1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/module.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 #include <linux/audit.h> 32 #include <linux/khugepaged.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/cacheflush.h> 36 #include <asm/tlb.h> 37 #include <asm/mmu_context.h> 38 39 #include "internal.h" 40 41 #ifndef arch_mmap_check 42 #define arch_mmap_check(addr, len, flags) (0) 43 #endif 44 45 #ifndef arch_rebalance_pgtables 46 #define arch_rebalance_pgtables(addr, len) (addr) 47 #endif 48 49 static void unmap_region(struct mm_struct *mm, 50 struct vm_area_struct *vma, struct vm_area_struct *prev, 51 unsigned long start, unsigned long end); 52 53 /* 54 * WARNING: the debugging will use recursive algorithms so never enable this 55 * unless you know what you are doing. 56 */ 57 #undef DEBUG_MM_RB 58 59 /* description of effects of mapping type and prot in current implementation. 60 * this is due to the limited x86 page protection hardware. The expected 61 * behavior is in parens: 62 * 63 * map_type prot 64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 66 * w: (no) no w: (no) no w: (yes) yes w: (no) no 67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 68 * 69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 70 * w: (no) no w: (no) no w: (copy) copy w: (no) no 71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 72 * 73 */ 74 pgprot_t protection_map[16] = { 75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 77 }; 78 79 pgprot_t vm_get_page_prot(unsigned long vm_flags) 80 { 81 return __pgprot(pgprot_val(protection_map[vm_flags & 82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 83 pgprot_val(arch_vm_get_page_prot(vm_flags))); 84 } 85 EXPORT_SYMBOL(vm_get_page_prot); 86 87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 90 /* 91 * Make sure vm_committed_as in one cacheline and not cacheline shared with 92 * other variables. It can be updated by several CPUs frequently. 93 */ 94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 95 96 /* 97 * Check that a process has enough memory to allocate a new virtual 98 * mapping. 0 means there is enough memory for the allocation to 99 * succeed and -ENOMEM implies there is not. 100 * 101 * We currently support three overcommit policies, which are set via the 102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 103 * 104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 105 * Additional code 2002 Jul 20 by Robert Love. 106 * 107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 108 * 109 * Note this is a helper function intended to be used by LSMs which 110 * wish to use this logic. 111 */ 112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 113 { 114 unsigned long free, allowed; 115 116 vm_acct_memory(pages); 117 118 /* 119 * Sometimes we want to use more memory than we have 120 */ 121 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 122 return 0; 123 124 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 125 unsigned long n; 126 127 free = global_page_state(NR_FILE_PAGES); 128 free += nr_swap_pages; 129 130 /* 131 * Any slabs which are created with the 132 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 133 * which are reclaimable, under pressure. The dentry 134 * cache and most inode caches should fall into this 135 */ 136 free += global_page_state(NR_SLAB_RECLAIMABLE); 137 138 /* 139 * Leave the last 3% for root 140 */ 141 if (!cap_sys_admin) 142 free -= free / 32; 143 144 if (free > pages) 145 return 0; 146 147 /* 148 * nr_free_pages() is very expensive on large systems, 149 * only call if we're about to fail. 150 */ 151 n = nr_free_pages(); 152 153 /* 154 * Leave reserved pages. The pages are not for anonymous pages. 155 */ 156 if (n <= totalreserve_pages) 157 goto error; 158 else 159 n -= totalreserve_pages; 160 161 /* 162 * Leave the last 3% for root 163 */ 164 if (!cap_sys_admin) 165 n -= n / 32; 166 free += n; 167 168 if (free > pages) 169 return 0; 170 171 goto error; 172 } 173 174 allowed = (totalram_pages - hugetlb_total_pages()) 175 * sysctl_overcommit_ratio / 100; 176 /* 177 * Leave the last 3% for root 178 */ 179 if (!cap_sys_admin) 180 allowed -= allowed / 32; 181 allowed += total_swap_pages; 182 183 /* Don't let a single process grow too big: 184 leave 3% of the size of this process for other processes */ 185 if (mm) 186 allowed -= mm->total_vm / 32; 187 188 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 189 return 0; 190 error: 191 vm_unacct_memory(pages); 192 193 return -ENOMEM; 194 } 195 196 /* 197 * Requires inode->i_mapping->i_mmap_mutex 198 */ 199 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 200 struct file *file, struct address_space *mapping) 201 { 202 if (vma->vm_flags & VM_DENYWRITE) 203 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 204 if (vma->vm_flags & VM_SHARED) 205 mapping->i_mmap_writable--; 206 207 flush_dcache_mmap_lock(mapping); 208 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 209 list_del_init(&vma->shared.vm_set.list); 210 else 211 vma_prio_tree_remove(vma, &mapping->i_mmap); 212 flush_dcache_mmap_unlock(mapping); 213 } 214 215 /* 216 * Unlink a file-based vm structure from its prio_tree, to hide 217 * vma from rmap and vmtruncate before freeing its page tables. 218 */ 219 void unlink_file_vma(struct vm_area_struct *vma) 220 { 221 struct file *file = vma->vm_file; 222 223 if (file) { 224 struct address_space *mapping = file->f_mapping; 225 mutex_lock(&mapping->i_mmap_mutex); 226 __remove_shared_vm_struct(vma, file, mapping); 227 mutex_unlock(&mapping->i_mmap_mutex); 228 } 229 } 230 231 /* 232 * Close a vm structure and free it, returning the next. 233 */ 234 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 235 { 236 struct vm_area_struct *next = vma->vm_next; 237 238 might_sleep(); 239 if (vma->vm_ops && vma->vm_ops->close) 240 vma->vm_ops->close(vma); 241 if (vma->vm_file) { 242 fput(vma->vm_file); 243 if (vma->vm_flags & VM_EXECUTABLE) 244 removed_exe_file_vma(vma->vm_mm); 245 } 246 mpol_put(vma_policy(vma)); 247 kmem_cache_free(vm_area_cachep, vma); 248 return next; 249 } 250 251 SYSCALL_DEFINE1(brk, unsigned long, brk) 252 { 253 unsigned long rlim, retval; 254 unsigned long newbrk, oldbrk; 255 struct mm_struct *mm = current->mm; 256 unsigned long min_brk; 257 258 down_write(&mm->mmap_sem); 259 260 #ifdef CONFIG_COMPAT_BRK 261 /* 262 * CONFIG_COMPAT_BRK can still be overridden by setting 263 * randomize_va_space to 2, which will still cause mm->start_brk 264 * to be arbitrarily shifted 265 */ 266 if (current->brk_randomized) 267 min_brk = mm->start_brk; 268 else 269 min_brk = mm->end_data; 270 #else 271 min_brk = mm->start_brk; 272 #endif 273 if (brk < min_brk) 274 goto out; 275 276 /* 277 * Check against rlimit here. If this check is done later after the test 278 * of oldbrk with newbrk then it can escape the test and let the data 279 * segment grow beyond its set limit the in case where the limit is 280 * not page aligned -Ram Gupta 281 */ 282 rlim = rlimit(RLIMIT_DATA); 283 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 284 (mm->end_data - mm->start_data) > rlim) 285 goto out; 286 287 newbrk = PAGE_ALIGN(brk); 288 oldbrk = PAGE_ALIGN(mm->brk); 289 if (oldbrk == newbrk) 290 goto set_brk; 291 292 /* Always allow shrinking brk. */ 293 if (brk <= mm->brk) { 294 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 295 goto set_brk; 296 goto out; 297 } 298 299 /* Check against existing mmap mappings. */ 300 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 301 goto out; 302 303 /* Ok, looks good - let it rip. */ 304 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 305 goto out; 306 set_brk: 307 mm->brk = brk; 308 out: 309 retval = mm->brk; 310 up_write(&mm->mmap_sem); 311 return retval; 312 } 313 314 #ifdef DEBUG_MM_RB 315 static int browse_rb(struct rb_root *root) 316 { 317 int i = 0, j; 318 struct rb_node *nd, *pn = NULL; 319 unsigned long prev = 0, pend = 0; 320 321 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 322 struct vm_area_struct *vma; 323 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 324 if (vma->vm_start < prev) 325 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 326 if (vma->vm_start < pend) 327 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 328 if (vma->vm_start > vma->vm_end) 329 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 330 i++; 331 pn = nd; 332 prev = vma->vm_start; 333 pend = vma->vm_end; 334 } 335 j = 0; 336 for (nd = pn; nd; nd = rb_prev(nd)) { 337 j++; 338 } 339 if (i != j) 340 printk("backwards %d, forwards %d\n", j, i), i = 0; 341 return i; 342 } 343 344 void validate_mm(struct mm_struct *mm) 345 { 346 int bug = 0; 347 int i = 0; 348 struct vm_area_struct *tmp = mm->mmap; 349 while (tmp) { 350 tmp = tmp->vm_next; 351 i++; 352 } 353 if (i != mm->map_count) 354 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 355 i = browse_rb(&mm->mm_rb); 356 if (i != mm->map_count) 357 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 358 BUG_ON(bug); 359 } 360 #else 361 #define validate_mm(mm) do { } while (0) 362 #endif 363 364 static struct vm_area_struct * 365 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 366 struct vm_area_struct **pprev, struct rb_node ***rb_link, 367 struct rb_node ** rb_parent) 368 { 369 struct vm_area_struct * vma; 370 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 371 372 __rb_link = &mm->mm_rb.rb_node; 373 rb_prev = __rb_parent = NULL; 374 vma = NULL; 375 376 while (*__rb_link) { 377 struct vm_area_struct *vma_tmp; 378 379 __rb_parent = *__rb_link; 380 