1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/backing-dev.h> 12 #include <linux/mm.h> 13 #include <linux/shm.h> 14 #include <linux/mman.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/syscalls.h> 18 #include <linux/capability.h> 19 #include <linux/init.h> 20 #include <linux/file.h> 21 #include <linux/fs.h> 22 #include <linux/personality.h> 23 #include <linux/security.h> 24 #include <linux/hugetlb.h> 25 #include <linux/profile.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/mempolicy.h> 29 #include <linux/rmap.h> 30 #include <linux/mmu_notifier.h> 31 #include <linux/perf_event.h> 32 #include <linux/audit.h> 33 #include <linux/khugepaged.h> 34 #include <linux/uprobes.h> 35 #include <linux/rbtree_augmented.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/notifier.h> 38 #include <linux/memory.h> 39 40 #include <asm/uaccess.h> 41 #include <asm/cacheflush.h> 42 #include <asm/tlb.h> 43 #include <asm/mmu_context.h> 44 45 #include "internal.h" 46 47 #ifndef arch_mmap_check 48 #define arch_mmap_check(addr, len, flags) (0) 49 #endif 50 51 #ifndef arch_rebalance_pgtables 52 #define arch_rebalance_pgtables(addr, len) (addr) 53 #endif 54 55 static void unmap_region(struct mm_struct *mm, 56 struct vm_area_struct *vma, struct vm_area_struct *prev, 57 unsigned long start, unsigned long end); 58 59 /* description of effects of mapping type and prot in current implementation. 60 * this is due to the limited x86 page protection hardware. The expected 61 * behavior is in parens: 62 * 63 * map_type prot 64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 66 * w: (no) no w: (no) no w: (yes) yes w: (no) no 67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 68 * 69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 70 * w: (no) no w: (no) no w: (copy) copy w: (no) no 71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 72 * 73 */ 74 pgprot_t protection_map[16] = { 75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 77 }; 78 79 pgprot_t vm_get_page_prot(unsigned long vm_flags) 80 { 81 return __pgprot(pgprot_val(protection_map[vm_flags & 82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 83 pgprot_val(arch_vm_get_page_prot(vm_flags))); 84 } 85 EXPORT_SYMBOL(vm_get_page_prot); 86 87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 90 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 91 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 92 /* 93 * Make sure vm_committed_as in one cacheline and not cacheline shared with 94 * other variables. It can be updated by several CPUs frequently. 95 */ 96 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 97 98 /* 99 * The global memory commitment made in the system can be a metric 100 * that can be used to drive ballooning decisions when Linux is hosted 101 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 102 * balancing memory across competing virtual machines that are hosted. 103 * Several metrics drive this policy engine including the guest reported 104 * memory commitment. 105 */ 106 unsigned long vm_memory_committed(void) 107 { 108 return percpu_counter_read_positive(&vm_committed_as); 109 } 110 EXPORT_SYMBOL_GPL(vm_memory_committed); 111 112 /* 113 * Check that a process has enough memory to allocate a new virtual 114 * mapping. 0 means there is enough memory for the allocation to 115 * succeed and -ENOMEM implies there is not. 116 * 117 * We currently support three overcommit policies, which are set via the 118 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 119 * 120 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 121 * Additional code 2002 Jul 20 by Robert Love. 122 * 123 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 124 * 125 * Note this is a helper function intended to be used by LSMs which 126 * wish to use this logic. 127 */ 128 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 129 { 130 unsigned long free, allowed, reserve; 131 132 vm_acct_memory(pages); 133 134 /* 135 * Sometimes we want to use more memory than we have 136 */ 137 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 138 return 0; 139 140 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 141 free = global_page_state(NR_FREE_PAGES); 142 free += global_page_state(NR_FILE_PAGES); 143 144 /* 145 * shmem pages shouldn't be counted as free in this 146 * case, they can't be purged, only swapped out, and 147 * that won't affect the overall amount of available 148 * memory in the system. 149 */ 150 free -= global_page_state(NR_SHMEM); 151 152 free += get_nr_swap_pages(); 153 154 /* 155 * Any slabs which are created with the 156 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 157 * which are reclaimable, under pressure. The dentry 158 * cache and most inode caches should fall into this 159 */ 160 free += global_page_state(NR_SLAB_RECLAIMABLE); 161 162 /* 163 * Leave reserved pages. The pages are not for anonymous pages. 164 */ 165 if (free <= totalreserve_pages) 166 goto error; 167 else 168 free -= totalreserve_pages; 169 170 /* 171 * Reserve some for root 172 */ 173 if (!cap_sys_admin) 174 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 175 176 if (free > pages) 177 return 0; 178 179 goto error; 180 } 181 182 allowed = (totalram_pages - hugetlb_total_pages()) 183 * sysctl_overcommit_ratio / 100; 184 /* 185 * Reserve some for root 186 */ 187 if (!cap_sys_admin) 188 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 189 allowed += total_swap_pages; 190 191 /* 192 * Don't let a single process grow so big a user can't recover 193 */ 194 if (mm) { 195 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 196 allowed -= min(mm->total_vm / 32, reserve); 197 } 198 199 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 200 return 0; 201 error: 202 vm_unacct_memory(pages); 203 204 return -ENOMEM; 205 } 206 207 /* 208 * Requires inode->i_mapping->i_mmap_mutex 209 */ 210 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 211 struct file *file, struct address_space *mapping) 212 { 213 if (vma->vm_flags & VM_DENYWRITE) 214 atomic_inc(&file_inode(file)->i_writecount); 215 if (vma->vm_flags & VM_SHARED) 216 mapping->i_mmap_writable--; 217 218 flush_dcache_mmap_lock(mapping); 219 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 220 list_del_init(&vma->shared.nonlinear); 221 else 222 vma_interval_tree_remove(vma, &mapping->i_mmap); 223 flush_dcache_mmap_unlock(mapping); 224 } 225 226 /* 227 * Unlink a file-based vm structure from its interval tree, to hide 228 * vma from rmap and vmtruncate before freeing its page tables. 