1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/export.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 #include <linux/audit.h> 32 #include <linux/khugepaged.h> 33 #include <linux/uprobes.h> 34 #include <linux/rbtree_augmented.h> 35 36 #include <asm/uaccess.h> 37 #include <asm/cacheflush.h> 38 #include <asm/tlb.h> 39 #include <asm/mmu_context.h> 40 41 #include "internal.h" 42 43 #ifndef arch_mmap_check 44 #define arch_mmap_check(addr, len, flags) (0) 45 #endif 46 47 #ifndef arch_rebalance_pgtables 48 #define arch_rebalance_pgtables(addr, len) (addr) 49 #endif 50 51 static void unmap_region(struct mm_struct *mm, 52 struct vm_area_struct *vma, struct vm_area_struct *prev, 53 unsigned long start, unsigned long end); 54 55 /* description of effects of mapping type and prot in current implementation. 56 * this is due to the limited x86 page protection hardware. The expected 57 * behavior is in parens: 58 * 59 * map_type prot 60 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 61 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 62 * w: (no) no w: (no) no w: (yes) yes w: (no) no 63 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 64 * 65 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 66 * w: (no) no w: (no) no w: (copy) copy w: (no) no 67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 68 * 69 */ 70 pgprot_t protection_map[16] = { 71 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 72 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 73 }; 74 75 pgprot_t vm_get_page_prot(unsigned long vm_flags) 76 { 77 return __pgprot(pgprot_val(protection_map[vm_flags & 78 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 79 pgprot_val(arch_vm_get_page_prot(vm_flags))); 80 } 81 EXPORT_SYMBOL(vm_get_page_prot); 82 83 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 84 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 85 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 86 /* 87 * Make sure vm_committed_as in one cacheline and not cacheline shared with 88 * other variables. It can be updated by several CPUs frequently. 89 */ 90 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 91 92 /* 93 * The global memory commitment made in the system can be a metric 94 * that can be used to drive ballooning decisions when Linux is hosted 95 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 96 * balancing memory across competing virtual machines that are hosted. 97 * Several metrics drive this policy engine including the guest reported 98 * memory commitment. 99 */ 100 unsigned long vm_memory_committed(void) 101 { 102 return percpu_counter_read_positive(&vm_committed_as); 103 } 104 EXPORT_SYMBOL_GPL(vm_memory_committed); 105 106 /* 107 * Check that a process has enough memory to allocate a new virtual 108 * mapping. 0 means there is enough memory for the allocation to 109 * succeed and -ENOMEM implies there is not. 110 * 111 * We currently support three overcommit policies, which are set via the 112 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 113 * 114 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 115 * Additional code 2002 Jul 20 by Robert Love. 116 * 117 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 118 * 119 * Note this is a helper function intended to be used by LSMs which 120 * wish to use this logic. 121 */ 122 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 123 { 124 unsigned long free, allowed; 125 126 vm_acct_memory(pages); 127 128 /* 129 * Sometimes we want to use more memory than we have 130 */ 131 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 132 return 0; 133 134 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 135 free = global_page_state(NR_FREE_PAGES); 136 free += global_page_state(NR_FILE_PAGES); 137 138 /* 139 * shmem pages shouldn't be counted as free in this 140 * case, they can't be purged, only swapped out, and 141 * that won't affect the overall amount of available 142 * memory in the system. 143 */ 144 free -= global_page_state(NR_SHMEM); 145 146 free += nr_swap_pages; 147 148 /* 149 * Any slabs which are created with the 150 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 151 * which are reclaimable, under pressure. The dentry 152 * cache and most inode caches should fall into this 153 */ 154 free += global_page_state(NR_SLAB_RECLAIMABLE); 155 156 /* 157 * Leave reserved pages. The pages are not for anonymous pages. 158 */ 159 if (free <= totalreserve_pages) 160 goto error; 161 else 162 free -= totalreserve_pages; 163 164 /* 165 * Leave the last 3% for root 166 */ 167 if (!cap_sys_admin) 168 free -= free / 32; 169 170 if (free > pages) 171 return 0; 172 173 goto error; 174 } 175 176 allowed = (totalram_pages - hugetlb_total_pages()) 177 * sysctl_overcommit_ratio / 100; 178 /* 179 * Leave the last 3% for root 180 */ 181 if (!cap_sys_admin) 182 allowed -= allowed / 32; 183 allowed += total_swap_pages; 184 185 /* Don't let a single process grow too big: 186 leave 3% of the size of this process for other processes */ 187 if (mm) 188 allowed -= mm->total_vm / 32; 189 190 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 191 return 0; 192 error: 193 vm_unacct_memory(pages); 194 195 return -ENOMEM; 196 } 197 198 /* 199 * Requires inode->i_mapping->i_mmap_mutex 200 */ 201 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 202 struct file *file, struct address_space *mapping) 203 { 204 if (vma->vm_flags & VM_DENYWRITE) 205 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 206 if (vma->vm_flags & VM_SHARED) 207 mapping->i_mmap_writable--; 208 209 flush_dcache_mmap_lock(mapping); 210 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 211 list_del_init(&vma->shared.nonlinear); 212 else 213 vma_interval_tree_remove(vma, &mapping->i_mmap); 214 flush_dcache_mmap_unlock(mapping); 215 } 216 217 /* 218 * Unlink a file-based vm structure from its interval tree, to hide 219 * vma from rmap and vmtruncate before freeing its page tables. 220 */ 221 void unlink_file_vma(struct vm_area_struct *vma) 222 { 223 struct file *file = vma->vm_file; 224 225 if (file) { 226 struct address_space *mapping = file->f_mapping; 227 mutex_lock(&mapping->i_mmap_mutex); 228 __remove_shared_vm_struct(vma, file, mapping); 229 mutex_unlock(&mapping->i_mmap_mutex); 230 } 231 } 232 233 /* 234 * Close a vm structure and free it, returning the next. 235 */ 236 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 237 { 238 struct vm_area_struct *next = vma->vm_next; 239 240 might_sleep(); 241 if (vma->vm_ops && vma->vm_ops->close) 242 vma->vm_ops->close(vma); 243 if (vma->vm_file) 244 fput(vma->vm_file); 245 mpol_put(vma_policy(vma)); 246 kmem_cache_free(vm_area_cachep, vma); 247 return next; 248 } 249 250 static unsigned long do_brk(unsigned long addr, unsigned long len); 251 252 SYSCALL_DEFINE1(brk, unsigned long, brk) 253 { 254 unsigned long rlim, retval; 255 unsigned long newbrk, oldbrk; 256 struct mm_struct *mm = current->mm; 257 unsigned long min_brk; 258 259 down_write(&mm->mmap_sem); 260 261 #ifdef CONFIG_COMPAT_BRK 262 /* 263 * CONFIG_COMPAT_BRK can still be overridden by setting 264 * randomize_va_space to 2, which will still cause mm->start_brk 265 * to be arbitrarily shifted 266 */ 267 if (current->brk_randomized) 268 min_brk = mm->start_brk; 269 else 270 min_brk = mm->end_data; 271 #else 272 min_brk = mm->start_brk; 273 #endif 274 if (brk < min_brk) 275 goto out; 276 277 /* 278 * Check against rlimit here. If this check is done later after the test 279 * of oldbrk with newbrk then it can escape the test and let the data 280 * segment grow beyond its set limit the in case where the limit is 281 * not page aligned -Ram Gupta 282 */ 283 rlim = rlimit(RLIMIT_DATA); 284 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 285 (mm->end_data - mm->start_data) > rlim) 286 goto out; 287 288 newbrk = PAGE_ALIGN(brk); 289 oldbrk = PAGE_ALIGN(mm->brk); 290 if (oldbrk == newbrk) 291 goto set_brk; 292 293 /* Always allow shrinking brk. */ 294 if (brk <= mm->brk) { 295 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 296 goto set_brk; 297 goto out; 298 } 299 300 /* Check against existing mmap mappings. */ 301 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 302 goto out; 303 304 /* Ok, looks good - let it rip. */ 305 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 306 goto out; 307 set_brk: 308 mm->brk = brk; 309 out: 310 retval = mm->brk; 311 up_write(&mm->mmap_sem); 312 return retval; 313 } 314 315 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 316 { 317 unsigned long max, subtree_gap; 318 max = vma->vm_start; 319 if (vma->vm_prev) 320 max -= vma->vm_prev->vm_end; 321 if (vma->vm_rb.rb_left) { 322 subtree_gap = rb_entry(vma->vm_rb.rb_left, 323 struct vm_area_struct, vm_rb)->rb_subtree_gap; 324 if (subtree_gap > max) 325 max = subtree_gap; 326 } 327 if (vma->vm_rb.rb_right) { 328 subtree_gap = rb_entry(vma->vm_rb.rb_right, 329 struct vm_area_struct, vm_rb)->rb_subtree_gap; 330 if (subtree_gap > max) 331 max = subtree_gap; 332 } 333 return max; 334 } 335 336 #ifdef CONFIG_DEBUG_VM_RB 337 static int browse_rb(struct rb_root *root) 338 { 339 int i = 0, j, bug = 0; 340 struct rb_node *nd, *pn = NULL; 341 unsigned long prev = 0, pend = 0; 342 343 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 344 struct vm_area_struct *vma; 345 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 346 if (vma->vm_start < prev) { 347 printk("vm_start %lx prev %lx\n", vma->vm_start, prev); 348 bug = 1; 349 } 350 if (vma->vm_start < pend) { 351 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 352 bug = 1; 353 } 354 if (vma->vm_start > vma->vm_end) { 355 printk("vm_end %lx < vm_start %lx\n", 356 vma->vm_end, vma->vm_start); 357 bug = 1; 358 } 359 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 360 printk("free gap %lx, correct %lx\n", 361 vma->rb_subtree_gap, 362 vma_compute_subtree_gap(vma)); 363 bug = 1; 364 } 365 i++; 366 pn = nd; 367 prev = vma->vm_start; 368 pend = vma->vm_end; 369 } 370 j = 0; 371 for (nd = pn; nd; nd = rb_prev(nd)) 372 j++; 373 if (i != j) { 374 printk("backwards %d, forwards %d\n", j, i); 375 bug = 1; 376 } 377 return bug ? -1 : i; 378 } 379 380 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 381 { 382 struct rb_node *nd; 383 384 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 385 struct vm_area_struct *vma; 386 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 387 BUG_ON(vma != ignore && 388 vma->rb_subtree_gap != vma_compute_subtree_gap(vma)); 389 } 390 } 391 392 void validate_mm(struct mm_struct *mm) 393 { 394 int bug = 0; 395 int i = 0; 396 unsigned long highest_address = 0; 397 struct vm_area_struct *vma = mm->mmap; 398 while (vma) { 399 struct anon_vma_chain *avc; 400 vma_lock_anon_vma(vma); 401 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 402 anon_vma_interval_tree_verify(avc); 403 vma_unlock_anon_vma(vma); 404 highest_address = vma->vm_end; 405 vma = vma->vm_next; 406 i++; 407 } 408 if (i != mm->map_count) { 409 printk("map_count %d vm_next %d\n", mm->map_count, i); 410 bug = 1; 411 } 412 if (highest_address != mm->highest_vm_end) { 413 printk("mm->highest_vm_end %lx, found %lx\n", 414 mm->highest_vm_end, highest_address); 415 bug = 1; 416 } 417 i = browse_rb(&mm->mm_rb); 418 if (i != mm->map_count) { 419 printk("map_count %d rb %d\n", mm->map_count, i); 420 bug = 1; 421 } 422 BUG_ON(bug); 423 } 424 #else 425 #define validate_mm_rb(root, ignore) do { } while (0) 426 #define validate_mm(mm) do { } while (0) 427 #endif 428 429 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 430 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 431 432 /* 433 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 434 * vma->vm_prev->vm_end values changed, without modifying the vma's position 435 * in the rbtree. 