xref: /openbmc/linux/mm/mmap.c (revision 81d67439)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38 
39 #include "internal.h"
40 
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)	(0)
43 #endif
44 
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)		(addr)
47 #endif
48 
49 static void unmap_region(struct mm_struct *mm,
50 		struct vm_area_struct *vma, struct vm_area_struct *prev,
51 		unsigned long start, unsigned long end);
52 
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58 
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type	prot
64  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
65  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
66  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
67  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
68  *
69  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
70  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
71  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78 
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 	return __pgprot(pgprot_val(protection_map[vm_flags &
82 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86 
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 /*
91  * Make sure vm_committed_as in one cacheline and not cacheline shared with
92  * other variables. It can be updated by several CPUs frequently.
93  */
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95 
96 /*
97  * Check that a process has enough memory to allocate a new virtual
98  * mapping. 0 means there is enough memory for the allocation to
99  * succeed and -ENOMEM implies there is not.
100  *
101  * We currently support three overcommit policies, which are set via the
102  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
103  *
104  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105  * Additional code 2002 Jul 20 by Robert Love.
106  *
107  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108  *
109  * Note this is a helper function intended to be used by LSMs which
110  * wish to use this logic.
111  */
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113 {
114 	unsigned long free, allowed;
115 
116 	vm_acct_memory(pages);
117 
118 	/*
119 	 * Sometimes we want to use more memory than we have
120 	 */
121 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122 		return 0;
123 
124 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125 		unsigned long n;
126 
127 		free = global_page_state(NR_FILE_PAGES);
128 		free += nr_swap_pages;
129 
130 		/*
131 		 * Any slabs which are created with the
132 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
133 		 * which are reclaimable, under pressure.  The dentry
134 		 * cache and most inode caches should fall into this
135 		 */
136 		free += global_page_state(NR_SLAB_RECLAIMABLE);
137 
138 		/*
139 		 * Leave the last 3% for root
140 		 */
141 		if (!cap_sys_admin)
142 			free -= free / 32;
143 
144 		if (free > pages)
145 			return 0;
146 
147 		/*
148 		 * nr_free_pages() is very expensive on large systems,
149 		 * only call if we're about to fail.
150 		 */
151 		n = nr_free_pages();
152 
153 		/*
154 		 * Leave reserved pages. The pages are not for anonymous pages.
155 		 */
156 		if (n <= totalreserve_pages)
157 			goto error;
158 		else
159 			n -= totalreserve_pages;
160 
161 		/*
162 		 * Leave the last 3% for root
163 		 */
164 		if (!cap_sys_admin)
165 			n -= n / 32;
166 		free += n;
167 
168 		if (free > pages)
169 			return 0;
170 
171 		goto error;
172 	}
173 
174 	allowed = (totalram_pages - hugetlb_total_pages())
175 	       	* sysctl_overcommit_ratio / 100;
176 	/*
177 	 * Leave the last 3% for root
178 	 */
179 	if (!cap_sys_admin)
180 		allowed -= allowed / 32;
181 	allowed += total_swap_pages;
182 
183 	/* Don't let a single process grow too big:
184 	   leave 3% of the size of this process for other processes */
185 	if (mm)
186 		allowed -= mm->total_vm / 32;
187 
188 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
189 		return 0;
190 error:
191 	vm_unacct_memory(pages);
192 
193 	return -ENOMEM;
194 }
195 
196 /*
197  * Requires inode->i_mapping->i_mmap_mutex
198  */
199 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
200 		struct file *file, struct address_space *mapping)
201 {
202 	if (vma->vm_flags & VM_DENYWRITE)
203 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
204 	if (vma->vm_flags & VM_SHARED)
205 		mapping->i_mmap_writable--;
206 
207 	flush_dcache_mmap_lock(mapping);
208 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
209 		list_del_init(&vma->shared.vm_set.list);
210 	else
211 		vma_prio_tree_remove(vma, &mapping->i_mmap);
212 	flush_dcache_mmap_unlock(mapping);
213 }
214 
215 /*
216  * Unlink a file-based vm structure from its prio_tree, to hide
217  * vma from rmap and vmtruncate before freeing its page tables.
218  */
219 void unlink_file_vma(struct vm_area_struct *vma)
220 {
221 	struct file *file = vma->vm_file;
222 
223 	if (file) {
224 		struct address_space *mapping = file->f_mapping;
225 		mutex_lock(&mapping->i_mmap_mutex);
226 		__remove_shared_vm_struct(vma, file, mapping);
227 		mutex_unlock(&mapping->i_mmap_mutex);
228 	}
229 }
230 
231 /*
232  * Close a vm structure and free it, returning the next.
233  */
234 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
235 {
236 	struct vm_area_struct *next = vma->vm_next;
237 
238 	might_sleep();
239 	if (vma->vm_ops && vma->vm_ops->close)
240 		vma->vm_ops->close(vma);
241 	if (vma->vm_file) {
242 		fput(vma->vm_file);
243 		if (vma->vm_flags & VM_EXECUTABLE)
244 			removed_exe_file_vma(vma->vm_mm);
245 	}
246 	mpol_put(vma_policy(vma));
247 	kmem_cache_free(vm_area_cachep, vma);
248 	return next;
249 }
250 
251 SYSCALL_DEFINE1(brk, unsigned long, brk)
252 {
253 	unsigned long rlim, retval;
254 	unsigned long newbrk, oldbrk;
255 	struct mm_struct *mm = current->mm;
256 	unsigned long min_brk;
257 
258 	down_write(&mm->mmap_sem);
259 
260 #ifdef CONFIG_COMPAT_BRK
261 	/*
262 	 * CONFIG_COMPAT_BRK can still be overridden by setting
263 	 * randomize_va_space to 2, which will still cause mm->start_brk
264 	 * to be arbitrarily shifted
265 	 */
266 	if (current->brk_randomized)
267 		min_brk = mm->start_brk;
268 	else
269 		min_brk = mm->end_data;
270 #else
271 	min_brk = mm->start_brk;
272 #endif
273 	if (brk < min_brk)
274 		goto out;
275 
276 	/*
277 	 * Check against rlimit here. If this check is done later after the test
278 	 * of oldbrk with newbrk then it can escape the test and let the data
279 	 * segment grow beyond its set limit the in case where the limit is
280 	 * not page aligned -Ram Gupta
281 	 */
282 	rlim = rlimit(RLIMIT_DATA);
283 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
284 			(mm->end_data - mm->start_data) > rlim)
285 		goto out;
286 
287 	newbrk = PAGE_ALIGN(brk);
288 	oldbrk = PAGE_ALIGN(mm->brk);
289 	if (oldbrk == newbrk)
290 		goto set_brk;
291 
292 	/* Always allow shrinking brk. */
293 	if (brk <= mm->brk) {
294 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
295 			goto set_brk;
296 		goto out;
297 	}
298 
299 	/* Check against existing mmap mappings. */
300 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
301 		goto out;
302 
303 	/* Ok, looks good - let it rip. */
304 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
305 		goto out;
306 set_brk:
307 	mm->brk = brk;
308 out:
309 	retval = mm->brk;
310 	up_write(&mm->mmap_sem);
311 	return retval;
312 }
313 
314 #ifdef DEBUG_MM_RB
315 static int browse_rb(struct rb_root *root)
316 {
317 	int i = 0, j;
318 	struct rb_node *nd, *pn = NULL;
319 	unsigned long prev = 0, pend = 0;
320 
321 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
322 		struct vm_area_struct *vma;
323 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
324 		if (vma->vm_start < prev)
325 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
326 		if (vma->vm_start < pend)
327 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
328 		if (vma->vm_start > vma->vm_end)
329 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
330 		i++;
331 		pn = nd;
332 		prev = vma->vm_start;
333 		pend = vma->vm_end;
334 	}
335 	j = 0;
336 	for (nd = pn; nd; nd = rb_prev(nd)) {
337 		j++;
338 	}
339 	if (i != j)
340 		printk("backwards %d, forwards %d\n", j, i), i = 0;
341 	return i;
342 }
343 
344 void validate_mm(struct mm_struct *mm)
345 {
346 	int bug = 0;
347 	int i = 0;
348 	struct vm_area_struct *tmp = mm->mmap;
349 	while (tmp) {
350 		tmp = tmp->vm_next;
351 		i++;
352 	}
353 	if (i != mm->map_count)
354 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
355 	i = browse_rb(&mm->mm_rb);
356 	if (i != mm->map_count)
357 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
358 	BUG_ON(bug);
359 }
360 #else
361 #define validate_mm(mm) do { } while (0)
362 #endif
363 
364 static struct vm_area_struct *
365 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
366 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
367 		struct rb_node ** rb_parent)
368 {
369 	struct vm_area_struct * vma;
370 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
371 
372 	__rb_link = &mm->mm_rb.rb_node;
373 	rb_prev = __rb_parent = NULL;
374 	vma = NULL;
375 
376 	while (*__rb_link) {
377 		struct vm_area_struct *vma_tmp;
378 
379 		__rb_parent = *__rb_link;
380 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
381 
382 		if (vma_tmp->vm_end > addr) {
383 			vma = vma_tmp;
384 			if (vma_tmp->vm_start <= addr)
385 				break;
386 			__rb_link = &__rb_parent->rb_left;
387 		} else {
388 			rb_prev = __rb_parent;
389 			__rb_link = &__rb_parent->rb_right;
390 		}
391 	}
392 
393 	*pprev = NULL;
394 	if (rb_prev)
395 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
396 	*rb_link = __rb_link;
397 	*rb_parent = __rb_parent;
398 	return vma;
399 }
400 
401 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
402 		struct rb_node **rb_link, struct rb_node *rb_parent)
403 {
404 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
405 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
406 }
407 
408 static void __vma_link_file(struct vm_area_struct *vma)
409 {
410 	struct file *file;
411 
412 	file = vma->vm_file;
413 	if (file) {
414 		struct address_space *mapping = file->f_mapping;
415 
416 		if (vma->vm_flags & VM_DENYWRITE)
417 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
418 		if (vma->vm_flags & VM_SHARED)
419 			mapping->i_mmap_writable++;
420 
421 		flush_dcache_mmap_lock(mapping);
422 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
423 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
424 		else
425 			vma_prio_tree_insert(vma, &mapping->i_mmap);
426 		flush_dcache_mmap_unlock(mapping);
427 	}
428 }
429 
430 static void
431 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432 	struct vm_area_struct *prev, struct rb_node **rb_link,
433 	struct rb_node *rb_parent)
434 {
435 	__vma_link_list(mm, vma, prev, rb_parent);
436 	__vma_link_rb(mm, vma, rb_link, rb_parent);
437 }
438 
439 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
440 			struct vm_area_struct *prev, struct rb_node **rb_link,
441 			struct rb_node *rb_parent)
442 {
443 	struct address_space *mapping = NULL;
444 
445 	if (vma->vm_file)
446 		mapping = vma->vm_file->f_mapping;
447 
448 	if (mapping)
449 		mutex_lock(&mapping->i_mmap_mutex);
450 
451 	__vma_link(mm, vma, prev, rb_link, rb_parent);
452 	__vma_link_file(vma);
453 
454 	if (mapping)
455 		mutex_unlock(&mapping->i_mmap_mutex);
456 
457 	mm->map_count++;
458 	validate_mm(mm);
459 }
460 
461 /*
462  * Helper for vma_adjust in the split_vma insert case:
463  * insert vm structure into list and rbtree and anon_vma,
464  * but it has already been inserted into prio_tree earlier.
