xref: /openbmc/linux/mm/mmap.c (revision 80ade22c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		unsigned long start, unsigned long end);
82 
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type	prot
88  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
89  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
90  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
91  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
92  *
93  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
94  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
95  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
96  */
97 pgprot_t protection_map[16] __ro_after_init = {
98 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101 
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 {
105 	return prot;
106 }
107 #endif
108 
109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 {
111 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
114 
115 	return arch_filter_pgprot(ret);
116 }
117 EXPORT_SYMBOL(vm_get_page_prot);
118 
119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 {
121 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 }
123 
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 void vma_set_page_prot(struct vm_area_struct *vma)
126 {
127 	unsigned long vm_flags = vma->vm_flags;
128 	pgprot_t vm_page_prot;
129 
130 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131 	if (vma_wants_writenotify(vma, vm_page_prot)) {
132 		vm_flags &= ~VM_SHARED;
133 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134 	}
135 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 }
138 
139 /*
140  * Requires inode->i_mapping->i_mmap_rwsem
141  */
142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143 		struct file *file, struct address_space *mapping)
144 {
145 	if (vma->vm_flags & VM_DENYWRITE)
146 		allow_write_access(file);
147 	if (vma->vm_flags & VM_SHARED)
148 		mapping_unmap_writable(mapping);
149 
150 	flush_dcache_mmap_lock(mapping);
151 	vma_interval_tree_remove(vma, &mapping->i_mmap);
152 	flush_dcache_mmap_unlock(mapping);
153 }
154 
155 /*
156  * Unlink a file-based vm structure from its interval tree, to hide
157  * vma from rmap and vmtruncate before freeing its page tables.
158  */
159 void unlink_file_vma(struct vm_area_struct *vma)
160 {
161 	struct file *file = vma->vm_file;
162 
163 	if (file) {
164 		struct address_space *mapping = file->f_mapping;
165 		i_mmap_lock_write(mapping);
166 		__remove_shared_vm_struct(vma, file, mapping);
167 		i_mmap_unlock_write(mapping);
168 	}
169 }
170 
171 /*
172  * Close a vm structure and free it, returning the next.
173  */
174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 {
176 	struct vm_area_struct *next = vma->vm_next;
177 
178 	might_sleep();
179 	if (vma->vm_ops && vma->vm_ops->close)
180 		vma->vm_ops->close(vma);
181 	if (vma->vm_file)
182 		fput(vma->vm_file);
183 	mpol_put(vma_policy(vma));
184 	vm_area_free(vma);
185 	return next;
186 }
187 
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189 		struct list_head *uf);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192 	unsigned long retval;
193 	unsigned long newbrk, oldbrk, origbrk;
194 	struct mm_struct *mm = current->mm;
195 	struct vm_area_struct *next;
196 	unsigned long min_brk;
197 	bool populate;
198 	bool downgraded = false;
199 	LIST_HEAD(uf);
200 
201 	if (mmap_write_lock_killable(mm))
202 		return -EINTR;
203 
204 	origbrk = mm->brk;
205 
206 #ifdef CONFIG_COMPAT_BRK
207 	/*
208 	 * CONFIG_COMPAT_BRK can still be overridden by setting
209 	 * randomize_va_space to 2, which will still cause mm->start_brk
210 	 * to be arbitrarily shifted
211 	 */
212 	if (current->brk_randomized)
213 		min_brk = mm->start_brk;
214 	else
215 		min_brk = mm->end_data;
216 #else
217 	min_brk = mm->start_brk;
218 #endif
219 	if (brk < min_brk)
220 		goto out;
221 
222 	/*
223 	 * Check against rlimit here. If this check is done later after the test
224 	 * of oldbrk with newbrk then it can escape the test and let the data
225 	 * segment grow beyond its set limit the in case where the limit is
226 	 * not page aligned -Ram Gupta
227 	 */
228 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229 			      mm->end_data, mm->start_data))
230 		goto out;
231 
232 	newbrk = PAGE_ALIGN(brk);
233 	oldbrk = PAGE_ALIGN(mm->brk);
234 	if (oldbrk == newbrk) {
235 		mm->brk = brk;
236 		goto success;
237 	}
238 
239 	/*
240 	 * Always allow shrinking brk.
241 	 * __do_munmap() may downgrade mmap_lock to read.
242 	 */
243 	if (brk <= mm->brk) {
244 		int ret;
245 
246 		/*
247 		 * mm->brk must to be protected by write mmap_lock so update it
248 		 * before downgrading mmap_lock. When __do_munmap() fails,
249 		 * mm->brk will be restored from origbrk.
250 		 */
251 		mm->brk = brk;
252 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
253 		if (ret < 0) {
254 			mm->brk = origbrk;
255 			goto out;
256 		} else if (ret == 1) {
257 			downgraded = true;
258 		}
259 		goto success;
260 	}
261 
262 	/* Check against existing mmap mappings. */
263 	next = find_vma(mm, oldbrk);
264 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
265 		goto out;
266 
267 	/* Ok, looks good - let it rip. */
268 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
269 		goto out;
270 	mm->brk = brk;
271 
272 success:
273 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274 	if (downgraded)
275 		mmap_read_unlock(mm);
276 	else
277 		mmap_write_unlock(mm);
278 	userfaultfd_unmap_complete(mm, &uf);
279 	if (populate)
280 		mm_populate(oldbrk, newbrk - oldbrk);
281 	return brk;
282 
283 out:
284 	retval = origbrk;
285 	mmap_write_unlock(mm);
286 	return retval;
287 }
288 
289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 {
291 	unsigned long gap, prev_end;
292 
293 	/*
294 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295 	 * allow two stack_guard_gaps between them here, and when choosing
296 	 * an unmapped area; whereas when expanding we only require one.
297 	 * That's a little inconsistent, but keeps the code here simpler.
298 	 */
299 	gap = vm_start_gap(vma);
300 	if (vma->vm_prev) {
301 		prev_end = vm_end_gap(vma->vm_prev);
302 		if (gap > prev_end)
303 			gap -= prev_end;
304 		else
305 			gap = 0;
306 	}
307 	return gap;
308 }
309 
310 #ifdef CONFIG_DEBUG_VM_RB
311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 {
313 	unsigned long max = vma_compute_gap(vma), subtree_gap;
314 	if (vma->vm_rb.rb_left) {
315 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
316 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
317 		if (subtree_gap > max)
318 			max = subtree_gap;
319 	}
320 	if (vma->vm_rb.rb_right) {
321 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
322 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
323 		if (subtree_gap > max)
324 			max = subtree_gap;
325 	}
326 	return max;
327 }
328 
329 static int browse_rb(struct mm_struct *mm)
330 {
331 	struct rb_root *root = &mm->mm_rb;
332 	int i = 0, j, bug = 0;
333 	struct rb_node *nd, *pn = NULL;
334 	unsigned long prev = 0, pend = 0;
335 
336 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
337 		struct vm_area_struct *vma;
338 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
339 		if (vma->vm_start < prev) {
340 			pr_emerg("vm_start %lx < prev %lx\n",
341 				  vma->vm_start, prev);
342 			bug = 1;
343 		}
344 		if (vma->vm_start < pend) {
345 			pr_emerg("vm_start %lx < pend %lx\n",
346 				  vma->vm_start, pend);
347 			bug = 1;
348 		}
349 		if (vma->vm_start > vma->vm_end) {
350 			pr_emerg("vm_start %lx > vm_end %lx\n",
351 				  vma->vm_start, vma->vm_end);
352 			bug = 1;
353 		}
354 		spin_lock(&mm->page_table_lock);
355 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
356 			pr_emerg("free gap %lx, correct %lx\n",
357 			       vma->rb_subtree_gap,
358 			       vma_compute_subtree_gap(vma));
359 			bug = 1;
360 		}
361 		spin_unlock(&mm->page_table_lock);
362 		i++;
363 		pn = nd;
364 		prev = vma->vm_start;
365 		pend = vma->vm_end;
366 	}
367 	j = 0;
368 	for (nd = pn; nd; nd = rb_prev(nd))
369 		j++;
370 	if (i != j) {
371 		pr_emerg("backwards %d, forwards %d\n", j, i);
372 		bug = 1;
373 	}
374 	return bug ? -1 : i;
375 }
376 
377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
378 {
379 	struct rb_node *nd;
380 
381 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
382 		struct vm_area_struct *vma;
383 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
384 		VM_BUG_ON_VMA(vma != ignore &&
385 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
386 			vma);
387 	}
388 }
389 
390 static void validate_mm(struct mm_struct *mm)
391 {
392 	int bug = 0;
393 	int i = 0;
394 	unsigned long highest_address = 0;
395 	struct vm_area_struct *vma = mm->mmap;
396 
397 	while (vma) {
398 		struct anon_vma *anon_vma = vma->anon_vma;
399 		struct anon_vma_chain *avc;
400 
401 		if (anon_vma) {
402 			anon_vma_lock_read(anon_vma);
403 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404 				anon_vma_interval_tree_verify(avc);
405 			anon_vma_unlock_read(anon_vma);
406 		}
407 
408 		highest_address = vm_end_gap(vma);
409 		vma = vma->vm_next;
410 		i++;
411 	}
412 	if (i != mm->map_count) {
413 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
414 		bug = 1;
415 	}
416 	if (highest_address != mm->highest_vm_end) {
417 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418 			  mm->highest_vm_end, highest_address);
419 		bug = 1;
420 	}
421 	i = browse_rb(mm);
422 	if (i != mm->map_count) {
423 		if (i != -1)
424 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
425 		bug = 1;
426 	}
427 	VM_BUG_ON_MM(bug, mm);
428 }
429 #else
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
432 #endif
433 
434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
435 			 struct vm_area_struct, vm_rb,
436 			 unsigned long, rb_subtree_gap, vma_compute_gap)
437 
438 /*
439  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440  * vma->vm_prev->vm_end values changed, without modifying the vma's position
441  * in the rbtree.
442  */
443 static void vma_gap_update(struct vm_area_struct *vma)
444 {
445 	/*
446 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447 	 * a callback function that does exactly what we want.
448 	 */
449 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
450 }
451 
452 static inline void vma_rb_insert(struct vm_area_struct *vma,
453 				 struct rb_root *root)
454 {
455 	/* All rb_subtree_gap values must be consistent prior to insertion */
456 	validate_mm_rb(root, NULL);
457 
458 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
459 }
460 
461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
462 {
463 	/*
464 	 * Note rb_erase_augmented is a fairly large inline function,
465 	 * so make sure we instantiate it only once with our desired
466 	 * augmented rbtree callbacks.
467 	 */
468 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470 
471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
472 						struct rb_root *root,
473 						struct vm_area_struct *ignore)
474 {
475 	/*
476 	 * All rb_subtree_gap values must be consistent prior to erase,
477 	 * with the possible exception of
478 	 *
479 	 * a. the "next" vma being erased if next->vm_start was reduced in
480 	 *    __vma_adjust() -> __vma_unlink()
481 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
482 	 *    vma_rb_erase()
483 	 */
484 	validate_mm_rb(root, ignore);
485 
486 	__vma_rb_erase(vma, root);
487 }
488 
489 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
490 					 struct rb_root *root)
491 {
492 	vma_rb_erase_ignore(vma, root, vma);
493 }
494 
495 /*
496  * vma has some anon_vma assigned, and is already inserted on that
497  * anon_vma's interval trees.
498  *
499  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
500  * vma must be removed from the anon_vma's interval trees using
501  * anon_vma_interval_tree_pre_update_vma().
502  *
503  * After the update, the vma will be reinserted using
504  * anon_vma_interval_tree_post_update_vma().
505  *
506  * The entire update must be protected by exclusive mmap_lock and by
507  * the root anon_vma's mutex.
508  */
509 static inline void
510 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
511 {
512 	struct anon_vma_chain *avc;
513 
514 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
515 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
516 }
517 
518 static inline void
519 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
520 {
521 	struct anon_vma_chain *avc;
522 
523 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
524 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
525 }
526 
527 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
528 		unsigned long end, struct vm_area_struct **pprev,
529 		struct rb_node ***rb_link, struct rb_node **rb_parent)
530 {
531 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
532 
533 	__rb_link = &mm->mm_rb.rb_node;
534 	rb_prev = __rb_parent = NULL;
535 
536 	while (*__rb_link) {
537 		struct vm_area_struct *vma_tmp;
538 
539 		__rb_parent = *__rb_link;
540 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
541 
542 		if (vma_tmp->vm_end > addr) {
543 			/* Fail if an existing vma overlaps the area */
544 			if (vma_tmp->vm_start < end)
545 				return -ENOMEM;
546 			__rb_link = &__rb_parent->rb_left;
547 		} else {
548 			rb_prev = __rb_parent;
549 			__rb_link = &__rb_parent->rb_right;
550 		}
551 	}
552 
553 	*pprev = NULL;
554 	if (rb_prev)
555 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
556 	*rb_link = __rb_link;
557 	*rb_parent = __rb_parent;
558 	return 0;
559 }
560 
561 /*
562  * vma_next() - Get the next VMA.
563  * @mm: The mm_struct.
564  * @vma: The current vma.
565  *
566  * If @vma is NULL, return the first vma in the mm.
567  *
568  * Returns: The next VMA after @vma.
569  */
570 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
571 					 struct vm_area_struct *vma)
572 {
573 	if (!vma)
574 		return mm->mmap;
575 
576 	return vma->vm_next;
577 }
578 
579 /*
580  * munmap_vma_range() - munmap VMAs that overlap a range.
581  * @mm: The mm struct
582  * @start: The start of the range.
583  * @len: The length of the range.
584  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
585  * @rb_link: the rb_node
586  * @rb_parent: the parent rb_node
587  *
588  * Find all the vm_area_struct that overlap from @start to
589  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
590  *
591  * Returns: -ENOMEM on munmap failure or 0 on success.
592  */
593 static inline int
594 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
595 		 struct vm_area_struct **pprev, struct rb_node ***link,
596 		 struct rb_node **parent, struct list_head *uf)
597 {
598 
599 	while (find_vma_links(mm, start, start + len, pprev, link, parent))
600 		if (do_munmap(mm, start, len, uf))
601 			return -ENOMEM;
602 
603 	return 0;
604 }
605 static unsigned long count_vma_pages_range(struct mm_struct *mm,
606 		unsigned long addr, unsigned long end)
607 {
608 	unsigned long nr_pages = 0;
609 	struct vm_area_struct *vma;
610 
611 	/* Find first overlaping mapping */
612 	vma = find_vma_intersection(mm, addr, end);
613 	if (!vma)
614 		return 0;
615 
616 	nr_pages = (min(end, vma->vm_end) -
617 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
618 
619 	/* Iterate over the rest of the overlaps */
620 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
621 		unsigned long overlap_len;
622 
623 		if (vma->vm_start > end)
624 			break;
625 
626 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
627 		nr_pages += overlap_len >> PAGE_SHIFT;
628 	}
629 
630 	return nr_pages;
631 }
632 
633 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
634 		struct rb_node **rb_link, struct rb_node *rb_parent)
635 {
636 	/* Update tracking information for the gap following the new vma. */
637 	if (vma->vm_next)
638 		vma_gap_update(vma->vm_next);
639 	else
640 		mm->highest_vm_end = vm_end_gap(vma);
641 
642 	/*
643 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
644 	 * correct insertion point for that vma. As a result, we could not
645 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
646 	 * So, we first insert the vma with a zero rb_subtree_gap value
647 	 * (to be consistent with what we did on the way down), and then
648 	 * immediately update the gap to the correct value. Finally we
649 	 * rebalance the rbtree after all augmented values have been set.