229 */ 230 void unlink_file_vma(struct vm_area_struct *vma) 231 { 232 struct file *file = vma->vm_file; 233 234 if (file) { 235 struct address_space *mapping = file->f_mapping; 236 mutex_lock(&mapping->i_mmap_mutex); 237 __remove_shared_vm_struct(vma, file, mapping); 238 mutex_unlock(&mapping->i_mmap_mutex); 239 } 240 } 241 242 /* 243 * Close a vm structure and free it, returning the next. 244 */ 245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 246 { 247 struct vm_area_struct *next = vma->vm_next; 248 249 might_sleep(); 250 if (vma->vm_ops && vma->vm_ops->close) 251 vma->vm_ops->close(vma); 252 if (vma->vm_file) 253 fput(vma->vm_file); 254 mpol_put(vma_policy(vma)); 255 kmem_cache_free(vm_area_cachep, vma); 256 return next; 257 } 258 259 static unsigned long do_brk(unsigned long addr, unsigned long len); 260 261 SYSCALL_DEFINE1(brk, unsigned long, brk) 262 { 263 unsigned long rlim, retval; 264 unsigned long newbrk, oldbrk; 265 struct mm_struct *mm = current->mm; 266 unsigned long min_brk; 267 bool populate; 268 269 down_write(&mm->mmap_sem); 270 271 #ifdef CONFIG_COMPAT_BRK 272 /* 273 * CONFIG_COMPAT_BRK can still be overridden by setting 274 * randomize_va_space to 2, which will still cause mm->start_brk 275 * to be arbitrarily shifted 276 */ 277 if (current->brk_randomized) 278 min_brk = mm->start_brk; 279 else 280 min_brk = mm->end_data; 281 #else 282 min_brk = mm->start_brk; 283 #endif 284 if (brk < min_brk) 285 goto out; 286 287 /* 288 * Check against rlimit here. If this check is done later after the test 289 * of oldbrk with newbrk then it can escape the test and let the data 290 * segment grow beyond its set limit the in case where the limit is 291 * not page aligned -Ram Gupta 292 */ 293 rlim = rlimit(RLIMIT_DATA); 294 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 295 (mm->end_data - mm->start_data) > rlim) 296 goto out; 297 298 newbrk = PAGE_ALIGN(brk); 299 oldbrk = PAGE_ALIGN(mm->brk); 300 if (oldbrk == newbrk) 301 goto set_brk; 302 303 /* Always allow shrinking brk. */ 304 if (brk <= mm->brk) { 305 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 306 goto set_brk; 307 goto out; 308 } 309 310 /* Check against existing mmap mappings. */ 311 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 312 goto out; 313 314 /* Ok, looks good - let it rip. */ 315 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 316 goto out; 317 318 set_brk: 319 mm->brk = brk; 320 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 321 up_write(&mm->mmap_sem); 322 if (populate) 323 mm_populate(oldbrk, newbrk - oldbrk); 324 return brk; 325 326 out: 327 retval = mm->brk; 328 up_write(&mm->mmap_sem); 329 return retval; 330 } 331 332 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 333 { 334 unsigned long max, subtree_gap; 335 max = vma->vm_start; 336 if (vma->vm_prev) 337 max -= vma->vm_prev->vm_end; 338 if (vma->vm_rb.rb_left) { 339 subtree_gap = rb_entry(vma->vm_rb.rb_left, 340 struct vm_area_struct, vm_rb)->rb_subtree_gap; 341 if (subtree_gap > max) 342 max = subtree_gap; 343 } 344 if (vma->vm_rb.rb_right) { 345 subtree_gap = rb_entry(vma->vm_rb.rb_right, 346 struct vm_area_struct, vm_rb)->rb_subtree_gap; 347 if (subtree_gap > max) 348 max = subtree_gap; 349 } 350 return max; 351 } 352 353 #ifdef CONFIG_DEBUG_VM_RB 354 static int browse_rb(struct rb_root *root) 355 { 356 int i = 0, j, bug = 0; 357 struct rb_node *nd, *pn = NULL; 358 unsigned long prev = 0, pend = 0; 359 360 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 361 struct vm_area_struct *vma; 362 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 363 if (vma->vm_start < prev) { 364 printk("vm_start %lx prev %lx\n", vma->vm_start, prev); 365 bug = 1; 366 } 367 if (vma->vm_start < pend) { 368 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 369 bug = 1; 370 } 371 if (vma->vm_start > vma->vm_end) { 372 printk("vm_end %lx < vm_start %lx\n", 373 vma->vm_end, vma->vm_start); 374 bug = 1; 375 } 376 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 377 printk("free gap %lx, correct %lx\n", 378 vma->rb_subtree_gap, 379 vma_compute_subtree_gap(vma)); 380 bug = 1; 381 } 382 i++; 383 pn = nd; 384 prev = vma->vm_start; 385 pend = vma->vm_end; 386 } 387 j = 0; 388 for (nd = pn; nd; nd = rb_prev(nd)) 389 j++; 390 if (i != j) { 391 printk("backwards %d, forwards %d\n", j, i); 392 bug = 1; 393 } 394 return bug ? -1 : i; 395 } 396 397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 398 { 399 struct rb_node *nd; 400 401 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 402 struct vm_area_struct *vma; 403 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 404 BUG_ON(vma != ignore && 405 vma->rb_subtree_gap != vma_compute_subtree_gap(vma)); 406 } 407 } 408 409 void validate_mm(struct mm_struct *mm) 410 { 411 int bug = 0; 412 int i = 0; 413 unsigned long highest_address = 0; 414 struct vm_area_struct *vma = mm->mmap; 415 while (vma) { 416 struct anon_vma_chain *avc; 417 vma_lock_anon_vma(vma); 418 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 419 anon_vma_interval_tree_verify(avc); 420 vma_unlock_anon_vma(vma); 421 highest_address = vma->vm_end; 422 vma = vma->vm_next; 423 i++; 424 } 425 if (i != mm->map_count) { 426 printk("map_count %d vm_next %d\n", mm->map_count, i); 427 bug = 1; 428 } 429 if (highest_address != mm->highest_vm_end) { 430 printk("mm->highest_vm_end %lx, found %lx\n", 431 mm->highest_vm_end, highest_address); 432 bug = 1; 433 } 434 i = browse_rb(&mm->mm_rb); 435 if (i != mm->map_count) { 436 printk("map_count %d rb %d\n", mm->map_count, i); 437 bug = 1; 438 } 439 BUG_ON(bug); 440 } 441 #else 442 #define validate_mm_rb(root, ignore) do { } while (0) 443 #define validate_mm(mm) do { } while (0) 444 #endif 445 446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 447 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 448 449 /* 450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 451 * vma->vm_prev->vm_end values changed, without modifying the vma's position 452 * in the rbtree. 