436 */ 437 static void vma_gap_update(struct vm_area_struct *vma) 438 { 439 /* 440 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 441 * function that does exacltly what we want. 442 */ 443 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 444 } 445 446 static inline void vma_rb_insert(struct vm_area_struct *vma, 447 struct rb_root *root) 448 { 449 /* All rb_subtree_gap values must be consistent prior to insertion */ 450 validate_mm_rb(root, NULL); 451 452 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 453 } 454 455 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 456 { 457 /* 458 * All rb_subtree_gap values must be consistent prior to erase, 459 * with the possible exception of the vma being erased. 460 */ 461 validate_mm_rb(root, vma); 462 463 /* 464 * Note rb_erase_augmented is a fairly large inline function, 465 * so make sure we instantiate it only once with our desired 466 * augmented rbtree callbacks. 467 */ 468 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 469 } 470 471 /* 472 * vma has some anon_vma assigned, and is already inserted on that 473 * anon_vma's interval trees. 474 * 475 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 476 * vma must be removed from the anon_vma's interval trees using 477 * anon_vma_interval_tree_pre_update_vma(). 478 * 479 * After the update, the vma will be reinserted using 480 * anon_vma_interval_tree_post_update_vma(). 481 * 482 * The entire update must be protected by exclusive mmap_sem and by 483 * the root anon_vma's mutex. 484 */ 485 static inline void 486 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 487 { 488 struct anon_vma_chain *avc; 489 490 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 491 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 492 } 493 494 static inline void 495 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 496 { 497 struct anon_vma_chain *avc; 498 499 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 500 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 501 } 502 503 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 504 unsigned long end, struct vm_area_struct **pprev, 505 struct rb_node ***rb_link, struct rb_node **rb_parent) 506 { 507 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 508 509 __rb_link = &mm->mm_rb.rb_node; 510 rb_prev = __rb_parent = NULL; 511 512 while (*__rb_link) { 513 struct vm_area_struct *vma_tmp; 514 515 __rb_parent = *__rb_link; 516 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 517 518 if (vma_tmp->vm_end > addr) { 519 /* Fail if an existing vma overlaps the area */ 520 if (vma_tmp->vm_start < end) 521 return -ENOMEM; 522 __rb_link = &__rb_parent->rb_left; 523 } else { 524 rb_prev = __rb_parent; 525 __rb_link = &__rb_parent->rb_right; 526 } 527 } 528 529 *pprev = NULL; 530 if (rb_prev) 531 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 532 *rb_link = __rb_link; 533 *rb_parent = __rb_parent; 534 return 0; 535 } 536 537 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 538 struct rb_node **rb_link, struct rb_node *rb_parent) 539 { 540 /* Update tracking information for the gap following the new vma. */ 541 if (vma->vm_next) 542 vma_gap_update(vma->vm_next); 543 else 544 mm->highest_vm_end = vma->vm_end; 545 546 /* 547 * vma->vm_prev wasn't known when we followed the rbtree to find the 548 * correct insertion point for that vma. As a result, we could not 549 * update the vma vm_rb parents rb_subtree_gap values on the way down. 550 * So, we first insert the vma with a zero rb_subtree_gap value 551 * (to be consistent with what we did on the way down), and then 552 * immediately update the gap to the correct value. Finally we 553 * rebalance the rbtree after all augmented values have been set. 554 */ 555 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 556 vma->rb_subtree_gap = 0; 557 vma_gap_update(vma); 558 vma_rb_insert(vma, &mm->mm_rb); 559 } 560 561 static void __vma_link_file(struct vm_area_struct *vma) 562 { 563 struct file *file; 564 565 file = vma->vm_file; 566 if (file) { 567 struct address_space *mapping = file->f_mapping; 568 569 if (vma->vm_flags & VM_DENYWRITE) 570 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 571 if (vma->vm_flags & VM_SHARED) 572 mapping->i_mmap_writable++; 573 574 flush_dcache_mmap_lock(mapping); 575 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 576 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 577 else 578 vma_interval_tree_insert(vma, &mapping->i_mmap); 579 flush_dcache_mmap_unlock(mapping); 580 } 581 } 582 583 static void 584 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 585 struct vm_area_struct *prev, struct rb_node **rb_link, 586 struct rb_node *rb_parent) 587 { 588 __vma_link_list(mm, vma, prev, rb_parent); 589 __vma_link_rb(mm, vma, rb_link, rb_parent); 590 } 591 592 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 593 struct vm_area_struct *prev, struct rb_node **rb_link, 594 struct rb_node *rb_parent) 595 { 596 struct address_space *mapping = NULL; 597 598 if (vma->vm_file) 599 mapping = vma->vm_file->f_mapping; 600 601 if (mapping) 602 mutex_lock(&mapping->i_mmap_mutex); 603 604 __vma_link(mm, vma, prev, rb_link, rb_parent); 605 __vma_link_file(vma); 606 607 if (mapping) 608 mutex_unlock(&mapping->i_mmap_mutex); 609 610 mm->map_count++; 611 validate_mm(mm); 612 } 613 614 /* 615 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 616 * mm's list and rbtree. It has already been inserted into the interval tree. 617 */ 618 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 619 { 620 struct vm_area_struct *prev; 621 struct rb_node **rb_link, *rb_parent; 622 623 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 624 &prev, &rb_link, &rb_parent)) 625 BUG(); 626 __vma_link(mm, vma, prev, rb_link, rb_parent); 627 mm->map_count++; 628 } 629 630 static inline void 631 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 632 struct vm_area_struct *prev) 633 { 634 struct vm_area_struct *next; 635 636 vma_rb_erase(vma, &mm->mm_rb); 637 prev->vm_next = next = vma->vm_next; 638 if (next) 639 next->vm_prev = prev; 640 if (mm->mmap_cache == vma) 641 mm->mmap_cache = prev; 642 } 643 644 /* 645 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 646 * is already present in an i_mmap tree without adjusting the tree. 647 * The following helper function should be used when such adjustments 648 * are necessary. The "insert" vma (if any) is to be inserted 649 * before we drop the necessary locks. 650 */ 651 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 652 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 653 { 654 struct mm_struct *mm = vma->vm_mm; 655 struct vm_area_struct *next = vma->vm_next; 656 struct vm_area_struct *importer = NULL; 657 struct address_space *mapping = NULL; 658 struct rb_root *root = NULL; 659 struct anon_vma *anon_vma = NULL; 660 struct file *file = vma->vm_file; 661 bool start_changed = false, end_changed = false; 662 long adjust_next = 0; 663 int remove_next = 0; 664 665 if (next && !insert) { 666 struct vm_area_struct *exporter = NULL; 667 668 if (end >= next->vm_end) { 669 /* 670 * vma expands, overlapping all the next, and 671 * perhaps the one after too (mprotect case 6). 672 */ 673 again: remove_next = 1 + (end > next->vm_end); 674 end = next->vm_end; 675 exporter = next; 676 importer = vma; 677 } else if (end > next->vm_start) { 678 /* 679 * vma expands, overlapping part of the next: 680 * mprotect case 5 shifting the boundary up. 681 */ 682 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 683 exporter = next; 684 importer = vma; 685 } else if (end < vma->vm_end) { 686 /* 687 * vma shrinks, and !insert tells it's not 688 * split_vma inserting another: so it must be 689 * mprotect case 4 shifting the boundary down. 690 */ 691 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 692 exporter = vma; 693 importer = next; 694 } 695 696 /* 697 * Easily overlooked: when mprotect shifts the boundary, 698 * make sure the expanding vma has anon_vma set if the 699 * shrinking vma had, to cover any anon pages imported. 700 */ 701 if (exporter && exporter->anon_vma && !importer->anon_vma) { 702 if (anon_vma_clone(importer, exporter)) 703 return -ENOMEM; 704 importer->anon_vma = exporter->anon_vma; 705 } 706 } 707 708 if (file) { 709 mapping = file->f_mapping; 710 if (!(vma->vm_flags & VM_NONLINEAR)) { 711 root = &mapping->i_mmap; 712 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 713 714 if (adjust_next) 715 uprobe_munmap(next, next->vm_start, 716 next->vm_end); 717 } 718 719 mutex_lock(&mapping->i_mmap_mutex); 720 if (insert) { 721 /* 722 * Put into interval tree now, so instantiated pages 723 * are visible to arm/parisc __flush_dcache_page 724 * throughout; but we cannot insert into address 725 * space until vma start or end is updated. 726 */ 727 __vma_link_file(insert); 728 } 729 } 730 731 vma_adjust_trans_huge(vma, start, end, adjust_next); 732 733 anon_vma = vma->anon_vma; 734 if (!anon_vma && adjust_next) 735 anon_vma = next->anon_vma; 736 if (anon_vma) { 737 VM_BUG_ON(adjust_next && next->anon_vma && 738 anon_vma != next->anon_vma); 739 anon_vma_lock_write(anon_vma); 740 anon_vma_interval_tree_pre_update_vma(vma); 741 if (adjust_next) 742 anon_vma_interval_tree_pre_update_vma(next); 743 } 744 745 if (root) { 746 flush_dcache_mmap_lock(mapping); 747 vma_interval_tree_remove(vma, root); 748 if (adjust_next) 749 vma_interval_tree_remove(next, root); 750 } 751 752 if (start != vma->vm_start) { 753 vma->vm_start = start; 754 start_changed = true; 755 } 756 if (end != vma->vm_end) { 757 vma->vm_end = end; 758 end_changed = true; 759 } 760 vma->vm_pgoff = pgoff; 761 if (adjust_next) { 762 next->vm_start += adjust_next << PAGE_SHIFT; 763 next->vm_pgoff += adjust_next; 764 } 765 766 if (root) { 767 if (adjust_next) 768 vma_interval_tree_insert(next, root); 769 vma_interval_tree_insert(vma, root); 770 flush_dcache_mmap_unlock(mapping); 771 } 772 773 if (remove_next) { 774 /* 775 * vma_merge has merged next into vma, and needs 776 * us to remove next before dropping the locks. 777 */ 778 __vma_unlink(mm, next, vma); 779 if (file) 780 __remove_shared_vm_struct(next, file, mapping); 781 } else if (insert) { 782 /* 783 * split_vma has split insert from vma, and needs 784 * us to insert it before dropping the locks 785 * (it may either follow vma or precede it). 