650 	 */
651 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
652 	vma->rb_subtree_gap = 0;
653 	vma_gap_update(vma);
654 	vma_rb_insert(vma, &mm->mm_rb);
655 }
656 
657 static void __vma_link_file(struct vm_area_struct *vma)
658 {
659 	struct file *file;
660 
661 	file = vma->vm_file;
662 	if (file) {
663 		struct address_space *mapping = file->f_mapping;
664 
665 		if (vma->vm_flags & VM_DENYWRITE)
666 			put_write_access(file_inode(file));
667 		if (vma->vm_flags & VM_SHARED)
668 			mapping_allow_writable(mapping);
669 
670 		flush_dcache_mmap_lock(mapping);
671 		vma_interval_tree_insert(vma, &mapping->i_mmap);
672 		flush_dcache_mmap_unlock(mapping);
673 	}
674 }
675 
676 static void
677 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
678 	struct vm_area_struct *prev, struct rb_node **rb_link,
679 	struct rb_node *rb_parent)
680 {
681 	__vma_link_list(mm, vma, prev);
682 	__vma_link_rb(mm, vma, rb_link, rb_parent);
683 }
684 
685 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
686 			struct vm_area_struct *prev, struct rb_node **rb_link,
687 			struct rb_node *rb_parent)
688 {
689 	struct address_space *mapping = NULL;
690 
691 	if (vma->vm_file) {
692 		mapping = vma->vm_file->f_mapping;
693 		i_mmap_lock_write(mapping);
694 	}
695 
696 	__vma_link(mm, vma, prev, rb_link, rb_parent);
697 	__vma_link_file(vma);
698 
699 	if (mapping)
700 		i_mmap_unlock_write(mapping);
701 
702 	mm->map_count++;
703 	validate_mm(mm);
704 }
705 
706 /*
707  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
708  * mm's list and rbtree.  It has already been inserted into the interval tree.
709  */
710 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
711 {
712 	struct vm_area_struct *prev;
713 	struct rb_node **rb_link, *rb_parent;
714 
715 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
716 			   &prev, &rb_link, &rb_parent))
717 		BUG();
718 	__vma_link(mm, vma, prev, rb_link, rb_parent);
719 	mm->map_count++;
720 }
721 
722 static __always_inline void __vma_unlink(struct mm_struct *mm,
723 						struct vm_area_struct *vma,
724 						struct vm_area_struct *ignore)
725 {
726 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
727 	__vma_unlink_list(mm, vma);
728 	/* Kill the cache */
729 	vmacache_invalidate(mm);
730 }
731 
732 /*
733  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
734  * is already present in an i_mmap tree without adjusting the tree.
735  * The following helper function should be used when such adjustments
736  * are necessary.  The "insert" vma (if any) is to be inserted
737  * before we drop the necessary locks.
738  */
739 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
740 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
741 	struct vm_area_struct *expand)
742 {
743 	struct mm_struct *mm = vma->vm_mm;
744 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
745 	struct address_space *mapping = NULL;
746 	struct rb_root_cached *root = NULL;
747 	struct anon_vma *anon_vma = NULL;
748 	struct file *file = vma->vm_file;
749 	bool start_changed = false, end_changed = false;
750 	long adjust_next = 0;
751 	int remove_next = 0;
752 
753 	if (next && !insert) {
754 		struct vm_area_struct *exporter = NULL, *importer = NULL;
755 
756 		if (end >= next->vm_end) {
757 			/*
758 			 * vma expands, overlapping all the next, and
759 			 * perhaps the one after too (mprotect case 6).
760 			 * The only other cases that gets here are
761 			 * case 1, case 7 and case 8.
762 			 */
763 			if (next == expand) {
764 				/*
765 				 * The only case where we don't expand "vma"
766 				 * and we expand "next" instead is case 8.
767 				 */
768 				VM_WARN_ON(end != next->vm_end);
769 				/*
770 				 * remove_next == 3 means we're
771 				 * removing "vma" and that to do so we
772 				 * swapped "vma" and "next".
773 				 */
774 				remove_next = 3;
775 				VM_WARN_ON(file != next->vm_file);
776 				swap(vma, next);
777 			} else {
778 				VM_WARN_ON(expand != vma);
779 				/*
780 				 * case 1, 6, 7, remove_next == 2 is case 6,
781 				 * remove_next == 1 is case 1 or 7.
782 				 */
783 				remove_next = 1 + (end > next->vm_end);
784 				VM_WARN_ON(remove_next == 2 &&
785 					   end != next->vm_next->vm_end);
786 				/* trim end to next, for case 6 first pass */
787 				end = next->vm_end;
788 			}
789 
790 			exporter = next;
791 			importer = vma;
792 
793 			/*
794 			 * If next doesn't have anon_vma, import from vma after
795 			 * next, if the vma overlaps with it.
796 			 */
797 			if (remove_next == 2 && !next->anon_vma)
798 				exporter = next->vm_next;
799 
800 		} else if (end > next->vm_start) {
801 			/*
802 			 * vma expands, overlapping part of the next:
803 			 * mprotect case 5 shifting the boundary up.
804 			 */
805 			adjust_next = (end - next->vm_start);
806 			exporter = next;
807 			importer = vma;
808 			VM_WARN_ON(expand != importer);
809 		} else if (end < vma->vm_end) {
810 			/*
811 			 * vma shrinks, and !insert tells it's not
812 			 * split_vma inserting another: so it must be
813 			 * mprotect case 4 shifting the boundary down.
814 			 */
815 			adjust_next = -(vma->vm_end - end);
816 			exporter = vma;
817 			importer = next;
818 			VM_WARN_ON(expand != importer);
819 		}
820 
821 		/*
822 		 * Easily overlooked: when mprotect shifts the boundary,
823 		 * make sure the expanding vma has anon_vma set if the
824 		 * shrinking vma had, to cover any anon pages imported.
825 		 */
826 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
827 			int error;
828 
829 			importer->anon_vma = exporter->anon_vma;
830 			error = anon_vma_clone(importer, exporter);
831 			if (error)
832 				return error;
833 		}
834 	}
835 again:
836 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
837 
838 	if (file) {
839 		mapping = file->f_mapping;
840 		root = &mapping->i_mmap;
841 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
842 
843 		if (adjust_next)
844 			uprobe_munmap(next, next->vm_start, next->vm_end);
845 
846 		i_mmap_lock_write(mapping);
847 		if (insert) {
848 			/*
849 			 * Put into interval tree now, so instantiated pages
850 			 * are visible to arm/parisc __flush_dcache_page
851 			 * throughout; but we cannot insert into address
852 			 * space until vma start or end is updated.
853 			 */
854 			__vma_link_file(insert);
855 		}
856 	}
857 
858 	anon_vma = vma->anon_vma;
859 	if (!anon_vma && adjust_next)
860 		anon_vma = next->anon_vma;
861 	if (anon_vma) {
862 		VM_WARN_ON(adjust_next && next->anon_vma &&
863 			   anon_vma != next->anon_vma);
864 		anon_vma_lock_write(anon_vma);
865 		anon_vma_interval_tree_pre_update_vma(vma);
866 		if (adjust_next)
867 			anon_vma_interval_tree_pre_update_vma(next);
868 	}
869 
870 	if (file) {
871 		flush_dcache_mmap_lock(mapping);
872 		vma_interval_tree_remove(vma, root);
873 		if (adjust_next)
874 			vma_interval_tree_remove(next, root);
875 	}
876 
877 	if (start != vma->vm_start) {
878 		vma->vm_start = start;
879 		start_changed = true;
880 	}
881 	if (end != vma->vm_end) {
882 		vma->vm_end = end;
883 		end_changed = true;
884 	}
885 	vma->vm_pgoff = pgoff;
886 	if (adjust_next) {
887 		next->vm_start += adjust_next;
888 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
889 	}
890 
891 	if (file) {
892 		if (adjust_next)
893 			vma_interval_tree_insert(next, root);
894 		vma_interval_tree_insert(vma, root);
895 		flush_dcache_mmap_unlock(mapping);
896 	}
897 
898 	if (remove_next) {
899 		/*
900 		 * vma_merge has merged next into vma, and needs
901 		 * us to remove next before dropping the locks.
902 		 */
903 		if (remove_next != 3)
904 			__vma_unlink(mm, next, next);
905 		else
906 			/*
907 			 * vma is not before next if they've been
908 			 * swapped.
909 			 *
910 			 * pre-swap() next->vm_start was reduced so
911 			 * tell validate_mm_rb to ignore pre-swap()
912 			 * "next" (which is stored in post-swap()
913 			 * "vma").
914 			 */
915 			__vma_unlink(mm, next, vma);
916 		if (file)
917 			__remove_shared_vm_struct(next, file, mapping);
918 	} else if (insert) {
919 		/*
920 		 * split_vma has split insert from vma, and needs
921 		 * us to insert it before dropping the locks
922 		 * (it may either follow vma or precede it).
923 		 */
924 		__insert_vm_struct(mm, insert);
925 	} else {
926 		if (start_changed)
927 			vma_gap_update(vma);
928 		if (end_changed) {
929 			if (!next)
930 				mm->highest_vm_end = vm_end_gap(vma);
931 			else if (!adjust_next)
932 				vma_gap_update(next);
933 		}
934 	}
935 
936 	if (anon_vma) {
937 		anon_vma_interval_tree_post_update_vma(vma);
938 		if (adjust_next)
939 			anon_vma_interval_tree_post_update_vma(next);
940 		anon_vma_unlock_write(anon_vma);
941 	}
942 
943 	if (file) {
944 		i_mmap_unlock_write(mapping);
945 		uprobe_mmap(vma);
946 
947 		if (adjust_next)
948 			uprobe_mmap(next);
949 	}
950 
951 	if (remove_next) {
952 		if (file) {
953 			uprobe_munmap(next, next->vm_start, next->vm_end);
954 			fput(file);
955 		}
956 		if (next->anon_vma)
957 			anon_vma_merge(vma, next);
958 		mm->map_count--;
959 		mpol_put(vma_policy(next));
960 		vm_area_free(next);
961 		/*
962 		 * In mprotect's case 6 (see comments on vma_merge),
963 		 * we must remove another next too. It would clutter
964 		 * up the code too much to do both in one go.
965 		 */
966 		if (remove_next != 3) {
967 			/*
968 			 * If "next" was removed and vma->vm_end was
969 			 * expanded (up) over it, in turn
970 			 * "next->vm_prev->vm_end" changed and the
971 			 * "vma->vm_next" gap must be updated.
972 			 */
973 			next = vma->vm_next;
974 		} else {
975 			/*
976 			 * For the scope of the comment "next" and
977 			 * "vma" considered pre-swap(): if "vma" was
978 			 * removed, next->vm_start was expanded (down)
979 			 * over it and the "next" gap must be updated.
980 			 * Because of the swap() the post-swap() "vma"
981 			 * actually points to pre-swap() "next"
982 			 * (post-swap() "next" as opposed is now a
983 			 * dangling pointer).
984 			 */
985 			next = vma;
986 		}
987 		if (remove_next == 2) {
988 			remove_next = 1;
989 			end = next->vm_end;
990 			goto again;
991 		}
992 		else if (next)
993 			vma_gap_update(next);
994 		else {
995 			/*
996 			 * If remove_next == 2 we obviously can't
997 			 * reach this path.
998 			 *
999 			 * If remove_next == 3 we can't reach this
1000 			 * path because pre-swap() next is always not
1001 			 * NULL. pre-swap() "next" is not being
1002 			 * removed and its next->vm_end is not altered
1003 			 * (and furthermore "end" already matches
1004 			 * next->vm_end in remove_next == 3).
1005 			 *
1006 			 * We reach this only in the remove_next == 1
1007 			 * case if the "next" vma that was removed was
1008 			 * the highest vma of the mm. However in such
1009 			 * case next->vm_end == "end" and the extended
1010 			 * "vma" has vma->vm_end == next->vm_end so
1011 			 * mm->highest_vm_end doesn't need any update
1012 			 * in remove_next == 1 case.
1013 			 */
1014 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1015 		}
1016 	}
1017 	if (insert && file)
1018 		uprobe_mmap(insert);
1019 
1020 	validate_mm(mm);
1021 
1022 	return 0;
1023 }
1024 
1025 /*
1026  * If the vma has a ->close operation then the driver probably needs to release
1027  * per-vma resources, so we don't attempt to merge those.
1028  */
1029 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1030 				struct file *file, unsigned long vm_flags,
1031 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1032 {
1033 	/*
1034 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1035 	 * match the flags but dirty bit -- the caller should mark
1036 	 * merged VMA as dirty. If dirty bit won't be excluded from
1037 	 * comparison, we increase pressure on the memory system forcing
1038 	 * the kernel to generate new VMAs when old one could be
1039 	 * extended instead.
1040 	 */
1041 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1042 		return 0;
1043 	if (vma->vm_file != file)
1044 		return 0;
1045 	if (vma->vm_ops && vma->vm_ops->close)
1046 		return 0;
1047 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1048 		return 0;
1049 	return 1;
1050 }
1051 
1052 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1053 					struct anon_vma *anon_vma2,
1054 					struct vm_area_struct *vma)
1055 {
1056 	/*
1057 	 * The list_is_singular() test is to avoid merging VMA cloned from
1058 	 * parents. This can improve scalability caused by anon_vma lock.
1059 	 */
1060 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1061 		list_is_singular(&vma->anon_vma_chain)))
1062 		return 1;
1063 	return anon_vma1 == anon_vma2;
1064 }
1065 
1066 /*
1067  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1068  * in front of (at a lower virtual address and file offset than) the vma.
1069  *
1070  * We cannot merge two vmas if they have differently assigned (non-NULL)
1071  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1072  *
1073  * We don't check here for the merged mmap wrapping around the end of pagecache
1074  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1075  * wrap, nor mmaps which cover the final page at index -1UL.