465  */
466 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
467 {
468 	struct vm_area_struct *__vma, *prev;
469 	struct rb_node **rb_link, *rb_parent;
470 
471 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
472 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
473 	__vma_link(mm, vma, prev, rb_link, rb_parent);
474 	mm->map_count++;
475 }
476 
477 static inline void
478 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
479 		struct vm_area_struct *prev)
480 {
481 	struct vm_area_struct *next = vma->vm_next;
482 
483 	prev->vm_next = next;
484 	if (next)
485 		next->vm_prev = prev;
486 	rb_erase(&vma->vm_rb, &mm->mm_rb);
487 	if (mm->mmap_cache == vma)
488 		mm->mmap_cache = prev;
489 }
490 
491 /*
492  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
493  * is already present in an i_mmap tree without adjusting the tree.
494  * The following helper function should be used when such adjustments
495  * are necessary.  The "insert" vma (if any) is to be inserted
496  * before we drop the necessary locks.
497  */
498 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
499 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
500 {
501 	struct mm_struct *mm = vma->vm_mm;
502 	struct vm_area_struct *next = vma->vm_next;
503 	struct vm_area_struct *importer = NULL;
504 	struct address_space *mapping = NULL;
505 	struct prio_tree_root *root = NULL;
506 	struct anon_vma *anon_vma = NULL;
507 	struct file *file = vma->vm_file;
508 	long adjust_next = 0;
509 	int remove_next = 0;
510 
511 	if (next && !insert) {
512 		struct vm_area_struct *exporter = NULL;
513 
514 		if (end >= next->vm_end) {
515 			/*
516 			 * vma expands, overlapping all the next, and
517 			 * perhaps the one after too (mprotect case 6).
518 			 */
519 again:			remove_next = 1 + (end > next->vm_end);
520 			end = next->vm_end;
521 			exporter = next;
522 			importer = vma;
523 		} else if (end > next->vm_start) {
524 			/*
525 			 * vma expands, overlapping part of the next:
526 			 * mprotect case 5 shifting the boundary up.
527 			 */
528 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
529 			exporter = next;
530 			importer = vma;
531 		} else if (end < vma->vm_end) {
532 			/*
533 			 * vma shrinks, and !insert tells it's not
534 			 * split_vma inserting another: so it must be
535 			 * mprotect case 4 shifting the boundary down.
536 			 */
537 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
538 			exporter = vma;
539 			importer = next;
540 		}
541 
542 		/*
543 		 * Easily overlooked: when mprotect shifts the boundary,
544 		 * make sure the expanding vma has anon_vma set if the
545 		 * shrinking vma had, to cover any anon pages imported.
546 		 */
547 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
548 			if (anon_vma_clone(importer, exporter))
549 				return -ENOMEM;
550 			importer->anon_vma = exporter->anon_vma;
551 		}
552 	}
553 
554 	if (file) {
555 		mapping = file->f_mapping;
556 		if (!(vma->vm_flags & VM_NONLINEAR))
557 			root = &mapping->i_mmap;
558 		mutex_lock(&mapping->i_mmap_mutex);
559 		if (insert) {
560 			/*
561 			 * Put into prio_tree now, so instantiated pages
562 			 * are visible to arm/parisc __flush_dcache_page
563 			 * throughout; but we cannot insert into address
564 			 * space until vma start or end is updated.
565 			 */
566 			__vma_link_file(insert);
567 		}
568 	}
569 
570 	vma_adjust_trans_huge(vma, start, end, adjust_next);
571 
572 	/*
573 	 * When changing only vma->vm_end, we don't really need anon_vma
574 	 * lock. This is a fairly rare case by itself, but the anon_vma
575 	 * lock may be shared between many sibling processes.  Skipping
576 	 * the lock for brk adjustments makes a difference sometimes.
577 	 */
578 	if (vma->anon_vma && (importer || start != vma->vm_start)) {
579 		anon_vma = vma->anon_vma;
580 		anon_vma_lock(anon_vma);
581 	}
582 
583 	if (root) {
584 		flush_dcache_mmap_lock(mapping);
585 		vma_prio_tree_remove(vma, root);
586 		if (adjust_next)
587 			vma_prio_tree_remove(next, root);
588 	}
589 
590 	vma->vm_start = start;
591 	vma->vm_end = end;
592 	vma->vm_pgoff = pgoff;
593 	if (adjust_next) {
594 		next->vm_start += adjust_next << PAGE_SHIFT;
595 		next->vm_pgoff += adjust_next;
596 	}
597 
598 	if (root) {
599 		if (adjust_next)
600 			vma_prio_tree_insert(next, root);
601 		vma_prio_tree_insert(vma, root);
602 		flush_dcache_mmap_unlock(mapping);
603 	}
604 
605 	if (remove_next) {
606 		/*
607 		 * vma_merge has merged next into vma, and needs
608 		 * us to remove next before dropping the locks.
609 		 */
610 		__vma_unlink(mm, next, vma);
611 		if (file)
612 			__remove_shared_vm_struct(next, file, mapping);
613 	} else if (insert) {
614 		/*
615 		 * split_vma has split insert from vma, and needs
616 		 * us to insert it before dropping the locks
617 		 * (it may either follow vma or precede it).
618 		 */
619 		__insert_vm_struct(mm, insert);
620 	}
621 
622 	if (anon_vma)
623 		anon_vma_unlock(anon_vma);
624 	if (mapping)
625 		mutex_unlock(&mapping->i_mmap_mutex);
626 
627 	if (remove_next) {
628 		if (file) {
629 			fput(file);
630 			if (next->vm_flags & VM_EXECUTABLE)
631 				removed_exe_file_vma(mm);
632 		}
633 		if (next->anon_vma)
634 			anon_vma_merge(vma, next);
635 		mm->map_count--;
636 		mpol_put(vma_policy(next));
637 		kmem_cache_free(vm_area_cachep, next);
638 		/*
639 		 * In mprotect's case 6 (see comments on vma_merge),
640 		 * we must remove another next too. It would clutter
641 		 * up the code too much to do both in one go.
642 		 */
643 		if (remove_next == 2) {
644 			next = vma->vm_next;
645 			goto again;
646 		}
647 	}
648 
649 	validate_mm(mm);
650 
651 	return 0;
652 }
653 
654 /*
655  * If the vma has a ->close operation then the driver probably needs to release
656  * per-vma resources, so we don't attempt to merge those.
657  */
658 static inline int is_mergeable_vma(struct vm_area_struct *vma,
659 			struct file *file, unsigned long vm_flags)
660 {
661 	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
662 	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
663 		return 0;
664 	if (vma->vm_file != file)
665 		return 0;
666 	if (vma->vm_ops && vma->vm_ops->close)
667 		return 0;
668 	return 1;
669 }
670 
671 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
672 					struct anon_vma *anon_vma2,
673 					struct vm_area_struct *vma)
674 {
675 	/*
676 	 * The list_is_singular() test is to avoid merging VMA cloned from
677 	 * parents. This can improve scalability caused by anon_vma lock.
678 	 */
679 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
680 		list_is_singular(&vma->anon_vma_chain)))
681 		return 1;
682 	return anon_vma1 == anon_vma2;
683 }
684 
685 /*
686  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
687  * in front of (at a lower virtual address and file offset than) the vma.
688  *
689  * We cannot merge two vmas if they have differently assigned (non-NULL)
690  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
691  *
692  * We don't check here for the merged mmap wrapping around the end of pagecache
693  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
694  * wrap, nor mmaps which cover the final page at index -1UL.
695  */
696 static int
697 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
698 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
699 {
700 	if (is_mergeable_vma(vma, file, vm_flags) &&
701 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
702 		if (vma->vm_pgoff == vm_pgoff)
703 			return 1;
704 	}
705 	return 0;
706 }
707 
708 /*
709  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
710  * beyond (at a higher virtual address and file offset than) the vma.
711  *
712  * We cannot merge two vmas if they have differently assigned (non-NULL)
713  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
714  */
715 static int
716 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
717 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
718 {
719 	if (is_mergeable_vma(vma, file, vm_flags) &&
720 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
721 		pgoff_t vm_pglen;
722 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
723 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
724 			return 1;
725 	}
726 	return 0;
727 }
728 
729 /*
730  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
731  * whether that can be merged with its predecessor or its successor.
732  * Or both (it neatly fills a hole).
733  *
734  * In most cases - when called for mmap, brk or mremap - [addr,end) is
735  * certain not to be mapped by the time vma_merge is called; but when
736  * called for mprotect, it is certain to be already mapped (either at
737  * an offset within prev, or at the start of next), and the flags of
738  * this area are about to be changed to vm_flags - and the no-change
739  * case has already been eliminated.
