xref: /openbmc/linux/mm/mmap.c (revision 82ced6fd)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/ima.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 
32 #include <asm/uaccess.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
36 
37 #include "internal.h"
38 
39 #ifndef arch_mmap_check
40 #define arch_mmap_check(addr, len, flags)	(0)
41 #endif
42 
43 #ifndef arch_rebalance_pgtables
44 #define arch_rebalance_pgtables(addr, len)		(addr)
45 #endif
46 
47 static void unmap_region(struct mm_struct *mm,
48 		struct vm_area_struct *vma, struct vm_area_struct *prev,
49 		unsigned long start, unsigned long end);
50 
51 /*
52  * WARNING: the debugging will use recursive algorithms so never enable this
53  * unless you know what you are doing.
54  */
55 #undef DEBUG_MM_RB
56 
57 /* description of effects of mapping type and prot in current implementation.
58  * this is due to the limited x86 page protection hardware.  The expected
59  * behavior is in parens:
60  *
61  * map_type	prot
62  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
63  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
64  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
65  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
66  *
67  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
68  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
69  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
70  *
71  */
72 pgprot_t protection_map[16] = {
73 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
74 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
75 };
76 
77 pgprot_t vm_get_page_prot(unsigned long vm_flags)
78 {
79 	return __pgprot(pgprot_val(protection_map[vm_flags &
80 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
81 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
82 }
83 EXPORT_SYMBOL(vm_get_page_prot);
84 
85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
86 int sysctl_overcommit_ratio = 50;	/* default is 50% */
87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
88 struct percpu_counter vm_committed_as;
89 
90 /*
91  * Check that a process has enough memory to allocate a new virtual
92  * mapping. 0 means there is enough memory for the allocation to
93  * succeed and -ENOMEM implies there is not.
94  *
95  * We currently support three overcommit policies, which are set via the
96  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
97  *
98  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99  * Additional code 2002 Jul 20 by Robert Love.
100  *
101  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
102  *
103  * Note this is a helper function intended to be used by LSMs which
104  * wish to use this logic.
105  */
106 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
107 {
108 	unsigned long free, allowed;
109 
110 	vm_acct_memory(pages);
111 
112 	/*
113 	 * Sometimes we want to use more memory than we have
114 	 */
115 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
116 		return 0;
117 
118 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
119 		unsigned long n;
120 
121 		free = global_page_state(NR_FILE_PAGES);
122 		free += nr_swap_pages;
123 
124 		/*
125 		 * Any slabs which are created with the
126 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127 		 * which are reclaimable, under pressure.  The dentry
128 		 * cache and most inode caches should fall into this
129 		 */
130 		free += global_page_state(NR_SLAB_RECLAIMABLE);
131 
132 		/*
133 		 * Leave the last 3% for root
134 		 */
135 		if (!cap_sys_admin)
136 			free -= free / 32;
137 
138 		if (free > pages)
139 			return 0;
140 
141 		/*
142 		 * nr_free_pages() is very expensive on large systems,
143 		 * only call if we're about to fail.
144 		 */
145 		n = nr_free_pages();
146 
147 		/*
148 		 * Leave reserved pages. The pages are not for anonymous pages.
149 		 */
150 		if (n <= totalreserve_pages)
151 			goto error;
152 		else
153 			n -= totalreserve_pages;
154 
155 		/*
156 		 * Leave the last 3% for root
157 		 */
158 		if (!cap_sys_admin)
159 			n -= n / 32;
160 		free += n;
161 
162 		if (free > pages)
163 			return 0;
164 
165 		goto error;
166 	}
167 
168 	allowed = (totalram_pages - hugetlb_total_pages())
169 	       	* sysctl_overcommit_ratio / 100;
170 	/*
171 	 * Leave the last 3% for root
172 	 */
173 	if (!cap_sys_admin)
174 		allowed -= allowed / 32;
175 	allowed += total_swap_pages;
176 
177 	/* Don't let a single process grow too big:
178 	   leave 3% of the size of this process for other processes */
179 	if (mm)
180 		allowed -= mm->total_vm / 32;
181 
182 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
183 		return 0;
184 error:
185 	vm_unacct_memory(pages);
186 
187 	return -ENOMEM;
188 }
189 
190 /*
191  * Requires inode->i_mapping->i_mmap_lock
192  */
193 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
194 		struct file *file, struct address_space *mapping)
195 {
196 	if (vma->vm_flags & VM_DENYWRITE)
197 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
198 	if (vma->vm_flags & VM_SHARED)
199 		mapping->i_mmap_writable--;
200 
201 	flush_dcache_mmap_lock(mapping);
202 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
203 		list_del_init(&vma->shared.vm_set.list);
204 	else
205 		vma_prio_tree_remove(vma, &mapping->i_mmap);
206 	flush_dcache_mmap_unlock(mapping);
207 }
208 
209 /*
210  * Unlink a file-based vm structure from its prio_tree, to hide
211  * vma from rmap and vmtruncate before freeing its page tables.
212  */
213 void unlink_file_vma(struct vm_area_struct *vma)
214 {
215 	struct file *file = vma->vm_file;
216 
217 	if (file) {
218 		struct address_space *mapping = file->f_mapping;
219 		spin_lock(&mapping->i_mmap_lock);
220 		__remove_shared_vm_struct(vma, file, mapping);
221 		spin_unlock(&mapping->i_mmap_lock);
222 	}
223 }
224 
225 /*
226  * Close a vm structure and free it, returning the next.
227  */
228 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
229 {
230 	struct vm_area_struct *next = vma->vm_next;
231 
232 	might_sleep();
233 	if (vma->vm_ops && vma->vm_ops->close)
234 		vma->vm_ops->close(vma);
235 	if (vma->vm_file) {
236 		fput(vma->vm_file);
237 		if (vma->vm_flags & VM_EXECUTABLE)
238 			removed_exe_file_vma(vma->vm_mm);
239 	}
240 	mpol_put(vma_policy(vma));
241 	kmem_cache_free(vm_area_cachep, vma);
242 	return next;
243 }
244 
245 SYSCALL_DEFINE1(brk, unsigned long, brk)
246 {
247 	unsigned long rlim, retval;
248 	unsigned long newbrk, oldbrk;
249 	struct mm_struct *mm = current->mm;
250 	unsigned long min_brk;
251 
252 	down_write(&mm->mmap_sem);
253 
254 #ifdef CONFIG_COMPAT_BRK
255 	min_brk = mm->end_code;
256 #else
257 	min_brk = mm->start_brk;
258 #endif
259 	if (brk < min_brk)
260 		goto out;
261 
262 	/*
263 	 * Check against rlimit here. If this check is done later after the test
264 	 * of oldbrk with newbrk then it can escape the test and let the data
265 	 * segment grow beyond its set limit the in case where the limit is
266 	 * not page aligned -Ram Gupta
267 	 */
268 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
269 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270 			(mm->end_data - mm->start_data) > rlim)
271 		goto out;
272 
273 	newbrk = PAGE_ALIGN(brk);
274 	oldbrk = PAGE_ALIGN(mm->brk);
275 	if (oldbrk == newbrk)
276 		goto set_brk;
277 
278 	/* Always allow shrinking brk. */
279 	if (brk <= mm->brk) {
280 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281 			goto set_brk;
282 		goto out;
283 	}
284 
285 	/* Check against existing mmap mappings. */
286 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287 		goto out;
288 
289 	/* Ok, looks good - let it rip. */
290 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291 		goto out;
292 set_brk:
293 	mm->brk = brk;
294 out:
295 	retval = mm->brk;
296 	up_write(&mm->mmap_sem);
297 	return retval;
298 }
299 
300 #ifdef DEBUG_MM_RB
301 static int browse_rb(struct rb_root *root)
302 {
303 	int i = 0, j;
304 	struct rb_node *nd, *pn = NULL;
305 	unsigned long prev = 0, pend = 0;
306 
307 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 		struct vm_area_struct *vma;
309 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 		if (vma->vm_start < prev)
311 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312 		if (vma->vm_start < pend)
313 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314 		if (vma->vm_start > vma->vm_end)
315 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316 		i++;
317 		pn = nd;
318 		prev = vma->vm_start;
319 		pend = vma->vm_end;
320 	}
321 	j = 0;
322 	for (nd = pn; nd; nd = rb_prev(nd)) {
323 		j++;
324 	}
325 	if (i != j)
326 		printk("backwards %d, forwards %d\n", j, i), i = 0;
327 	return i;
328 }
329 
330 void validate_mm(struct mm_struct *mm)
331 {
332 	int bug = 0;
333 	int i = 0;
334 	struct vm_area_struct *tmp = mm->mmap;
335 	while (tmp) {
336 		tmp = tmp->vm_next;
337 		i++;
338 	}
339 	if (i != mm->map_count)
340 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
341 	i = browse_rb(&mm->mm_rb);
342 	if (i != mm->map_count)
343 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
344 	BUG_ON(bug);
345 }
346 #else
347 #define validate_mm(mm) do { } while (0)
348 #endif
349 
350 static struct vm_area_struct *
351 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