786 */ 787 __insert_vm_struct(mm, insert); 788 } else { 789 if (start_changed) 790 vma_gap_update(vma); 791 if (end_changed) { 792 if (!next) 793 mm->highest_vm_end = end; 794 else if (!adjust_next) 795 vma_gap_update(next); 796 } 797 } 798 799 if (anon_vma) { 800 anon_vma_interval_tree_post_update_vma(vma); 801 if (adjust_next) 802 anon_vma_interval_tree_post_update_vma(next); 803 anon_vma_unlock(anon_vma); 804 } 805 if (mapping) 806 mutex_unlock(&mapping->i_mmap_mutex); 807 808 if (root) { 809 uprobe_mmap(vma); 810 811 if (adjust_next) 812 uprobe_mmap(next); 813 } 814 815 if (remove_next) { 816 if (file) { 817 uprobe_munmap(next, next->vm_start, next->vm_end); 818 fput(file); 819 } 820 if (next->anon_vma) 821 anon_vma_merge(vma, next); 822 mm->map_count--; 823 mpol_put(vma_policy(next)); 824 kmem_cache_free(vm_area_cachep, next); 825 /* 826 * In mprotect's case 6 (see comments on vma_merge), 827 * we must remove another next too. It would clutter 828 * up the code too much to do both in one go. 829 */ 830 next = vma->vm_next; 831 if (remove_next == 2) 832 goto again; 833 else if (next) 834 vma_gap_update(next); 835 else 836 mm->highest_vm_end = end; 837 } 838 if (insert && file) 839 uprobe_mmap(insert); 840 841 validate_mm(mm); 842 843 return 0; 844 } 845 846 /* 847 * If the vma has a ->close operation then the driver probably needs to release 848 * per-vma resources, so we don't attempt to merge those. 849 */ 850 static inline int is_mergeable_vma(struct vm_area_struct *vma, 851 struct file *file, unsigned long vm_flags) 852 { 853 if (vma->vm_flags ^ vm_flags) 854 return 0; 855 if (vma->vm_file != file) 856 return 0; 857 if (vma->vm_ops && vma->vm_ops->close) 858 return 0; 859 return 1; 860 } 861 862 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 863 struct anon_vma *anon_vma2, 864 struct vm_area_struct *vma) 865 { 866 /* 867 * The list_is_singular() test is to avoid merging VMA cloned from 868 * parents. This can improve scalability caused by anon_vma lock. 869 */ 870 if ((!anon_vma1 || !anon_vma2) && (!vma || 871 list_is_singular(&vma->anon_vma_chain))) 872 return 1; 873 return anon_vma1 == anon_vma2; 874 } 875 876 /* 877 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 878 * in front of (at a lower virtual address and file offset than) the vma. 879 * 880 * We cannot merge two vmas if they have differently assigned (non-NULL) 881 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 882 * 883 * We don't check here for the merged mmap wrapping around the end of pagecache 884 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 885 * wrap, nor mmaps which cover the final page at index -1UL. 886 */ 887 static int 888 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 889 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 890 { 891 if (is_mergeable_vma(vma, file, vm_flags) && 892 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 893 if (vma->vm_pgoff == vm_pgoff) 894 return 1; 895 } 896 return 0; 897 } 898 899 /* 900 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 901 * beyond (at a higher virtual address and file offset than) the vma. 902 * 903 * We cannot merge two vmas if they have differently assigned (non-NULL) 904 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 905 */ 906 static int 907 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 908 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 909 { 910 if (is_mergeable_vma(vma, file, vm_flags) && 911 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 912 pgoff_t vm_pglen; 913 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 914 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 915 return 1; 916 } 917 return 0; 918 } 919 920 /* 921 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 922 * whether that can be merged with its predecessor or its successor. 923 * Or both (it neatly fills a hole). 924 * 925 * In most cases - when called for mmap, brk or mremap - [addr,end) is 926 * certain not to be mapped by the time vma_merge is called; but when 927 * called for mprotect, it is certain to be already mapped (either at 928 * an offset within prev, or at the start of next), and the flags of 929 * this area are about to be changed to vm_flags - and the no-change 930 * case has already been eliminated. 931 * 932 * The following mprotect cases have to be considered, where AAAA is 933 * the area passed down from mprotect_fixup, never extending beyond one 934 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 935 * 936 * AAAA AAAA AAAA AAAA 937 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 938 * cannot merge might become might become might become 939 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 940 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 941 * mremap move: PPPPNNNNNNNN 8 942 * AAAA 943 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 944 * might become case 1 below case 2 below case 3 below 945 * 946 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 947 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 948 */ 949 struct vm_area_struct *vma_merge(struct mm_struct *mm, 950 struct vm_area_struct *prev, unsigned long addr, 951 unsigned long end, unsigned long vm_flags, 952 struct anon_vma *anon_vma, struct file *file, 953 pgoff_t pgoff, struct mempolicy *policy) 954 { 955 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 956 struct vm_area_struct *area, *next; 957 int err; 958 959 /* 960 * We later require that vma->vm_flags == vm_flags, 961 * so this tests vma->vm_flags & VM_SPECIAL, too. 962 */ 963 if (vm_flags & VM_SPECIAL) 964 return NULL; 965 966 if (prev) 967 next = prev->vm_next; 968 else 969 next = mm->mmap; 970 area = next; 971 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 972 next = next->vm_next; 973 974 /* 975 * Can it merge with the predecessor? 976 */ 977 if (prev && prev->vm_end == addr && 978 mpol_equal(vma_policy(prev), policy) && 979 can_vma_merge_after(prev, vm_flags, 980 anon_vma, file, pgoff)) { 981 /* 982 * OK, it can. Can we now merge in the successor as well? 983 */ 984 if (next && end == next->vm_start && 985 mpol_equal(policy, vma_policy(next)) && 986 can_vma_merge_before(next, vm_flags, 987 anon_vma, file, pgoff+pglen) && 988 is_mergeable_anon_vma(prev->anon_vma, 989 next->anon_vma, NULL)) { 990 /* cases 1, 6 */ 991 err = vma_adjust(prev, prev->vm_start, 992 next->vm_end, prev->vm_pgoff, NULL); 993 } else /* cases 2, 5, 7 */ 994 err = vma_adjust(prev, prev->vm_start, 995 end, prev->vm_pgoff, NULL); 996 if (err) 997 return NULL; 998 khugepaged_enter_vma_merge(prev); 999 return prev; 1000 } 1001 1002 /* 1003 * Can this new request be merged in front of next? 1004 */ 1005 if (next && end == next->vm_start && 1006 mpol_equal(policy, vma_policy(next)) && 1007 can_vma_merge_before(next, vm_flags, 1008 anon_vma, file, pgoff+pglen)) { 1009 if (prev && addr < prev->vm_end) /* case 4 */ 1010 err = vma_adjust(prev, prev->vm_start, 1011 addr, prev->vm_pgoff, NULL); 1012 else /* cases 3, 8 */ 1013 err = vma_adjust(area, addr, next->vm_end, 1014 next->vm_pgoff - pglen, NULL); 1015 if (err) 1016 return NULL; 1017 khugepaged_enter_vma_merge(area); 1018 return area; 1019 } 1020 1021 return NULL; 1022 } 1023 1024 /* 1025 * Rough compatbility check to quickly see if it's even worth looking 1026 * at sharing an anon_vma. 1027 * 1028 * They need to have the same vm_file, and the flags can only differ 1029 * in things that mprotect may change. 1030 * 1031 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1032 * we can merge the two vma's. For example, we refuse to merge a vma if 1033 * there is a vm_ops->close() function, because that indicates that the 1034 * driver is doing some kind of reference counting. But that doesn't 1035 * really matter for the anon_vma sharing case. 1036 */ 1037 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1038 { 1039 return a->vm_end == b->vm_start && 1040 mpol_equal(vma_policy(a), vma_policy(b)) && 1041 a->vm_file == b->vm_file && 1042 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 1043 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1044 } 1045 1046 /* 1047 * Do some basic sanity checking to see if we can re-use the anon_vma 1048 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1049 * the same as 'old', the other will be the new one that is trying 1050 * to share the anon_vma. 1051 * 1052 * NOTE! This runs with mm_sem held for reading, so it is possible that 1053 * the anon_vma of 'old' is concurrently in the process of being set up 1054 * by another page fault trying to merge _that_. But that's ok: if it 1055 * is being set up, that automatically means that it will be a singleton 1056 * acceptable for merging, so we can do all of this optimistically. But 1057 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 1058 * 1059 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1060 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1061 * is to return an anon_vma that is "complex" due to having gone through 1062 * a fork). 1063 * 1064 * We also make sure that the two vma's are compatible (adjacent, 1065 * and with the same memory policies). That's all stable, even with just 1066 * a read lock on the mm_sem. 1067 */ 1068 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1069 { 1070 if (anon_vma_compatible(a, b)) { 1071 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 1072 1073 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1074 return anon_vma; 1075 } 1076 return NULL; 1077 } 1078 1079 /* 1080 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1081 * neighbouring vmas for a suitable anon_vma, before it goes off 1082 * to allocate a new anon_vma. It checks because a repetitive 1083 * sequence of mprotects and faults may otherwise lead to distinct 1084 * anon_vmas being allocated, preventing vma merge in subsequent 1085 * mprotect. 1086 */ 1087 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1088 { 1089 struct anon_vma *anon_vma; 1090 struct vm_area_struct *near; 1091 1092 near = vma->vm_next; 1093 if (!near) 1094 goto try_prev; 1095 1096 anon_vma = reusable_anon_vma(near, vma, near); 1097 if (anon_vma) 1098 return anon_vma; 1099 try_prev: 1100 near = vma->vm_prev; 1101 if (!near) 1102 goto none; 1103 1104 anon_vma = reusable_anon_vma(near, near, vma); 1105 if (anon_vma) 1106 return anon_vma; 1107 none: 1108 /* 1109 * There's no absolute need to look only at touching neighbours: 1110 * we could search further afield for "compatible" anon_vmas. 1111 * But it would probably just be a waste of time searching, 1112 * or lead to too many vmas hanging off the same anon_vma. 1113 * We're trying to allow mprotect remerging later on, 1114 * not trying to minimize memory used for anon_vmas. 1115 */ 1116 return NULL; 1117 } 1118 1119 #ifdef CONFIG_PROC_FS 1120 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 1121 struct file *file, long pages) 1122 { 1123 const unsigned long stack_flags 1124 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 1125 1126 mm->total_vm += pages; 1127 1128 if (file) { 1129 mm->shared_vm += pages; 1130 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 1131 mm->exec_vm += pages; 1132 } else if (flags & stack_flags) 1133 mm->stack_vm += pages; 1134 } 1135 #endif /* CONFIG_PROC_FS */ 1136 1137 /* 1138 * If a hint addr is less than mmap_min_addr change hint to be as 1139 * low as possible but still greater than mmap_min_addr 1140 */ 1141 static inline unsigned long round_hint_to_min(unsigned long hint) 1142 { 1143 hint &= PAGE_MASK; 1144 if (((void *)hint != NULL) && 1145 (hint < mmap_min_addr)) 1146 return PAGE_ALIGN(mmap_min_addr); 1147 return hint; 1148 } 1149 1150 /* 1151 * The caller must hold down_write(¤t->mm->mmap_sem). 