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 381 382 if (vma_tmp->vm_end > addr) { 383 vma = vma_tmp; 384 if (vma_tmp->vm_start <= addr) 385 break; 386 __rb_link = &__rb_parent->rb_left; 387 } else { 388 rb_prev = __rb_parent; 389 __rb_link = &__rb_parent->rb_right; 390 } 391 } 392 393 *pprev = NULL; 394 if (rb_prev) 395 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 396 *rb_link = __rb_link; 397 *rb_parent = __rb_parent; 398 return vma; 399 } 400 401 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 402 struct rb_node **rb_link, struct rb_node *rb_parent) 403 { 404 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 405 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 406 } 407 408 static void __vma_link_file(struct vm_area_struct *vma) 409 { 410 struct file *file; 411 412 file = vma->vm_file; 413 if (file) { 414 struct address_space *mapping = file->f_mapping; 415 416 if (vma->vm_flags & VM_DENYWRITE) 417 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 418 if (vma->vm_flags & VM_SHARED) 419 mapping->i_mmap_writable++; 420 421 flush_dcache_mmap_lock(mapping); 422 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 423 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 424 else 425 vma_prio_tree_insert(vma, &mapping->i_mmap); 426 flush_dcache_mmap_unlock(mapping); 427 } 428 } 429 430 static void 431 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 432 struct vm_area_struct *prev, struct rb_node **rb_link, 433 struct rb_node *rb_parent) 434 { 435 __vma_link_list(mm, vma, prev, rb_parent); 436 __vma_link_rb(mm, vma, rb_link, rb_parent); 437 } 438 439 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 440 struct vm_area_struct *prev, struct rb_node **rb_link, 441 struct rb_node *rb_parent) 442 { 443 struct address_space *mapping = NULL; 444 445 if (vma->vm_file) 446 mapping = vma->vm_file->f_mapping; 447 448 if (mapping) 449 mutex_lock(&mapping->i_mmap_mutex); 450 451 __vma_link(mm, vma, prev, rb_link, rb_parent); 452 __vma_link_file(vma); 453 454 if (mapping) 455 mutex_unlock(&mapping->i_mmap_mutex); 456 457 mm->map_count++; 458 validate_mm(mm); 459 } 460 461 /* 462 * Helper for vma_adjust in the split_vma insert case: 463 * insert vm structure into list and rbtree and anon_vma, 464 * but it has already been inserted into prio_tree earlier. 465 */ 466 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 467 { 468 struct vm_area_struct *__vma, *prev; 469 struct rb_node **rb_link, *rb_parent; 470 471 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 472 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 473 __vma_link(mm, vma, prev, rb_link, rb_parent); 474 mm->map_count++; 475 } 476 477 static inline void 478 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 479 struct vm_area_struct *prev) 480 { 481 struct vm_area_struct *next = vma->vm_next; 482 483 prev->vm_next = next; 484 if (next) 485 next->vm_prev = prev; 486 rb_erase(&vma->vm_rb, &mm->mm_rb); 487 if (mm->mmap_cache == vma) 488 mm->mmap_cache = prev; 489 } 490 491 /* 492 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 493 * is already present in an i_mmap tree without adjusting the tree. 494 * The following helper function should be used when such adjustments 495 * are necessary. The "insert" vma (if any) is to be inserted 496 * before we drop the necessary locks. 497 */ 498 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 499 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 500 { 501 struct mm_struct *mm = vma->vm_mm; 502 struct vm_area_struct *next = vma->vm_next; 503 struct vm_area_struct *importer = NULL; 504 struct address_space *mapping = NULL; 505 struct prio_tree_root *root = NULL; 506 struct anon_vma *anon_vma = NULL; 507 struct file *file = vma->vm_file; 508 long adjust_next = 0; 509 int remove_next = 0; 510 511 if (next && !insert) { 512 struct vm_area_struct *exporter = NULL; 513 514 if (end >= next->vm_end) { 515 /* 516 * vma expands, overlapping all the next, and 517 * perhaps the one after too (mprotect case 6). 518 */ 519 again: remove_next = 1 + (end > next->vm_end); 520 end = next->vm_end; 521 exporter = next; 522 importer = vma; 523 } else if (end > next->vm_start) { 524 /* 525 * vma expands, overlapping part of the next: 526 * mprotect case 5 shifting the boundary up. 527 */ 528 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 529 exporter = next; 530 importer = vma; 531 } else if (end < vma->vm_end) { 532 /* 533 * vma shrinks, and !insert tells it's not 534 * split_vma inserting another: so it must be 535 * mprotect case 4 shifting the boundary down. 536 */ 537 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 538 exporter = vma; 539 importer = next; 540 } 541 542 /* 543 * Easily overlooked: when mprotect shifts the boundary, 544 * make sure the expanding vma has anon_vma set if the 545 * shrinking vma had, to cover any anon pages imported. 546 */ 547 if (exporter && exporter->anon_vma && !importer->anon_vma) { 548 if (anon_vma_clone(importer, exporter)) 549 return -ENOMEM; 550 importer->anon_vma = exporter->anon_vma; 551 } 552 } 553 554 if (file) { 555 mapping = file->f_mapping; 556 if (!(vma->vm_flags & VM_NONLINEAR)) 557 root = &mapping->i_mmap; 558 mutex_lock(&mapping->i_mmap_mutex); 559 if (insert) { 560 /* 561 * Put into prio_tree now, so instantiated pages 562 * are visible to arm/parisc __flush_dcache_page 563 * throughout; but we cannot insert into address 564 * space until vma start or end is updated. 565 */ 566 __vma_link_file(insert); 567 } 568 } 569 570 vma_adjust_trans_huge(vma, start, end, adjust_next); 571 572 /* 573 * When changing only vma->vm_end, we don't really need anon_vma 574 * lock. This is a fairly rare case by itself, but the anon_vma 575 * lock may be shared between many sibling processes. Skipping 576 * the lock for brk adjustments makes a difference sometimes. 577 */ 578 if (vma->anon_vma && (importer || start != vma->vm_start)) { 579 anon_vma = vma->anon_vma; 580 anon_vma_lock(anon_vma); 581 } 582 583 if (root) { 584 flush_dcache_mmap_lock(mapping); 585 vma_prio_tree_remove(vma, root); 586 if (adjust_next) 587 vma_prio_tree_remove(next, root); 588 } 589 590 vma->vm_start = start; 591 vma->vm_end = end; 592 vma->vm_pgoff = pgoff; 593 if (adjust_next) { 594 next->vm_start += adjust_next << PAGE_SHIFT; 595 next->vm_pgoff += adjust_next; 596 } 597 598 if (root) { 599 if (adjust_next) 600 vma_prio_tree_insert(next, root); 601 vma_prio_tree_insert(vma, root); 602 flush_dcache_mmap_unlock(mapping); 603 } 604 605 if (remove_next) { 606 /* 607 * vma_merge has merged next into vma, and needs 608 * us to remove next before dropping the locks. 609 */ 610 __vma_unlink(mm, next, vma); 611 if (file) 612 __remove_shared_vm_struct(next, file, mapping); 613 } else if (insert) { 614 /* 615 * split_vma has split insert from vma, and needs 616 * us to insert it before dropping the locks 617 * (it may either follow vma or precede it). 618 */ 619 __insert_vm_struct(mm, insert); 620 } 621 622 if (anon_vma) 623 anon_vma_unlock(anon_vma); 624 if (mapping) 625 mutex_unlock(&mapping->i_mmap_mutex); 626 627 if (remove_next) { 628 if (file) { 629 fput(file); 630 if (next->vm_flags & VM_EXECUTABLE) 631 removed_exe_file_vma(mm); 632 } 633 if (next->anon_vma) 634 anon_vma_merge(vma, next); 635 mm->map_count--; 636 mpol_put(vma_policy(next)); 637 kmem_cache_free(vm_area_cachep, next); 638 /* 639 * In mprotect's case 6 (see comments on vma_merge), 640 * we must remove another next too. It would clutter 641 * up the code too much to do both in one go. 642 */ 643 if (remove_next == 2) { 644 next = vma->vm_next; 645 goto again; 646 } 647 } 648 649 validate_mm(mm); 650 651 return 0; 652 } 653 654 /* 655 * If the vma has a ->close operation then the driver probably needs to release 656 * per-vma resources, so we don't attempt to merge those. 657 */ 658 static inline int is_mergeable_vma(struct vm_area_struct *vma, 659 struct file *file, unsigned long vm_flags) 660 { 661 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 662 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 663 return 0; 664 if (vma->vm_file != file) 665 return 0; 666 if (vma->vm_ops && vma->vm_ops->close) 667 return 0; 668 return 1; 669 } 670 671 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 672 struct anon_vma *anon_vma2, 673 struct vm_area_struct *vma) 674 { 675 /* 676 * The list_is_singular() test is to avoid merging VMA cloned from 677 * parents. This can improve scalability caused by anon_vma lock. 678 */ 679 if ((!anon_vma1 || !anon_vma2) && (!vma || 680 list_is_singular(&vma->anon_vma_chain))) 681 return 1; 682 return anon_vma1 == anon_vma2; 683 } 684 685 /* 686 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 687 * in front of (at a lower virtual address and file offset than) the vma. 688 * 689 * We cannot merge two vmas if they have differently assigned (non-NULL) 690 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 691 * 692 * We don't check here for the merged mmap wrapping around the end of pagecache 693 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 694 * wrap, nor mmaps which cover the final page at index -1UL. 695 */ 696 static int 697 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 698 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 699 { 700 if (is_mergeable_vma(vma, file, vm_flags) && 701 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 702 if (vma->vm_pgoff == vm_pgoff) 703 return 1; 704 } 705 return 0; 706 } 707 708 /* 709 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 710 * beyond (at a higher virtual address and file offset than) the vma. 711 * 712 * We cannot merge two vmas if they have differently assigned (non-NULL) 713 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 714 */ 715 static int 716 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 717 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 718 { 719 if (is_mergeable_vma(vma, file, vm_flags) && 720 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 721 pgoff_t vm_pglen; 722 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 723 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 724 return 1; 725 } 726 return 0; 727 } 728 729 /* 730 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 731 * whether that can be merged with its predecessor or its successor. 