352 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
353 		struct rb_node ** rb_parent)
354 {
355 	struct vm_area_struct * vma;
356 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
357 
358 	__rb_link = &mm->mm_rb.rb_node;
359 	rb_prev = __rb_parent = NULL;
360 	vma = NULL;
361 
362 	while (*__rb_link) {
363 		struct vm_area_struct *vma_tmp;
364 
365 		__rb_parent = *__rb_link;
366 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
367 
368 		if (vma_tmp->vm_end > addr) {
369 			vma = vma_tmp;
370 			if (vma_tmp->vm_start <= addr)
371 				break;
372 			__rb_link = &__rb_parent->rb_left;
373 		} else {
374 			rb_prev = __rb_parent;
375 			__rb_link = &__rb_parent->rb_right;
376 		}
377 	}
378 
379 	*pprev = NULL;
380 	if (rb_prev)
381 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
382 	*rb_link = __rb_link;
383 	*rb_parent = __rb_parent;
384 	return vma;
385 }
386 
387 static inline void
388 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
389 		struct vm_area_struct *prev, struct rb_node *rb_parent)
390 {
391 	if (prev) {
392 		vma->vm_next = prev->vm_next;
393 		prev->vm_next = vma;
394 	} else {
395 		mm->mmap = vma;
396 		if (rb_parent)
397 			vma->vm_next = rb_entry(rb_parent,
398 					struct vm_area_struct, vm_rb);
399 		else
400 			vma->vm_next = NULL;
401 	}
402 }
403 
404 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
405 		struct rb_node **rb_link, struct rb_node *rb_parent)
406 {
407 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
408 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
409 }
410 
411 static void __vma_link_file(struct vm_area_struct *vma)
412 {
413 	struct file *file;
414 
415 	file = vma->vm_file;
416 	if (file) {
417 		struct address_space *mapping = file->f_mapping;
418 
419 		if (vma->vm_flags & VM_DENYWRITE)
420 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
421 		if (vma->vm_flags & VM_SHARED)
422 			mapping->i_mmap_writable++;
423 
424 		flush_dcache_mmap_lock(mapping);
425 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
426 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
427 		else
428 			vma_prio_tree_insert(vma, &mapping->i_mmap);
429 		flush_dcache_mmap_unlock(mapping);
430 	}
431 }
432 
433 static void
434 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435 	struct vm_area_struct *prev, struct rb_node **rb_link,
436 	struct rb_node *rb_parent)
437 {
438 	__vma_link_list(mm, vma, prev, rb_parent);
439 	__vma_link_rb(mm, vma, rb_link, rb_parent);
440 	__anon_vma_link(vma);
441 }
442 
443 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
444 			struct vm_area_struct *prev, struct rb_node **rb_link,
445 			struct rb_node *rb_parent)
446 {
447 	struct address_space *mapping = NULL;
448 
449 	if (vma->vm_file)
450 		mapping = vma->vm_file->f_mapping;
451 
452 	if (mapping) {
453 		spin_lock(&mapping->i_mmap_lock);
454 		vma->vm_truncate_count = mapping->truncate_count;
455 	}
456 	anon_vma_lock(vma);
457 
458 	__vma_link(mm, vma, prev, rb_link, rb_parent);
459 	__vma_link_file(vma);
460 
461 	anon_vma_unlock(vma);
462 	if (mapping)
463 		spin_unlock(&mapping->i_mmap_lock);
464 
465 	mm->map_count++;
466 	validate_mm(mm);
467 }
468 
469 /*
470  * Helper for vma_adjust in the split_vma insert case:
471  * insert vm structure into list and rbtree and anon_vma,
472  * but it has already been inserted into prio_tree earlier.
473  */
474 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
475 {
476 	struct vm_area_struct *__vma, *prev;
477 	struct rb_node **rb_link, *rb_parent;
478 
479 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
480 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
481 	__vma_link(mm, vma, prev, rb_link, rb_parent);
482 	mm->map_count++;
483 }
484 
485 static inline void
486 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
487 		struct vm_area_struct *prev)
488 {
489 	prev->vm_next = vma->vm_next;
490 	rb_erase(&vma->vm_rb, &mm->mm_rb);
491 	if (mm->mmap_cache == vma)
492 		mm->mmap_cache = prev;
493 }
494 
495 /*
496  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
497  * is already present in an i_mmap tree without adjusting the tree.
498  * The following helper function should be used when such adjustments
499  * are necessary.  The "insert" vma (if any) is to be inserted
500  * before we drop the necessary locks.
501  */
502 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
503 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
504 {
505 	struct mm_struct *mm = vma->vm_mm;
506 	struct vm_area_struct *next = vma->vm_next;
507 	struct vm_area_struct *importer = NULL;
508 	struct address_space *mapping = NULL;
509 	struct prio_tree_root *root = NULL;
510 	struct file *file = vma->vm_file;
511 	struct anon_vma *anon_vma = NULL;
512 	long adjust_next = 0;
513 	int remove_next = 0;
514 
515 	if (next && !insert) {
516 		if (end >= next->vm_end) {
517 			/*
518 			 * vma expands, overlapping all the next, and
519 			 * perhaps the one after too (mprotect case 6).
520 			 */
521 again:			remove_next = 1 + (end > next->vm_end);
522 			end = next->vm_end;
523 			anon_vma = next->anon_vma;
524 			importer = vma;
525 		} else if (end > next->vm_start) {
526 			/*
527 			 * vma expands, overlapping part of the next:
528 			 * mprotect case 5 shifting the boundary up.
529 			 */
530 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
531 			anon_vma = next->anon_vma;
532 			importer = vma;
533 		} else if (end < vma->vm_end) {
534 			/*
535 			 * vma shrinks, and !insert tells it's not
536 			 * split_vma inserting another: so it must be
537 			 * mprotect case 4 shifting the boundary down.
538 			 */
539 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
540 			anon_vma = next->anon_vma;
541 			importer = next;
542 		}
543 	}
544 
545 	if (file) {
546 		mapping = file->f_mapping;
547 		if (!(vma->vm_flags & VM_NONLINEAR))
548 			root = &mapping->i_mmap;
549 		spin_lock(&mapping->i_mmap_lock);
550 		if (importer &&
551 		    vma->vm_truncate_count != next->vm_truncate_count) {
552 			/*
553 			 * unmap_mapping_range might be in progress:
554 			 * ensure that the expanding vma is rescanned.
555 			 */
556 			importer->vm_truncate_count = 0;
557 		}
558 		if (insert) {
559 			insert->vm_truncate_count = vma->vm_truncate_count;
560 			/*
561 			 * Put into prio_tree now, so instantiated pages
562 			 * are visible to arm/parisc __flush_dcache_page
563 			 * throughout; but we cannot insert into address
564 			 * space until vma start or end is updated.
565 			 */
566 			__vma_link_file(insert);
567 		}
568 	}
569 
570 	/*
571 	 * When changing only vma->vm_end, we don't really need
572 	 * anon_vma lock: but is that case worth optimizing out?
573 	 */
574 	if (vma->anon_vma)
575 		anon_vma = vma->anon_vma;
576 	if (anon_vma) {
577 		spin_lock(&anon_vma->lock);
578 		/*
579 		 * Easily overlooked: when mprotect shifts the boundary,
580 		 * make sure the expanding vma has anon_vma set if the
581 		 * shrinking vma had, to cover any anon pages imported.
582 		 */
583 		if (importer && !importer->anon_vma) {
584 			importer->anon_vma = anon_vma;
585 			__anon_vma_link(importer);
586 		}
587 	}
588 
589 	if (root) {
590 		flush_dcache_mmap_lock(mapping);
591 		vma_prio_tree_remove(vma, root);
592 		if (adjust_next)
593 			vma_prio_tree_remove(next, root);
594 	}
595 
596 	vma->vm_start = start;
597 	vma->vm_end = end;
598 	vma->vm_pgoff = pgoff;
599 	if (adjust_next) {
600 		next->vm_start += adjust_next << PAGE_SHIFT;
601 		next->vm_pgoff += adjust_next;
602 	}
603 
604 	if (root) {
605 		if (adjust_next)
606 			vma_prio_tree_insert(next, root);
607 		vma_prio_tree_insert(vma, root);
608 		flush_dcache_mmap_unlock(mapping);
609 	}
610 
611 	if (remove_next) {
612 		/*
613 		 * vma_merge has merged next into vma, and needs
614 		 * us to remove next before dropping the locks.
615 		 */
616 		__vma_unlink(mm, next, vma);
617 		if (file)
618 			__remove_shared_vm_struct(next, file, mapping);
619 		if (next->anon_vma)
620 			__anon_vma_merge(vma, next);
621 	} else if (insert) {
622 		/*
623 		 * split_vma has split insert from vma, and needs
624 		 * us to insert it before dropping the locks
625 		 * (it may either follow vma or precede it).
626 		 */
627 		__insert_vm_struct(mm, insert);
628 	}
629 
630 	if (anon_vma)
631 		spin_unlock(&anon_vma->lock);
632 	if (mapping)
633 		spin_unlock(&mapping->i_mmap_lock);
634 
635 	if (remove_next) {
636 		if (file) {
637 			fput(file);
638 			if (next->vm_flags & VM_EXECUTABLE)
639 				removed_exe_file_vma(mm);
640 		}
641 		mm->map_count--;
642 		mpol_put(vma_policy(next));
643 		kmem_cache_free(vm_area_cachep, next);
644 		/*
645 		 * In mprotect's case 6 (see comments on vma_merge),
646 		 * we must remove another next too. It would clutter
647 		 * up the code too much to do both in one go.
648 		 */
649 		if (remove_next == 2) {
650 			next = vma->vm_next;
651 			goto again;
652 		}
653 	}
654 
655 	validate_mm(mm);
656 }
657 
658 /* Flags that can be inherited from an existing mapping when merging */
659 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
660 
661 /*
662  * If the vma has a ->close operation then the driver probably needs to release
663  * per-vma resources, so we don't attempt to merge those.