1152 */ 1153 1154 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1155 unsigned long len, unsigned long prot, 1156 unsigned long flags, unsigned long pgoff) 1157 { 1158 struct mm_struct * mm = current->mm; 1159 struct inode *inode; 1160 vm_flags_t vm_flags; 1161 1162 /* 1163 * Does the application expect PROT_READ to imply PROT_EXEC? 1164 * 1165 * (the exception is when the underlying filesystem is noexec 1166 * mounted, in which case we dont add PROT_EXEC.) 1167 */ 1168 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1169 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 1170 prot |= PROT_EXEC; 1171 1172 if (!len) 1173 return -EINVAL; 1174 1175 if (!(flags & MAP_FIXED)) 1176 addr = round_hint_to_min(addr); 1177 1178 /* Careful about overflows.. */ 1179 len = PAGE_ALIGN(len); 1180 if (!len) 1181 return -ENOMEM; 1182 1183 /* offset overflow? */ 1184 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1185 return -EOVERFLOW; 1186 1187 /* Too many mappings? */ 1188 if (mm->map_count > sysctl_max_map_count) 1189 return -ENOMEM; 1190 1191 /* Obtain the address to map to. we verify (or select) it and ensure 1192 * that it represents a valid section of the address space. 1193 */ 1194 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1195 if (addr & ~PAGE_MASK) 1196 return addr; 1197 1198 /* Do simple checking here so the lower-level routines won't have 1199 * to. we assume access permissions have been handled by the open 1200 * of the memory object, so we don't do any here. 1201 */ 1202 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1203 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1204 1205 if (flags & MAP_LOCKED) 1206 if (!can_do_mlock()) 1207 return -EPERM; 1208 1209 /* mlock MCL_FUTURE? */ 1210 if (vm_flags & VM_LOCKED) { 1211 unsigned long locked, lock_limit; 1212 locked = len >> PAGE_SHIFT; 1213 locked += mm->locked_vm; 1214 lock_limit = rlimit(RLIMIT_MEMLOCK); 1215 lock_limit >>= PAGE_SHIFT; 1216 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1217 return -EAGAIN; 1218 } 1219 1220 inode = file ? file->f_path.dentry->d_inode : NULL; 1221 1222 if (file) { 1223 switch (flags & MAP_TYPE) { 1224 case MAP_SHARED: 1225 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1226 return -EACCES; 1227 1228 /* 1229 * Make sure we don't allow writing to an append-only 1230 * file.. 1231 */ 1232 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1233 return -EACCES; 1234 1235 /* 1236 * Make sure there are no mandatory locks on the file. 1237 */ 1238 if (locks_verify_locked(inode)) 1239 return -EAGAIN; 1240 1241 vm_flags |= VM_SHARED | VM_MAYSHARE; 1242 if (!(file->f_mode & FMODE_WRITE)) 1243 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1244 1245 /* fall through */ 1246 case MAP_PRIVATE: 1247 if (!(file->f_mode & FMODE_READ)) 1248 return -EACCES; 1249 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1250 if (vm_flags & VM_EXEC) 1251 return -EPERM; 1252 vm_flags &= ~VM_MAYEXEC; 1253 } 1254 1255 if (!file->f_op || !file->f_op->mmap) 1256 return -ENODEV; 1257 break; 1258 1259 default: 1260 return -EINVAL; 1261 } 1262 } else { 1263 switch (flags & MAP_TYPE) { 1264 case MAP_SHARED: 1265 /* 1266 * Ignore pgoff. 1267 */ 1268 pgoff = 0; 1269 vm_flags |= VM_SHARED | VM_MAYSHARE; 1270 break; 1271 case MAP_PRIVATE: 1272 /* 1273 * Set pgoff according to addr for anon_vma. 1274 */ 1275 pgoff = addr >> PAGE_SHIFT; 1276 break; 1277 default: 1278 return -EINVAL; 1279 } 1280 } 1281 1282 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1283 } 1284 1285 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1286 unsigned long, prot, unsigned long, flags, 1287 unsigned long, fd, unsigned long, pgoff) 1288 { 1289 struct file *file = NULL; 1290 unsigned long retval = -EBADF; 1291 1292 if (!(flags & MAP_ANONYMOUS)) { 1293 audit_mmap_fd(fd, flags); 1294 if (unlikely(flags & MAP_HUGETLB)) 1295 return -EINVAL; 1296 file = fget(fd); 1297 if (!file) 1298 goto out; 1299 } else if (flags & MAP_HUGETLB) { 1300 struct user_struct *user = NULL; 1301 /* 1302 * VM_NORESERVE is used because the reservations will be 1303 * taken when vm_ops->mmap() is called 1304 * A dummy user value is used because we are not locking 1305 * memory so no accounting is necessary 1306 */ 1307 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len, 1308 VM_NORESERVE, 1309 &user, HUGETLB_ANONHUGE_INODE, 1310 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1311 if (IS_ERR(file)) 1312 return PTR_ERR(file); 1313 } 1314 1315 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1316 1317 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1318 if (file) 1319 fput(file); 1320 out: 1321 return retval; 1322 } 1323 1324 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1325 struct mmap_arg_struct { 1326 unsigned long addr; 1327 unsigned long len; 1328 unsigned long prot; 1329 unsigned long flags; 1330 unsigned long fd; 1331 unsigned long offset; 1332 }; 1333 1334 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1335 { 1336 struct mmap_arg_struct a; 1337 1338 if (copy_from_user(&a, arg, sizeof(a))) 1339 return -EFAULT; 1340 if (a.offset & ~PAGE_MASK) 1341 return -EINVAL; 1342 1343 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1344 a.offset >> PAGE_SHIFT); 1345 } 1346 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1347 1348 /* 1349 * Some shared mappigns will want the pages marked read-only 1350 * to track write events. If so, we'll downgrade vm_page_prot 1351 * to the private version (using protection_map[] without the 1352 * VM_SHARED bit). 1353 */ 1354 int vma_wants_writenotify(struct vm_area_struct *vma) 1355 { 1356 vm_flags_t vm_flags = vma->vm_flags; 1357 1358 /* If it was private or non-writable, the write bit is already clear */ 1359 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1360 return 0; 1361 1362 /* The backer wishes to know when pages are first written to? */ 1363 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1364 return 1; 1365 1366 /* The open routine did something to the protections already? */ 1367 if (pgprot_val(vma->vm_page_prot) != 1368 pgprot_val(vm_get_page_prot(vm_flags))) 1369 return 0; 1370 1371 /* Specialty mapping? */ 1372 if (vm_flags & VM_PFNMAP) 1373 return 0; 1374 1375 /* Can the mapping track the dirty pages? */ 1376 return vma->vm_file && vma->vm_file->f_mapping && 1377 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1378 } 1379 1380 /* 1381 * We account for memory if it's a private writeable mapping, 1382 * not hugepages and VM_NORESERVE wasn't set. 1383 */ 1384 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1385 { 1386 /* 1387 * hugetlb has its own accounting separate from the core VM 1388 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1389 */ 1390 if (file && is_file_hugepages(file)) 1391 return 0; 1392 1393 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1394 } 1395 1396 unsigned long mmap_region(struct file *file, unsigned long addr, 1397 unsigned long len, unsigned long flags, 1398 vm_flags_t vm_flags, unsigned long pgoff) 1399 { 1400 struct mm_struct *mm = current->mm; 1401 struct vm_area_struct *vma, *prev; 1402 int correct_wcount = 0; 1403 int error; 1404 struct rb_node **rb_link, *rb_parent; 1405 unsigned long charged = 0; 1406 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1407 1408 /* Clear old maps */ 1409 error = -ENOMEM; 1410 munmap_back: 1411 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 1412 if (do_munmap(mm, addr, len)) 1413 return -ENOMEM; 1414 goto munmap_back; 1415 } 1416 1417 /* Check against address space limit. */ 1418 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1419 return -ENOMEM; 1420 1421 /* 1422 * Set 'VM_NORESERVE' if we should not account for the 1423 * memory use of this mapping. 1424 */ 1425 if ((flags & MAP_NORESERVE)) { 1426 /* We honor MAP_NORESERVE if allowed to overcommit */ 1427 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1428 vm_flags |= VM_NORESERVE; 1429 1430 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1431 if (file && is_file_hugepages(file)) 1432 vm_flags |= VM_NORESERVE; 1433 } 1434 1435 /* 1436 * Private writable mapping: check memory availability 1437 */ 1438 if (accountable_mapping(file, vm_flags)) { 1439 charged = len >> PAGE_SHIFT; 1440 if (security_vm_enough_memory_mm(mm, charged)) 1441 return -ENOMEM; 1442 vm_flags |= VM_ACCOUNT; 1443 } 1444 1445 /* 1446 * Can we just expand an old mapping? 1447 */ 1448 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1449 if (vma) 1450 goto out; 1451 1452 /* 1453 * Determine the object being mapped and call the appropriate 1454 * specific mapper. the address has already been validated, but 1455 * not unmapped, but the maps are removed from the list. 1456 */ 1457 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1458 if (!vma) { 1459 error = -ENOMEM; 1460 goto unacct_error; 1461 } 1462 1463 vma->vm_mm = mm; 1464 vma->vm_start = addr; 1465 vma->vm_end = addr + len; 1466 vma->vm_flags = vm_flags; 1467 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1468 vma->vm_pgoff = pgoff; 1469 INIT_LIST_HEAD(&vma->anon_vma_chain); 1470 1471 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */ 1472 1473 if (file) { 1474 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1475 goto free_vma; 1476 if (vm_flags & VM_DENYWRITE) { 1477 error = deny_write_access(file); 1478 if (error) 1479 goto free_vma; 1480 correct_wcount = 1; 1481 } 1482 vma->vm_file = get_file(file); 1483 error = file->f_op->mmap(file, vma); 1484 if (error) 1485 goto unmap_and_free_vma; 1486 1487 /* Can addr have changed?? 1488 * 1489 * Answer: Yes, several device drivers can do it in their 1490 * f_op->mmap method. -DaveM 1491 * Bug: If addr is changed, prev, rb_link, rb_parent should 1492 * be updated for vma_link() 1493 */ 1494 WARN_ON_ONCE(addr != vma->vm_start); 1495 1496 addr = vma->vm_start; 1497 pgoff = vma->vm_pgoff; 1498 vm_flags = vma->vm_flags; 1499 } else if (vm_flags & VM_SHARED) { 1500 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP))) 1501 goto free_vma; 1502 error = shmem_zero_setup(vma); 1503 if (error) 1504 goto free_vma; 1505 } 1506 1507 if (vma_wants_writenotify(vma)) { 1508 pgprot_t pprot = vma->vm_page_prot; 1509 1510 /* Can vma->vm_page_prot have changed?? 1511 * 1512 * Answer: Yes, drivers may have changed it in their 1513 * f_op->mmap method. 