xref: /openbmc/linux/mm/mmap.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #include "internal.h"
57 
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags)	(0)
60 #endif
61 
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72 
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75 
76 static void unmap_region(struct mm_struct *mm,
77 		struct vm_area_struct *vma, struct vm_area_struct *prev,
78 		unsigned long start, unsigned long end);
79 
80 /* description of effects of mapping type and prot in current implementation.
81  * this is due to the limited x86 page protection hardware.  The expected
82  * behavior is in parens:
83  *
84  * map_type	prot
85  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
86  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
87  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
88  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
89  *
90  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
91  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
92  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
93  *
94  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
95  * MAP_PRIVATE:
96  *								r: (no) no
97  *								w: (no) no
98  *								x: (yes) yes
99  */
100 pgprot_t protection_map[16] __ro_after_init = {
101 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
102 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
103 };
104 
105 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
106 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
107 {
108 	return prot;
109 }
110 #endif
111 
112 pgprot_t vm_get_page_prot(unsigned long vm_flags)
113 {
114 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
115 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
116 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
117 
118 	return arch_filter_pgprot(ret);
119 }
120 EXPORT_SYMBOL(vm_get_page_prot);
121 
122 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
123 {
124 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
125 }
126 
127 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
128 void vma_set_page_prot(struct vm_area_struct *vma)
129 {
130 	unsigned long vm_flags = vma->vm_flags;
131 	pgprot_t vm_page_prot;
132 
133 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
134 	if (vma_wants_writenotify(vma, vm_page_prot)) {
135 		vm_flags &= ~VM_SHARED;
136 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
137 	}
138 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
139 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
140 }
141 
142 /*
143  * Requires inode->i_mapping->i_mmap_rwsem
144  */
145 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
146 		struct file *file, struct address_space *mapping)
147 {
148 	if (vma->vm_flags & VM_DENYWRITE)
149 		atomic_inc(&file_inode(file)->i_writecount);
150 	if (vma->vm_flags & VM_SHARED)
151 		mapping_unmap_writable(mapping);
152 
153 	flush_dcache_mmap_lock(mapping);
154 	vma_interval_tree_remove(vma, &mapping->i_mmap);
155 	flush_dcache_mmap_unlock(mapping);
156 }
157 
158 /*
159  * Unlink a file-based vm structure from its interval tree, to hide
160  * vma from rmap and vmtruncate before freeing its page tables.
161  */
162 void unlink_file_vma(struct vm_area_struct *vma)
163 {
164 	struct file *file = vma->vm_file;
165 
166 	if (file) {
167 		struct address_space *mapping = file->f_mapping;
168 		i_mmap_lock_write(mapping);
169 		__remove_shared_vm_struct(vma, file, mapping);
170 		i_mmap_unlock_write(mapping);
171 	}
172 }
173 
174 /*
175  * Close a vm structure and free it, returning the next.
176  */
177 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
178 {
179 	struct vm_area_struct *next = vma->vm_next;
180 
181 	might_sleep();
182 	if (vma->vm_ops && vma->vm_ops->close)
183 		vma->vm_ops->close(vma);
184 	if (vma->vm_file)
185 		fput(vma->vm_file);
186 	mpol_put(vma_policy(vma));
187 	vm_area_free(vma);
188 	return next;
189 }
190 
191 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
192 		struct list_head *uf);
193 SYSCALL_DEFINE1(brk, unsigned long, brk)
194 {
195 	unsigned long retval;
196 	unsigned long newbrk, oldbrk, origbrk;
197 	struct mm_struct *mm = current->mm;
198 	struct vm_area_struct *next;
199 	unsigned long min_brk;
200 	bool populate;
201 	bool downgraded = false;
202 	LIST_HEAD(uf);
203 
204 	brk = untagged_addr(brk);
205 
206 	if (down_write_killable(&mm->mmap_sem))
207 		return -EINTR;
208 
209 	origbrk = mm->brk;
210 
211 #ifdef CONFIG_COMPAT_BRK
212 	/*
213 	 * CONFIG_COMPAT_BRK can still be overridden by setting
214 	 * randomize_va_space to 2, which will still cause mm->start_brk
215 	 * to be arbitrarily shifted
216 	 */
217 	if (current->brk_randomized)
218 		min_brk = mm->start_brk;
219 	else
220 		min_brk = mm->end_data;
221 #else
222 	min_brk = mm->start_brk;
223 #endif
224 	if (brk < min_brk)
225 		goto out;
226 
227 	/*
228 	 * Check against rlimit here. If this check is done later after the test
229 	 * of oldbrk with newbrk then it can escape the test and let the data
230 	 * segment grow beyond its set limit the in case where the limit is
231 	 * not page aligned -Ram Gupta
232 	 */
233 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234 			      mm->end_data, mm->start_data))
235 		goto out;
236 
237 	newbrk = PAGE_ALIGN(brk);
238 	oldbrk = PAGE_ALIGN(mm->brk);
239 	if (oldbrk == newbrk) {
240 		mm->brk = brk;
241 		goto success;
242 	}
243 
244 	/*
245 	 * Always allow shrinking brk.
246 	 * __do_munmap() may downgrade mmap_sem to read.
247 	 */
248 	if (brk <= mm->brk) {
249 		int ret;
250 
251 		/*
252 		 * mm->brk must to be protected by write mmap_sem so update it
253 		 * before downgrading mmap_sem. When __do_munmap() fails,
254 		 * mm->brk will be restored from origbrk.
255 		 */
256 		mm->brk = brk;
257 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
258 		if (ret < 0) {
259 			mm->brk = origbrk;
260 			goto out;
261 		} else if (ret == 1) {
262 			downgraded = true;
263 		}
264 		goto success;
265 	}
266 
267 	/* Check against existing mmap mappings. */
268 	next = find_vma(mm, oldbrk);
269 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270 		goto out;
271 
272 	/* Ok, looks good - let it rip. */
273 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
274 		goto out;
275 	mm->brk = brk;
276 
277 success:
278 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
279 	if (downgraded)
280 		up_read(&mm->mmap_sem);
281 	else
282 		up_write(&mm->mmap_sem);
283 	userfaultfd_unmap_complete(mm, &uf);
284 	if (populate)
285 		mm_populate(oldbrk, newbrk - oldbrk);
286 	return brk;
287 
288 out:
289 	retval = origbrk;
290 	up_write(&mm->mmap_sem);
291 	return retval;
292 }
293 
294 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
295 {
296 	unsigned long gap, prev_end;
297 
298 	/*
299 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
300 	 * allow two stack_guard_gaps between them here, and when choosing
301 	 * an unmapped area; whereas when expanding we only require one.
302 	 * That's a little inconsistent, but keeps the code here simpler.
303 	 */
304 	gap = vm_start_gap(vma);
305 	if (vma->vm_prev) {
306 		prev_end = vm_end_gap(vma->vm_prev);
307 		if (gap > prev_end)
308 			gap -= prev_end;
309 		else
310 			gap = 0;
311 	}
312 	return gap;
313 }
314 
315 #ifdef CONFIG_DEBUG_VM_RB
316 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
317 {
318 	unsigned long max = vma_compute_gap(vma), subtree_gap;
319 	if (vma->vm_rb.rb_left) {
320 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
321 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
322 		if (subtree_gap > max)
323 			max = subtree_gap;
324 	}
325 	if (vma->vm_rb.rb_right) {
326 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
327 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
328 		if (subtree_gap > max)
329 			max = subtree_gap;
330 	}
331 	return max;
332 }
333 
334 static int browse_rb(struct mm_struct *mm)
335 {
336 	struct rb_root *root = &mm->mm_rb;
337 	int i = 0, j, bug = 0;
338 	struct rb_node *nd, *pn = NULL;
339 	unsigned long prev = 0, pend = 0;
340 
341 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
342 		struct vm_area_struct *vma;
343 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
344 		if (vma->vm_start < prev) {
345 			pr_emerg("vm_start %lx < prev %lx\n",
346 				  vma->vm_start, prev);
347 			bug = 1;
348 		}
349 		if (vma->vm_start < pend) {
350 			pr_emerg("vm_start %lx < pend %lx\n",
351 				  vma->vm_start, pend);
352 			bug = 1;
353 		}
354 		if (vma->vm_start > vma->vm_end) {
355 			pr_emerg("vm_start %lx > vm_end %lx\n",
356 				  vma->vm_start, vma->vm_end);
357 			bug = 1;
358 		}
359 		spin_lock(&mm->page_table_lock);
360 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
361 			pr_emerg("free gap %lx, correct %lx\n",
362 			       vma->rb_subtree_gap,
363 			       vma_compute_subtree_gap(vma));
364 			bug = 1;
365 		}
366 		spin_unlock(&mm->page_table_lock);
367 		i++;
368 		pn = nd;
369 		prev = vma->vm_start;
370 		pend = vma->vm_end;
371 	}
372 	j = 0;
373 	for (nd = pn; nd; nd = rb_prev(nd))
374 		j++;
375 	if (i != j) {
376 		pr_emerg("backwards %d, forwards %d\n", j, i);
377 		bug = 1;
378 	}
379 	return bug ? -1 : i;
380 }
381 
382 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
383 {
384 	struct rb_node *nd;
385 
386 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
387 		struct vm_area_struct *vma;
388 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
389 		VM_BUG_ON_VMA(vma != ignore &&
390 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
391 			vma);
392 	}
393 }
394 
395 static void validate_mm(struct mm_struct *mm)
396 {
397 	int bug = 0;
398 	int i = 0;
399 	unsigned long highest_address = 0;
400 	struct vm_area_struct *vma = mm->mmap;
401 
402 	while (vma) {
403 		struct anon_vma *anon_vma = vma->anon_vma;
404 		struct anon_vma_chain *avc;
405 
406 		if (anon_vma) {
407 			anon_vma_lock_read(anon_vma);
408 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
409 				anon_vma_interval_tree_verify(avc);
410 			anon_vma_unlock_read(anon_vma);
411 		}
412 
413 		highest_address = vm_end_gap(vma);
414 		vma = vma->vm_next;
415 		i++;
416 	}
417 	if (i != mm->map_count) {
418 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
419 		bug = 1;
420 	}
421 	if (highest_address != mm->highest_vm_end) {
422 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
423 			  mm->highest_vm_end, highest_address);
424 		bug = 1;
425 	}
426 	i = browse_rb(mm);
427 	if (i != mm->map_count) {
428 		if (i != -1)
429 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
430 		bug = 1;
431 	}
432 	VM_BUG_ON_MM(bug, mm);
433 }
434 #else
435 #define validate_mm_rb(root, ignore) do { } while (0)
436 #define validate_mm(mm) do { } while (0)
437 #endif
438 
439 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
440 			 struct vm_area_struct, vm_rb,
441 			 unsigned long, rb_subtree_gap, vma_compute_gap)
442 
443 /*
444  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
445  * vma->vm_prev->vm_end values changed, without modifying the vma's position
446  * in the rbtree.
447  */
448 static void vma_gap_update(struct vm_area_struct *vma)
449 {
450 	/*
451 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
452 	 * a callback function that does exactly what we want.
453 	 */
454 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
455 }
456 
457 static inline void vma_rb_insert(struct vm_area_struct *vma,
458 				 struct rb_root *root)
459 {
460 	/* All rb_subtree_gap values must be consistent prior to insertion */
461 	validate_mm_rb(root, NULL);
462 
463 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
464 }
465 
466 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
467 {
468 	/*
469 	 * Note rb_erase_augmented is a fairly large inline function,
470 	 * so make sure we instantiate it only once with our desired
471 	 * augmented rbtree callbacks.
472 	 */
473 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
474 }
475 
476 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
477 						struct rb_root *root,
478 						struct vm_area_struct *ignore)
479 {
480 	/*
481 	 * All rb_subtree_gap values must be consistent prior to erase,
482 	 * with the possible exception of the "next" vma being erased if
483 	 * next->vm_start was reduced.
484 	 */
485 	validate_mm_rb(root, ignore);
486 
487 	__vma_rb_erase(vma, root);
488 }
489 
490 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
491 					 struct rb_root *root)
492 {
493 	/*
494 	 * All rb_subtree_gap values must be consistent prior to erase,
495 	 * with the possible exception of the vma being erased.
496 	 */
497 	validate_mm_rb(root, vma);
498 
499 	__vma_rb_erase(vma, root);
500 }
501 
502 /*
503  * vma has some anon_vma assigned, and is already inserted on that
504  * anon_vma's interval trees.
505  *
506  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
507  * vma must be removed from the anon_vma's interval trees using
508  * anon_vma_interval_tree_pre_update_vma().
509  *
510  * After the update, the vma will be reinserted using
511  * anon_vma_interval_tree_post_update_vma().
512  *
513  * The entire update must be protected by exclusive mmap_sem and by
514  * the root anon_vma's mutex.
515  */
516 static inline void
517 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
518 {
519 	struct anon_vma_chain *avc;
520 
521 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
522 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
523 }
524 
525 static inline void
526 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
527 {
528 	struct anon_vma_chain *avc;
529 
530 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
531 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
532 }
533 
534 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
535 		unsigned long end, struct vm_area_struct **pprev,
536 		struct rb_node ***rb_link, struct rb_node **rb_parent)
537 {
538 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
539 
540 	__rb_link = &mm->mm_rb.rb_node;
541 	rb_prev = __rb_parent = NULL;
542 
543 	while (*__rb_link) {
544 		struct vm_area_struct *vma_tmp;
545 
546 		__rb_parent = *__rb_link;
547 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
548 
549 		if (vma_tmp->vm_end > addr) {
550 			/* Fail if an existing vma overlaps the area */
551 			if (vma_tmp->vm_start < end)
552 				return -ENOMEM;
553 			__rb_link = &__rb_parent->rb_left;
554 		} else {
555 			rb_prev = __rb_parent;
556 			__rb_link = &__rb_parent->rb_right;
557 		}
558 	}
559 
560 	*pprev = NULL;
561 	if (rb_prev)
562 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
563 	*rb_link = __rb_link;
564 	*rb_parent = __rb_parent;
565 	return 0;
566 }
567 
568 static unsigned long count_vma_pages_range(struct mm_struct *mm,
569 		unsigned long addr, unsigned long end)
570 {
571 	unsigned long nr_pages = 0;
572 	struct vm_area_struct *vma;
573 
574 	/* Find first overlaping mapping */
575 	vma = find_vma_intersection(mm, addr, end);
576 	if (!vma)
577 		return 0;
578 
579 	nr_pages = (min(end, vma->vm_end) -
580 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
581 
582 	/* Iterate over the rest of the overlaps */
583 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
584 		unsigned long overlap_len;
585 
586 		if (vma->vm_start > end)
587 			break;
588 
589 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
590 		nr_pages += overlap_len >> PAGE_SHIFT;
591 	}
592 
593 	return nr_pages;
594 }
595 
596 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
597 		struct rb_node **rb_link, struct rb_node *rb_parent)
598 {
599 	/* Update tracking information for the gap following the new vma. */
600 	if (vma->vm_next)
601 		vma_gap_update(vma->vm_next);
602 	else
603 		mm->highest_vm_end = vm_end_gap(vma);
604 
605 	/*
606 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
607 	 * correct insertion point for that vma. As a result, we could not
608 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
609 	 * So, we first insert the vma with a zero rb_subtree_gap value
610 	 * (to be consistent with what we did on the way down), and then
611 	 * immediately update the gap to the correct value. Finally we
612 	 * rebalance the rbtree after all augmented values have been set.
