping->host)) 1295 return -ETXTBSY; 1296 } 1297 1298 /* 1299 * Make sure we don't allow writing to an append-only 1300 * file.. 1301 */ 1302 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1303 return -EACCES; 1304 1305 vm_flags |= VM_SHARED | VM_MAYSHARE; 1306 if (!(file->f_mode & FMODE_WRITE)) 1307 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1308 fallthrough; 1309 case MAP_PRIVATE: 1310 if (!(file->f_mode & FMODE_READ)) 1311 return -EACCES; 1312 if (path_noexec(&file->f_path)) { 1313 if (vm_flags & VM_EXEC) 1314 return -EPERM; 1315 vm_flags &= ~VM_MAYEXEC; 1316 } 1317 1318 if (!file->f_op->mmap) 1319 return -ENODEV; 1320 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1321 return -EINVAL; 1322 break; 1323 1324 default: 1325 return -EINVAL; 1326 } 1327 } else { 1328 switch (flags & MAP_TYPE) { 1329 case MAP_SHARED: 1330 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1331 return -EINVAL; 1332 /* 1333 * Ignore pgoff. 1334 */ 1335 pgoff = 0; 1336 vm_flags |= VM_SHARED | VM_MAYSHARE; 1337 break; 1338 case MAP_PRIVATE: 1339 /* 1340 * Set pgoff according to addr for anon_vma. 1341 */ 1342 pgoff = addr >> PAGE_SHIFT; 1343 break; 1344 default: 1345 return -EINVAL; 1346 } 1347 } 1348 1349 /* 1350 * Set 'VM_NORESERVE' if we should not account for the 1351 * memory use of this mapping. 1352 */ 1353 if (flags & MAP_NORESERVE) { 1354 /* We honor MAP_NORESERVE if allowed to overcommit */ 1355 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1356 vm_flags |= VM_NORESERVE; 1357 1358 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1359 if (file && is_file_hugepages(file)) 1360 vm_flags |= VM_NORESERVE; 1361 } 1362 1363 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1364 if (!IS_ERR_VALUE(addr) && 1365 ((vm_flags & VM_LOCKED) || 1366 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1367 *populate = len; 1368 return addr; 1369 } 1370 1371 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1372 unsigned long prot, unsigned long flags, 1373 unsigned long fd, unsigned long pgoff) 1374 { 1375 struct file *file = NULL; 1376 unsigned long retval; 1377 1378 if (!(flags & MAP_ANONYMOUS)) { 1379 audit_mmap_fd(fd, flags); 1380 file = fget(fd); 1381 if (!file) 1382 return -EBADF; 1383 if (is_file_hugepages(file)) { 1384 len = ALIGN(len, huge_page_size(hstate_file(file))); 1385 } else if (unlikely(flags & MAP_HUGETLB)) { 1386 retval = -EINVAL; 1387 goto out_fput; 1388 } 1389 } else if (flags & MAP_HUGETLB) { 1390 struct hstate *hs; 1391 1392 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1393 if (!hs) 1394 return -EINVAL; 1395 1396 len = ALIGN(len, huge_page_size(hs)); 1397 /* 1398 * VM_NORESERVE is used because the reservations will be 1399 * taken when vm_ops->mmap() is called 1400 */ 1401 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1402 VM_NORESERVE, 1403 HUGETLB_ANONHUGE_INODE, 1404 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1405 if (IS_ERR(file)) 1406 return PTR_ERR(file); 1407 } 1408 1409 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1410 out_fput: 1411 if (file) 1412 fput(file); 1413 return retval; 1414 } 1415 1416 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1417 unsigned long, prot, unsigned long, flags, 1418 unsigned long, fd, unsigned long, pgoff) 1419 { 1420 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1421 } 1422 1423 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1424 struct mmap_arg_struct { 1425 unsigned long addr; 1426 unsigned long len; 1427 unsigned long prot; 1428 unsigned long flags; 1429 unsigned long fd; 1430 unsigned long offset; 1431 }; 1432 1433 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1434 { 1435 struct mmap_arg_struct a; 1436 1437 if (copy_from_user(&a, arg, sizeof(a))) 1438 return -EFAULT; 1439 if (offset_in_page(a.offset)) 1440 return -EINVAL; 1441 1442 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1443 a.offset >> PAGE_SHIFT); 1444 } 1445 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1446 1447 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1448 { 1449 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1450 } 1451 1452 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1453 { 1454 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1455 (VM_WRITE | VM_SHARED); 1456 } 1457 1458 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1459 { 1460 /* No managed pages to writeback. */ 1461 if (vma->vm_flags & VM_PFNMAP) 1462 return false; 1463 1464 return vma->vm_file && vma->vm_file->f_mapping && 1465 mapping_can_writeback(vma->vm_file->f_mapping); 1466 } 1467 1468 /* 1469 * Does this VMA require the underlying folios to have their dirty state 1470 * tracked? 1471 */ 1472 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1473 { 1474 /* Only shared, writable VMAs require dirty tracking. */ 1475 if (!vma_is_shared_writable(vma)) 1476 return false; 1477 1478 /* Does the filesystem need to be notified? */ 1479 if (vm_ops_needs_writenotify(vma->vm_ops)) 1480 return true; 1481 1482 /* 1483 * Even if the filesystem doesn't indicate a need for writenotify, if it 1484 * can writeback, dirty tracking is still required. 1485 */ 1486 return vma_fs_can_writeback(vma); 1487 } 1488 1489 /* 1490 * Some shared mappings will want the pages marked read-only 1491 * to track write events. If so, we'll downgrade vm_page_prot 1492 * to the private version (using protection_map[] without the 1493 * VM_SHARED bit). 1494 */ 1495 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1496 { 1497 /* If it was private or non-writable, the write bit is already clear */ 1498 if (!vma_is_shared_writable(vma)) 1499 return 0; 1500 1501 /* The backer wishes to know when pages are first written to? */ 1502 if (vm_ops_needs_writenotify(vma->vm_ops)) 1503 return 1; 1504 1505 /* The open routine did something to the protections that pgprot_modify 1506 * won't preserve? */ 1507 if (pgprot_val(vm_page_prot) != 1508 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1509 return 0; 1510 1511 /* 1512 * Do we need to track softdirty? hugetlb does not support softdirty 1513 * tracking yet. 1514 */ 1515 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1516 return 1; 1517 1518 /* Do we need write faults for uffd-wp tracking? */ 1519 if (userfaultfd_wp(vma)) 1520 return 1; 1521 1522 /* Can the mapping track the dirty pages? */ 1523 return vma_fs_can_writeback(vma); 1524 } 1525 1526 /* 1527 * We account for memory if it's a private writeable mapping, 1528 * not hugepages and VM_NORESERVE wasn't set. 1529 */ 1530 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1531 { 1532 /* 1533 * hugetlb has its own accounting separate from the core VM 1534 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1535 */ 1536 if (file && is_file_hugepages(file)) 1537 return 0; 1538 1539 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1540 } 1541 1542 /** 1543 * unmapped_area() - Find an area between the low_limit and the high_limit with 1544 * the correct alignment and offset, all from @info. Note: current->mm is used 1545 * for the search. 1546 * 1547 * @info: The unmapped area information including the range [low_limit - 1548 * high_limit), the alignment offset and mask. 1549 * 1550 * Return: A memory address or -ENOMEM. 1551 */ 1552 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1553 { 1554 unsigned long length, gap; 1555 unsigned long low_limit, high_limit; 1556 struct vm_area_struct *tmp; 1557 1558 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1559 1560 /* Adjust search length to account for worst case alignment overhead */ 1561 length = info->length + info->align_mask; 1562 if (length < info->length) 1563 return -ENOMEM; 1564 1565 low_limit = info->low_limit; 1566 if (low_limit < mmap_min_addr) 1567 low_limit = mmap_min_addr; 1568 high_limit = info->high_limit; 1569 retry: 1570 if (mas_empty_area(&mas, low_limit, high_limit - 1, length)) 1571 return -ENOMEM; 1572 1573 gap = mas.index; 1574 gap += (info->align_offset - gap) & info->align_mask; 1575 tmp = mas_next(&mas, ULONG_MAX); 1576 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */ 1577 if (vm_start_gap(tmp) < gap + length - 1) { 1578 low_limit = tmp->vm_end; 1579 mas_reset(&mas); 1580 goto retry; 1581 } 1582 } else { 1583 tmp = mas_prev(&mas, 0); 1584 if (tmp && vm_end_gap(tmp) > gap) { 1585 low_limit = vm_end_gap(tmp); 1586 mas_reset(&mas); 1587 goto retry; 1588 } 1589 } 1590 1591 return gap; 1592 } 1593 1594 /** 1595 * unmapped_area_topdown() - Find an area between the low_limit and the 1596 * high_limit with the correct alignment and offset at the highest available 1597 * address, all from @info. Note: current->mm is used for the search. 1598 * 1599 * @info: The unmapped area information including the range [low_limit - 1600 * high_limit), the alignment offset and mask. 1601 * 1602 * Return: A memory address or -ENOMEM. 1603 */ 1604 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1605 { 1606 unsigned long length, gap, gap_end; 1607 unsigned long low_limit, high_limit; 1608 struct vm_area_struct *tmp; 1609 1610 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1611 /* Adjust search length to account for worst case alignment overhead */ 1612 length = info->length + info->align_mask; 1613 if (length < info->length) 1614 return -ENOMEM; 1615 1616 low_limit = info->low_limit; 1617 if (low_limit < mmap_min_addr) 1618 low_limit = mmap_min_addr; 1619 high_limit = info->high_limit; 1620 retry: 1621 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length)) 1622 return -ENOMEM; 1623 1624 gap = mas.last + 1 - info->length; 1625 gap -= (gap - info->align_offset) & info->align_mask; 1626 gap_end = mas.last; 1627 tmp = mas_next(&mas, ULONG_MAX); 1628 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */ 1629 if (vm_start_gap(tmp) <= gap_end) { 1630 high_limit = vm_start_gap(tmp); 1631 mas_reset(&mas); 1632 goto retry; 1633 } 1634 } else { 1635 tmp = mas_prev(&mas, 0); 1636 if (tmp && vm_end_gap(tmp) > gap) { 1637 high_limit = tmp->vm_start; 1638 mas_reset(&mas); 1639 goto retry; 1640 } 1641 } 1642 1643 return gap; 1644 } 1645 1646 /* 1647 * Search for an unmapped address range. 