664  */
665 static inline int is_mergeable_vma(struct vm_area_struct *vma,
666 			struct file *file, unsigned long vm_flags)
667 {
668 	if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS)
669 		return 0;
670 	if (vma->vm_file != file)
671 		return 0;
672 	if (vma->vm_ops && vma->vm_ops->close)
673 		return 0;
674 	return 1;
675 }
676 
677 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
678 					struct anon_vma *anon_vma2)
679 {
680 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
681 }
682 
683 /*
684  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
685  * in front of (at a lower virtual address and file offset than) the vma.
686  *
687  * We cannot merge two vmas if they have differently assigned (non-NULL)
688  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
689  *
690  * We don't check here for the merged mmap wrapping around the end of pagecache
691  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
692  * wrap, nor mmaps which cover the final page at index -1UL.
693  */
694 static int
695 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
696 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
697 {
698 	if (is_mergeable_vma(vma, file, vm_flags) &&
699 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
700 		if (vma->vm_pgoff == vm_pgoff)
701 			return 1;
702 	}
703 	return 0;
704 }
705 
706 /*
707  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
708  * beyond (at a higher virtual address and file offset than) the vma.
709  *
710  * We cannot merge two vmas if they have differently assigned (non-NULL)
711  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
712  */
713 static int
714 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
715 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
716 {
717 	if (is_mergeable_vma(vma, file, vm_flags) &&
718 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
719 		pgoff_t vm_pglen;
720 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
721 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
722 			return 1;
723 	}
724 	return 0;
725 }
726 
727 /*
728  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
729  * whether that can be merged with its predecessor or its successor.
730  * Or both (it neatly fills a hole).
731  *
732  * In most cases - when called for mmap, brk or mremap - [addr,end) is
733  * certain not to be mapped by the time vma_merge is called; but when
734  * called for mprotect, it is certain to be already mapped (either at
735  * an offset within prev, or at the start of next), and the flags of
736  * this area are about to be changed to vm_flags - and the no-change
737  * case has already been eliminated.
738  *
739  * The following mprotect cases have to be considered, where AAAA is
740  * the area passed down from mprotect_fixup, never extending beyond one
741  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
742  *
743  *     AAAA             AAAA                AAAA          AAAA
744  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
745  *    cannot merge    might become    might become    might become
746  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
747  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
748  *    mremap move:                                    PPPPNNNNNNNN 8
749  *        AAAA
750  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
751  *    might become    case 1 below    case 2 below    case 3 below
752  *
753  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
754  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
755  */
756 struct vm_area_struct *vma_merge(struct mm_struct *mm,
757 			struct vm_area_struct *prev, unsigned long addr,
758 			unsigned long end, unsigned long vm_flags,
759 		     	struct anon_vma *anon_vma, struct file *file,
760 			pgoff_t pgoff, struct mempolicy *policy)
761 {
762 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
763 	struct vm_area_struct *area, *next;
764 
765 	/*
766 	 * We later require that vma->vm_flags == vm_flags,
767 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
768 	 */
769 	if (vm_flags & VM_SPECIAL)
770 		return NULL;
771 
772 	if (prev)
773 		next = prev->vm_next;
774 	else
775 		next = mm->mmap;
776 	area = next;
777 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
778 		next = next->vm_next;
779 
780 	/*
781 	 * Can it merge with the predecessor?
782 	 */
783 	if (prev && prev->vm_end == addr &&
784   			mpol_equal(vma_policy(prev), policy) &&
785 			can_vma_merge_after(prev, vm_flags,
786 						anon_vma, file, pgoff)) {
787 		/*
788 		 * OK, it can.  Can we now merge in the successor as well?
789 		 */
790 		if (next && end == next->vm_start &&
791 				mpol_equal(policy, vma_policy(next)) &&
792 				can_vma_merge_before(next, vm_flags,
793 					anon_vma, file, pgoff+pglen) &&
794 				is_mergeable_anon_vma(prev->anon_vma,
795 						      next->anon_vma)) {
796 							/* cases 1, 6 */
797 			vma_adjust(prev, prev->vm_start,
798 				next->vm_end, prev->vm_pgoff, NULL);
799 		} else					/* cases 2, 5, 7 */
800 			vma_adjust(prev, prev->vm_start,
801 				end, prev->vm_pgoff, NULL);
802 		return prev;
803 	}
804 
805 	/*
806 	 * Can this new request be merged in front of next?
807 	 */
808 	if (next && end == next->vm_start &&
809  			mpol_equal(policy, vma_policy(next)) &&
810 			can_vma_merge_before(next, vm_flags,
811 					anon_vma, file, pgoff+pglen)) {
812 		if (prev && addr < prev->vm_end)	/* case 4 */
813 			vma_adjust(prev, prev->vm_start,
814 				addr, prev->vm_pgoff, NULL);
815 		else					/* cases 3, 8 */
816 			vma_adjust(area, addr, next->vm_end,
817 				next->vm_pgoff - pglen, NULL);
818 		return area;
819 	}
820 
821 	return NULL;
822 }
823 
824 /*
825  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
826  * neighbouring vmas for a suitable anon_vma, before it goes off
827  * to allocate a new anon_vma.  It checks because a repetitive
828  * sequence of mprotects and faults may otherwise lead to distinct
829  * anon_vmas being allocated, preventing vma merge in subsequent
830  * mprotect.
831  */
832 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
833 {
834 	struct vm_area_struct *near;
835 	unsigned long vm_flags;
836 
837 	near = vma->vm_next;
838 	if (!near)
839 		goto try_prev;
840 
841 	/*
842 	 * Since only mprotect tries to remerge vmas, match flags
843 	 * which might be mprotected into each other later on.
844 	 * Neither mlock nor madvise tries to remerge at present,
845 	 * so leave their flags as obstructing a merge.
846 	 */
847 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
848 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
849 
850 	if (near->anon_vma && vma->vm_end == near->vm_start &&
851  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
852 			can_vma_merge_before(near, vm_flags,
853 				NULL, vma->vm_file, vma->vm_pgoff +
854 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
855 		return near->anon_vma;
856 try_prev:
857 	/*
858 	 * It is potentially slow to have to call find_vma_prev here.
859 	 * But it's only on the first write fault on the vma, not
860 	 * every time, and we could devise a way to avoid it later
861 	 * (e.g. stash info in next's anon_vma_node when assigning
862 	 * an anon_vma, or when trying vma_merge).  Another time.
863 	 */
864 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
865 	if (!near)
866 		goto none;
867 
868 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
869 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
870 
871 	if (near->anon_vma && near->vm_end == vma->vm_start &&
872   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
873 			can_vma_merge_after(near, vm_flags,
874 				NULL, vma->vm_file, vma->vm_pgoff))
875 		return near->anon_vma;
876 none:
877 	/*
878 	 * There's no absolute need to look only at touching neighbours:
879 	 * we could search further afield for "compatible" anon_vmas.
880 	 * But it would probably just be a waste of time searching,
881 	 * or lead to too many vmas hanging off the same anon_vma.
882 	 * We're trying to allow mprotect remerging later on,
883 	 * not trying to minimize memory used for anon_vmas.
884 	 */
885 	return NULL;
886 }
887 
888 #ifdef CONFIG_PROC_FS
889 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
890 						struct file *file, long pages)
891 {
892 	const unsigned long stack_flags
893 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
894 
895 	if (file) {
896 		mm->shared_vm += pages;
897 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
898 			mm->exec_vm += pages;
899 	} else if (flags & stack_flags)
900 		mm->stack_vm += pages;
901 	if (flags & (VM_RESERVED|VM_IO))
902 		mm->reserved_vm += pages;
903 }
904 #endif /* CONFIG_PROC_FS */
905 
906 /*
907  * The caller must hold down_write(current->mm->mmap_sem).
908  */
909 
910 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
911 			unsigned long len, unsigned long prot,
912 			unsigned long flags, unsigned long pgoff)
913 {
914 	struct mm_struct * mm = current->mm;
915 	struct inode *inode;
916 	unsigned int vm_flags;
917 	int error;
918 	unsigned long reqprot = prot;
919 
920 	/*
921 	 * Does the application expect PROT_READ to imply PROT_EXEC?
922 	 *
923 	 * (the exception is when the underlying filesystem is noexec
924 	 *  mounted, in which case we dont add PROT_EXEC.)
925 	 */
926 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
927 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
928 			prot |= PROT_EXEC;
929 
930 	if (!len)
931 		return -EINVAL;
932 
933 	if (!(flags & MAP_FIXED))
934 		addr = round_hint_to_min(addr);
935 
936 	error = arch_mmap_check(addr, len, flags);
937 	if (error)
938 		return error;
939 
940 	/* Careful about overflows.. */
941 	len = PAGE_ALIGN(len);
942 	if (!len || len > TASK_SIZE)
943 		return -ENOMEM;
944 
945 	/* offset overflow? */
946 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
947                return -EOVERFLOW;
948 
949 	/* Too many mappings? */
950 	if (mm->map_count > sysctl_max_map_count)
951 		return -ENOMEM;
952 
953 	/* Obtain the address to map to. we verify (or select) it and ensure
954 	 * that it represents a valid section of the address space.
955 	 */
956 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
957 	if (addr & ~PAGE_MASK)
958 		return addr;
959 
960 	/* Do simple checking here so the lower-level routines won't have
961 	 * to. we assume access permissions have been handled by the open
962 	 * of the memory object, so we don't do any here.