453 */ 454 static void vma_gap_update(struct vm_area_struct *vma) 455 { 456 /* 457 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 458 * function that does exacltly what we want. 459 */ 460 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 461 } 462 463 static inline void vma_rb_insert(struct vm_area_struct *vma, 464 struct rb_root *root) 465 { 466 /* All rb_subtree_gap values must be consistent prior to insertion */ 467 validate_mm_rb(root, NULL); 468 469 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 470 } 471 472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 473 { 474 /* 475 * All rb_subtree_gap values must be consistent prior to erase, 476 * with the possible exception of the vma being erased. 477 */ 478 validate_mm_rb(root, vma); 479 480 /* 481 * Note rb_erase_augmented is a fairly large inline function, 482 * so make sure we instantiate it only once with our desired 483 * augmented rbtree callbacks. 484 */ 485 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 486 } 487 488 /* 489 * vma has some anon_vma assigned, and is already inserted on that 490 * anon_vma's interval trees. 491 * 492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 493 * vma must be removed from the anon_vma's interval trees using 494 * anon_vma_interval_tree_pre_update_vma(). 495 * 496 * After the update, the vma will be reinserted using 497 * anon_vma_interval_tree_post_update_vma(). 498 * 499 * The entire update must be protected by exclusive mmap_sem and by 500 * the root anon_vma's mutex. 501 */ 502 static inline void 503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 504 { 505 struct anon_vma_chain *avc; 506 507 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 508 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 509 } 510 511 static inline void 512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 513 { 514 struct anon_vma_chain *avc; 515 516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 517 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 518 } 519 520 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 521 unsigned long end, struct vm_area_struct **pprev, 522 struct rb_node ***rb_link, struct rb_node **rb_parent) 523 { 524 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 525 526 __rb_link = &mm->mm_rb.rb_node; 527 rb_prev = __rb_parent = NULL; 528 529 while (*__rb_link) { 530 struct vm_area_struct *vma_tmp; 531 532 __rb_parent = *__rb_link; 533 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 534 535 if (vma_tmp->vm_end > addr) { 536 /* Fail if an existing vma overlaps the area */ 537 if (vma_tmp->vm_start < end) 538 return -ENOMEM; 539 __rb_link = &__rb_parent->rb_left; 540 } else { 541 rb_prev = __rb_parent; 542 __rb_link = &__rb_parent->rb_right; 543 } 544 } 545 546 *pprev = NULL; 547 if (rb_prev) 548 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 549 *rb_link = __rb_link; 550 *rb_parent = __rb_parent; 551 return 0; 552 } 553 554 static unsigned long count_vma_pages_range(struct mm_struct *mm, 555 unsigned long addr, unsigned long end) 556 { 557 unsigned long nr_pages = 0; 558 struct vm_area_struct *vma; 559 560 /* Find first overlaping mapping */ 561 vma = find_vma_intersection(mm, addr, end); 562 if (!vma) 563 return 0; 564 565 nr_pages = (min(end, vma->vm_end) - 566 max(addr, vma->vm_start)) >> PAGE_SHIFT; 567 568 /* Iterate over the rest of the overlaps */ 569 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 570 unsigned long overlap_len; 571 572 if (vma->vm_start > end) 573 break; 574 575 overlap_len = min(end, vma->vm_end) - vma->vm_start; 576 nr_pages += overlap_len >> PAGE_SHIFT; 577 } 578 579 return nr_pages; 580 } 581 582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 583 struct rb_node **rb_link, struct rb_node *rb_parent) 584 { 585 /* Update tracking information for the gap following the new vma. */ 586 if (vma->vm_next) 587 vma_gap_update(vma->vm_next); 588 else 589 mm->highest_vm_end = vma->vm_end; 590 591 /* 592 * vma->vm_prev wasn't known when we followed the rbtree to find the 593 * correct insertion point for that vma. As a result, we could not 594 * update the vma vm_rb parents rb_subtree_gap values on the way down. 595 * So, we first insert the vma with a zero rb_subtree_gap value 596 * (to be consistent with what we did on the way down), and then 597 * immediately update the gap to the correct value. Finally we 598 * rebalance the rbtree after all augmented values have been set. 599 */ 600 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 601 vma->rb_subtree_gap = 0; 602 vma_gap_update(vma); 603 vma_rb_insert(vma, &mm->mm_rb); 604 } 605 606 static void __vma_link_file(struct vm_area_struct *vma) 607 { 608 struct file *file; 609 610 file = vma->vm_file; 611 if (file) { 612 struct address_space *mapping = file->f_mapping; 613 614 if (vma->vm_flags & VM_DENYWRITE) 615 atomic_dec(&file_inode(file)->i_writecount); 616 if (vma->vm_flags & VM_SHARED) 617 mapping->i_mmap_writable++; 618 619 flush_dcache_mmap_lock(mapping); 620 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 621 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 622 else 623 vma_interval_tree_insert(vma, &mapping->i_mmap); 624 flush_dcache_mmap_unlock(mapping); 625 } 626 } 627 628 static void 629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 630 struct vm_area_struct *prev, struct rb_node **rb_link, 631 struct rb_node *rb_parent) 632 { 633 __vma_link_list(mm, vma, prev, rb_parent); 634 __vma_link_rb(mm, vma, rb_link, rb_parent); 635 } 636 637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 638 struct vm_area_struct *prev, struct rb_node **rb_link, 639 struct rb_node *rb_parent) 640 { 641 struct address_space *mapping = NULL; 642 643 if (vma->vm_file) 644 mapping = vma->vm_file->f_mapping; 645 646 if (mapping) 647 mutex_lock(&mapping->i_mmap_mutex); 648 649 __vma_link(mm, vma, prev, rb_link, rb_parent); 650 __vma_link_file(vma); 651 652 if (mapping) 653 mutex_unlock(&mapping->i_mmap_mutex); 654 655 mm->map_count++; 656 validate_mm(mm); 657 } 658 659 /* 660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 661 * mm's list and rbtree. It has already been inserted into the interval tree. 662 */ 