740  *
741  * The following mprotect cases have to be considered, where AAAA is
742  * the area passed down from mprotect_fixup, never extending beyond one
743  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
744  *
745  *     AAAA             AAAA                AAAA          AAAA
746  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
747  *    cannot merge    might become    might become    might become
748  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
749  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
750  *    mremap move:                                    PPPPNNNNNNNN 8
751  *        AAAA
752  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
753  *    might become    case 1 below    case 2 below    case 3 below
754  *
755  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
756  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
757  */
758 struct vm_area_struct *vma_merge(struct mm_struct *mm,
759 			struct vm_area_struct *prev, unsigned long addr,
760 			unsigned long end, unsigned long vm_flags,
761 		     	struct anon_vma *anon_vma, struct file *file,
762 			pgoff_t pgoff, struct mempolicy *policy)
763 {
764 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
765 	struct vm_area_struct *area, *next;
766 	int err;
767 
768 	/*
769 	 * We later require that vma->vm_flags == vm_flags,
770 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
771 	 */
772 	if (vm_flags & VM_SPECIAL)
773 		return NULL;
774 
775 	if (prev)
776 		next = prev->vm_next;
777 	else
778 		next = mm->mmap;
779 	area = next;
780 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
781 		next = next->vm_next;
782 
783 	/*
784 	 * Can it merge with the predecessor?
785 	 */
786 	if (prev && prev->vm_end == addr &&
787   			mpol_equal(vma_policy(prev), policy) &&
788 			can_vma_merge_after(prev, vm_flags,
789 						anon_vma, file, pgoff)) {
790 		/*
791 		 * OK, it can.  Can we now merge in the successor as well?
792 		 */
793 		if (next && end == next->vm_start &&
794 				mpol_equal(policy, vma_policy(next)) &&
795 				can_vma_merge_before(next, vm_flags,
796 					anon_vma, file, pgoff+pglen) &&
797 				is_mergeable_anon_vma(prev->anon_vma,
798 						      next->anon_vma, NULL)) {
799 							/* cases 1, 6 */
800 			err = vma_adjust(prev, prev->vm_start,
801 				next->vm_end, prev->vm_pgoff, NULL);
802 		} else					/* cases 2, 5, 7 */
803 			err = vma_adjust(prev, prev->vm_start,
804 				end, prev->vm_pgoff, NULL);
805 		if (err)
806 			return NULL;
807 		khugepaged_enter_vma_merge(prev);
808 		return prev;
809 	}
810 
811 	/*
812 	 * Can this new request be merged in front of next?
813 	 */
814 	if (next && end == next->vm_start &&
815  			mpol_equal(policy, vma_policy(next)) &&
816 			can_vma_merge_before(next, vm_flags,
817 					anon_vma, file, pgoff+pglen)) {
818 		if (prev && addr < prev->vm_end)	/* case 4 */
819 			err = vma_adjust(prev, prev->vm_start,
820 				addr, prev->vm_pgoff, NULL);
821 		else					/* cases 3, 8 */
822 			err = vma_adjust(area, addr, next->vm_end,
823 				next->vm_pgoff - pglen, NULL);
824 		if (err)
825 			return NULL;
826 		khugepaged_enter_vma_merge(area);
827 		return area;
828 	}
829 
830 	return NULL;
831 }
832 
833 /*
834  * Rough compatbility check to quickly see if it's even worth looking
835  * at sharing an anon_vma.
836  *
837  * They need to have the same vm_file, and the flags can only differ
838  * in things that mprotect may change.
839  *
840  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
841  * we can merge the two vma's. For example, we refuse to merge a vma if
842  * there is a vm_ops->close() function, because that indicates that the
843  * driver is doing some kind of reference counting. But that doesn't
844  * really matter for the anon_vma sharing case.
845  */
846 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
847 {
848 	return a->vm_end == b->vm_start &&
849 		mpol_equal(vma_policy(a), vma_policy(b)) &&
850 		a->vm_file == b->vm_file &&
851 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
852 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
853 }
854 
855 /*
856  * Do some basic sanity checking to see if we can re-use the anon_vma
857  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
858  * the same as 'old', the other will be the new one that is trying
859  * to share the anon_vma.
860  *
861  * NOTE! This runs with mm_sem held for reading, so it is possible that
862  * the anon_vma of 'old' is concurrently in the process of being set up
863  * by another page fault trying to merge _that_. But that's ok: if it
864  * is being set up, that automatically means that it will be a singleton
865  * acceptable for merging, so we can do all of this optimistically. But
866  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
867  *
868  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
869  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
870  * is to return an anon_vma that is "complex" due to having gone through
871  * a fork).
872  *
873  * We also make sure that the two vma's are compatible (adjacent,
874  * and with the same memory policies). That's all stable, even with just
875  * a read lock on the mm_sem.
876  */
877 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
878 {
879 	if (anon_vma_compatible(a, b)) {
880 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
881 
882 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
883 			return anon_vma;
884 	}
885 	return NULL;
886 }
887 
888 /*
889  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
890  * neighbouring vmas for a suitable anon_vma, before it goes off
891  * to allocate a new anon_vma.  It checks because a repetitive
892  * sequence of mprotects and faults may otherwise lead to distinct
893  * anon_vmas being allocated, preventing vma merge in subsequent
894  * mprotect.
895  */
896 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
897 {
898 	struct anon_vma *anon_vma;
899 	struct vm_area_struct *near;
900 
901 	near = vma->vm_next;
902 	if (!near)
903 		goto try_prev;
904 
905 	anon_vma = reusable_anon_vma(near, vma, near);
906 	if (anon_vma)
907 		return anon_vma;
908 try_prev:
909 	near = vma->vm_prev;
910 	if (!near)
911 		goto none;
912 
913 	anon_vma = reusable_anon_vma(near, near, vma);
914 	if (anon_vma)
915 		return anon_vma;
916 none:
917 	/*
918 	 * There's no absolute need to look only at touching neighbours:
919 	 * we could search further afield for "compatible" anon_vmas.
920 	 * But it would probably just be a waste of time searching,
921 	 * or lead to too many vmas hanging off the same anon_vma.
922 	 * We're trying to allow mprotect remerging later on,
923 	 * not trying to minimize memory used for anon_vmas.
924 	 */
925 	return NULL;
926 }
927 
928 #ifdef CONFIG_PROC_FS
929 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
930 						struct file *file, long pages)
931 {
932 	const unsigned long stack_flags
933 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
934 
935 	if (file) {
936 		mm->shared_vm += pages;
937 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
938 			mm->exec_vm += pages;
939 	} else if (flags & stack_flags)
940 		mm->stack_vm += pages;
941 	if (flags & (VM_RESERVED|VM_IO))
942 		mm->reserved_vm += pages;
943 }
944 #endif /* CONFIG_PROC_FS */
945 
946 /*
947  * The caller must hold down_write(&current->mm->mmap_sem).
948  */
949 
950 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
951 			unsigned long len, unsigned long prot,
952 			unsigned long flags, unsigned long pgoff)
953 {
954 	struct mm_struct * mm = current->mm;
955 	struct inode *inode;
956 	vm_flags_t vm_flags;
957 	int error;
958 	unsigned long reqprot = prot;
959 
960 	/*
961 	 * Does the application expect PROT_READ to imply PROT_EXEC?
962 	 *
963 	 * (the exception is when the underlying filesystem is noexec
964 	 *  mounted, in which case we dont add PROT_EXEC.)
965 	 */
966 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
967 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
968 			prot |= PROT_EXEC;
969 
970 	if (!len)
971 		return -EINVAL;
972 
973 	if (!(flags & MAP_FIXED))
974 		addr = round_hint_to_min(addr);
975 
976 	/* Careful about overflows.. */
977 	len = PAGE_ALIGN(len);
978 	if (!len)
979 		return -ENOMEM;
980 
981 	/* offset overflow? */
982 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
983                return -EOVERFLOW;
984 
985 	/* Too many mappings? */
986 	if (mm->map_count > sysctl_max_map_count)
987 		return -ENOMEM;
988 
989 	/* Obtain the address to map to. we verify (or select) it and ensure
990 	 * that it represents a valid section of the address space.
991 	 */
992 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
993 	if (addr & ~PAGE_MASK)
994 		return addr;
995 
996 	/* Do simple checking here so the lower-level routines won't have
997 	 * to. we assume access permissions have been handled by the open
998 	 * of the memory object, so we don't do any here.
999 	 */
1000 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1001 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1002 
1003 	if (flags & MAP_LOCKED)
1004 		if (!can_do_mlock())
1005 			return -EPERM;
1006 
1007 	/* mlock MCL_FUTURE? */
1008 	if (vm_flags & VM_LOCKED) {
1009 		unsigned long locked, lock_limit;
1010 		locked = len >> PAGE_SHIFT;
1011 		locked += mm->locked_vm;
1012 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1013 		lock_limit >>= PAGE_SHIFT;
1014 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1015 			return -EAGAIN;
1016 	}
1017 
1018 	inode = file ? file->f_path.dentry->d_inode : NULL;
1019 
1020 	if (file) {
1021 		switch (flags & MAP_TYPE) {
1022 		case MAP_SHARED:
1023 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1024 				return -EACCES;
1025 
1026 			/*
1027 			 * Make sure we don't allow writing to an append-only
1028 			 * file..
1029 			 */
1030 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1031 				return -EACCES;
1032 
1033 			/*
1034 			 * Make sure there are no mandatory locks on the file.
1035 			 */
1036 			if (locks_verify_locked(inode))
1037 				return -EAGAIN;
1038 
1039 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1040 			if (!(file->f_mode & FMODE_WRITE))
1041 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1042 
1043 			/* fall through */
1044 		case MAP_PRIVATE:
1045 			if (!(file->f_mode & FMODE_READ))
1046 				return -EACCES;
1047 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1048 				if (vm_flags & VM_EXEC)
1049 					return -EPERM;
1050 				vm_flags &= ~VM_MAYEXEC;
1051 			}
1052 
1053 			if (!file->f_op || !file->f_op->mmap)
1054 				return -ENODEV;
1055 			break;
1056 
1057 		default:
1058 			return -EINVAL;
1059 		}
1060 	} else {
1061 		switch (flags & MAP_TYPE) {
1062 		case MAP_SHARED:
1063 			/*
1064 			 * Ignore pgoff.