1076  */
1077 static int
1078 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1079 		     struct anon_vma *anon_vma, struct file *file,
1080 		     pgoff_t vm_pgoff,
1081 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1082 {
1083 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1084 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1085 		if (vma->vm_pgoff == vm_pgoff)
1086 			return 1;
1087 	}
1088 	return 0;
1089 }
1090 
1091 /*
1092  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1093  * beyond (at a higher virtual address and file offset than) the vma.
1094  *
1095  * We cannot merge two vmas if they have differently assigned (non-NULL)
1096  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1097  */
1098 static int
1099 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1100 		    struct anon_vma *anon_vma, struct file *file,
1101 		    pgoff_t vm_pgoff,
1102 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1103 {
1104 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1105 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1106 		pgoff_t vm_pglen;
1107 		vm_pglen = vma_pages(vma);
1108 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1109 			return 1;
1110 	}
1111 	return 0;
1112 }
1113 
1114 /*
1115  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1116  * whether that can be merged with its predecessor or its successor.
1117  * Or both (it neatly fills a hole).
1118  *
1119  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1120  * certain not to be mapped by the time vma_merge is called; but when
1121  * called for mprotect, it is certain to be already mapped (either at
1122  * an offset within prev, or at the start of next), and the flags of
1123  * this area are about to be changed to vm_flags - and the no-change
1124  * case has already been eliminated.
1125  *
1126  * The following mprotect cases have to be considered, where AAAA is
1127  * the area passed down from mprotect_fixup, never extending beyond one
1128  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1129  *
1130  *     AAAA             AAAA                   AAAA
1131  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1132  *    cannot merge    might become       might become
1133  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1134  *    mmap, brk or    case 4 below       case 5 below
1135  *    mremap move:
1136  *                        AAAA               AAAA
1137  *                    PPPP    NNNN       PPPPNNNNXXXX
1138  *                    might become       might become
1139  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1140  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1141  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1142  *
1143  * It is important for case 8 that the vma NNNN overlapping the
1144  * region AAAA is never going to extended over XXXX. Instead XXXX must
1145  * be extended in region AAAA and NNNN must be removed. This way in
1146  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1147  * rmap_locks, the properties of the merged vma will be already
1148  * correct for the whole merged range. Some of those properties like
1149  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1150  * be correct for the whole merged range immediately after the
1151  * rmap_locks are released. Otherwise if XXXX would be removed and
1152  * NNNN would be extended over the XXXX range, remove_migration_ptes
1153  * or other rmap walkers (if working on addresses beyond the "end"
1154  * parameter) may establish ptes with the wrong permissions of NNNN
1155  * instead of the right permissions of XXXX.
1156  */
1157 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1158 			struct vm_area_struct *prev, unsigned long addr,
1159 			unsigned long end, unsigned long vm_flags,
1160 			struct anon_vma *anon_vma, struct file *file,
1161 			pgoff_t pgoff, struct mempolicy *policy,
1162 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1163 {
1164 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1165 	struct vm_area_struct *area, *next;
1166 	int err;
1167 
1168 	/*
1169 	 * We later require that vma->vm_flags == vm_flags,
1170 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1171 	 */
1172 	if (vm_flags & VM_SPECIAL)
1173 		return NULL;
1174 
1175 	next = vma_next(mm, prev);
1176 	area = next;
1177 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1178 		next = next->vm_next;
1179 
1180 	/* verify some invariant that must be enforced by the caller */
1181 	VM_WARN_ON(prev && addr <= prev->vm_start);
1182 	VM_WARN_ON(area && end > area->vm_end);
1183 	VM_WARN_ON(addr >= end);
1184 
1185 	/*
1186 	 * Can it merge with the predecessor?
1187 	 */
1188 	if (prev && prev->vm_end == addr &&
1189 			mpol_equal(vma_policy(prev), policy) &&
1190 			can_vma_merge_after(prev, vm_flags,
1191 					    anon_vma, file, pgoff,
1192 					    vm_userfaultfd_ctx)) {
1193 		/*
1194 		 * OK, it can.  Can we now merge in the successor as well?
1195 		 */
1196 		if (next && end == next->vm_start &&
1197 				mpol_equal(policy, vma_policy(next)) &&
1198 				can_vma_merge_before(next, vm_flags,
1199 						     anon_vma, file,
1200 						     pgoff+pglen,
1201 						     vm_userfaultfd_ctx) &&
1202 				is_mergeable_anon_vma(prev->anon_vma,
1203 						      next->anon_vma, NULL)) {
1204 							/* cases 1, 6 */
1205 			err = __vma_adjust(prev, prev->vm_start,
1206 					 next->vm_end, prev->vm_pgoff, NULL,
1207 					 prev);
1208 		} else					/* cases 2, 5, 7 */
1209 			err = __vma_adjust(prev, prev->vm_start,
1210 					 end, prev->vm_pgoff, NULL, prev);
1211 		if (err)
1212 			return NULL;
1213 		khugepaged_enter_vma_merge(prev, vm_flags);
1214 		return prev;
1215 	}
1216 
1217 	/*
1218 	 * Can this new request be merged in front of next?
1219 	 */
1220 	if (next && end == next->vm_start &&
1221 			mpol_equal(policy, vma_policy(next)) &&
1222 			can_vma_merge_before(next, vm_flags,
1223 					     anon_vma, file, pgoff+pglen,
1224 					     vm_userfaultfd_ctx)) {
1225 		if (prev && addr < prev->vm_end)	/* case 4 */
1226 			err = __vma_adjust(prev, prev->vm_start,
1227 					 addr, prev->vm_pgoff, NULL, next);
1228 		else {					/* cases 3, 8 */
1229 			err = __vma_adjust(area, addr, next->vm_end,
1230 					 next->vm_pgoff - pglen, NULL, next);
1231 			/*
1232 			 * In case 3 area is already equal to next and
1233 			 * this is a noop, but in case 8 "area" has
1234 			 * been removed and next was expanded over it.
1235 			 */
1236 			area = next;
1237 		}
1238 		if (err)
1239 			return NULL;
1240 		khugepaged_enter_vma_merge(area, vm_flags);
1241 		return area;
1242 	}
1243 
1244 	return NULL;
1245 }
1246 
1247 /*
1248  * Rough compatibility check to quickly see if it's even worth looking
1249  * at sharing an anon_vma.
1250  *
1251  * They need to have the same vm_file, and the flags can only differ
1252  * in things that mprotect may change.
1253  *
1254  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1255  * we can merge the two vma's. For example, we refuse to merge a vma if
1256  * there is a vm_ops->close() function, because that indicates that the
1257  * driver is doing some kind of reference counting. But that doesn't
1258  * really matter for the anon_vma sharing case.
1259  */
1260 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1261 {
1262 	return a->vm_end == b->vm_start &&
1263 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1264 		a->vm_file == b->vm_file &&
1265 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1266 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1267 }
1268 
1269 /*
1270  * Do some basic sanity checking to see if we can re-use the anon_vma
1271  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1272  * the same as 'old', the other will be the new one that is trying
1273  * to share the anon_vma.
1274  *
1275  * NOTE! This runs with mm_sem held for reading, so it is possible that
1276  * the anon_vma of 'old' is concurrently in the process of being set up
1277  * by another page fault trying to merge _that_. But that's ok: if it
1278  * is being set up, that automatically means that it will be a singleton
1279  * acceptable for merging, so we can do all of this optimistically. But
1280  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1281  *
1282  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1283  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1284  * is to return an anon_vma that is "complex" due to having gone through
1285  * a fork).
1286  *
1287  * We also make sure that the two vma's are compatible (adjacent,
1288  * and with the same memory policies). That's all stable, even with just
1289  * a read lock on the mm_sem.
1290  */
1291 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1292 {
1293 	if (anon_vma_compatible(a, b)) {
1294 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1295 
1296 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1297 			return anon_vma;
1298 	}
1299 	return NULL;
1300 }
1301 
1302 /*
1303  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1304  * neighbouring vmas for a suitable anon_vma, before it goes off
1305  * to allocate a new anon_vma.  It checks because a repetitive
1306  * sequence of mprotects and faults may otherwise lead to distinct
1307  * anon_vmas being allocated, preventing vma merge in subsequent
1308  * mprotect.
1309  */
1310 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1311 {
1312 	struct anon_vma *anon_vma = NULL;
1313 
1314 	/* Try next first. */
1315 	if (vma->vm_next) {
1316 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1317 		if (anon_vma)
1318 			return anon_vma;
1319 	}
1320 
1321 	/* Try prev next. */
1322 	if (vma->vm_prev)
1323 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1324 
1325 	/*
1326 	 * We might reach here with anon_vma == NULL if we can't find
1327 	 * any reusable anon_vma.
1328 	 * There's no absolute need to look only at touching neighbours:
1329 	 * we could search further afield for "compatible" anon_vmas.
1330 	 * But it would probably just be a waste of time searching,
1331 	 * or lead to too many vmas hanging off the same anon_vma.
1332 	 * We're trying to allow mprotect remerging later on,
1333 	 * not trying to minimize memory used for anon_vmas.
1334 	 */
1335 	return anon_vma;
1336 }
1337 
1338 /*
1339  * If a hint addr is less than mmap_min_addr change hint to be as
1340  * low as possible but still greater than mmap_min_addr
1341  */
1342 static inline unsigned long round_hint_to_min(unsigned long hint)
1343 {
1344 	hint &= PAGE_MASK;
1345 	if (((void *)hint != NULL) &&
1346 	    (hint < mmap_min_addr))
1347 		return PAGE_ALIGN(mmap_min_addr);
1348 	return hint;
1349 }
1350 
1351 static inline int mlock_future_check(struct mm_struct *mm,
1352 				     unsigned long flags,
1353 				     unsigned long len)
1354 {
1355 	unsigned long locked, lock_limit;
1356 
1357 	/*  mlock MCL_FUTURE? */
1358 	if (flags & VM_LOCKED) {
1359 		locked = len >> PAGE_SHIFT;
1360 		locked += mm->locked_vm;
1361 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1362 		lock_limit >>= PAGE_SHIFT;
1363 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1364 			return -EAGAIN;
1365 	}
1366 	return 0;
1367 }
1368 
1369 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1370 {
1371 	if (S_ISREG(inode->i_mode))
1372 		return MAX_LFS_FILESIZE;
1373 
1374 	if (S_ISBLK(inode->i_mode))
1375 		return MAX_LFS_FILESIZE;
1376 
1377 	if (S_ISSOCK(inode->i_mode))
1378 		return MAX_LFS_FILESIZE;
1379 
1380 	/* Special "we do even unsigned file positions" case */
1381 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1382 		return 0;
1383 
1384 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1385 	return ULONG_MAX;
1386 }
1387 
1388 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1389 				unsigned long pgoff, unsigned long len)
1390 {
1391 	u64 maxsize = file_mmap_size_max(file, inode);
1392 
1393 	if (maxsize && len > maxsize)
1394 		return false;
1395 	maxsize -= len;
1396 	if (pgoff > maxsize >> PAGE_SHIFT)
1397 		return false;
1398 	return true;
1399 }
1400 
1401 /*
1402  * The caller must write-lock current->mm->mmap_lock.
1403  */
1404 unsigned long do_mmap(struct file *file, unsigned long addr,
1405 			unsigned long len, unsigned long prot,
1406 			unsigned long flags, unsigned long pgoff,
1407 			unsigned long *populate, struct list_head *uf)
1408 {
1409 	struct mm_struct *mm = current->mm;
1410 	vm_flags_t vm_flags;
1411 	int pkey = 0;
1412 
1413 	*populate = 0;
1414 
1415 	if (!len)
1416 		return -EINVAL;
1417 
1418 	/*
1419 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1420 	 *
1421 	 * (the exception is when the underlying filesystem is noexec
1422 	 *  mounted, in which case we dont add PROT_EXEC.)
1423 	 */
1424 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1425 		if (!(file && path_noexec(&file->f_path)))
1426 			prot |= PROT_EXEC;
1427 
1428 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1429 	if (flags & MAP_FIXED_NOREPLACE)
1430 		flags |= MAP_FIXED;
1431 
1432 	if (!(flags & MAP_FIXED))
1433 		addr = round_hint_to_min(addr);
1434 
1435 	/* Careful about overflows.. */
1436 	len = PAGE_ALIGN(len);
1437 	if (!len)
1438 		return -ENOMEM;
1439 
1440 	/* offset overflow? */
1441 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1442 		return -EOVERFLOW;
1443 
1444 	/* Too many mappings? */
1445 	if (mm->map_count > sysctl_max_map_count)
1446 		return -ENOMEM;
1447 
1448 	/* Obtain the address to map to. we verify (or select) it and ensure
1449 	 * that it represents a valid section of the address space.
1450 	 */
1451 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1452 	if (IS_ERR_VALUE(addr))
1453 		return addr;
1454 
1455 	if (flags & MAP_FIXED_NOREPLACE) {
1456 		struct vm_area_struct *vma = find_vma(mm, addr);
1457 
1458 		if (vma && vma->vm_start < addr + len)
1459 			return -EEXIST;
1460 	}
1461 
1462 	if (prot == PROT_EXEC) {
1463 		pkey = execute_only_pkey(mm);
1464 		if (pkey < 0)
1465 			pkey = 0;
1466 	}
1467 
1468 	/* Do simple checking here so the lower-level routines won't have
1469 	 * to. we assume access permissions have been handled by the open
1470 	 * of the memory object, so we don't do any here.
1471 	 */
1472 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1473 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1474 
1475 	if (flags & MAP_LOCKED)
1476 		if (!can_do_mlock())
1477 			return -EPERM;
1478 
1479 	if (mlock_future_check(mm, vm_flags, len))
1480 		return -EAGAIN;
1481 
1482 	if (file) {
1483 		struct inode *inode = file_inode(file);
1484 		unsigned long flags_mask;
1485 
1486 		if (!file_mmap_ok(file, inode, pgoff, len))
1487 			return -EOVERFLOW;
1488 
1489 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1490 
1491 		switch (flags & MAP_TYPE) {
1492 		case MAP_SHARED:
1493 			/*
1494 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1495 			 * flags. E.g. MAP_SYNC is dangerous to use with
1496 			 * MAP_SHARED as you don't know which consistency model
1497 			 * you will get. We silently ignore unsupported flags
1498 			 * with MAP_SHARED to preserve backward compatibility.
1499 			 */
1500 			flags &= LEGACY_MAP_MASK;
1501 			fallthrough;
1502 		case MAP_SHARED_VALIDATE:
1503 			if (flags & ~flags_mask)
1504 				return -EOPNOTSUPP;
1505 			if (prot & PROT_WRITE) {
1506 				if (!(file->f_mode & FMODE_WRITE))
1507 					return -EACCES;
1508 				if (IS_SWAPFILE(file->f_mapping->host))
1509 					return -ETXTBSY;
1510 			}
1511 
1512 			/*
1513 			 * Make sure we don't allow writing to an append-only
1514 			 * file..