732 * Or both (it neatly fills a hole). 733 * 734 * In most cases - when called for mmap, brk or mremap - [addr,end) is 735 * certain not to be mapped by the time vma_merge is called; but when 736 * called for mprotect, it is certain to be already mapped (either at 737 * an offset within prev, or at the start of next), and the flags of 738 * this area are about to be changed to vm_flags - and the no-change 739 * case has already been eliminated. 740 * 741 * The following mprotect cases have to be considered, where AAAA is 742 * the area passed down from mprotect_fixup, never extending beyond one 743 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 744 * 745 * AAAA AAAA AAAA AAAA 746 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 747 * cannot merge might become might become might become 748 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 749 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 750 * mremap move: PPPPNNNNNNNN 8 751 * AAAA 752 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 753 * might become case 1 below case 2 below case 3 below 754 * 755 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 756 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 757 */ 758 struct vm_area_struct *vma_merge(struct mm_struct *mm, 759 struct vm_area_struct *prev, unsigned long addr, 760 unsigned long end, unsigned long vm_flags, 761 struct anon_vma *anon_vma, struct file *file, 762 pgoff_t pgoff, struct mempolicy *policy) 763 { 764 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 765 struct vm_area_struct *area, *next; 766 int err; 767 768 /* 769 * We later require that vma->vm_flags == vm_flags, 770 * so this tests vma->vm_flags & VM_SPECIAL, too. 771 */ 772 if (vm_flags & VM_SPECIAL) 773 return NULL; 774 775 if (prev) 776 next = prev->vm_next; 777 else 778 next = mm->mmap; 779 area = next; 780 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 781 next = next->vm_next; 782 783 /* 784 * Can it merge with the predecessor? 785 */ 786 if (prev && prev->vm_end == addr && 787 mpol_equal(vma_policy(prev), policy) && 788 can_vma_merge_after(prev, vm_flags, 789 anon_vma, file, pgoff)) { 790 /* 791 * OK, it can. Can we now merge in the successor as well? 792 */ 793 if (next && end == next->vm_start && 794 mpol_equal(policy, vma_policy(next)) && 795 can_vma_merge_before(next, vm_flags, 796 anon_vma, file, pgoff+pglen) && 797 is_mergeable_anon_vma(prev->anon_vma, 798 next->anon_vma, NULL)) { 799 /* cases 1, 6 */ 800 err = vma_adjust(prev, prev->vm_start, 801 next->vm_end, prev->vm_pgoff, NULL); 802 } else /* cases 2, 5, 7 */ 803 err = vma_adjust(prev, prev->vm_start, 804 end, prev->vm_pgoff, NULL); 805 if (err) 806 return NULL; 807 khugepaged_enter_vma_merge(prev); 808 return prev; 809 } 810 811 /* 812 * Can this new request be merged in front of next? 813 */ 814 if (next && end == next->vm_start && 815 mpol_equal(policy, vma_policy(next)) && 816 can_vma_merge_before(next, vm_flags, 817 anon_vma, file, pgoff+pglen)) { 818 if (prev && addr < prev->vm_end) /* case 4 */ 819 err = vma_adjust(prev, prev->vm_start, 820 addr, prev->vm_pgoff, NULL); 821 else /* cases 3, 8 */ 822 err = vma_adjust(area, addr, next->vm_end, 823 next->vm_pgoff - pglen, NULL); 824 if (err) 825 return NULL; 826 khugepaged_enter_vma_merge(area); 827 return area; 828 } 829 830 return NULL; 831 } 832 833 /* 834 * Rough compatbility check to quickly see if it's even worth looking 835 * at sharing an anon_vma. 836 * 837 * They need to have the same vm_file, and the flags can only differ 838 * in things that mprotect may change. 839 * 840 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 841 * we can merge the two vma's. For example, we refuse to merge a vma if 842 * there is a vm_ops->close() function, because that indicates that the 843 * driver is doing some kind of reference counting. But that doesn't 844 * really matter for the anon_vma sharing case. 845 */ 846 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 847 { 848 return a->vm_end == b->vm_start && 849 mpol_equal(vma_policy(a), vma_policy(b)) && 850 a->vm_file == b->vm_file && 851 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 852 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 853 } 854 855 /* 856 * Do some basic sanity checking to see if we can re-use the anon_vma 857 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 858 * the same as 'old', the other will be the new one that is trying 859 * to share the anon_vma. 860 * 861 * NOTE! This runs with mm_sem held for reading, so it is possible that 862 * the anon_vma of 'old' is concurrently in the process of being set up 863 * by another page fault trying to merge _that_. But that's ok: if it 864 * is being set up, that automatically means that it will be a singleton 865 * acceptable for merging, so we can do all of this optimistically. But 866 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 867 * 868 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 869 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 870 * is to return an anon_vma that is "complex" due to having gone through 871 * a fork). 872 * 873 * We also make sure that the two vma's are compatible (adjacent, 874 * and with the same memory policies). That's all stable, even with just 875 * a read lock on the mm_sem. 876 */ 877 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 878 { 879 if (anon_vma_compatible(a, b)) { 880 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 881 882 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 883 return anon_vma; 884 } 885 return NULL; 886 } 887 888 /* 889 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 890 * neighbouring vmas for a suitable anon_vma, before it goes off 891 * to allocate a new anon_vma. It checks because a repetitive 892 * sequence of mprotects and faults may otherwise lead to distinct 893 * anon_vmas being allocated, preventing vma merge in subsequent 894 * mprotect. 895 */ 896 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 897 { 898 struct anon_vma *anon_vma; 899 struct vm_area_struct *near; 900 901 near = vma->vm_next; 902 if (!near) 903 goto try_prev; 904 905 anon_vma = reusable_anon_vma(near, vma, near); 906 if (anon_vma) 907 return anon_vma; 908 try_prev: 909 near = vma->vm_prev; 910 if (!near) 911 goto none; 912 913 anon_vma = reusable_anon_vma(near, near, vma); 914 if (anon_vma) 915 return anon_vma; 916 none: 917 /* 918 * There's no absolute need to look only at touching neighbours: 919 * we could search further afield for "compatible" anon_vmas. 920 * But it would probably just be a waste of time searching, 921 * or lead to too many vmas hanging off the same anon_vma. 922 * We're trying to allow mprotect remerging later on, 923 * not trying to minimize memory used for anon_vmas. 924 */ 925 return NULL; 926 } 927 928 #ifdef CONFIG_PROC_FS 929 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 930 struct file *file, long pages) 931 { 932 const unsigned long stack_flags 933 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 934 935 if (file) { 936 mm->shared_vm += pages; 937 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 938 mm->exec_vm += pages; 939 } else if (flags & stack_flags) 940 mm->stack_vm += pages; 941 if (flags & (VM_RESERVED|VM_IO)) 942 mm->reserved_vm += pages; 943 } 944 #endif /* CONFIG_PROC_FS */ 945 946 /* 947 * The caller must hold down_write(¤t->mm->mmap_sem). 948 */ 949 950 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 951 unsigned long len, unsigned long prot, 952 unsigned long flags, unsigned long pgoff) 953 { 954 struct mm_struct * mm = current->mm; 955 struct inode *inode; 956 vm_flags_t vm_flags; 957 int error; 958 unsigned long reqprot = prot; 959 960 /* 961 * Does the application expect PROT_READ to imply PROT_EXEC? 962 * 963 * (the exception is when the underlying filesystem is noexec 964 * mounted, in which case we dont add PROT_EXEC.) 965 */ 966 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 967 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 968 prot |= PROT_EXEC; 969 970 if (!len) 971 return -EINVAL; 972 973 if (!(flags & MAP_FIXED)) 974 addr = round_hint_to_min(addr); 975 976 /* Careful about overflows.. */ 977 len = PAGE_ALIGN(len); 978 if (!len) 979 return -ENOMEM; 980 981 /* offset overflow? */ 982 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 983 return -EOVERFLOW; 984 985 /* Too many mappings? */ 986 if (mm->map_count > sysctl_max_map_count) 987 return -ENOMEM; 988 989 /* Obtain the address to map to. we verify (or select) it and ensure 990 * that it represents a valid section of the address space. 