613 	 */
614 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
615 	vma->rb_subtree_gap = 0;
616 	vma_gap_update(vma);
617 	vma_rb_insert(vma, &mm->mm_rb);
618 }
619 
620 static void __vma_link_file(struct vm_area_struct *vma)
621 {
622 	struct file *file;
623 
624 	file = vma->vm_file;
625 	if (file) {
626 		struct address_space *mapping = file->f_mapping;
627 
628 		if (vma->vm_flags & VM_DENYWRITE)
629 			atomic_dec(&file_inode(file)->i_writecount);
630 		if (vma->vm_flags & VM_SHARED)
631 			atomic_inc(&mapping->i_mmap_writable);
632 
633 		flush_dcache_mmap_lock(mapping);
634 		vma_interval_tree_insert(vma, &mapping->i_mmap);
635 		flush_dcache_mmap_unlock(mapping);
636 	}
637 }
638 
639 static void
640 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
641 	struct vm_area_struct *prev, struct rb_node **rb_link,
642 	struct rb_node *rb_parent)
643 {
644 	__vma_link_list(mm, vma, prev, rb_parent);
645 	__vma_link_rb(mm, vma, rb_link, rb_parent);
646 }
647 
648 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
649 			struct vm_area_struct *prev, struct rb_node **rb_link,
650 			struct rb_node *rb_parent)
651 {
652 	struct address_space *mapping = NULL;
653 
654 	if (vma->vm_file) {
655 		mapping = vma->vm_file->f_mapping;
656 		i_mmap_lock_write(mapping);
657 	}
658 
659 	__vma_link(mm, vma, prev, rb_link, rb_parent);
660 	__vma_link_file(vma);
661 
662 	if (mapping)
663 		i_mmap_unlock_write(mapping);
664 
665 	mm->map_count++;
666 	validate_mm(mm);
667 }
668 
669 /*
670  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
671  * mm's list and rbtree.  It has already been inserted into the interval tree.
672  */
673 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
674 {
675 	struct vm_area_struct *prev;
676 	struct rb_node **rb_link, *rb_parent;
677 
678 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
679 			   &prev, &rb_link, &rb_parent))
680 		BUG();
681 	__vma_link(mm, vma, prev, rb_link, rb_parent);
682 	mm->map_count++;
683 }
684 
685 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
686 						struct vm_area_struct *vma,
687 						struct vm_area_struct *prev,
688 						bool has_prev,
689 						struct vm_area_struct *ignore)
690 {
691 	struct vm_area_struct *next;
692 
693 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
694 	next = vma->vm_next;
695 	if (has_prev)
696 		prev->vm_next = next;
697 	else {
698 		prev = vma->vm_prev;
699 		if (prev)
700 			prev->vm_next = next;
701 		else
702 			mm->mmap = next;
703 	}
704 	if (next)
705 		next->vm_prev = prev;
706 
707 	/* Kill the cache */
708 	vmacache_invalidate(mm);
709 }
710 
711 static inline void __vma_unlink_prev(struct mm_struct *mm,
712 				     struct vm_area_struct *vma,
713 				     struct vm_area_struct *prev)
714 {
715 	__vma_unlink_common(mm, vma, prev, true, vma);
716 }
717 
718 /*
719  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
720  * is already present in an i_mmap tree without adjusting the tree.
721  * The following helper function should be used when such adjustments
722  * are necessary.  The "insert" vma (if any) is to be inserted
723  * before we drop the necessary locks.
724  */
725 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
726 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
727 	struct vm_area_struct *expand)
728 {
729 	struct mm_struct *mm = vma->vm_mm;
730 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
731 	struct address_space *mapping = NULL;
732 	struct rb_root_cached *root = NULL;
733 	struct anon_vma *anon_vma = NULL;
734 	struct file *file = vma->vm_file;
735 	bool start_changed = false, end_changed = false;
736 	long adjust_next = 0;
737 	int remove_next = 0;
738 
739 	if (next && !insert) {
740 		struct vm_area_struct *exporter = NULL, *importer = NULL;
741 
742 		if (end >= next->vm_end) {
743 			/*
744 			 * vma expands, overlapping all the next, and
745 			 * perhaps the one after too (mprotect case 6).
746 			 * The only other cases that gets here are
747 			 * case 1, case 7 and case 8.
748 			 */
749 			if (next == expand) {
750 				/*
751 				 * The only case where we don't expand "vma"
752 				 * and we expand "next" instead is case 8.
753 				 */
754 				VM_WARN_ON(end != next->vm_end);
755 				/*
756 				 * remove_next == 3 means we're
757 				 * removing "vma" and that to do so we
758 				 * swapped "vma" and "next".
759 				 */
760 				remove_next = 3;
761 				VM_WARN_ON(file != next->vm_file);
762 				swap(vma, next);
763 			} else {
764 				VM_WARN_ON(expand != vma);
765 				/*
766 				 * case 1, 6, 7, remove_next == 2 is case 6,
767 				 * remove_next == 1 is case 1 or 7.
768 				 */
769 				remove_next = 1 + (end > next->vm_end);
770 				VM_WARN_ON(remove_next == 2 &&
771 					   end != next->vm_next->vm_end);
772 				VM_WARN_ON(remove_next == 1 &&
773 					   end != next->vm_end);
774 				/* trim end to next, for case 6 first pass */
775 				end = next->vm_end;
776 			}
777 
778 			exporter = next;
779 			importer = vma;
780 
781 			/*
782 			 * If next doesn't have anon_vma, import from vma after
783 			 * next, if the vma overlaps with it.
784 			 */
785 			if (remove_next == 2 && !next->anon_vma)
786 				exporter = next->vm_next;
787 
788 		} else if (end > next->vm_start) {
789 			/*
790 			 * vma expands, overlapping part of the next:
791 			 * mprotect case 5 shifting the boundary up.
792 			 */
793 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
794 			exporter = next;
795 			importer = vma;
796 			VM_WARN_ON(expand != importer);
797 		} else if (end < vma->vm_end) {
798 			/*
799 			 * vma shrinks, and !insert tells it's not
800 			 * split_vma inserting another: so it must be
801 			 * mprotect case 4 shifting the boundary down.
802 			 */
803 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
804 			exporter = vma;
805 			importer = next;
806 			VM_WARN_ON(expand != importer);
807 		}
808 
809 		/*
810 		 * Easily overlooked: when mprotect shifts the boundary,
811 		 * make sure the expanding vma has anon_vma set if the
812 		 * shrinking vma had, to cover any anon pages imported.
813 		 */
814 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
815 			int error;
816 
817 			importer->anon_vma = exporter->anon_vma;
818 			error = anon_vma_clone(importer, exporter);
819 			if (error)
820 				return error;
821 		}
822 	}
823 again:
824 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
825 
826 	if (file) {
827 		mapping = file->f_mapping;
828 		root = &mapping->i_mmap;
829 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
830 
831 		if (adjust_next)
832 			uprobe_munmap(next, next->vm_start, next->vm_end);
833 
834 		i_mmap_lock_write(mapping);
835 		if (insert) {
836 			/*
837 			 * Put into interval tree now, so instantiated pages
838 			 * are visible to arm/parisc __flush_dcache_page
839 			 * throughout; but we cannot insert into address
840 			 * space until vma start or end is updated.
841 			 */
842 			__vma_link_file(insert);
843 		}
844 	}
845 
846 	anon_vma = vma->anon_vma;
847 	if (!anon_vma && adjust_next)
848 		anon_vma = next->anon_vma;
849 	if (anon_vma) {
850 		VM_WARN_ON(adjust_next && next->anon_vma &&
851 			   anon_vma != next->anon_vma);
852 		anon_vma_lock_write(anon_vma);
853 		anon_vma_interval_tree_pre_update_vma(vma);
854 		if (adjust_next)
855 			anon_vma_interval_tree_pre_update_vma(next);
856 	}
857 
858 	if (root) {
859 		flush_dcache_mmap_lock(mapping);
860 		vma_interval_tree_remove(vma, root);
861 		if (adjust_next)
862 			vma_interval_tree_remove(next, root);
863 	}
864 
865 	if (start != vma->vm_start) {
866 		vma->vm_start = start;
867 		start_changed = true;
868 	}
869 	if (end != vma->vm_end) {
870 		vma->vm_end = end;
871 		end_changed = true;
872 	}
873 	vma->vm_pgoff = pgoff;
874 	if (adjust_next) {
875 		next->vm_start += adjust_next << PAGE_SHIFT;
876 		next->vm_pgoff += adjust_next;
877 	}
878 
879 	if (root) {
880 		if (adjust_next)
881 			vma_interval_tree_insert(next, root);
882 		vma_interval_tree_insert(vma, root);
883 		flush_dcache_mmap_unlock(mapping);
884 	}
885 
886 	if (remove_next) {
887 		/*
888 		 * vma_merge has merged next into vma, and needs
889 		 * us to remove next before dropping the locks.
890 		 */
891 		if (remove_next != 3)
892 			__vma_unlink_prev(mm, next, vma);
893 		else
894 			/*
895 			 * vma is not before next if they've been
896 			 * swapped.
897 			 *
898 			 * pre-swap() next->vm_start was reduced so
899 			 * tell validate_mm_rb to ignore pre-swap()
900 			 * "next" (which is stored in post-swap()
901 			 * "vma").
902 			 */
903 			__vma_unlink_common(mm, next, NULL, false, vma);
904 		if (file)
905 			__remove_shared_vm_struct(next, file, mapping);
906 	} else if (insert) {
907 		/*
908 		 * split_vma has split insert from vma, and needs
909 		 * us to insert it before dropping the locks
910 		 * (it may either follow vma or precede it).
911 		 */
912 		__insert_vm_struct(mm, insert);
913 	} else {
914 		if (start_changed)
915 			vma_gap_update(vma);
916 		if (end_changed) {
917 			if (!next)
918 				mm->highest_vm_end = vm_end_gap(vma);
919 			else if (!adjust_next)
920 				vma_gap_update(next);
921 		}
922 	}
923 
924 	if (anon_vma) {
925 		anon_vma_interval_tree_post_update_vma(vma);
926 		if (adjust_next)
927 			anon_vma_interval_tree_post_update_vma(next);
928 		anon_vma_unlock_write(anon_vma);
929 	}
930 	if (mapping)
931 		i_mmap_unlock_write(mapping);
932 
933 	if (root) {
934 		uprobe_mmap(vma);
935 
936 		if (adjust_next)
937 			uprobe_mmap(next);
938 	}
939 
940 	if (remove_next) {
941 		if (file) {
942 			uprobe_munmap(next, next->vm_start, next->vm_end);
943 			fput(file);
944 		}
945 		if (next->anon_vma)
946 			anon_vma_merge(vma, next);
947 		mm->map_count--;
948 		mpol_put(vma_policy(next));
949 		vm_area_free(next);
950 		/*
951 		 * In mprotect's case 6 (see comments on vma_merge),
952 		 * we must remove another next too. It would clutter
953 		 * up the code too much to do both in one go.
954 		 */
955 		if (remove_next != 3) {
956 			/*
957 			 * If "next" was removed and vma->vm_end was
958 			 * expanded (up) over it, in turn
959 			 * "next->vm_prev->vm_end" changed and the
960 			 * "vma->vm_next" gap must be updated.
961 			 */
962 			next = vma->vm_next;
963 		} else {
964 			/*
965 			 * For the scope of the comment "next" and
966 			 * "vma" considered pre-swap(): if "vma" was
967 			 * removed, next->vm_start was expanded (down)
968 			 * over it and the "next" gap must be updated.
969 			 * Because of the swap() the post-swap() "vma"
970 			 * actually points to pre-swap() "next"
971 			 * (post-swap() "next" as opposed is now a
972 			 * dangling pointer).
973 			 */
974 			next = vma;
975 		}
976 		if (remove_next == 2) {
977 			remove_next = 1;
978 			end = next->vm_end;
979 			goto again;
980 		}
981 		else if (next)
982 			vma_gap_update(next);
983 		else {
984 			/*
985 			 * If remove_next == 2 we obviously can't
986 			 * reach this path.
987 			 *
988 			 * If remove_next == 3 we can't reach this
989 			 * path because pre-swap() next is always not
990 			 * NULL. pre-swap() "next" is not being
991 			 * removed and its next->vm_end is not altered
992 			 * (and furthermore "end" already matches
993 			 * next->vm_end in remove_next == 3).
994 			 *
995 			 * We reach this only in the remove_next == 1
996 			 * case if the "next" vma that was removed was
997 			 * the highest vma of the mm. However in such
998 			 * case next->vm_end == "end" and the extended
999 			 * "vma" has vma->vm_end == next->vm_end so
1000 			 * mm->highest_vm_end doesn't need any update
1001 			 * in remove_next == 1 case.
1002 			 */
1003 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1004 		}
1005 	}
1006 	if (insert && file)
1007 		uprobe_mmap(insert);
1008 
1009 	validate_mm(mm);
1010 
1011 	return 0;
1012 }
1013 
1014 /*
1015  * If the vma has a ->close operation then the driver probably needs to release
1016  * per-vma resources, so we don't attempt to merge those.
1017  */
1018 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1019 				struct file *file, unsigned long vm_flags,
1020 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1021 {
1022 	/*
1023 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1024 	 * match the flags but dirty bit -- the caller should mark
1025 	 * merged VMA as dirty. If dirty bit won't be excluded from
1026 	 * comparison, we increase pressure on the memory system forcing
1027 	 * the kernel to generate new VMAs when old one could be
1028 	 * extended instead.