963 	 */
964 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
965 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
966 
967 	if (flags & MAP_LOCKED) {
968 		if (!can_do_mlock())
969 			return -EPERM;
970 		vm_flags |= VM_LOCKED;
971 	}
972 
973 	/* mlock MCL_FUTURE? */
974 	if (vm_flags & VM_LOCKED) {
975 		unsigned long locked, lock_limit;
976 		locked = len >> PAGE_SHIFT;
977 		locked += mm->locked_vm;
978 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
979 		lock_limit >>= PAGE_SHIFT;
980 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
981 			return -EAGAIN;
982 	}
983 
984 	inode = file ? file->f_path.dentry->d_inode : NULL;
985 
986 	if (file) {
987 		switch (flags & MAP_TYPE) {
988 		case MAP_SHARED:
989 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
990 				return -EACCES;
991 
992 			/*
993 			 * Make sure we don't allow writing to an append-only
994 			 * file..
995 			 */
996 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
997 				return -EACCES;
998 
999 			/*
1000 			 * Make sure there are no mandatory locks on the file.
1001 			 */
1002 			if (locks_verify_locked(inode))
1003 				return -EAGAIN;
1004 
1005 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1006 			if (!(file->f_mode & FMODE_WRITE))
1007 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1008 
1009 			/* fall through */
1010 		case MAP_PRIVATE:
1011 			if (!(file->f_mode & FMODE_READ))
1012 				return -EACCES;
1013 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1014 				if (vm_flags & VM_EXEC)
1015 					return -EPERM;
1016 				vm_flags &= ~VM_MAYEXEC;
1017 			}
1018 
1019 			if (!file->f_op || !file->f_op->mmap)
1020 				return -ENODEV;
1021 			break;
1022 
1023 		default:
1024 			return -EINVAL;
1025 		}
1026 	} else {
1027 		switch (flags & MAP_TYPE) {
1028 		case MAP_SHARED:
1029 			/*
1030 			 * Ignore pgoff.
1031 			 */
1032 			pgoff = 0;
1033 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1034 			break;
1035 		case MAP_PRIVATE:
1036 			/*
1037 			 * Set pgoff according to addr for anon_vma.
1038 			 */
1039 			pgoff = addr >> PAGE_SHIFT;
1040 			break;
1041 		default:
1042 			return -EINVAL;
1043 		}
1044 	}
1045 
1046 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1047 	if (error)
1048 		return error;
1049 	error = ima_file_mmap(file, prot);
1050 	if (error)
1051 		return error;
1052 
1053 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1054 }
1055 EXPORT_SYMBOL(do_mmap_pgoff);
1056 
1057 /*
1058  * Some shared mappigns will want the pages marked read-only
1059  * to track write events. If so, we'll downgrade vm_page_prot
1060  * to the private version (using protection_map[] without the
1061  * VM_SHARED bit).
1062  */
1063 int vma_wants_writenotify(struct vm_area_struct *vma)
1064 {
1065 	unsigned int vm_flags = vma->vm_flags;
1066 
1067 	/* If it was private or non-writable, the write bit is already clear */
1068 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1069 		return 0;
1070 
1071 	/* The backer wishes to know when pages are first written to? */
1072 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1073 		return 1;
1074 
1075 	/* The open routine did something to the protections already? */
1076 	if (pgprot_val(vma->vm_page_prot) !=
1077 	    pgprot_val(vm_get_page_prot(vm_flags)))
1078 		return 0;
1079 
1080 	/* Specialty mapping? */
1081 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1082 		return 0;
1083 
1084 	/* Can the mapping track the dirty pages? */
1085 	return vma->vm_file && vma->vm_file->f_mapping &&
1086 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1087 }
1088 
1089 /*
1090  * We account for memory if it's a private writeable mapping,
1091  * not hugepages and VM_NORESERVE wasn't set.
1092  */
1093 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1094 {
1095 	/*
1096 	 * hugetlb has its own accounting separate from the core VM
1097 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1098 	 */
1099 	if (file && is_file_hugepages(file))
1100 		return 0;
1101 
1102 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1103 }
1104 
1105 unsigned long mmap_region(struct file *file, unsigned long addr,
1106 			  unsigned long len, unsigned long flags,
1107 			  unsigned int vm_flags, unsigned long pgoff)
1108 {
1109 	struct mm_struct *mm = current->mm;
1110 	struct vm_area_struct *vma, *prev;
1111 	int correct_wcount = 0;
1112 	int error;
1113 	struct rb_node **rb_link, *rb_parent;
1114 	unsigned long charged = 0;
1115 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1116 
1117 	/* Clear old maps */
1118 	error = -ENOMEM;
1119 munmap_back:
1120 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1121 	if (vma && vma->vm_start < addr + len) {
1122 		if (do_munmap(mm, addr, len))
1123 			return -ENOMEM;
1124 		goto munmap_back;
1125 	}
1126 
1127 	/* Check against address space limit. */
1128 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1129 		return -ENOMEM;
1130 
1131 	/*
1132 	 * Set 'VM_NORESERVE' if we should not account for the
1133 	 * memory use of this mapping.
1134 	 */
1135 	if ((flags & MAP_NORESERVE)) {
1136 		/* We honor MAP_NORESERVE if allowed to overcommit */
1137 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1138 			vm_flags |= VM_NORESERVE;
1139 
1140 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1141 		if (file && is_file_hugepages(file))
1142 			vm_flags |= VM_NORESERVE;
1143 	}
1144 
1145 	/*
1146 	 * Private writable mapping: check memory availability
1147 	 */
1148 	if (accountable_mapping(file, vm_flags)) {
1149 		charged = len >> PAGE_SHIFT;
1150 		if (security_vm_enough_memory(charged))
1151 			return -ENOMEM;
1152 		vm_flags |= VM_ACCOUNT;
1153 	}
1154 
1155 	/*
1156 	 * Can we just expand an old mapping?
1157 	 */
1158 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1159 	if (vma)
1160 		goto out;
1161 
1162 	/*
1163 	 * Determine the object being mapped and call the appropriate
1164 	 * specific mapper. the address has already been validated, but
1165 	 * not unmapped, but the maps are removed from the list.
1166 	 */
1167 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1168 	if (!vma) {
1169 		error = -ENOMEM;
1170 		goto unacct_error;
1171 	}
1172 
1173 	vma->vm_mm = mm;
1174 	vma->vm_start = addr;
1175 	vma->vm_end = addr + len;
1176 	vma->vm_flags = vm_flags;
1177 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1178 	vma->vm_pgoff = pgoff;
1179 
1180 	if (file) {
1181 		error = -EINVAL;
1182 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1183 			goto free_vma;
1184 		if (vm_flags & VM_DENYWRITE) {
1185 			error = deny_write_access(file);
1186 			if (error)
1187 				goto free_vma;
1188 			correct_wcount = 1;
1189 		}
1190 		vma->vm_file = file;
1191 		get_file(file);
1192 		error = file->f_op->mmap(file, vma);
1193 		if (error)
1194 			goto unmap_and_free_vma;
1195 		if (vm_flags & VM_EXECUTABLE)
1196 			added_exe_file_vma(mm);
1197 	} else if (vm_flags & VM_SHARED) {
1198 		error = shmem_zero_setup(vma);
1199 		if (error)
1200 			goto free_vma;
1201 	}
1202 
1203 	/* Can addr have changed??
1204 	 *
1205 	 * Answer: Yes, several device drivers can do it in their
1206 	 *         f_op->mmap method. -DaveM
1207 	 */
1208 	addr = vma->vm_start;
1209 	pgoff = vma->vm_pgoff;
1210 	vm_flags = vma->vm_flags;
1211 
1212 	if (vma_wants_writenotify(vma))
1213 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1214 
1215 	vma_link(mm, vma, prev, rb_link, rb_parent);
1216 	file = vma->vm_file;
1217 
1218 	/* Once vma denies write, undo our temporary denial count */
1219 	if (correct_wcount)
1220 		atomic_inc(&inode->i_writecount);
1221 out:
1222 	mm->total_vm += len >> PAGE_SHIFT;
1223 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1224 	if (vm_flags & VM_LOCKED) {
1225 		/*
1226 		 * makes pages present; downgrades, drops, reacquires mmap_sem
1227 		 */
1228 		long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1229 		if (nr_pages < 0)
1230 			return nr_pages;	/* vma gone! */
1231 		mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1232 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1233 		make_pages_present(addr, addr + len);
1234 	return addr;
1235 
1236 unmap_and_free_vma:
1237 	if (correct_wcount)
1238 		atomic_inc(&inode->i_writecount);
1239 	vma->vm_file = NULL;
1240 	fput(file);
1241 
1242 	/* Undo any partial mapping done by a device driver. */
1243 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1244 	charged = 0;
1245 free_vma:
1246 	kmem_cache_free(vm_area_cachep, vma);
1247 unacct_error:
1248 	if (charged)
1249 		vm_unacct_memory(charged);
1250 	return error;
1251 }
1252 
1253 /* Get an address range which is currently unmapped.
1254  * For shmat() with addr=0.
1255  *
1256  * Ugly calling convention alert:
1257  * Return value with the low bits set means error value,
1258  * ie
1259  *	if (ret & ~PAGE_MASK)
1260  *		error = ret;
1261  *
1262  * This function "knows" that -ENOMEM has the bits set.