991 */ 992 addr = get_unmapped_area(file, addr, len, pgoff, flags); 993 if (addr & ~PAGE_MASK) 994 return addr; 995 996 /* Do simple checking here so the lower-level routines won't have 997 * to. we assume access permissions have been handled by the open 998 * of the memory object, so we don't do any here. 999 */ 1000 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1001 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1002 1003 if (flags & MAP_LOCKED) 1004 if (!can_do_mlock()) 1005 return -EPERM; 1006 1007 /* mlock MCL_FUTURE? */ 1008 if (vm_flags & VM_LOCKED) { 1009 unsigned long locked, lock_limit; 1010 locked = len >> PAGE_SHIFT; 1011 locked += mm->locked_vm; 1012 lock_limit = rlimit(RLIMIT_MEMLOCK); 1013 lock_limit >>= PAGE_SHIFT; 1014 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1015 return -EAGAIN; 1016 } 1017 1018 inode = file ? file->f_path.dentry->d_inode : NULL; 1019 1020 if (file) { 1021 switch (flags & MAP_TYPE) { 1022 case MAP_SHARED: 1023 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1024 return -EACCES; 1025 1026 /* 1027 * Make sure we don't allow writing to an append-only 1028 * file.. 1029 */ 1030 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1031 return -EACCES; 1032 1033 /* 1034 * Make sure there are no mandatory locks on the file. 1035 */ 1036 if (locks_verify_locked(inode)) 1037 return -EAGAIN; 1038 1039 vm_flags |= VM_SHARED | VM_MAYSHARE; 1040 if (!(file->f_mode & FMODE_WRITE)) 1041 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1042 1043 /* fall through */ 1044 case MAP_PRIVATE: 1045 if (!(file->f_mode & FMODE_READ)) 1046 return -EACCES; 1047 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1048 if (vm_flags & VM_EXEC) 1049 return -EPERM; 1050 vm_flags &= ~VM_MAYEXEC; 1051 } 1052 1053 if (!file->f_op || !file->f_op->mmap) 1054 return -ENODEV; 1055 break; 1056 1057 default: 1058 return -EINVAL; 1059 } 1060 } else { 1061 switch (flags & MAP_TYPE) { 1062 case MAP_SHARED: 1063 /* 1064 * Ignore pgoff. 1065 */ 1066 pgoff = 0; 1067 vm_flags |= VM_SHARED | VM_MAYSHARE; 1068 break; 1069 case MAP_PRIVATE: 1070 /* 1071 * Set pgoff according to addr for anon_vma. 1072 */ 1073 pgoff = addr >> PAGE_SHIFT; 1074 break; 1075 default: 1076 return -EINVAL; 1077 } 1078 } 1079 1080 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1081 if (error) 1082 return error; 1083 1084 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1085 } 1086 EXPORT_SYMBOL(do_mmap_pgoff); 1087 1088 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1089 unsigned long, prot, unsigned long, flags, 1090 unsigned long, fd, unsigned long, pgoff) 1091 { 1092 struct file *file = NULL; 1093 unsigned long retval = -EBADF; 1094 1095 if (!(flags & MAP_ANONYMOUS)) { 1096 audit_mmap_fd(fd, flags); 1097 if (unlikely(flags & MAP_HUGETLB)) 1098 return -EINVAL; 1099 file = fget(fd); 1100 if (!file) 1101 goto out; 1102 } else if (flags & MAP_HUGETLB) { 1103 struct user_struct *user = NULL; 1104 /* 1105 * VM_NORESERVE is used because the reservations will be 1106 * taken when vm_ops->mmap() is called 1107 * A dummy user value is used because we are not locking 1108 * memory so no accounting is necessary 1109 */ 1110 len = ALIGN(len, huge_page_size(&default_hstate)); 1111 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE, 1112 &user, HUGETLB_ANONHUGE_INODE); 1113 if (IS_ERR(file)) 1114 return PTR_ERR(file); 1115 } 1116 1117 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1118 1119 down_write(¤t->mm->mmap_sem); 1120 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1121 up_write(¤t->mm->mmap_sem); 1122 1123 if (file) 1124 fput(file); 1125 out: 1126 return retval; 1127 } 1128 1129 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1130 struct mmap_arg_struct { 1131 unsigned long addr; 1132 unsigned long len; 1133 unsigned long prot; 1134 unsigned long flags; 1135 unsigned long fd; 1136 unsigned long offset; 1137 }; 1138 1139 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1140 { 1141 struct mmap_arg_struct a; 1142 1143 if (copy_from_user(&a, arg, sizeof(a))) 1144 return -EFAULT; 1145 if (a.offset & ~PAGE_MASK) 1146 return -EINVAL; 1147 1148 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1149 a.offset >> PAGE_SHIFT); 1150 } 1151 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1152 1153 /* 1154 * Some shared mappigns will want the pages marked read-only 1155 * to track write events. If so, we'll downgrade vm_page_prot 1156 * to the private version (using protection_map[] without the 1157 * VM_SHARED bit). 1158 */ 1159 int vma_wants_writenotify(struct vm_area_struct *vma) 1160 { 1161 vm_flags_t vm_flags = vma->vm_flags; 1162 1163 /* If it was private or non-writable, the write bit is already clear */ 1164 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1165 return 0; 1166 1167 /* The backer wishes to know when pages are first written to? */ 1168 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1169 return 1; 1170 1171 /* The open routine did something to the protections already? */ 1172 if (pgprot_val(vma->vm_page_prot) != 1173 pgprot_val(vm_get_page_prot(vm_flags))) 1174 return 0; 1175 1176 /* Specialty mapping? */ 1177 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1178 return 0; 1179 1180 /* Can the mapping track the dirty pages? */ 1181 return vma->vm_file && vma->vm_file->f_mapping && 1182 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1183 } 1184 1185 /* 1186 * We account for memory if it's a private writeable mapping, 1187 * not hugepages and VM_NORESERVE wasn't set. 1188 */ 1189 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1190 { 1191 /* 1192 * hugetlb has its own accounting separate from the core VM 1193 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1194 */ 1195 if (file && is_file_hugepages(file)) 1196 return 0; 1197 1198 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1199 } 1200 1201 unsigned long mmap_region(struct file *file, unsigned long addr, 1202 unsigned long len, unsigned long flags, 1203 vm_flags_t vm_flags, unsigned long pgoff) 1204 { 1205 struct mm_struct *mm = current->mm; 1206 struct vm_area_struct *vma, *prev; 1207 int correct_wcount = 0; 1208 int error; 1209 struct rb_node **rb_link, *rb_parent; 1210 unsigned long charged = 0; 1211 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1212 1213 /* Clear old maps */ 1214 error = -ENOMEM; 1215 munmap_back: 1216 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1217 if (vma && vma->vm_start < addr + len) { 1218 if (do_munmap(mm, addr, len)) 1219 return -ENOMEM; 1220 goto munmap_back; 1221 } 1222 1223 /* Check against address space limit. */ 1224 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1225 return -ENOMEM; 1226 1227 /* 1228 * Set 'VM_NORESERVE' if we should not account for the 1229 * memory use of this mapping. 1230 */ 1231 if ((flags & MAP_NORESERVE)) { 1232 /* We honor MAP_NORESERVE if allowed to overcommit */ 1233 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1234 vm_flags |= VM_NORESERVE; 1235 1236 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1237 if (file && is_file_hugepages(file)) 1238 vm_flags |= VM_NORESERVE; 1239 } 1240 1241 /* 1242 * Private writable mapping: check memory availability 1243 */ 1244 if (accountable_mapping(file, vm_flags)) { 1245 charged = len >> PAGE_SHIFT; 1246 if (security_vm_enough_memory(charged)) 1247 return -ENOMEM; 1248 vm_flags |= VM_ACCOUNT; 1249 } 1250 1251 /* 1252 * Can we just expand an old mapping? 1253 */ 1254 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1255 if (vma) 1256 goto out; 1257 1258 /* 1259 * Determine the object being mapped and call the appropriate 1260 * specific mapper. the address has already been validated, but 1261 * not unmapped, but the maps are removed from the list. 1262 */ 1263 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1264 if (!vma) { 1265 error = -ENOMEM; 1266 goto unacct_error; 1267 } 1268 1269 vma->vm_mm = mm; 1270 vma->vm_start = addr; 1271 vma->vm_end = addr + len; 1272 vma->vm_flags = vm_flags; 1273 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1274 vma->vm_pgoff = pgoff; 1275 INIT_LIST_HEAD(&vma->anon_vma_chain); 1276 1277 if (file) { 1278 error = -EINVAL; 1279 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1280 goto free_vma; 1281 if (vm_flags & VM_DENYWRITE) { 1282 error = deny_write_access(file); 1283 if (error) 1284 goto free_vma; 1285 correct_wcount = 1; 1286 } 1287 vma->vm_file = file; 1288 get_file(file); 1289 error = file->f_op->mmap(file, vma); 1290 if (error) 1291 goto unmap_and_free_vma; 1292 if (vm_flags & VM_EXECUTABLE) 1293 added_exe_file_vma(mm); 1294 1295 /* Can addr have changed?? 1296 * 1297 * Answer: Yes, several device drivers can do it in their 1298 * f_op->mmap method. -DaveM 1299 */ 1300 addr = vma->vm_start; 1301 pgoff = vma->vm_pgoff; 1302 vm_flags = vma->vm_flags; 1303 } else if (vm_flags & VM_SHARED) { 1304 error = shmem_zero_setup(vma); 1305 if (error) 1306 goto free_vma; 1307 } 1308 1309 if (vma_wants_writenotify(vma)) { 1310 pgprot_t pprot = vma->vm_page_prot; 1311 1312 /* Can vma->vm_page_prot have changed?? 1313 * 1314 * Answer: Yes, drivers may have changed it in their 1315 * f_op->mmap method. 