1648 * 1649 * We are looking for a range that: 1650 * - does not intersect with any VMA; 1651 * - is contained within the [low_limit, high_limit) interval; 1652 * - is at least the desired size. 1653 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1654 */ 1655 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1656 { 1657 unsigned long addr; 1658 1659 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1660 addr = unmapped_area_topdown(info); 1661 else 1662 addr = unmapped_area(info); 1663 1664 trace_vm_unmapped_area(addr, info); 1665 return addr; 1666 } 1667 1668 /* Get an address range which is currently unmapped. 1669 * For shmat() with addr=0. 1670 * 1671 * Ugly calling convention alert: 1672 * Return value with the low bits set means error value, 1673 * ie 1674 * if (ret & ~PAGE_MASK) 1675 * error = ret; 1676 * 1677 * This function "knows" that -ENOMEM has the bits set. 1678 */ 1679 unsigned long 1680 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1681 unsigned long len, unsigned long pgoff, 1682 unsigned long flags) 1683 { 1684 struct mm_struct *mm = current->mm; 1685 struct vm_area_struct *vma, *prev; 1686 struct vm_unmapped_area_info info; 1687 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1688 1689 if (len > mmap_end - mmap_min_addr) 1690 return -ENOMEM; 1691 1692 if (flags & MAP_FIXED) 1693 return addr; 1694 1695 if (addr) { 1696 addr = PAGE_ALIGN(addr); 1697 vma = find_vma_prev(mm, addr, &prev); 1698 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1699 (!vma || addr + len <= vm_start_gap(vma)) && 1700 (!prev || addr >= vm_end_gap(prev))) 1701 return addr; 1702 } 1703 1704 info.flags = 0; 1705 info.length = len; 1706 info.low_limit = mm->mmap_base; 1707 info.high_limit = mmap_end; 1708 info.align_mask = 0; 1709 info.align_offset = 0; 1710 return vm_unmapped_area(&info); 1711 } 1712 1713 #ifndef HAVE_ARCH_UNMAPPED_AREA 1714 unsigned long 1715 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1716 unsigned long len, unsigned long pgoff, 1717 unsigned long flags) 1718 { 1719 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1720 } 1721 #endif 1722 1723 /* 1724 * This mmap-allocator allocates new areas top-down from below the 1725 * stack's low limit (the base): 1726 */ 1727 unsigned long 1728 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1729 unsigned long len, unsigned long pgoff, 1730 unsigned long flags) 1731 { 1732 struct vm_area_struct *vma, *prev; 1733 struct mm_struct *mm = current->mm; 1734 struct vm_unmapped_area_info info; 1735 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1736 1737 /* requested length too big for entire address space */ 1738 if (len > mmap_end - mmap_min_addr) 1739 return -ENOMEM; 1740 1741 if (flags & MAP_FIXED) 1742 return addr; 1743 1744 /* requesting a specific address */ 1745 if (addr) { 1746 addr = PAGE_ALIGN(addr); 1747 vma = find_vma_prev(mm, addr, &prev); 1748 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1749 (!vma || addr + len <= vm_start_gap(vma)) && 1750 (!prev || addr >= vm_end_gap(prev))) 1751 return addr; 1752 } 1753 1754 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1755 info.length = len; 1756 info.low_limit = PAGE_SIZE; 1757 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1758 info.align_mask = 0; 1759 info.align_offset = 0; 1760 addr = vm_unmapped_area(&info); 1761 1762 /* 1763 * A failed mmap() very likely causes application failure, 1764 * so fall back to the bottom-up function here. This scenario 1765 * can happen with large stack limits and large mmap() 1766 * allocations. 1767 */ 1768 if (offset_in_page(addr)) { 1769 VM_BUG_ON(addr != -ENOMEM); 1770 info.flags = 0; 1771 info.low_limit = TASK_UNMAPPED_BASE; 1772 info.high_limit = mmap_end; 1773 addr = vm_unmapped_area(&info); 1774 } 1775 1776 return addr; 1777 } 1778 1779 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1780 unsigned long 1781 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1782 unsigned long len, unsigned long pgoff, 1783 unsigned long flags) 1784 { 1785 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1786 } 1787 #endif 1788 1789 unsigned long 1790 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1791 unsigned long pgoff, unsigned long flags) 1792 { 1793 unsigned long (*get_area)(struct file *, unsigned long, 1794 unsigned long, unsigned long, unsigned long); 1795 1796 unsigned long error = arch_mmap_check(addr, len, flags); 1797 if (error) 1798 return error; 1799 1800 /* Careful about overflows.. */ 1801 if (len > TASK_SIZE) 1802 return -ENOMEM; 1803 1804 get_area = current->mm->get_unmapped_area; 1805 if (file) { 1806 if (file->f_op->get_unmapped_area) 1807 get_area = file->f_op->get_unmapped_area; 1808 } else if (flags & MAP_SHARED) { 1809 /* 1810 * mmap_region() will call shmem_zero_setup() to create a file, 1811 * so use shmem's get_unmapped_area in case it can be huge. 1812 * do_mmap() will clear pgoff, so match alignment. 1813 */ 1814 pgoff = 0; 1815 get_area = shmem_get_unmapped_area; 1816 } 1817 1818 addr = get_area(file, addr, len, pgoff, flags); 1819 if (IS_ERR_VALUE(addr)) 1820 return addr; 1821 1822 if (addr > TASK_SIZE - len) 1823 return -ENOMEM; 1824 if (offset_in_page(addr)) 1825 return -EINVAL; 1826 1827 error = security_mmap_addr(addr); 1828 return error ? error : addr; 1829 } 1830 1831 EXPORT_SYMBOL(get_unmapped_area); 1832 1833 /** 1834 * find_vma_intersection() - Look up the first VMA which intersects the interval 1835 * @mm: The process address space. 1836 * @start_addr: The inclusive start user address. 1837 * @end_addr: The exclusive end user address. 1838 * 1839 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1840 * start_addr < end_addr. 1841 */ 1842 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1843 unsigned long start_addr, 1844 unsigned long end_addr) 1845 { 1846 unsigned long index = start_addr; 1847 1848 mmap_assert_locked(mm); 1849 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1850 } 1851 EXPORT_SYMBOL(find_vma_intersection); 1852 1853 /** 1854 * find_vma() - Find the VMA for a given address, or the next VMA. 1855 * @mm: The mm_struct to check 1856 * @addr: The address 1857 * 1858 * Returns: The VMA associated with addr, or the next VMA. 1859 * May return %NULL in the case of no VMA at addr or above. 1860 */ 1861 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1862 { 1863 unsigned long index = addr; 1864 1865 mmap_assert_locked(mm); 1866 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1867 } 1868 EXPORT_SYMBOL(find_vma); 1869 1870 /** 1871 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1872 * set %pprev to the previous VMA, if any. 1873 * @mm: The mm_struct to check 1874 * @addr: The address 1875 * @pprev: The pointer to set to the previous VMA 1876 * 1877 * Note that RCU lock is missing here since the external mmap_lock() is used 1878 * instead. 1879 * 1880 * Returns: The VMA associated with @addr, or the next vma. 1881 * May return %NULL in the case of no vma at addr or above. 1882 */ 1883 struct vm_area_struct * 1884 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1885 struct vm_area_struct **pprev) 1886 { 1887 struct vm_area_struct *vma; 1888 MA_STATE(mas, &mm->mm_mt, addr, addr); 1889 1890 vma = mas_walk(&mas); 1891 *pprev = mas_prev(&mas, 0); 1892 if (!vma) 1893 vma = mas_next(&mas, ULONG_MAX); 1894 return vma; 1895 } 1896 1897 /* 1898 * Verify that the stack growth is acceptable and 1899 * update accounting. This is shared with both the 1900 * grow-up and grow-down cases. 1901 */ 1902 static int acct_stack_growth(struct vm_area_struct *vma, 1903 unsigned long size, unsigned long grow) 1904 { 1905 struct mm_struct *mm = vma->vm_mm; 1906 unsigned long new_start; 1907 1908 /* address space limit tests */ 1909 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1910 return -ENOMEM; 1911 1912 /* Stack limit test */ 1913 if (size > rlimit(RLIMIT_STACK)) 1914 return -ENOMEM; 1915 1916 /* mlock limit tests */ 1917 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1918 return -ENOMEM; 1919 1920 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1921 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1922 vma->vm_end - size; 1923 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1924 return -EFAULT; 1925 1926 /* 1927 * Overcommit.. This must be the final test, as it will 1928 * update security statistics. 1929 */ 1930 if (security_vm_enough_memory_mm(mm, grow)) 1931 return -ENOMEM; 1932 1933 return 0; 1934 } 1935 1936 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1937 /* 1938 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1939 * vma is the last one with address > vma->vm_end. Have to extend vma. 1940 */ 1941 static int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1942 { 1943 struct mm_struct *mm = vma->vm_mm; 1944 struct vm_area_struct *next; 1945 unsigned long gap_addr; 1946 int error = 0; 1947 MA_STATE(mas, &mm->mm_mt, 0, 0); 1948 1949 if (!