1029 	 */
1030 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1031 		return 0;
1032 	if (vma->vm_file != file)
1033 		return 0;
1034 	if (vma->vm_ops && vma->vm_ops->close)
1035 		return 0;
1036 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1037 		return 0;
1038 	return 1;
1039 }
1040 
1041 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1042 					struct anon_vma *anon_vma2,
1043 					struct vm_area_struct *vma)
1044 {
1045 	/*
1046 	 * The list_is_singular() test is to avoid merging VMA cloned from
1047 	 * parents. This can improve scalability caused by anon_vma lock.
1048 	 */
1049 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1050 		list_is_singular(&vma->anon_vma_chain)))
1051 		return 1;
1052 	return anon_vma1 == anon_vma2;
1053 }
1054 
1055 /*
1056  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1057  * in front of (at a lower virtual address and file offset than) the vma.
1058  *
1059  * We cannot merge two vmas if they have differently assigned (non-NULL)
1060  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1061  *
1062  * We don't check here for the merged mmap wrapping around the end of pagecache
1063  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1064  * wrap, nor mmaps which cover the final page at index -1UL.
1065  */
1066 static int
1067 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1068 		     struct anon_vma *anon_vma, struct file *file,
1069 		     pgoff_t vm_pgoff,
1070 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1071 {
1072 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1073 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1074 		if (vma->vm_pgoff == vm_pgoff)
1075 			return 1;
1076 	}
1077 	return 0;
1078 }
1079 
1080 /*
1081  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1082  * beyond (at a higher virtual address and file offset than) the vma.
1083  *
1084  * We cannot merge two vmas if they have differently assigned (non-NULL)
1085  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1086  */
1087 static int
1088 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1089 		    struct anon_vma *anon_vma, struct file *file,
1090 		    pgoff_t vm_pgoff,
1091 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1092 {
1093 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1094 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1095 		pgoff_t vm_pglen;
1096 		vm_pglen = vma_pages(vma);
1097 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1098 			return 1;
1099 	}
1100 	return 0;
1101 }
1102 
1103 /*
1104  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1105  * whether that can be merged with its predecessor or its successor.
1106  * Or both (it neatly fills a hole).
1107  *
1108  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1109  * certain not to be mapped by the time vma_merge is called; but when
1110  * called for mprotect, it is certain to be already mapped (either at
1111  * an offset within prev, or at the start of next), and the flags of
1112  * this area are about to be changed to vm_flags - and the no-change
1113  * case has already been eliminated.
1114  *
1115  * The following mprotect cases have to be considered, where AAAA is
1116  * the area passed down from mprotect_fixup, never extending beyond one
1117  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1118  *
1119  *     AAAA             AAAA                AAAA          AAAA
1120  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1121  *    cannot merge    might become    might become    might become
1122  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1123  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1124  *    mremap move:                                    PPPPXXXXXXXX 8
1125  *        AAAA
1126  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1127  *    might become    case 1 below    case 2 below    case 3 below
1128  *
1129  * It is important for case 8 that the vma NNNN overlapping the
1130  * region AAAA is never going to extended over XXXX. Instead XXXX must
1131  * be extended in region AAAA and NNNN must be removed. This way in
1132  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1133  * rmap_locks, the properties of the merged vma will be already
1134  * correct for the whole merged range. Some of those properties like
1135  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1136  * be correct for the whole merged range immediately after the
1137  * rmap_locks are released. Otherwise if XXXX would be removed and
1138  * NNNN would be extended over the XXXX range, remove_migration_ptes
1139  * or other rmap walkers (if working on addresses beyond the "end"
1140  * parameter) may establish ptes with the wrong permissions of NNNN
1141  * instead of the right permissions of XXXX.
1142  */
1143 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1144 			struct vm_area_struct *prev, unsigned long addr,
1145 			unsigned long end, unsigned long vm_flags,
1146 			struct anon_vma *anon_vma, struct file *file,
1147 			pgoff_t pgoff, struct mempolicy *policy,
1148 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1149 {
1150 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1151 	struct vm_area_struct *area, *next;
1152 	int err;
1153 
1154 	/*
1155 	 * We later require that vma->vm_flags == vm_flags,
1156 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1157 	 */
1158 	if (vm_flags & VM_SPECIAL)
1159 		return NULL;
1160 
1161 	if (prev)
1162 		next = prev->vm_next;
1163 	else
1164 		next = mm->mmap;
1165 	area = next;
1166 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1167 		next = next->vm_next;
1168 
1169 	/* verify some invariant that must be enforced by the caller */
1170 	VM_WARN_ON(prev && addr <= prev->vm_start);
1171 	VM_WARN_ON(area && end > area->vm_end);
1172 	VM_WARN_ON(addr >= end);
1173 
1174 	/*
1175 	 * Can it merge with the predecessor?
1176 	 */
1177 	if (prev && prev->vm_end == addr &&
1178 			mpol_equal(vma_policy(prev), policy) &&
1179 			can_vma_merge_after(prev, vm_flags,
1180 					    anon_vma, file, pgoff,
1181 					    vm_userfaultfd_ctx)) {
1182 		/*
1183 		 * OK, it can.  Can we now merge in the successor as well?
1184 		 */
1185 		if (next && end == next->vm_start &&
1186 				mpol_equal(policy, vma_policy(next)) &&
1187 				can_vma_merge_before(next, vm_flags,
1188 						     anon_vma, file,
1189 						     pgoff+pglen,
1190 						     vm_userfaultfd_ctx) &&
1191 				is_mergeable_anon_vma(prev->anon_vma,
1192 						      next->anon_vma, NULL)) {
1193 							/* cases 1, 6 */
1194 			err = __vma_adjust(prev, prev->vm_start,
1195 					 next->vm_end, prev->vm_pgoff, NULL,
1196 					 prev);
1197 		} else					/* cases 2, 5, 7 */
1198 			err = __vma_adjust(prev, prev->vm_start,
1199 					 end, prev->vm_pgoff, NULL, prev);
1200 		if (err)
1201 			return NULL;
1202 		khugepaged_enter_vma_merge(prev, vm_flags);
1203 		return prev;
1204 	}
1205 
1206 	/*
1207 	 * Can this new request be merged in front of next?
1208 	 */
1209 	if (next && end == next->vm_start &&
1210 			mpol_equal(policy, vma_policy(next)) &&
1211 			can_vma_merge_before(next, vm_flags,
1212 					     anon_vma, file, pgoff+pglen,
1213 					     vm_userfaultfd_ctx)) {
1214 		if (prev && addr < prev->vm_end)	/* case 4 */
1215 			err = __vma_adjust(prev, prev->vm_start,
1216 					 addr, prev->vm_pgoff, NULL, next);
1217 		else {					/* cases 3, 8 */
1218 			err = __vma_adjust(area, addr, next->vm_end,
1219 					 next->vm_pgoff - pglen, NULL, next);
1220 			/*
1221 			 * In case 3 area is already equal to next and
1222 			 * this is a noop, but in case 8 "area" has
1223 			 * been removed and next was expanded over it.
1224 			 */
1225 			area = next;
1226 		}
1227 		if (err)
1228 			return NULL;
1229 		khugepaged_enter_vma_merge(area, vm_flags);
1230 		return area;
1231 	}
1232 
1233 	return NULL;
1234 }
1235 
1236 /*
1237  * Rough compatbility check to quickly see if it's even worth looking
1238  * at sharing an anon_vma.
1239  *
1240  * They need to have the same vm_file, and the flags can only differ
1241  * in things that mprotect may change.
1242  *
1243  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1244  * we can merge the two vma's. For example, we refuse to merge a vma if
1245  * there is a vm_ops->close() function, because that indicates that the
1246  * driver is doing some kind of reference counting. But that doesn't
1247  * really matter for the anon_vma sharing case.
1248  */
1249 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1250 {
1251 	return a->vm_end == b->vm_start &&
1252 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1253 		a->vm_file == b->vm_file &&
1254 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1255 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1256 }
1257 
1258 /*
1259  * Do some basic sanity checking to see if we can re-use the anon_vma
1260  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1261  * the same as 'old', the other will be the new one that is trying
1262  * to share the anon_vma.
1263  *
1264  * NOTE! This runs with mm_sem held for reading, so it is possible that
1265  * the anon_vma of 'old' is concurrently in the process of being set up
1266  * by another page fault trying to merge _that_. But that's ok: if it
1267  * is being set up, that automatically means that it will be a singleton
1268  * acceptable for merging, so we can do all of this optimistically. But
1269  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1270  *
1271  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1272  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1273  * is to return an anon_vma that is "complex" due to having gone through
1274  * a fork).
1275  *
1276  * We also make sure that the two vma's are compatible (adjacent,
1277  * and with the same memory policies). That's all stable, even with just
1278  * a read lock on the mm_sem.
1279  */
1280 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1281 {
1282 	if (anon_vma_compatible(a, b)) {
1283 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1284 
1285 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1286 			return anon_vma;
1287 	}
1288 	return NULL;
1289 }
1290 
1291 /*
1292  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1293  * neighbouring vmas for a suitable anon_vma, before it goes off
1294  * to allocate a new anon_vma.  It checks because a repetitive
1295  * sequence of mprotects and faults may otherwise lead to distinct
1296  * anon_vmas being allocated, preventing vma merge in subsequent
1297  * mprotect.
1298  */
1299 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1300 {
1301 	struct anon_vma *anon_vma;
1302 	struct vm_area_struct *near;
1303 
1304 	near = vma->vm_next;
1305 	if (!near)
1306 		goto try_prev;
1307 
1308 	anon_vma = reusable_anon_vma(near, vma, near);
1309 	if (anon_vma)
1310 		return anon_vma;
1311 try_prev:
1312 	near = vma->vm_prev;
1313 	if (!near)
1314 		goto none;
1315 
1316 	anon_vma = reusable_anon_vma(near, near, vma);
1317 	if (anon_vma)
1318 		return anon_vma;
1319 none:
1320 	/*
1321 	 * There's no absolute need to look only at touching neighbours:
1322 	 * we could search further afield for "compatible" anon_vmas.
1323 	 * But it would probably just be a waste of time searching,
1324 	 * or lead to too many vmas hanging off the same anon_vma.
1325 	 * We're trying to allow mprotect remerging later on,
1326 	 * not trying to minimize memory used for anon_vmas.
1327 	 */
1328 	return NULL;
1329 }
1330 
1331 /*
1332  * If a hint addr is less than mmap_min_addr change hint to be as
1333  * low as possible but still greater than mmap_min_addr
1334  */
1335 static inline unsigned long round_hint_to_min(unsigned long hint)
1336 {
1337 	hint &= PAGE_MASK;
1338 	if (((void *)hint != NULL) &&
1339 	    (hint < mmap_min_addr))
1340 		return PAGE_ALIGN(mmap_min_addr);
1341 	return hint;
1342 }
1343 
1344 static inline int mlock_future_check(struct mm_struct *mm,
1345 				     unsigned long flags,
1346 				     unsigned long len)
1347 {
1348 	unsigned long locked, lock_limit;
1349 
1350 	/*  mlock MCL_FUTURE? */
1351 	if (flags & VM_LOCKED) {
1352 		locked = len >> PAGE_SHIFT;
1353 		locked += mm->locked_vm;
1354 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1355 		lock_limit >>= PAGE_SHIFT;
1356 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1357 			return -EAGAIN;
1358 	}
1359 	return 0;
1360 }
1361 
1362 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1363 {
1364 	if (S_ISREG(inode->i_mode))
1365 		return MAX_LFS_FILESIZE;
1366 
1367 	if (S_ISBLK(inode->i_mode))
1368 		return MAX_LFS_FILESIZE;
1369 
1370 	if (S_ISSOCK(inode->i_mode))
1371 		return MAX_LFS_FILESIZE;
1372 
1373 	/* Special "we do even unsigned file positions" case */
1374 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1375 		return 0;
1376 
1377 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1378 	return ULONG_MAX;
1379 }
1380 
1381 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1382 				unsigned long pgoff, unsigned long len)
1383 {
1384 	u64 maxsize = file_mmap_size_max(file, inode);
1385 
1386 	if (maxsize && len > maxsize)
1387 		return false;
1388 	maxsize -= len;
1389 	if (pgoff > maxsize >> PAGE_SHIFT)
1390 		return false;
1391 	return true;
1392 }
1393 
1394 /*
1395  * The caller must hold down_write(&current->mm->mmap_sem).
1396  */
1397 unsigned long do_mmap(struct file *file, unsigned long addr,
1398 			unsigned long len, unsigned long prot,
1399 			unsigned long flags, vm_flags_t vm_flags,
1400 			unsigned long pgoff, unsigned long *populate,
1401 			struct list_head *uf)
1402 {
1403 	struct mm_struct *mm = current->mm;
1404 	int pkey = 0;
1405 
1406 	*populate = 0;
1407 
1408 	if (!len)
1409 		return -EINVAL;
1410 
1411 	/*
1412 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1413 	 *
1414 	 * (the exception is when the underlying filesystem is noexec
1415 	 *  mounted, in which case we dont add PROT_EXEC.)
1416 	 */
1417 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1418 		if (!(file && path_noexec(&file->f_path)))
1419 			prot |= PROT_EXEC;
1420 
1421 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1422 	if (flags & MAP_FIXED_NOREPLACE)
1423 		flags |= MAP_FIXED;
1424 
1425 	if (!(flags & MAP_FIXED))
1426 		addr = round_hint_to_min(addr);
1427 
1428 	/* Careful about overflows.. */
1429 	len = PAGE_ALIGN(len);
1430 	if (!len)
1431 		return -ENOMEM;
1432 
1433 	/* offset overflow? */
1434 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1435 		return -EOVERFLOW;
1436 
1437 	/* Too many mappings? */
1438 	if (mm->map_count > sysctl_max_map_count)
1439 		return -ENOMEM;
1440 
1441 	/* Obtain the address to map to. we verify (or select) it and ensure
1442 	 * that it represents a valid section of the address space.
1443 	 */
1444 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1445 	if (offset_in_page(addr))
1446 		return addr;
1447 
1448 	if (flags & MAP_FIXED_NOREPLACE) {
1449 		struct vm_area_struct *vma = find_vma(mm, addr);
1450 
1451 		if (vma && vma->vm_start < addr + len)
1452 			return -EEXIST;
1453 	}
1454 
1455 	if (prot == PROT_EXEC) {
1456 		pkey = execute_only_pkey(mm);
1457 		if (pkey < 0)
1458 			pkey = 0;
1459 	}
1460 
1461 	/* Do simple checking here so the lower-level routines won't have
1462 	 * to. we assume access permissions have been handled by the open
1463 	 * of the memory object, so we don't do any here.