1065 			 */
1066 			pgoff = 0;
1067 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1068 			break;
1069 		case MAP_PRIVATE:
1070 			/*
1071 			 * Set pgoff according to addr for anon_vma.
1072 			 */
1073 			pgoff = addr >> PAGE_SHIFT;
1074 			break;
1075 		default:
1076 			return -EINVAL;
1077 		}
1078 	}
1079 
1080 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1081 	if (error)
1082 		return error;
1083 
1084 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1085 }
1086 EXPORT_SYMBOL(do_mmap_pgoff);
1087 
1088 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1089 		unsigned long, prot, unsigned long, flags,
1090 		unsigned long, fd, unsigned long, pgoff)
1091 {
1092 	struct file *file = NULL;
1093 	unsigned long retval = -EBADF;
1094 
1095 	if (!(flags & MAP_ANONYMOUS)) {
1096 		audit_mmap_fd(fd, flags);
1097 		if (unlikely(flags & MAP_HUGETLB))
1098 			return -EINVAL;
1099 		file = fget(fd);
1100 		if (!file)
1101 			goto out;
1102 	} else if (flags & MAP_HUGETLB) {
1103 		struct user_struct *user = NULL;
1104 		/*
1105 		 * VM_NORESERVE is used because the reservations will be
1106 		 * taken when vm_ops->mmap() is called
1107 		 * A dummy user value is used because we are not locking
1108 		 * memory so no accounting is necessary
1109 		 */
1110 		len = ALIGN(len, huge_page_size(&default_hstate));
1111 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1112 						&user, HUGETLB_ANONHUGE_INODE);
1113 		if (IS_ERR(file))
1114 			return PTR_ERR(file);
1115 	}
1116 
1117 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1118 
1119 	down_write(&current->mm->mmap_sem);
1120 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1121 	up_write(&current->mm->mmap_sem);
1122 
1123 	if (file)
1124 		fput(file);
1125 out:
1126 	return retval;
1127 }
1128 
1129 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1130 struct mmap_arg_struct {
1131 	unsigned long addr;
1132 	unsigned long len;
1133 	unsigned long prot;
1134 	unsigned long flags;
1135 	unsigned long fd;
1136 	unsigned long offset;
1137 };
1138 
1139 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1140 {
1141 	struct mmap_arg_struct a;
1142 
1143 	if (copy_from_user(&a, arg, sizeof(a)))
1144 		return -EFAULT;
1145 	if (a.offset & ~PAGE_MASK)
1146 		return -EINVAL;
1147 
1148 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1149 			      a.offset >> PAGE_SHIFT);
1150 }
1151 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1152 
1153 /*
1154  * Some shared mappigns will want the pages marked read-only
1155  * to track write events. If so, we'll downgrade vm_page_prot
1156  * to the private version (using protection_map[] without the
1157  * VM_SHARED bit).
1158  */
1159 int vma_wants_writenotify(struct vm_area_struct *vma)
1160 {
1161 	vm_flags_t vm_flags = vma->vm_flags;
1162 
1163 	/* If it was private or non-writable, the write bit is already clear */
1164 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1165 		return 0;
1166 
1167 	/* The backer wishes to know when pages are first written to? */
1168 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1169 		return 1;
1170 
1171 	/* The open routine did something to the protections already? */
1172 	if (pgprot_val(vma->vm_page_prot) !=
1173 	    pgprot_val(vm_get_page_prot(vm_flags)))
1174 		return 0;
1175 
1176 	/* Specialty mapping? */
1177 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1178 		return 0;
1179 
1180 	/* Can the mapping track the dirty pages? */
1181 	return vma->vm_file && vma->vm_file->f_mapping &&
1182 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1183 }
1184 
1185 /*
1186  * We account for memory if it's a private writeable mapping,
1187  * not hugepages and VM_NORESERVE wasn't set.
1188  */
1189 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1190 {
1191 	/*
1192 	 * hugetlb has its own accounting separate from the core VM
1193 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1194 	 */
1195 	if (file && is_file_hugepages(file))
1196 		return 0;
1197 
1198 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1199 }
1200 
1201 unsigned long mmap_region(struct file *file, unsigned long addr,
1202 			  unsigned long len, unsigned long flags,
1203 			  vm_flags_t vm_flags, unsigned long pgoff)
1204 {
1205 	struct mm_struct *mm = current->mm;
1206 	struct vm_area_struct *vma, *prev;
1207 	int correct_wcount = 0;
1208 	int error;
1209 	struct rb_node **rb_link, *rb_parent;
1210 	unsigned long charged = 0;
1211 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1212 
1213 	/* Clear old maps */
1214 	error = -ENOMEM;
1215 munmap_back:
1216 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1217 	if (vma && vma->vm_start < addr + len) {
1218 		if (do_munmap(mm, addr, len))
1219 			return -ENOMEM;
1220 		goto munmap_back;
1221 	}
1222 
1223 	/* Check against address space limit. */
1224 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1225 		return -ENOMEM;
1226 
1227 	/*
1228 	 * Set 'VM_NORESERVE' if we should not account for the
1229 	 * memory use of this mapping.
1230 	 */
1231 	if ((flags & MAP_NORESERVE)) {
1232 		/* We honor MAP_NORESERVE if allowed to overcommit */
1233 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1234 			vm_flags |= VM_NORESERVE;
1235 
1236 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1237 		if (file && is_file_hugepages(file))
1238 			vm_flags |= VM_NORESERVE;
1239 	}
1240 
1241 	/*
1242 	 * Private writable mapping: check memory availability
1243 	 */
1244 	if (accountable_mapping(file, vm_flags)) {
1245 		charged = len >> PAGE_SHIFT;
1246 		if (security_vm_enough_memory(charged))
1247 			return -ENOMEM;
1248 		vm_flags |= VM_ACCOUNT;
1249 	}
1250 
1251 	/*
1252 	 * Can we just expand an old mapping?
1253 	 */
1254 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1255 	if (vma)
1256 		goto out;
1257 
1258 	/*
1259 	 * Determine the object being mapped and call the appropriate
1260 	 * specific mapper. the address has already been validated, but
1261 	 * not unmapped, but the maps are removed from the list.
1262 	 */
1263 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1264 	if (!vma) {
1265 		error = -ENOMEM;
1266 		goto unacct_error;
1267 	}
1268 
1269 	vma->vm_mm = mm;
1270 	vma->vm_start = addr;
1271 	vma->vm_end = addr + len;
1272 	vma->vm_flags = vm_flags;
1273 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1274 	vma->vm_pgoff = pgoff;
1275 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1276 
1277 	if (file) {
1278 		error = -EINVAL;
1279 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1280 			goto free_vma;
1281 		if (vm_flags & VM_DENYWRITE) {
1282 			error = deny_write_access(file);
1283 			if (error)
1284 				goto free_vma;
1285 			correct_wcount = 1;
1286 		}
1287 		vma->vm_file = file;
1288 		get_file(file);
1289 		error = file->f_op->mmap(file, vma);
1290 		if (error)
1291 			goto unmap_and_free_vma;
1292 		if (vm_flags & VM_EXECUTABLE)
1293 			added_exe_file_vma(mm);
1294 
1295 		/* Can addr have changed??
1296 		 *
1297 		 * Answer: Yes, several device drivers can do it in their
1298 		 *         f_op->mmap method. -DaveM
1299 		 */
1300 		addr = vma->vm_start;
1301 		pgoff = vma->vm_pgoff;
1302 		vm_flags = vma->vm_flags;
1303 	} else if (vm_flags & VM_SHARED) {
1304 		error = shmem_zero_setup(vma);
1305 		if (error)
1306 			goto free_vma;
1307 	}
1308 
1309 	if (vma_wants_writenotify(vma)) {
1310 		pgprot_t pprot = vma->vm_page_prot;
1311 
1312 		/* Can vma->vm_page_prot have changed??
1313 		 *
1314 		 * Answer: Yes, drivers may have changed it in their
1315 		 *         f_op->mmap method.
1316 		 *
1317 		 * Ensures that vmas marked as uncached stay that way.
1318 		 */
1319 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1320 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1321 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1322 	}
1323 
1324 	vma_link(mm, vma, prev, rb_link, rb_parent);
1325 	file = vma->vm_file;
1326 
1327 	/* Once vma denies write, undo our temporary denial count */
1328 	if (correct_wcount)
1329 		atomic_inc(&inode->i_writecount);
1330 out:
1331 	perf_event_mmap(vma);
1332 
1333 	mm->total_vm += len >> PAGE_SHIFT;
1334 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1335 	if (vm_flags & VM_LOCKED) {
1336 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1337 			mm->locked_vm += (len >> PAGE_SHIFT);
1338 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1339 		make_pages_present(addr, addr + len);
1340 	return addr;
1341 
1342 unmap_and_free_vma:
1343 	if (correct_wcount)
1344 		atomic_inc(&inode->i_writecount);
1345 	vma->vm_file = NULL;
1346 	fput(file);
1347 
1348 	/* Undo any partial mapping done by a device driver. */
1349 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1350 	charged = 0;
1351 free_vma:
1352 	kmem_cache_free(vm_area_cachep, vma);
1353 unacct_error:
1354 	if (charged)
1355 		vm_unacct_memory(charged);
1356 	return error;
1357 }
1358 
1359 /* Get an address range which is currently unmapped.
1360  * For shmat() with addr=0.
1361  *
1362  * Ugly calling convention alert:
1363  * Return value with the low bits set means error value,
1364  * ie
1365  *	if (ret & ~PAGE_MASK)
1366  *		error = ret;
1367  *
1368  * This function "knows" that -ENOMEM has the bits set.