1263  */
1264 #ifndef HAVE_ARCH_UNMAPPED_AREA
1265 unsigned long
1266 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1267 		unsigned long len, unsigned long pgoff, unsigned long flags)
1268 {
1269 	struct mm_struct *mm = current->mm;
1270 	struct vm_area_struct *vma;
1271 	unsigned long start_addr;
1272 
1273 	if (len > TASK_SIZE)
1274 		return -ENOMEM;
1275 
1276 	if (flags & MAP_FIXED)
1277 		return addr;
1278 
1279 	if (addr) {
1280 		addr = PAGE_ALIGN(addr);
1281 		vma = find_vma(mm, addr);
1282 		if (TASK_SIZE - len >= addr &&
1283 		    (!vma || addr + len <= vma->vm_start))
1284 			return addr;
1285 	}
1286 	if (len > mm->cached_hole_size) {
1287 	        start_addr = addr = mm->free_area_cache;
1288 	} else {
1289 	        start_addr = addr = TASK_UNMAPPED_BASE;
1290 	        mm->cached_hole_size = 0;
1291 	}
1292 
1293 full_search:
1294 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1295 		/* At this point:  (!vma || addr < vma->vm_end). */
1296 		if (TASK_SIZE - len < addr) {
1297 			/*
1298 			 * Start a new search - just in case we missed
1299 			 * some holes.
1300 			 */
1301 			if (start_addr != TASK_UNMAPPED_BASE) {
1302 				addr = TASK_UNMAPPED_BASE;
1303 			        start_addr = addr;
1304 				mm->cached_hole_size = 0;
1305 				goto full_search;
1306 			}
1307 			return -ENOMEM;
1308 		}
1309 		if (!vma || addr + len <= vma->vm_start) {
1310 			/*
1311 			 * Remember the place where we stopped the search:
1312 			 */
1313 			mm->free_area_cache = addr + len;
1314 			return addr;
1315 		}
1316 		if (addr + mm->cached_hole_size < vma->vm_start)
1317 		        mm->cached_hole_size = vma->vm_start - addr;
1318 		addr = vma->vm_end;
1319 	}
1320 }
1321 #endif
1322 
1323 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1324 {
1325 	/*
1326 	 * Is this a new hole at the lowest possible address?
1327 	 */
1328 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1329 		mm->free_area_cache = addr;
1330 		mm->cached_hole_size = ~0UL;
1331 	}
1332 }
1333 
1334 /*
1335  * This mmap-allocator allocates new areas top-down from below the
1336  * stack's low limit (the base):
1337  */
1338 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1339 unsigned long
1340 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1341 			  const unsigned long len, const unsigned long pgoff,
1342 			  const unsigned long flags)
1343 {
1344 	struct vm_area_struct *vma;
1345 	struct mm_struct *mm = current->mm;
1346 	unsigned long addr = addr0;
1347 
1348 	/* requested length too big for entire address space */
1349 	if (len > TASK_SIZE)
1350 		return -ENOMEM;
1351 
1352 	if (flags & MAP_FIXED)
1353 		return addr;
1354 
1355 	/* requesting a specific address */
1356 	if (addr) {
1357 		addr = PAGE_ALIGN(addr);
1358 		vma = find_vma(mm, addr);
1359 		if (TASK_SIZE - len >= addr &&
1360 				(!vma || addr + len <= vma->vm_start))
1361 			return addr;
1362 	}
1363 
1364 	/* check if free_area_cache is useful for us */
1365 	if (len <= mm->cached_hole_size) {
1366  	        mm->cached_hole_size = 0;
1367  		mm->free_area_cache = mm->mmap_base;
1368  	}
1369 
1370 	/* either no address requested or can't fit in requested address hole */
1371 	addr = mm->free_area_cache;
1372 
1373 	/* make sure it can fit in the remaining address space */
1374 	if (addr > len) {
1375 		vma = find_vma(mm, addr-len);
1376 		if (!vma || addr <= vma->vm_start)
1377 			/* remember the address as a hint for next time */
1378 			return (mm->free_area_cache = addr-len);
1379 	}
1380 
1381 	if (mm->mmap_base < len)
1382 		goto bottomup;
1383 
1384 	addr = mm->mmap_base-len;
1385 
1386 	do {
1387 		/*
1388 		 * Lookup failure means no vma is above this address,
1389 		 * else if new region fits below vma->vm_start,
1390 		 * return with success:
1391 		 */
1392 		vma = find_vma(mm, addr);
1393 		if (!vma || addr+len <= vma->vm_start)
1394 			/* remember the address as a hint for next time */
1395 			return (mm->free_area_cache = addr);
1396 
1397  		/* remember the largest hole we saw so far */
1398  		if (addr + mm->cached_hole_size < vma->vm_start)
1399  		        mm->cached_hole_size = vma->vm_start - addr;
1400 
1401 		/* try just below the current vma->vm_start */
1402 		addr = vma->vm_start-len;
1403 	} while (len < vma->vm_start);
1404 
1405 bottomup:
1406 	/*
1407 	 * A failed mmap() very likely causes application failure,
1408 	 * so fall back to the bottom-up function here. This scenario
1409 	 * can happen with large stack limits and large mmap()
1410 	 * allocations.
1411 	 */
1412 	mm->cached_hole_size = ~0UL;
1413   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1414 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1415 	/*
1416 	 * Restore the topdown base:
1417 	 */
1418 	mm->free_area_cache = mm->mmap_base;
1419 	mm->cached_hole_size = ~0UL;
1420 
1421 	return addr;
1422 }
1423 #endif
1424 
1425 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1426 {
1427 	/*
1428 	 * Is this a new hole at the highest possible address?
1429 	 */
1430 	if (addr > mm->free_area_cache)
1431 		mm->free_area_cache = addr;
1432 
1433 	/* dont allow allocations above current base */
1434 	if (mm->free_area_cache > mm->mmap_base)
1435 		mm->free_area_cache = mm->mmap_base;
1436 }
1437 
1438 unsigned long
1439 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1440 		unsigned long pgoff, unsigned long flags)
1441 {
1442 	unsigned long (*get_area)(struct file *, unsigned long,
1443 				  unsigned long, unsigned long, unsigned long);
1444 
1445 	get_area = current->mm->get_unmapped_area;
1446 	if (file && file->f_op && file->f_op->get_unmapped_area)
1447 		get_area = file->f_op->get_unmapped_area;
1448 	addr = get_area(file, addr, len, pgoff, flags);
1449 	if (IS_ERR_VALUE(addr))
1450 		return addr;
1451 
1452 	if (addr > TASK_SIZE - len)
1453 		return -ENOMEM;
1454 	if (addr & ~PAGE_MASK)
1455 		return -EINVAL;
1456 
1457 	return arch_rebalance_pgtables(addr, len);
1458 }
1459 
1460 EXPORT_SYMBOL(get_unmapped_area);
1461 
1462 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1463 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1464 {
1465 	struct vm_area_struct *vma = NULL;
1466 
1467 	if (mm) {
1468 		/* Check the cache first. */
1469 		/* (Cache hit rate is typically around 35%.) */
1470 		vma = mm->mmap_cache;
1471 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1472 			struct rb_node * rb_node;
1473 
1474 			rb_node = mm->mm_rb.rb_node;
1475 			vma = NULL;
1476 
1477 			while (rb_node) {
1478 				struct vm_area_struct * vma_tmp;
1479 
1480 				vma_tmp = rb_entry(rb_node,
1481 						struct vm_area_struct, vm_rb);
1482 
1483 				if (vma_tmp->vm_end > addr) {
1484 					vma = vma_tmp;
1485 					if (vma_tmp->vm_start <= addr)
1486 						break;
1487 					rb_node = rb_node->rb_left;
1488 				} else
1489 					rb_node = rb_node->rb_right;
1490 			}
1491 			if (vma)
1492 				mm->mmap_cache = vma;
1493 		}
1494 	}
1495 	return vma;
1496 }
1497 
1498 EXPORT_SYMBOL(find_vma);
1499 
1500 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1501 struct vm_area_struct *
1502 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1503 			struct vm_area_struct **pprev)
1504 {
1505 	struct vm_area_struct *vma = NULL, *prev = NULL;
1506 	struct rb_node *rb_node;
1507 	if (!mm)
1508 		goto out;
1509 
1510 	/* Guard against addr being lower than the first VMA */
1511 	vma = mm->mmap;
1512 
1513 	/* Go through the RB tree quickly. */
1514 	rb_node = mm->mm_rb.rb_node;
1515 
1516 	while (rb_node) {
1517 		struct vm_area_struct *vma_tmp;
1518 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1519 
1520 		if (addr < vma_tmp->vm_end) {
1521 			rb_node = rb_node->rb_left;
1522 		} else {
1523 			prev = vma_tmp;
1524 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1525 				break;
1526 			rb_node = rb_node->rb_right;
1527 		}
1528 	}
1529 
1530 out:
1531 	*pprev = prev;
1532 	return prev ? prev->vm_next : vma;
1533 }
1534 
1535 /*
1536  * Verify that the stack growth is acceptable and
1537  * update accounting. This is shared with both the
1538  * grow-up and grow-down cases.
1539  */
1540 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1541 {
1542 	struct mm_struct *mm = vma->vm_mm;
1543 	struct rlimit *rlim = current->signal->rlim;
1544 	unsigned long new_start;
1545 
1546 	/* address space limit tests */
1547 	if (!may_expand_vm(mm, grow))
1548 		return -ENOMEM;
1549 
1550 	/* Stack limit test */
1551 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1552 		return -ENOMEM;
1553 
1554 	/* mlock limit tests */
1555 	if (vma->vm_flags & VM_LOCKED) {
1556 		unsigned long locked;
1557 		unsigned long limit;
1558 		locked = mm->locked_vm + grow;
1559 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1560 		if (locked > limit && !capable(CAP_IPC_LOCK))
1561 			return -ENOMEM;
1562 	}
1563 
1564 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1565 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1566 			vma->vm_end - size;
1567 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1568 		return -EFAULT;
1569 
1570 	/*
1571 	 * Overcommit..  This must be the final test, as it will
1572 	 * update security statistics.