1515 			 */
1516 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1517 				return -EACCES;
1518 
1519 			/*
1520 			 * Make sure there are no mandatory locks on the file.
1521 			 */
1522 			if (locks_verify_locked(file))
1523 				return -EAGAIN;
1524 
1525 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1526 			if (!(file->f_mode & FMODE_WRITE))
1527 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1528 			fallthrough;
1529 		case MAP_PRIVATE:
1530 			if (!(file->f_mode & FMODE_READ))
1531 				return -EACCES;
1532 			if (path_noexec(&file->f_path)) {
1533 				if (vm_flags & VM_EXEC)
1534 					return -EPERM;
1535 				vm_flags &= ~VM_MAYEXEC;
1536 			}
1537 
1538 			if (!file->f_op->mmap)
1539 				return -ENODEV;
1540 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1541 				return -EINVAL;
1542 			break;
1543 
1544 		default:
1545 			return -EINVAL;
1546 		}
1547 	} else {
1548 		switch (flags & MAP_TYPE) {
1549 		case MAP_SHARED:
1550 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1551 				return -EINVAL;
1552 			/*
1553 			 * Ignore pgoff.
1554 			 */
1555 			pgoff = 0;
1556 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1557 			break;
1558 		case MAP_PRIVATE:
1559 			/*
1560 			 * Set pgoff according to addr for anon_vma.
1561 			 */
1562 			pgoff = addr >> PAGE_SHIFT;
1563 			break;
1564 		default:
1565 			return -EINVAL;
1566 		}
1567 	}
1568 
1569 	/*
1570 	 * Set 'VM_NORESERVE' if we should not account for the
1571 	 * memory use of this mapping.
1572 	 */
1573 	if (flags & MAP_NORESERVE) {
1574 		/* We honor MAP_NORESERVE if allowed to overcommit */
1575 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1576 			vm_flags |= VM_NORESERVE;
1577 
1578 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1579 		if (file && is_file_hugepages(file))
1580 			vm_flags |= VM_NORESERVE;
1581 	}
1582 
1583 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1584 	if (!IS_ERR_VALUE(addr) &&
1585 	    ((vm_flags & VM_LOCKED) ||
1586 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1587 		*populate = len;
1588 	return addr;
1589 }
1590 
1591 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1592 			      unsigned long prot, unsigned long flags,
1593 			      unsigned long fd, unsigned long pgoff)
1594 {
1595 	struct file *file = NULL;
1596 	unsigned long retval;
1597 
1598 	if (!(flags & MAP_ANONYMOUS)) {
1599 		audit_mmap_fd(fd, flags);
1600 		file = fget(fd);
1601 		if (!file)
1602 			return -EBADF;
1603 		if (is_file_hugepages(file)) {
1604 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1605 		} else if (unlikely(flags & MAP_HUGETLB)) {
1606 			retval = -EINVAL;
1607 			goto out_fput;
1608 		}
1609 	} else if (flags & MAP_HUGETLB) {
1610 		struct user_struct *user = NULL;
1611 		struct hstate *hs;
1612 
1613 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1614 		if (!hs)
1615 			return -EINVAL;
1616 
1617 		len = ALIGN(len, huge_page_size(hs));
1618 		/*
1619 		 * VM_NORESERVE is used because the reservations will be
1620 		 * taken when vm_ops->mmap() is called
1621 		 * A dummy user value is used because we are not locking
1622 		 * memory so no accounting is necessary
1623 		 */
1624 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1625 				VM_NORESERVE,
1626 				&user, HUGETLB_ANONHUGE_INODE,
1627 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1628 		if (IS_ERR(file))
1629 			return PTR_ERR(file);
1630 	}
1631 
1632 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1633 
1634 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1635 out_fput:
1636 	if (file)
1637 		fput(file);
1638 	return retval;
1639 }
1640 
1641 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1642 		unsigned long, prot, unsigned long, flags,
1643 		unsigned long, fd, unsigned long, pgoff)
1644 {
1645 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1646 }
1647 
1648 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1649 struct mmap_arg_struct {
1650 	unsigned long addr;
1651 	unsigned long len;
1652 	unsigned long prot;
1653 	unsigned long flags;
1654 	unsigned long fd;
1655 	unsigned long offset;
1656 };
1657 
1658 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1659 {
1660 	struct mmap_arg_struct a;
1661 
1662 	if (copy_from_user(&a, arg, sizeof(a)))
1663 		return -EFAULT;
1664 	if (offset_in_page(a.offset))
1665 		return -EINVAL;
1666 
1667 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1668 			       a.offset >> PAGE_SHIFT);
1669 }
1670 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1671 
1672 /*
1673  * Some shared mappings will want the pages marked read-only
1674  * to track write events. If so, we'll downgrade vm_page_prot
1675  * to the private version (using protection_map[] without the
1676  * VM_SHARED bit).
1677  */
1678 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1679 {
1680 	vm_flags_t vm_flags = vma->vm_flags;
1681 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1682 
1683 	/* If it was private or non-writable, the write bit is already clear */
1684 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1685 		return 0;
1686 
1687 	/* The backer wishes to know when pages are first written to? */
1688 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1689 		return 1;
1690 
1691 	/* The open routine did something to the protections that pgprot_modify
1692 	 * won't preserve? */
1693 	if (pgprot_val(vm_page_prot) !=
1694 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1695 		return 0;
1696 
1697 	/* Do we need to track softdirty? */
1698 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1699 		return 1;
1700 
1701 	/* Specialty mapping? */
1702 	if (vm_flags & VM_PFNMAP)
1703 		return 0;
1704 
1705 	/* Can the mapping track the dirty pages? */
1706 	return vma->vm_file && vma->vm_file->f_mapping &&
1707 		mapping_can_writeback(vma->vm_file->f_mapping);
1708 }
1709 
1710 /*
1711  * We account for memory if it's a private writeable mapping,
1712  * not hugepages and VM_NORESERVE wasn't set.
1713  */
1714 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1715 {
1716 	/*
1717 	 * hugetlb has its own accounting separate from the core VM
1718 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1719 	 */
1720 	if (file && is_file_hugepages(file))
1721 		return 0;
1722 
1723 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1724 }
1725 
1726 unsigned long mmap_region(struct file *file, unsigned long addr,
1727 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1728 		struct list_head *uf)
1729 {
1730 	struct mm_struct *mm = current->mm;
1731 	struct vm_area_struct *vma, *prev, *merge;
1732 	int error;
1733 	struct rb_node **rb_link, *rb_parent;
1734 	unsigned long charged = 0;
1735 
1736 	/* Check against address space limit. */
1737 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1738 		unsigned long nr_pages;
1739 
1740 		/*
1741 		 * MAP_FIXED may remove pages of mappings that intersects with
1742 		 * requested mapping. Account for the pages it would unmap.
1743 		 */
1744 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1745 
1746 		if (!may_expand_vm(mm, vm_flags,
1747 					(len >> PAGE_SHIFT) - nr_pages))
1748 			return -ENOMEM;
1749 	}
1750 
1751 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1752 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1753 		return -ENOMEM;
1754 	/*
1755 	 * Private writable mapping: check memory availability
1756 	 */
1757 	if (accountable_mapping(file, vm_flags)) {
1758 		charged = len >> PAGE_SHIFT;
1759 		if (security_vm_enough_memory_mm(mm, charged))
1760 			return -ENOMEM;
1761 		vm_flags |= VM_ACCOUNT;
1762 	}
1763 
1764 	/*
1765 	 * Can we just expand an old mapping?
1766 	 */
1767 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1768 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1769 	if (vma)
1770 		goto out;
1771 
1772 	/*
1773 	 * Determine the object being mapped and call the appropriate
1774 	 * specific mapper. the address has already been validated, but
1775 	 * not unmapped, but the maps are removed from the list.
1776 	 */
1777 	vma = vm_area_alloc(mm);
1778 	if (!vma) {
1779 		error = -ENOMEM;
1780 		goto unacct_error;
1781 	}
1782 
1783 	vma->vm_start = addr;
1784 	vma->vm_end = addr + len;
1785 	vma->vm_flags = vm_flags;
1786 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1787 	vma->vm_pgoff = pgoff;
1788 
1789 	if (file) {
1790 		if (vm_flags & VM_DENYWRITE) {
1791 			error = deny_write_access(file);
1792 			if (error)
1793 				goto free_vma;
1794 		}
1795 		if (vm_flags & VM_SHARED) {
1796 			error = mapping_map_writable(file->f_mapping);
1797 			if (error)
1798 				goto allow_write_and_free_vma;
1799 		}
1800 
1801 		/* ->mmap() can change vma->vm_file, but must guarantee that
1802 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1803 		 * and map writably if VM_SHARED is set. This usually means the
1804 		 * new file must not have been exposed to user-space, yet.
1805 		 */
1806 		vma->vm_file = get_file(file);
1807 		error = call_mmap(file, vma);
1808 		if (error)
1809 			goto unmap_and_free_vma;
1810 
1811 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1812 		 * as we may succeed this time.
1813 		 */
1814 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1815 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1816 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1817 			if (merge) {
1818 				/* ->mmap() can change vma->vm_file and fput the original file. So
1819 				 * fput the vma->vm_file here or we would add an extra fput for file
1820 				 * and cause general protection fault ultimately.
1821 				 */
1822 				fput(vma->vm_file);
1823 				vm_area_free(vma);
1824 				vma = merge;
1825 				/* Update vm_flags and possible addr to pick up the change. We don't
1826 				 * warn here if addr changed as the vma is not linked by vma_link().
1827 				 */
1828 				addr = vma->vm_start;
1829 				vm_flags = vma->vm_flags;
1830 				goto unmap_writable;
1831 			}
1832 		}
1833 
1834 		/* Can addr have changed??
1835 		 *
1836 		 * Answer: Yes, several device drivers can do it in their
1837 		 *         f_op->mmap method. -DaveM
1838 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1839 		 *      be updated for vma_link()
1840 		 */
1841 		WARN_ON_ONCE(addr != vma->vm_start);
1842 
1843 		addr = vma->vm_start;
1844 		vm_flags = vma->vm_flags;
1845 	} else if (vm_flags & VM_SHARED) {
1846 		error = shmem_zero_setup(vma);
1847 		if (error)
1848 			goto free_vma;
1849 	} else {
1850 		vma_set_anonymous(vma);
1851 	}
1852 
1853 	/* Allow architectures to sanity-check the vm_flags */
1854 	if (!arch_validate_flags(vma->vm_flags)) {
1855 		error = -EINVAL;
1856 		if (file)
1857 			goto unmap_and_free_vma;
1858 		else
1859 			goto free_vma;
1860 	}
1861 
1862 	vma_link(mm, vma, prev, rb_link, rb_parent);
1863 	/* Once vma denies write, undo our temporary denial count */
1864 	if (file) {
1865 unmap_writable:
1866 		if (vm_flags & VM_SHARED)
1867 			mapping_unmap_writable(file->f_mapping);
1868 		if (vm_flags & VM_DENYWRITE)
1869 			allow_write_access(file);
1870 	}
1871 	file = vma->vm_file;
1872 out:
1873 	perf_event_mmap(vma);
1874 
1875 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1876 	if (vm_flags & VM_LOCKED) {
1877 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1878 					is_vm_hugetlb_page(vma) ||
1879 					vma == get_gate_vma(current->mm))
1880 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1881 		else
1882 			mm->locked_vm += (len >> PAGE_SHIFT);
1883 	}
1884 
1885 	if (file)
1886 		uprobe_mmap(vma);
1887 
1888 	/*
1889 	 * New (or expanded) vma always get soft dirty status.
1890 	 * Otherwise user-space soft-dirty page tracker won't
1891 	 * be able to distinguish situation when vma area unmapped,
1892 	 * then new mapped in-place (which must be aimed as
1893 	 * a completely new data area).
1894 	 */
1895 	vma->vm_flags |= VM_SOFTDIRTY;
1896 
1897 	vma_set_page_prot(vma);
1898 
1899 	return addr;
1900 
1901 unmap_and_free_vma:
1902 	vma->vm_file = NULL;
1903 	fput(file);
1904 
1905 	/* Undo any partial mapping done by a device driver. */
1906 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1907 	charged = 0;
1908 	if (vm_flags & VM_SHARED)
1909 		mapping_unmap_writable(file->f_mapping);
1910 allow_write_and_free_vma:
1911 	if (vm_flags & VM_DENYWRITE)
1912 		allow_write_access(file);
1913 free_vma:
1914 	vm_area_free(vma);
1915 unacct_error:
1916 	if (charged)
1917 		vm_unacct_memory(charged);
1918 	return error;
1919 }
1920 
1921 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1922 {
1923 	/*
1924 	 * We implement the search by looking for an rbtree node that
1925 	 * immediately follows a suitable gap. That is,
1926 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1927 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1928 	 * - gap_end - gap_start >= length
1929 	 */
1930 
1931 	struct mm_struct *mm = current->mm;
1932 	struct vm_area_struct *vma;
1933 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1934 
1935 	/* Adjust search length to account for worst case alignment overhead */
1936 	length = info->length + info->align_mask;
1937 	if (length < info->length)
1938 		return -ENOMEM;
1939 
1940 	/* Adjust search limits by the desired length */
1941 	if (info->high_limit < length)
1942 		return -ENOMEM;
1943 	high_limit = info->high_limit - length;
1944 
1945 	if (info->low_limit > high_limit)
1946 		return -ENOMEM;
1947 	low_limit = info->low_limit + length;
1948 
1949 	/* Check if rbtree root looks promising */
1950 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1951 		goto check_highest;
1952 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1953 	if (vma->rb_subtree_gap < length)
1954 		goto check_highest;
1955 
1956 	while (true) {
1957 		/* Visit left subtree if it looks promising */
1958 		gap_end = vm_start_gap(vma);
1959 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1960 			struct vm_area_struct *left =
1961 				rb_entry(vma->vm_rb.rb_left,
1962 					 struct vm_area_struct, vm_rb);
1963 			if (left->rb_subtree_gap >= length) {
1964 				vma = left;
1965 				continue;
1966 			}
1967 		}
1968 
1969 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1970 check_current:
1971 		/* Check if current node has a suitable gap */
1972 		if (gap_start > high_limit)
1973 			return -ENOMEM;
1974 		if (gap_end >= low_limit &&
1975 		    gap_end > gap_start && gap_end - gap_start >= length)
1976 			goto found;
1977 
1978 		/* Visit right subtree if it looks promising */
1979 		if (vma->vm_rb.rb_right) {
1980 			struct vm_area_struct *right =
1981 				rb_entry(vma->vm_rb.rb_right,
1982 					 struct vm_area_struct, vm_rb);
1983 			if (right->rb_subtree_gap >= length) {
1984 				vma = right;
1985 				continue;
1986 			}
1987 		}
1988 
1989 		/* Go back up the rbtree to find next candidate node */
1990 		while (true) {
1991 			struct rb_node *prev = &vma->vm_rb;
1992 			if (!rb_parent(prev))
1993 				goto check_highest;
1994 			vma = rb_entry(rb_parent(prev),
1995 				       struct vm_area_struct, vm_rb);
1996 			if (prev == vma->vm_rb.rb_left) {
1997 				gap_start = vm_end_gap(vma->vm_prev);
1998 				gap_end = vm_start_gap(vma);
1999 				goto check_current;
2000 			}
2001 		}
2002 	}
2003 
2004 check_highest:
2005 	/* Check highest gap, which does not precede any rbtree node */
2006 	gap_start = mm->highest_vm_end;
2007 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2008 	if (gap_start > high_limit)
2009 		return -ENOMEM;
2010 
2011 found:
2012 	/* We found a suitable gap. Clip it with the original low_limit. */
2013 	if (gap_start < info->low_limit)
2014 		gap_start = info->low_limit;
2015 
2016 	/* Adjust gap address to the desired alignment */
2017 	gap_start += (info->align_offset - gap_start) & info->align_mask;
2018 
2019 	VM_BUG_ON(gap_start + info->length > info->high_limit);
2020 	VM_BUG_ON(gap_start + info->length > gap_end);
2021 	return gap_start;
2022 }
2023 
2024 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2025 {
2026 	struct mm_struct *mm = current->mm;
2027 	struct vm_area_struct *vma;
2028 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2029 
2030 	/* Adjust search length to account for worst case alignment overhead */
2031 	length = info->length + info->align_mask;
2032 	if (length < info->length)
2033 		return -ENOMEM;
2034 
2035 	/*
2036 	 * Adjust search limits by the desired length.