1316 * 1317 * Ensures that vmas marked as uncached stay that way. 1318 */ 1319 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1320 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1321 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1322 } 1323 1324 vma_link(mm, vma, prev, rb_link, rb_parent); 1325 file = vma->vm_file; 1326 1327 /* Once vma denies write, undo our temporary denial count */ 1328 if (correct_wcount) 1329 atomic_inc(&inode->i_writecount); 1330 out: 1331 perf_event_mmap(vma); 1332 1333 mm->total_vm += len >> PAGE_SHIFT; 1334 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1335 if (vm_flags & VM_LOCKED) { 1336 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1337 mm->locked_vm += (len >> PAGE_SHIFT); 1338 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1339 make_pages_present(addr, addr + len); 1340 return addr; 1341 1342 unmap_and_free_vma: 1343 if (correct_wcount) 1344 atomic_inc(&inode->i_writecount); 1345 vma->vm_file = NULL; 1346 fput(file); 1347 1348 /* Undo any partial mapping done by a device driver. */ 1349 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1350 charged = 0; 1351 free_vma: 1352 kmem_cache_free(vm_area_cachep, vma); 1353 unacct_error: 1354 if (charged) 1355 vm_unacct_memory(charged); 1356 return error; 1357 } 1358 1359 /* Get an address range which is currently unmapped. 1360 * For shmat() with addr=0. 1361 * 1362 * Ugly calling convention alert: 1363 * Return value with the low bits set means error value, 1364 * ie 1365 * if (ret & ~PAGE_MASK) 1366 * error = ret; 1367 * 1368 * This function "knows" that -ENOMEM has the bits set. 1369 */ 1370 #ifndef HAVE_ARCH_UNMAPPED_AREA 1371 unsigned long 1372 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1373 unsigned long len, unsigned long pgoff, unsigned long flags) 1374 { 1375 struct mm_struct *mm = current->mm; 1376 struct vm_area_struct *vma; 1377 unsigned long start_addr; 1378 1379 if (len > TASK_SIZE) 1380 return -ENOMEM; 1381 1382 if (flags & MAP_FIXED) 1383 return addr; 1384 1385 if (addr) { 1386 addr = PAGE_ALIGN(addr); 1387 vma = find_vma(mm, addr); 1388 if (TASK_SIZE - len >= addr && 1389 (!vma || addr + len <= vma->vm_start)) 1390 return addr; 1391 } 1392 if (len > mm->cached_hole_size) { 1393 start_addr = addr = mm->free_area_cache; 1394 } else { 1395 start_addr = addr = TASK_UNMAPPED_BASE; 1396 mm->cached_hole_size = 0; 1397 } 1398 1399 full_search: 1400 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1401 /* At this point: (!vma || addr < vma->vm_end). */ 1402 if (TASK_SIZE - len < addr) { 1403 /* 1404 * Start a new search - just in case we missed 1405 * some holes. 1406 */ 1407 if (start_addr != TASK_UNMAPPED_BASE) { 1408 addr = TASK_UNMAPPED_BASE; 1409 start_addr = addr; 1410 mm->cached_hole_size = 0; 1411 goto full_search; 1412 } 1413 return -ENOMEM; 1414 } 1415 if (!vma || addr + len <= vma->vm_start) { 1416 /* 1417 * Remember the place where we stopped the search: 1418 */ 1419 mm->free_area_cache = addr + len; 1420 return addr; 1421 } 1422 if (addr + mm->cached_hole_size < vma->vm_start) 1423 mm->cached_hole_size = vma->vm_start - addr; 1424 addr = vma->vm_end; 1425 } 1426 } 1427 #endif 1428 1429 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1430 { 1431 /* 1432 * Is this a new hole at the lowest possible address? 1433 */ 1434 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1435 mm->free_area_cache = addr; 1436 mm->cached_hole_size = ~0UL; 1437 } 1438 } 1439 1440 /* 1441 * This mmap-allocator allocates new areas top-down from below the 1442 * stack's low limit (the base): 1443 */ 1444 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1445 unsigned long 1446 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1447 const unsigned long len, const unsigned long pgoff, 1448 const unsigned long flags) 1449 { 1450 struct vm_area_struct *vma; 1451 struct mm_struct *mm = current->mm; 1452 unsigned long addr = addr0; 1453 1454 /* requested length too big for entire address space */ 1455 if (len > TASK_SIZE) 1456 return -ENOMEM; 1457 1458 if (flags & MAP_FIXED) 1459 return addr; 1460 1461 /* requesting a specific address */ 1462 if (addr) { 1463 addr = PAGE_ALIGN(addr); 1464 vma = find_vma(mm, addr); 1465 if (TASK_SIZE - len >= addr && 1466 (!vma || addr + len <= vma->vm_start)) 1467 return addr; 1468 } 1469 1470 /* check if free_area_cache is useful for us */ 1471 if (len <= mm->cached_hole_size) { 1472 mm->cached_hole_size = 0; 1473 mm->free_area_cache = mm->mmap_base; 1474 } 1475 1476 /* either no address requested or can't fit in requested address hole */ 1477 addr = mm->free_area_cache; 1478 1479 /* make sure it can fit in the remaining address space */ 1480 if (addr > len) { 1481 vma = find_vma(mm, addr-len); 1482 if (!vma || addr <= vma->vm_start) 1483 /* remember the address as a hint for next time */ 1484 return (mm->free_area_cache = addr-len); 1485 } 1486 1487 if (mm->mmap_base < len) 1488 goto bottomup; 1489 1490 addr = mm->mmap_base-len; 1491 1492 do { 1493 /* 1494 * Lookup failure means no vma is above this address, 1495 * else if new region fits below vma->vm_start, 1496 * return with success: 1497 */ 1498 vma = find_vma(mm, addr); 1499 if (!vma || addr+len <= vma->vm_start) 1500 /* remember the address as a hint for next time */ 1501 return (mm->free_area_cache = addr); 1502 1503 /* remember the largest hole we saw so far */ 1504 if (addr + mm->cached_hole_size < vma->vm_start) 1505 mm->cached_hole_size = vma->vm_start - addr; 1506 1507 /* try just below the current vma->vm_start */ 1508 addr = vma->vm_start-len; 1509 } while (len < vma->vm_start); 1510 1511 bottomup: 1512 /* 1513 * A failed mmap() very likely causes application failure, 1514 * so fall back to the bottom-up function here. This scenario 1515 * can happen with large stack limits and large mmap() 1516 * allocations. 1517 */ 1518 mm->cached_hole_size = ~0UL; 1519 mm->free_area_cache = TASK_UNMAPPED_BASE; 1520 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1521 /* 1522 * Restore the topdown base: 1523 */ 1524 mm->free_area_cache = mm->mmap_base; 1525 mm->cached_hole_size = ~0UL; 1526 1527 return addr; 1528 } 1529 #endif 1530 1531 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1532 { 1533 /* 1534 * Is this a new hole at the highest possible address? 1535 */ 1536 if (addr > mm->free_area_cache) 1537 mm->free_area_cache = addr; 1538 1539 /* dont allow allocations above current base */ 1540 if (mm->free_area_cache > mm->mmap_base) 1541 mm->free_area_cache = mm->mmap_base; 1542 } 1543 1544 unsigned long 1545 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1546 unsigned long pgoff, unsigned long flags) 1547 { 1548 unsigned long (*get_area)(struct file *, unsigned long, 1549 unsigned long, unsigned long, unsigned long); 1550 1551 unsigned long error = arch_mmap_check(addr, len, flags); 1552 if (error) 1553 return error; 1554 1555 /* Careful about overflows.. */ 1556 if (len > TASK_SIZE) 1557 return -ENOMEM; 1558 1559 get_area = current->mm->get_unmapped_area; 1560 if (file && file->f_op && file->f_op->get_unmapped_area) 1561 get_area = file->f_op->get_unmapped_area; 1562 addr = get_area(file, addr, len, pgoff, flags); 1563 if (IS_ERR_VALUE(addr)) 1564 return addr; 1565 1566 if (addr > TASK_SIZE - len) 1567 return -ENOMEM; 1568 if (addr & ~PAGE_MASK) 1569 return -EINVAL; 1570 1571 return arch_rebalance_pgtables(addr, len); 1572 } 1573 1574 EXPORT_SYMBOL(get_unmapped_area); 1575 1576 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1577 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1578 { 1579 struct vm_area_struct *vma = NULL; 1580 1581 if (mm) { 1582 /* Check the cache first. */ 1583 /* (Cache hit rate is typically around 35%.) */ 1584 vma = mm->mmap_cache; 1585 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1586 struct rb_node * rb_node; 1587 1588 rb_node = mm->mm_rb.rb_node; 1589 vma = NULL; 1590 1591 while (rb_node) { 1592 struct vm_area_struct * vma_tmp; 1593 1594 vma_tmp = rb_entry(rb_node, 1595 struct vm_area_struct, vm_rb); 1596 1597 if (vma_tmp->vm_end > addr) { 1598 vma = vma_tmp; 1599 if (vma_tmp->vm_start <= addr) 1600 break; 1601 rb_node = rb_node->rb_left; 1602 } else 1603 rb_node = rb_node->rb_right; 1604 } 1605 if (vma) 1606 mm->mmap_cache = vma; 1607 } 1608 } 1609 return vma; 1610 } 1611 1612 EXPORT_SYMBOL(find_vma); 1613 1614 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1615 struct vm_area_struct * 1616 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1617 struct vm_area_struct **pprev) 1618 { 1619 struct vm_area_struct *vma = NULL, *prev = NULL; 1620 struct rb_node *rb_node; 1621 if (!mm) 1622 goto out; 1623 1624 /* Guard against addr being lower than the first VMA */ 1625 vma = mm->mmap; 1626 1627 /* Go through the RB tree quickly. */ 1628 rb_node = mm->mm_rb.rb_node; 1629 1630 while (rb_node) { 1631 struct vm_area_struct *vma_tmp; 1632 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1633 1634 if (addr < vma_tmp->vm_end) { 1635 rb_node = rb_node->rb_left; 1636 } else { 1637 prev = vma_tmp; 1638 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1639 break; 1640 rb_node = rb_node->rb_right; 1641 } 1642 } 1643 1644 out: 1645 *pprev = prev; 1646 return prev ? prev->vm_next : vma; 1647 } 1648 1649 /* 1650 * Verify that the stack growth is acceptable and 1651 * update accounting. This is shared with both the 1652 * grow-up and grow-down cases. 1653 */ 1654 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1655 { 1656 struct mm_struct *mm = vma->vm_mm; 1657 struct rlimit *rlim = current->signal->rlim; 1658 unsigned long new_start; 1659 1660 /* address space limit tests */ 1661 if (!may_expand_vm(mm, grow)) 1662 return -ENOMEM; 1663 1664 /* Stack limit test */ 1665 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1666 return -ENOMEM; 1667 1668 /* mlock limit tests */ 1669 if (vma->vm_flags & VM_LOCKED) { 1670 unsigned long locked; 1671 unsigned long limit; 1672 locked = mm->locked_vm + grow; 1673 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1674 limit >>= PAGE_SHIFT; 1675 if (locked > limit && !capable(CAP_IPC_LOCK)) 1676 return -ENOMEM; 1677 } 1678 1679 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1680 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1681 vma->vm_end - size; 1682 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1683 return -EFAULT; 1684 1685 /* 1686 * Overcommit.. This must be the final test, as it will 1687 * update security statistics. 