663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 664 { 665 struct vm_area_struct *prev; 666 struct rb_node **rb_link, *rb_parent; 667 668 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 669 &prev, &rb_link, &rb_parent)) 670 BUG(); 671 __vma_link(mm, vma, prev, rb_link, rb_parent); 672 mm->map_count++; 673 } 674 675 static inline void 676 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 677 struct vm_area_struct *prev) 678 { 679 struct vm_area_struct *next; 680 681 vma_rb_erase(vma, &mm->mm_rb); 682 prev->vm_next = next = vma->vm_next; 683 if (next) 684 next->vm_prev = prev; 685 if (mm->mmap_cache == vma) 686 mm->mmap_cache = prev; 687 } 688 689 /* 690 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 691 * is already present in an i_mmap tree without adjusting the tree. 692 * The following helper function should be used when such adjustments 693 * are necessary. The "insert" vma (if any) is to be inserted 694 * before we drop the necessary locks. 695 */ 696 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 697 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 698 { 699 struct mm_struct *mm = vma->vm_mm; 700 struct vm_area_struct *next = vma->vm_next; 701 struct vm_area_struct *importer = NULL; 702 struct address_space *mapping = NULL; 703 struct rb_root *root = NULL; 704 struct anon_vma *anon_vma = NULL; 705 struct file *file = vma->vm_file; 706 bool start_changed = false, end_changed = false; 707 long adjust_next = 0; 708 int remove_next = 0; 709 710 if (next && !insert) { 711 struct vm_area_struct *exporter = NULL; 712 713 if (end >= next->vm_end) { 714 /* 715 * vma expands, overlapping all the next, and 716 * perhaps the one after too (mprotect case 6). 717 */ 718 again: remove_next = 1 + (end > next->vm_end); 719 end = next->vm_end; 720 exporter = next; 721 importer = vma; 722 } else if (end > next->vm_start) { 723 /* 724 * vma expands, overlapping part of the next: 725 * mprotect case 5 shifting the boundary up. 726 */ 727 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 728 exporter = next; 729 importer = vma; 730 } else if (end < vma->vm_end) { 731 /* 732 * vma shrinks, and !insert tells it's not 733 * split_vma inserting another: so it must be 734 * mprotect case 4 shifting the boundary down. 735 */ 736 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 737 exporter = vma; 738 importer = next; 739 } 740 741 /* 742 * Easily overlooked: when mprotect shifts the boundary, 743 * make sure the expanding vma has anon_vma set if the 744 * shrinking vma had, to cover any anon pages imported. 745 */ 746 if (exporter && exporter->anon_vma && !importer->anon_vma) { 747 if (anon_vma_clone(importer, exporter)) 748 return -ENOMEM; 749 importer->anon_vma = exporter->anon_vma; 750 } 751 } 752 753 if (file) { 754 mapping = file->f_mapping; 755 if (!(vma->vm_flags & VM_NONLINEAR)) { 756 root = &mapping->i_mmap; 757 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 758 759 if (adjust_next) 760 uprobe_munmap(next, next->vm_start, 761 next->vm_end); 762 } 763 764 mutex_lock(&mapping->i_mmap_mutex); 765 if (insert) { 766 /* 767 * Put into interval tree now, so instantiated pages 768 * are visible to arm/parisc __flush_dcache_page 769 * throughout; but we cannot insert into address 770 * space until vma start or end is updated. 771 */ 772 __vma_link_file(insert); 773 } 774 } 775 776 vma_adjust_trans_huge(vma, start, end, adjust_next); 777 778 anon_vma = vma->anon_vma; 779 if (!anon_vma && adjust_next) 780 anon_vma = next->anon_vma; 781 if (anon_vma) { 782 VM_BUG_ON(adjust_next && next->anon_vma && 783 anon_vma != next->anon_vma); 784 anon_vma_lock_write(anon_vma); 785 anon_vma_interval_tree_pre_update_vma(vma); 786 if (adjust_next) 787 anon_vma_interval_tree_pre_update_vma(next); 788 } 789 790 if (root) { 791 flush_dcache_mmap_lock(mapping); 792 vma_interval_tree_remove(vma, root); 793 if (adjust_next) 794 vma_interval_tree_remove(next, root); 795 } 796 797 if (start != vma->vm_start) { 798 vma->vm_start = start; 799 start_changed = true; 800 } 801 if (end != vma->vm_end) { 802 vma->vm_end = end; 803 end_changed = true; 804 } 805 vma->vm_pgoff = pgoff; 806 if (adjust_next) { 807 next->vm_start += adjust_next << PAGE_SHIFT; 808 next->vm_pgoff += adjust_next; 809 } 810 811 if (root) { 812 if (adjust_next) 813 vma_interval_tree_insert(next, root); 814 vma_interval_tree_insert(vma, root); 815 flush_dcache_mmap_unlock(mapping); 816 } 817 818 if (remove_next) { 819 /* 820 * vma_merge has merged next into vma, and needs 821 * us to remove next before dropping the locks. 822 */ 823 __vma_unlink(mm, next, vma); 824 if (file) 825 __remove_shared_vm_struct(next, file, mapping); 826 } else if (insert) { 827 /* 828 * split_vma has split insert from vma, and needs 829 * us to insert it before dropping the locks 830 * (it may either follow vma or precede it). 831 */ 832 __insert_vm_struct(mm, insert); 833 } else { 834 if (start_changed) 835 vma_gap_update(vma); 836 if (end_changed) { 837 if (!next) 838 mm->highest_vm_end = end; 839 else if (!adjust_next) 840 vma_gap_update(next); 841 } 842 } 843 844 if (anon_vma) { 845 anon_vma_interval_tree_post_update_vma(vma); 846 if (adjust_next) 847 anon_vma_interval_tree_post_update_vma(next); 848 anon_vma_unlock_write(anon_vma); 849 } 850 if (mapping) 851 mutex_unlock(&mapping->i_mmap_mutex); 852 853 if (root) { 854 uprobe_mmap(vma); 855 856 if (adjust_next) 857 uprobe_mmap(next); 858 } 859 860 if (remove_next) { 861 if (file) { 862 uprobe_munmap(next, next->vm_start, next->vm_end); 863 fput(file); 864 } 865 if (next->anon_vma) 866 anon_vma_merge(vma, next); 867 mm->map_count--; 868 vma_set_policy(vma, vma_policy(next)); 869 kmem_cache_free(vm_area_cachep, next); 870 /* 871 * In mprotect's case 6 (see comments on vma_merge), 872 * we must remove another next too. It would clutter 873 * up the code too much to do both in one go. 874 */ 875 next = vma->vm_next; 876 if (remove_next == 2) 877 goto again; 878 else if (next) 879 vma_gap_update(next); 880 else 881 mm->highest_vm_end = end; 882 } 883 if (insert && file) 884 uprobe_mmap(insert); 885 886 validate_mm(mm); 887 888 return 0; 889 } 890 891 /* 892 * If the vma has a ->close operation then the driver probably needs to release 893 * per-vma resources, so we don't attempt to merge those. 