1464 	 */
1465 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1466 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1467 
1468 	if (flags & MAP_LOCKED)
1469 		if (!can_do_mlock())
1470 			return -EPERM;
1471 
1472 	if (mlock_future_check(mm, vm_flags, len))
1473 		return -EAGAIN;
1474 
1475 	if (file) {
1476 		struct inode *inode = file_inode(file);
1477 		unsigned long flags_mask;
1478 
1479 		if (!file_mmap_ok(file, inode, pgoff, len))
1480 			return -EOVERFLOW;
1481 
1482 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1483 
1484 		switch (flags & MAP_TYPE) {
1485 		case MAP_SHARED:
1486 			/*
1487 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1488 			 * flags. E.g. MAP_SYNC is dangerous to use with
1489 			 * MAP_SHARED as you don't know which consistency model
1490 			 * you will get. We silently ignore unsupported flags
1491 			 * with MAP_SHARED to preserve backward compatibility.
1492 			 */
1493 			flags &= LEGACY_MAP_MASK;
1494 			/* fall through */
1495 		case MAP_SHARED_VALIDATE:
1496 			if (flags & ~flags_mask)
1497 				return -EOPNOTSUPP;
1498 			if (prot & PROT_WRITE) {
1499 				if (!(file->f_mode & FMODE_WRITE))
1500 					return -EACCES;
1501 				if (IS_SWAPFILE(file->f_mapping->host))
1502 					return -ETXTBSY;
1503 			}
1504 
1505 			/*
1506 			 * Make sure we don't allow writing to an append-only
1507 			 * file..
1508 			 */
1509 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1510 				return -EACCES;
1511 
1512 			/*
1513 			 * Make sure there are no mandatory locks on the file.
1514 			 */
1515 			if (locks_verify_locked(file))
1516 				return -EAGAIN;
1517 
1518 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1519 			if (!(file->f_mode & FMODE_WRITE))
1520 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1521 
1522 			/* fall through */
1523 		case MAP_PRIVATE:
1524 			if (!(file->f_mode & FMODE_READ))
1525 				return -EACCES;
1526 			if (path_noexec(&file->f_path)) {
1527 				if (vm_flags & VM_EXEC)
1528 					return -EPERM;
1529 				vm_flags &= ~VM_MAYEXEC;
1530 			}
1531 
1532 			if (!file->f_op->mmap)
1533 				return -ENODEV;
1534 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1535 				return -EINVAL;
1536 			break;
1537 
1538 		default:
1539 			return -EINVAL;
1540 		}
1541 	} else {
1542 		switch (flags & MAP_TYPE) {
1543 		case MAP_SHARED:
1544 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1545 				return -EINVAL;
1546 			/*
1547 			 * Ignore pgoff.
1548 			 */
1549 			pgoff = 0;
1550 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1551 			break;
1552 		case MAP_PRIVATE:
1553 			/*
1554 			 * Set pgoff according to addr for anon_vma.
1555 			 */
1556 			pgoff = addr >> PAGE_SHIFT;
1557 			break;
1558 		default:
1559 			return -EINVAL;
1560 		}
1561 	}
1562 
1563 	/*
1564 	 * Set 'VM_NORESERVE' if we should not account for the
1565 	 * memory use of this mapping.
1566 	 */
1567 	if (flags & MAP_NORESERVE) {
1568 		/* We honor MAP_NORESERVE if allowed to overcommit */
1569 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1570 			vm_flags |= VM_NORESERVE;
1571 
1572 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1573 		if (file && is_file_hugepages(file))
1574 			vm_flags |= VM_NORESERVE;
1575 	}
1576 
1577 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1578 	if (!IS_ERR_VALUE(addr) &&
1579 	    ((vm_flags & VM_LOCKED) ||
1580 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1581 		*populate = len;
1582 	return addr;
1583 }
1584 
1585 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1586 			      unsigned long prot, unsigned long flags,
1587 			      unsigned long fd, unsigned long pgoff)
1588 {
1589 	struct file *file = NULL;
1590 	unsigned long retval;
1591 
1592 	addr = untagged_addr(addr);
1593 
1594 	if (!(flags & MAP_ANONYMOUS)) {
1595 		audit_mmap_fd(fd, flags);
1596 		file = fget(fd);
1597 		if (!file)
1598 			return -EBADF;
1599 		if (is_file_hugepages(file))
1600 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1601 		retval = -EINVAL;
1602 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1603 			goto out_fput;
1604 	} else if (flags & MAP_HUGETLB) {
1605 		struct user_struct *user = NULL;
1606 		struct hstate *hs;
1607 
1608 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1609 		if (!hs)
1610 			return -EINVAL;
1611 
1612 		len = ALIGN(len, huge_page_size(hs));
1613 		/*
1614 		 * VM_NORESERVE is used because the reservations will be
1615 		 * taken when vm_ops->mmap() is called
1616 		 * A dummy user value is used because we are not locking
1617 		 * memory so no accounting is necessary
1618 		 */
1619 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1620 				VM_NORESERVE,
1621 				&user, HUGETLB_ANONHUGE_INODE,
1622 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1623 		if (IS_ERR(file))
1624 			return PTR_ERR(file);
1625 	}
1626 
1627 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1628 
1629 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1630 out_fput:
1631 	if (file)
1632 		fput(file);
1633 	return retval;
1634 }
1635 
1636 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1637 		unsigned long, prot, unsigned long, flags,
1638 		unsigned long, fd, unsigned long, pgoff)
1639 {
1640 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1641 }
1642 
1643 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1644 struct mmap_arg_struct {
1645 	unsigned long addr;
1646 	unsigned long len;
1647 	unsigned long prot;
1648 	unsigned long flags;
1649 	unsigned long fd;
1650 	unsigned long offset;
1651 };
1652 
1653 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1654 {
1655 	struct mmap_arg_struct a;
1656 
1657 	if (copy_from_user(&a, arg, sizeof(a)))
1658 		return -EFAULT;
1659 	if (offset_in_page(a.offset))
1660 		return -EINVAL;
1661 
1662 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1663 			       a.offset >> PAGE_SHIFT);
1664 }
1665 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1666 
1667 /*
1668  * Some shared mappings will want the pages marked read-only
1669  * to track write events. If so, we'll downgrade vm_page_prot
1670  * to the private version (using protection_map[] without the
1671  * VM_SHARED bit).
1672  */
1673 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1674 {
1675 	vm_flags_t vm_flags = vma->vm_flags;
1676 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1677 
1678 	/* If it was private or non-writable, the write bit is already clear */
1679 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1680 		return 0;
1681 
1682 	/* The backer wishes to know when pages are first written to? */
1683 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1684 		return 1;
1685 
1686 	/* The open routine did something to the protections that pgprot_modify
1687 	 * won't preserve? */
1688 	if (pgprot_val(vm_page_prot) !=
1689 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1690 		return 0;
1691 
1692 	/* Do we need to track softdirty? */
1693 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1694 		return 1;
1695 
1696 	/* Specialty mapping? */
1697 	if (vm_flags & VM_PFNMAP)
1698 		return 0;
1699 
1700 	/* Can the mapping track the dirty pages? */
1701 	return vma->vm_file && vma->vm_file->f_mapping &&
1702 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1703 }
1704 
1705 /*
1706  * We account for memory if it's a private writeable mapping,
1707  * not hugepages and VM_NORESERVE wasn't set.
1708  */
1709 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1710 {
1711 	/*
1712 	 * hugetlb has its own accounting separate from the core VM
1713 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1714 	 */
1715 	if (file && is_file_hugepages(file))
1716 		return 0;
1717 
1718 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1719 }
1720 
1721 unsigned long mmap_region(struct file *file, unsigned long addr,
1722 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1723 		struct list_head *uf)
1724 {
1725 	struct mm_struct *mm = current->mm;
1726 	struct vm_area_struct *vma, *prev;
1727 	int error;
1728 	struct rb_node **rb_link, *rb_parent;
1729 	unsigned long charged = 0;
1730 
1731 	/* Check against address space limit. */
1732 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1733 		unsigned long nr_pages;
1734 
1735 		/*
1736 		 * MAP_FIXED may remove pages of mappings that intersects with
1737 		 * requested mapping. Account for the pages it would unmap.
1738 		 */
1739 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1740 
1741 		if (!may_expand_vm(mm, vm_flags,
1742 					(len >> PAGE_SHIFT) - nr_pages))
1743 			return -ENOMEM;
1744 	}
1745 
1746 	/* Clear old maps */
1747 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1748 			      &rb_parent)) {
1749 		if (do_munmap(mm, addr, len, uf))
1750 			return -ENOMEM;
1751 	}
1752 
1753 	/*
1754 	 * Private writable mapping: check memory availability
1755 	 */
1756 	if (accountable_mapping(file, vm_flags)) {
1757 		charged = len >> PAGE_SHIFT;
1758 		if (security_vm_enough_memory_mm(mm, charged))
1759 			return -ENOMEM;
1760 		vm_flags |= VM_ACCOUNT;
1761 	}
1762 
1763 	/*
1764 	 * Can we just expand an old mapping?
1765 	 */
1766 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1767 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1768 	if (vma)
1769 		goto out;
1770 
1771 	/*
1772 	 * Determine the object being mapped and call the appropriate
1773 	 * specific mapper. the address has already been validated, but
1774 	 * not unmapped, but the maps are removed from the list.
1775 	 */
1776 	vma = vm_area_alloc(mm);
1777 	if (!vma) {
1778 		error = -ENOMEM;
1779 		goto unacct_error;
1780 	}
1781 
1782 	vma->vm_start = addr;
1783 	vma->vm_end = addr + len;
1784 	vma->vm_flags = vm_flags;
1785 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1786 	vma->vm_pgoff = pgoff;
1787 
1788 	if (file) {
1789 		if (vm_flags & VM_DENYWRITE) {
1790 			error = deny_write_access(file);
1791 			if (error)
1792 				goto free_vma;
1793 		}
1794 		if (vm_flags & VM_SHARED) {
1795 			error = mapping_map_writable(file->f_mapping);
1796 			if (error)
1797 				goto allow_write_and_free_vma;
1798 		}
1799 
1800 		/* ->mmap() can change vma->vm_file, but must guarantee that
1801 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1802 		 * and map writably if VM_SHARED is set. This usually means the
1803 		 * new file must not have been exposed to user-space, yet.
1804 		 */
1805 		vma->vm_file = get_file(file);
1806 		error = call_mmap(file, vma);
1807 		if (error)
1808 			goto unmap_and_free_vma;
1809 
1810 		/* Can addr have changed??
1811 		 *
1812 		 * Answer: Yes, several device drivers can do it in their
1813 		 *         f_op->mmap method. -DaveM
1814 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1815 		 *      be updated for vma_link()
1816 		 */
1817 		WARN_ON_ONCE(addr != vma->vm_start);
1818 
1819 		addr = vma->vm_start;
1820 		vm_flags = vma->vm_flags;
1821 	} else if (vm_flags & VM_SHARED) {
1822 		error = shmem_zero_setup(vma);
1823 		if (error)
1824 			goto free_vma;
1825 	} else {
1826 		vma_set_anonymous(vma);
1827 	}
1828 
1829 	vma_link(mm, vma, prev, rb_link, rb_parent);
1830 	/* Once vma denies write, undo our temporary denial count */
1831 	if (file) {
1832 		if (vm_flags & VM_SHARED)
1833 			mapping_unmap_writable(file->f_mapping);
1834 		if (vm_flags & VM_DENYWRITE)
1835 			allow_write_access(file);
1836 	}
1837 	file = vma->vm_file;
1838 out:
1839 	perf_event_mmap(vma);
1840 
1841 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1842 	if (vm_flags & VM_LOCKED) {
1843 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1844 					is_vm_hugetlb_page(vma) ||
1845 					vma == get_gate_vma(current->mm))
1846 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1847 		else
1848 			mm->locked_vm += (len >> PAGE_SHIFT);
1849 	}
1850 
1851 	if (file)
1852 		uprobe_mmap(vma);
1853 
1854 	/*
1855 	 * New (or expanded) vma always get soft dirty status.
1856 	 * Otherwise user-space soft-dirty page tracker won't
1857 	 * be able to distinguish situation when vma area unmapped,
1858 	 * then new mapped in-place (which must be aimed as
1859 	 * a completely new data area).
1860 	 */
1861 	vma->vm_flags |= VM_SOFTDIRTY;
1862 
1863 	vma_set_page_prot(vma);
1864 
1865 	return addr;
1866 
1867 unmap_and_free_vma:
1868 	vma->vm_file = NULL;
1869 	fput(file);
1870 
1871 	/* Undo any partial mapping done by a device driver. */
1872 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1873 	charged = 0;
1874 	if (vm_flags & VM_SHARED)
1875 		mapping_unmap_writable(file->f_mapping);
1876 allow_write_and_free_vma:
1877 	if (vm_flags & VM_DENYWRITE)
1878 		allow_write_access(file);
1879 free_vma:
1880 	vm_area_free(vma);
1881 unacct_error:
1882 	if (charged)
1883 		vm_unacct_memory(charged);
1884 	return error;
1885 }
1886 
1887 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1888 {
1889 	/*
1890 	 * We implement the search by looking for an rbtree node that
1891 	 * immediately follows a suitable gap. That is,
1892 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1893 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1894 	 * - gap_end - gap_start >= length
1895 	 */
1896 
1897 	struct mm_struct *mm = current->mm;
1898 	struct vm_area_struct *vma;
1899 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1900 
1901 	/* Adjust search length to account for worst case alignment overhead */
1902 	length = info->length + info->align_mask;
1903 	if (length < info->length)
1904 		return -ENOMEM;
1905 
1906 	/* Adjust search limits by the desired length */
1907 	if (info->high_limit < length)
1908 		return -ENOMEM;
1909 	high_limit = info->high_limit - length;
1910 
1911 	if (info->low_limit > high_limit)
1912 		return -ENOMEM;
1913 	low_limit = info->low_limit + length;
1914 
1915 	/* Check if rbtree root looks promising */
1916 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1917 		goto check_highest;
1918 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1919 	if (vma->rb_subtree_gap < length)
1920 		goto check_highest;
1921 
1922 	while (true) {
1923 		/* Visit left subtree if it looks promising */
1924 		gap_end = vm_start_gap(vma);
1925 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1926 			struct vm_area_struct *left =
1927 				rb_entry(vma->vm_rb.rb_left,
1928 					 struct vm_area_struct, vm_rb);
1929 			if (left->rb_subtree_gap >= length) {
1930 				vma = left;
1931 				continue;
1932 			}
1933 		}
1934 
1935 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1936 check_current:
1937 		/* Check if current node has a suitable gap */
1938 		if (gap_start > high_limit)
1939 			return -ENOMEM;
1940 		if (gap_end >= low_limit &&
1941 		    gap_end > gap_start && gap_end - gap_start >= length)
1942 			goto found;
1943 
1944 		/* Visit right subtree if it looks promising */
1945 		if (vma->vm_rb.rb_right) {
1946 			struct vm_area_struct *right =
1947 				rb_entry(vma->vm_rb.rb_right,
1948 					 struct vm_area_struct, vm_rb);
1949 			if (right->rb_subtree_gap >= length) {
1950 				vma = right;
1951 				continue;
1952 			}
1953 		}
1954 
1955 		/* Go back up the rbtree to find next candidate node */
1956 		while (true) {
1957 			struct rb_node *prev = &vma->vm_rb;
1958 			if (!rb_parent(prev))
1959 				goto check_highest;
1960 			vma = rb_entry(rb_parent(prev),
1961 				       struct vm_area_struct, vm_rb);
1962 			if (prev == vma->vm_rb.rb_left) {
1963 				gap_start = vm_end_gap(vma->vm_prev);
1964 				gap_end = vm_start_gap(vma);
1965 				goto check_current;
1966 			}
1967 		}
1968 	}
1969 
1970 check_highest:
1971 	/* Check highest gap, which does not precede any rbtree node */
1972 	gap_start = mm->highest_vm_end;
1973 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1974 	if (gap_start > high_limit)
1975 		return -ENOMEM;
1976 
1977 found:
1978 	/* We found a suitable gap. Clip it with the original low_limit. */
1979 	if (gap_start < info->low_limit)
1980 		gap_start = info->low_limit;
1981 
1982 	/* Adjust gap address to the desired alignment */
1983 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1984 
1985 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1986 	VM_BUG_ON(gap_start + info->length > gap_end);
1987 	return gap_start;
1988 }
1989 
1990 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1991 {
1992 	struct mm_struct *mm = current->mm;
1993 	struct vm_area_struct *vma;
1994 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1995 
1996 	/* Adjust search length to account for worst case alignment overhead */
1997 	length = info->length + info->align_mask;
1998 	if (length < info->length)
1999 		return -ENOMEM;
2000 
2001 	/*
2002 	 * Adjust search limits by the desired length.