(vma->vm_flags & VM_GROWSUP)) 1950 return -EFAULT; 1951 1952 /* Guard against exceeding limits of the address space. */ 1953 address &= PAGE_MASK; 1954 if (address >= (TASK_SIZE & PAGE_MASK)) 1955 return -ENOMEM; 1956 address += PAGE_SIZE; 1957 1958 /* Enforce stack_guard_gap */ 1959 gap_addr = address + stack_guard_gap; 1960 1961 /* Guard against overflow */ 1962 if (gap_addr < address || gap_addr > TASK_SIZE) 1963 gap_addr = TASK_SIZE; 1964 1965 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1966 if (next && vma_is_accessible(next)) { 1967 if (!(next->vm_flags & VM_GROWSUP)) 1968 return -ENOMEM; 1969 /* Check that both stack segments have the same anon_vma? */ 1970 } 1971 1972 if (mas_preallocate(&mas, GFP_KERNEL)) 1973 return -ENOMEM; 1974 1975 /* We must make sure the anon_vma is allocated. */ 1976 if (unlikely(anon_vma_prepare(vma))) { 1977 mas_destroy(&mas); 1978 return -ENOMEM; 1979 } 1980 1981 /* Lock the VMA before expanding to prevent concurrent page faults */ 1982 vma_start_write(vma); 1983 /* 1984 * vma->vm_start/vm_end cannot change under us because the caller 1985 * is required to hold the mmap_lock in read mode. We need the 1986 * anon_vma lock to serialize against concurrent expand_stacks. 1987 */ 1988 anon_vma_lock_write(vma->anon_vma); 1989 1990 /* Somebody else might have raced and expanded it already */ 1991 if (address > vma->vm_end) { 1992 unsigned long size, grow; 1993 1994 size = address - vma->vm_start; 1995 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1996 1997 error = -ENOMEM; 1998 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1999 error = acct_stack_growth(vma, size, grow); 2000 if (!error) { 2001 /* 2002 * We only hold a shared mmap_lock lock here, so 2003 * we need to protect against concurrent vma 2004 * expansions. anon_vma_lock_write() doesn't 2005 * help here, as we don't guarantee that all 2006 * growable vmas in a mm share the same root 2007 * anon vma. So, we reuse mm->page_table_lock 2008 * to guard against concurrent vma expansions. 2009 */ 2010 spin_lock(&mm->page_table_lock); 2011 if (vma->vm_flags & VM_LOCKED) 2012 mm->locked_vm += grow; 2013 vm_stat_account(mm, vma->vm_flags, grow); 2014 anon_vma_interval_tree_pre_update_vma(vma); 2015 vma->vm_end = address; 2016 /* Overwrite old entry in mtree. */ 2017 mas_set_range(&mas, vma->vm_start, address - 1); 2018 mas_store_prealloc(&mas, vma); 2019 anon_vma_interval_tree_post_update_vma(vma); 2020 spin_unlock(&mm->page_table_lock); 2021 2022 perf_event_mmap(vma); 2023 } 2024 } 2025 } 2026 anon_vma_unlock_write(vma->anon_vma); 2027 khugepaged_enter_vma(vma, vma->vm_flags); 2028 mas_destroy(&mas); 2029 return error; 2030 } 2031 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2032 2033 /* 2034 * vma is the first one with address < vma->vm_start. Have to extend vma. 2035 * mmap_lock held for writing. 2036 */ 2037 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2038 { 2039 struct mm_struct *mm = vma->vm_mm; 2040 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start); 2041 struct vm_area_struct *prev; 2042 int error = 0; 2043 2044 if (!(vma->vm_flags & VM_GROWSDOWN)) 2045 return -EFAULT; 2046 2047 address &= PAGE_MASK; 2048 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2049 return -EPERM; 2050 2051 /* Enforce stack_guard_gap */ 2052 prev = mas_prev(&mas, 0); 2053 /* Check that both stack segments have the same anon_vma? */ 2054 if (prev) { 2055 if (!(prev->vm_flags & VM_GROWSDOWN) && 2056 vma_is_accessible(prev) && 2057 (address - prev->vm_end < stack_guard_gap)) 2058 return -ENOMEM; 2059 } 2060 2061 if (mas_preallocate(&mas, GFP_KERNEL)) 2062 return -ENOMEM; 2063 2064 /* We must make sure the anon_vma is allocated. */ 2065 if (unlikely(anon_vma_prepare(vma))) { 2066 mas_destroy(&mas); 2067 return -ENOMEM; 2068 } 2069 2070 /* Lock the VMA before expanding to prevent concurrent page faults */ 2071 vma_start_write(vma); 2072 /* 2073 * vma->vm_start/vm_end cannot change under us because the caller 2074 * is required to hold the mmap_lock in read mode. We need the 2075 * anon_vma lock to serialize against concurrent expand_stacks. 2076 */ 2077 anon_vma_lock_write(vma->anon_vma); 2078 2079 /* Somebody else might have raced and expanded it already */ 2080 if (address < vma->vm_start) { 2081 unsigned long size, grow; 2082 2083 size = vma->vm_end - address; 2084 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2085 2086 error = -ENOMEM; 2087 if (grow <= vma->vm_pgoff) { 2088 error = acct_stack_growth(vma, size, grow); 2089 if (!error) { 2090 /* 2091 * We only hold a shared mmap_lock lock here, so 2092 * we need to protect against concurrent vma 2093 * expansions. anon_vma_lock_write() doesn't 2094 * help here, as we don't guarantee that all 2095 * growable vmas in a mm share the same root 2096 * anon vma. So, we reuse mm->page_table_lock 2097 * to guard against concurrent vma expansions. 2098 */ 2099 spin_lock(&mm->page_table_lock); 2100 if (vma->vm_flags & VM_LOCKED) 2101 mm->locked_vm += grow; 2102 vm_stat_account(mm, vma->vm_flags, grow); 2103 anon_vma_interval_tree_pre_update_vma(vma); 2104 vma->vm_start = address; 2105 vma->vm_pgoff -= grow; 2106 /* Overwrite old entry in mtree. */ 2107 mas_set_range(&mas, address, vma->vm_end - 1); 2108 mas_store_prealloc(&mas, vma); 2109 anon_vma_interval_tree_post_update_vma(vma); 2110 spin_unlock(&mm->page_table_lock); 2111 2112 perf_event_mmap(vma); 2113 } 2114 } 2115 } 2116 anon_vma_unlock_write(vma->anon_vma); 2117 khugepaged_enter_vma(vma, vma->vm_flags); 2118 mas_destroy(&mas); 2119 return error; 2120 } 2121 2122 /* enforced gap between the expanding stack and other mappings. */ 2123 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2124 2125 static int __init cmdline_parse_stack_guard_gap(char *p) 2126 { 2127 unsigned long val; 2128 char *endptr; 2129 2130 val = simple_strtoul(p, &endptr, 10); 2131 if (!*endptr) 2132 stack_guard_gap = val << PAGE_SHIFT; 2133 2134 return 1; 2135 } 2136 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2137 2138 #ifdef CONFIG_STACK_GROWSUP 2139 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2140 { 2141 return expand_upwards(vma, address); 2142 } 2143 2144 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2145 { 2146 struct vm_area_struct *vma, *prev; 2147 2148 addr &= PAGE_MASK; 2149 vma = find_vma_prev(mm, addr, &prev); 2150 if (vma && (vma->vm_start <= addr)) 2151 return vma; 2152 if (!prev) 2153 return NULL; 2154 if (expand_stack_locked(prev, addr)) 2155 return NULL; 2156 if (prev->vm_flags & VM_LOCKED) 2157 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2158 return prev; 2159 } 2160 #else 2161 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2162 { 2163 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 2164 return -EINVAL; 2165 return expand_downwards(vma, address); 2166 } 2167 2168 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2169 { 2170 struct vm_area_struct *vma; 2171 unsigned long start; 2172 2173 addr &= PAGE_MASK; 2174 vma = find_vma(mm, addr); 2175 if (!vma) 2176 return NULL; 2177 if (vma->vm_start <= addr) 2178 return vma; 2179 start = vma->vm_start; 2180 if (expand_stack_locked(vma, addr)) 2181 return NULL; 2182 if (vma->vm_flags & VM_LOCKED) 2183 populate_vma_page_range(vma, addr, start, NULL); 2184 return vma; 2185 } 2186 #endif 2187 2188 /* 2189 * IA64 has some horrid mapping rules: it can expand both up and down, 2190 * but with various special rules. 2191 * 2192 * We'll get rid of this architecture eventually, so the ugliness is 2193 * temporary. 2194 */ 2195 #ifdef CONFIG_IA64 2196 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr) 2197 { 2198 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) && 2199 REGION_OFFSET(addr) < RGN_MAP_LIMIT; 2200 } 2201 2202 /* 2203 * IA64 stacks grow down, but there's a special register backing store 2204 * that can grow up. Only sequentially, though, so the new address must 2205 * match vm_end. 2206 */ 2207 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr) 2208 { 2209 if (!vma_expand_ok(vma, addr)) 2210 return -EFAULT; 2211 if (vma->vm_end != (addr & PAGE_MASK)) 2212 return -EFAULT; 2213 return expand_upwards(vma, addr); 2214 } 2215 2216 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr) 2217 { 2218 if (!vma_expand_ok(vma, addr)) 2219 return -EFAULT; 2220 return expand_downwards(vma, addr); 2221 } 2222 2223 #elif defined(CONFIG_STACK_GROWSUP) 2224 2225 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 2226 #define vma_expand_down(vma, addr) (-EFAULT) 2227 2228 #else 2229 2230 #define vma_expand_up(vma,addr) (-EFAULT) 2231 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 2232 2233 #endif 2234 2235 /* 2236 * expand_stack(): legacy interface for page faulting. Don't use unless 2237 * you have to. 2238 * 2239 * This is called with the mm locked for reading, drops the lock, takes 2240 * the lock for writing, tries to look up a vma again, expands it if 2241 * necessary, and downgrades the lock to reading again. 2242 * 2243 * If no vma is found or it can't be expanded, it returns NULL and has 2244 * dropped the lock. 2245 */ 2246 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 2247 { 2248 struct vm_area_struct *vma, *prev; 2249 2250 mmap_read_unlock(mm); 2251 if (mmap_write_lock_killable(mm)) 2252 return NULL; 2253 2254 vma = find_vma_prev(mm, addr, &prev); 2255 if (vma && vma->vm_start <= addr) 2256 goto success; 2257 2258 if (prev && !vma_expand_up(prev, addr)) { 2259 vma = prev; 2260 goto success; 2261 } 2262 2263 if (vma && !vma_expand_down(vma, addr)) 2264 goto success; 2265 2266 mmap_write_unlock(mm); 2267 return NULL; 2268 2269 success: 2270 mmap_write_downgrade(mm); 2271 return vma; 2272 } 2273 2274 /* 2275 * Ok - we have the memory areas we should free on a maple tree so release them, 2276 * and do the vma updates. 