1573 	 */
1574 	if (security_vm_enough_memory_mm(mm, grow))
1575 		return -ENOMEM;
1576 
1577 	/* Ok, everything looks good - let it rip */
1578 	mm->total_vm += grow;
1579 	if (vma->vm_flags & VM_LOCKED)
1580 		mm->locked_vm += grow;
1581 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1582 	return 0;
1583 }
1584 
1585 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1586 /*
1587  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1588  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1589  */
1590 #ifndef CONFIG_IA64
1591 static
1592 #endif
1593 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1594 {
1595 	int error;
1596 
1597 	if (!(vma->vm_flags & VM_GROWSUP))
1598 		return -EFAULT;
1599 
1600 	/*
1601 	 * We must make sure the anon_vma is allocated
1602 	 * so that the anon_vma locking is not a noop.
1603 	 */
1604 	if (unlikely(anon_vma_prepare(vma)))
1605 		return -ENOMEM;
1606 	anon_vma_lock(vma);
1607 
1608 	/*
1609 	 * vma->vm_start/vm_end cannot change under us because the caller
1610 	 * is required to hold the mmap_sem in read mode.  We need the
1611 	 * anon_vma lock to serialize against concurrent expand_stacks.
1612 	 * Also guard against wrapping around to address 0.
1613 	 */
1614 	if (address < PAGE_ALIGN(address+4))
1615 		address = PAGE_ALIGN(address+4);
1616 	else {
1617 		anon_vma_unlock(vma);
1618 		return -ENOMEM;
1619 	}
1620 	error = 0;
1621 
1622 	/* Somebody else might have raced and expanded it already */
1623 	if (address > vma->vm_end) {
1624 		unsigned long size, grow;
1625 
1626 		size = address - vma->vm_start;
1627 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1628 
1629 		error = acct_stack_growth(vma, size, grow);
1630 		if (!error)
1631 			vma->vm_end = address;
1632 	}
1633 	anon_vma_unlock(vma);
1634 	return error;
1635 }
1636 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1637 
1638 /*
1639  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1640  */
1641 static int expand_downwards(struct vm_area_struct *vma,
1642 				   unsigned long address)
1643 {
1644 	int error;
1645 
1646 	/*
1647 	 * We must make sure the anon_vma is allocated
1648 	 * so that the anon_vma locking is not a noop.
1649 	 */
1650 	if (unlikely(anon_vma_prepare(vma)))
1651 		return -ENOMEM;
1652 
1653 	address &= PAGE_MASK;
1654 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1655 	if (error)
1656 		return error;
1657 
1658 	anon_vma_lock(vma);
1659 
1660 	/*
1661 	 * vma->vm_start/vm_end cannot change under us because the caller
1662 	 * is required to hold the mmap_sem in read mode.  We need the
1663 	 * anon_vma lock to serialize against concurrent expand_stacks.
1664 	 */
1665 
1666 	/* Somebody else might have raced and expanded it already */
1667 	if (address < vma->vm_start) {
1668 		unsigned long size, grow;
1669 
1670 		size = vma->vm_end - address;
1671 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1672 
1673 		error = acct_stack_growth(vma, size, grow);
1674 		if (!error) {
1675 			vma->vm_start = address;
1676 			vma->vm_pgoff -= grow;
1677 		}
1678 	}
1679 	anon_vma_unlock(vma);
1680 	return error;
1681 }
1682 
1683 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1684 {
1685 	return expand_downwards(vma, address);
1686 }
1687 
1688 #ifdef CONFIG_STACK_GROWSUP
1689 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1690 {
1691 	return expand_upwards(vma, address);
1692 }
1693 
1694 struct vm_area_struct *
1695 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1696 {
1697 	struct vm_area_struct *vma, *prev;
1698 
1699 	addr &= PAGE_MASK;
1700 	vma = find_vma_prev(mm, addr, &prev);
1701 	if (vma && (vma->vm_start <= addr))
1702 		return vma;
1703 	if (!prev || expand_stack(prev, addr))
1704 		return NULL;
1705 	if (prev->vm_flags & VM_LOCKED) {
1706 		if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1707 			return NULL;	/* vma gone! */
1708 	}
1709 	return prev;
1710 }
1711 #else
1712 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1713 {
1714 	return expand_downwards(vma, address);
1715 }
1716 
1717 struct vm_area_struct *
1718 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1719 {
1720 	struct vm_area_struct * vma;
1721 	unsigned long start;
1722 
1723 	addr &= PAGE_MASK;
1724 	vma = find_vma(mm,addr);
1725 	if (!vma)
1726 		return NULL;
1727 	if (vma->vm_start <= addr)
1728 		return vma;
1729 	if (!(vma->vm_flags & VM_GROWSDOWN))
1730 		return NULL;
1731 	start = vma->vm_start;
1732 	if (expand_stack(vma, addr))
1733 		return NULL;
1734 	if (vma->vm_flags & VM_LOCKED) {
1735 		if (mlock_vma_pages_range(vma, addr, start) < 0)
1736 			return NULL;	/* vma gone! */
1737 	}
1738 	return vma;
1739 }
1740 #endif
1741 
1742 /*
1743  * Ok - we have the memory areas we should free on the vma list,
1744  * so release them, and do the vma updates.
1745  *
1746  * Called with the mm semaphore held.
1747  */
1748 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1749 {
1750 	/* Update high watermark before we lower total_vm */
1751 	update_hiwater_vm(mm);
1752 	do {
1753 		long nrpages = vma_pages(vma);
1754 
1755 		mm->total_vm -= nrpages;
1756 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1757 		vma = remove_vma(vma);
1758 	} while (vma);
1759 	validate_mm(mm);
1760 }
1761 
1762 /*
1763  * Get rid of page table information in the indicated region.
1764  *
1765  * Called with the mm semaphore held.
1766  */
1767 static void unmap_region(struct mm_struct *mm,
1768 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1769 		unsigned long start, unsigned long end)
1770 {
1771 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1772 	struct mmu_gather *tlb;
1773 	unsigned long nr_accounted = 0;
1774 
1775 	lru_add_drain();
1776 	tlb = tlb_gather_mmu(mm, 0);
1777 	update_hiwater_rss(mm);
1778 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1779 	vm_unacct_memory(nr_accounted);
1780 	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1781 				 next? next->vm_start: 0);
1782 	tlb_finish_mmu(tlb, start, end);
1783 }
1784 
1785 /*
1786  * Create a list of vma's touched by the unmap, removing them from the mm's
1787  * vma list as we go..
1788  */
1789 static void
1790 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1791 	struct vm_area_struct *prev, unsigned long end)
1792 {
1793 	struct vm_area_struct **insertion_point;
1794 	struct vm_area_struct *tail_vma = NULL;
1795 	unsigned long addr;
1796 
1797 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1798 	do {
1799 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1800 		mm->map_count--;
1801 		tail_vma = vma;
1802 		vma = vma->vm_next;
1803 	} while (vma && vma->vm_start < end);
1804 	*insertion_point = vma;
1805 	tail_vma->vm_next = NULL;
1806 	if (mm->unmap_area == arch_unmap_area)
1807 		addr = prev ? prev->vm_end : mm->mmap_base;
1808 	else
1809 		addr = vma ?  vma->vm_start : mm->mmap_base;
1810 	mm->unmap_area(mm, addr);
1811 	mm->mmap_cache = NULL;		/* Kill the cache. */
1812 }
1813 
1814 /*
1815  * Split a vma into two pieces at address 'addr', a new vma is allocated
1816  * either for the first part or the tail.
1817  */
1818 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1819 	      unsigned long addr, int new_below)
1820 {
1821 	struct mempolicy *pol;
1822 	struct vm_area_struct *new;
1823 
1824 	if (is_vm_hugetlb_page(vma) && (addr &
1825 					~(huge_page_mask(hstate_vma(vma)))))
1826 		return -EINVAL;
1827 
1828 	if (mm->map_count >= sysctl_max_map_count)
1829 		return -ENOMEM;
1830 
1831 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1832 	if (!new)
1833 		return -ENOMEM;
1834 
1835 	/* most fields are the same, copy all, and then fixup */
1836 	*new = *vma;
1837 
1838 	if (new_below)
1839 		new->vm_end = addr;
1840 	else {
1841 		new->vm_start = addr;
1842 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1843 	}
1844 
1845 	pol = mpol_dup(vma_policy(vma));
1846 	if (IS_ERR(pol)) {
1847 		kmem_cache_free(vm_area_cachep, new);
1848 		return PTR_ERR(pol);
1849 	}
1850 	vma_set_policy(new, pol);
1851 
1852 	if (new->vm_file) {
1853 		get_file(new->vm_file);
1854 		if (vma->vm_flags & VM_EXECUTABLE)
1855 			added_exe_file_vma(mm);
1856 	}
1857 
1858 	if (new->vm_ops && new->vm_ops->open)
1859 		new->vm_ops->open(new);
1860 
1861 	if (new_below)
1862 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1863 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1864 	else
1865 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1866 
1867 	return 0;
1868 }
1869 
1870 /* Munmap is split into 2 main parts -- this part which finds
1871  * what needs doing, and the areas themselves, which do the
1872  * work.  This now handles partial unmappings.