1688 */ 1689 if (security_vm_enough_memory_mm(mm, grow)) 1690 return -ENOMEM; 1691 1692 /* Ok, everything looks good - let it rip */ 1693 mm->total_vm += grow; 1694 if (vma->vm_flags & VM_LOCKED) 1695 mm->locked_vm += grow; 1696 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1697 return 0; 1698 } 1699 1700 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1701 /* 1702 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1703 * vma is the last one with address > vma->vm_end. Have to extend vma. 1704 */ 1705 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1706 { 1707 int error; 1708 1709 if (!(vma->vm_flags & VM_GROWSUP)) 1710 return -EFAULT; 1711 1712 /* 1713 * We must make sure the anon_vma is allocated 1714 * so that the anon_vma locking is not a noop. 1715 */ 1716 if (unlikely(anon_vma_prepare(vma))) 1717 return -ENOMEM; 1718 vma_lock_anon_vma(vma); 1719 1720 /* 1721 * vma->vm_start/vm_end cannot change under us because the caller 1722 * is required to hold the mmap_sem in read mode. We need the 1723 * anon_vma lock to serialize against concurrent expand_stacks. 1724 * Also guard against wrapping around to address 0. 1725 */ 1726 if (address < PAGE_ALIGN(address+4)) 1727 address = PAGE_ALIGN(address+4); 1728 else { 1729 vma_unlock_anon_vma(vma); 1730 return -ENOMEM; 1731 } 1732 error = 0; 1733 1734 /* Somebody else might have raced and expanded it already */ 1735 if (address > vma->vm_end) { 1736 unsigned long size, grow; 1737 1738 size = address - vma->vm_start; 1739 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1740 1741 error = -ENOMEM; 1742 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1743 error = acct_stack_growth(vma, size, grow); 1744 if (!error) { 1745 vma->vm_end = address; 1746 perf_event_mmap(vma); 1747 } 1748 } 1749 } 1750 vma_unlock_anon_vma(vma); 1751 khugepaged_enter_vma_merge(vma); 1752 return error; 1753 } 1754 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1755 1756 /* 1757 * vma is the first one with address < vma->vm_start. Have to extend vma. 1758 */ 1759 int expand_downwards(struct vm_area_struct *vma, 1760 unsigned long address) 1761 { 1762 int error; 1763 1764 /* 1765 * We must make sure the anon_vma is allocated 1766 * so that the anon_vma locking is not a noop. 1767 */ 1768 if (unlikely(anon_vma_prepare(vma))) 1769 return -ENOMEM; 1770 1771 address &= PAGE_MASK; 1772 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1773 if (error) 1774 return error; 1775 1776 vma_lock_anon_vma(vma); 1777 1778 /* 1779 * vma->vm_start/vm_end cannot change under us because the caller 1780 * is required to hold the mmap_sem in read mode. We need the 1781 * anon_vma lock to serialize against concurrent expand_stacks. 1782 */ 1783 1784 /* Somebody else might have raced and expanded it already */ 1785 if (address < vma->vm_start) { 1786 unsigned long size, grow; 1787 1788 size = vma->vm_end - address; 1789 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1790 1791 error = -ENOMEM; 1792 if (grow <= vma->vm_pgoff) { 1793 error = acct_stack_growth(vma, size, grow); 1794 if (!error) { 1795 vma->vm_start = address; 1796 vma->vm_pgoff -= grow; 1797 perf_event_mmap(vma); 1798 } 1799 } 1800 } 1801 vma_unlock_anon_vma(vma); 1802 khugepaged_enter_vma_merge(vma); 1803 return error; 1804 } 1805 1806 #ifdef CONFIG_STACK_GROWSUP 1807 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1808 { 1809 return expand_upwards(vma, address); 1810 } 1811 1812 struct vm_area_struct * 1813 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1814 { 1815 struct vm_area_struct *vma, *prev; 1816 1817 addr &= PAGE_MASK; 1818 vma = find_vma_prev(mm, addr, &prev); 1819 if (vma && (vma->vm_start <= addr)) 1820 return vma; 1821 if (!prev || expand_stack(prev, addr)) 1822 return NULL; 1823 if (prev->vm_flags & VM_LOCKED) { 1824 mlock_vma_pages_range(prev, addr, prev->vm_end); 1825 } 1826 return prev; 1827 } 1828 #else 1829 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1830 { 1831 return expand_downwards(vma, address); 1832 } 1833 1834 struct vm_area_struct * 1835 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1836 { 1837 struct vm_area_struct * vma; 1838 unsigned long start; 1839 1840 addr &= PAGE_MASK; 1841 vma = find_vma(mm,addr); 1842 if (!vma) 1843 return NULL; 1844 if (vma->vm_start <= addr) 1845 return vma; 1846 if (!(vma->vm_flags & VM_GROWSDOWN)) 1847 return NULL; 1848 start = vma->vm_start; 1849 if (expand_stack(vma, addr)) 1850 return NULL; 1851 if (vma->vm_flags & VM_LOCKED) { 1852 mlock_vma_pages_range(vma, addr, start); 1853 } 1854 return vma; 1855 } 1856 #endif 1857 1858 /* 1859 * Ok - we have the memory areas we should free on the vma list, 1860 * so release them, and do the vma updates. 1861 * 1862 * Called with the mm semaphore held. 1863 */ 1864 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1865 { 1866 /* Update high watermark before we lower total_vm */ 1867 update_hiwater_vm(mm); 1868 do { 1869 long nrpages = vma_pages(vma); 1870 1871 mm->total_vm -= nrpages; 1872 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1873 vma = remove_vma(vma); 1874 } while (vma); 1875 validate_mm(mm); 1876 } 1877 1878 /* 1879 * Get rid of page table information in the indicated region. 1880 * 1881 * Called with the mm semaphore held. 1882 */ 1883 static void unmap_region(struct mm_struct *mm, 1884 struct vm_area_struct *vma, struct vm_area_struct *prev, 1885 unsigned long start, unsigned long end) 1886 { 1887 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1888 struct mmu_gather tlb; 1889 unsigned long nr_accounted = 0; 1890 1891 lru_add_drain(); 1892 tlb_gather_mmu(&tlb, mm, 0); 1893 update_hiwater_rss(mm); 1894 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1895 vm_unacct_memory(nr_accounted); 1896 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 1897 next ? next->vm_start : 0); 1898 tlb_finish_mmu(&tlb, start, end); 1899 } 1900 1901 /* 1902 * Create a list of vma's touched by the unmap, removing them from the mm's 1903 * vma list as we go.. 1904 */ 1905 static void 1906 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1907 struct vm_area_struct *prev, unsigned long end) 1908 { 1909 struct vm_area_struct **insertion_point; 1910 struct vm_area_struct *tail_vma = NULL; 1911 unsigned long addr; 1912 1913 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1914 vma->vm_prev = NULL; 1915 do { 1916 rb_erase(&vma->vm_rb, &mm->mm_rb); 1917 mm->map_count--; 1918 tail_vma = vma; 1919 vma = vma->vm_next; 1920 } while (vma && vma->vm_start < end); 1921 *insertion_point = vma; 1922 if (vma) 1923 vma->vm_prev = prev; 1924 tail_vma->vm_next = NULL; 1925 if (mm->unmap_area == arch_unmap_area) 1926 addr = prev ? prev->vm_end : mm->mmap_base; 1927 else 1928 addr = vma ? vma->vm_start : mm->mmap_base; 1929 mm->unmap_area(mm, addr); 1930 mm->mmap_cache = NULL; /* Kill the cache. */ 1931 } 1932 1933 /* 1934 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1935 * munmap path where it doesn't make sense to fail. 1936 */ 1937 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1938 unsigned long addr, int new_below) 1939 { 1940 struct mempolicy *pol; 1941 struct vm_area_struct *new; 1942 int err = -ENOMEM; 1943 1944 if (is_vm_hugetlb_page(vma) && (addr & 1945 ~(huge_page_mask(hstate_vma(vma))))) 1946 return -EINVAL; 1947 1948 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1949 if (!new) 1950 goto out_err; 1951 1952 /* most fields are the same, copy all, and then fixup */ 1953 *new = *vma; 1954 1955 INIT_LIST_HEAD(&new->anon_vma_chain); 1956 1957 if (new_below) 1958 new->vm_end = addr; 1959 else { 1960 new->vm_start = addr; 1961 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1962 } 1963 1964 pol = mpol_dup(vma_policy(vma)); 1965 if (IS_ERR(pol)) { 1966 err = PTR_ERR(pol); 1967 goto out_free_vma; 1968 } 1969 vma_set_policy(new, pol); 1970 1971 if (anon_vma_clone(new, vma)) 1972 goto out_free_mpol; 1973 1974 if (new->vm_file) { 1975 get_file(new->vm_file); 1976 if (vma->vm_flags & VM_EXECUTABLE) 1977 added_exe_file_vma(mm); 1978 } 1979 1980 if (new->vm_ops && new->vm_ops->open) 1981 new->vm_ops->open(new); 1982 1983 if (new_below) 1984 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1985 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1986 else 1987 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1988 1989 /* Success. */ 1990 if (!err) 1991 return 0; 1992 1993 /* Clean everything up if vma_adjust failed. */ 1994 if (new->vm_ops && new->vm_ops->close) 1995 new->vm_ops->close(new); 1996 if (new->vm_file) { 1997 if (vma->vm_flags & VM_EXECUTABLE) 1998 removed_exe_file_vma(mm); 1999 fput(new->vm_file); 2000 } 2001 unlink_anon_vmas(new); 2002 out_free_mpol: 2003 mpol_put(pol); 2004 out_free_vma: 2005 kmem_cache_free(vm_area_cachep, new); 2006 out_err: 2007 return err; 2008 } 2009 2010 /* 2011 * Split a vma into two pieces at address 'addr', a new vma is allocated 2012 * either for the first part or the tail. 2013 */ 2014 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2015 unsigned long addr, int new_below) 2016 { 2017 if (mm->map_count >= sysctl_max_map_count) 2018 return -ENOMEM; 2019 2020 return __split_vma(mm, vma, addr, new_below); 2021 } 2022 2023 /* Munmap is split into 2 main parts -- this part which finds 2024 * what needs doing, and the areas themselves, which do the 2025 * work. This now handles partial unmappings. 