2277 * 2278 * Called with the mm semaphore held. 2279 */ 2280 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2281 { 2282 unsigned long nr_accounted = 0; 2283 struct vm_area_struct *vma; 2284 2285 /* Update high watermark before we lower total_vm */ 2286 update_hiwater_vm(mm); 2287 mas_for_each(mas, vma, ULONG_MAX) { 2288 long nrpages = vma_pages(vma); 2289 2290 if (vma->vm_flags & VM_ACCOUNT) 2291 nr_accounted += nrpages; 2292 vm_stat_account(mm, vma->vm_flags, -nrpages); 2293 remove_vma(vma, false); 2294 } 2295 vm_unacct_memory(nr_accounted); 2296 validate_mm(mm); 2297 } 2298 2299 /* 2300 * Get rid of page table information in the indicated region. 2301 * 2302 * Called with the mm semaphore held. 2303 */ 2304 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt, 2305 struct vm_area_struct *vma, struct vm_area_struct *prev, 2306 struct vm_area_struct *next, 2307 unsigned long start, unsigned long end, bool mm_wr_locked) 2308 { 2309 struct mmu_gather tlb; 2310 2311 lru_add_drain(); 2312 tlb_gather_mmu(&tlb, mm); 2313 update_hiwater_rss(mm); 2314 unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked); 2315 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2316 next ? next->vm_start : USER_PGTABLES_CEILING, 2317 mm_wr_locked); 2318 tlb_finish_mmu(&tlb); 2319 } 2320 2321 /* 2322 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2323 * has already been checked or doesn't make sense to fail. 2324 * VMA Iterator will point to the end VMA. 2325 */ 2326 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2327 unsigned long addr, int new_below) 2328 { 2329 struct vma_prepare vp; 2330 struct vm_area_struct *new; 2331 int err; 2332 2333 validate_mm(vma->vm_mm); 2334 2335 WARN_ON(vma->vm_start >= addr); 2336 WARN_ON(vma->vm_end <= addr); 2337 2338 if (vma->vm_ops && vma->vm_ops->may_split) { 2339 err = vma->vm_ops->may_split(vma, addr); 2340 if (err) 2341 return err; 2342 } 2343 2344 new = vm_area_dup(vma); 2345 if (!new) 2346 return -ENOMEM; 2347 2348 err = -ENOMEM; 2349 if (vma_iter_prealloc(vmi)) 2350 goto out_free_vma; 2351 2352 if (new_below) { 2353 new->vm_end = addr; 2354 } else { 2355 new->vm_start = addr; 2356 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2357 } 2358 2359 err = vma_dup_policy(vma, new); 2360 if (err) 2361 goto out_free_vmi; 2362 2363 err = anon_vma_clone(new, vma); 2364 if (err) 2365 goto out_free_mpol; 2366 2367 if (new->vm_file) 2368 get_file(new->vm_file); 2369 2370 if (new->vm_ops && new->vm_ops->open) 2371 new->vm_ops->open(new); 2372 2373 init_vma_prep(&vp, vma); 2374 vp.insert = new; 2375 vma_prepare(&vp); 2376 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 2377 2378 if (new_below) { 2379 vma->vm_start = addr; 2380 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 2381 } else { 2382 vma->vm_end = addr; 2383 } 2384 2385 /* vma_complete stores the new vma */ 2386 vma_complete(&vp, vmi, vma->vm_mm); 2387 2388 /* Success. */ 2389 if (new_below) 2390 vma_next(vmi); 2391 validate_mm(vma->vm_mm); 2392 return 0; 2393 2394 out_free_mpol: 2395 mpol_put(vma_policy(new)); 2396 out_free_vmi: 2397 vma_iter_free(vmi); 2398 out_free_vma: 2399 vm_area_free(new); 2400 validate_mm(vma->vm_mm); 2401 return err; 2402 } 2403 2404 /* 2405 * Split a vma into two pieces at address 'addr', a new vma is allocated 2406 * either for the first part or the tail. 2407 */ 2408 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2409 unsigned long addr, int new_below) 2410 { 2411 if (vma->vm_mm->map_count >= sysctl_max_map_count) 2412 return -ENOMEM; 2413 2414 return __split_vma(vmi, vma, addr, new_below); 2415 } 2416 2417 /* 2418 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 2419 * @vmi: The vma iterator 2420 * @vma: The starting vm_area_struct 2421 * @mm: The mm_struct 2422 * @start: The aligned start address to munmap. 2423 * @end: The aligned end address to munmap. 2424 * @uf: The userfaultfd list_head 2425 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 2426 * success. 2427 * 2428 * Return: 0 on success and drops the lock if so directed, error and leaves the 2429 * lock held otherwise. 2430 */ 2431 static int 2432 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2433 struct mm_struct *mm, unsigned long start, 2434 unsigned long end, struct list_head *uf, bool unlock) 2435 { 2436 struct vm_area_struct *prev, *next = NULL; 2437 struct maple_tree mt_detach; 2438 int count = 0; 2439 int error = -ENOMEM; 2440 unsigned long locked_vm = 0; 2441 MA_STATE(mas_detach, &mt_detach, 0, 0); 2442 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2443 mt_set_external_lock(&mt_detach, &mm->mmap_lock); 2444 2445 /* 2446 * If we need to split any vma, do it now to save pain later. 2447 * 2448 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2449 * unmapped vm_area_struct will remain in use: so lower split_vma 2450 * places tmp vma above, and higher split_vma places tmp vma below. 2451 */ 2452 2453 /* Does it split the first one? */ 2454 if (start > vma->vm_start) { 2455 2456 /* 2457 * Make sure that map_count on return from munmap() will 2458 * not exceed its limit; but let map_count go just above 2459 * its limit temporarily, to help free resources as expected. 2460 */ 2461 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2462 goto map_count_exceeded; 2463 2464 error = __split_vma(vmi, vma, start, 0); 2465 if (error) 2466 goto start_split_failed; 2467 2468 vma = vma_iter_load(vmi); 2469 } 2470 2471 prev = vma_prev(vmi); 2472 if (unlikely((!prev))) 2473 vma_iter_set(vmi, start); 2474 2475 /* 2476 * Detach a range of VMAs from the mm. Using next as a temp variable as 2477 * it is always overwritten. 2478 */ 2479 for_each_vma_range(*vmi, next, end) { 2480 /* Does it split the end? */ 2481 if (next->vm_end > end) { 2482 error = __split_vma(vmi, next, end, 0); 2483 if (error) 2484 goto end_split_failed; 2485 } 2486 vma_start_write(next); 2487 mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1); 2488 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL); 2489 if (error) 2490 goto munmap_gather_failed; 2491 vma_mark_detached(next, true); 2492 if (next->vm_flags & VM_LOCKED) 2493 locked_vm += vma_pages(next); 2494 2495 count++; 2496 if (unlikely(uf)) { 2497 /* 2498 * If userfaultfd_unmap_prep returns an error the vmas 2499 * will remain split, but userland will get a 2500 * highly unexpected error anyway. This is no 2501 * different than the case where the first of the two 2502 * __split_vma fails, but we don't undo the first 2503 * split, despite we could. This is unlikely enough 2504 * failure that it's not worth optimizing it for. 2505 */ 2506 error = userfaultfd_unmap_prep(next, start, end, uf); 2507 2508 if (error) 2509 goto userfaultfd_error; 2510 } 2511 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2512 BUG_ON(next->vm_start < start); 2513 BUG_ON(next->vm_start > end); 2514 #endif 2515 } 2516 2517 if (vma_iter_end(vmi) > end) 2518 next = vma_iter_load(vmi); 2519 2520 if (!next) 2521 next = vma_next(vmi); 2522 2523 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2524 /* Make sure no VMAs are about to be lost. */ 2525 { 2526 MA_STATE(test, &mt_detach, start, end - 1); 2527 struct vm_area_struct *vma_mas, *vma_test; 2528 int test_count = 0; 2529 2530 vma_iter_set(vmi, start); 2531 rcu_read_lock(); 2532 vma_test = mas_find(&test, end - 1); 2533 for_each_vma_range(*vmi, vma_mas, end) { 2534 BUG_ON(vma_mas != vma_test); 2535 test_count++; 2536 vma_test = mas_next(&test, end - 1); 2537 } 2538 rcu_read_unlock(); 2539 BUG_ON(count != test_count); 2540 } 2541 #endif 2542 vma_iter_set(vmi, start); 2543 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 2544 if (error) 2545 goto clear_tree_failed; 2546 2547 /* Point of no return */ 2548 mm->locked_vm -= locked_vm; 2549 mm->map_count -= count; 2550 if (unlock) 2551 mmap_write_downgrade(mm); 2552 2553 /* 2554 * We can free page tables without write-locking mmap_lock because VMAs 2555 * were isolated before we downgraded mmap_lock. 2556 */ 2557 unmap_region(mm, &mt_detach, vma, prev, next, start, end, !unlock); 2558 /* Statistics and freeing VMAs */ 2559 mas_set(&mas_detach, start); 2560 remove_mt(mm, &mas_detach); 2561 __mt_destroy(&mt_detach); 2562 validate_mm(mm); 2563 if (unlock) 2564 mmap_read_unlock(mm); 2565 2566 return 0; 2567 2568 clear_tree_failed: 2569 userfaultfd_error: 2570 munmap_gather_failed: 2571 end_split_failed: 2572 mas_set(&mas_detach, 0); 2573 mas_for_each(&mas_detach, next, end) 2574 vma_mark_detached(next, false); 2575 2576 __mt_destroy(&mt_detach); 2577 start_split_failed: 2578 map_count_exceeded: 2579 validate_mm(mm); 2580 return error; 2581 } 2582 2583 /* 2584 * do_vmi_munmap() - munmap a given range. 2585 * @vmi: The vma iterator 2586 * @mm: The mm_struct 2587 * @start: The start address to munmap 2588 * @len: The length of the range to munmap 2589 * @uf: The userfaultfd list_head 2590 * @unlock: set to true if the user wants to drop the mmap_lock on success 2591 * 2592 * This function takes a @mas that is either pointing to the previous VMA or set 2593 * to MA_START and sets it up to remove the mapping(s). The @len will be 2594 * aligned and any arch_unmap work will be preformed. 