1514 * 1515 * Ensures that vmas marked as uncached stay that way. 1516 */ 1517 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1518 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1519 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1520 } 1521 1522 vma_link(mm, vma, prev, rb_link, rb_parent); 1523 file = vma->vm_file; 1524 1525 /* Once vma denies write, undo our temporary denial count */ 1526 if (correct_wcount) 1527 atomic_inc(&inode->i_writecount); 1528 out: 1529 perf_event_mmap(vma); 1530 1531 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1532 if (vm_flags & VM_LOCKED) { 1533 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1534 mm->locked_vm += (len >> PAGE_SHIFT); 1535 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1536 make_pages_present(addr, addr + len); 1537 1538 if (file) 1539 uprobe_mmap(vma); 1540 1541 return addr; 1542 1543 unmap_and_free_vma: 1544 if (correct_wcount) 1545 atomic_inc(&inode->i_writecount); 1546 vma->vm_file = NULL; 1547 fput(file); 1548 1549 /* Undo any partial mapping done by a device driver. */ 1550 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1551 charged = 0; 1552 free_vma: 1553 kmem_cache_free(vm_area_cachep, vma); 1554 unacct_error: 1555 if (charged) 1556 vm_unacct_memory(charged); 1557 return error; 1558 } 1559 1560 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1561 { 1562 /* 1563 * We implement the search by looking for an rbtree node that 1564 * immediately follows a suitable gap. That is, 1565 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1566 * - gap_end = vma->vm_start >= info->low_limit + length; 1567 * - gap_end - gap_start >= length 1568 */ 1569 1570 struct mm_struct *mm = current->mm; 1571 struct vm_area_struct *vma; 1572 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1573 1574 /* Adjust search length to account for worst case alignment overhead */ 1575 length = info->length + info->align_mask; 1576 if (length < info->length) 1577 return -ENOMEM; 1578 1579 /* Adjust search limits by the desired length */ 1580 if (info->high_limit < length) 1581 return -ENOMEM; 1582 high_limit = info->high_limit - length; 1583 1584 if (info->low_limit > high_limit) 1585 return -ENOMEM; 1586 low_limit = info->low_limit + length; 1587 1588 /* Check if rbtree root looks promising */ 1589 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1590 goto check_highest; 1591 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1592 if (vma->rb_subtree_gap < length) 1593 goto check_highest; 1594 1595 while (true) { 1596 /* Visit left subtree if it looks promising */ 1597 gap_end = vma->vm_start; 1598 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1599 struct vm_area_struct *left = 1600 rb_entry(vma->vm_rb.rb_left, 1601 struct vm_area_struct, vm_rb); 1602 if (left->rb_subtree_gap >= length) { 1603 vma = left; 1604 continue; 1605 } 1606 } 1607 1608 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1609 check_current: 1610 /* Check if current node has a suitable gap */ 1611 if (gap_start > high_limit) 1612 return -ENOMEM; 1613 if (gap_end >= low_limit && gap_end - gap_start >= length) 1614 goto found; 1615 1616 /* Visit right subtree if it looks promising */ 1617 if (vma->vm_rb.rb_right) { 1618 struct vm_area_struct *right = 1619 rb_entry(vma->vm_rb.rb_right, 1620 struct vm_area_struct, vm_rb); 1621 if (right->rb_subtree_gap >= length) { 1622 vma = right; 1623 continue; 1624 } 1625 } 1626 1627 /* Go back up the rbtree to find next candidate node */ 1628 while (true) { 1629 struct rb_node *prev = &vma->vm_rb; 1630 if (!rb_parent(prev)) 1631 goto check_highest; 1632 vma = rb_entry(rb_parent(prev), 1633 struct vm_area_struct, vm_rb); 1634 if (prev == vma->vm_rb.rb_left) { 1635 gap_start = vma->vm_prev->vm_end; 1636 gap_end = vma->vm_start; 1637 goto check_current; 1638 } 1639 } 1640 } 1641 1642 check_highest: 1643 /* Check highest gap, which does not precede any rbtree node */ 1644 gap_start = mm->highest_vm_end; 1645 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1646 if (gap_start > high_limit) 1647 return -ENOMEM; 1648 1649 found: 1650 /* We found a suitable gap. Clip it with the original low_limit. */ 1651 if (gap_start < info->low_limit) 1652 gap_start = info->low_limit; 1653 1654 /* Adjust gap address to the desired alignment */ 1655 gap_start += (info->align_offset - gap_start) & info->align_mask; 1656 1657 VM_BUG_ON(gap_start + info->length > info->high_limit); 1658 VM_BUG_ON(gap_start + info->length > gap_end); 1659 return gap_start; 1660 } 1661 1662 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1663 { 1664 struct mm_struct *mm = current->mm; 1665 struct vm_area_struct *vma; 1666 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1667 1668 /* Adjust search length to account for worst case alignment overhead */ 1669 length = info->length + info->align_mask; 1670 if (length < info->length) 1671 return -ENOMEM; 1672 1673 /* 1674 * Adjust search limits by the desired length. 1675 * See implementation comment at top of unmapped_area(). 1676 */ 1677 gap_end = info->high_limit; 1678 if (gap_end < length) 1679 return -ENOMEM; 1680 high_limit = gap_end - length; 1681 1682 if (info->low_limit > high_limit) 1683 return -ENOMEM; 1684 low_limit = info->low_limit + length; 1685 1686 /* Check highest gap, which does not precede any rbtree node */ 1687 gap_start = mm->highest_vm_end; 1688 if (gap_start <= high_limit) 1689 goto found_highest; 1690 1691 /* Check if rbtree root looks promising */ 1692 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1693 return -ENOMEM; 1694 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1695 if (vma->rb_subtree_gap < length) 1696 return -ENOMEM; 1697 1698 while (true) { 1699 /* Visit right subtree if it looks promising */ 1700 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1701 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1702 struct vm_area_struct *right = 1703 rb_entry(vma->vm_rb.rb_right, 1704 struct vm_area_struct, vm_rb); 1705 if (right->rb_subtree_gap >= length) { 1706 vma = right; 1707 continue; 1708 } 1709 } 1710 1711 check_current: 1712 /* Check if current node has a suitable gap */ 1713 gap_end = vma->vm_start; 1714 if (gap_end < low_limit) 1715 return -ENOMEM; 1716 if (gap_start <= high_limit && gap_end - gap_start >= length) 1717 goto found; 1718 1719 /* Visit left subtree if it looks promising */ 1720 if (vma->vm_rb.rb_left) { 1721 struct vm_area_struct *left = 1722 rb_entry(vma->vm_rb.rb_left, 1723 struct vm_area_struct, vm_rb); 1724 if (left->rb_subtree_gap >= length) { 1725 vma = left; 1726 continue; 1727 } 1728 } 1729 1730 /* Go back up the rbtree to find next candidate node */ 1731 while (true) { 1732 struct rb_node *prev = &vma->vm_rb; 1733 if (!rb_parent(prev)) 1734 return -ENOMEM; 1735 vma = rb_entry(rb_parent(prev), 1736 struct vm_area_struct, vm_rb); 1737 if (prev == vma->vm_rb.rb_right) { 1738 gap_start = vma->vm_prev ? 1739 vma->vm_prev->vm_end : 0; 1740 goto check_current; 1741 } 1742 } 1743 } 1744 1745 found: 1746 /* We found a suitable gap. Clip it with the original high_limit. */ 1747 if (gap_end > info->high_limit) 1748 gap_end = info->high_limit; 1749 1750 found_highest: 1751 /* Compute highest gap address at the desired alignment */ 1752 gap_end -= info->length; 1753 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1754 1755 VM_BUG_ON(gap_end < info->low_limit); 1756 VM_BUG_ON(gap_end < gap_start); 1757 return gap_end; 1758 } 1759 1760 /* Get an address range which is currently unmapped. 1761 * For shmat() with addr=0. 1762 * 1763 * Ugly calling convention alert: 1764 * Return value with the low bits set means error value, 1765 * ie 1766 * if (ret & ~PAGE_MASK) 1767 * error = ret; 1768 * 1769 * This function "knows" that -ENOMEM has the bits set. 1770 */ 1771 #ifndef HAVE_ARCH_UNMAPPED_AREA 1772 unsigned long 1773 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1774 unsigned long len, unsigned long pgoff, unsigned long flags) 1775 { 1776 struct mm_struct *mm = current->mm; 1777 struct vm_area_struct *vma; 1778 struct vm_unmapped_area_info info; 1779 1780 if (len > TASK_SIZE) 1781 return -ENOMEM; 1782 1783 if (flags & MAP_FIXED) 1784 return addr; 1785 1786 if (addr) { 1787 addr = PAGE_ALIGN(addr); 1788 vma = find_vma(mm, addr); 1789 if (TASK_SIZE - len >= addr && 1790 (!vma || addr + len <= vma->vm_start)) 1791 return addr; 1792 } 1793 1794 info.flags = 0; 1795 info.length = len; 1796 info.low_limit = TASK_UNMAPPED_BASE; 1797 info.high_limit = TASK_SIZE; 1798 info.align_mask = 0; 1799 return vm_unmapped_area(&info); 1800 } 1801 #endif 1802 1803 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1804 { 1805 /* 1806 * Is this a new hole at the lowest possible address? 1807 */ 1808 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) 1809 mm->free_area_cache = addr; 1810 } 1811 1812 /* 1813 * This mmap-allocator allocates new areas top-down from below the 1814 * stack's low limit (the base): 1815 */ 1816 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1817 unsigned long 1818 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1819 const unsigned long len, const unsigned long pgoff, 1820 const unsigned long flags) 1821 { 1822 struct vm_area_struct *vma; 1823 struct mm_struct *mm = current->mm; 1824 unsigned long addr = addr0; 1825 struct vm_unmapped_area_info info; 1826 1827 /* requested length too big for entire address space */ 1828 if (len > TASK_SIZE) 1829 return -ENOMEM; 1830 1831 if (flags & MAP_FIXED) 1832 return addr; 1833 1834 /* requesting a specific address */ 1835 if (addr) { 1836 addr = PAGE_ALIGN(addr); 1837 vma = find_vma(mm, addr); 1838 if (TASK_SIZE - len >= addr && 1839 (!vma || addr + len <= vma->vm_start)) 1840 return addr; 1841 } 1842 1843 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1844 info.length = len; 1845 info.low_limit = PAGE_SIZE; 1846 info.high_limit = mm->mmap_base; 1847 info.align_mask = 0; 1848 addr = vm_unmapped_area(&info); 1849 1850 /* 1851 * A failed mmap() very likely causes application failure, 1852 * so fall back to the bottom-up function here. This scenario 1853 * can happen with large stack limits and large mmap() 1854 * allocations. 1855 */ 1856 if (addr & ~PAGE_MASK) { 1857 VM_BUG_ON(addr != -ENOMEM); 1858 info.flags = 0; 1859 info.low_limit = TASK_UNMAPPED_BASE; 1860 info.high_limit = TASK_SIZE; 1861 addr = vm_unmapped_area(&info); 1862 } 1863 1864 return addr; 1865 } 1866 #endif 1867 1868 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1869 { 1870 /* 1871 * Is this a new hole at the highest possible address? 