894 */ 895 static inline int is_mergeable_vma(struct vm_area_struct *vma, 896 struct file *file, unsigned long vm_flags) 897 { 898 if (vma->vm_flags ^ vm_flags) 899 return 0; 900 if (vma->vm_file != file) 901 return 0; 902 if (vma->vm_ops && vma->vm_ops->close) 903 return 0; 904 return 1; 905 } 906 907 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 908 struct anon_vma *anon_vma2, 909 struct vm_area_struct *vma) 910 { 911 /* 912 * The list_is_singular() test is to avoid merging VMA cloned from 913 * parents. This can improve scalability caused by anon_vma lock. 914 */ 915 if ((!anon_vma1 || !anon_vma2) && (!vma || 916 list_is_singular(&vma->anon_vma_chain))) 917 return 1; 918 return anon_vma1 == anon_vma2; 919 } 920 921 /* 922 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 923 * in front of (at a lower virtual address and file offset than) the vma. 924 * 925 * We cannot merge two vmas if they have differently assigned (non-NULL) 926 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 927 * 928 * We don't check here for the merged mmap wrapping around the end of pagecache 929 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 930 * wrap, nor mmaps which cover the final page at index -1UL. 931 */ 932 static int 933 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 934 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 935 { 936 if (is_mergeable_vma(vma, file, vm_flags) && 937 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 938 if (vma->vm_pgoff == vm_pgoff) 939 return 1; 940 } 941 return 0; 942 } 943 944 /* 945 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 946 * beyond (at a higher virtual address and file offset than) the vma. 947 * 948 * We cannot merge two vmas if they have differently assigned (non-NULL) 949 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 950 */ 951 static int 952 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 953 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 954 { 955 if (is_mergeable_vma(vma, file, vm_flags) && 956 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 957 pgoff_t vm_pglen; 958 vm_pglen = vma_pages(vma); 959 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 960 return 1; 961 } 962 return 0; 963 } 964 965 /* 966 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 967 * whether that can be merged with its predecessor or its successor. 968 * Or both (it neatly fills a hole). 969 * 970 * In most cases - when called for mmap, brk or mremap - [addr,end) is 971 * certain not to be mapped by the time vma_merge is called; but when 972 * called for mprotect, it is certain to be already mapped (either at 973 * an offset within prev, or at the start of next), and the flags of 974 * this area are about to be changed to vm_flags - and the no-change 975 * case has already been eliminated. 976 * 977 * The following mprotect cases have to be considered, where AAAA is 978 * the area passed down from mprotect_fixup, never extending beyond one 979 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 980 * 981 * AAAA AAAA AAAA AAAA 982 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 983 * cannot merge might become might become might become 984 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 985 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 986 * mremap move: PPPPNNNNNNNN 8 987 * AAAA 988 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 989 * might become case 1 below case 2 below case 3 below 990 * 991 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 992 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 993 */ 994 struct vm_area_struct *vma_merge(struct mm_struct *mm, 995 struct vm_area_struct *prev, unsigned long addr, 996 unsigned long end, unsigned long vm_flags, 997 struct anon_vma *anon_vma, struct file *file, 998 pgoff_t pgoff, struct mempolicy *policy) 999 { 1000 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1001 struct vm_area_struct *area, *next; 1002 int err; 1003 1004 /* 1005 * We later require that vma->vm_flags == vm_flags, 1006 * so this tests vma->vm_flags & VM_SPECIAL, too. 1007 */ 1008 if (vm_flags & VM_SPECIAL) 1009 return NULL; 1010 1011 if (prev) 1012 next = prev->vm_next; 1013 else 1014 next = mm->mmap; 1015 area = next; 1016 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 1017 next = next->vm_next; 1018 1019 /* 1020 * Can it merge with the predecessor? 1021 */ 1022 if (prev && prev->vm_end == addr && 1023 mpol_equal(vma_policy(prev), policy) && 1024 can_vma_merge_after(prev, vm_flags, 1025 anon_vma, file, pgoff)) { 1026 /* 1027 * OK, it can. Can we now merge in the successor as well? 1028 */ 1029 if (next && end == next->vm_start && 1030 mpol_equal(policy, vma_policy(next)) && 1031 can_vma_merge_before(next, vm_flags, 1032 anon_vma, file, pgoff+pglen) && 1033 is_mergeable_anon_vma(prev->anon_vma, 1034 next->anon_vma, NULL)) { 1035 /* cases 1, 6 */ 1036 err = vma_adjust(prev, prev->vm_start, 1037 next->vm_end, prev->vm_pgoff, NULL); 1038 } else /* cases 2, 5, 7 */ 1039 err = vma_adjust(prev, prev->vm_start, 1040 end, prev->vm_pgoff, NULL); 1041 if (err) 1042 return NULL; 1043 khugepaged_enter_vma_merge(prev); 1044 return prev; 1045 } 1046 1047 /* 1048 * Can this new request be merged in front of next? 1049 */ 1050 if (next && end == next->vm_start && 1051 mpol_equal(policy, vma_policy(next)) && 1052 can_vma_merge_before(next, vm_flags, 1053 anon_vma, file, pgoff+pglen)) { 1054 if (prev && addr < prev->vm_end) /* case 4 */ 1055 err = vma_adjust(prev, prev->vm_start, 1056 addr, prev->vm_pgoff, NULL); 1057 else /* cases 3, 8 */ 1058 err = vma_adjust(area, addr, next->vm_end, 1059 next->vm_pgoff - pglen, NULL); 1060 if (err) 1061 return NULL; 1062 khugepaged_enter_vma_merge(area); 1063 return area; 1064 } 1065 1066 return NULL; 1067 } 1068 1069 /* 1070 * Rough compatbility check to quickly see if it's even worth looking 1071 * at sharing an anon_vma. 1072 * 1073 * They need to have the same vm_file, and the flags can only differ 1074 * in things that mprotect may change. 