2026 * Jeremy Fitzhardinge <jeremy@goop.org> 2027 */ 2028 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2029 { 2030 unsigned long end; 2031 struct vm_area_struct *vma, *prev, *last; 2032 2033 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2034 return -EINVAL; 2035 2036 if ((len = PAGE_ALIGN(len)) == 0) 2037 return -EINVAL; 2038 2039 /* Find the first overlapping VMA */ 2040 vma = find_vma(mm, start); 2041 if (!vma) 2042 return 0; 2043 prev = vma->vm_prev; 2044 /* we have start < vma->vm_end */ 2045 2046 /* if it doesn't overlap, we have nothing.. */ 2047 end = start + len; 2048 if (vma->vm_start >= end) 2049 return 0; 2050 2051 /* 2052 * If we need to split any vma, do it now to save pain later. 2053 * 2054 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2055 * unmapped vm_area_struct will remain in use: so lower split_vma 2056 * places tmp vma above, and higher split_vma places tmp vma below. 2057 */ 2058 if (start > vma->vm_start) { 2059 int error; 2060 2061 /* 2062 * Make sure that map_count on return from munmap() will 2063 * not exceed its limit; but let map_count go just above 2064 * its limit temporarily, to help free resources as expected. 2065 */ 2066 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2067 return -ENOMEM; 2068 2069 error = __split_vma(mm, vma, start, 0); 2070 if (error) 2071 return error; 2072 prev = vma; 2073 } 2074 2075 /* Does it split the last one? */ 2076 last = find_vma(mm, end); 2077 if (last && end > last->vm_start) { 2078 int error = __split_vma(mm, last, end, 1); 2079 if (error) 2080 return error; 2081 } 2082 vma = prev? prev->vm_next: mm->mmap; 2083 2084 /* 2085 * unlock any mlock()ed ranges before detaching vmas 2086 */ 2087 if (mm->locked_vm) { 2088 struct vm_area_struct *tmp = vma; 2089 while (tmp && tmp->vm_start < end) { 2090 if (tmp->vm_flags & VM_LOCKED) { 2091 mm->locked_vm -= vma_pages(tmp); 2092 munlock_vma_pages_all(tmp); 2093 } 2094 tmp = tmp->vm_next; 2095 } 2096 } 2097 2098 /* 2099 * Remove the vma's, and unmap the actual pages 2100 */ 2101 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2102 unmap_region(mm, vma, prev, start, end); 2103 2104 /* Fix up all other VM information */ 2105 remove_vma_list(mm, vma); 2106 2107 return 0; 2108 } 2109 2110 EXPORT_SYMBOL(do_munmap); 2111 2112 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2113 { 2114 int ret; 2115 struct mm_struct *mm = current->mm; 2116 2117 profile_munmap(addr); 2118 2119 down_write(&mm->mmap_sem); 2120 ret = do_munmap(mm, addr, len); 2121 up_write(&mm->mmap_sem); 2122 return ret; 2123 } 2124 2125 static inline void verify_mm_writelocked(struct mm_struct *mm) 2126 { 2127 #ifdef CONFIG_DEBUG_VM 2128 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2129 WARN_ON(1); 2130 up_read(&mm->mmap_sem); 2131 } 2132 #endif 2133 } 2134 2135 /* 2136 * this is really a simplified "do_mmap". it only handles 2137 * anonymous maps. eventually we may be able to do some 2138 * brk-specific accounting here. 2139 */ 2140 unsigned long do_brk(unsigned long addr, unsigned long len) 2141 { 2142 struct mm_struct * mm = current->mm; 2143 struct vm_area_struct * vma, * prev; 2144 unsigned long flags; 2145 struct rb_node ** rb_link, * rb_parent; 2146 pgoff_t pgoff = addr >> PAGE_SHIFT; 2147 int error; 2148 2149 len = PAGE_ALIGN(len); 2150 if (!len) 2151 return addr; 2152 2153 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2154 if (error) 2155 return error; 2156 2157 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2158 2159 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2160 if (error & ~PAGE_MASK) 2161 return error; 2162 2163 /* 2164 * mlock MCL_FUTURE? 2165 */ 2166 if (mm->def_flags & VM_LOCKED) { 2167 unsigned long locked, lock_limit; 2168 locked = len >> PAGE_SHIFT; 2169 locked += mm->locked_vm; 2170 lock_limit = rlimit(RLIMIT_MEMLOCK); 2171 lock_limit >>= PAGE_SHIFT; 2172 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2173 return -EAGAIN; 2174 } 2175 2176 /* 2177 * mm->mmap_sem is required to protect against another thread 2178 * changing the mappings in case we sleep. 2179 */ 2180 verify_mm_writelocked(mm); 2181 2182 /* 2183 * Clear old maps. this also does some error checking for us 2184 */ 2185 munmap_back: 2186 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2187 if (vma && vma->vm_start < addr + len) { 2188 if (do_munmap(mm, addr, len)) 2189 return -ENOMEM; 2190 goto munmap_back; 2191 } 2192 2193 /* Check against address space limits *after* clearing old maps... */ 2194 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2195 return -ENOMEM; 2196 2197 if (mm->map_count > sysctl_max_map_count) 2198 return -ENOMEM; 2199 2200 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2201 return -ENOMEM; 2202 2203 /* Can we just expand an old private anonymous mapping? */ 2204 vma = vma_merge(mm, prev, addr, addr + len, flags, 2205 NULL, NULL, pgoff, NULL); 2206 if (vma) 2207 goto out; 2208 2209 /* 2210 * create a vma struct for an anonymous mapping 2211 */ 2212 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2213 if (!vma) { 2214 vm_unacct_memory(len >> PAGE_SHIFT); 2215 return -ENOMEM; 2216 } 2217 2218 INIT_LIST_HEAD(&vma->anon_vma_chain); 2219 vma->vm_mm = mm; 2220 vma->vm_start = addr; 2221 vma->vm_end = addr + len; 2222 vma->vm_pgoff = pgoff; 2223 vma->vm_flags = flags; 2224 vma->vm_page_prot = vm_get_page_prot(flags); 2225 vma_link(mm, vma, prev, rb_link, rb_parent); 2226 out: 2227 perf_event_mmap(vma); 2228 mm->total_vm += len >> PAGE_SHIFT; 2229 if (flags & VM_LOCKED) { 2230 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2231 mm->locked_vm += (len >> PAGE_SHIFT); 2232 } 2233 return addr; 2234 } 2235 2236 EXPORT_SYMBOL(do_brk); 2237 2238 /* Release all mmaps. */ 2239 void exit_mmap(struct mm_struct *mm) 2240 { 2241 struct mmu_gather tlb; 2242 struct vm_area_struct *vma; 2243 unsigned long nr_accounted = 0; 2244 unsigned long end; 2245 2246 /* mm's last user has gone, and its about to be pulled down */ 2247 mmu_notifier_release(mm); 2248 2249 if (mm->locked_vm) { 2250 vma = mm->mmap; 2251 while (vma) { 2252 if (vma->vm_flags & VM_LOCKED) 2253 munlock_vma_pages_all(vma); 2254 vma = vma->vm_next; 2255 } 2256 } 2257 2258 arch_exit_mmap(mm); 2259 2260 vma = mm->mmap; 2261 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2262 return; 2263 2264 lru_add_drain(); 2265 flush_cache_mm(mm); 2266 tlb_gather_mmu(&tlb, mm, 1); 2267 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2268 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2269 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2270 vm_unacct_memory(nr_accounted); 2271 2272 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 2273 tlb_finish_mmu(&tlb, 0, end); 2274 2275 /* 2276 * Walk the list again, actually closing and freeing it, 2277 * with preemption enabled, without holding any MM locks. 2278 */ 2279 while (vma) 2280 vma = remove_vma(vma); 2281 2282 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2283 } 2284 2285 /* Insert vm structure into process list sorted by address 2286 * and into the inode's i_mmap tree. If vm_file is non-NULL 2287 * then i_mmap_mutex is taken here. 2288 */ 2289 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2290 { 2291 struct vm_area_struct * __vma, * prev; 2292 struct rb_node ** rb_link, * rb_parent; 2293 2294 /* 2295 * The vm_pgoff of a purely anonymous vma should be irrelevant 2296 * until its first write fault, when page's anon_vma and index 2297 * are set. But now set the vm_pgoff it will almost certainly 2298 * end up with (unless mremap moves it elsewhere before that 2299 * first wfault), so /proc/pid/maps tells a consistent story. 2300 * 2301 * By setting it to reflect the virtual start address of the 2302 * vma, merges and splits can happen in a seamless way, just 2303 * using the existing file pgoff checks and manipulations. 2304 * Similarly in do_mmap_pgoff and in do_brk. 2305 */ 2306 if (!vma->vm_file) { 2307 BUG_ON(vma->anon_vma); 2308 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2309 } 2310 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2311 if (__vma && __vma->vm_start < vma->vm_end) 2312 return -ENOMEM; 2313 if ((vma->vm_flags & VM_ACCOUNT) && 2314 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2315 return -ENOMEM; 2316 vma_link(mm, vma, prev, rb_link, rb_parent); 2317 return 0; 2318 } 2319 2320 /* 2321 * Copy the vma structure to a new location in the same mm, 2322 * prior to moving page table entries, to effect an mremap move. 2323 */ 2324 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2325 unsigned long addr, unsigned long len, pgoff_t pgoff) 2326 { 2327 struct vm_area_struct *vma = *vmap; 2328 unsigned long vma_start = vma->vm_start; 2329 struct mm_struct *mm = vma->vm_mm; 2330 struct vm_area_struct *new_vma, *prev; 2331 struct rb_node **rb_link, *rb_parent; 2332 struct mempolicy *pol; 2333 2334 /* 2335 * If anonymous vma has not yet been faulted, update new pgoff 2336 * to match new location, to increase its chance of merging. 