2003 	 * See implementation comment at top of unmapped_area().
2004 	 */
2005 	gap_end = info->high_limit;
2006 	if (gap_end < length)
2007 		return -ENOMEM;
2008 	high_limit = gap_end - length;
2009 
2010 	if (info->low_limit > high_limit)
2011 		return -ENOMEM;
2012 	low_limit = info->low_limit + length;
2013 
2014 	/* Check highest gap, which does not precede any rbtree node */
2015 	gap_start = mm->highest_vm_end;
2016 	if (gap_start <= high_limit)
2017 		goto found_highest;
2018 
2019 	/* Check if rbtree root looks promising */
2020 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2021 		return -ENOMEM;
2022 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2023 	if (vma->rb_subtree_gap < length)
2024 		return -ENOMEM;
2025 
2026 	while (true) {
2027 		/* Visit right subtree if it looks promising */
2028 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2029 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2030 			struct vm_area_struct *right =
2031 				rb_entry(vma->vm_rb.rb_right,
2032 					 struct vm_area_struct, vm_rb);
2033 			if (right->rb_subtree_gap >= length) {
2034 				vma = right;
2035 				continue;
2036 			}
2037 		}
2038 
2039 check_current:
2040 		/* Check if current node has a suitable gap */
2041 		gap_end = vm_start_gap(vma);
2042 		if (gap_end < low_limit)
2043 			return -ENOMEM;
2044 		if (gap_start <= high_limit &&
2045 		    gap_end > gap_start && gap_end - gap_start >= length)
2046 			goto found;
2047 
2048 		/* Visit left subtree if it looks promising */
2049 		if (vma->vm_rb.rb_left) {
2050 			struct vm_area_struct *left =
2051 				rb_entry(vma->vm_rb.rb_left,
2052 					 struct vm_area_struct, vm_rb);
2053 			if (left->rb_subtree_gap >= length) {
2054 				vma = left;
2055 				continue;
2056 			}
2057 		}
2058 
2059 		/* Go back up the rbtree to find next candidate node */
2060 		while (true) {
2061 			struct rb_node *prev = &vma->vm_rb;
2062 			if (!rb_parent(prev))
2063 				return -ENOMEM;
2064 			vma = rb_entry(rb_parent(prev),
2065 				       struct vm_area_struct, vm_rb);
2066 			if (prev == vma->vm_rb.rb_right) {
2067 				gap_start = vma->vm_prev ?
2068 					vm_end_gap(vma->vm_prev) : 0;
2069 				goto check_current;
2070 			}
2071 		}
2072 	}
2073 
2074 found:
2075 	/* We found a suitable gap. Clip it with the original high_limit. */
2076 	if (gap_end > info->high_limit)
2077 		gap_end = info->high_limit;
2078 
2079 found_highest:
2080 	/* Compute highest gap address at the desired alignment */
2081 	gap_end -= info->length;
2082 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2083 
2084 	VM_BUG_ON(gap_end < info->low_limit);
2085 	VM_BUG_ON(gap_end < gap_start);
2086 	return gap_end;
2087 }
2088 
2089 
2090 #ifndef arch_get_mmap_end
2091 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2092 #endif
2093 
2094 #ifndef arch_get_mmap_base
2095 #define arch_get_mmap_base(addr, base) (base)
2096 #endif
2097 
2098 /* Get an address range which is currently unmapped.
2099  * For shmat() with addr=0.
2100  *
2101  * Ugly calling convention alert:
2102  * Return value with the low bits set means error value,
2103  * ie
2104  *	if (ret & ~PAGE_MASK)
2105  *		error = ret;
2106  *
2107  * This function "knows" that -ENOMEM has the bits set.
2108  */
2109 #ifndef HAVE_ARCH_UNMAPPED_AREA
2110 unsigned long
2111 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2112 		unsigned long len, unsigned long pgoff, unsigned long flags)
2113 {
2114 	struct mm_struct *mm = current->mm;
2115 	struct vm_area_struct *vma, *prev;
2116 	struct vm_unmapped_area_info info;
2117 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2118 
2119 	if (len > mmap_end - mmap_min_addr)
2120 		return -ENOMEM;
2121 
2122 	if (flags & MAP_FIXED)
2123 		return addr;
2124 
2125 	if (addr) {
2126 		addr = PAGE_ALIGN(addr);
2127 		vma = find_vma_prev(mm, addr, &prev);
2128 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2129 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2130 		    (!prev || addr >= vm_end_gap(prev)))
2131 			return addr;
2132 	}
2133 
2134 	info.flags = 0;
2135 	info.length = len;
2136 	info.low_limit = mm->mmap_base;
2137 	info.high_limit = mmap_end;
2138 	info.align_mask = 0;
2139 	return vm_unmapped_area(&info);
2140 }
2141 #endif
2142 
2143 /*
2144  * This mmap-allocator allocates new areas top-down from below the
2145  * stack's low limit (the base):
2146  */
2147 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2148 unsigned long
2149 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2150 			  unsigned long len, unsigned long pgoff,
2151 			  unsigned long flags)
2152 {
2153 	struct vm_area_struct *vma, *prev;
2154 	struct mm_struct *mm = current->mm;
2155 	struct vm_unmapped_area_info info;
2156 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2157 
2158 	/* requested length too big for entire address space */
2159 	if (len > mmap_end - mmap_min_addr)
2160 		return -ENOMEM;
2161 
2162 	if (flags & MAP_FIXED)
2163 		return addr;
2164 
2165 	/* requesting a specific address */
2166 	if (addr) {
2167 		addr = PAGE_ALIGN(addr);
2168 		vma = find_vma_prev(mm, addr, &prev);
2169 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2170 				(!vma || addr + len <= vm_start_gap(vma)) &&
2171 				(!prev || addr >= vm_end_gap(prev)))
2172 			return addr;
2173 	}
2174 
2175 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2176 	info.length = len;
2177 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2178 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2179 	info.align_mask = 0;
2180 	addr = vm_unmapped_area(&info);
2181 
2182 	/*
2183 	 * A failed mmap() very likely causes application failure,
2184 	 * so fall back to the bottom-up function here. This scenario
2185 	 * can happen with large stack limits and large mmap()
2186 	 * allocations.
2187 	 */
2188 	if (offset_in_page(addr)) {
2189 		VM_BUG_ON(addr != -ENOMEM);
2190 		info.flags = 0;
2191 		info.low_limit = TASK_UNMAPPED_BASE;
2192 		info.high_limit = mmap_end;
2193 		addr = vm_unmapped_area(&info);
2194 	}
2195 
2196 	return addr;
2197 }
2198 #endif
2199 
2200 unsigned long
2201 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2202 		unsigned long pgoff, unsigned long flags)
2203 {
2204 	unsigned long (*get_area)(struct file *, unsigned long,
2205 				  unsigned long, unsigned long, unsigned long);
2206 
2207 	unsigned long error = arch_mmap_check(addr, len, flags);
2208 	if (error)
2209 		return error;
2210 
2211 	/* Careful about overflows.. */
2212 	if (len > TASK_SIZE)
2213 		return -ENOMEM;
2214 
2215 	get_area = current->mm->get_unmapped_area;
2216 	if (file) {
2217 		if (file->f_op->get_unmapped_area)
2218 			get_area = file->f_op->get_unmapped_area;
2219 	} else if (flags & MAP_SHARED) {
2220 		/*
2221 		 * mmap_region() will call shmem_zero_setup() to create a file,
2222 		 * so use shmem's get_unmapped_area in case it can be huge.
2223 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2224 		 */
2225 		pgoff = 0;
2226 		get_area = shmem_get_unmapped_area;
2227 	}
2228 
2229 	addr = get_area(file, addr, len, pgoff, flags);
2230 	if (IS_ERR_VALUE(addr))
2231 		return addr;
2232 
2233 	if (addr > TASK_SIZE - len)
2234 		return -ENOMEM;
2235 	if (offset_in_page(addr))
2236 		return -EINVAL;
2237 
2238 	error = security_mmap_addr(addr);
2239 	return error ? error : addr;
2240 }
2241 
2242 EXPORT_SYMBOL(get_unmapped_area);
2243 
2244 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2245 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2246 {
2247 	struct rb_node *rb_node;
2248 	struct vm_area_struct *vma;
2249 
2250 	/* Check the cache first. */
2251 	vma = vmacache_find(mm, addr);
2252 	if (likely(vma))
2253 		return vma;
2254 
2255 	rb_node = mm->mm_rb.rb_node;
2256 
2257 	while (rb_node) {
2258 		struct vm_area_struct *tmp;
2259 
2260 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2261 
2262 		if (tmp->vm_end > addr) {
2263 			vma = tmp;
2264 			if (tmp->vm_start <= addr)
2265 				break;
2266 			rb_node = rb_node->rb_left;
2267 		} else
2268 			rb_node = rb_node->rb_right;
2269 	}
2270 
2271 	if (vma)
2272 		vmacache_update(addr, vma);
2273 	return vma;
2274 }
2275 
2276 EXPORT_SYMBOL(find_vma);
2277 
2278 /*
2279  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2280  */
2281 struct vm_area_struct *
2282 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2283 			struct vm_area_struct **pprev)
2284 {
2285 	struct vm_area_struct *vma;
2286 
2287 	vma = find_vma(mm, addr);
2288 	if (vma) {
2289 		*pprev = vma->vm_prev;
2290 	} else {
2291 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2292 
2293 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2294 	}
2295 	return vma;
2296 }
2297 
2298 /*
2299  * Verify that the stack growth is acceptable and
2300  * update accounting. This is shared with both the
2301  * grow-up and grow-down cases.
2302  */
2303 static int acct_stack_growth(struct vm_area_struct *vma,
2304 			     unsigned long size, unsigned long grow)
2305 {
2306 	struct mm_struct *mm = vma->vm_mm;
2307 	unsigned long new_start;
2308 
2309 	/* address space limit tests */
2310 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2311 		return -ENOMEM;
2312 
2313 	/* Stack limit test */
2314 	if (size > rlimit(RLIMIT_STACK))
2315 		return -ENOMEM;
2316 
2317 	/* mlock limit tests */
2318 	if (vma->vm_flags & VM_LOCKED) {
2319 		unsigned long locked;
2320 		unsigned long limit;
2321 		locked = mm->locked_vm + grow;
2322 		limit = rlimit(RLIMIT_MEMLOCK);
2323 		limit >>= PAGE_SHIFT;
2324 		if (locked > limit && !capable(CAP_IPC_LOCK))
2325 			return -ENOMEM;
2326 	}
2327 
2328 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2329 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2330 			vma->vm_end - size;
2331 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2332 		return -EFAULT;
2333 
2334 	/*
2335 	 * Overcommit..  This must be the final test, as it will
2336 	 * update security statistics.
2337 	 */
2338 	if (security_vm_enough_memory_mm(mm, grow))
2339 		return -ENOMEM;
2340 
2341 	return 0;
2342 }
2343 
2344 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2345 /*
2346  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2347  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2348  */
2349 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2350 {
2351 	struct mm_struct *mm = vma->vm_mm;
2352 	struct vm_area_struct *next;
2353 	unsigned long gap_addr;
2354 	int error = 0;
2355 
2356 	if (!(vma->vm_flags & VM_GROWSUP))
2357 		return -EFAULT;
2358 
2359 	/* Guard against exceeding limits of the address space. */
2360 	address &= PAGE_MASK;
2361 	if (address >= (TASK_SIZE & PAGE_MASK))
2362 		return -ENOMEM;
2363 	address += PAGE_SIZE;
2364 
2365 	/* Enforce stack_guard_gap */
2366 	gap_addr = address + stack_guard_gap;
2367 
2368 	/* Guard against overflow */
2369 	if (gap_addr < address || gap_addr > TASK_SIZE)
2370 		gap_addr = TASK_SIZE;
2371 
2372 	next = vma->vm_next;
2373 	if (next && next->vm_start < gap_addr &&
2374 			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2375 		if (!(next->vm_flags & VM_GROWSUP))
2376 			return -ENOMEM;
2377 		/* Check that both stack segments have the same anon_vma? */
2378 	}
2379 
2380 	/* We must make sure the anon_vma is allocated. */
2381 	if (unlikely(anon_vma_prepare(vma)))
2382 		return -ENOMEM;
2383 
2384 	/*
2385 	 * vma->vm_start/vm_end cannot change under us because the caller
2386 	 * is required to hold the mmap_sem in read mode.  We need the
2387 	 * anon_vma lock to serialize against concurrent expand_stacks.