1873  * Jeremy Fitzhardinge <jeremy@goop.org>
1874  */
1875 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1876 {
1877 	unsigned long end;
1878 	struct vm_area_struct *vma, *prev, *last;
1879 
1880 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1881 		return -EINVAL;
1882 
1883 	if ((len = PAGE_ALIGN(len)) == 0)
1884 		return -EINVAL;
1885 
1886 	/* Find the first overlapping VMA */
1887 	vma = find_vma_prev(mm, start, &prev);
1888 	if (!vma)
1889 		return 0;
1890 	/* we have  start < vma->vm_end  */
1891 
1892 	/* if it doesn't overlap, we have nothing.. */
1893 	end = start + len;
1894 	if (vma->vm_start >= end)
1895 		return 0;
1896 
1897 	/*
1898 	 * If we need to split any vma, do it now to save pain later.
1899 	 *
1900 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1901 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1902 	 * places tmp vma above, and higher split_vma places tmp vma below.
1903 	 */
1904 	if (start > vma->vm_start) {
1905 		int error = split_vma(mm, vma, start, 0);
1906 		if (error)
1907 			return error;
1908 		prev = vma;
1909 	}
1910 
1911 	/* Does it split the last one? */
1912 	last = find_vma(mm, end);
1913 	if (last && end > last->vm_start) {
1914 		int error = split_vma(mm, last, end, 1);
1915 		if (error)
1916 			return error;
1917 	}
1918 	vma = prev? prev->vm_next: mm->mmap;
1919 
1920 	/*
1921 	 * unlock any mlock()ed ranges before detaching vmas
1922 	 */
1923 	if (mm->locked_vm) {
1924 		struct vm_area_struct *tmp = vma;
1925 		while (tmp && tmp->vm_start < end) {
1926 			if (tmp->vm_flags & VM_LOCKED) {
1927 				mm->locked_vm -= vma_pages(tmp);
1928 				munlock_vma_pages_all(tmp);
1929 			}
1930 			tmp = tmp->vm_next;
1931 		}
1932 	}
1933 
1934 	/*
1935 	 * Remove the vma's, and unmap the actual pages
1936 	 */
1937 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1938 	unmap_region(mm, vma, prev, start, end);
1939 
1940 	/* Fix up all other VM information */
1941 	remove_vma_list(mm, vma);
1942 
1943 	return 0;
1944 }
1945 
1946 EXPORT_SYMBOL(do_munmap);
1947 
1948 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1949 {
1950 	int ret;
1951 	struct mm_struct *mm = current->mm;
1952 
1953 	profile_munmap(addr);
1954 
1955 	down_write(&mm->mmap_sem);
1956 	ret = do_munmap(mm, addr, len);
1957 	up_write(&mm->mmap_sem);
1958 	return ret;
1959 }
1960 
1961 static inline void verify_mm_writelocked(struct mm_struct *mm)
1962 {
1963 #ifdef CONFIG_DEBUG_VM
1964 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1965 		WARN_ON(1);
1966 		up_read(&mm->mmap_sem);
1967 	}
1968 #endif
1969 }
1970 
1971 /*
1972  *  this is really a simplified "do_mmap".  it only handles
1973  *  anonymous maps.  eventually we may be able to do some
1974  *  brk-specific accounting here.
1975  */
1976 unsigned long do_brk(unsigned long addr, unsigned long len)
1977 {
1978 	struct mm_struct * mm = current->mm;
1979 	struct vm_area_struct * vma, * prev;
1980 	unsigned long flags;
1981 	struct rb_node ** rb_link, * rb_parent;
1982 	pgoff_t pgoff = addr >> PAGE_SHIFT;
1983 	int error;
1984 
1985 	len = PAGE_ALIGN(len);
1986 	if (!len)
1987 		return addr;
1988 
1989 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1990 		return -EINVAL;
1991 
1992 	if (is_hugepage_only_range(mm, addr, len))
1993 		return -EINVAL;
1994 
1995 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1996 	if (error)
1997 		return error;
1998 
1999 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2000 
2001 	error = arch_mmap_check(addr, len, flags);
2002 	if (error)
2003 		return error;
2004 
2005 	/*
2006 	 * mlock MCL_FUTURE?
2007 	 */
2008 	if (mm->def_flags & VM_LOCKED) {
2009 		unsigned long locked, lock_limit;
2010 		locked = len >> PAGE_SHIFT;
2011 		locked += mm->locked_vm;
2012 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2013 		lock_limit >>= PAGE_SHIFT;
2014 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2015 			return -EAGAIN;
2016 	}
2017 
2018 	/*
2019 	 * mm->mmap_sem is required to protect against another thread
2020 	 * changing the mappings in case we sleep.
2021 	 */
2022 	verify_mm_writelocked(mm);
2023 
2024 	/*
2025 	 * Clear old maps.  this also does some error checking for us
2026 	 */
2027  munmap_back:
2028 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2029 	if (vma && vma->vm_start < addr + len) {
2030 		if (do_munmap(mm, addr, len))
2031 			return -ENOMEM;
2032 		goto munmap_back;
2033 	}
2034 
2035 	/* Check against address space limits *after* clearing old maps... */
2036 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2037 		return -ENOMEM;
2038 
2039 	if (mm->map_count > sysctl_max_map_count)
2040 		return -ENOMEM;
2041 
2042 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2043 		return -ENOMEM;
2044 
2045 	/* Can we just expand an old private anonymous mapping? */
2046 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2047 					NULL, NULL, pgoff, NULL);
2048 	if (vma)
2049 		goto out;
2050 
2051 	/*
2052 	 * create a vma struct for an anonymous mapping
2053 	 */
2054 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2055 	if (!vma) {
2056 		vm_unacct_memory(len >> PAGE_SHIFT);
2057 		return -ENOMEM;
2058 	}
2059 
2060 	vma->vm_mm = mm;
2061 	vma->vm_start = addr;
2062 	vma->vm_end = addr + len;
2063 	vma->vm_pgoff = pgoff;
2064 	vma->vm_flags = flags;
2065 	vma->vm_page_prot = vm_get_page_prot(flags);
2066 	vma_link(mm, vma, prev, rb_link, rb_parent);
2067 out:
2068 	mm->total_vm += len >> PAGE_SHIFT;
2069 	if (flags & VM_LOCKED) {
2070 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2071 			mm->locked_vm += (len >> PAGE_SHIFT);
2072 	}
2073 	return addr;
2074 }
2075 
2076 EXPORT_SYMBOL(do_brk);
2077 
2078 /* Release all mmaps. */
2079 void exit_mmap(struct mm_struct *mm)
2080 {
2081 	struct mmu_gather *tlb;
2082 	struct vm_area_struct *vma;
2083 	unsigned long nr_accounted = 0;
2084 	unsigned long end;
2085 
2086 	/* mm's last user has gone, and its about to be pulled down */
2087 	mmu_notifier_release(mm);
2088 
2089 	if (mm->locked_vm) {
2090 		vma = mm->mmap;
2091 		while (vma) {
2092 			if (vma->vm_flags & VM_LOCKED)
2093 				munlock_vma_pages_all(vma);
2094 			vma = vma->vm_next;
2095 		}
2096 	}
2097 
2098 	arch_exit_mmap(mm);
2099 
2100 	vma = mm->mmap;
2101 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2102 		return;
2103 
2104 	lru_add_drain();
2105 	flush_cache_mm(mm);
2106 	tlb = tlb_gather_mmu(mm, 1);
2107 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2108 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2109 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2110 	vm_unacct_memory(nr_accounted);
2111 	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2112 	tlb_finish_mmu(tlb, 0, end);
2113 
2114 	/*
2115 	 * Walk the list again, actually closing and freeing it,
2116 	 * with preemption enabled, without holding any MM locks.
2117 	 */
2118 	while (vma)
2119 		vma = remove_vma(vma);
2120 
2121 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2122 }
2123 
2124 /* Insert vm structure into process list sorted by address
2125  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2126  * then i_mmap_lock is taken here.
2127  */
2128 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2129 {
2130 	struct vm_area_struct * __vma, * prev;
2131 	struct rb_node ** rb_link, * rb_parent;
2132 
2133 	/*
2134 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2135 	 * until its first write fault, when page's anon_vma and index
2136 	 * are set.  But now set the vm_pgoff it will almost certainly
2137 	 * end up with (unless mremap moves it elsewhere before that
2138 	 * first wfault), so /proc/pid/maps tells a consistent story.
2139 	 *
2140 	 * By setting it to reflect the virtual start address of the
2141 	 * vma, merges and splits can happen in a seamless way, just
2142 	 * using the existing file pgoff checks and manipulations.
2143 	 * Similarly in do_mmap_pgoff and in do_brk.
2144 	 */
2145 	if (!vma->vm_file) {
2146 		BUG_ON(vma->anon_vma);
2147 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2148 	}
2149 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2150 	if (__vma && __vma->vm_start < vma->vm_end)
2151 		return -ENOMEM;
2152 	if ((vma->vm_flags & VM_ACCOUNT) &&
2153 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2154 		return -ENOMEM;
2155 	vma_link(mm, vma, prev, rb_link, rb_parent);
2156 	return 0;
2157 }
2158 
2159 /*
2160  * Copy the vma structure to a new location in the same mm,
2161  * prior to moving page table entries, to effect an mremap move.
2162  */
2163 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2164 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2165 {
2166 	struct vm_area_struct *vma = *vmap;
2167 	unsigned long vma_start = vma->vm_start;
2168 	struct mm_struct *mm = vma->vm_mm;
2169 	struct vm_area_struct *new_vma, *prev;
2170 	struct rb_node **rb_link, *rb_parent;
2171 	struct mempolicy *pol;
2172 
2173 	/*
2174 	 * If anonymous vma has not yet been faulted, update new pgoff
2175 	 * to match new location, to increase its chance of merging.