2595 * 2596 * Return: 0 on success and drops the lock if so directed, error and leaves the 2597 * lock held otherwise. 2598 */ 2599 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 2600 unsigned long start, size_t len, struct list_head *uf, 2601 bool unlock) 2602 { 2603 unsigned long end; 2604 struct vm_area_struct *vma; 2605 2606 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2607 return -EINVAL; 2608 2609 end = start + PAGE_ALIGN(len); 2610 if (end == start) 2611 return -EINVAL; 2612 2613 /* arch_unmap() might do unmaps itself. */ 2614 arch_unmap(mm, start, end); 2615 2616 /* Find the first overlapping VMA */ 2617 vma = vma_find(vmi, end); 2618 if (!vma) { 2619 if (unlock) 2620 mmap_write_unlock(mm); 2621 return 0; 2622 } 2623 2624 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 2625 } 2626 2627 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2628 * @mm: The mm_struct 2629 * @start: The start address to munmap 2630 * @len: The length to be munmapped. 2631 * @uf: The userfaultfd list_head 2632 * 2633 * Return: 0 on success, error otherwise. 2634 */ 2635 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2636 struct list_head *uf) 2637 { 2638 VMA_ITERATOR(vmi, mm, start); 2639 2640 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 2641 } 2642 2643 unsigned long mmap_region(struct file *file, unsigned long addr, 2644 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2645 struct list_head *uf) 2646 { 2647 struct mm_struct *mm = current->mm; 2648 struct vm_area_struct *vma = NULL; 2649 struct vm_area_struct *next, *prev, *merge; 2650 pgoff_t pglen = len >> PAGE_SHIFT; 2651 unsigned long charged = 0; 2652 unsigned long end = addr + len; 2653 unsigned long merge_start = addr, merge_end = end; 2654 pgoff_t vm_pgoff; 2655 int error; 2656 VMA_ITERATOR(vmi, mm, addr); 2657 2658 /* Check against address space limit. */ 2659 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2660 unsigned long nr_pages; 2661 2662 /* 2663 * MAP_FIXED may remove pages of mappings that intersects with 2664 * requested mapping. Account for the pages it would unmap. 2665 */ 2666 nr_pages = count_vma_pages_range(mm, addr, end); 2667 2668 if (!may_expand_vm(mm, vm_flags, 2669 (len >> PAGE_SHIFT) - nr_pages)) 2670 return -ENOMEM; 2671 } 2672 2673 /* Unmap any existing mapping in the area */ 2674 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false)) 2675 return -ENOMEM; 2676 2677 /* 2678 * Private writable mapping: check memory availability 2679 */ 2680 if (accountable_mapping(file, vm_flags)) { 2681 charged = len >> PAGE_SHIFT; 2682 if (security_vm_enough_memory_mm(mm, charged)) 2683 return -ENOMEM; 2684 vm_flags |= VM_ACCOUNT; 2685 } 2686 2687 next = vma_next(&vmi); 2688 prev = vma_prev(&vmi); 2689 if (vm_flags & VM_SPECIAL) 2690 goto cannot_expand; 2691 2692 /* Attempt to expand an old mapping */ 2693 /* Check next */ 2694 if (next && next->vm_start == end && !vma_policy(next) && 2695 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2696 NULL_VM_UFFD_CTX, NULL)) { 2697 merge_end = next->vm_end; 2698 vma = next; 2699 vm_pgoff = next->vm_pgoff - pglen; 2700 } 2701 2702 /* Check prev */ 2703 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2704 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2705 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2706 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2707 NULL_VM_UFFD_CTX, NULL))) { 2708 merge_start = prev->vm_start; 2709 vma = prev; 2710 vm_pgoff = prev->vm_pgoff; 2711 } 2712 2713 2714 /* Actually expand, if possible */ 2715 if (vma && 2716 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { 2717 khugepaged_enter_vma(vma, vm_flags); 2718 goto expanded; 2719 } 2720 2721 cannot_expand: 2722 if (prev) 2723 vma_iter_next_range(&vmi); 2724 2725 /* 2726 * Determine the object being mapped and call the appropriate 2727 * specific mapper. the address has already been validated, but 2728 * not unmapped, but the maps are removed from the list. 2729 */ 2730 vma = vm_area_alloc(mm); 2731 if (!vma) { 2732 error = -ENOMEM; 2733 goto unacct_error; 2734 } 2735 2736 vma_iter_set(&vmi, addr); 2737 vma->vm_start = addr; 2738 vma->vm_end = end; 2739 vm_flags_init(vma, vm_flags); 2740 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2741 vma->vm_pgoff = pgoff; 2742 2743 if (file) { 2744 if (vm_flags & VM_SHARED) { 2745 error = mapping_map_writable(file->f_mapping); 2746 if (error) 2747 goto free_vma; 2748 } 2749 2750 vma->vm_file = get_file(file); 2751 error = call_mmap(file, vma); 2752 if (error) 2753 goto unmap_and_free_vma; 2754 2755 /* 2756 * Expansion is handled above, merging is handled below. 2757 * Drivers should not alter the address of the VMA. 2758 */ 2759 error = -EINVAL; 2760 if (WARN_ON((addr != vma->vm_start))) 2761 goto close_and_free_vma; 2762 2763 vma_iter_set(&vmi, addr); 2764 /* 2765 * If vm_flags changed after call_mmap(), we should try merge 2766 * vma again as we may succeed this time. 2767 */ 2768 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2769 merge = vma_merge(&vmi, mm, prev, vma->vm_start, 2770 vma->vm_end, vma->vm_flags, NULL, 2771 vma->vm_file, vma->vm_pgoff, NULL, 2772 NULL_VM_UFFD_CTX, NULL); 2773 if (merge) { 2774 /* 2775 * ->mmap() can change vma->vm_file and fput 2776 * the original file. So fput the vma->vm_file 2777 * here or we would add an extra fput for file 2778 * and cause general protection fault 2779 * ultimately. 2780 */ 2781 fput(vma->vm_file); 2782 vm_area_free(vma); 2783 vma = merge; 2784 /* Update vm_flags to pick up the change. */ 2785 vm_flags = vma->vm_flags; 2786 goto unmap_writable; 2787 } 2788 } 2789 2790 vm_flags = vma->vm_flags; 2791 } else if (vm_flags & VM_SHARED) { 2792 error = shmem_zero_setup(vma); 2793 if (error) 2794 goto free_vma; 2795 } else { 2796 vma_set_anonymous(vma); 2797 } 2798 2799 if (map_deny_write_exec(vma, vma->vm_flags)) { 2800 error = -EACCES; 2801 goto close_and_free_vma; 2802 } 2803 2804 /* Allow architectures to sanity-check the vm_flags */ 2805 error = -EINVAL; 2806 if (!arch_validate_flags(vma->vm_flags)) 2807 goto close_and_free_vma; 2808 2809 error = -ENOMEM; 2810 if (vma_iter_prealloc(&vmi)) 2811 goto close_and_free_vma; 2812 2813 /* Lock the VMA since it is modified after insertion into VMA tree */ 2814 vma_start_write(vma); 2815 if (vma->vm_file) 2816 i_mmap_lock_write(vma->vm_file->f_mapping); 2817 2818 vma_iter_store(&vmi, vma); 2819 mm->map_count++; 2820 if (vma->vm_file) { 2821 if (vma->vm_flags & VM_SHARED) 2822 mapping_allow_writable(vma->vm_file->f_mapping); 2823 2824 flush_dcache_mmap_lock(vma->vm_file->f_mapping); 2825 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap); 2826 flush_dcache_mmap_unlock(vma->vm_file->f_mapping); 2827 i_mmap_unlock_write(vma->vm_file->f_mapping); 2828 } 2829 2830 /* 2831 * vma_merge() calls khugepaged_enter_vma() either, the below 2832 * call covers the non-merge case. 2833 */ 2834 khugepaged_enter_vma(vma, vma->vm_flags); 2835 2836 /* Once vma denies write, undo our temporary denial count */ 2837 unmap_writable: 2838 if (file && vm_flags & VM_SHARED) 2839 mapping_unmap_writable(file->f_mapping); 2840 file = vma->vm_file; 2841 ksm_add_vma(vma); 2842 expanded: 2843 perf_event_mmap(vma); 2844 2845 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 2846 if (vm_flags & VM_LOCKED) { 2847 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2848 is_vm_hugetlb_page(vma) || 2849 vma == get_gate_vma(current->mm)) 2850 vm_flags_clear(vma, VM_LOCKED_MASK); 2851 else 2852 mm->locked_vm += (len >> PAGE_SHIFT); 2853 } 2854 2855 if (file) 2856 uprobe_mmap(vma); 2857 2858 /* 2859 * New (or expanded) vma always get soft dirty status. 2860 * Otherwise user-space soft-dirty page tracker won't 2861 * be able to distinguish situation when vma area unmapped, 2862 * then new mapped in-place (which must be aimed as 2863 * a completely new data area). 2864 */ 2865 vm_flags_set(vma, VM_SOFTDIRTY); 2866 2867 vma_set_page_prot(vma); 2868 2869 validate_mm(mm); 2870 return addr; 2871 2872 close_and_free_vma: 2873 if (file && vma->vm_ops && vma->vm_ops->close) 2874 vma->vm_ops->close(vma); 2875 2876 if (file || vma->vm_file) { 2877 unmap_and_free_vma: 2878 fput(vma->vm_file); 2879 vma->vm_file = NULL; 2880 2881 /* Undo any partial mapping done by a device driver. */ 2882 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start, 2883 vma->vm_end, true); 2884 } 2885 if (file && (vm_flags & VM_SHARED)) 2886 mapping_unmap_writable(file->f_mapping); 2887 free_vma: 2888 vm_area_free(vma); 2889 unacct_error: 2890 if (charged) 2891 vm_unacct_memory(charged); 2892 validate_mm(mm); 2893 return error; 2894 } 2895 2896 static int __vm_munmap(unsigned long start, size_t len, bool unlock) 2897 { 2898 int ret; 2899 struct mm_struct *mm = current->mm; 2900 LIST_HEAD(uf); 2901 VMA_ITERATOR(vmi, mm, start); 2902 2903 if (mmap_write_lock_killable(mm)) 2904 return -EINTR; 2905 2906 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 2907 if (ret || !unlock) 2908 mmap_write_unlock(mm); 2909 2910 userfaultfd_unmap_complete(mm, &uf); 2911 return ret; 2912 } 2913 2914 int vm_munmap(unsigned long start, size_t len) 2915 { 2916 return __vm_munmap(start, len, false); 2917 } 2918 EXPORT_SYMBOL(vm_munmap); 2919 2920 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2921 { 2922 addr = untagged_addr(addr); 2923 return __vm_munmap(addr, len, true); 2924 } 2925 2926 2927 /* 2928 * Emulation of deprecated remap_file_pages() syscall. 