2337 */ 2338 if (!vma->vm_file && !vma->anon_vma) 2339 pgoff = addr >> PAGE_SHIFT; 2340 2341 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2342 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2343 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2344 if (new_vma) { 2345 /* 2346 * Source vma may have been merged into new_vma 2347 */ 2348 if (vma_start >= new_vma->vm_start && 2349 vma_start < new_vma->vm_end) 2350 *vmap = new_vma; 2351 } else { 2352 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2353 if (new_vma) { 2354 *new_vma = *vma; 2355 pol = mpol_dup(vma_policy(vma)); 2356 if (IS_ERR(pol)) 2357 goto out_free_vma; 2358 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2359 if (anon_vma_clone(new_vma, vma)) 2360 goto out_free_mempol; 2361 vma_set_policy(new_vma, pol); 2362 new_vma->vm_start = addr; 2363 new_vma->vm_end = addr + len; 2364 new_vma->vm_pgoff = pgoff; 2365 if (new_vma->vm_file) { 2366 get_file(new_vma->vm_file); 2367 if (vma->vm_flags & VM_EXECUTABLE) 2368 added_exe_file_vma(mm); 2369 } 2370 if (new_vma->vm_ops && new_vma->vm_ops->open) 2371 new_vma->vm_ops->open(new_vma); 2372 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2373 } 2374 } 2375 return new_vma; 2376 2377 out_free_mempol: 2378 mpol_put(pol); 2379 out_free_vma: 2380 kmem_cache_free(vm_area_cachep, new_vma); 2381 return NULL; 2382 } 2383 2384 /* 2385 * Return true if the calling process may expand its vm space by the passed 2386 * number of pages 2387 */ 2388 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2389 { 2390 unsigned long cur = mm->total_vm; /* pages */ 2391 unsigned long lim; 2392 2393 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2394 2395 if (cur + npages > lim) 2396 return 0; 2397 return 1; 2398 } 2399 2400 2401 static int special_mapping_fault(struct vm_area_struct *vma, 2402 struct vm_fault *vmf) 2403 { 2404 pgoff_t pgoff; 2405 struct page **pages; 2406 2407 /* 2408 * special mappings have no vm_file, and in that case, the mm 2409 * uses vm_pgoff internally. So we have to subtract it from here. 2410 * We are allowed to do this because we are the mm; do not copy 2411 * this code into drivers! 2412 */ 2413 pgoff = vmf->pgoff - vma->vm_pgoff; 2414 2415 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2416 pgoff--; 2417 2418 if (*pages) { 2419 struct page *page = *pages; 2420 get_page(page); 2421 vmf->page = page; 2422 return 0; 2423 } 2424 2425 return VM_FAULT_SIGBUS; 2426 } 2427 2428 /* 2429 * Having a close hook prevents vma merging regardless of flags. 2430 */ 2431 static void special_mapping_close(struct vm_area_struct *vma) 2432 { 2433 } 2434 2435 static const struct vm_operations_struct special_mapping_vmops = { 2436 .close = special_mapping_close, 2437 .fault = special_mapping_fault, 2438 }; 2439 2440 /* 2441 * Called with mm->mmap_sem held for writing. 2442 * Insert a new vma covering the given region, with the given flags. 2443 * Its pages are supplied by the given array of struct page *. 2444 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2445 * The region past the last page supplied will always produce SIGBUS. 2446 * The array pointer and the pages it points to are assumed to stay alive 2447 * for as long as this mapping might exist. 2448 */ 2449 int install_special_mapping(struct mm_struct *mm, 2450 unsigned long addr, unsigned long len, 2451 unsigned long vm_flags, struct page **pages) 2452 { 2453 int ret; 2454 struct vm_area_struct *vma; 2455 2456 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2457 if (unlikely(vma == NULL)) 2458 return -ENOMEM; 2459 2460 INIT_LIST_HEAD(&vma->anon_vma_chain); 2461 vma->vm_mm = mm; 2462 vma->vm_start = addr; 2463 vma->vm_end = addr + len; 2464 2465 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2466 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2467 2468 vma->vm_ops = &special_mapping_vmops; 2469 vma->vm_private_data = pages; 2470 2471 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 2472 if (ret) 2473 goto out; 2474 2475 ret = insert_vm_struct(mm, vma); 2476 if (ret) 2477 goto out; 2478 2479 mm->total_vm += len >> PAGE_SHIFT; 2480 2481 perf_event_mmap(vma); 2482 2483 return 0; 2484 2485 out: 2486 kmem_cache_free(vm_area_cachep, vma); 2487 return ret; 2488 } 2489 2490 static DEFINE_MUTEX(mm_all_locks_mutex); 2491 2492 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2493 { 2494 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2495 /* 2496 * The LSB of head.next can't change from under us 2497 * because we hold the mm_all_locks_mutex. 2498 */ 2499 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem); 2500 /* 2501 * We can safely modify head.next after taking the 2502 * anon_vma->root->mutex. If some other vma in this mm shares 2503 * the same anon_vma we won't take it again. 2504 * 2505 * No need of atomic instructions here, head.next 2506 * can't change from under us thanks to the 2507 * anon_vma->root->mutex. 2508 */ 2509 if (__test_and_set_bit(0, (unsigned long *) 2510 &anon_vma->root->head.next)) 2511 BUG(); 2512 } 2513 } 2514 2515 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2516 { 2517 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2518 /* 2519 * AS_MM_ALL_LOCKS can't change from under us because 2520 * we hold the mm_all_locks_mutex. 2521 * 2522 * Operations on ->flags have to be atomic because 2523 * even if AS_MM_ALL_LOCKS is stable thanks to the 2524 * mm_all_locks_mutex, there may be other cpus 2525 * changing other bitflags in parallel to us. 2526 */ 2527 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2528 BUG(); 2529 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 2530 } 2531 } 2532 2533 /* 2534 * This operation locks against the VM for all pte/vma/mm related 2535 * operations that could ever happen on a certain mm. This includes 2536 * vmtruncate, try_to_unmap, and all page faults. 2537 * 2538 * The caller must take the mmap_sem in write mode before calling 2539 * mm_take_all_locks(). The caller isn't allowed to release the 2540 * mmap_sem until mm_drop_all_locks() returns. 2541 * 2542 * mmap_sem in write mode is required in order to block all operations 2543 * that could modify pagetables and free pages without need of 2544 * altering the vma layout (for example populate_range() with 2545 * nonlinear vmas). It's also needed in write mode to avoid new 2546 * anon_vmas to be associated with existing vmas. 2547 * 2548 * A single task can't take more than one mm_take_all_locks() in a row 2549 * or it would deadlock. 2550 * 2551 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2552 * mapping->flags avoid to take the same lock twice, if more than one 2553 * vma in this mm is backed by the same anon_vma or address_space. 2554 * 2555 * We can take all the locks in random order because the VM code 2556 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never 2557 * takes more than one of them in a row. Secondly we're protected 2558 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2559 * 2560 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2561 * that may have to take thousand of locks. 2562 * 2563 * mm_take_all_locks() can fail if it's interrupted by signals. 2564 */ 2565 int mm_take_all_locks(struct mm_struct *mm) 2566 { 2567 struct vm_area_struct *vma; 2568 struct anon_vma_chain *avc; 2569 int ret = -EINTR; 2570 2571 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2572 2573 mutex_lock(&mm_all_locks_mutex); 2574 2575 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2576 if (signal_pending(current)) 2577 goto out_unlock; 2578 if (vma->vm_file && vma->vm_file->f_mapping) 2579 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2580 } 2581 2582 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2583 if (signal_pending(current)) 2584 goto out_unlock; 2585 if (vma->anon_vma) 2586 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2587 vm_lock_anon_vma(mm, avc->anon_vma); 2588 } 2589 2590 ret = 0; 2591 2592 out_unlock: 2593 if (ret) 2594 mm_drop_all_locks(mm); 2595 2596 return ret; 2597 } 2598 2599 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2600 { 2601 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2602 /* 2603 * The LSB of head.next can't change to 0 from under 2604 * us because we hold the mm_all_locks_mutex. 2605 * 2606 * We must however clear the bitflag before unlocking 2607 * the vma so the users using the anon_vma->head will 2608 * never see our bitflag. 2609 * 2610 * No need of atomic instructions here, head.next 2611 * can't change from under us until we release the 2612 * anon_vma->root->mutex. 2613 */ 2614 if (!__test_and_clear_bit(0, (unsigned long *) 2615 &anon_vma->root->head.next)) 2616 BUG(); 2617 anon_vma_unlock(anon_vma); 2618 } 2619 } 2620 2621 static void vm_unlock_mapping(struct address_space *mapping) 2622 { 2623 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2624 /* 2625 * AS_MM_ALL_LOCKS can't change to 0 from under us 2626 * because we hold the mm_all_locks_mutex. 2627 */ 2628 mutex_unlock(&mapping->i_mmap_mutex); 2629 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2630 &mapping->flags)) 2631 BUG(); 2632 } 2633 } 2634 2635 /* 2636 * The mmap_sem cannot be released by the caller until 2637 * mm_drop_all_locks() returns. 2638 */ 2639 void mm_drop_all_locks(struct mm_struct *mm) 2640 { 2641 struct vm_area_struct *vma; 2642 struct anon_vma_chain *avc; 2643 2644 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2645 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2646 2647 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2648 if (vma->anon_vma) 2649 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2650 vm_unlock_anon_vma(avc->anon_vma); 2651 if (vma->vm_file && vma->vm_file->f_mapping) 2652 vm_unlock_mapping(vma->vm_file->f_mapping); 2653 } 2654 2655 mutex_unlock(&mm_all_locks_mutex); 2656 } 2657 2658 /* 2659 * initialise the VMA slab 2660 */ 2661 void __init mmap_init(void) 2662 { 2663 int ret; 2664 2665 ret = percpu_counter_init(&vm_committed_as, 0); 2666 VM_BUG_ON(ret); 2667 } 2668