2388 	 */
2389 	anon_vma_lock_write(vma->anon_vma);
2390 
2391 	/* Somebody else might have raced and expanded it already */
2392 	if (address > vma->vm_end) {
2393 		unsigned long size, grow;
2394 
2395 		size = address - vma->vm_start;
2396 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2397 
2398 		error = -ENOMEM;
2399 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2400 			error = acct_stack_growth(vma, size, grow);
2401 			if (!error) {
2402 				/*
2403 				 * vma_gap_update() doesn't support concurrent
2404 				 * updates, but we only hold a shared mmap_sem
2405 				 * lock here, so we need to protect against
2406 				 * concurrent vma expansions.
2407 				 * anon_vma_lock_write() doesn't help here, as
2408 				 * we don't guarantee that all growable vmas
2409 				 * in a mm share the same root anon vma.
2410 				 * So, we reuse mm->page_table_lock to guard
2411 				 * against concurrent vma expansions.
2412 				 */
2413 				spin_lock(&mm->page_table_lock);
2414 				if (vma->vm_flags & VM_LOCKED)
2415 					mm->locked_vm += grow;
2416 				vm_stat_account(mm, vma->vm_flags, grow);
2417 				anon_vma_interval_tree_pre_update_vma(vma);
2418 				vma->vm_end = address;
2419 				anon_vma_interval_tree_post_update_vma(vma);
2420 				if (vma->vm_next)
2421 					vma_gap_update(vma->vm_next);
2422 				else
2423 					mm->highest_vm_end = vm_end_gap(vma);
2424 				spin_unlock(&mm->page_table_lock);
2425 
2426 				perf_event_mmap(vma);
2427 			}
2428 		}
2429 	}
2430 	anon_vma_unlock_write(vma->anon_vma);
2431 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2432 	validate_mm(mm);
2433 	return error;
2434 }
2435 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2436 
2437 /*
2438  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2439  */
2440 int expand_downwards(struct vm_area_struct *vma,
2441 				   unsigned long address)
2442 {
2443 	struct mm_struct *mm = vma->vm_mm;
2444 	struct vm_area_struct *prev;
2445 	int error = 0;
2446 
2447 	address &= PAGE_MASK;
2448 	if (address < mmap_min_addr)
2449 		return -EPERM;
2450 
2451 	/* Enforce stack_guard_gap */
2452 	prev = vma->vm_prev;
2453 	/* Check that both stack segments have the same anon_vma? */
2454 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2455 			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2456 		if (address - prev->vm_end < stack_guard_gap)
2457 			return -ENOMEM;
2458 	}
2459 
2460 	/* We must make sure the anon_vma is allocated. */
2461 	if (unlikely(anon_vma_prepare(vma)))
2462 		return -ENOMEM;
2463 
2464 	/*
2465 	 * vma->vm_start/vm_end cannot change under us because the caller
2466 	 * is required to hold the mmap_sem in read mode.  We need the
2467 	 * anon_vma lock to serialize against concurrent expand_stacks.
2468 	 */
2469 	anon_vma_lock_write(vma->anon_vma);
2470 
2471 	/* Somebody else might have raced and expanded it already */
2472 	if (address < vma->vm_start) {
2473 		unsigned long size, grow;
2474 
2475 		size = vma->vm_end - address;
2476 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2477 
2478 		error = -ENOMEM;
2479 		if (grow <= vma->vm_pgoff) {
2480 			error = acct_stack_growth(vma, size, grow);
2481 			if (!error) {
2482 				/*
2483 				 * vma_gap_update() doesn't support concurrent
2484 				 * updates, but we only hold a shared mmap_sem
2485 				 * lock here, so we need to protect against
2486 				 * concurrent vma expansions.
2487 				 * anon_vma_lock_write() doesn't help here, as
2488 				 * we don't guarantee that all growable vmas
2489 				 * in a mm share the same root anon vma.
2490 				 * So, we reuse mm->page_table_lock to guard
2491 				 * against concurrent vma expansions.
2492 				 */
2493 				spin_lock(&mm->page_table_lock);
2494 				if (vma->vm_flags & VM_LOCKED)
2495 					mm->locked_vm += grow;
2496 				vm_stat_account(mm, vma->vm_flags, grow);
2497 				anon_vma_interval_tree_pre_update_vma(vma);
2498 				vma->vm_start = address;
2499 				vma->vm_pgoff -= grow;
2500 				anon_vma_interval_tree_post_update_vma(vma);
2501 				vma_gap_update(vma);
2502 				spin_unlock(&mm->page_table_lock);
2503 
2504 				perf_event_mmap(vma);
2505 			}
2506 		}
2507 	}
2508 	anon_vma_unlock_write(vma->anon_vma);
2509 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2510 	validate_mm(mm);
2511 	return error;
2512 }
2513 
2514 /* enforced gap between the expanding stack and other mappings. */
2515 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2516 
2517 static int __init cmdline_parse_stack_guard_gap(char *p)
2518 {
2519 	unsigned long val;
2520 	char *endptr;
2521 
2522 	val = simple_strtoul(p, &endptr, 10);
2523 	if (!*endptr)
2524 		stack_guard_gap = val << PAGE_SHIFT;
2525 
2526 	return 0;
2527 }
2528 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2529 
2530 #ifdef CONFIG_STACK_GROWSUP
2531 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2532 {
2533 	return expand_upwards(vma, address);
2534 }
2535 
2536 struct vm_area_struct *
2537 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2538 {
2539 	struct vm_area_struct *vma, *prev;
2540 
2541 	addr &= PAGE_MASK;
2542 	vma = find_vma_prev(mm, addr, &prev);
2543 	if (vma && (vma->vm_start <= addr))
2544 		return vma;
2545 	/* don't alter vm_end if the coredump is running */
2546 	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2547 		return NULL;
2548 	if (prev->vm_flags & VM_LOCKED)
2549 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2550 	return prev;
2551 }
2552 #else
2553 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2554 {
2555 	return expand_downwards(vma, address);
2556 }
2557 
2558 struct vm_area_struct *
2559 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2560 {
2561 	struct vm_area_struct *vma;
2562 	unsigned long start;
2563 
2564 	addr &= PAGE_MASK;
2565 	vma = find_vma(mm, addr);
2566 	if (!vma)
2567 		return NULL;
2568 	if (vma->vm_start <= addr)
2569 		return vma;
2570 	if (!(vma->vm_flags & VM_GROWSDOWN))
2571 		return NULL;
2572 	/* don't alter vm_start if the coredump is running */
2573 	if (!mmget_still_valid(mm))
2574 		return NULL;
2575 	start = vma->vm_start;
2576 	if (expand_stack(vma, addr))
2577 		return NULL;
2578 	if (vma->vm_flags & VM_LOCKED)
2579 		populate_vma_page_range(vma, addr, start, NULL);
2580 	return vma;
2581 }
2582 #endif
2583 
2584 EXPORT_SYMBOL_GPL(find_extend_vma);
2585 
2586 /*
2587  * Ok - we have the memory areas we should free on the vma list,
2588  * so release them, and do the vma updates.
2589  *
2590  * Called with the mm semaphore held.
2591  */
2592 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2593 {
2594 	unsigned long nr_accounted = 0;
2595 
2596 	/* Update high watermark before we lower total_vm */
2597 	update_hiwater_vm(mm);
2598 	do {
2599 		long nrpages = vma_pages(vma);
2600 
2601 		if (vma->vm_flags & VM_ACCOUNT)
2602 			nr_accounted += nrpages;
2603 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2604 		vma = remove_vma(vma);
2605 	} while (vma);
2606 	vm_unacct_memory(nr_accounted);
2607 	validate_mm(mm);
2608 }
2609 
2610 /*
2611  * Get rid of page table information in the indicated region.
2612  *
2613  * Called with the mm semaphore held.
2614  */
2615 static void unmap_region(struct mm_struct *mm,
2616 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2617 		unsigned long start, unsigned long end)
2618 {
2619 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2620 	struct mmu_gather tlb;
2621 
2622 	lru_add_drain();
2623 	tlb_gather_mmu(&tlb, mm, start, end);
2624 	update_hiwater_rss(mm);
2625 	unmap_vmas(&tlb, vma, start, end);
2626 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2627 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2628 	tlb_finish_mmu(&tlb, start, end);
2629 }
2630 
2631 /*
2632  * Create a list of vma's touched by the unmap, removing them from the mm's
2633  * vma list as we go..
2634  */
2635 static void
2636 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2637 	struct vm_area_struct *prev, unsigned long end)
2638 {
2639 	struct vm_area_struct **insertion_point;
2640 	struct vm_area_struct *tail_vma = NULL;
2641 
2642 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2643 	vma->vm_prev = NULL;
2644 	do {
2645 		vma_rb_erase(vma, &mm->mm_rb);
2646 		mm->map_count--;
2647 		tail_vma = vma;
2648 		vma = vma->vm_next;
2649 	} while (vma && vma->vm_start < end);
2650 	*insertion_point = vma;
2651 	if (vma) {
2652 		vma->vm_prev = prev;
2653 		vma_gap_update(vma);
2654 	} else
2655 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2656 	tail_vma->vm_next = NULL;
2657 
2658 	/* Kill the cache */
2659 	vmacache_invalidate(mm);
2660 }
2661 
2662 /*
2663  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2664  * has already been checked or doesn't make sense to fail.
2665  */
2666 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2667 		unsigned long addr, int new_below)
2668 {
2669 	struct vm_area_struct *new;
2670 	int err;
2671 
2672 	if (vma->vm_ops && vma->vm_ops->split) {
2673 		err = vma->vm_ops->split(vma, addr);
2674 		if (err)
2675 			return err;
2676 	}
2677 
2678 	new = vm_area_dup(vma);
2679 	if (!new)
2680 		return -ENOMEM;
2681 
2682 	if (new_below)
2683 		new->vm_end = addr;
2684 	else {
2685 		new->vm_start = addr;
2686 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2687 	}
2688 
2689 	err = vma_dup_policy(vma, new);
2690 	if (err)
2691 		goto out_free_vma;
2692 
2693 	err = anon_vma_clone(new, vma);
2694 	if (err)
2695 		goto out_free_mpol;
2696 
2697 	if (new->vm_file)
2698 		get_file(new->vm_file);
2699 
2700 	if (new->vm_ops && new->vm_ops->open)
2701 		new->vm_ops->open(new);
2702 
2703 	if (new_below)
2704 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2705 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2706 	else
2707 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2708 
2709 	/* Success. */
2710 	if (!err)
2711 		return 0;
2712 
2713 	/* Clean everything up if vma_adjust failed. */
2714 	if (new->vm_ops && new->vm_ops->close)
2715 		new->vm_ops->close(new);
2716 	if (new->vm_file)
2717 		fput(new->vm_file);
2718 	unlink_anon_vmas(new);
2719  out_free_mpol:
2720 	mpol_put(vma_policy(new));
2721  out_free_vma:
2722 	vm_area_free(new);
2723 	return err;
2724 }
2725 
2726 /*
2727  * Split a vma into two pieces at address 'addr', a new vma is allocated
2728  * either for the first part or the tail.
2729  */
2730 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2731 	      unsigned long addr, int new_below)
2732 {
2733 	if (mm->map_count >= sysctl_max_map_count)
2734 		return -ENOMEM;
2735 
2736 	return __split_vma(mm, vma, addr, new_below);
2737 }
2738 
2739 /* Munmap is split into 2 main parts -- this part which finds
2740  * what needs doing, and the areas themselves, which do the
2741  * work.  This now handles partial unmappings.
2742  * Jeremy Fitzhardinge <jeremy@goop.org>
2743  */
2744 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2745 		struct list_head *uf, bool downgrade)
2746 {
2747 	unsigned long end;
2748 	struct vm_area_struct *vma, *prev, *last;
2749 
2750 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2751 		return -EINVAL;
2752 
2753 	len = PAGE_ALIGN(len);
2754 	end = start + len;
2755 	if (len == 0)
2756 		return -EINVAL;
2757 
2758 	/*
2759 	 * arch_unmap() might do unmaps itself.  It must be called
2760 	 * and finish any rbtree manipulation before this code
2761 	 * runs and also starts to manipulate the rbtree.
2762 	 */
2763 	arch_unmap(mm, start, end);
2764 
2765 	/* Find the first overlapping VMA */
2766 	vma = find_vma(mm, start);
2767 	if (!vma)
2768 		return 0;
2769 	prev = vma->vm_prev;
2770 	/* we have  start < vma->vm_end  */
2771 
2772 	/* if it doesn't overlap, we have nothing.. */
2773 	if (vma->vm_start >= end)
2774 		return 0;
2775 
2776 	/*
2777 	 * If we need to split any vma, do it now to save pain later.
2778 	 *
2779 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2780 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2781 	 * places tmp vma above, and higher split_vma places tmp vma below.
2782 	 */
2783 	if (start > vma->vm_start) {
2784 		int error;
2785 
2786 		/*
2787 		 * Make sure that map_count on return from munmap() will
2788 		 * not exceed its limit; but let map_count go just above
2789 		 * its limit temporarily, to help free resources as expected.
2790 		 */
2791 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2792 			return -ENOMEM;
2793 
2794 		error = __split_vma(mm, vma, start, 0);
2795 		if (error)
2796 			return error;
2797 		prev = vma;
2798 	}
2799 
2800 	/* Does it split the last one? */
2801 	last = find_vma(mm, end);
2802 	if (last && end > last->vm_start) {
2803 		int error = __split_vma(mm, last, end, 1);
2804 		if (error)
2805 			return error;
2806 	}
2807 	vma = prev ? prev->vm_next : mm->mmap;
2808 
2809 	if (unlikely(uf)) {
2810 		/*
2811 		 * If userfaultfd_unmap_prep returns an error the vmas
2812 		 * will remain splitted, but userland will get a
2813 		 * highly unexpected error anyway. This is no
2814 		 * different than the case where the first of the two
2815 		 * __split_vma fails, but we don't undo the first
2816 		 * split, despite we could. This is unlikely enough
2817 		 * failure that it's not worth optimizing it for.