2037 	 * See implementation comment at top of unmapped_area().
2038 	 */
2039 	gap_end = info->high_limit;
2040 	if (gap_end < length)
2041 		return -ENOMEM;
2042 	high_limit = gap_end - length;
2043 
2044 	if (info->low_limit > high_limit)
2045 		return -ENOMEM;
2046 	low_limit = info->low_limit + length;
2047 
2048 	/* Check highest gap, which does not precede any rbtree node */
2049 	gap_start = mm->highest_vm_end;
2050 	if (gap_start <= high_limit)
2051 		goto found_highest;
2052 
2053 	/* Check if rbtree root looks promising */
2054 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2055 		return -ENOMEM;
2056 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2057 	if (vma->rb_subtree_gap < length)
2058 		return -ENOMEM;
2059 
2060 	while (true) {
2061 		/* Visit right subtree if it looks promising */
2062 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2063 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2064 			struct vm_area_struct *right =
2065 				rb_entry(vma->vm_rb.rb_right,
2066 					 struct vm_area_struct, vm_rb);
2067 			if (right->rb_subtree_gap >= length) {
2068 				vma = right;
2069 				continue;
2070 			}
2071 		}
2072 
2073 check_current:
2074 		/* Check if current node has a suitable gap */
2075 		gap_end = vm_start_gap(vma);
2076 		if (gap_end < low_limit)
2077 			return -ENOMEM;
2078 		if (gap_start <= high_limit &&
2079 		    gap_end > gap_start && gap_end - gap_start >= length)
2080 			goto found;
2081 
2082 		/* Visit left subtree if it looks promising */
2083 		if (vma->vm_rb.rb_left) {
2084 			struct vm_area_struct *left =
2085 				rb_entry(vma->vm_rb.rb_left,
2086 					 struct vm_area_struct, vm_rb);
2087 			if (left->rb_subtree_gap >= length) {
2088 				vma = left;
2089 				continue;
2090 			}
2091 		}
2092 
2093 		/* Go back up the rbtree to find next candidate node */
2094 		while (true) {
2095 			struct rb_node *prev = &vma->vm_rb;
2096 			if (!rb_parent(prev))
2097 				return -ENOMEM;
2098 			vma = rb_entry(rb_parent(prev),
2099 				       struct vm_area_struct, vm_rb);
2100 			if (prev == vma->vm_rb.rb_right) {
2101 				gap_start = vma->vm_prev ?
2102 					vm_end_gap(vma->vm_prev) : 0;
2103 				goto check_current;
2104 			}
2105 		}
2106 	}
2107 
2108 found:
2109 	/* We found a suitable gap. Clip it with the original high_limit. */
2110 	if (gap_end > info->high_limit)
2111 		gap_end = info->high_limit;
2112 
2113 found_highest:
2114 	/* Compute highest gap address at the desired alignment */
2115 	gap_end -= info->length;
2116 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2117 
2118 	VM_BUG_ON(gap_end < info->low_limit);
2119 	VM_BUG_ON(gap_end < gap_start);
2120 	return gap_end;
2121 }
2122 
2123 /*
2124  * Search for an unmapped address range.
2125  *
2126  * We are looking for a range that:
2127  * - does not intersect with any VMA;
2128  * - is contained within the [low_limit, high_limit) interval;
2129  * - is at least the desired size.
2130  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2131  */
2132 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2133 {
2134 	unsigned long addr;
2135 
2136 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2137 		addr = unmapped_area_topdown(info);
2138 	else
2139 		addr = unmapped_area(info);
2140 
2141 	trace_vm_unmapped_area(addr, info);
2142 	return addr;
2143 }
2144 
2145 #ifndef arch_get_mmap_end
2146 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2147 #endif
2148 
2149 #ifndef arch_get_mmap_base
2150 #define arch_get_mmap_base(addr, base) (base)
2151 #endif
2152 
2153 /* Get an address range which is currently unmapped.
2154  * For shmat() with addr=0.
2155  *
2156  * Ugly calling convention alert:
2157  * Return value with the low bits set means error value,
2158  * ie
2159  *	if (ret & ~PAGE_MASK)
2160  *		error = ret;
2161  *
2162  * This function "knows" that -ENOMEM has the bits set.
2163  */
2164 #ifndef HAVE_ARCH_UNMAPPED_AREA
2165 unsigned long
2166 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2167 		unsigned long len, unsigned long pgoff, unsigned long flags)
2168 {
2169 	struct mm_struct *mm = current->mm;
2170 	struct vm_area_struct *vma, *prev;
2171 	struct vm_unmapped_area_info info;
2172 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2173 
2174 	if (len > mmap_end - mmap_min_addr)
2175 		return -ENOMEM;
2176 
2177 	if (flags & MAP_FIXED)
2178 		return addr;
2179 
2180 	if (addr) {
2181 		addr = PAGE_ALIGN(addr);
2182 		vma = find_vma_prev(mm, addr, &prev);
2183 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2184 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2185 		    (!prev || addr >= vm_end_gap(prev)))
2186 			return addr;
2187 	}
2188 
2189 	info.flags = 0;
2190 	info.length = len;
2191 	info.low_limit = mm->mmap_base;
2192 	info.high_limit = mmap_end;
2193 	info.align_mask = 0;
2194 	info.align_offset = 0;
2195 	return vm_unmapped_area(&info);
2196 }
2197 #endif
2198 
2199 /*
2200  * This mmap-allocator allocates new areas top-down from below the
2201  * stack's low limit (the base):
2202  */
2203 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2204 unsigned long
2205 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2206 			  unsigned long len, unsigned long pgoff,
2207 			  unsigned long flags)
2208 {
2209 	struct vm_area_struct *vma, *prev;
2210 	struct mm_struct *mm = current->mm;
2211 	struct vm_unmapped_area_info info;
2212 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2213 
2214 	/* requested length too big for entire address space */
2215 	if (len > mmap_end - mmap_min_addr)
2216 		return -ENOMEM;
2217 
2218 	if (flags & MAP_FIXED)
2219 		return addr;
2220 
2221 	/* requesting a specific address */
2222 	if (addr) {
2223 		addr = PAGE_ALIGN(addr);
2224 		vma = find_vma_prev(mm, addr, &prev);
2225 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2226 				(!vma || addr + len <= vm_start_gap(vma)) &&
2227 				(!prev || addr >= vm_end_gap(prev)))
2228 			return addr;
2229 	}
2230 
2231 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2232 	info.length = len;
2233 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2234 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2235 	info.align_mask = 0;
2236 	info.align_offset = 0;
2237 	addr = vm_unmapped_area(&info);
2238 
2239 	/*
2240 	 * A failed mmap() very likely causes application failure,
2241 	 * so fall back to the bottom-up function here. This scenario
2242 	 * can happen with large stack limits and large mmap()
2243 	 * allocations.
2244 	 */
2245 	if (offset_in_page(addr)) {
2246 		VM_BUG_ON(addr != -ENOMEM);
2247 		info.flags = 0;
2248 		info.low_limit = TASK_UNMAPPED_BASE;
2249 		info.high_limit = mmap_end;
2250 		addr = vm_unmapped_area(&info);
2251 	}
2252 
2253 	return addr;
2254 }
2255 #endif
2256 
2257 unsigned long
2258 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2259 		unsigned long pgoff, unsigned long flags)
2260 {
2261 	unsigned long (*get_area)(struct file *, unsigned long,
2262 				  unsigned long, unsigned long, unsigned long);
2263 
2264 	unsigned long error = arch_mmap_check(addr, len, flags);
2265 	if (error)
2266 		return error;
2267 
2268 	/* Careful about overflows.. */
2269 	if (len > TASK_SIZE)
2270 		return -ENOMEM;
2271 
2272 	get_area = current->mm->get_unmapped_area;
2273 	if (file) {
2274 		if (file->f_op->get_unmapped_area)
2275 			get_area = file->f_op->get_unmapped_area;
2276 	} else if (flags & MAP_SHARED) {
2277 		/*
2278 		 * mmap_region() will call shmem_zero_setup() to create a file,
2279 		 * so use shmem's get_unmapped_area in case it can be huge.
2280 		 * do_mmap() will clear pgoff, so match alignment.
2281 		 */
2282 		pgoff = 0;
2283 		get_area = shmem_get_unmapped_area;
2284 	}
2285 
2286 	addr = get_area(file, addr, len, pgoff, flags);
2287 	if (IS_ERR_VALUE(addr))
2288 		return addr;
2289 
2290 	if (addr > TASK_SIZE - len)
2291 		return -ENOMEM;
2292 	if (offset_in_page(addr))
2293 		return -EINVAL;
2294 
2295 	error = security_mmap_addr(addr);
2296 	return error ? error : addr;
2297 }
2298 
2299 EXPORT_SYMBOL(get_unmapped_area);
2300 
2301 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2302 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2303 {
2304 	struct rb_node *rb_node;
2305 	struct vm_area_struct *vma;
2306 
2307 	/* Check the cache first. */
2308 	vma = vmacache_find(mm, addr);
2309 	if (likely(vma))
2310 		return vma;
2311 
2312 	rb_node = mm->mm_rb.rb_node;
2313 
2314 	while (rb_node) {
2315 		struct vm_area_struct *tmp;
2316 
2317 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2318 
2319 		if (tmp->vm_end > addr) {
2320 			vma = tmp;
2321 			if (tmp->vm_start <= addr)
2322 				break;
2323 			rb_node = rb_node->rb_left;
2324 		} else
2325 			rb_node = rb_node->rb_right;
2326 	}
2327 
2328 	if (vma)
2329 		vmacache_update(addr, vma);
2330 	return vma;
2331 }
2332 
2333 EXPORT_SYMBOL(find_vma);
2334 
2335 /*
2336  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2337  */
2338 struct vm_area_struct *
2339 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2340 			struct vm_area_struct **pprev)
2341 {
2342 	struct vm_area_struct *vma;
2343 
2344 	vma = find_vma(mm, addr);
2345 	if (vma) {
2346 		*pprev = vma->vm_prev;
2347 	} else {
2348 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2349 
2350 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2351 	}
2352 	return vma;
2353 }
2354 
2355 /*
2356  * Verify that the stack growth is acceptable and
2357  * update accounting. This is shared with both the
2358  * grow-up and grow-down cases.
2359  */
2360 static int acct_stack_growth(struct vm_area_struct *vma,
2361 			     unsigned long size, unsigned long grow)
2362 {
2363 	struct mm_struct *mm = vma->vm_mm;
2364 	unsigned long new_start;
2365 
2366 	/* address space limit tests */
2367 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2368 		return -ENOMEM;
2369 
2370 	/* Stack limit test */
2371 	if (size > rlimit(RLIMIT_STACK))
2372 		return -ENOMEM;
2373 
2374 	/* mlock limit tests */
2375 	if (vma->vm_flags & VM_LOCKED) {
2376 		unsigned long locked;
2377 		unsigned long limit;
2378 		locked = mm->locked_vm + grow;
2379 		limit = rlimit(RLIMIT_MEMLOCK);
2380 		limit >>= PAGE_SHIFT;
2381 		if (locked > limit && !capable(CAP_IPC_LOCK))
2382 			return -ENOMEM;
2383 	}
2384 
2385 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2386 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2387 			vma->vm_end - size;
2388 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2389 		return -EFAULT;
2390 
2391 	/*
2392 	 * Overcommit..  This must be the final test, as it will
2393 	 * update security statistics.
2394 	 */
2395 	if (security_vm_enough_memory_mm(mm, grow))
2396 		return -ENOMEM;
2397 
2398 	return 0;
2399 }
2400 
2401 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2402 /*
2403  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2404  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2405  */
2406 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2407 {
2408 	struct mm_struct *mm = vma->vm_mm;
2409 	struct vm_area_struct *next;
2410 	unsigned long gap_addr;
2411 	int error = 0;
2412 
2413 	if (!(vma->vm_flags & VM_GROWSUP))
2414 		return -EFAULT;
2415 
2416 	/* Guard against exceeding limits of the address space. */
2417 	address &= PAGE_MASK;
2418 	if (address >= (TASK_SIZE & PAGE_MASK))
2419 		return -ENOMEM;
2420 	address += PAGE_SIZE;
2421 
2422 	/* Enforce stack_guard_gap */
2423 	gap_addr = address + stack_guard_gap;
2424 
2425 	/* Guard against overflow */
2426 	if (gap_addr < address || gap_addr > TASK_SIZE)
2427 		gap_addr = TASK_SIZE;
2428 
2429 	next = vma->vm_next;
2430 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2431 		if (!(next->vm_flags & VM_GROWSUP))
2432 			return -ENOMEM;
2433 		/* Check that both stack segments have the same anon_vma? */
2434 	}
2435 
2436 	/* We must make sure the anon_vma is allocated. */
2437 	if (unlikely(anon_vma_prepare(vma)))
2438 		return -ENOMEM;
2439 
2440 	/*
2441 	 * vma->vm_start/vm_end cannot change under us because the caller
2442 	 * is required to hold the mmap_lock in read mode.  We need the
2443 	 * anon_vma lock to serialize against concurrent expand_stacks.