1369  */
1370 #ifndef HAVE_ARCH_UNMAPPED_AREA
1371 unsigned long
1372 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1373 		unsigned long len, unsigned long pgoff, unsigned long flags)
1374 {
1375 	struct mm_struct *mm = current->mm;
1376 	struct vm_area_struct *vma;
1377 	unsigned long start_addr;
1378 
1379 	if (len > TASK_SIZE)
1380 		return -ENOMEM;
1381 
1382 	if (flags & MAP_FIXED)
1383 		return addr;
1384 
1385 	if (addr) {
1386 		addr = PAGE_ALIGN(addr);
1387 		vma = find_vma(mm, addr);
1388 		if (TASK_SIZE - len >= addr &&
1389 		    (!vma || addr + len <= vma->vm_start))
1390 			return addr;
1391 	}
1392 	if (len > mm->cached_hole_size) {
1393 	        start_addr = addr = mm->free_area_cache;
1394 	} else {
1395 	        start_addr = addr = TASK_UNMAPPED_BASE;
1396 	        mm->cached_hole_size = 0;
1397 	}
1398 
1399 full_search:
1400 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1401 		/* At this point:  (!vma || addr < vma->vm_end). */
1402 		if (TASK_SIZE - len < addr) {
1403 			/*
1404 			 * Start a new search - just in case we missed
1405 			 * some holes.
1406 			 */
1407 			if (start_addr != TASK_UNMAPPED_BASE) {
1408 				addr = TASK_UNMAPPED_BASE;
1409 			        start_addr = addr;
1410 				mm->cached_hole_size = 0;
1411 				goto full_search;
1412 			}
1413 			return -ENOMEM;
1414 		}
1415 		if (!vma || addr + len <= vma->vm_start) {
1416 			/*
1417 			 * Remember the place where we stopped the search:
1418 			 */
1419 			mm->free_area_cache = addr + len;
1420 			return addr;
1421 		}
1422 		if (addr + mm->cached_hole_size < vma->vm_start)
1423 		        mm->cached_hole_size = vma->vm_start - addr;
1424 		addr = vma->vm_end;
1425 	}
1426 }
1427 #endif
1428 
1429 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1430 {
1431 	/*
1432 	 * Is this a new hole at the lowest possible address?
1433 	 */
1434 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1435 		mm->free_area_cache = addr;
1436 		mm->cached_hole_size = ~0UL;
1437 	}
1438 }
1439 
1440 /*
1441  * This mmap-allocator allocates new areas top-down from below the
1442  * stack's low limit (the base):
1443  */
1444 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1445 unsigned long
1446 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1447 			  const unsigned long len, const unsigned long pgoff,
1448 			  const unsigned long flags)
1449 {
1450 	struct vm_area_struct *vma;
1451 	struct mm_struct *mm = current->mm;
1452 	unsigned long addr = addr0;
1453 
1454 	/* requested length too big for entire address space */
1455 	if (len > TASK_SIZE)
1456 		return -ENOMEM;
1457 
1458 	if (flags & MAP_FIXED)
1459 		return addr;
1460 
1461 	/* requesting a specific address */
1462 	if (addr) {
1463 		addr = PAGE_ALIGN(addr);
1464 		vma = find_vma(mm, addr);
1465 		if (TASK_SIZE - len >= addr &&
1466 				(!vma || addr + len <= vma->vm_start))
1467 			return addr;
1468 	}
1469 
1470 	/* check if free_area_cache is useful for us */
1471 	if (len <= mm->cached_hole_size) {
1472  	        mm->cached_hole_size = 0;
1473  		mm->free_area_cache = mm->mmap_base;
1474  	}
1475 
1476 	/* either no address requested or can't fit in requested address hole */
1477 	addr = mm->free_area_cache;
1478 
1479 	/* make sure it can fit in the remaining address space */
1480 	if (addr > len) {
1481 		vma = find_vma(mm, addr-len);
1482 		if (!vma || addr <= vma->vm_start)
1483 			/* remember the address as a hint for next time */
1484 			return (mm->free_area_cache = addr-len);
1485 	}
1486 
1487 	if (mm->mmap_base < len)
1488 		goto bottomup;
1489 
1490 	addr = mm->mmap_base-len;
1491 
1492 	do {
1493 		/*
1494 		 * Lookup failure means no vma is above this address,
1495 		 * else if new region fits below vma->vm_start,
1496 		 * return with success:
1497 		 */
1498 		vma = find_vma(mm, addr);
1499 		if (!vma || addr+len <= vma->vm_start)
1500 			/* remember the address as a hint for next time */
1501 			return (mm->free_area_cache = addr);
1502 
1503  		/* remember the largest hole we saw so far */
1504  		if (addr + mm->cached_hole_size < vma->vm_start)
1505  		        mm->cached_hole_size = vma->vm_start - addr;
1506 
1507 		/* try just below the current vma->vm_start */
1508 		addr = vma->vm_start-len;
1509 	} while (len < vma->vm_start);
1510 
1511 bottomup:
1512 	/*
1513 	 * A failed mmap() very likely causes application failure,
1514 	 * so fall back to the bottom-up function here. This scenario
1515 	 * can happen with large stack limits and large mmap()
1516 	 * allocations.
1517 	 */
1518 	mm->cached_hole_size = ~0UL;
1519   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1520 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1521 	/*
1522 	 * Restore the topdown base:
1523 	 */
1524 	mm->free_area_cache = mm->mmap_base;
1525 	mm->cached_hole_size = ~0UL;
1526 
1527 	return addr;
1528 }
1529 #endif
1530 
1531 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1532 {
1533 	/*
1534 	 * Is this a new hole at the highest possible address?
1535 	 */
1536 	if (addr > mm->free_area_cache)
1537 		mm->free_area_cache = addr;
1538 
1539 	/* dont allow allocations above current base */
1540 	if (mm->free_area_cache > mm->mmap_base)
1541 		mm->free_area_cache = mm->mmap_base;
1542 }
1543 
1544 unsigned long
1545 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1546 		unsigned long pgoff, unsigned long flags)
1547 {
1548 	unsigned long (*get_area)(struct file *, unsigned long,
1549 				  unsigned long, unsigned long, unsigned long);
1550 
1551 	unsigned long error = arch_mmap_check(addr, len, flags);
1552 	if (error)
1553 		return error;
1554 
1555 	/* Careful about overflows.. */
1556 	if (len > TASK_SIZE)
1557 		return -ENOMEM;
1558 
1559 	get_area = current->mm->get_unmapped_area;
1560 	if (file && file->f_op && file->f_op->get_unmapped_area)
1561 		get_area = file->f_op->get_unmapped_area;
1562 	addr = get_area(file, addr, len, pgoff, flags);
1563 	if (IS_ERR_VALUE(addr))
1564 		return addr;
1565 
1566 	if (addr > TASK_SIZE - len)
1567 		return -ENOMEM;
1568 	if (addr & ~PAGE_MASK)
1569 		return -EINVAL;
1570 
1571 	return arch_rebalance_pgtables(addr, len);
1572 }
1573 
1574 EXPORT_SYMBOL(get_unmapped_area);
1575 
1576 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1577 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1578 {
1579 	struct vm_area_struct *vma = NULL;
1580 
1581 	if (mm) {
1582 		/* Check the cache first. */
1583 		/* (Cache hit rate is typically around 35%.) */
1584 		vma = mm->mmap_cache;
1585 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1586 			struct rb_node * rb_node;
1587 
1588 			rb_node = mm->mm_rb.rb_node;
1589 			vma = NULL;
1590 
1591 			while (rb_node) {
1592 				struct vm_area_struct * vma_tmp;
1593 
1594 				vma_tmp = rb_entry(rb_node,
1595 						struct vm_area_struct, vm_rb);
1596 
1597 				if (vma_tmp->vm_end > addr) {
1598 					vma = vma_tmp;
1599 					if (vma_tmp->vm_start <= addr)
1600 						break;
1601 					rb_node = rb_node->rb_left;
1602 				} else
1603 					rb_node = rb_node->rb_right;
1604 			}
1605 			if (vma)
1606 				mm->mmap_cache = vma;
1607 		}
1608 	}
1609 	return vma;
1610 }
1611 
1612 EXPORT_SYMBOL(find_vma);
1613 
1614 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1615 struct vm_area_struct *
1616 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1617 			struct vm_area_struct **pprev)
1618 {
1619 	struct vm_area_struct *vma = NULL, *prev = NULL;
1620 	struct rb_node *rb_node;
1621 	if (!mm)
1622 		goto out;
1623 
1624 	/* Guard against addr being lower than the first VMA */
1625 	vma = mm->mmap;
1626 
1627 	/* Go through the RB tree quickly. */
1628 	rb_node = mm->mm_rb.rb_node;
1629 
1630 	while (rb_node) {
1631 		struct vm_area_struct *vma_tmp;
1632 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1633 
1634 		if (addr < vma_tmp->vm_end) {
1635 			rb_node = rb_node->rb_left;
1636 		} else {
1637 			prev = vma_tmp;
1638 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1639 				break;
1640 			rb_node = rb_node->rb_right;
1641 		}
1642 	}
1643 
1644 out:
1645 	*pprev = prev;
1646 	return prev ? prev->vm_next : vma;
1647 }
1648 
1649 /*
1650  * Verify that the stack growth is acceptable and
1651  * update accounting. This is shared with both the
1652  * grow-up and grow-down cases.
1653  */
1654 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1655 {
1656 	struct mm_struct *mm = vma->vm_mm;
1657 	struct rlimit *rlim = current->signal->rlim;
1658 	unsigned long new_start;
1659 
1660 	/* address space limit tests */
1661 	if (!may_expand_vm(mm, grow))
1662 		return -ENOMEM;
1663 
1664 	/* Stack limit test */
1665 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1666 		return -ENOMEM;
1667 
1668 	/* mlock limit tests */
1669 	if (vma->vm_flags & VM_LOCKED) {
1670 		unsigned long locked;
1671 		unsigned long limit;
1672 		locked = mm->locked_vm + grow;
1673 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1674 		limit >>= PAGE_SHIFT;
1675 		if (locked > limit && !capable(CAP_IPC_LOCK))
1676 			return -ENOMEM;
1677 	}
1678 
1679 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1680 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1681 			vma->vm_end - size;
1682 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1683 		return -EFAULT;
1684 
1685 	/*
1686 	 * Overcommit..  This must be the final test, as it will
1687 	 * update security statistics.