2818 		 */
2819 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2820 		if (error)
2821 			return error;
2822 	}
2823 
2824 	/*
2825 	 * unlock any mlock()ed ranges before detaching vmas
2826 	 */
2827 	if (mm->locked_vm) {
2828 		struct vm_area_struct *tmp = vma;
2829 		while (tmp && tmp->vm_start < end) {
2830 			if (tmp->vm_flags & VM_LOCKED) {
2831 				mm->locked_vm -= vma_pages(tmp);
2832 				munlock_vma_pages_all(tmp);
2833 			}
2834 
2835 			tmp = tmp->vm_next;
2836 		}
2837 	}
2838 
2839 	/* Detach vmas from rbtree */
2840 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2841 
2842 	if (downgrade)
2843 		downgrade_write(&mm->mmap_sem);
2844 
2845 	unmap_region(mm, vma, prev, start, end);
2846 
2847 	/* Fix up all other VM information */
2848 	remove_vma_list(mm, vma);
2849 
2850 	return downgrade ? 1 : 0;
2851 }
2852 
2853 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2854 	      struct list_head *uf)
2855 {
2856 	return __do_munmap(mm, start, len, uf, false);
2857 }
2858 
2859 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2860 {
2861 	int ret;
2862 	struct mm_struct *mm = current->mm;
2863 	LIST_HEAD(uf);
2864 
2865 	if (down_write_killable(&mm->mmap_sem))
2866 		return -EINTR;
2867 
2868 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2869 	/*
2870 	 * Returning 1 indicates mmap_sem is downgraded.
2871 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2872 	 * it to 0 before return.
2873 	 */
2874 	if (ret == 1) {
2875 		up_read(&mm->mmap_sem);
2876 		ret = 0;
2877 	} else
2878 		up_write(&mm->mmap_sem);
2879 
2880 	userfaultfd_unmap_complete(mm, &uf);
2881 	return ret;
2882 }
2883 
2884 int vm_munmap(unsigned long start, size_t len)
2885 {
2886 	return __vm_munmap(start, len, false);
2887 }
2888 EXPORT_SYMBOL(vm_munmap);
2889 
2890 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2891 {
2892 	addr = untagged_addr(addr);
2893 	profile_munmap(addr);
2894 	return __vm_munmap(addr, len, true);
2895 }
2896 
2897 
2898 /*
2899  * Emulation of deprecated remap_file_pages() syscall.
2900  */
2901 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2902 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2903 {
2904 
2905 	struct mm_struct *mm = current->mm;
2906 	struct vm_area_struct *vma;
2907 	unsigned long populate = 0;
2908 	unsigned long ret = -EINVAL;
2909 	struct file *file;
2910 
2911 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2912 		     current->comm, current->pid);
2913 
2914 	if (prot)
2915 		return ret;
2916 	start = start & PAGE_MASK;
2917 	size = size & PAGE_MASK;
2918 
2919 	if (start + size <= start)
2920 		return ret;
2921 
2922 	/* Does pgoff wrap? */
2923 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2924 		return ret;
2925 
2926 	if (down_write_killable(&mm->mmap_sem))
2927 		return -EINTR;
2928 
2929 	vma = find_vma(mm, start);
2930 
2931 	if (!vma || !(vma->vm_flags & VM_SHARED))
2932 		goto out;
2933 
2934 	if (start < vma->vm_start)
2935 		goto out;
2936 
2937 	if (start + size > vma->vm_end) {
2938 		struct vm_area_struct *next;
2939 
2940 		for (next = vma->vm_next; next; next = next->vm_next) {
2941 			/* hole between vmas ? */
2942 			if (next->vm_start != next->vm_prev->vm_end)
2943 				goto out;
2944 
2945 			if (next->vm_file != vma->vm_file)
2946 				goto out;
2947 
2948 			if (next->vm_flags != vma->vm_flags)
2949 				goto out;
2950 
2951 			if (start + size <= next->vm_end)
2952 				break;
2953 		}
2954 
2955 		if (!next)
2956 			goto out;
2957 	}
2958 
2959 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2960 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2961 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2962 
2963 	flags &= MAP_NONBLOCK;
2964 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2965 	if (vma->vm_flags & VM_LOCKED) {
2966 		struct vm_area_struct *tmp;
2967 		flags |= MAP_LOCKED;
2968 
2969 		/* drop PG_Mlocked flag for over-mapped range */
2970 		for (tmp = vma; tmp->vm_start >= start + size;
2971 				tmp = tmp->vm_next) {
2972 			/*
2973 			 * Split pmd and munlock page on the border
2974 			 * of the range.
2975 			 */
2976 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2977 
2978 			munlock_vma_pages_range(tmp,
2979 					max(tmp->vm_start, start),
2980 					min(tmp->vm_end, start + size));
2981 		}
2982 	}
2983 
2984 	file = get_file(vma->vm_file);
2985 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2986 			prot, flags, pgoff, &populate, NULL);
2987 	fput(file);
2988 out:
2989 	up_write(&mm->mmap_sem);
2990 	if (populate)
2991 		mm_populate(ret, populate);
2992 	if (!IS_ERR_VALUE(ret))
2993 		ret = 0;
2994 	return ret;
2995 }
2996 
2997 /*
2998  *  this is really a simplified "do_mmap".  it only handles
2999  *  anonymous maps.  eventually we may be able to do some
3000  *  brk-specific accounting here.
3001  */
3002 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3003 {
3004 	struct mm_struct *mm = current->mm;
3005 	struct vm_area_struct *vma, *prev;
3006 	struct rb_node **rb_link, *rb_parent;
3007 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3008 	int error;
3009 
3010 	/* Until we need other flags, refuse anything except VM_EXEC. */
3011 	if ((flags & (~VM_EXEC)) != 0)
3012 		return -EINVAL;
3013 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3014 
3015 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3016 	if (offset_in_page(error))
3017 		return error;
3018 
3019 	error = mlock_future_check(mm, mm->def_flags, len);
3020 	if (error)
3021 		return error;
3022 
3023 	/*
3024 	 * Clear old maps.  this also does some error checking for us
3025 	 */
3026 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3027 			      &rb_parent)) {
3028 		if (do_munmap(mm, addr, len, uf))
3029 			return -ENOMEM;
3030 	}
3031 
3032 	/* Check against address space limits *after* clearing old maps... */
3033 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3034 		return -ENOMEM;
3035 
3036 	if (mm->map_count > sysctl_max_map_count)
3037 		return -ENOMEM;
3038 
3039 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3040 		return -ENOMEM;
3041 
3042 	/* Can we just expand an old private anonymous mapping? */
3043 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3044 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3045 	if (vma)
3046 		goto out;
3047 
3048 	/*
3049 	 * create a vma struct for an anonymous mapping
3050 	 */
3051 	vma = vm_area_alloc(mm);
3052 	if (!vma) {
3053 		vm_unacct_memory(len >> PAGE_SHIFT);
3054 		return -ENOMEM;
3055 	}
3056 
3057 	vma_set_anonymous(vma);
3058 	vma->vm_start = addr;
3059 	vma->vm_end = addr + len;
3060 	vma->vm_pgoff = pgoff;
3061 	vma->vm_flags = flags;
3062 	vma->vm_page_prot = vm_get_page_prot(flags);
3063 	vma_link(mm, vma, prev, rb_link, rb_parent);
3064 out:
3065 	perf_event_mmap(vma);
3066 	mm->total_vm += len >> PAGE_SHIFT;
3067 	mm->data_vm += len >> PAGE_SHIFT;
3068 	if (flags & VM_LOCKED)
3069 		mm->locked_vm += (len >> PAGE_SHIFT);
3070 	vma->vm_flags |= VM_SOFTDIRTY;
3071 	return 0;
3072 }
3073 
3074 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3075 {
3076 	struct mm_struct *mm = current->mm;
3077 	unsigned long len;
3078 	int ret;
3079 	bool populate;
3080 	LIST_HEAD(uf);
3081 
3082 	len = PAGE_ALIGN(request);
3083 	if (len < request)
3084 		return -ENOMEM;
3085 	if (!len)
3086 		return 0;
3087 
3088 	if (down_write_killable(&mm->mmap_sem))
3089 		return -EINTR;
3090 
3091 	ret = do_brk_flags(addr, len, flags, &uf);
3092 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3093 	up_write(&mm->mmap_sem);
3094 	userfaultfd_unmap_complete(mm, &uf);
3095 	if (populate && !ret)
3096 		mm_populate(addr, len);
3097 	return ret;
3098 }
3099 EXPORT_SYMBOL(vm_brk_flags);
3100 
3101 int vm_brk(unsigned long addr, unsigned long len)
3102 {
3103 	return vm_brk_flags(addr, len, 0);
3104 }
3105 EXPORT_SYMBOL(vm_brk);
3106 
3107 /* Release all mmaps. */
3108 void exit_mmap(struct mm_struct *mm)
3109 {
3110 	struct mmu_gather tlb;
3111 	struct vm_area_struct *vma;
3112 	unsigned long nr_accounted = 0;
3113 
3114 	/* mm's last user has gone, and its about to be pulled down */
3115 	mmu_notifier_release(mm);
3116 
3117 	if (unlikely(mm_is_oom_victim(mm))) {
3118 		/*
3119 		 * Manually reap the mm to free as much memory as possible.
3120 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3121 		 * this mm from further consideration.  Taking mm->mmap_sem for
3122 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3123 		 * reaper will not run on this mm again after mmap_sem is
3124 		 * dropped.
3125 		 *
3126 		 * Nothing can be holding mm->mmap_sem here and the above call
3127 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3128 		 * __oom_reap_task_mm() will not block.
3129 		 *
3130 		 * This needs to be done before calling munlock_vma_pages_all(),
3131 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3132 		 * reliably test it.
3133 		 */
3134 		(void)__oom_reap_task_mm(mm);
3135 
3136 		set_bit(MMF_OOM_SKIP, &mm->flags);
3137 		down_write(&mm->mmap_sem);
3138 		up_write(&mm->mmap_sem);
3139 	}
3140 
3141 	if (mm->locked_vm) {
3142 		vma = mm->mmap;
3143 		while (vma) {
3144 			if (vma->vm_flags & VM_LOCKED)
3145 				munlock_vma_pages_all(vma);
3146 			vma = vma->vm_next;
3147 		}
3148 	}
3149 
3150 	arch_exit_mmap(mm);
3151 
3152 	vma = mm->mmap;
3153 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3154 		return;
3155 
3156 	lru_add_drain();
3157 	flush_cache_mm(mm);
3158 	tlb_gather_mmu(&tlb, mm, 0, -1);
3159 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3160 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3161 	unmap_vmas(&tlb, vma, 0, -1);
3162 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3163 	tlb_finish_mmu(&tlb, 0, -1);
3164 
3165 	/*
3166 	 * Walk the list again, actually closing and freeing it,
3167 	 * with preemption enabled, without holding any MM locks.
3168 	 */
3169 	while (vma) {
3170 		if (vma->vm_flags & VM_ACCOUNT)
3171 			nr_accounted += vma_pages(vma);
3172 		vma = remove_vma(vma);
3173 	}
3174 	vm_unacct_memory(nr_accounted);
3175 }
3176 
3177 /* Insert vm structure into process list sorted by address
3178  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3179  * then i_mmap_rwsem is taken here.
3180  */
3181 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3182 {
3183 	struct vm_area_struct *prev;
3184 	struct rb_node **rb_link, *rb_parent;
3185 
3186 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3187 			   &prev, &rb_link, &rb_parent))
3188 		return -ENOMEM;
3189 	if ((vma->vm_flags & VM_ACCOUNT) &&
3190 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3191 		return -ENOMEM;
3192 
3193 	/*
3194 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3195 	 * until its first write fault, when page's anon_vma and index
3196 	 * are set.  But now set the vm_pgoff it will almost certainly
3197 	 * end up with (unless mremap moves it elsewhere before that
3198 	 * first wfault), so /proc/pid/maps tells a consistent story.
3199 	 *
3200 	 * By setting it to reflect the virtual start address of the
3201 	 * vma, merges and splits can happen in a seamless way, just
3202 	 * using the existing file pgoff checks and manipulations.
3203 	 * Similarly in do_mmap_pgoff and in do_brk.
3204 	 */
3205 	if (vma_is_anonymous(vma)) {
3206 		BUG_ON(vma->anon_vma);
3207 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3208 	}
3209 
3210 	vma_link(mm, vma, prev, rb_link, rb_parent);
3211 	return 0;
3212 }
3213 
3214 /*
3215  * Copy the vma structure to a new location in the same mm,
3216  * prior to moving page table entries, to effect an mremap move.
3217  */
3218 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3219 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3220 	bool *need_rmap_locks)
3221 {
3222 	struct vm_area_struct *vma = *vmap;
3223 	unsigned long vma_start = vma->vm_start;
3224 	struct mm_struct *mm = vma->vm_mm;
3225 	struct vm_area_struct *new_vma, *prev;
3226 	struct rb_node **rb_link, *rb_parent;
3227 	bool faulted_in_anon_vma = true;
3228 
3229 	/*
3230 	 * If anonymous vma has not yet been faulted, update new pgoff
3231 	 * to match new location, to increase its chance of merging.
3232 	 */
3233 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3234 		pgoff = addr >> PAGE_SHIFT;
3235 		faulted_in_anon_vma = false;
3236 	}
3237 
3238 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3239 		return NULL;	/* should never get here */
3240 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3241 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3242 			    vma->vm_userfaultfd_ctx);
3243 	if (new_vma) {
3244 		/*
3245 		 * Source vma may have been merged into new_vma
3246 		 */
3247 		if (unlikely(vma_start >= new_vma->vm_start &&
3248 			     vma_start < new_vma->vm_end)) {
3249 			/*
3250 			 * The only way we can get a vma_merge with
3251 			 * self during an mremap is if the vma hasn't
3252 			 * been faulted in yet and we were allowed to
3253 			 * reset the dst vma->vm_pgoff to the
3254 			 * destination address of the mremap to allow
3255 			 * the merge to happen. mremap must change the
3256 			 * vm_pgoff linearity between src and dst vmas
3257 			 * (in turn preventing a vma_merge) to be
3258 			 * safe. It is only safe to keep the vm_pgoff
3259 			 * linear if there are no pages mapped yet.