2444 	 */
2445 	anon_vma_lock_write(vma->anon_vma);
2446 
2447 	/* Somebody else might have raced and expanded it already */
2448 	if (address > vma->vm_end) {
2449 		unsigned long size, grow;
2450 
2451 		size = address - vma->vm_start;
2452 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2453 
2454 		error = -ENOMEM;
2455 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2456 			error = acct_stack_growth(vma, size, grow);
2457 			if (!error) {
2458 				/*
2459 				 * vma_gap_update() doesn't support concurrent
2460 				 * updates, but we only hold a shared mmap_lock
2461 				 * lock here, so we need to protect against
2462 				 * concurrent vma expansions.
2463 				 * anon_vma_lock_write() doesn't help here, as
2464 				 * we don't guarantee that all growable vmas
2465 				 * in a mm share the same root anon vma.
2466 				 * So, we reuse mm->page_table_lock to guard
2467 				 * against concurrent vma expansions.
2468 				 */
2469 				spin_lock(&mm->page_table_lock);
2470 				if (vma->vm_flags & VM_LOCKED)
2471 					mm->locked_vm += grow;
2472 				vm_stat_account(mm, vma->vm_flags, grow);
2473 				anon_vma_interval_tree_pre_update_vma(vma);
2474 				vma->vm_end = address;
2475 				anon_vma_interval_tree_post_update_vma(vma);
2476 				if (vma->vm_next)
2477 					vma_gap_update(vma->vm_next);
2478 				else
2479 					mm->highest_vm_end = vm_end_gap(vma);
2480 				spin_unlock(&mm->page_table_lock);
2481 
2482 				perf_event_mmap(vma);
2483 			}
2484 		}
2485 	}
2486 	anon_vma_unlock_write(vma->anon_vma);
2487 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2488 	validate_mm(mm);
2489 	return error;
2490 }
2491 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2492 
2493 /*
2494  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2495  */
2496 int expand_downwards(struct vm_area_struct *vma,
2497 				   unsigned long address)
2498 {
2499 	struct mm_struct *mm = vma->vm_mm;
2500 	struct vm_area_struct *prev;
2501 	int error = 0;
2502 
2503 	address &= PAGE_MASK;
2504 	if (address < mmap_min_addr)
2505 		return -EPERM;
2506 
2507 	/* Enforce stack_guard_gap */
2508 	prev = vma->vm_prev;
2509 	/* Check that both stack segments have the same anon_vma? */
2510 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2511 			vma_is_accessible(prev)) {
2512 		if (address - prev->vm_end < stack_guard_gap)
2513 			return -ENOMEM;
2514 	}
2515 
2516 	/* We must make sure the anon_vma is allocated. */
2517 	if (unlikely(anon_vma_prepare(vma)))
2518 		return -ENOMEM;
2519 
2520 	/*
2521 	 * vma->vm_start/vm_end cannot change under us because the caller
2522 	 * is required to hold the mmap_lock in read mode.  We need the
2523 	 * anon_vma lock to serialize against concurrent expand_stacks.
2524 	 */
2525 	anon_vma_lock_write(vma->anon_vma);
2526 
2527 	/* Somebody else might have raced and expanded it already */
2528 	if (address < vma->vm_start) {
2529 		unsigned long size, grow;
2530 
2531 		size = vma->vm_end - address;
2532 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2533 
2534 		error = -ENOMEM;
2535 		if (grow <= vma->vm_pgoff) {
2536 			error = acct_stack_growth(vma, size, grow);
2537 			if (!error) {
2538 				/*
2539 				 * vma_gap_update() doesn't support concurrent
2540 				 * updates, but we only hold a shared mmap_lock
2541 				 * lock here, so we need to protect against
2542 				 * concurrent vma expansions.
2543 				 * anon_vma_lock_write() doesn't help here, as
2544 				 * we don't guarantee that all growable vmas
2545 				 * in a mm share the same root anon vma.
2546 				 * So, we reuse mm->page_table_lock to guard
2547 				 * against concurrent vma expansions.
2548 				 */
2549 				spin_lock(&mm->page_table_lock);
2550 				if (vma->vm_flags & VM_LOCKED)
2551 					mm->locked_vm += grow;
2552 				vm_stat_account(mm, vma->vm_flags, grow);
2553 				anon_vma_interval_tree_pre_update_vma(vma);
2554 				vma->vm_start = address;
2555 				vma->vm_pgoff -= grow;
2556 				anon_vma_interval_tree_post_update_vma(vma);
2557 				vma_gap_update(vma);
2558 				spin_unlock(&mm->page_table_lock);
2559 
2560 				perf_event_mmap(vma);
2561 			}
2562 		}
2563 	}
2564 	anon_vma_unlock_write(vma->anon_vma);
2565 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2566 	validate_mm(mm);
2567 	return error;
2568 }
2569 
2570 /* enforced gap between the expanding stack and other mappings. */
2571 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2572 
2573 static int __init cmdline_parse_stack_guard_gap(char *p)
2574 {
2575 	unsigned long val;
2576 	char *endptr;
2577 
2578 	val = simple_strtoul(p, &endptr, 10);
2579 	if (!*endptr)
2580 		stack_guard_gap = val << PAGE_SHIFT;
2581 
2582 	return 0;
2583 }
2584 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2585 
2586 #ifdef CONFIG_STACK_GROWSUP
2587 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2588 {
2589 	return expand_upwards(vma, address);
2590 }
2591 
2592 struct vm_area_struct *
2593 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2594 {
2595 	struct vm_area_struct *vma, *prev;
2596 
2597 	addr &= PAGE_MASK;
2598 	vma = find_vma_prev(mm, addr, &prev);
2599 	if (vma && (vma->vm_start <= addr))
2600 		return vma;
2601 	/* don't alter vm_end if the coredump is running */
2602 	if (!prev || expand_stack(prev, addr))
2603 		return NULL;
2604 	if (prev->vm_flags & VM_LOCKED)
2605 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2606 	return prev;
2607 }
2608 #else
2609 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2610 {
2611 	return expand_downwards(vma, address);
2612 }
2613 
2614 struct vm_area_struct *
2615 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2616 {
2617 	struct vm_area_struct *vma;
2618 	unsigned long start;
2619 
2620 	addr &= PAGE_MASK;
2621 	vma = find_vma(mm, addr);
2622 	if (!vma)
2623 		return NULL;
2624 	if (vma->vm_start <= addr)
2625 		return vma;
2626 	if (!(vma->vm_flags & VM_GROWSDOWN))
2627 		return NULL;
2628 	start = vma->vm_start;
2629 	if (expand_stack(vma, addr))
2630 		return NULL;
2631 	if (vma->vm_flags & VM_LOCKED)
2632 		populate_vma_page_range(vma, addr, start, NULL);
2633 	return vma;
2634 }
2635 #endif
2636 
2637 EXPORT_SYMBOL_GPL(find_extend_vma);
2638 
2639 /*
2640  * Ok - we have the memory areas we should free on the vma list,
2641  * so release them, and do the vma updates.
2642  *
2643  * Called with the mm semaphore held.
2644  */
2645 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2646 {
2647 	unsigned long nr_accounted = 0;
2648 
2649 	/* Update high watermark before we lower total_vm */
2650 	update_hiwater_vm(mm);
2651 	do {
2652 		long nrpages = vma_pages(vma);
2653 
2654 		if (vma->vm_flags & VM_ACCOUNT)
2655 			nr_accounted += nrpages;
2656 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2657 		vma = remove_vma(vma);
2658 	} while (vma);
2659 	vm_unacct_memory(nr_accounted);
2660 	validate_mm(mm);
2661 }
2662 
2663 /*
2664  * Get rid of page table information in the indicated region.
2665  *
2666  * Called with the mm semaphore held.
2667  */
2668 static void unmap_region(struct mm_struct *mm,
2669 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2670 		unsigned long start, unsigned long end)
2671 {
2672 	struct vm_area_struct *next = vma_next(mm, prev);
2673 	struct mmu_gather tlb;
2674 
2675 	lru_add_drain();
2676 	tlb_gather_mmu(&tlb, mm, start, end);
2677 	update_hiwater_rss(mm);
2678 	unmap_vmas(&tlb, vma, start, end);
2679 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2680 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2681 	tlb_finish_mmu(&tlb, start, end);
2682 }
2683 
2684 /*
2685  * Create a list of vma's touched by the unmap, removing them from the mm's
2686  * vma list as we go..
2687  */
2688 static bool
2689 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2690 	struct vm_area_struct *prev, unsigned long end)
2691 {
2692 	struct vm_area_struct **insertion_point;
2693 	struct vm_area_struct *tail_vma = NULL;
2694 
2695 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2696 	vma->vm_prev = NULL;
2697 	do {
2698 		vma_rb_erase(vma, &mm->mm_rb);
2699 		mm->map_count--;
2700 		tail_vma = vma;
2701 		vma = vma->vm_next;
2702 	} while (vma && vma->vm_start < end);
2703 	*insertion_point = vma;
2704 	if (vma) {
2705 		vma->vm_prev = prev;
2706 		vma_gap_update(vma);
2707 	} else
2708 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2709 	tail_vma->vm_next = NULL;
2710 
2711 	/* Kill the cache */
2712 	vmacache_invalidate(mm);
2713 
2714 	/*
2715 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2716 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2717 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2718 	 */
2719 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2720 		return false;
2721 	if (prev && (prev->vm_flags & VM_GROWSUP))
2722 		return false;
2723 	return true;
2724 }
2725 
2726 /*
2727  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2728  * has already been checked or doesn't make sense to fail.
2729  */
2730 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2731 		unsigned long addr, int new_below)
2732 {
2733 	struct vm_area_struct *new;
2734 	int err;
2735 
2736 	if (vma->vm_ops && vma->vm_ops->split) {
2737 		err = vma->vm_ops->split(vma, addr);
2738 		if (err)
2739 			return err;
2740 	}
2741 
2742 	new = vm_area_dup(vma);
2743 	if (!new)
2744 		return -ENOMEM;
2745 
2746 	if (new_below)
2747 		new->vm_end = addr;
2748 	else {
2749 		new->vm_start = addr;
2750 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2751 	}
2752 
2753 	err = vma_dup_policy(vma, new);
2754 	if (err)
2755 		goto out_free_vma;
2756 
2757 	err = anon_vma_clone(new, vma);
2758 	if (err)
2759 		goto out_free_mpol;
2760 
2761 	if (new->vm_file)
2762 		get_file(new->vm_file);
2763 
2764 	if (new->vm_ops && new->vm_ops->open)
2765 		new->vm_ops->open(new);
2766 
2767 	if (new_below)
2768 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2769 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2770 	else
2771 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2772 
2773 	/* Success. */
2774 	if (!err)
2775 		return 0;
2776 
2777 	/* Clean everything up if vma_adjust failed. */
2778 	if (new->vm_ops && new->vm_ops->close)
2779 		new->vm_ops->close(new);
2780 	if (new->vm_file)
2781 		fput(new->vm_file);
2782 	unlink_anon_vmas(new);
2783  out_free_mpol:
2784 	mpol_put(vma_policy(new));
2785  out_free_vma:
2786 	vm_area_free(new);
2787 	return err;
2788 }
2789 
2790 /*
2791  * Split a vma into two pieces at address 'addr', a new vma is allocated
2792  * either for the first part or the tail.
2793  */
2794 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2795 	      unsigned long addr, int new_below)
2796 {
2797 	if (mm->map_count >= sysctl_max_map_count)
2798 		return -ENOMEM;
2799 
2800 	return __split_vma(mm, vma, addr, new_below);
2801 }
2802 
2803 /* Munmap is split into 2 main parts -- this part which finds
2804  * what needs doing, and the areas themselves, which do the
2805  * work.  This now handles partial unmappings.
2806  * Jeremy Fitzhardinge <jeremy@goop.org>
2807  */
2808 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2809 		struct list_head *uf, bool downgrade)
2810 {
2811 	unsigned long end;
2812 	struct vm_area_struct *vma, *prev, *last;
2813 
2814 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2815 		return -EINVAL;
2816 
2817 	len = PAGE_ALIGN(len);
2818 	end = start + len;
2819 	if (len == 0)
2820 		return -EINVAL;
2821 
2822 	/*
2823 	 * arch_unmap() might do unmaps itself.  It must be called
2824 	 * and finish any rbtree manipulation before this code
2825 	 * runs and also starts to manipulate the rbtree.
2826 	 */
2827 	arch_unmap(mm, start, end);
2828 
2829 	/* Find the first overlapping VMA */
2830 	vma = find_vma(mm, start);
2831 	if (!vma)
2832 		return 0;
2833 	prev = vma->vm_prev;
2834 	/* we have  start < vma->vm_end  */
2835 
2836 	/* if it doesn't overlap, we have nothing.. */
2837 	if (vma->vm_start >= end)
2838 		return 0;
2839 
2840 	/*
2841 	 * If we need to split any vma, do it now to save pain later.
2842 	 *
2843 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2844 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2845 	 * places tmp vma above, and higher split_vma places tmp vma below.
2846 	 */
2847 	if (start > vma->vm_start) {
2848 		int error;
2849 
2850 		/*
2851 		 * Make sure that map_count on return from munmap() will
2852 		 * not exceed its limit; but let map_count go just above
2853 		 * its limit temporarily, to help free resources as expected.
2854 		 */
2855 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2856 			return -ENOMEM;
2857 
2858 		error = __split_vma(mm, vma, start, 0);
2859 		if (error)
2860 			return error;
2861 		prev = vma;
2862 	}
2863 
2864 	/* Does it split the last one? */
2865 	last = find_vma(mm, end);
2866 	if (last && end > last->vm_start) {
2867 		int error = __split_vma(mm, last, end, 1);
2868 		if (error)
2869 			return error;
2870 	}
2871 	vma = vma_next(mm, prev);
2872 
2873 	if (unlikely(uf)) {
2874 		/*
2875 		 * If userfaultfd_unmap_prep returns an error the vmas
2876 		 * will remain splitted, but userland will get a
2877 		 * highly unexpected error anyway. This is no
2878 		 * different than the case where the first of the two
2879 		 * __split_vma fails, but we don't undo the first
2880 		 * split, despite we could. This is unlikely enough
2881 		 * failure that it's not worth optimizing it for.