1872 */ 1873 if (addr > mm->free_area_cache) 1874 mm->free_area_cache = addr; 1875 1876 /* dont allow allocations above current base */ 1877 if (mm->free_area_cache > mm->mmap_base) 1878 mm->free_area_cache = mm->mmap_base; 1879 } 1880 1881 unsigned long 1882 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1883 unsigned long pgoff, unsigned long flags) 1884 { 1885 unsigned long (*get_area)(struct file *, unsigned long, 1886 unsigned long, unsigned long, unsigned long); 1887 1888 unsigned long error = arch_mmap_check(addr, len, flags); 1889 if (error) 1890 return error; 1891 1892 /* Careful about overflows.. */ 1893 if (len > TASK_SIZE) 1894 return -ENOMEM; 1895 1896 get_area = current->mm->get_unmapped_area; 1897 if (file && file->f_op && file->f_op->get_unmapped_area) 1898 get_area = file->f_op->get_unmapped_area; 1899 addr = get_area(file, addr, len, pgoff, flags); 1900 if (IS_ERR_VALUE(addr)) 1901 return addr; 1902 1903 if (addr > TASK_SIZE - len) 1904 return -ENOMEM; 1905 if (addr & ~PAGE_MASK) 1906 return -EINVAL; 1907 1908 addr = arch_rebalance_pgtables(addr, len); 1909 error = security_mmap_addr(addr); 1910 return error ? error : addr; 1911 } 1912 1913 EXPORT_SYMBOL(get_unmapped_area); 1914 1915 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1916 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1917 { 1918 struct vm_area_struct *vma = NULL; 1919 1920 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */ 1921 return NULL; 1922 1923 /* Check the cache first. */ 1924 /* (Cache hit rate is typically around 35%.) */ 1925 vma = mm->mmap_cache; 1926 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1927 struct rb_node *rb_node; 1928 1929 rb_node = mm->mm_rb.rb_node; 1930 vma = NULL; 1931 1932 while (rb_node) { 1933 struct vm_area_struct *vma_tmp; 1934 1935 vma_tmp = rb_entry(rb_node, 1936 struct vm_area_struct, vm_rb); 1937 1938 if (vma_tmp->vm_end > addr) { 1939 vma = vma_tmp; 1940 if (vma_tmp->vm_start <= addr) 1941 break; 1942 rb_node = rb_node->rb_left; 1943 } else 1944 rb_node = rb_node->rb_right; 1945 } 1946 if (vma) 1947 mm->mmap_cache = vma; 1948 } 1949 return vma; 1950 } 1951 1952 EXPORT_SYMBOL(find_vma); 1953 1954 /* 1955 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 1956 */ 1957 struct vm_area_struct * 1958 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1959 struct vm_area_struct **pprev) 1960 { 1961 struct vm_area_struct *vma; 1962 1963 vma = find_vma(mm, addr); 1964 if (vma) { 1965 *pprev = vma->vm_prev; 1966 } else { 1967 struct rb_node *rb_node = mm->mm_rb.rb_node; 1968 *pprev = NULL; 1969 while (rb_node) { 1970 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1971 rb_node = rb_node->rb_right; 1972 } 1973 } 1974 return vma; 1975 } 1976 1977 /* 1978 * Verify that the stack growth is acceptable and 1979 * update accounting. This is shared with both the 1980 * grow-up and grow-down cases. 1981 */ 1982 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1983 { 1984 struct mm_struct *mm = vma->vm_mm; 1985 struct rlimit *rlim = current->signal->rlim; 1986 unsigned long new_start; 1987 1988 /* address space limit tests */ 1989 if (!may_expand_vm(mm, grow)) 1990 return -ENOMEM; 1991 1992 /* Stack limit test */ 1993 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1994 return -ENOMEM; 1995 1996 /* mlock limit tests */ 1997 if (vma->vm_flags & VM_LOCKED) { 1998 unsigned long locked; 1999 unsigned long limit; 2000 locked = mm->locked_vm + grow; 2001 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2002 limit >>= PAGE_SHIFT; 2003 if (locked > limit && !capable(CAP_IPC_LOCK)) 2004 return -ENOMEM; 2005 } 2006 2007 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2008 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2009 vma->vm_end - size; 2010 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2011 return -EFAULT; 2012 2013 /* 2014 * Overcommit.. This must be the final test, as it will 2015 * update security statistics. 2016 */ 2017 if (security_vm_enough_memory_mm(mm, grow)) 2018 return -ENOMEM; 2019 2020 /* Ok, everything looks good - let it rip */ 2021 if (vma->vm_flags & VM_LOCKED) 2022 mm->locked_vm += grow; 2023 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 2024 return 0; 2025 } 2026 2027 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2028 /* 2029 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2030 * vma is the last one with address > vma->vm_end. Have to extend vma. 2031 */ 2032 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2033 { 2034 int error; 2035 2036 if (!(vma->vm_flags & VM_GROWSUP)) 2037 return -EFAULT; 2038 2039 /* 2040 * We must make sure the anon_vma is allocated 2041 * so that the anon_vma locking is not a noop. 2042 */ 2043 if (unlikely(anon_vma_prepare(vma))) 2044 return -ENOMEM; 2045 vma_lock_anon_vma(vma); 2046 2047 /* 2048 * vma->vm_start/vm_end cannot change under us because the caller 2049 * is required to hold the mmap_sem in read mode. We need the 2050 * anon_vma lock to serialize against concurrent expand_stacks. 2051 * Also guard against wrapping around to address 0. 2052 */ 2053 if (address < PAGE_ALIGN(address+4)) 2054 address = PAGE_ALIGN(address+4); 2055 else { 2056 vma_unlock_anon_vma(vma); 2057 return -ENOMEM; 2058 } 2059 error = 0; 2060 2061 /* Somebody else might have raced and expanded it already */ 2062 if (address > vma->vm_end) { 2063 unsigned long size, grow; 2064 2065 size = address - vma->vm_start; 2066 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2067 2068 error = -ENOMEM; 2069 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2070 error = acct_stack_growth(vma, size, grow); 2071 if (!error) { 2072 /* 2073 * vma_gap_update() doesn't support concurrent 2074 * updates, but we only hold a shared mmap_sem 2075 * lock here, so we need to protect against 2076 * concurrent vma expansions. 2077 * vma_lock_anon_vma() doesn't help here, as 2078 * we don't guarantee that all growable vmas 2079 * in a mm share the same root anon vma. 2080 * So, we reuse mm->page_table_lock to guard 2081 * against concurrent vma expansions. 2082 */ 2083 spin_lock(&vma->vm_mm->page_table_lock); 2084 anon_vma_interval_tree_pre_update_vma(vma); 2085 vma->vm_end = address; 2086 anon_vma_interval_tree_post_update_vma(vma); 2087 if (vma->vm_next) 2088 vma_gap_update(vma->vm_next); 2089 else 2090 vma->vm_mm->highest_vm_end = address; 2091 spin_unlock(&vma->vm_mm->page_table_lock); 2092 2093 perf_event_mmap(vma); 2094 } 2095 } 2096 } 2097 vma_unlock_anon_vma(vma); 2098 khugepaged_enter_vma_merge(vma); 2099 validate_mm(vma->vm_mm); 2100 return error; 2101 } 2102 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2103 2104 /* 2105 * vma is the first one with address < vma->vm_start. Have to extend vma. 2106 */ 2107 int expand_downwards(struct vm_area_struct *vma, 2108 unsigned long address) 2109 { 2110 int error; 2111 2112 /* 2113 * We must make sure the anon_vma is allocated 2114 * so that the anon_vma locking is not a noop. 2115 */ 2116 if (unlikely(anon_vma_prepare(vma))) 2117 return -ENOMEM; 2118 2119 address &= PAGE_MASK; 2120 error = security_mmap_addr(address); 2121 if (error) 2122 return error; 2123 2124 vma_lock_anon_vma(vma); 2125 2126 /* 2127 * vma->vm_start/vm_end cannot change under us because the caller 2128 * is required to hold the mmap_sem in read mode. We need the 2129 * anon_vma lock to serialize against concurrent expand_stacks. 2130 */ 2131 2132 /* Somebody else might have raced and expanded it already */ 2133 if (address < vma->vm_start) { 2134 unsigned long size, grow; 2135 2136 size = vma->vm_end - address; 2137 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2138 2139 error = -ENOMEM; 2140 if (grow <= vma->vm_pgoff) { 2141 error = acct_stack_growth(vma, size, grow); 2142 if (!error) { 2143 /* 2144 * vma_gap_update() doesn't support concurrent 2145 * updates, but we only hold a shared mmap_sem 2146 * lock here, so we need to protect against 2147 * concurrent vma expansions. 2148 * vma_lock_anon_vma() doesn't help here, as 2149 * we don't guarantee that all growable vmas 2150 * in a mm share the same root anon vma. 2151 * So, we reuse mm->page_table_lock to guard 2152 * against concurrent vma expansions. 2153 */ 2154 spin_lock(&vma->vm_mm->page_table_lock); 2155 anon_vma_interval_tree_pre_update_vma(vma); 2156 vma->vm_start = address; 2157 vma->vm_pgoff -= grow; 2158 anon_vma_interval_tree_post_update_vma(vma); 2159 vma_gap_update(vma); 2160 spin_unlock(&vma->vm_mm->page_table_lock); 2161 2162 perf_event_mmap(vma); 2163 } 2164 } 2165 } 2166 vma_unlock_anon_vma(vma); 2167 khugepaged_enter_vma_merge(vma); 2168 validate_mm(vma->vm_mm); 2169 return error; 2170 } 2171 2172 #ifdef CONFIG_STACK_GROWSUP 2173 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2174 { 2175 return expand_upwards(vma, address); 2176 } 2177 2178 struct vm_area_struct * 2179 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2180 { 2181 struct vm_area_struct *vma, *prev; 2182 2183 addr &= PAGE_MASK; 2184 vma = find_vma_prev(mm, addr, &prev); 2185 if (vma && (vma->vm_start <= addr)) 2186 return vma; 2187 if (!prev || expand_stack(prev, addr)) 2188 return NULL; 2189 if (prev->vm_flags & VM_LOCKED) { 2190 mlock_vma_pages_range(prev, addr, prev->vm_end); 2191 } 2192 return prev; 2193 } 2194 #else 2195 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2196 { 2197 return expand_downwards(vma, address); 2198 } 2199 2200 struct vm_area_struct * 2201 find_extend_vma(struct mm_struct * mm, unsigned long addr) 2202 { 2203 struct vm_area_struct * vma; 2204 unsigned long start; 2205 2206 addr &= PAGE_MASK; 2207 vma = find_vma(mm,addr); 2208 if (!vma) 2209 return NULL; 2210 if (vma->vm_start <= addr) 2211 return vma; 2212 if (!(vma->vm_flags & VM_GROWSDOWN)) 2213 return NULL; 2214 start = vma->vm_start; 2215 if (expand_stack(vma, addr)) 2216 return NULL; 2217 if (vma->vm_flags & VM_LOCKED) { 2218 mlock_vma_pages_range(vma, addr, start); 2219 } 2220 return vma; 2221 } 2222 #endif 2223 2224 /* 2225 * Ok - we have the memory areas we should free on the vma list, 2226 * so release them, and do the vma updates. 2227 * 2228 * Called with the mm semaphore held. 2229 */ 2230 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2231 { 2232 unsigned long nr_accounted = 0; 2233 2234 /* Update high watermark before we lower total_vm */ 2235 update_hiwater_vm(mm); 2236 do { 2237 long nrpages = vma_pages(vma); 2238 2239 if (vma->vm_flags & VM_ACCOUNT) 2240 nr_accounted += nrpages; 2241 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 2242 vma = remove_vma(vma); 2243 } while (vma); 2244 vm_unacct_memory(nr_accounted); 2245 validate_mm(mm); 2246 } 2247 2248 /* 2249 * Get rid of page table information in the indicated region. 