1688 	 */
1689 	if (security_vm_enough_memory_mm(mm, grow))
1690 		return -ENOMEM;
1691 
1692 	/* Ok, everything looks good - let it rip */
1693 	mm->total_vm += grow;
1694 	if (vma->vm_flags & VM_LOCKED)
1695 		mm->locked_vm += grow;
1696 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1697 	return 0;
1698 }
1699 
1700 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1701 /*
1702  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1703  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1704  */
1705 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1706 {
1707 	int error;
1708 
1709 	if (!(vma->vm_flags & VM_GROWSUP))
1710 		return -EFAULT;
1711 
1712 	/*
1713 	 * We must make sure the anon_vma is allocated
1714 	 * so that the anon_vma locking is not a noop.
1715 	 */
1716 	if (unlikely(anon_vma_prepare(vma)))
1717 		return -ENOMEM;
1718 	vma_lock_anon_vma(vma);
1719 
1720 	/*
1721 	 * vma->vm_start/vm_end cannot change under us because the caller
1722 	 * is required to hold the mmap_sem in read mode.  We need the
1723 	 * anon_vma lock to serialize against concurrent expand_stacks.
1724 	 * Also guard against wrapping around to address 0.
1725 	 */
1726 	if (address < PAGE_ALIGN(address+4))
1727 		address = PAGE_ALIGN(address+4);
1728 	else {
1729 		vma_unlock_anon_vma(vma);
1730 		return -ENOMEM;
1731 	}
1732 	error = 0;
1733 
1734 	/* Somebody else might have raced and expanded it already */
1735 	if (address > vma->vm_end) {
1736 		unsigned long size, grow;
1737 
1738 		size = address - vma->vm_start;
1739 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1740 
1741 		error = -ENOMEM;
1742 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1743 			error = acct_stack_growth(vma, size, grow);
1744 			if (!error) {
1745 				vma->vm_end = address;
1746 				perf_event_mmap(vma);
1747 			}
1748 		}
1749 	}
1750 	vma_unlock_anon_vma(vma);
1751 	khugepaged_enter_vma_merge(vma);
1752 	return error;
1753 }
1754 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1755 
1756 /*
1757  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1758  */
1759 int expand_downwards(struct vm_area_struct *vma,
1760 				   unsigned long address)
1761 {
1762 	int error;
1763 
1764 	/*
1765 	 * We must make sure the anon_vma is allocated
1766 	 * so that the anon_vma locking is not a noop.
1767 	 */
1768 	if (unlikely(anon_vma_prepare(vma)))
1769 		return -ENOMEM;
1770 
1771 	address &= PAGE_MASK;
1772 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1773 	if (error)
1774 		return error;
1775 
1776 	vma_lock_anon_vma(vma);
1777 
1778 	/*
1779 	 * vma->vm_start/vm_end cannot change under us because the caller
1780 	 * is required to hold the mmap_sem in read mode.  We need the
1781 	 * anon_vma lock to serialize against concurrent expand_stacks.
1782 	 */
1783 
1784 	/* Somebody else might have raced and expanded it already */
1785 	if (address < vma->vm_start) {
1786 		unsigned long size, grow;
1787 
1788 		size = vma->vm_end - address;
1789 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1790 
1791 		error = -ENOMEM;
1792 		if (grow <= vma->vm_pgoff) {
1793 			error = acct_stack_growth(vma, size, grow);
1794 			if (!error) {
1795 				vma->vm_start = address;
1796 				vma->vm_pgoff -= grow;
1797 				perf_event_mmap(vma);
1798 			}
1799 		}
1800 	}
1801 	vma_unlock_anon_vma(vma);
1802 	khugepaged_enter_vma_merge(vma);
1803 	return error;
1804 }
1805 
1806 #ifdef CONFIG_STACK_GROWSUP
1807 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1808 {
1809 	return expand_upwards(vma, address);
1810 }
1811 
1812 struct vm_area_struct *
1813 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1814 {
1815 	struct vm_area_struct *vma, *prev;
1816 
1817 	addr &= PAGE_MASK;
1818 	vma = find_vma_prev(mm, addr, &prev);
1819 	if (vma && (vma->vm_start <= addr))
1820 		return vma;
1821 	if (!prev || expand_stack(prev, addr))
1822 		return NULL;
1823 	if (prev->vm_flags & VM_LOCKED) {
1824 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1825 	}
1826 	return prev;
1827 }
1828 #else
1829 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1830 {
1831 	return expand_downwards(vma, address);
1832 }
1833 
1834 struct vm_area_struct *
1835 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1836 {
1837 	struct vm_area_struct * vma;
1838 	unsigned long start;
1839 
1840 	addr &= PAGE_MASK;
1841 	vma = find_vma(mm,addr);
1842 	if (!vma)
1843 		return NULL;
1844 	if (vma->vm_start <= addr)
1845 		return vma;
1846 	if (!(vma->vm_flags & VM_GROWSDOWN))
1847 		return NULL;
1848 	start = vma->vm_start;
1849 	if (expand_stack(vma, addr))
1850 		return NULL;
1851 	if (vma->vm_flags & VM_LOCKED) {
1852 		mlock_vma_pages_range(vma, addr, start);
1853 	}
1854 	return vma;
1855 }
1856 #endif
1857 
1858 /*
1859  * Ok - we have the memory areas we should free on the vma list,
1860  * so release them, and do the vma updates.
1861  *
1862  * Called with the mm semaphore held.
1863  */
1864 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1865 {
1866 	/* Update high watermark before we lower total_vm */
1867 	update_hiwater_vm(mm);
1868 	do {
1869 		long nrpages = vma_pages(vma);
1870 
1871 		mm->total_vm -= nrpages;
1872 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1873 		vma = remove_vma(vma);
1874 	} while (vma);
1875 	validate_mm(mm);
1876 }
1877 
1878 /*
1879  * Get rid of page table information in the indicated region.
1880  *
1881  * Called with the mm semaphore held.
1882  */
1883 static void unmap_region(struct mm_struct *mm,
1884 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1885 		unsigned long start, unsigned long end)
1886 {
1887 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1888 	struct mmu_gather tlb;
1889 	unsigned long nr_accounted = 0;
1890 
1891 	lru_add_drain();
1892 	tlb_gather_mmu(&tlb, mm, 0);
1893 	update_hiwater_rss(mm);
1894 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1895 	vm_unacct_memory(nr_accounted);
1896 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1897 				 next ? next->vm_start : 0);
1898 	tlb_finish_mmu(&tlb, start, end);
1899 }
1900 
1901 /*
1902  * Create a list of vma's touched by the unmap, removing them from the mm's
1903  * vma list as we go..
1904  */
1905 static void
1906 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1907 	struct vm_area_struct *prev, unsigned long end)
1908 {
1909 	struct vm_area_struct **insertion_point;
1910 	struct vm_area_struct *tail_vma = NULL;
1911 	unsigned long addr;
1912 
1913 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1914 	vma->vm_prev = NULL;
1915 	do {
1916 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1917 		mm->map_count--;
1918 		tail_vma = vma;
1919 		vma = vma->vm_next;
1920 	} while (vma && vma->vm_start < end);
1921 	*insertion_point = vma;
1922 	if (vma)
1923 		vma->vm_prev = prev;
1924 	tail_vma->vm_next = NULL;
1925 	if (mm->unmap_area == arch_unmap_area)
1926 		addr = prev ? prev->vm_end : mm->mmap_base;
1927 	else
1928 		addr = vma ?  vma->vm_start : mm->mmap_base;
1929 	mm->unmap_area(mm, addr);
1930 	mm->mmap_cache = NULL;		/* Kill the cache. */
1931 }
1932 
1933 /*
1934  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1935  * munmap path where it doesn't make sense to fail.
1936  */
1937 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1938 	      unsigned long addr, int new_below)
1939 {
1940 	struct mempolicy *pol;
1941 	struct vm_area_struct *new;
1942 	int err = -ENOMEM;
1943 
1944 	if (is_vm_hugetlb_page(vma) && (addr &
1945 					~(huge_page_mask(hstate_vma(vma)))))
1946 		return -EINVAL;
1947 
1948 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1949 	if (!new)
1950 		goto out_err;
1951 
1952 	/* most fields are the same, copy all, and then fixup */
1953 	*new = *vma;
1954 
1955 	INIT_LIST_HEAD(&new->anon_vma_chain);
1956 
1957 	if (new_below)
1958 		new->vm_end = addr;
1959 	else {
1960 		new->vm_start = addr;
1961 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1962 	}
1963 
1964 	pol = mpol_dup(vma_policy(vma));
1965 	if (IS_ERR(pol)) {
1966 		err = PTR_ERR(pol);
1967 		goto out_free_vma;
1968 	}
1969 	vma_set_policy(new, pol);
1970 
1971 	if (anon_vma_clone(new, vma))
1972 		goto out_free_mpol;
1973 
1974 	if (new->vm_file) {
1975 		get_file(new->vm_file);
1976 		if (vma->vm_flags & VM_EXECUTABLE)
1977 			added_exe_file_vma(mm);
1978 	}
1979 
1980 	if (new->vm_ops && new->vm_ops->open)
1981 		new->vm_ops->open(new);
1982 
1983 	if (new_below)
1984 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1985 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1986 	else
1987 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1988 
1989 	/* Success. */
1990 	if (!err)
1991 		return 0;
1992 
1993 	/* Clean everything up if vma_adjust failed. */
1994 	if (new->vm_ops && new->vm_ops->close)
1995 		new->vm_ops->close(new);
1996 	if (new->vm_file) {
1997 		if (vma->vm_flags & VM_EXECUTABLE)
1998 			removed_exe_file_vma(mm);
1999 		fput(new->vm_file);
2000 	}
2001 	unlink_anon_vmas(new);
2002  out_free_mpol:
2003 	mpol_put(pol);
2004  out_free_vma:
2005 	kmem_cache_free(vm_area_cachep, new);
2006  out_err:
2007 	return err;
2008 }
2009 
2010 /*
2011  * Split a vma into two pieces at address 'addr', a new vma is allocated
2012  * either for the first part or the tail.
2013  */
2014 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2015 	      unsigned long addr, int new_below)
2016 {
2017 	if (mm->map_count >= sysctl_max_map_count)
2018 		return -ENOMEM;
2019 
2020 	return __split_vma(mm, vma, addr, new_below);
2021 }
2022 
2023 /* Munmap is split into 2 main parts -- this part which finds
2024  * what needs doing, and the areas themselves, which do the
2025  * work.  This now handles partial unmappings.