2882 		 */
2883 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2884 		if (error)
2885 			return error;
2886 	}
2887 
2888 	/*
2889 	 * unlock any mlock()ed ranges before detaching vmas
2890 	 */
2891 	if (mm->locked_vm) {
2892 		struct vm_area_struct *tmp = vma;
2893 		while (tmp && tmp->vm_start < end) {
2894 			if (tmp->vm_flags & VM_LOCKED) {
2895 				mm->locked_vm -= vma_pages(tmp);
2896 				munlock_vma_pages_all(tmp);
2897 			}
2898 
2899 			tmp = tmp->vm_next;
2900 		}
2901 	}
2902 
2903 	/* Detach vmas from rbtree */
2904 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2905 		downgrade = false;
2906 
2907 	if (downgrade)
2908 		mmap_write_downgrade(mm);
2909 
2910 	unmap_region(mm, vma, prev, start, end);
2911 
2912 	/* Fix up all other VM information */
2913 	remove_vma_list(mm, vma);
2914 
2915 	return downgrade ? 1 : 0;
2916 }
2917 
2918 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2919 	      struct list_head *uf)
2920 {
2921 	return __do_munmap(mm, start, len, uf, false);
2922 }
2923 
2924 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2925 {
2926 	int ret;
2927 	struct mm_struct *mm = current->mm;
2928 	LIST_HEAD(uf);
2929 
2930 	if (mmap_write_lock_killable(mm))
2931 		return -EINTR;
2932 
2933 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2934 	/*
2935 	 * Returning 1 indicates mmap_lock is downgraded.
2936 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2937 	 * it to 0 before return.
2938 	 */
2939 	if (ret == 1) {
2940 		mmap_read_unlock(mm);
2941 		ret = 0;
2942 	} else
2943 		mmap_write_unlock(mm);
2944 
2945 	userfaultfd_unmap_complete(mm, &uf);
2946 	return ret;
2947 }
2948 
2949 int vm_munmap(unsigned long start, size_t len)
2950 {
2951 	return __vm_munmap(start, len, false);
2952 }
2953 EXPORT_SYMBOL(vm_munmap);
2954 
2955 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2956 {
2957 	addr = untagged_addr(addr);
2958 	profile_munmap(addr);
2959 	return __vm_munmap(addr, len, true);
2960 }
2961 
2962 
2963 /*
2964  * Emulation of deprecated remap_file_pages() syscall.
2965  */
2966 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2967 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2968 {
2969 
2970 	struct mm_struct *mm = current->mm;
2971 	struct vm_area_struct *vma;
2972 	unsigned long populate = 0;
2973 	unsigned long ret = -EINVAL;
2974 	struct file *file;
2975 
2976 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2977 		     current->comm, current->pid);
2978 
2979 	if (prot)
2980 		return ret;
2981 	start = start & PAGE_MASK;
2982 	size = size & PAGE_MASK;
2983 
2984 	if (start + size <= start)
2985 		return ret;
2986 
2987 	/* Does pgoff wrap? */
2988 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2989 		return ret;
2990 
2991 	if (mmap_write_lock_killable(mm))
2992 		return -EINTR;
2993 
2994 	vma = find_vma(mm, start);
2995 
2996 	if (!vma || !(vma->vm_flags & VM_SHARED))
2997 		goto out;
2998 
2999 	if (start < vma->vm_start)
3000 		goto out;
3001 
3002 	if (start + size > vma->vm_end) {
3003 		struct vm_area_struct *next;
3004 
3005 		for (next = vma->vm_next; next; next = next->vm_next) {
3006 			/* hole between vmas ? */
3007 			if (next->vm_start != next->vm_prev->vm_end)
3008 				goto out;
3009 
3010 			if (next->vm_file != vma->vm_file)
3011 				goto out;
3012 
3013 			if (next->vm_flags != vma->vm_flags)
3014 				goto out;
3015 
3016 			if (start + size <= next->vm_end)
3017 				break;
3018 		}
3019 
3020 		if (!next)
3021 			goto out;
3022 	}
3023 
3024 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3025 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3026 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3027 
3028 	flags &= MAP_NONBLOCK;
3029 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3030 	if (vma->vm_flags & VM_LOCKED) {
3031 		struct vm_area_struct *tmp;
3032 		flags |= MAP_LOCKED;
3033 
3034 		/* drop PG_Mlocked flag for over-mapped range */
3035 		for (tmp = vma; tmp->vm_start >= start + size;
3036 				tmp = tmp->vm_next) {
3037 			/*
3038 			 * Split pmd and munlock page on the border
3039 			 * of the range.
3040 			 */
3041 			vma_adjust_trans_huge(tmp, start, start + size, 0);
3042 
3043 			munlock_vma_pages_range(tmp,
3044 					max(tmp->vm_start, start),
3045 					min(tmp->vm_end, start + size));
3046 		}
3047 	}
3048 
3049 	file = get_file(vma->vm_file);
3050 	ret = do_mmap(vma->vm_file, start, size,
3051 			prot, flags, pgoff, &populate, NULL);
3052 	fput(file);
3053 out:
3054 	mmap_write_unlock(mm);
3055 	if (populate)
3056 		mm_populate(ret, populate);
3057 	if (!IS_ERR_VALUE(ret))
3058 		ret = 0;
3059 	return ret;
3060 }
3061 
3062 /*
3063  *  this is really a simplified "do_mmap".  it only handles
3064  *  anonymous maps.  eventually we may be able to do some
3065  *  brk-specific accounting here.
3066  */
3067 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3068 {
3069 	struct mm_struct *mm = current->mm;
3070 	struct vm_area_struct *vma, *prev;
3071 	struct rb_node **rb_link, *rb_parent;
3072 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3073 	int error;
3074 	unsigned long mapped_addr;
3075 
3076 	/* Until we need other flags, refuse anything except VM_EXEC. */
3077 	if ((flags & (~VM_EXEC)) != 0)
3078 		return -EINVAL;
3079 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3080 
3081 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3082 	if (IS_ERR_VALUE(mapped_addr))
3083 		return mapped_addr;
3084 
3085 	error = mlock_future_check(mm, mm->def_flags, len);
3086 	if (error)
3087 		return error;
3088 
3089 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3090 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3091 		return -ENOMEM;
3092 
3093 	/* Check against address space limits *after* clearing old maps... */
3094 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3095 		return -ENOMEM;
3096 
3097 	if (mm->map_count > sysctl_max_map_count)
3098 		return -ENOMEM;
3099 
3100 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3101 		return -ENOMEM;
3102 
3103 	/* Can we just expand an old private anonymous mapping? */
3104 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3105 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3106 	if (vma)
3107 		goto out;
3108 
3109 	/*
3110 	 * create a vma struct for an anonymous mapping
3111 	 */
3112 	vma = vm_area_alloc(mm);
3113 	if (!vma) {
3114 		vm_unacct_memory(len >> PAGE_SHIFT);
3115 		return -ENOMEM;
3116 	}
3117 
3118 	vma_set_anonymous(vma);
3119 	vma->vm_start = addr;
3120 	vma->vm_end = addr + len;
3121 	vma->vm_pgoff = pgoff;
3122 	vma->vm_flags = flags;
3123 	vma->vm_page_prot = vm_get_page_prot(flags);
3124 	vma_link(mm, vma, prev, rb_link, rb_parent);
3125 out:
3126 	perf_event_mmap(vma);
3127 	mm->total_vm += len >> PAGE_SHIFT;
3128 	mm->data_vm += len >> PAGE_SHIFT;
3129 	if (flags & VM_LOCKED)
3130 		mm->locked_vm += (len >> PAGE_SHIFT);
3131 	vma->vm_flags |= VM_SOFTDIRTY;
3132 	return 0;
3133 }
3134 
3135 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3136 {
3137 	struct mm_struct *mm = current->mm;
3138 	unsigned long len;
3139 	int ret;
3140 	bool populate;
3141 	LIST_HEAD(uf);
3142 
3143 	len = PAGE_ALIGN(request);
3144 	if (len < request)
3145 		return -ENOMEM;
3146 	if (!len)
3147 		return 0;
3148 
3149 	if (mmap_write_lock_killable(mm))
3150 		return -EINTR;
3151 
3152 	ret = do_brk_flags(addr, len, flags, &uf);
3153 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3154 	mmap_write_unlock(mm);
3155 	userfaultfd_unmap_complete(mm, &uf);
3156 	if (populate && !ret)
3157 		mm_populate(addr, len);
3158 	return ret;
3159 }
3160 EXPORT_SYMBOL(vm_brk_flags);
3161 
3162 int vm_brk(unsigned long addr, unsigned long len)
3163 {
3164 	return vm_brk_flags(addr, len, 0);
3165 }
3166 EXPORT_SYMBOL(vm_brk);
3167 
3168 /* Release all mmaps. */
3169 void exit_mmap(struct mm_struct *mm)
3170 {
3171 	struct mmu_gather tlb;
3172 	struct vm_area_struct *vma;
3173 	unsigned long nr_accounted = 0;
3174 
3175 	/* mm's last user has gone, and its about to be pulled down */
3176 	mmu_notifier_release(mm);
3177 
3178 	if (unlikely(mm_is_oom_victim(mm))) {
3179 		/*
3180 		 * Manually reap the mm to free as much memory as possible.
3181 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3182 		 * this mm from further consideration.  Taking mm->mmap_lock for
3183 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3184 		 * reaper will not run on this mm again after mmap_lock is
3185 		 * dropped.
3186 		 *
3187 		 * Nothing can be holding mm->mmap_lock here and the above call
3188 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3189 		 * __oom_reap_task_mm() will not block.
3190 		 *
3191 		 * This needs to be done before calling munlock_vma_pages_all(),
3192 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3193 		 * reliably test it.
3194 		 */
3195 		(void)__oom_reap_task_mm(mm);
3196 
3197 		set_bit(MMF_OOM_SKIP, &mm->flags);
3198 		mmap_write_lock(mm);
3199 		mmap_write_unlock(mm);
3200 	}
3201 
3202 	if (mm->locked_vm) {
3203 		vma = mm->mmap;
3204 		while (vma) {
3205 			if (vma->vm_flags & VM_LOCKED)
3206 				munlock_vma_pages_all(vma);
3207 			vma = vma->vm_next;
3208 		}
3209 	}
3210 
3211 	arch_exit_mmap(mm);
3212 
3213 	vma = mm->mmap;
3214 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3215 		return;
3216 
3217 	lru_add_drain();
3218 	flush_cache_mm(mm);
3219 	tlb_gather_mmu(&tlb, mm, 0, -1);
3220 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3221 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3222 	unmap_vmas(&tlb, vma, 0, -1);
3223 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3224 	tlb_finish_mmu(&tlb, 0, -1);
3225 
3226 	/*
3227 	 * Walk the list again, actually closing and freeing it,
3228 	 * with preemption enabled, without holding any MM locks.
3229 	 */
3230 	while (vma) {
3231 		if (vma->vm_flags & VM_ACCOUNT)
3232 			nr_accounted += vma_pages(vma);
3233 		vma = remove_vma(vma);
3234 		cond_resched();
3235 	}
3236 	vm_unacct_memory(nr_accounted);
3237 }
3238 
3239 /* Insert vm structure into process list sorted by address
3240  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3241  * then i_mmap_rwsem is taken here.
3242  */
3243 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3244 {
3245 	struct vm_area_struct *prev;
3246 	struct rb_node **rb_link, *rb_parent;
3247 
3248 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3249 			   &prev, &rb_link, &rb_parent))
3250 		return -ENOMEM;
3251 	if ((vma->vm_flags & VM_ACCOUNT) &&
3252 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3253 		return -ENOMEM;
3254 
3255 	/*
3256 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3257 	 * until its first write fault, when page's anon_vma and index
3258 	 * are set.  But now set the vm_pgoff it will almost certainly
3259 	 * end up with (unless mremap moves it elsewhere before that
3260 	 * first wfault), so /proc/pid/maps tells a consistent story.
3261 	 *
3262 	 * By setting it to reflect the virtual start address of the
3263 	 * vma, merges and splits can happen in a seamless way, just
3264 	 * using the existing file pgoff checks and manipulations.
3265 	 * Similarly in do_mmap and in do_brk_flags.
3266 	 */
3267 	if (vma_is_anonymous(vma)) {
3268 		BUG_ON(vma->anon_vma);
3269 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3270 	}
3271 
3272 	vma_link(mm, vma, prev, rb_link, rb_parent);
3273 	return 0;
3274 }
3275 
3276 /*
3277  * Copy the vma structure to a new location in the same mm,
3278  * prior to moving page table entries, to effect an mremap move.
3279  */
3280 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3281 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3282 	bool *need_rmap_locks)
3283 {
3284 	struct vm_area_struct *vma = *vmap;
3285 	unsigned long vma_start = vma->vm_start;
3286 	struct mm_struct *mm = vma->vm_mm;
3287 	struct vm_area_struct *new_vma, *prev;
3288 	struct rb_node **rb_link, *rb_parent;
3289 	bool faulted_in_anon_vma = true;
3290 
3291 	/*
3292 	 * If anonymous vma has not yet been faulted, update new pgoff
3293 	 * to match new location, to increase its chance of merging.
3294 	 */
3295 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3296 		pgoff = addr >> PAGE_SHIFT;
3297 		faulted_in_anon_vma = false;
3298 	}
3299 
3300 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3301 		return NULL;	/* should never get here */
3302 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3303 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3304 			    vma->vm_userfaultfd_ctx);
3305 	if (new_vma) {
3306 		/*
3307 		 * Source vma may have been merged into new_vma
3308 		 */
3309 		if (unlikely(vma_start >= new_vma->vm_start &&
3310 			     vma_start < new_vma->vm_end)) {
3311 			/*
3312 			 * The only way we can get a vma_merge with
3313 			 * self during an mremap is if the vma hasn't
3314 			 * been faulted in yet and we were allowed to
3315 			 * reset the dst vma->vm_pgoff to the
3316 			 * destination address of the mremap to allow
3317 			 * the merge to happen. mremap must change the
3318 			 * vm_pgoff linearity between src and dst vmas
3319 			 * (in turn preventing a vma_merge) to be
3320 			 * safe. It is only safe to keep the vm_pgoff
3321 			 * linear if there are no pages mapped yet.