2250 * 2251 * Called with the mm semaphore held. 2252 */ 2253 static void unmap_region(struct mm_struct *mm, 2254 struct vm_area_struct *vma, struct vm_area_struct *prev, 2255 unsigned long start, unsigned long end) 2256 { 2257 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 2258 struct mmu_gather tlb; 2259 2260 lru_add_drain(); 2261 tlb_gather_mmu(&tlb, mm, 0); 2262 update_hiwater_rss(mm); 2263 unmap_vmas(&tlb, vma, start, end); 2264 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2265 next ? next->vm_start : 0); 2266 tlb_finish_mmu(&tlb, start, end); 2267 } 2268 2269 /* 2270 * Create a list of vma's touched by the unmap, removing them from the mm's 2271 * vma list as we go.. 2272 */ 2273 static void 2274 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2275 struct vm_area_struct *prev, unsigned long end) 2276 { 2277 struct vm_area_struct **insertion_point; 2278 struct vm_area_struct *tail_vma = NULL; 2279 unsigned long addr; 2280 2281 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2282 vma->vm_prev = NULL; 2283 do { 2284 vma_rb_erase(vma, &mm->mm_rb); 2285 mm->map_count--; 2286 tail_vma = vma; 2287 vma = vma->vm_next; 2288 } while (vma && vma->vm_start < end); 2289 *insertion_point = vma; 2290 if (vma) { 2291 vma->vm_prev = prev; 2292 vma_gap_update(vma); 2293 } else 2294 mm->highest_vm_end = prev ? prev->vm_end : 0; 2295 tail_vma->vm_next = NULL; 2296 if (mm->unmap_area == arch_unmap_area) 2297 addr = prev ? prev->vm_end : mm->mmap_base; 2298 else 2299 addr = vma ? vma->vm_start : mm->mmap_base; 2300 mm->unmap_area(mm, addr); 2301 mm->mmap_cache = NULL; /* Kill the cache. */ 2302 } 2303 2304 /* 2305 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2306 * munmap path where it doesn't make sense to fail. 2307 */ 2308 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 2309 unsigned long addr, int new_below) 2310 { 2311 struct mempolicy *pol; 2312 struct vm_area_struct *new; 2313 int err = -ENOMEM; 2314 2315 if (is_vm_hugetlb_page(vma) && (addr & 2316 ~(huge_page_mask(hstate_vma(vma))))) 2317 return -EINVAL; 2318 2319 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2320 if (!new) 2321 goto out_err; 2322 2323 /* most fields are the same, copy all, and then fixup */ 2324 *new = *vma; 2325 2326 INIT_LIST_HEAD(&new->anon_vma_chain); 2327 2328 if (new_below) 2329 new->vm_end = addr; 2330 else { 2331 new->vm_start = addr; 2332 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2333 } 2334 2335 pol = mpol_dup(vma_policy(vma)); 2336 if (IS_ERR(pol)) { 2337 err = PTR_ERR(pol); 2338 goto out_free_vma; 2339 } 2340 vma_set_policy(new, pol); 2341 2342 if (anon_vma_clone(new, vma)) 2343 goto out_free_mpol; 2344 2345 if (new->vm_file) 2346 get_file(new->vm_file); 2347 2348 if (new->vm_ops && new->vm_ops->open) 2349 new->vm_ops->open(new); 2350 2351 if (new_below) 2352 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2353 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2354 else 2355 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2356 2357 /* Success. */ 2358 if (!err) 2359 return 0; 2360 2361 /* Clean everything up if vma_adjust failed. */ 2362 if (new->vm_ops && new->vm_ops->close) 2363 new->vm_ops->close(new); 2364 if (new->vm_file) 2365 fput(new->vm_file); 2366 unlink_anon_vmas(new); 2367 out_free_mpol: 2368 mpol_put(pol); 2369 out_free_vma: 2370 kmem_cache_free(vm_area_cachep, new); 2371 out_err: 2372 return err; 2373 } 2374 2375 /* 2376 * Split a vma into two pieces at address 'addr', a new vma is allocated 2377 * either for the first part or the tail. 2378 */ 2379 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2380 unsigned long addr, int new_below) 2381 { 2382 if (mm->map_count >= sysctl_max_map_count) 2383 return -ENOMEM; 2384 2385 return __split_vma(mm, vma, addr, new_below); 2386 } 2387 2388 /* Munmap is split into 2 main parts -- this part which finds 2389 * what needs doing, and the areas themselves, which do the 2390 * work. This now handles partial unmappings. 2391 * Jeremy Fitzhardinge <jeremy@goop.org> 2392 */ 2393 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2394 { 2395 unsigned long end; 2396 struct vm_area_struct *vma, *prev, *last; 2397 2398 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2399 return -EINVAL; 2400 2401 if ((len = PAGE_ALIGN(len)) == 0) 2402 return -EINVAL; 2403 2404 /* Find the first overlapping VMA */ 2405 vma = find_vma(mm, start); 2406 if (!vma) 2407 return 0; 2408 prev = vma->vm_prev; 2409 /* we have start < vma->vm_end */ 2410 2411 /* if it doesn't overlap, we have nothing.. */ 2412 end = start + len; 2413 if (vma->vm_start >= end) 2414 return 0; 2415 2416 /* 2417 * If we need to split any vma, do it now to save pain later. 2418 * 2419 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2420 * unmapped vm_area_struct will remain in use: so lower split_vma 2421 * places tmp vma above, and higher split_vma places tmp vma below. 2422 */ 2423 if (start > vma->vm_start) { 2424 int error; 2425 2426 /* 2427 * Make sure that map_count on return from munmap() will 2428 * not exceed its limit; but let map_count go just above 2429 * its limit temporarily, to help free resources as expected. 2430 */ 2431 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2432 return -ENOMEM; 2433 2434 error = __split_vma(mm, vma, start, 0); 2435 if (error) 2436 return error; 2437 prev = vma; 2438 } 2439 2440 /* Does it split the last one? */ 2441 last = find_vma(mm, end); 2442 if (last && end > last->vm_start) { 2443 int error = __split_vma(mm, last, end, 1); 2444 if (error) 2445 return error; 2446 } 2447 vma = prev? prev->vm_next: mm->mmap; 2448 2449 /* 2450 * unlock any mlock()ed ranges before detaching vmas 2451 */ 2452 if (mm->locked_vm) { 2453 struct vm_area_struct *tmp = vma; 2454 while (tmp && tmp->vm_start < end) { 2455 if (tmp->vm_flags & VM_LOCKED) { 2456 mm->locked_vm -= vma_pages(tmp); 2457 munlock_vma_pages_all(tmp); 2458 } 2459 tmp = tmp->vm_next; 2460 } 2461 } 2462 2463 /* 2464 * Remove the vma's, and unmap the actual pages 2465 */ 2466 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2467 unmap_region(mm, vma, prev, start, end); 2468 2469 /* Fix up all other VM information */ 2470 remove_vma_list(mm, vma); 2471 2472 return 0; 2473 } 2474 2475 int vm_munmap(unsigned long start, size_t len) 2476 { 2477 int ret; 2478 struct mm_struct *mm = current->mm; 2479 2480 down_write(&mm->mmap_sem); 2481 ret = do_munmap(mm, start, len); 2482 up_write(&mm->mmap_sem); 2483 return ret; 2484 } 2485 EXPORT_SYMBOL(vm_munmap); 2486 2487 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2488 { 2489 profile_munmap(addr); 2490 return vm_munmap(addr, len); 2491 } 2492 2493 static inline void verify_mm_writelocked(struct mm_struct *mm) 2494 { 2495 #ifdef CONFIG_DEBUG_VM 2496 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2497 WARN_ON(1); 2498 up_read(&mm->mmap_sem); 2499 } 2500 #endif 2501 } 2502 2503 /* 2504 * this is really a simplified "do_mmap". it only handles 2505 * anonymous maps. eventually we may be able to do some 2506 * brk-specific accounting here. 2507 */ 2508 static unsigned long do_brk(unsigned long addr, unsigned long len) 2509 { 2510 struct mm_struct * mm = current->mm; 2511 struct vm_area_struct * vma, * prev; 2512 unsigned long flags; 2513 struct rb_node ** rb_link, * rb_parent; 2514 pgoff_t pgoff = addr >> PAGE_SHIFT; 2515 int error; 2516 2517 len = PAGE_ALIGN(len); 2518 if (!len) 2519 return addr; 2520 2521 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2522 2523 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2524 if (error & ~PAGE_MASK) 2525 return error; 2526 2527 /* 2528 * mlock MCL_FUTURE? 2529 */ 2530 if (mm->def_flags & VM_LOCKED) { 2531 unsigned long locked, lock_limit; 2532 locked = len >> PAGE_SHIFT; 2533 locked += mm->locked_vm; 2534 lock_limit = rlimit(RLIMIT_MEMLOCK); 2535 lock_limit >>= PAGE_SHIFT; 2536 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2537 return -EAGAIN; 2538 } 2539 2540 /* 2541 * mm->mmap_sem is required to protect against another thread 2542 * changing the mappings in case we sleep. 2543 */ 2544 verify_mm_writelocked(mm); 2545 2546 /* 2547 * Clear old maps. this also does some error checking for us 2548 */ 2549 munmap_back: 2550 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 2551 if (do_munmap(mm, addr, len)) 2552 return -ENOMEM; 2553 goto munmap_back; 2554 } 2555 2556 /* Check against address space limits *after* clearing old maps... */ 2557 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2558 return -ENOMEM; 2559 2560 if (mm->map_count > sysctl_max_map_count) 2561 return -ENOMEM; 2562 2563 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2564 return -ENOMEM; 2565 2566 /* Can we just expand an old private anonymous mapping? */ 2567 vma = vma_merge(mm, prev, addr, addr + len, flags, 2568 NULL, NULL, pgoff, NULL); 2569 if (vma) 2570 goto out; 2571 2572 /* 2573 * create a vma struct for an anonymous mapping 2574 */ 2575 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2576 if (!vma) { 2577 vm_unacct_memory(len >> PAGE_SHIFT); 2578 return -ENOMEM; 2579 } 2580 2581 INIT_LIST_HEAD(&vma->anon_vma_chain); 2582 vma->vm_mm = mm; 2583 vma->vm_start = addr; 2584 vma->vm_end = addr + len; 2585 vma->vm_pgoff = pgoff; 2586 vma->vm_flags = flags; 2587 vma->vm_page_prot = vm_get_page_prot(flags); 2588 vma_link(mm, vma, prev, rb_link, rb_parent); 2589 out: 2590 perf_event_mmap(vma); 2591 mm->total_vm += len >> PAGE_SHIFT; 2592 if (flags & VM_LOCKED) { 2593 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2594 mm->locked_vm += (len >> PAGE_SHIFT); 2595 } 2596 return addr; 2597 } 2598 2599 unsigned long vm_brk(unsigned long addr, unsigned long len) 2600 { 2601 struct mm_struct *mm = current->mm; 2602 unsigned long ret; 2603 2604 down_write(&mm->mmap_sem); 2605 ret = do_brk(addr, len); 2606 up_write(&mm->mmap_sem); 2607 return ret; 2608 } 2609 EXPORT_SYMBOL(vm_brk); 2610 2611 /* Release all mmaps. */ 2612 void exit_mmap(struct mm_struct *mm) 2613 { 2614 struct mmu_gather tlb; 2615 struct vm_area_struct *vma; 2616 unsigned long nr_accounted = 0; 2617 2618 /* mm's last user has gone, and its about to be pulled down */ 2619 mmu_notifier_release(mm); 2620 2621 if (mm->locked_vm) { 2622 vma = mm->mmap; 2623 while (vma) { 2624 if (vma->vm_flags & VM_LOCKED) 2625 munlock_vma_pages_all(vma); 2626 vma = vma->vm_next; 2627 } 2628 } 2629 2630 arch_exit_mmap(mm); 2631 2632 vma = mm->mmap; 2633 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2634 return; 2635 2636 lru_add_drain(); 2637 flush_cache_mm(mm); 2638 tlb_gather_mmu(&tlb, mm, 1); 2639 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2640 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2641 unmap_vmas(&tlb, vma, 0, -1); 2642 2643 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 2644 tlb_finish_mmu(&tlb, 0, -1); 2645 2646 /* 2647 * Walk the list again, actually closing and freeing it, 2648 * with preemption enabled, without holding any MM locks. 2649 */ 2650 while (vma) { 2651 if (vma->vm_flags & VM_ACCOUNT) 2652 nr_accounted += vma_pages(vma); 2653 vma = remove_vma(vma); 2654 } 2655 vm_unacct_memory(nr_accounted); 2656 2657 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2658 } 2659 2660 /* Insert vm structure into process list sorted by address 2661 * and into the inode's i_mmap tree. If vm_file is non-NULL 2662 * then i_mmap_mutex is taken here. 2663 */ 2664 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2665 { 2666 struct vm_area_struct *prev; 2667 struct rb_node **rb_link, *rb_parent; 2668 2669 /* 2670 * The vm_pgoff of a purely anonymous vma should be irrelevant 2671 * until its first write fault, when page's anon_vma and index 2672 * are set. But now set the vm_pgoff it will almost certainly 2673 * end up with (unless mremap moves it elsewhere before that 2674 * first wfault), so /proc/pid/maps tells a consistent story. 2675 * 2676 * By setting it to reflect the virtual start address of the 2677 * vma, merges and splits can happen in a seamless way, just 2678 * using the existing file pgoff checks and manipulations. 2679 * Similarly in do_mmap_pgoff and in do_brk. 2680 */ 2681 if (!vma->vm_file) { 2682 BUG_ON(vma->anon_vma); 2683 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2684 } 2685 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2686 &prev, &rb_link, &rb_parent)) 2687 return -ENOMEM; 2688 if ((vma->vm_flags & VM_ACCOUNT) && 2689 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2690 return -ENOMEM; 2691 2692 vma_link(mm, vma, prev, rb_link, rb_parent); 2693 return 0; 2694 } 2695 2696 /* 2697 * Copy the vma structure to a new location in the same mm, 2698 * prior to moving page table entries, to effect an mremap move. 2699 */ 2700 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2701 unsigned long addr, unsigned long len, pgoff_t pgoff, 2702 bool *need_rmap_locks) 2703 { 2704 struct vm_area_struct *vma = *vmap; 2705 unsigned long vma_start = vma->vm_start; 2706 struct mm_struct *mm = vma->vm_mm; 2707 struct vm_area_struct *new_vma, *prev; 2708 struct rb_node **rb_link, *rb_parent; 2709 struct mempolicy *pol; 2710 bool faulted_in_anon_vma = true; 2711 2712 /* 2713 * If anonymous vma has not yet been faulted, update new pgoff 2714 * to match new location, to increase its chance of merging. 