1075 * 1076 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1077 * we can merge the two vma's. For example, we refuse to merge a vma if 1078 * there is a vm_ops->close() function, because that indicates that the 1079 * driver is doing some kind of reference counting. But that doesn't 1080 * really matter for the anon_vma sharing case. 1081 */ 1082 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1083 { 1084 return a->vm_end == b->vm_start && 1085 mpol_equal(vma_policy(a), vma_policy(b)) && 1086 a->vm_file == b->vm_file && 1087 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 1088 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1089 } 1090 1091 /* 1092 * Do some basic sanity checking to see if we can re-use the anon_vma 1093 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1094 * the same as 'old', the other will be the new one that is trying 1095 * to share the anon_vma. 1096 * 1097 * NOTE! This runs with mm_sem held for reading, so it is possible that 1098 * the anon_vma of 'old' is concurrently in the process of being set up 1099 * by another page fault trying to merge _that_. But that's ok: if it 1100 * is being set up, that automatically means that it will be a singleton 1101 * acceptable for merging, so we can do all of this optimistically. But 1102 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 1103 * 1104 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1105 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1106 * is to return an anon_vma that is "complex" due to having gone through 1107 * a fork). 1108 * 1109 * We also make sure that the two vma's are compatible (adjacent, 1110 * and with the same memory policies). That's all stable, even with just 1111 * a read lock on the mm_sem. 1112 */ 1113 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1114 { 1115 if (anon_vma_compatible(a, b)) { 1116 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 1117 1118 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1119 return anon_vma; 1120 } 1121 return NULL; 1122 } 1123 1124 /* 1125 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1126 * neighbouring vmas for a suitable anon_vma, before it goes off 1127 * to allocate a new anon_vma. It checks because a repetitive 1128 * sequence of mprotects and faults may otherwise lead to distinct 1129 * anon_vmas being allocated, preventing vma merge in subsequent 1130 * mprotect. 1131 */ 1132 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1133 { 1134 struct anon_vma *anon_vma; 1135 struct vm_area_struct *near; 1136 1137 near = vma->vm_next; 1138 if (!near) 1139 goto try_prev; 1140 1141 anon_vma = reusable_anon_vma(near, vma, near); 1142 if (anon_vma) 1143 return anon_vma; 1144 try_prev: 1145 near = vma->vm_prev; 1146 if (!near) 1147 goto none; 1148 1149 anon_vma = reusable_anon_vma(near, near, vma); 1150 if (anon_vma) 1151 return anon_vma; 1152 none: 1153 /* 1154 * There's no absolute need to look only at touching neighbours: 1155 * we could search further afield for "compatible" anon_vmas. 1156 * But it would probably just be a waste of time searching, 1157 * or lead to too many vmas hanging off the same anon_vma. 1158 * We're trying to allow mprotect remerging later on, 1159 * not trying to minimize memory used for anon_vmas. 1160 */ 1161 return NULL; 1162 } 1163 1164 #ifdef CONFIG_PROC_FS 1165 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 1166 struct file *file, long pages) 1167 { 1168 const unsigned long stack_flags 1169 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 1170 1171 mm->total_vm += pages; 1172 1173 if (file) { 1174 mm->shared_vm += pages; 1175 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 1176 mm->exec_vm += pages; 1177 } else if (flags & stack_flags) 1178 mm->stack_vm += pages; 1179 } 1180 #endif /* CONFIG_PROC_FS */ 1181 1182 /* 1183 * If a hint addr is less than mmap_min_addr change hint to be as 1184 * low as possible but still greater than mmap_min_addr 1185 */ 1186 static inline unsigned long round_hint_to_min(unsigned long hint) 1187 { 1188 hint &= PAGE_MASK; 1189 if (((void *)hint != NULL) && 1190 (hint < mmap_min_addr)) 1191 return PAGE_ALIGN(mmap_min_addr); 1192 return hint; 1193 } 1194 1195 /* 1196 * The caller must hold down_write(¤t->mm->mmap_sem). 1197 */ 1198 1199 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1200 unsigned long len, unsigned long prot, 1201 unsigned long flags, unsigned long pgoff, 1202 unsigned long *populate) 1203 { 1204 struct mm_struct * mm = current->mm; 1205 struct inode *inode; 1206 vm_flags_t vm_flags; 1207 1208 *populate = 0; 1209 1210 /* 1211 * Does the application expect PROT_READ to imply PROT_EXEC? 1212 * 1213 * (the exception is when the underlying filesystem is noexec 1214 * mounted, in which case we dont add PROT_EXEC.) 1215 */ 1216 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1217 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 1218 prot |= PROT_EXEC; 1219 1220 if (!len) 1221 return -EINVAL; 1222 1223 if (!(flags & MAP_FIXED)) 1224 addr = round_hint_to_min(addr); 1225 1226 /* Careful about overflows.. */ 1227 len = PAGE_ALIGN(len); 1228 if (!len) 1229 return -ENOMEM; 1230 1231 /* offset overflow? */ 1232 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1233 return -EOVERFLOW; 1234 1235 /* Too many mappings? */ 1236 if (mm->map_count > sysctl_max_map_count) 1237 return -ENOMEM; 1238 1239 /* Obtain the address to map to. we verify (or select) it and ensure 1240 * that it represents a valid section of the address space. 1241 */ 1242 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1243 if (addr & ~PAGE_MASK) 1244 return addr; 1245 1246 /* Do simple checking here so the lower-level routines won't have 1247 * to. we assume access permissions have been handled by the open 1248 * of the memory object, so we don't do any here. 1249 */ 1250 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1251 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1252 1253 if (flags & MAP_LOCKED) 1254 if (!can_do_mlock()) 1255 return -EPERM; 1256 1257 /* mlock MCL_FUTURE? */ 1258 if (vm_flags & VM_LOCKED) { 1259 unsigned long locked, lock_limit; 1260 locked = len >> PAGE_SHIFT; 1261 locked += mm->locked_vm; 1262 lock_limit = rlimit(RLIMIT_MEMLOCK); 1263 lock_limit >>= PAGE_SHIFT; 1264 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1265 return -EAGAIN; 1266 } 1267 1268 inode = file ? file_inode(file) : NULL; 1269 1270 if (file) { 1271 switch (flags & MAP_TYPE) { 1272 case MAP_SHARED: 1273 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1274 return -EACCES; 1275 1276 /* 1277 * Make sure we don't allow writing to an append-only 1278 * file.. 1279 */ 1280 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1281 return -EACCES; 1282 1283 /* 1284 * Make sure there are no mandatory locks on the file. 1285 */ 1286 if (locks_verify_locked(inode)) 1287 return -EAGAIN; 1288 1289 vm_flags |= VM_SHARED | VM_MAYSHARE; 1290 if (!