3322 			 */
3323 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3324 			*vmap = vma = new_vma;
3325 		}
3326 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3327 	} else {
3328 		new_vma = vm_area_dup(vma);
3329 		if (!new_vma)
3330 			goto out;
3331 		new_vma->vm_start = addr;
3332 		new_vma->vm_end = addr + len;
3333 		new_vma->vm_pgoff = pgoff;
3334 		if (vma_dup_policy(vma, new_vma))
3335 			goto out_free_vma;
3336 		if (anon_vma_clone(new_vma, vma))
3337 			goto out_free_mempol;
3338 		if (new_vma->vm_file)
3339 			get_file(new_vma->vm_file);
3340 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3341 			new_vma->vm_ops->open(new_vma);
3342 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3343 		*need_rmap_locks = false;
3344 	}
3345 	return new_vma;
3346 
3347 out_free_mempol:
3348 	mpol_put(vma_policy(new_vma));
3349 out_free_vma:
3350 	vm_area_free(new_vma);
3351 out:
3352 	return NULL;
3353 }
3354 
3355 /*
3356  * Return true if the calling process may expand its vm space by the passed
3357  * number of pages
3358  */
3359 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3360 {
3361 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3362 		return false;
3363 
3364 	if (is_data_mapping(flags) &&
3365 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3366 		/* Workaround for Valgrind */
3367 		if (rlimit(RLIMIT_DATA) == 0 &&
3368 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3369 			return true;
3370 
3371 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3372 			     current->comm, current->pid,
3373 			     (mm->data_vm + npages) << PAGE_SHIFT,
3374 			     rlimit(RLIMIT_DATA),
3375 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3376 
3377 		if (!ignore_rlimit_data)
3378 			return false;
3379 	}
3380 
3381 	return true;
3382 }
3383 
3384 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3385 {
3386 	mm->total_vm += npages;
3387 
3388 	if (is_exec_mapping(flags))
3389 		mm->exec_vm += npages;
3390 	else if (is_stack_mapping(flags))
3391 		mm->stack_vm += npages;
3392 	else if (is_data_mapping(flags))
3393 		mm->data_vm += npages;
3394 }
3395 
3396 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3397 
3398 /*
3399  * Having a close hook prevents vma merging regardless of flags.
3400  */
3401 static void special_mapping_close(struct vm_area_struct *vma)
3402 {
3403 }
3404 
3405 static const char *special_mapping_name(struct vm_area_struct *vma)
3406 {
3407 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3408 }
3409 
3410 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3411 {
3412 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3413 
3414 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3415 		return -EFAULT;
3416 
3417 	if (sm->mremap)
3418 		return sm->mremap(sm, new_vma);
3419 
3420 	return 0;
3421 }
3422 
3423 static const struct vm_operations_struct special_mapping_vmops = {
3424 	.close = special_mapping_close,
3425 	.fault = special_mapping_fault,
3426 	.mremap = special_mapping_mremap,
3427 	.name = special_mapping_name,
3428 	/* vDSO code relies that VVAR can't be accessed remotely */
3429 	.access = NULL,
3430 };
3431 
3432 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3433 	.close = special_mapping_close,
3434 	.fault = special_mapping_fault,
3435 };
3436 
3437 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3438 {
3439 	struct vm_area_struct *vma = vmf->vma;
3440 	pgoff_t pgoff;
3441 	struct page **pages;
3442 
3443 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3444 		pages = vma->vm_private_data;
3445 	} else {
3446 		struct vm_special_mapping *sm = vma->vm_private_data;
3447 
3448 		if (sm->fault)
3449 			return sm->fault(sm, vmf->vma, vmf);
3450 
3451 		pages = sm->pages;
3452 	}
3453 
3454 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3455 		pgoff--;
3456 
3457 	if (*pages) {
3458 		struct page *page = *pages;
3459 		get_page(page);
3460 		vmf->page = page;
3461 		return 0;
3462 	}
3463 
3464 	return VM_FAULT_SIGBUS;
3465 }
3466 
3467 static struct vm_area_struct *__install_special_mapping(
3468 	struct mm_struct *mm,
3469 	unsigned long addr, unsigned long len,
3470 	unsigned long vm_flags, void *priv,
3471 	const struct vm_operations_struct *ops)
3472 {
3473 	int ret;
3474 	struct vm_area_struct *vma;
3475 
3476 	vma = vm_area_alloc(mm);
3477 	if (unlikely(vma == NULL))
3478 		return ERR_PTR(-ENOMEM);
3479 
3480 	vma->vm_start = addr;
3481 	vma->vm_end = addr + len;
3482 
3483 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3484 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3485 
3486 	vma->vm_ops = ops;
3487 	vma->vm_private_data = priv;
3488 
3489 	ret = insert_vm_struct(mm, vma);
3490 	if (ret)
3491 		goto out;
3492 
3493 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3494 
3495 	perf_event_mmap(vma);
3496 
3497 	return vma;
3498 
3499 out:
3500 	vm_area_free(vma);
3501 	return ERR_PTR(ret);
3502 }
3503 
3504 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3505 	const struct vm_special_mapping *sm)
3506 {
3507 	return vma->vm_private_data == sm &&
3508 		(vma->vm_ops == &special_mapping_vmops ||
3509 		 vma->vm_ops == &legacy_special_mapping_vmops);
3510 }
3511 
3512 /*
3513  * Called with mm->mmap_lock held for writing.
3514  * Insert a new vma covering the given region, with the given flags.
3515  * Its pages are supplied by the given array of struct page *.
3516  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3517  * The region past the last page supplied will always produce SIGBUS.
3518  * The array pointer and the pages it points to are assumed to stay alive
3519  * for as long as this mapping might exist.
3520  */
3521 struct vm_area_struct *_install_special_mapping(
3522 	struct mm_struct *mm,
3523 	unsigned long addr, unsigned long len,
3524 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3525 {
3526 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3527 					&special_mapping_vmops);
3528 }
3529 
3530 int install_special_mapping(struct mm_struct *mm,
3531 			    unsigned long addr, unsigned long len,
3532 			    unsigned long vm_flags, struct page **pages)
3533 {
3534 	struct vm_area_struct *vma = __install_special_mapping(
3535 		mm, addr, len, vm_flags, (void *)pages,
3536 		&legacy_special_mapping_vmops);
3537 
3538 	return PTR_ERR_OR_ZERO(vma);
3539 }
3540 
3541 static DEFINE_MUTEX(mm_all_locks_mutex);
3542 
3543 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3544 {
3545 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3546 		/*
3547 		 * The LSB of head.next can't change from under us
3548 		 * because we hold the mm_all_locks_mutex.
3549 		 */
3550 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3551 		/*
3552 		 * We can safely modify head.next after taking the
3553 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3554 		 * the same anon_vma we won't take it again.
3555 		 *
3556 		 * No need of atomic instructions here, head.next
3557 		 * can't change from under us thanks to the
3558 		 * anon_vma->root->rwsem.
3559 		 */
3560 		if (__test_and_set_bit(0, (unsigned long *)
3561 				       &anon_vma->root->rb_root.rb_root.rb_node))
3562 			BUG();
3563 	}
3564 }
3565 
3566 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3567 {
3568 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3569 		/*
3570 		 * AS_MM_ALL_LOCKS can't change from under us because
3571 		 * we hold the mm_all_locks_mutex.
3572 		 *
3573 		 * Operations on ->flags have to be atomic because
3574 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3575 		 * mm_all_locks_mutex, there may be other cpus
3576 		 * changing other bitflags in parallel to us.
3577 		 */
3578 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3579 			BUG();
3580 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3581 	}
3582 }
3583 
3584 /*
3585  * This operation locks against the VM for all pte/vma/mm related
3586  * operations that could ever happen on a certain mm. This includes
3587  * vmtruncate, try_to_unmap, and all page faults.
3588  *
3589  * The caller must take the mmap_lock in write mode before calling
3590  * mm_take_all_locks(). The caller isn't allowed to release the
3591  * mmap_lock until mm_drop_all_locks() returns.
3592  *
3593  * mmap_lock in write mode is required in order to block all operations
3594  * that could modify pagetables and free pages without need of
3595  * altering the vma layout. It's also needed in write mode to avoid new
3596  * anon_vmas to be associated with existing vmas.
3597  *
3598  * A single task can't take more than one mm_take_all_locks() in a row
3599  * or it would deadlock.
3600  *
3601  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3602  * mapping->flags avoid to take the same lock twice, if more than one
3603  * vma in this mm is backed by the same anon_vma or address_space.
3604  *
3605  * We take locks in following order, accordingly to comment at beginning
3606  * of mm/rmap.c:
3607  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3608  *     hugetlb mapping);
3609  *   - all i_mmap_rwsem locks;
3610  *   - all anon_vma->rwseml
3611  *
3612  * We can take all locks within these types randomly because the VM code
3613  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3614  * mm_all_locks_mutex.
3615  *
3616  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3617  * that may have to take thousand of locks.
3618  *
3619  * mm_take_all_locks() can fail if it's interrupted by signals.
3620  */
3621 int mm_take_all_locks(struct mm_struct *mm)
3622 {
3623 	struct vm_area_struct *vma;
3624 	struct anon_vma_chain *avc;
3625 
3626 	BUG_ON(mmap_read_trylock(mm));
3627 
3628 	mutex_lock(&mm_all_locks_mutex);
3629 
3630 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3631 		if (signal_pending(current))
3632 			goto out_unlock;
3633 		if (vma->vm_file && vma->vm_file->f_mapping &&
3634 				is_vm_hugetlb_page(vma))
3635 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3636 	}
3637 
3638 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3639 		if (signal_pending(current))
3640 			goto out_unlock;
3641 		if (vma->vm_file && vma->vm_file->f_mapping &&
3642 				!is_vm_hugetlb_page(vma))
3643 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3644 	}
3645 
3646 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3647 		if (signal_pending(current))
3648 			goto out_unlock;
3649 		if (vma->anon_vma)
3650 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3651 				vm_lock_anon_vma(mm, avc->anon_vma);
3652 	}
3653 
3654 	return 0;
3655 
3656 out_unlock:
3657 	mm_drop_all_locks(mm);
3658 	return -EINTR;
3659 }
3660 
3661 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3662 {
3663 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3664 		/*
3665 		 * The LSB of head.next can't change to 0 from under
3666 		 * us because we hold the mm_all_locks_mutex.
3667 		 *
3668 		 * We must however clear the bitflag before unlocking
3669 		 * the vma so the users using the anon_vma->rb_root will
3670 		 * never see our bitflag.
3671 		 *
3672 		 * No need of atomic instructions here, head.next
3673 		 * can't change from under us until we release the
3674 		 * anon_vma->root->rwsem.
3675 		 */
3676 		if (!__test_and_clear_bit(0, (unsigned long *)
3677 					  &anon_vma->root->rb_root.rb_root.rb_node))
3678 			BUG();
3679 		anon_vma_unlock_write(anon_vma);
3680 	}
3681 }
3682 
3683 static void vm_unlock_mapping(struct address_space *mapping)
3684 {
3685 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3686 		/*
3687 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3688 		 * because we hold the mm_all_locks_mutex.
3689 		 */
3690 		i_mmap_unlock_write(mapping);
3691 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3692 					&mapping->flags))
3693 			BUG();
3694 	}
3695 }
3696 
3697 /*
3698  * The mmap_lock cannot be released by the caller until
3699  * mm_drop_all_locks() returns.
3700  */
3701 void mm_drop_all_locks(struct mm_struct *mm)
3702 {
3703 	struct vm_area_struct *vma;
3704 	struct anon_vma_chain *avc;
3705 
3706 	BUG_ON(mmap_read_trylock(mm));
3707 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3708 
3709 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3710 		if (vma->anon_vma)
3711 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3712 				vm_unlock_anon_vma(avc->anon_vma);
3713 		if (vma->vm_file && vma->vm_file->f_mapping)
3714 			vm_unlock_mapping(vma->vm_file->f_mapping);
3715 	}
3716 
3717 	mutex_unlock(&mm_all_locks_mutex);
3718 }
3719 
3720 /*
3721  * initialise the percpu counter for VM
3722  */
3723 void __init mmap_init(void)
3724 {
3725 	int ret;
3726 
3727 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3728 	VM_BUG_ON(ret);
3729 }
3730 
3731 /*
3732  * Initialise sysctl_user_reserve_kbytes.
3733  *
3734  * This is intended to prevent a user from starting a single memory hogging
3735  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3736  * mode.
3737  *
3738  * The default value is min(3% of free memory, 128MB)
3739  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3740  */
3741 static int init_user_reserve(void)
3742 {
3743 	unsigned long free_kbytes;
3744 
3745 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3746 
3747 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3748 	return 0;
3749 }
3750 subsys_initcall(init_user_reserve);
3751 
3752 /*
3753  * Initialise sysctl_admin_reserve_kbytes.
3754  *
3755  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3756  * to log in and kill a memory hogging process.
3757  *
3758  * Systems with more than 256MB will reserve 8MB, enough to recover
3759  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3760  * only reserve 3% of free pages by default.
3761  */
3762 static int init_admin_reserve(void)
3763 {
3764 	unsigned long free_kbytes;
3765 
3766 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3767 
3768 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3769 	return 0;
3770 }
3771 subsys_initcall(init_admin_reserve);
3772 
3773 /*
3774  * Reinititalise user and admin reserves if memory is added or removed.
3775  *
3776  * The default user reserve max is 128MB, and the default max for the
3777  * admin reserve is 8MB. These are usually, but not always, enough to
3778  * enable recovery from a memory hogging process using login/sshd, a shell,
3779  * and tools like top. It may make sense to increase or even disable the
3780  * reserve depending on the existence of swap or variations in the recovery
3781  * tools. So, the admin may have changed them.
3782  *
3783  * If memory is added and the reserves have been eliminated or increased above
3784  * the default max, then we'll trust the admin.
3785  *
3786  * If memory is removed and there isn't enough free memory, then we
3787  * need to reset the reserves.
3788  *
3789  * Otherwise keep the reserve set by the admin.
3790  */
3791 static int reserve_mem_notifier(struct notifier_block *nb,
3792 			     unsigned long action, void *data)
3793 {
3794 	unsigned long tmp, free_kbytes;
3795 
3796 	switch (action) {
3797 	case MEM_ONLINE:
3798 		/* Default max is 128MB. Leave alone if modified by operator. */
3799 		tmp = sysctl_user_reserve_kbytes;
3800 		if (0 < tmp && tmp < (1UL << 17))
3801 			init_user_reserve();
3802 
3803 		/* Default max is 8MB.  Leave alone if modified by operator. */
3804 		tmp = sysctl_admin_reserve_kbytes;
3805 		if (0 < tmp && tmp < (1UL << 13))
3806 			init_admin_reserve();
3807 
3808 		break;
3809 	case MEM_OFFLINE:
3810 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3811 
3812 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3813 			init_user_reserve();
3814 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3815 				sysctl_user_reserve_kbytes);
3816 		}
3817 
3818 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3819 			init_admin_reserve();
3820 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3821 				sysctl_admin_reserve_kbytes);
3822 		}
3823 		break;
3824 	default:
3825 		break;
3826 	}
3827 	return NOTIFY_OK;
3828 }
3829 
3830 static struct notifier_block reserve_mem_nb = {
3831 	.notifier_call = reserve_mem_notifier,
3832 };
3833 
3834 static int __meminit init_reserve_notifier(void)
3835 {
3836 	if (register_hotmemory_notifier(&reserve_mem_nb))
3837 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3838 
3839 	return 0;
3840 }
3841 subsys_initcall(init_reserve_notifier);
3842