2715 */ 2716 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2717 pgoff = addr >> PAGE_SHIFT; 2718 faulted_in_anon_vma = false; 2719 } 2720 2721 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2722 return NULL; /* should never get here */ 2723 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2724 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2725 if (new_vma) { 2726 /* 2727 * Source vma may have been merged into new_vma 2728 */ 2729 if (unlikely(vma_start >= new_vma->vm_start && 2730 vma_start < new_vma->vm_end)) { 2731 /* 2732 * The only way we can get a vma_merge with 2733 * self during an mremap is if the vma hasn't 2734 * been faulted in yet and we were allowed to 2735 * reset the dst vma->vm_pgoff to the 2736 * destination address of the mremap to allow 2737 * the merge to happen. mremap must change the 2738 * vm_pgoff linearity between src and dst vmas 2739 * (in turn preventing a vma_merge) to be 2740 * safe. It is only safe to keep the vm_pgoff 2741 * linear if there are no pages mapped yet. 2742 */ 2743 VM_BUG_ON(faulted_in_anon_vma); 2744 *vmap = vma = new_vma; 2745 } 2746 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2747 } else { 2748 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2749 if (new_vma) { 2750 *new_vma = *vma; 2751 new_vma->vm_start = addr; 2752 new_vma->vm_end = addr + len; 2753 new_vma->vm_pgoff = pgoff; 2754 pol = mpol_dup(vma_policy(vma)); 2755 if (IS_ERR(pol)) 2756 goto out_free_vma; 2757 vma_set_policy(new_vma, pol); 2758 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2759 if (anon_vma_clone(new_vma, vma)) 2760 goto out_free_mempol; 2761 if (new_vma->vm_file) 2762 get_file(new_vma->vm_file); 2763 if (new_vma->vm_ops && new_vma->vm_ops->open) 2764 new_vma->vm_ops->open(new_vma); 2765 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2766 *need_rmap_locks = false; 2767 } 2768 } 2769 return new_vma; 2770 2771 out_free_mempol: 2772 mpol_put(pol); 2773 out_free_vma: 2774 kmem_cache_free(vm_area_cachep, new_vma); 2775 return NULL; 2776 } 2777 2778 /* 2779 * Return true if the calling process may expand its vm space by the passed 2780 * number of pages 2781 */ 2782 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2783 { 2784 unsigned long cur = mm->total_vm; /* pages */ 2785 unsigned long lim; 2786 2787 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2788 2789 if (cur + npages > lim) 2790 return 0; 2791 return 1; 2792 } 2793 2794 2795 static int special_mapping_fault(struct vm_area_struct *vma, 2796 struct vm_fault *vmf) 2797 { 2798 pgoff_t pgoff; 2799 struct page **pages; 2800 2801 /* 2802 * special mappings have no vm_file, and in that case, the mm 2803 * uses vm_pgoff internally. So we have to subtract it from here. 2804 * We are allowed to do this because we are the mm; do not copy 2805 * this code into drivers! 2806 */ 2807 pgoff = vmf->pgoff - vma->vm_pgoff; 2808 2809 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2810 pgoff--; 2811 2812 if (*pages) { 2813 struct page *page = *pages; 2814 get_page(page); 2815 vmf->page = page; 2816 return 0; 2817 } 2818 2819 return VM_FAULT_SIGBUS; 2820 } 2821 2822 /* 2823 * Having a close hook prevents vma merging regardless of flags. 2824 */ 2825 static void special_mapping_close(struct vm_area_struct *vma) 2826 { 2827 } 2828 2829 static const struct vm_operations_struct special_mapping_vmops = { 2830 .close = special_mapping_close, 2831 .fault = special_mapping_fault, 2832 }; 2833 2834 /* 2835 * Called with mm->mmap_sem held for writing. 2836 * Insert a new vma covering the given region, with the given flags. 2837 * Its pages are supplied by the given array of struct page *. 2838 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2839 * The region past the last page supplied will always produce SIGBUS. 2840 * The array pointer and the pages it points to are assumed to stay alive 2841 * for as long as this mapping might exist. 2842 */ 2843 int install_special_mapping(struct mm_struct *mm, 2844 unsigned long addr, unsigned long len, 2845 unsigned long vm_flags, struct page **pages) 2846 { 2847 int ret; 2848 struct vm_area_struct *vma; 2849 2850 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2851 if (unlikely(vma == NULL)) 2852 return -ENOMEM; 2853 2854 INIT_LIST_HEAD(&vma->anon_vma_chain); 2855 vma->vm_mm = mm; 2856 vma->vm_start = addr; 2857 vma->vm_end = addr + len; 2858 2859 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2860 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2861 2862 vma->vm_ops = &special_mapping_vmops; 2863 vma->vm_private_data = pages; 2864 2865 ret = insert_vm_struct(mm, vma); 2866 if (ret) 2867 goto out; 2868 2869 mm->total_vm += len >> PAGE_SHIFT; 2870 2871 perf_event_mmap(vma); 2872 2873 return 0; 2874 2875 out: 2876 kmem_cache_free(vm_area_cachep, vma); 2877 return ret; 2878 } 2879 2880 static DEFINE_MUTEX(mm_all_locks_mutex); 2881 2882 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2883 { 2884 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 2885 /* 2886 * The LSB of head.next can't change from under us 2887 * because we hold the mm_all_locks_mutex. 2888 */ 2889 down_write(&anon_vma->root->rwsem); 2890 /* 2891 * We can safely modify head.next after taking the 2892 * anon_vma->root->rwsem. If some other vma in this mm shares 2893 * the same anon_vma we won't take it again. 2894 * 2895 * No need of atomic instructions here, head.next 2896 * can't change from under us thanks to the 2897 * anon_vma->root->rwsem. 2898 */ 2899 if (__test_and_set_bit(0, (unsigned long *) 2900 &anon_vma->root->rb_root.rb_node)) 2901 BUG(); 2902 } 2903 } 2904 2905 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2906 { 2907 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2908 /* 2909 * AS_MM_ALL_LOCKS can't change from under us because 2910 * we hold the mm_all_locks_mutex. 2911 * 2912 * Operations on ->flags have to be atomic because 2913 * even if AS_MM_ALL_LOCKS is stable thanks to the 2914 * mm_all_locks_mutex, there may be other cpus 2915 * changing other bitflags in parallel to us. 2916 */ 2917 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2918 BUG(); 2919 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 2920 } 2921 } 2922 2923 /* 2924 * This operation locks against the VM for all pte/vma/mm related 2925 * operations that could ever happen on a certain mm. This includes 2926 * vmtruncate, try_to_unmap, and all page faults. 2927 * 2928 * The caller must take the mmap_sem in write mode before calling 2929 * mm_take_all_locks(). The caller isn't allowed to release the 2930 * mmap_sem until mm_drop_all_locks() returns. 2931 * 2932 * mmap_sem in write mode is required in order to block all operations 2933 * that could modify pagetables and free pages without need of 2934 * altering the vma layout (for example populate_range() with 2935 * nonlinear vmas). It's also needed in write mode to avoid new 2936 * anon_vmas to be associated with existing vmas. 2937 * 2938 * A single task can't take more than one mm_take_all_locks() in a row 2939 * or it would deadlock. 2940 * 2941 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2942 * mapping->flags avoid to take the same lock twice, if more than one 2943 * vma in this mm is backed by the same anon_vma or address_space. 2944 * 2945 * We can take all the locks in random order because the VM code 2946 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never 2947 * takes more than one of them in a row. Secondly we're protected 2948 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2949 * 2950 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2951 * that may have to take thousand of locks. 2952 * 2953 * mm_take_all_locks() can fail if it's interrupted by signals. 2954 */ 2955 int mm_take_all_locks(struct mm_struct *mm) 2956 { 2957 struct vm_area_struct *vma; 2958 struct anon_vma_chain *avc; 2959 2960 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2961 2962 mutex_lock(&mm_all_locks_mutex); 2963 2964 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2965 if (signal_pending(current)) 2966 goto out_unlock; 2967 if (vma->vm_file && vma->vm_file->f_mapping) 2968 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2969 } 2970 2971 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2972 if (signal_pending(current)) 2973 goto out_unlock; 2974 if (vma->anon_vma) 2975 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2976 vm_lock_anon_vma(mm, avc->anon_vma); 2977 } 2978 2979 return 0; 2980 2981 out_unlock: 2982 mm_drop_all_locks(mm); 2983 return -EINTR; 2984 } 2985 2986 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2987 { 2988 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 2989 /* 2990 * The LSB of head.next can't change to 0 from under 2991 * us because we hold the mm_all_locks_mutex. 2992 * 2993 * We must however clear the bitflag before unlocking 2994 * the vma so the users using the anon_vma->rb_root will 2995 * never see our bitflag. 2996 * 2997 * No need of atomic instructions here, head.next 2998 * can't change from under us until we release the 2999 * anon_vma->root->rwsem. 3000 */ 3001 if (!__test_and_clear_bit(0, (unsigned long *) 3002 &anon_vma->root->rb_root.rb_node)) 3003 BUG(); 3004 anon_vma_unlock(anon_vma); 3005 } 3006 } 3007 3008 static void vm_unlock_mapping(struct address_space *mapping) 3009 { 3010 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3011 /* 3012 * AS_MM_ALL_LOCKS can't change to 0 from under us 3013 * because we hold the mm_all_locks_mutex. 3014 */ 3015 mutex_unlock(&mapping->i_mmap_mutex); 3016 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3017 &mapping->flags)) 3018 BUG(); 3019 } 3020 } 3021 3022 /* 3023 * The mmap_sem cannot be released by the caller until 3024 * mm_drop_all_locks() returns. 3025 */ 3026 void mm_drop_all_locks(struct mm_struct *mm) 3027 { 3028 struct vm_area_struct *vma; 3029 struct anon_vma_chain *avc; 3030 3031 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3032 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3033 3034 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3035 if (vma->anon_vma) 3036 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3037 vm_unlock_anon_vma(avc->anon_vma); 3038 if (vma->vm_file && vma->vm_file->f_mapping) 3039 vm_unlock_mapping(vma->vm_file->f_mapping); 3040 } 3041 3042 mutex_unlock(&mm_all_locks_mutex); 3043 } 3044 3045 /* 3046 * initialise the VMA slab 3047 */ 3048 void __init mmap_init(void) 3049 { 3050 int ret; 3051 3052 ret = percpu_counter_init(&vm_committed_as, 0); 3053 VM_BUG_ON(ret); 3054 } 3055