2026  * Jeremy Fitzhardinge <jeremy@goop.org>
2027  */
2028 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2029 {
2030 	unsigned long end;
2031 	struct vm_area_struct *vma, *prev, *last;
2032 
2033 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2034 		return -EINVAL;
2035 
2036 	if ((len = PAGE_ALIGN(len)) == 0)
2037 		return -EINVAL;
2038 
2039 	/* Find the first overlapping VMA */
2040 	vma = find_vma(mm, start);
2041 	if (!vma)
2042 		return 0;
2043 	prev = vma->vm_prev;
2044 	/* we have  start < vma->vm_end  */
2045 
2046 	/* if it doesn't overlap, we have nothing.. */
2047 	end = start + len;
2048 	if (vma->vm_start >= end)
2049 		return 0;
2050 
2051 	/*
2052 	 * If we need to split any vma, do it now to save pain later.
2053 	 *
2054 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2055 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2056 	 * places tmp vma above, and higher split_vma places tmp vma below.
2057 	 */
2058 	if (start > vma->vm_start) {
2059 		int error;
2060 
2061 		/*
2062 		 * Make sure that map_count on return from munmap() will
2063 		 * not exceed its limit; but let map_count go just above
2064 		 * its limit temporarily, to help free resources as expected.
2065 		 */
2066 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2067 			return -ENOMEM;
2068 
2069 		error = __split_vma(mm, vma, start, 0);
2070 		if (error)
2071 			return error;
2072 		prev = vma;
2073 	}
2074 
2075 	/* Does it split the last one? */
2076 	last = find_vma(mm, end);
2077 	if (last && end > last->vm_start) {
2078 		int error = __split_vma(mm, last, end, 1);
2079 		if (error)
2080 			return error;
2081 	}
2082 	vma = prev? prev->vm_next: mm->mmap;
2083 
2084 	/*
2085 	 * unlock any mlock()ed ranges before detaching vmas
2086 	 */
2087 	if (mm->locked_vm) {
2088 		struct vm_area_struct *tmp = vma;
2089 		while (tmp && tmp->vm_start < end) {
2090 			if (tmp->vm_flags & VM_LOCKED) {
2091 				mm->locked_vm -= vma_pages(tmp);
2092 				munlock_vma_pages_all(tmp);
2093 			}
2094 			tmp = tmp->vm_next;
2095 		}
2096 	}
2097 
2098 	/*
2099 	 * Remove the vma's, and unmap the actual pages
2100 	 */
2101 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2102 	unmap_region(mm, vma, prev, start, end);
2103 
2104 	/* Fix up all other VM information */
2105 	remove_vma_list(mm, vma);
2106 
2107 	return 0;
2108 }
2109 
2110 EXPORT_SYMBOL(do_munmap);
2111 
2112 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2113 {
2114 	int ret;
2115 	struct mm_struct *mm = current->mm;
2116 
2117 	profile_munmap(addr);
2118 
2119 	down_write(&mm->mmap_sem);
2120 	ret = do_munmap(mm, addr, len);
2121 	up_write(&mm->mmap_sem);
2122 	return ret;
2123 }
2124 
2125 static inline void verify_mm_writelocked(struct mm_struct *mm)
2126 {
2127 #ifdef CONFIG_DEBUG_VM
2128 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2129 		WARN_ON(1);
2130 		up_read(&mm->mmap_sem);
2131 	}
2132 #endif
2133 }
2134 
2135 /*
2136  *  this is really a simplified "do_mmap".  it only handles
2137  *  anonymous maps.  eventually we may be able to do some
2138  *  brk-specific accounting here.
2139  */
2140 unsigned long do_brk(unsigned long addr, unsigned long len)
2141 {
2142 	struct mm_struct * mm = current->mm;
2143 	struct vm_area_struct * vma, * prev;
2144 	unsigned long flags;
2145 	struct rb_node ** rb_link, * rb_parent;
2146 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2147 	int error;
2148 
2149 	len = PAGE_ALIGN(len);
2150 	if (!len)
2151 		return addr;
2152 
2153 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2154 	if (error)
2155 		return error;
2156 
2157 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2158 
2159 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2160 	if (error & ~PAGE_MASK)
2161 		return error;
2162 
2163 	/*
2164 	 * mlock MCL_FUTURE?
2165 	 */
2166 	if (mm->def_flags & VM_LOCKED) {
2167 		unsigned long locked, lock_limit;
2168 		locked = len >> PAGE_SHIFT;
2169 		locked += mm->locked_vm;
2170 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2171 		lock_limit >>= PAGE_SHIFT;
2172 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2173 			return -EAGAIN;
2174 	}
2175 
2176 	/*
2177 	 * mm->mmap_sem is required to protect against another thread
2178 	 * changing the mappings in case we sleep.
2179 	 */
2180 	verify_mm_writelocked(mm);
2181 
2182 	/*
2183 	 * Clear old maps.  this also does some error checking for us
2184 	 */
2185  munmap_back:
2186 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2187 	if (vma && vma->vm_start < addr + len) {
2188 		if (do_munmap(mm, addr, len))
2189 			return -ENOMEM;
2190 		goto munmap_back;
2191 	}
2192 
2193 	/* Check against address space limits *after* clearing old maps... */
2194 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2195 		return -ENOMEM;
2196 
2197 	if (mm->map_count > sysctl_max_map_count)
2198 		return -ENOMEM;
2199 
2200 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2201 		return -ENOMEM;
2202 
2203 	/* Can we just expand an old private anonymous mapping? */
2204 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2205 					NULL, NULL, pgoff, NULL);
2206 	if (vma)
2207 		goto out;
2208 
2209 	/*
2210 	 * create a vma struct for an anonymous mapping
2211 	 */
2212 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2213 	if (!vma) {
2214 		vm_unacct_memory(len >> PAGE_SHIFT);
2215 		return -ENOMEM;
2216 	}
2217 
2218 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2219 	vma->vm_mm = mm;
2220 	vma->vm_start = addr;
2221 	vma->vm_end = addr + len;
2222 	vma->vm_pgoff = pgoff;
2223 	vma->vm_flags = flags;
2224 	vma->vm_page_prot = vm_get_page_prot(flags);
2225 	vma_link(mm, vma, prev, rb_link, rb_parent);
2226 out:
2227 	perf_event_mmap(vma);
2228 	mm->total_vm += len >> PAGE_SHIFT;
2229 	if (flags & VM_LOCKED) {
2230 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2231 			mm->locked_vm += (len >> PAGE_SHIFT);
2232 	}
2233 	return addr;
2234 }
2235 
2236 EXPORT_SYMBOL(do_brk);
2237 
2238 /* Release all mmaps. */
2239 void exit_mmap(struct mm_struct *mm)
2240 {
2241 	struct mmu_gather tlb;
2242 	struct vm_area_struct *vma;
2243 	unsigned long nr_accounted = 0;
2244 	unsigned long end;
2245 
2246 	/* mm's last user has gone, and its about to be pulled down */
2247 	mmu_notifier_release(mm);
2248 
2249 	if (mm->locked_vm) {
2250 		vma = mm->mmap;
2251 		while (vma) {
2252 			if (vma->vm_flags & VM_LOCKED)
2253 				munlock_vma_pages_all(vma);
2254 			vma = vma->vm_next;
2255 		}
2256 	}
2257 
2258 	arch_exit_mmap(mm);
2259 
2260 	vma = mm->mmap;
2261 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2262 		return;
2263 
2264 	lru_add_drain();
2265 	flush_cache_mm(mm);
2266 	tlb_gather_mmu(&tlb, mm, 1);
2267 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2268 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2269 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2270 	vm_unacct_memory(nr_accounted);
2271 
2272 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2273 	tlb_finish_mmu(&tlb, 0, end);
2274 
2275 	/*
2276 	 * Walk the list again, actually closing and freeing it,
2277 	 * with preemption enabled, without holding any MM locks.
2278 	 */
2279 	while (vma)
2280 		vma = remove_vma(vma);
2281 
2282 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2283 }
2284 
2285 /* Insert vm structure into process list sorted by address
2286  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2287  * then i_mmap_mutex is taken here.
2288  */
2289 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2290 {
2291 	struct vm_area_struct * __vma, * prev;
2292 	struct rb_node ** rb_link, * rb_parent;
2293 
2294 	/*
2295 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2296 	 * until its first write fault, when page's anon_vma and index
2297 	 * are set.  But now set the vm_pgoff it will almost certainly
2298 	 * end up with (unless mremap moves it elsewhere before that
2299 	 * first wfault), so /proc/pid/maps tells a consistent story.
2300 	 *
2301 	 * By setting it to reflect the virtual start address of the
2302 	 * vma, merges and splits can happen in a seamless way, just
2303 	 * using the existing file pgoff checks and manipulations.
2304 	 * Similarly in do_mmap_pgoff and in do_brk.
2305 	 */
2306 	if (!vma->vm_file) {
2307 		BUG_ON(vma->anon_vma);
2308 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2309 	}
2310 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2311 	if (__vma && __vma->vm_start < vma->vm_end)
2312 		return -ENOMEM;
2313 	if ((vma->vm_flags & VM_ACCOUNT) &&
2314 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2315 		return -ENOMEM;
2316 	vma_link(mm, vma, prev, rb_link, rb_parent);
2317 	return 0;
2318 }
2319 
2320 /*
2321  * Copy the vma structure to a new location in the same mm,
2322  * prior to moving page table entries, to effect an mremap move.
2323  */
2324 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2325 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2326 {
2327 	struct vm_area_struct *vma = *vmap;
2328 	unsigned long vma_start = vma->vm_start;
2329 	struct mm_struct *mm = vma->vm_mm;
2330 	struct vm_area_struct *new_vma, *prev;
2331 	struct rb_node **rb_link, *rb_parent;
2332 	struct mempolicy *pol;
2333 
2334 	/*
2335 	 * If anonymous vma has not yet been faulted, update new pgoff
2336 	 * to match new location, to increase its chance of merging.