2929 */ 2930 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2931 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2932 { 2933 2934 struct mm_struct *mm = current->mm; 2935 struct vm_area_struct *vma; 2936 unsigned long populate = 0; 2937 unsigned long ret = -EINVAL; 2938 struct file *file; 2939 2940 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 2941 current->comm, current->pid); 2942 2943 if (prot) 2944 return ret; 2945 start = start & PAGE_MASK; 2946 size = size & PAGE_MASK; 2947 2948 if (start + size <= start) 2949 return ret; 2950 2951 /* Does pgoff wrap? */ 2952 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2953 return ret; 2954 2955 if (mmap_write_lock_killable(mm)) 2956 return -EINTR; 2957 2958 vma = vma_lookup(mm, start); 2959 2960 if (!vma || !(vma->vm_flags & VM_SHARED)) 2961 goto out; 2962 2963 if (start + size > vma->vm_end) { 2964 VMA_ITERATOR(vmi, mm, vma->vm_end); 2965 struct vm_area_struct *next, *prev = vma; 2966 2967 for_each_vma_range(vmi, next, start + size) { 2968 /* hole between vmas ? */ 2969 if (next->vm_start != prev->vm_end) 2970 goto out; 2971 2972 if (next->vm_file != vma->vm_file) 2973 goto out; 2974 2975 if (next->vm_flags != vma->vm_flags) 2976 goto out; 2977 2978 if (start + size <= next->vm_end) 2979 break; 2980 2981 prev = next; 2982 } 2983 2984 if (!next) 2985 goto out; 2986 } 2987 2988 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2989 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2990 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2991 2992 flags &= MAP_NONBLOCK; 2993 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2994 if (vma->vm_flags & VM_LOCKED) 2995 flags |= MAP_LOCKED; 2996 2997 file = get_file(vma->vm_file); 2998 ret = do_mmap(vma->vm_file, start, size, 2999 prot, flags, pgoff, &populate, NULL); 3000 fput(file); 3001 out: 3002 mmap_write_unlock(mm); 3003 if (populate) 3004 mm_populate(ret, populate); 3005 if (!IS_ERR_VALUE(ret)) 3006 ret = 0; 3007 return ret; 3008 } 3009 3010 /* 3011 * do_vma_munmap() - Unmap a full or partial vma. 3012 * @vmi: The vma iterator pointing at the vma 3013 * @vma: The first vma to be munmapped 3014 * @start: the start of the address to unmap 3015 * @end: The end of the address to unmap 3016 * @uf: The userfaultfd list_head 3017 * @unlock: Drop the lock on success 3018 * 3019 * unmaps a VMA mapping when the vma iterator is already in position. 3020 * Does not handle alignment. 3021 * 3022 * Return: 0 on success drops the lock of so directed, error on failure and will 3023 * still hold the lock. 3024 */ 3025 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3026 unsigned long start, unsigned long end, struct list_head *uf, 3027 bool unlock) 3028 { 3029 struct mm_struct *mm = vma->vm_mm; 3030 3031 arch_unmap(mm, start, end); 3032 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 3033 } 3034 3035 /* 3036 * do_brk_flags() - Increase the brk vma if the flags match. 3037 * @vmi: The vma iterator 3038 * @addr: The start address 3039 * @len: The length of the increase 3040 * @vma: The vma, 3041 * @flags: The VMA Flags 3042 * 3043 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 3044 * do not match then create a new anonymous VMA. Eventually we may be able to 3045 * do some brk-specific accounting here. 3046 */ 3047 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 3048 unsigned long addr, unsigned long len, unsigned long flags) 3049 { 3050 struct mm_struct *mm = current->mm; 3051 struct vma_prepare vp; 3052 3053 validate_mm(mm); 3054 /* 3055 * Check against address space limits by the changed size 3056 * Note: This happens *after* clearing old mappings in some code paths. 3057 */ 3058 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3059 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3060 return -ENOMEM; 3061 3062 if (mm->map_count > sysctl_max_map_count) 3063 return -ENOMEM; 3064 3065 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3066 return -ENOMEM; 3067 3068 /* 3069 * Expand the existing vma if possible; Note that singular lists do not 3070 * occur after forking, so the expand will only happen on new VMAs. 3071 */ 3072 if (vma && vma->vm_end == addr && !vma_policy(vma) && 3073 can_vma_merge_after(vma, flags, NULL, NULL, 3074 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { 3075 if (vma_iter_prealloc(vmi)) 3076 goto unacct_fail; 3077 3078 init_vma_prep(&vp, vma); 3079 vma_prepare(&vp); 3080 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 3081 vma->vm_end = addr + len; 3082 vm_flags_set(vma, VM_SOFTDIRTY); 3083 vma_iter_store(vmi, vma); 3084 3085 vma_complete(&vp, vmi, mm); 3086 khugepaged_enter_vma(vma, flags); 3087 goto out; 3088 } 3089 3090 /* create a vma struct for an anonymous mapping */ 3091 vma = vm_area_alloc(mm); 3092 if (!vma) 3093 goto unacct_fail; 3094 3095 vma_set_anonymous(vma); 3096 vma->vm_start = addr; 3097 vma->vm_end = addr + len; 3098 vma->vm_pgoff = addr >> PAGE_SHIFT; 3099 vm_flags_init(vma, flags); 3100 vma->vm_page_prot = vm_get_page_prot(flags); 3101 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 3102 goto mas_store_fail; 3103 3104 mm->map_count++; 3105 ksm_add_vma(vma); 3106 out: 3107 perf_event_mmap(vma); 3108 mm->total_vm += len >> PAGE_SHIFT; 3109 mm->data_vm += len >> PAGE_SHIFT; 3110 if (flags & VM_LOCKED) 3111 mm->locked_vm += (len >> PAGE_SHIFT); 3112 vm_flags_set(vma, VM_SOFTDIRTY); 3113 validate_mm(mm); 3114 return 0; 3115 3116 mas_store_fail: 3117 vm_area_free(vma); 3118 unacct_fail: 3119 vm_unacct_memory(len >> PAGE_SHIFT); 3120 return -ENOMEM; 3121 } 3122 3123 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3124 { 3125 struct mm_struct *mm = current->mm; 3126 struct vm_area_struct *vma = NULL; 3127 unsigned long len; 3128 int ret; 3129 bool populate; 3130 LIST_HEAD(uf); 3131 VMA_ITERATOR(vmi, mm, addr); 3132 3133 len = PAGE_ALIGN(request); 3134 if (len < request) 3135 return -ENOMEM; 3136 if (!len) 3137 return 0; 3138 3139 if (mmap_write_lock_killable(mm)) 3140 return -EINTR; 3141 3142 /* Until we need other flags, refuse anything except VM_EXEC. */ 3143 if ((flags & (~VM_EXEC)) != 0) 3144 return -EINVAL; 3145 3146 ret = check_brk_limits(addr, len); 3147 if (ret) 3148 goto limits_failed; 3149 3150 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 3151 if (ret) 3152 goto munmap_failed; 3153 3154 vma = vma_prev(&vmi); 3155 ret = do_brk_flags(&vmi, vma, addr, len, flags); 3156 populate = ((mm->def_flags & VM_LOCKED) != 0); 3157 mmap_write_unlock(mm); 3158 userfaultfd_unmap_complete(mm, &uf); 3159 if (populate && !ret) 3160 mm_populate(addr, len); 3161 return ret; 3162 3163 munmap_failed: 3164 limits_failed: 3165 mmap_write_unlock(mm); 3166 return ret; 3167 } 3168 EXPORT_SYMBOL(vm_brk_flags); 3169 3170 int vm_brk(unsigned long addr, unsigned long len) 3171 { 3172 return vm_brk_flags(addr, len, 0); 3173 } 3174 EXPORT_SYMBOL(vm_brk); 3175 3176 /* Release all mmaps. */ 3177 void exit_mmap(struct mm_struct *mm) 3178 { 3179 struct mmu_gather tlb; 3180 struct vm_area_struct *vma; 3181 unsigned long nr_accounted = 0; 3182 MA_STATE(mas, &mm->mm_mt, 0, 0); 3183 int count = 0; 3184 3185 /* mm's last user has gone, and its about to be pulled down */ 3186 mmu_notifier_release(mm); 3187 3188 mmap_read_lock(mm); 3189 arch_exit_mmap(mm); 3190 3191 vma = mas_find(&mas, ULONG_MAX); 3192 if (!vma) { 3193 /* Can happen if dup_mmap() received an OOM */ 3194 mmap_read_unlock(mm); 3195 return; 3196 } 3197 3198 lru_add_drain(); 3199 flush_cache_mm(mm); 3200 tlb_gather_mmu_fullmm(&tlb, mm); 3201 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3202 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3203 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false); 3204 mmap_read_unlock(mm); 3205 3206 /* 3207 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3208 * because the memory has been already freed. 3209 */ 3210 set_bit(MMF_OOM_SKIP, &mm->flags); 3211 mmap_write_lock(mm); 3212 mt_clear_in_rcu(&mm->mm_mt); 3213 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS, 3214 USER_PGTABLES_CEILING, true); 3215 tlb_finish_mmu(&tlb); 3216 3217 /* 3218 * Walk the list again, actually closing and freeing it, with preemption 3219 * enabled, without holding any MM locks besides the unreachable 3220 * mmap_write_lock. 3221 */ 3222 do { 3223 if (vma->vm_flags & VM_ACCOUNT) 3224 nr_accounted += vma_pages(vma); 3225 remove_vma(vma, true); 3226 count++; 3227 cond_resched(); 3228 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL); 3229 3230 BUG_ON(count != mm->map_count); 3231 3232 trace_exit_mmap(mm); 3233 __mt_destroy(&mm->mm_mt); 3234 mmap_write_unlock(mm); 3235 vm_unacct_memory(nr_accounted); 3236 } 3237 3238 /* Insert vm structure into process list sorted by address 3239 * and into the inode's i_mmap tree. If vm_file is non-NULL 3240 * then i_mmap_rwsem is taken here. 3241 */ 3242 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3243 { 3244 unsigned long charged = vma_pages(vma); 3245 3246 3247 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3248 return -ENOMEM; 3249 3250 if ((vma->vm_flags & VM_ACCOUNT) && 3251 security_vm_enough_memory_mm(mm, charged)) 3252 return -ENOMEM; 3253 3254 /* 3255 * The vm_pgoff of a purely anonymous vma should be irrelevant 3256 * until its first write fault, when page's anon_vma and index 3257 * are set. But now set the vm_pgoff it will almost certainly 3258 * end up with (unless mremap moves it elsewhere before that 3259 * first wfault), so /proc/pid/maps tells a consistent story. 3260 * 3261 * By setting it to reflect the virtual start address of the 3262 * vma, merges and splits can happen in a seamless way, just 3263 * using the existing file pgoff checks and manipulations. 