3260 			 */
3261 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3262 			*vmap = vma = new_vma;
3263 		}
3264 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3265 	} else {
3266 		new_vma = vm_area_dup(vma);
3267 		if (!new_vma)
3268 			goto out;
3269 		new_vma->vm_start = addr;
3270 		new_vma->vm_end = addr + len;
3271 		new_vma->vm_pgoff = pgoff;
3272 		if (vma_dup_policy(vma, new_vma))
3273 			goto out_free_vma;
3274 		if (anon_vma_clone(new_vma, vma))
3275 			goto out_free_mempol;
3276 		if (new_vma->vm_file)
3277 			get_file(new_vma->vm_file);
3278 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3279 			new_vma->vm_ops->open(new_vma);
3280 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3281 		*need_rmap_locks = false;
3282 	}
3283 	return new_vma;
3284 
3285 out_free_mempol:
3286 	mpol_put(vma_policy(new_vma));
3287 out_free_vma:
3288 	vm_area_free(new_vma);
3289 out:
3290 	return NULL;
3291 }
3292 
3293 /*
3294  * Return true if the calling process may expand its vm space by the passed
3295  * number of pages
3296  */
3297 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3298 {
3299 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3300 		return false;
3301 
3302 	if (is_data_mapping(flags) &&
3303 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3304 		/* Workaround for Valgrind */
3305 		if (rlimit(RLIMIT_DATA) == 0 &&
3306 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3307 			return true;
3308 
3309 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3310 			     current->comm, current->pid,
3311 			     (mm->data_vm + npages) << PAGE_SHIFT,
3312 			     rlimit(RLIMIT_DATA),
3313 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3314 
3315 		if (!ignore_rlimit_data)
3316 			return false;
3317 	}
3318 
3319 	return true;
3320 }
3321 
3322 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3323 {
3324 	mm->total_vm += npages;
3325 
3326 	if (is_exec_mapping(flags))
3327 		mm->exec_vm += npages;
3328 	else if (is_stack_mapping(flags))
3329 		mm->stack_vm += npages;
3330 	else if (is_data_mapping(flags))
3331 		mm->data_vm += npages;
3332 }
3333 
3334 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3335 
3336 /*
3337  * Having a close hook prevents vma merging regardless of flags.
3338  */
3339 static void special_mapping_close(struct vm_area_struct *vma)
3340 {
3341 }
3342 
3343 static const char *special_mapping_name(struct vm_area_struct *vma)
3344 {
3345 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3346 }
3347 
3348 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3349 {
3350 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3351 
3352 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3353 		return -EFAULT;
3354 
3355 	if (sm->mremap)
3356 		return sm->mremap(sm, new_vma);
3357 
3358 	return 0;
3359 }
3360 
3361 static const struct vm_operations_struct special_mapping_vmops = {
3362 	.close = special_mapping_close,
3363 	.fault = special_mapping_fault,
3364 	.mremap = special_mapping_mremap,
3365 	.name = special_mapping_name,
3366 };
3367 
3368 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3369 	.close = special_mapping_close,
3370 	.fault = special_mapping_fault,
3371 };
3372 
3373 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3374 {
3375 	struct vm_area_struct *vma = vmf->vma;
3376 	pgoff_t pgoff;
3377 	struct page **pages;
3378 
3379 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3380 		pages = vma->vm_private_data;
3381 	} else {
3382 		struct vm_special_mapping *sm = vma->vm_private_data;
3383 
3384 		if (sm->fault)
3385 			return sm->fault(sm, vmf->vma, vmf);
3386 
3387 		pages = sm->pages;
3388 	}
3389 
3390 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3391 		pgoff--;
3392 
3393 	if (*pages) {
3394 		struct page *page = *pages;
3395 		get_page(page);
3396 		vmf->page = page;
3397 		return 0;
3398 	}
3399 
3400 	return VM_FAULT_SIGBUS;
3401 }
3402 
3403 static struct vm_area_struct *__install_special_mapping(
3404 	struct mm_struct *mm,
3405 	unsigned long addr, unsigned long len,
3406 	unsigned long vm_flags, void *priv,
3407 	const struct vm_operations_struct *ops)
3408 {
3409 	int ret;
3410 	struct vm_area_struct *vma;
3411 
3412 	vma = vm_area_alloc(mm);
3413 	if (unlikely(vma == NULL))
3414 		return ERR_PTR(-ENOMEM);
3415 
3416 	vma->vm_start = addr;
3417 	vma->vm_end = addr + len;
3418 
3419 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3420 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3421 
3422 	vma->vm_ops = ops;
3423 	vma->vm_private_data = priv;
3424 
3425 	ret = insert_vm_struct(mm, vma);
3426 	if (ret)
3427 		goto out;
3428 
3429 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3430 
3431 	perf_event_mmap(vma);
3432 
3433 	return vma;
3434 
3435 out:
3436 	vm_area_free(vma);
3437 	return ERR_PTR(ret);
3438 }
3439 
3440 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3441 	const struct vm_special_mapping *sm)
3442 {
3443 	return vma->vm_private_data == sm &&
3444 		(vma->vm_ops == &special_mapping_vmops ||
3445 		 vma->vm_ops == &legacy_special_mapping_vmops);
3446 }
3447 
3448 /*
3449  * Called with mm->mmap_sem held for writing.
3450  * Insert a new vma covering the given region, with the given flags.
3451  * Its pages are supplied by the given array of struct page *.
3452  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3453  * The region past the last page supplied will always produce SIGBUS.
3454  * The array pointer and the pages it points to are assumed to stay alive
3455  * for as long as this mapping might exist.
3456  */
3457 struct vm_area_struct *_install_special_mapping(
3458 	struct mm_struct *mm,
3459 	unsigned long addr, unsigned long len,
3460 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3461 {
3462 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3463 					&special_mapping_vmops);
3464 }
3465 
3466 int install_special_mapping(struct mm_struct *mm,
3467 			    unsigned long addr, unsigned long len,
3468 			    unsigned long vm_flags, struct page **pages)
3469 {
3470 	struct vm_area_struct *vma = __install_special_mapping(
3471 		mm, addr, len, vm_flags, (void *)pages,
3472 		&legacy_special_mapping_vmops);
3473 
3474 	return PTR_ERR_OR_ZERO(vma);
3475 }
3476 
3477 static DEFINE_MUTEX(mm_all_locks_mutex);
3478 
3479 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3480 {
3481 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3482 		/*
3483 		 * The LSB of head.next can't change from under us
3484 		 * because we hold the mm_all_locks_mutex.
3485 		 */
3486 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3487 		/*
3488 		 * We can safely modify head.next after taking the
3489 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3490 		 * the same anon_vma we won't take it again.
3491 		 *
3492 		 * No need of atomic instructions here, head.next
3493 		 * can't change from under us thanks to the
3494 		 * anon_vma->root->rwsem.
3495 		 */
3496 		if (__test_and_set_bit(0, (unsigned long *)
3497 				       &anon_vma->root->rb_root.rb_root.rb_node))
3498 			BUG();
3499 	}
3500 }
3501 
3502 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3503 {
3504 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3505 		/*
3506 		 * AS_MM_ALL_LOCKS can't change from under us because
3507 		 * we hold the mm_all_locks_mutex.
3508 		 *
3509 		 * Operations on ->flags have to be atomic because
3510 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3511 		 * mm_all_locks_mutex, there may be other cpus
3512 		 * changing other bitflags in parallel to us.
3513 		 */
3514 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3515 			BUG();
3516 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3517 	}
3518 }
3519 
3520 /*
3521  * This operation locks against the VM for all pte/vma/mm related
3522  * operations that could ever happen on a certain mm. This includes
3523  * vmtruncate, try_to_unmap, and all page faults.
3524  *
3525  * The caller must take the mmap_sem in write mode before calling
3526  * mm_take_all_locks(). The caller isn't allowed to release the
3527  * mmap_sem until mm_drop_all_locks() returns.
3528  *
3529  * mmap_sem in write mode is required in order to block all operations
3530  * that could modify pagetables and free pages without need of
3531  * altering the vma layout. It's also needed in write mode to avoid new
3532  * anon_vmas to be associated with existing vmas.
3533  *
3534  * A single task can't take more than one mm_take_all_locks() in a row
3535  * or it would deadlock.
3536  *
3537  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3538  * mapping->flags avoid to take the same lock twice, if more than one
3539  * vma in this mm is backed by the same anon_vma or address_space.
3540  *
3541  * We take locks in following order, accordingly to comment at beginning
3542  * of mm/rmap.c:
3543  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3544  *     hugetlb mapping);
3545  *   - all i_mmap_rwsem locks;
3546  *   - all anon_vma->rwseml
3547  *
3548  * We can take all locks within these types randomly because the VM code
3549  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3550  * mm_all_locks_mutex.
3551  *
3552  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3553  * that may have to take thousand of locks.
3554  *
3555  * mm_take_all_locks() can fail if it's interrupted by signals.
3556  */
3557 int mm_take_all_locks(struct mm_struct *mm)
3558 {
3559 	struct vm_area_struct *vma;
3560 	struct anon_vma_chain *avc;
3561 
3562 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3563 
3564 	mutex_lock(&mm_all_locks_mutex);
3565 
3566 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3567 		if (signal_pending(current))
3568 			goto out_unlock;
3569 		if (vma->vm_file && vma->vm_file->f_mapping &&
3570 				is_vm_hugetlb_page(vma))
3571 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3572 	}
3573 
3574 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3575 		if (signal_pending(current))
3576 			goto out_unlock;
3577 		if (vma->vm_file && vma->vm_file->f_mapping &&
3578 				!is_vm_hugetlb_page(vma))
3579 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3580 	}
3581 
3582 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3583 		if (signal_pending(current))
3584 			goto out_unlock;
3585 		if (vma->anon_vma)
3586 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3587 				vm_lock_anon_vma(mm, avc->anon_vma);
3588 	}
3589 
3590 	return 0;
3591 
3592 out_unlock:
3593 	mm_drop_all_locks(mm);
3594 	return -EINTR;
3595 }
3596 
3597 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3598 {
3599 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3600 		/*
3601 		 * The LSB of head.next can't change to 0 from under
3602 		 * us because we hold the mm_all_locks_mutex.
3603 		 *
3604 		 * We must however clear the bitflag before unlocking
3605 		 * the vma so the users using the anon_vma->rb_root will
3606 		 * never see our bitflag.
3607 		 *
3608 		 * No need of atomic instructions here, head.next
3609 		 * can't change from under us until we release the
3610 		 * anon_vma->root->rwsem.
3611 		 */
3612 		if (!__test_and_clear_bit(0, (unsigned long *)
3613 					  &anon_vma->root->rb_root.rb_root.rb_node))
3614 			BUG();
3615 		anon_vma_unlock_write(anon_vma);
3616 	}
3617 }
3618 
3619 static void vm_unlock_mapping(struct address_space *mapping)
3620 {
3621 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3622 		/*
3623 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3624 		 * because we hold the mm_all_locks_mutex.
3625 		 */
3626 		i_mmap_unlock_write(mapping);
3627 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3628 					&mapping->flags))
3629 			BUG();
3630 	}
3631 }
3632 
3633 /*
3634  * The mmap_sem cannot be released by the caller until
3635  * mm_drop_all_locks() returns.
3636  */
3637 void mm_drop_all_locks(struct mm_struct *mm)
3638 {
3639 	struct vm_area_struct *vma;
3640 	struct anon_vma_chain *avc;
3641 
3642 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3643 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3644 
3645 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3646 		if (vma->anon_vma)
3647 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3648 				vm_unlock_anon_vma(avc->anon_vma);
3649 		if (vma->vm_file && vma->vm_file->f_mapping)
3650 			vm_unlock_mapping(vma->vm_file->f_mapping);
3651 	}
3652 
3653 	mutex_unlock(&mm_all_locks_mutex);
3654 }
3655 
3656 /*
3657  * initialise the percpu counter for VM
3658  */
3659 void __init mmap_init(void)
3660 {
3661 	int ret;
3662 
3663 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3664 	VM_BUG_ON(ret);
3665 }
3666 
3667 /*
3668  * Initialise sysctl_user_reserve_kbytes.
3669  *
3670  * This is intended to prevent a user from starting a single memory hogging
3671  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3672  * mode.
3673  *
3674  * The default value is min(3% of free memory, 128MB)
3675  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3676  */
3677 static int init_user_reserve(void)
3678 {
3679 	unsigned long free_kbytes;
3680 
3681 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3682 
3683 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3684 	return 0;
3685 }
3686 subsys_initcall(init_user_reserve);
3687 
3688 /*
3689  * Initialise sysctl_admin_reserve_kbytes.
3690  *
3691  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3692  * to log in and kill a memory hogging process.
3693  *
3694  * Systems with more than 256MB will reserve 8MB, enough to recover
3695  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3696  * only reserve 3% of free pages by default.
3697  */
3698 static int init_admin_reserve(void)
3699 {
3700 	unsigned long free_kbytes;
3701 
3702 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3703 
3704 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3705 	return 0;
3706 }
3707 subsys_initcall(init_admin_reserve);
3708 
3709 /*
3710  * Reinititalise user and admin reserves if memory is added or removed.
3711  *
3712  * The default user reserve max is 128MB, and the default max for the
3713  * admin reserve is 8MB. These are usually, but not always, enough to
3714  * enable recovery from a memory hogging process using login/sshd, a shell,
3715  * and tools like top. It may make sense to increase or even disable the
3716  * reserve depending on the existence of swap or variations in the recovery
3717  * tools. So, the admin may have changed them.
3718  *
3719  * If memory is added and the reserves have been eliminated or increased above
3720  * the default max, then we'll trust the admin.
3721  *
3722  * If memory is removed and there isn't enough free memory, then we
3723  * need to reset the reserves.
3724  *
3725  * Otherwise keep the reserve set by the admin.
3726  */
3727 static int reserve_mem_notifier(struct notifier_block *nb,
3728 			     unsigned long action, void *data)
3729 {
3730 	unsigned long tmp, free_kbytes;
3731 
3732 	switch (action) {
3733 	case MEM_ONLINE:
3734 		/* Default max is 128MB. Leave alone if modified by operator. */
3735 		tmp = sysctl_user_reserve_kbytes;
3736 		if (0 < tmp && tmp < (1UL << 17))
3737 			init_user_reserve();
3738 
3739 		/* Default max is 8MB.  Leave alone if modified by operator. */
3740 		tmp = sysctl_admin_reserve_kbytes;
3741 		if (0 < tmp && tmp < (1UL << 13))
3742 			init_admin_reserve();
3743 
3744 		break;
3745 	case MEM_OFFLINE:
3746 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3747 
3748 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3749 			init_user_reserve();
3750 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3751 				sysctl_user_reserve_kbytes);
3752 		}
3753 
3754 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3755 			init_admin_reserve();
3756 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3757 				sysctl_admin_reserve_kbytes);
3758 		}
3759 		break;
3760 	default:
3761 		break;
3762 	}
3763 	return NOTIFY_OK;
3764 }
3765 
3766 static struct notifier_block reserve_mem_nb = {
3767 	.notifier_call = reserve_mem_notifier,
3768 };
3769 
3770 static int __meminit init_reserve_notifier(void)
3771 {
3772 	if (register_hotmemory_notifier(&reserve_mem_nb))
3773 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3774 
3775 	return 0;
3776 }
3777 subsys_initcall(init_reserve_notifier);
3778