2337 	 */
2338 	if (!vma->vm_file && !vma->anon_vma)
2339 		pgoff = addr >> PAGE_SHIFT;
2340 
2341 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2342 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2343 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2344 	if (new_vma) {
2345 		/*
2346 		 * Source vma may have been merged into new_vma
2347 		 */
2348 		if (vma_start >= new_vma->vm_start &&
2349 		    vma_start < new_vma->vm_end)
2350 			*vmap = new_vma;
2351 	} else {
2352 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2353 		if (new_vma) {
2354 			*new_vma = *vma;
2355 			pol = mpol_dup(vma_policy(vma));
2356 			if (IS_ERR(pol))
2357 				goto out_free_vma;
2358 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2359 			if (anon_vma_clone(new_vma, vma))
2360 				goto out_free_mempol;
2361 			vma_set_policy(new_vma, pol);
2362 			new_vma->vm_start = addr;
2363 			new_vma->vm_end = addr + len;
2364 			new_vma->vm_pgoff = pgoff;
2365 			if (new_vma->vm_file) {
2366 				get_file(new_vma->vm_file);
2367 				if (vma->vm_flags & VM_EXECUTABLE)
2368 					added_exe_file_vma(mm);
2369 			}
2370 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2371 				new_vma->vm_ops->open(new_vma);
2372 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2373 		}
2374 	}
2375 	return new_vma;
2376 
2377  out_free_mempol:
2378 	mpol_put(pol);
2379  out_free_vma:
2380 	kmem_cache_free(vm_area_cachep, new_vma);
2381 	return NULL;
2382 }
2383 
2384 /*
2385  * Return true if the calling process may expand its vm space by the passed
2386  * number of pages
2387  */
2388 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2389 {
2390 	unsigned long cur = mm->total_vm;	/* pages */
2391 	unsigned long lim;
2392 
2393 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2394 
2395 	if (cur + npages > lim)
2396 		return 0;
2397 	return 1;
2398 }
2399 
2400 
2401 static int special_mapping_fault(struct vm_area_struct *vma,
2402 				struct vm_fault *vmf)
2403 {
2404 	pgoff_t pgoff;
2405 	struct page **pages;
2406 
2407 	/*
2408 	 * special mappings have no vm_file, and in that case, the mm
2409 	 * uses vm_pgoff internally. So we have to subtract it from here.
2410 	 * We are allowed to do this because we are the mm; do not copy
2411 	 * this code into drivers!
2412 	 */
2413 	pgoff = vmf->pgoff - vma->vm_pgoff;
2414 
2415 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2416 		pgoff--;
2417 
2418 	if (*pages) {
2419 		struct page *page = *pages;
2420 		get_page(page);
2421 		vmf->page = page;
2422 		return 0;
2423 	}
2424 
2425 	return VM_FAULT_SIGBUS;
2426 }
2427 
2428 /*
2429  * Having a close hook prevents vma merging regardless of flags.
2430  */
2431 static void special_mapping_close(struct vm_area_struct *vma)
2432 {
2433 }
2434 
2435 static const struct vm_operations_struct special_mapping_vmops = {
2436 	.close = special_mapping_close,
2437 	.fault = special_mapping_fault,
2438 };
2439 
2440 /*
2441  * Called with mm->mmap_sem held for writing.
2442  * Insert a new vma covering the given region, with the given flags.
2443  * Its pages are supplied by the given array of struct page *.
2444  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2445  * The region past the last page supplied will always produce SIGBUS.
2446  * The array pointer and the pages it points to are assumed to stay alive
2447  * for as long as this mapping might exist.
2448  */
2449 int install_special_mapping(struct mm_struct *mm,
2450 			    unsigned long addr, unsigned long len,
2451 			    unsigned long vm_flags, struct page **pages)
2452 {
2453 	int ret;
2454 	struct vm_area_struct *vma;
2455 
2456 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2457 	if (unlikely(vma == NULL))
2458 		return -ENOMEM;
2459 
2460 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2461 	vma->vm_mm = mm;
2462 	vma->vm_start = addr;
2463 	vma->vm_end = addr + len;
2464 
2465 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2466 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2467 
2468 	vma->vm_ops = &special_mapping_vmops;
2469 	vma->vm_private_data = pages;
2470 
2471 	ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2472 	if (ret)
2473 		goto out;
2474 
2475 	ret = insert_vm_struct(mm, vma);
2476 	if (ret)
2477 		goto out;
2478 
2479 	mm->total_vm += len >> PAGE_SHIFT;
2480 
2481 	perf_event_mmap(vma);
2482 
2483 	return 0;
2484 
2485 out:
2486 	kmem_cache_free(vm_area_cachep, vma);
2487 	return ret;
2488 }
2489 
2490 static DEFINE_MUTEX(mm_all_locks_mutex);
2491 
2492 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2493 {
2494 	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2495 		/*
2496 		 * The LSB of head.next can't change from under us
2497 		 * because we hold the mm_all_locks_mutex.
2498 		 */
2499 		mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2500 		/*
2501 		 * We can safely modify head.next after taking the
2502 		 * anon_vma->root->mutex. If some other vma in this mm shares
2503 		 * the same anon_vma we won't take it again.
2504 		 *
2505 		 * No need of atomic instructions here, head.next
2506 		 * can't change from under us thanks to the
2507 		 * anon_vma->root->mutex.
2508 		 */
2509 		if (__test_and_set_bit(0, (unsigned long *)
2510 				       &anon_vma->root->head.next))
2511 			BUG();
2512 	}
2513 }
2514 
2515 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2516 {
2517 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2518 		/*
2519 		 * AS_MM_ALL_LOCKS can't change from under us because
2520 		 * we hold the mm_all_locks_mutex.
2521 		 *
2522 		 * Operations on ->flags have to be atomic because
2523 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2524 		 * mm_all_locks_mutex, there may be other cpus
2525 		 * changing other bitflags in parallel to us.
2526 		 */
2527 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2528 			BUG();
2529 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2530 	}
2531 }
2532 
2533 /*
2534  * This operation locks against the VM for all pte/vma/mm related
2535  * operations that could ever happen on a certain mm. This includes
2536  * vmtruncate, try_to_unmap, and all page faults.
2537  *
2538  * The caller must take the mmap_sem in write mode before calling
2539  * mm_take_all_locks(). The caller isn't allowed to release the
2540  * mmap_sem until mm_drop_all_locks() returns.
2541  *
2542  * mmap_sem in write mode is required in order to block all operations
2543  * that could modify pagetables and free pages without need of
2544  * altering the vma layout (for example populate_range() with
2545  * nonlinear vmas). It's also needed in write mode to avoid new
2546  * anon_vmas to be associated with existing vmas.
2547  *
2548  * A single task can't take more than one mm_take_all_locks() in a row
2549  * or it would deadlock.
2550  *
2551  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2552  * mapping->flags avoid to take the same lock twice, if more than one
2553  * vma in this mm is backed by the same anon_vma or address_space.
2554  *
2555  * We can take all the locks in random order because the VM code
2556  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2557  * takes more than one of them in a row. Secondly we're protected
2558  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2559  *
2560  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2561  * that may have to take thousand of locks.
2562  *
2563  * mm_take_all_locks() can fail if it's interrupted by signals.
2564  */
2565 int mm_take_all_locks(struct mm_struct *mm)
2566 {
2567 	struct vm_area_struct *vma;
2568 	struct anon_vma_chain *avc;
2569 	int ret = -EINTR;
2570 
2571 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2572 
2573 	mutex_lock(&mm_all_locks_mutex);
2574 
2575 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2576 		if (signal_pending(current))
2577 			goto out_unlock;
2578 		if (vma->vm_file && vma->vm_file->f_mapping)
2579 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2580 	}
2581 
2582 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2583 		if (signal_pending(current))
2584 			goto out_unlock;
2585 		if (vma->anon_vma)
2586 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2587 				vm_lock_anon_vma(mm, avc->anon_vma);
2588 	}
2589 
2590 	ret = 0;
2591 
2592 out_unlock:
2593 	if (ret)
2594 		mm_drop_all_locks(mm);
2595 
2596 	return ret;
2597 }
2598 
2599 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2600 {
2601 	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2602 		/*
2603 		 * The LSB of head.next can't change to 0 from under
2604 		 * us because we hold the mm_all_locks_mutex.
2605 		 *
2606 		 * We must however clear the bitflag before unlocking
2607 		 * the vma so the users using the anon_vma->head will
2608 		 * never see our bitflag.
2609 		 *
2610 		 * No need of atomic instructions here, head.next
2611 		 * can't change from under us until we release the
2612 		 * anon_vma->root->mutex.
2613 		 */
2614 		if (!__test_and_clear_bit(0, (unsigned long *)
2615 					  &anon_vma->root->head.next))
2616 			BUG();
2617 		anon_vma_unlock(anon_vma);
2618 	}
2619 }
2620 
2621 static void vm_unlock_mapping(struct address_space *mapping)
2622 {
2623 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2624 		/*
2625 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2626 		 * because we hold the mm_all_locks_mutex.
2627 		 */
2628 		mutex_unlock(&mapping->i_mmap_mutex);
2629 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2630 					&mapping->flags))
2631 			BUG();
2632 	}
2633 }
2634 
2635 /*
2636  * The mmap_sem cannot be released by the caller until
2637  * mm_drop_all_locks() returns.
2638  */
2639 void mm_drop_all_locks(struct mm_struct *mm)
2640 {
2641 	struct vm_area_struct *vma;
2642 	struct anon_vma_chain *avc;
2643 
2644 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2645 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2646 
2647 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2648 		if (vma->anon_vma)
2649 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2650 				vm_unlock_anon_vma(avc->anon_vma);
2651 		if (vma->vm_file && vma->vm_file->f_mapping)
2652 			vm_unlock_mapping(vma->vm_file->f_mapping);
2653 	}
2654 
2655 	mutex_unlock(&mm_all_locks_mutex);
2656 }
2657 
2658 /*
2659  * initialise the VMA slab
2660  */
2661 void __init mmap_init(void)
2662 {
2663 	int ret;
2664 
2665 	ret = percpu_counter_init(&vm_committed_as, 0);
2666 	VM_BUG_ON(ret);
2667 }
2668