3264 * Similarly in do_mmap and in do_brk_flags. 3265 */ 3266 if (vma_is_anonymous(vma)) { 3267 BUG_ON(vma->anon_vma); 3268 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3269 } 3270 3271 if (vma_link(mm, vma)) { 3272 vm_unacct_memory(charged); 3273 return -ENOMEM; 3274 } 3275 3276 return 0; 3277 } 3278 3279 /* 3280 * Copy the vma structure to a new location in the same mm, 3281 * prior to moving page table entries, to effect an mremap move. 3282 */ 3283 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3284 unsigned long addr, unsigned long len, pgoff_t pgoff, 3285 bool *need_rmap_locks) 3286 { 3287 struct vm_area_struct *vma = *vmap; 3288 unsigned long vma_start = vma->vm_start; 3289 struct mm_struct *mm = vma->vm_mm; 3290 struct vm_area_struct *new_vma, *prev; 3291 bool faulted_in_anon_vma = true; 3292 VMA_ITERATOR(vmi, mm, addr); 3293 3294 validate_mm(mm); 3295 /* 3296 * If anonymous vma has not yet been faulted, update new pgoff 3297 * to match new location, to increase its chance of merging. 3298 */ 3299 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3300 pgoff = addr >> PAGE_SHIFT; 3301 faulted_in_anon_vma = false; 3302 } 3303 3304 new_vma = find_vma_prev(mm, addr, &prev); 3305 if (new_vma && new_vma->vm_start < addr + len) 3306 return NULL; /* should never get here */ 3307 3308 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags, 3309 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3310 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3311 if (new_vma) { 3312 /* 3313 * Source vma may have been merged into new_vma 3314 */ 3315 if (unlikely(vma_start >= new_vma->vm_start && 3316 vma_start < new_vma->vm_end)) { 3317 /* 3318 * The only way we can get a vma_merge with 3319 * self during an mremap is if the vma hasn't 3320 * been faulted in yet and we were allowed to 3321 * reset the dst vma->vm_pgoff to the 3322 * destination address of the mremap to allow 3323 * the merge to happen. mremap must change the 3324 * vm_pgoff linearity between src and dst vmas 3325 * (in turn preventing a vma_merge) to be 3326 * safe. It is only safe to keep the vm_pgoff 3327 * linear if there are no pages mapped yet. 3328 */ 3329 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3330 *vmap = vma = new_vma; 3331 } 3332 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3333 } else { 3334 new_vma = vm_area_dup(vma); 3335 if (!new_vma) 3336 goto out; 3337 new_vma->vm_start = addr; 3338 new_vma->vm_end = addr + len; 3339 new_vma->vm_pgoff = pgoff; 3340 if (vma_dup_policy(vma, new_vma)) 3341 goto out_free_vma; 3342 if (anon_vma_clone(new_vma, vma)) 3343 goto out_free_mempol; 3344 if (new_vma->vm_file) 3345 get_file(new_vma->vm_file); 3346 if (new_vma->vm_ops && new_vma->vm_ops->open) 3347 new_vma->vm_ops->open(new_vma); 3348 vma_start_write(new_vma); 3349 if (vma_link(mm, new_vma)) 3350 goto out_vma_link; 3351 *need_rmap_locks = false; 3352 } 3353 validate_mm(mm); 3354 return new_vma; 3355 3356 out_vma_link: 3357 if (new_vma->vm_ops && new_vma->vm_ops->close) 3358 new_vma->vm_ops->close(new_vma); 3359 3360 if (new_vma->vm_file) 3361 fput(new_vma->vm_file); 3362 3363 unlink_anon_vmas(new_vma); 3364 out_free_mempol: 3365 mpol_put(vma_policy(new_vma)); 3366 out_free_vma: 3367 vm_area_free(new_vma); 3368 out: 3369 validate_mm(mm); 3370 return NULL; 3371 } 3372 3373 /* 3374 * Return true if the calling process may expand its vm space by the passed 3375 * number of pages 3376 */ 3377 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3378 { 3379 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3380 return false; 3381 3382 if (is_data_mapping(flags) && 3383 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3384 /* Workaround for Valgrind */ 3385 if (rlimit(RLIMIT_DATA) == 0 && 3386 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3387 return true; 3388 3389 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3390 current->comm, current->pid, 3391 (mm->data_vm + npages) << PAGE_SHIFT, 3392 rlimit(RLIMIT_DATA), 3393 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3394 3395 if (!ignore_rlimit_data) 3396 return false; 3397 } 3398 3399 return true; 3400 } 3401 3402 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3403 { 3404 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3405 3406 if (is_exec_mapping(flags)) 3407 mm->exec_vm += npages; 3408 else if (is_stack_mapping(flags)) 3409 mm->stack_vm += npages; 3410 else if (is_data_mapping(flags)) 3411 mm->data_vm += npages; 3412 } 3413 3414 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3415 3416 /* 3417 * Having a close hook prevents vma merging regardless of flags. 3418 */ 3419 static void special_mapping_close(struct vm_area_struct *vma) 3420 { 3421 } 3422 3423 static const char *special_mapping_name(struct vm_area_struct *vma) 3424 { 3425 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3426 } 3427 3428 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3429 { 3430 struct vm_special_mapping *sm = new_vma->vm_private_data; 3431 3432 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3433 return -EFAULT; 3434 3435 if (sm->mremap) 3436 return sm->mremap(sm, new_vma); 3437 3438 return 0; 3439 } 3440 3441 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3442 { 3443 /* 3444 * Forbid splitting special mappings - kernel has expectations over 3445 * the number of pages in mapping. Together with VM_DONTEXPAND 3446 * the size of vma should stay the same over the special mapping's 3447 * lifetime. 3448 */ 3449 return -EINVAL; 3450 } 3451 3452 static const struct vm_operations_struct special_mapping_vmops = { 3453 .close = special_mapping_close, 3454 .fault = special_mapping_fault, 3455 .mremap = special_mapping_mremap, 3456 .name = special_mapping_name, 3457 /* vDSO code relies that VVAR can't be accessed remotely */ 3458 .access = NULL, 3459 .may_split = special_mapping_split, 3460 }; 3461 3462 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3463 .close = special_mapping_close, 3464 .fault = special_mapping_fault, 3465 }; 3466 3467 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3468 { 3469 struct vm_area_struct *vma = vmf->vma; 3470 pgoff_t pgoff; 3471 struct page **pages; 3472 3473 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3474 pages = vma->vm_private_data; 3475 } else { 3476 struct vm_special_mapping *sm = vma->vm_private_data; 3477 3478 if (sm->fault) 3479 return sm->fault(sm, vmf->vma, vmf); 3480 3481 pages = sm->pages; 3482 } 3483 3484 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3485 pgoff--; 3486 3487 if (*pages) { 3488 struct page *page = *pages; 3489 get_page(page); 3490 vmf->page = page; 3491 return 0; 3492 } 3493 3494 return VM_FAULT_SIGBUS; 3495 } 3496 3497 static struct vm_area_struct *__install_special_mapping( 3498 struct mm_struct *mm, 3499 unsigned long addr, unsigned long len, 3500 unsigned long vm_flags, void *priv, 3501 const struct vm_operations_struct *ops) 3502 { 3503 int ret; 3504 struct vm_area_struct *vma; 3505 3506 validate_mm(mm); 3507 vma = vm_area_alloc(mm); 3508 if (unlikely(vma == NULL)) 3509 return ERR_PTR(-ENOMEM); 3510 3511 vma->vm_start = addr; 3512 vma->vm_end = addr + len; 3513 3514 vm_flags_init(vma, (vm_flags | mm->def_flags | 3515 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 3516 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3517 3518 vma->vm_ops = ops; 3519 vma->vm_private_data = priv; 3520 3521 ret = insert_vm_struct(mm, vma); 3522 if (ret) 3523 goto out; 3524 3525 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3526 3527 perf_event_mmap(vma); 3528 3529 validate_mm(mm); 3530 return vma; 3531 3532 out: 3533 vm_area_free(vma); 3534 validate_mm(mm); 3535 return ERR_PTR(ret); 3536 } 3537 3538 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3539 const struct vm_special_mapping *sm) 3540 { 3541 return vma->vm_private_data == sm && 3542 (vma->vm_ops == &special_mapping_vmops || 3543 vma->vm_ops == &legacy_special_mapping_vmops); 3544 } 3545 3546 /* 3547 * Called with mm->mmap_lock held for writing. 3548 * Insert a new vma covering the given region, with the given flags. 3549 * Its pages are supplied by the given array of struct page *. 3550 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3551 * The region past the last page supplied will always produce SIGBUS. 3552 * The array pointer and the pages it points to are assumed to stay alive 3553 * for as long as this mapping might exist. 3554 */ 3555 struct vm_area_struct *_install_special_mapping( 3556 struct mm_struct *mm, 3557 unsigned long addr, unsigned long len, 3558 unsigned long vm_flags, const struct vm_special_mapping *spec) 3559 { 3560 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3561 &special_mapping_vmops); 3562 } 3563 3564 int install_special_mapping(struct mm_struct *mm, 3565 unsigned long addr, unsigned long len, 3566 unsigned long vm_flags, struct page **pages) 3567 { 3568 struct vm_area_struct *vma = __install_special_mapping( 3569 mm, addr, len, vm_flags, (void *)pages, 3570 &legacy_special_mapping_vmops); 3571 3572 return PTR_ERR_OR_ZERO(vma); 3573 } 3574 3575 static DEFINE_MUTEX(mm_all_locks_mutex); 3576 3577 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3578 { 3579 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3580 /* 3581 * The LSB of head.next can't change from under us 3582 * because we hold the mm_all_locks_mutex. 