2176 	 */
2177 	if (!vma->vm_file && !vma->anon_vma)
2178 		pgoff = addr >> PAGE_SHIFT;
2179 
2180 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2181 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2182 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2183 	if (new_vma) {
2184 		/*
2185 		 * Source vma may have been merged into new_vma
2186 		 */
2187 		if (vma_start >= new_vma->vm_start &&
2188 		    vma_start < new_vma->vm_end)
2189 			*vmap = new_vma;
2190 	} else {
2191 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2192 		if (new_vma) {
2193 			*new_vma = *vma;
2194 			pol = mpol_dup(vma_policy(vma));
2195 			if (IS_ERR(pol)) {
2196 				kmem_cache_free(vm_area_cachep, new_vma);
2197 				return NULL;
2198 			}
2199 			vma_set_policy(new_vma, pol);
2200 			new_vma->vm_start = addr;
2201 			new_vma->vm_end = addr + len;
2202 			new_vma->vm_pgoff = pgoff;
2203 			if (new_vma->vm_file) {
2204 				get_file(new_vma->vm_file);
2205 				if (vma->vm_flags & VM_EXECUTABLE)
2206 					added_exe_file_vma(mm);
2207 			}
2208 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2209 				new_vma->vm_ops->open(new_vma);
2210 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2211 		}
2212 	}
2213 	return new_vma;
2214 }
2215 
2216 /*
2217  * Return true if the calling process may expand its vm space by the passed
2218  * number of pages
2219  */
2220 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2221 {
2222 	unsigned long cur = mm->total_vm;	/* pages */
2223 	unsigned long lim;
2224 
2225 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2226 
2227 	if (cur + npages > lim)
2228 		return 0;
2229 	return 1;
2230 }
2231 
2232 
2233 static int special_mapping_fault(struct vm_area_struct *vma,
2234 				struct vm_fault *vmf)
2235 {
2236 	pgoff_t pgoff;
2237 	struct page **pages;
2238 
2239 	/*
2240 	 * special mappings have no vm_file, and in that case, the mm
2241 	 * uses vm_pgoff internally. So we have to subtract it from here.
2242 	 * We are allowed to do this because we are the mm; do not copy
2243 	 * this code into drivers!
2244 	 */
2245 	pgoff = vmf->pgoff - vma->vm_pgoff;
2246 
2247 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2248 		pgoff--;
2249 
2250 	if (*pages) {
2251 		struct page *page = *pages;
2252 		get_page(page);
2253 		vmf->page = page;
2254 		return 0;
2255 	}
2256 
2257 	return VM_FAULT_SIGBUS;
2258 }
2259 
2260 /*
2261  * Having a close hook prevents vma merging regardless of flags.
2262  */
2263 static void special_mapping_close(struct vm_area_struct *vma)
2264 {
2265 }
2266 
2267 static struct vm_operations_struct special_mapping_vmops = {
2268 	.close = special_mapping_close,
2269 	.fault = special_mapping_fault,
2270 };
2271 
2272 /*
2273  * Called with mm->mmap_sem held for writing.
2274  * Insert a new vma covering the given region, with the given flags.
2275  * Its pages are supplied by the given array of struct page *.
2276  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2277  * The region past the last page supplied will always produce SIGBUS.
2278  * The array pointer and the pages it points to are assumed to stay alive
2279  * for as long as this mapping might exist.
2280  */
2281 int install_special_mapping(struct mm_struct *mm,
2282 			    unsigned long addr, unsigned long len,
2283 			    unsigned long vm_flags, struct page **pages)
2284 {
2285 	struct vm_area_struct *vma;
2286 
2287 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2288 	if (unlikely(vma == NULL))
2289 		return -ENOMEM;
2290 
2291 	vma->vm_mm = mm;
2292 	vma->vm_start = addr;
2293 	vma->vm_end = addr + len;
2294 
2295 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2296 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2297 
2298 	vma->vm_ops = &special_mapping_vmops;
2299 	vma->vm_private_data = pages;
2300 
2301 	if (unlikely(insert_vm_struct(mm, vma))) {
2302 		kmem_cache_free(vm_area_cachep, vma);
2303 		return -ENOMEM;
2304 	}
2305 
2306 	mm->total_vm += len >> PAGE_SHIFT;
2307 
2308 	return 0;
2309 }
2310 
2311 static DEFINE_MUTEX(mm_all_locks_mutex);
2312 
2313 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2314 {
2315 	if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2316 		/*
2317 		 * The LSB of head.next can't change from under us
2318 		 * because we hold the mm_all_locks_mutex.
2319 		 */
2320 		spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2321 		/*
2322 		 * We can safely modify head.next after taking the
2323 		 * anon_vma->lock. If some other vma in this mm shares
2324 		 * the same anon_vma we won't take it again.
2325 		 *
2326 		 * No need of atomic instructions here, head.next
2327 		 * can't change from under us thanks to the
2328 		 * anon_vma->lock.
2329 		 */
2330 		if (__test_and_set_bit(0, (unsigned long *)
2331 				       &anon_vma->head.next))
2332 			BUG();
2333 	}
2334 }
2335 
2336 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2337 {
2338 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2339 		/*
2340 		 * AS_MM_ALL_LOCKS can't change from under us because
2341 		 * we hold the mm_all_locks_mutex.
2342 		 *
2343 		 * Operations on ->flags have to be atomic because
2344 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2345 		 * mm_all_locks_mutex, there may be other cpus
2346 		 * changing other bitflags in parallel to us.
2347 		 */
2348 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2349 			BUG();
2350 		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2351 	}
2352 }
2353 
2354 /*
2355  * This operation locks against the VM for all pte/vma/mm related
2356  * operations that could ever happen on a certain mm. This includes
2357  * vmtruncate, try_to_unmap, and all page faults.
2358  *
2359  * The caller must take the mmap_sem in write mode before calling
2360  * mm_take_all_locks(). The caller isn't allowed to release the
2361  * mmap_sem until mm_drop_all_locks() returns.
2362  *
2363  * mmap_sem in write mode is required in order to block all operations
2364  * that could modify pagetables and free pages without need of
2365  * altering the vma layout (for example populate_range() with
2366  * nonlinear vmas). It's also needed in write mode to avoid new
2367  * anon_vmas to be associated with existing vmas.
2368  *
2369  * A single task can't take more than one mm_take_all_locks() in a row
2370  * or it would deadlock.
2371  *
2372  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2373  * mapping->flags avoid to take the same lock twice, if more than one
2374  * vma in this mm is backed by the same anon_vma or address_space.
2375  *
2376  * We can take all the locks in random order because the VM code
2377  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2378  * takes more than one of them in a row. Secondly we're protected
2379  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2380  *
2381  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2382  * that may have to take thousand of locks.
2383  *
2384  * mm_take_all_locks() can fail if it's interrupted by signals.
2385  */
2386 int mm_take_all_locks(struct mm_struct *mm)
2387 {
2388 	struct vm_area_struct *vma;
2389 	int ret = -EINTR;
2390 
2391 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2392 
2393 	mutex_lock(&mm_all_locks_mutex);
2394 
2395 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2396 		if (signal_pending(current))
2397 			goto out_unlock;
2398 		if (vma->vm_file && vma->vm_file->f_mapping)
2399 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2400 	}
2401 
2402 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2403 		if (signal_pending(current))
2404 			goto out_unlock;
2405 		if (vma->anon_vma)
2406 			vm_lock_anon_vma(mm, vma->anon_vma);
2407 	}
2408 
2409 	ret = 0;
2410 
2411 out_unlock:
2412 	if (ret)
2413 		mm_drop_all_locks(mm);
2414 
2415 	return ret;
2416 }
2417 
2418 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2419 {
2420 	if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2421 		/*
2422 		 * The LSB of head.next can't change to 0 from under
2423 		 * us because we hold the mm_all_locks_mutex.
2424 		 *
2425 		 * We must however clear the bitflag before unlocking
2426 		 * the vma so the users using the anon_vma->head will
2427 		 * never see our bitflag.
2428 		 *
2429 		 * No need of atomic instructions here, head.next
2430 		 * can't change from under us until we release the
2431 		 * anon_vma->lock.
2432 		 */
2433 		if (!__test_and_clear_bit(0, (unsigned long *)
2434 					  &anon_vma->head.next))
2435 			BUG();
2436 		spin_unlock(&anon_vma->lock);
2437 	}
2438 }
2439 
2440 static void vm_unlock_mapping(struct address_space *mapping)
2441 {
2442 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2443 		/*
2444 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2445 		 * because we hold the mm_all_locks_mutex.
2446 		 */
2447 		spin_unlock(&mapping->i_mmap_lock);
2448 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2449 					&mapping->flags))
2450 			BUG();
2451 	}
2452 }
2453 
2454 /*
2455  * The mmap_sem cannot be released by the caller until
2456  * mm_drop_all_locks() returns.
2457  */
2458 void mm_drop_all_locks(struct mm_struct *mm)
2459 {
2460 	struct vm_area_struct *vma;
2461 
2462 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2463 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2464 
2465 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2466 		if (vma->anon_vma)
2467 			vm_unlock_anon_vma(vma->anon_vma);
2468 		if (vma->vm_file && vma->vm_file->f_mapping)
2469 			vm_unlock_mapping(vma->vm_file->f_mapping);
2470 	}
2471 
2472 	mutex_unlock(&mm_all_locks_mutex);
2473 }
2474 
2475 /*
2476  * initialise the VMA slab
2477  */
2478 void __init mmap_init(void)
2479 {
2480 	int ret;
2481 
2482 	ret = percpu_counter_init(&vm_committed_as, 0);
2483 	VM_BUG_ON(ret);
2484 }
2485