(file->f_mode & FMODE_WRITE)) 1291 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1292 1293 /* fall through */ 1294 case MAP_PRIVATE: 1295 if (!(file->f_mode & FMODE_READ)) 1296 return -EACCES; 1297 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1298 if (vm_flags & VM_EXEC) 1299 return -EPERM; 1300 vm_flags &= ~VM_MAYEXEC; 1301 } 1302 1303 if (!file->f_op || !file->f_op->mmap) 1304 return -ENODEV; 1305 break; 1306 1307 default: 1308 return -EINVAL; 1309 } 1310 } else { 1311 switch (flags & MAP_TYPE) { 1312 case MAP_SHARED: 1313 /* 1314 * Ignore pgoff. 1315 */ 1316 pgoff = 0; 1317 vm_flags |= VM_SHARED | VM_MAYSHARE; 1318 break; 1319 case MAP_PRIVATE: 1320 /* 1321 * Set pgoff according to addr for anon_vma. 1322 */ 1323 pgoff = addr >> PAGE_SHIFT; 1324 break; 1325 default: 1326 return -EINVAL; 1327 } 1328 } 1329 1330 /* 1331 * Set 'VM_NORESERVE' if we should not account for the 1332 * memory use of this mapping. 1333 */ 1334 if (flags & MAP_NORESERVE) { 1335 /* We honor MAP_NORESERVE if allowed to overcommit */ 1336 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1337 vm_flags |= VM_NORESERVE; 1338 1339 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1340 if (file && is_file_hugepages(file)) 1341 vm_flags |= VM_NORESERVE; 1342 } 1343 1344 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1345 if (!IS_ERR_VALUE(addr) && 1346 ((vm_flags & VM_LOCKED) || 1347 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1348 *populate = len; 1349 return addr; 1350 } 1351 1352 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1353 unsigned long, prot, unsigned long, flags, 1354 unsigned long, fd, unsigned long, pgoff) 1355 { 1356 struct file *file = NULL; 1357 unsigned long retval = -EBADF; 1358 1359 if (!(flags & MAP_ANONYMOUS)) { 1360 audit_mmap_fd(fd, flags); 1361 file = fget(fd); 1362 if (!file) 1363 goto out; 1364 if (is_file_hugepages(file)) 1365 len = ALIGN(len, huge_page_size(hstate_file(file))); 1366 retval = -EINVAL; 1367 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1368 goto out_fput; 1369 } else if (flags & MAP_HUGETLB) { 1370 struct user_struct *user = NULL; 1371 struct hstate *hs; 1372 1373 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1374 if (!hs) 1375 return -EINVAL; 1376 1377 len = ALIGN(len, huge_page_size(hs)); 1378 /* 1379 * VM_NORESERVE is used because the reservations will be 1380 * taken when vm_ops->mmap() is called 1381 * A dummy user value is used because we are not locking 1382 * memory so no accounting is necessary 1383 */ 1384 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1385 VM_NORESERVE, 1386 &user, HUGETLB_ANONHUGE_INODE, 1387 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1388 if (IS_ERR(file)) 1389 return PTR_ERR(file); 1390 } 1391 1392 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1393 1394 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1395 out_fput: 1396 if (file) 1397 fput(file); 1398 out: 1399 return retval; 1400 } 1401 1402 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1403 struct mmap_arg_struct { 1404 unsigned long addr; 1405 unsigned long len; 1406 unsigned long prot; 1407 unsigned long flags; 1408 unsigned long fd; 1409 unsigned long offset; 1410 }; 1411 1412 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1413 { 1414 struct mmap_arg_struct a; 1415 1416 if (copy_from_user(&a, arg, sizeof(a))) 1417 return -EFAULT; 1418 if (a.offset & ~PAGE_MASK) 1419 return -EINVAL; 1420 1421 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1422 a.offset >> PAGE_SHIFT); 1423 } 1424 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1425 1426 /* 1427 * Some shared mappigns will want the pages marked read-only 1428 * to track write events. If so, we'll downgrade vm_page_prot 1429 * to the private version (using protection_map[] without the 1430 * VM_SHARED bit). 1431 */ 1432 int vma_wants_writenotify(struct vm_area_struct *vma) 1433 { 1434 vm_flags_t vm_flags = vma->vm_flags; 1435 1436 /* If it was private or non-writable, the write bit is already clear */ 1437 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1438 return 0; 1439 1440 /* The backer wishes to know when pages are first written to? */ 1441 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1442 return 1; 1443 1444 /* The open routine did something to the protections already? */ 1445 if (pgprot_val(vma->vm_page_prot) != 1446 pgprot_val(vm_get_page_prot(vm_flags))) 1447 return 0; 1448 1449 /* Specialty mapping? */ 1450 if (vm_flags & VM_PFNMAP) 1451 return 0; 1452 1453 /* Can the mapping track the dirty pages? */ 1454 return vma->vm_file && vma->vm_file->f_mapping && 1455 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1456 } 1457 1458 /* 1459 * We account for memory if it's a private writeable mapping, 1460 * not hugepages and VM_NORESERVE wasn't set. 1461 */ 1462 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1463 { 1464 /* 1465 * hugetlb has its own accounting separate from the core VM 1466 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1467 */ 1468 if (file && is_file_hugepages(file)) 1469 return 0; 1470 1471 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1472 } 1473 1474 unsigned long mmap_region(struct file *file, unsigned long addr, 1475 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1476 { 1477 struct mm_struct *mm = current->mm; 1478 struct vm_area_struct *vma, *prev; 1479 int correct_wcount = 0; 1480 int error; 1481 struct rb_node **rb_link, *rb_parent; 1482 unsigned long charged = 0; 1483 struct inode *inode = file ? file_inode(file) : NULL; 1484 1485 /* Check against address space limit. */ 1486 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) { 1487 unsigned long nr_pages; 1488 1489 /* 1490 * MAP_FIXED may remove pages of mappings that intersects with 1491 * requested mapping. Account for the pages it would unmap. 