3583 */ 3584 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3585 /* 3586 * We can safely modify head.next after taking the 3587 * anon_vma->root->rwsem. If some other vma in this mm shares 3588 * the same anon_vma we won't take it again. 3589 * 3590 * No need of atomic instructions here, head.next 3591 * can't change from under us thanks to the 3592 * anon_vma->root->rwsem. 3593 */ 3594 if (__test_and_set_bit(0, (unsigned long *) 3595 &anon_vma->root->rb_root.rb_root.rb_node)) 3596 BUG(); 3597 } 3598 } 3599 3600 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3601 { 3602 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3603 /* 3604 * AS_MM_ALL_LOCKS can't change from under us because 3605 * we hold the mm_all_locks_mutex. 3606 * 3607 * Operations on ->flags have to be atomic because 3608 * even if AS_MM_ALL_LOCKS is stable thanks to the 3609 * mm_all_locks_mutex, there may be other cpus 3610 * changing other bitflags in parallel to us. 3611 */ 3612 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3613 BUG(); 3614 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3615 } 3616 } 3617 3618 /* 3619 * This operation locks against the VM for all pte/vma/mm related 3620 * operations that could ever happen on a certain mm. This includes 3621 * vmtruncate, try_to_unmap, and all page faults. 3622 * 3623 * The caller must take the mmap_lock in write mode before calling 3624 * mm_take_all_locks(). The caller isn't allowed to release the 3625 * mmap_lock until mm_drop_all_locks() returns. 3626 * 3627 * mmap_lock in write mode is required in order to block all operations 3628 * that could modify pagetables and free pages without need of 3629 * altering the vma layout. It's also needed in write mode to avoid new 3630 * anon_vmas to be associated with existing vmas. 3631 * 3632 * A single task can't take more than one mm_take_all_locks() in a row 3633 * or it would deadlock. 3634 * 3635 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3636 * mapping->flags avoid to take the same lock twice, if more than one 3637 * vma in this mm is backed by the same anon_vma or address_space. 3638 * 3639 * We take locks in following order, accordingly to comment at beginning 3640 * of mm/rmap.c: 3641 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3642 * hugetlb mapping); 3643 * - all vmas marked locked 3644 * - all i_mmap_rwsem locks; 3645 * - all anon_vma->rwseml 3646 * 3647 * We can take all locks within these types randomly because the VM code 3648 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3649 * mm_all_locks_mutex. 3650 * 3651 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3652 * that may have to take thousand of locks. 3653 * 3654 * mm_take_all_locks() can fail if it's interrupted by signals. 3655 */ 3656 int mm_take_all_locks(struct mm_struct *mm) 3657 { 3658 struct vm_area_struct *vma; 3659 struct anon_vma_chain *avc; 3660 MA_STATE(mas, &mm->mm_mt, 0, 0); 3661 3662 mmap_assert_write_locked(mm); 3663 3664 mutex_lock(&mm_all_locks_mutex); 3665 3666 mas_for_each(&mas, vma, ULONG_MAX) { 3667 if (signal_pending(current)) 3668 goto out_unlock; 3669 vma_start_write(vma); 3670 } 3671 3672 mas_set(&mas, 0); 3673 mas_for_each(&mas, vma, ULONG_MAX) { 3674 if (signal_pending(current)) 3675 goto out_unlock; 3676 if (vma->vm_file && vma->vm_file->f_mapping && 3677 is_vm_hugetlb_page(vma)) 3678 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3679 } 3680 3681 mas_set(&mas, 0); 3682 mas_for_each(&mas, vma, ULONG_MAX) { 3683 if (signal_pending(current)) 3684 goto out_unlock; 3685 if (vma->vm_file && vma->vm_file->f_mapping && 3686 !is_vm_hugetlb_page(vma)) 3687 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3688 } 3689 3690 mas_set(&mas, 0); 3691 mas_for_each(&mas, vma, ULONG_MAX) { 3692 if (signal_pending(current)) 3693 goto out_unlock; 3694 if (vma->anon_vma) 3695 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3696 vm_lock_anon_vma(mm, avc->anon_vma); 3697 } 3698 3699 return 0; 3700 3701 out_unlock: 3702 mm_drop_all_locks(mm); 3703 return -EINTR; 3704 } 3705 3706 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3707 { 3708 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3709 /* 3710 * The LSB of head.next can't change to 0 from under 3711 * us because we hold the mm_all_locks_mutex. 3712 * 3713 * We must however clear the bitflag before unlocking 3714 * the vma so the users using the anon_vma->rb_root will 3715 * never see our bitflag. 3716 * 3717 * No need of atomic instructions here, head.next 3718 * can't change from under us until we release the 3719 * anon_vma->root->rwsem. 3720 */ 3721 if (!__test_and_clear_bit(0, (unsigned long *) 3722 &anon_vma->root->rb_root.rb_root.rb_node)) 3723 BUG(); 3724 anon_vma_unlock_write(anon_vma); 3725 } 3726 } 3727 3728 static void vm_unlock_mapping(struct address_space *mapping) 3729 { 3730 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3731 /* 3732 * AS_MM_ALL_LOCKS can't change to 0 from under us 3733 * because we hold the mm_all_locks_mutex. 3734 */ 3735 i_mmap_unlock_write(mapping); 3736 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3737 &mapping->flags)) 3738 BUG(); 3739 } 3740 } 3741 3742 /* 3743 * The mmap_lock cannot be released by the caller until 3744 * mm_drop_all_locks() returns. 3745 */ 3746 void mm_drop_all_locks(struct mm_struct *mm) 3747 { 3748 struct vm_area_struct *vma; 3749 struct anon_vma_chain *avc; 3750 MA_STATE(mas, &mm->mm_mt, 0, 0); 3751 3752 mmap_assert_write_locked(mm); 3753 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3754 3755 mas_for_each(&mas, vma, ULONG_MAX) { 3756 if (vma->anon_vma) 3757 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3758 vm_unlock_anon_vma(avc->anon_vma); 3759 if (vma->vm_file && vma->vm_file->f_mapping) 3760 vm_unlock_mapping(vma->vm_file->f_mapping); 3761 } 3762 vma_end_write_all(mm); 3763 3764 mutex_unlock(&mm_all_locks_mutex); 3765 } 3766 3767 /* 3768 * initialise the percpu counter for VM 3769 */ 3770 void __init mmap_init(void) 3771 { 3772 int ret; 3773 3774 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3775 VM_BUG_ON(ret); 3776 } 3777 3778 /* 3779 * Initialise sysctl_user_reserve_kbytes. 3780 * 3781 * This is intended to prevent a user from starting a single memory hogging 3782 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3783 * mode. 3784 * 3785 * The default value is min(3% of free memory, 128MB) 3786 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3787 */ 3788 static int init_user_reserve(void) 3789 { 3790 unsigned long free_kbytes; 3791 3792 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3793 3794 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3795 return 0; 3796 } 3797 subsys_initcall(init_user_reserve); 3798 3799 /* 3800 * Initialise sysctl_admin_reserve_kbytes. 3801 * 3802 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3803 * to log in and kill a memory hogging process. 3804 * 3805 * Systems with more than 256MB will reserve 8MB, enough to recover 3806 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3807 * only reserve 3% of free pages by default. 3808 */ 3809 static int init_admin_reserve(void) 3810 { 3811 unsigned long free_kbytes; 3812 3813 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3814 3815 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3816 return 0; 3817 } 3818 subsys_initcall(init_admin_reserve); 3819 3820 /* 3821 * Reinititalise user and admin reserves if memory is added or removed. 3822 * 3823 * The default user reserve max is 128MB, and the default max for the 3824 * admin reserve is 8MB. These are usually, but not always, enough to 3825 * enable recovery from a memory hogging process using login/sshd, a shell, 3826 * and tools like top. It may make sense to increase or even disable the 3827 * reserve depending on the existence of swap or variations in the recovery 3828 * tools. So, the admin may have changed them. 3829 * 3830 * If memory is added and the reserves have been eliminated or increased above 3831 * the default max, then we'll trust the admin. 3832 * 3833 * If memory is removed and there isn't enough free memory, then we 3834 * need to reset the reserves. 3835 * 3836 * Otherwise keep the reserve set by the admin. 3837 */ 3838 static int reserve_mem_notifier(struct notifier_block *nb, 3839 unsigned long action, void *data) 3840 { 3841 unsigned long tmp, free_kbytes; 3842 3843 switch (action) { 3844 case MEM_ONLINE: 3845 /* Default max is 128MB. Leave alone if modified by operator. */ 3846 tmp = sysctl_user_reserve_kbytes; 3847 if (0 < tmp && tmp < (1UL << 17)) 3848 init_user_reserve(); 3849 3850 /* Default max is 8MB. Leave alone if modified by operator. */ 3851 tmp = sysctl_admin_reserve_kbytes; 3852 if (0 < tmp && tmp < (1UL << 13)) 3853 init_admin_reserve(); 3854 3855 break; 3856 case MEM_OFFLINE: 3857 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3858 3859 if (sysctl_user_reserve_kbytes > free_kbytes) { 3860 init_user_reserve(); 3861 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3862 sysctl_user_reserve_kbytes); 3863 } 3864 3865 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3866 init_admin_reserve(); 3867 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3868 sysctl_admin_reserve_kbytes); 3869 } 3870 break; 3871 default: 3872 break; 3873 } 3874 return NOTIFY_OK; 3875 } 3876 3877 static int __meminit init_reserve_notifier(void) 3878 { 3879 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 3880 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3881 3882 return 0; 3883 } 3884 subsys_initcall(init_reserve_notifier); 3885