1492 */ 1493 if (!(vm_flags & MAP_FIXED)) 1494 return -ENOMEM; 1495 1496 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1497 1498 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages)) 1499 return -ENOMEM; 1500 } 1501 1502 /* Clear old maps */ 1503 error = -ENOMEM; 1504 munmap_back: 1505 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 1506 if (do_munmap(mm, addr, len)) 1507 return -ENOMEM; 1508 goto munmap_back; 1509 } 1510 1511 /* 1512 * Private writable mapping: check memory availability 1513 */ 1514 if (accountable_mapping(file, vm_flags)) { 1515 charged = len >> PAGE_SHIFT; 1516 if (security_vm_enough_memory_mm(mm, charged)) 1517 return -ENOMEM; 1518 vm_flags |= VM_ACCOUNT; 1519 } 1520 1521 /* 1522 * Can we just expand an old mapping? 1523 */ 1524 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1525 if (vma) 1526 goto out; 1527 1528 /* 1529 * Determine the object being mapped and call the appropriate 1530 * specific mapper. the address has already been validated, but 1531 * not unmapped, but the maps are removed from the list. 1532 */ 1533 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1534 if (!vma) { 1535 error = -ENOMEM; 1536 goto unacct_error; 1537 } 1538 1539 vma->vm_mm = mm; 1540 vma->vm_start = addr; 1541 vma->vm_end = addr + len; 1542 vma->vm_flags = vm_flags; 1543 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1544 vma->vm_pgoff = pgoff; 1545 INIT_LIST_HEAD(&vma->anon_vma_chain); 1546 1547 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */ 1548 1549 if (file) { 1550 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1551 goto free_vma; 1552 if (vm_flags & VM_DENYWRITE) { 1553 error = deny_write_access(file); 1554 if (error) 1555 goto free_vma; 1556 correct_wcount = 1; 1557 } 1558 vma->vm_file = get_file(file); 1559 error = file->f_op->mmap(file, vma); 1560 if (error) 1561 goto unmap_and_free_vma; 1562 1563 /* Can addr have changed?? 1564 * 1565 * Answer: Yes, several device drivers can do it in their 1566 * f_op->mmap method. -DaveM 1567 * Bug: If addr is changed, prev, rb_link, rb_parent should 1568 * be updated for vma_link() 1569 */ 1570 WARN_ON_ONCE(addr != vma->vm_start); 1571 1572 addr = vma->vm_start; 1573 pgoff = vma->vm_pgoff; 1574 vm_flags = vma->vm_flags; 1575 } else if (vm_flags & VM_SHARED) { 1576 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP))) 1577 goto free_vma; 1578 error = shmem_zero_setup(vma); 1579 if (error) 1580 goto free_vma; 1581 } 1582 1583 if (vma_wants_writenotify(vma)) { 1584 pgprot_t pprot = vma->vm_page_prot; 1585 1586 /* Can vma->vm_page_prot have changed?? 1587 * 1588 * Answer: Yes, drivers may have changed it in their 1589 * f_op->mmap method. 1590 * 1591 * Ensures that vmas marked as uncached stay that way. 1592 */ 1593 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1594 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1595 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1596 } 1597 1598 vma_link(mm, vma, prev, rb_link, rb_parent); 1599 file = vma->vm_file; 1600 1601 /* Once vma denies write, undo our temporary denial count */ 1602 if (correct_wcount) 1603 atomic_inc(&inode->i_writecount); 1604 out: 1605 perf_event_mmap(vma); 1606 1607 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1608 if (vm_flags & VM_LOCKED) { 1609 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1610 vma == get_gate_vma(current->mm))) 1611 mm->locked_vm += (len >> PAGE_SHIFT); 1612 else 1613 vma->vm_flags &= ~VM_LOCKED; 1614 } 1615 1616 if (file) 1617 uprobe_mmap(vma); 1618 1619 return addr; 1620 1621 unmap_and_free_vma: 1622 if (correct_wcount) 1623 atomic_inc(&inode->i_writecount); 1624 vma->vm_file = NULL; 1625 fput(file); 1626 1627 /* Undo any partial mapping done by a device driver. */ 1628 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1629 charged = 0; 1630 free_vma: 1631 kmem_cache_free(vm_area_cachep, vma); 1632 unacct_error: 1633 if (charged) 1634 vm_unacct_memory(charged); 1635 return error; 1636 } 1637 1638 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1639 { 1640 /* 1641 * We implement the search by looking for an rbtree node that 1642 * immediately follows a suitable gap. That is, 1643 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1644 * - gap_end = vma->vm_start >= info->low_limit + length; 1645 * - gap_end - gap_start >= length 1646 */ 1647 1648 struct mm_struct *mm = current->mm; 1649 struct vm_area_struct *vma; 1650 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1651 1652 /* Adjust search length to account for worst case alignment overhead */ 1653 length = info->length + info->align_mask; 1654 if (length < info->length) 1655 return -ENOMEM; 1656 1657 /* Adjust search limits by the desired length */ 1658 if (info->high_limit < length) 1659 return -ENOMEM; 1660 high_limit = info->high_limit - length; 1661 1662 if (info->low_limit > high_limit) 1663 return -ENOMEM; 1664 low_limit = info->low_limit + length; 1665 1666 /* Check if rbtree root looks promising */ 1667 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1668 goto check_highest; 1669 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1670 if (vma->rb_subtree_gap < length) 1671 goto check_highest; 1672 1673 while (true) { 1674 /* Visit left subtree if it looks promising */ 1675 gap_end = vma->vm_start; 1676 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1677 struct vm_area_struct *left = 1678 rb_entry(vma->vm_rb.rb_left, 1679 struct vm_area_struct, vm_rb); 1680 if (left->rb_subtree_gap >= length) { 1681 vma = left; 1682 continue; 1683 } 1684 } 1685 1686 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1687 check_current: 1688 /* Check if current node has a suitable gap */ 1689 if (gap_start > high_limit) 1690 return -ENOMEM; 1691 if (gap_end >= low_limit && gap_end - gap_start >= length) 1692 goto found; 1693 1694 /* Visit right subtree if it looks promising */ 1695 if (vma->vm_rb.rb_right) { 1696 struct vm_area_struct *right = 1697 rb_entry(vma->vm_rb.rb_right, 1698 struct vm_area_struct, vm_rb); 1699 if (right->rb_subtree_gap >= length) { 1700 vma = right; 1701 continue; 1702 } 1703 } 1704 1705 /* Go back up the rbtree to find next candidate node */ 1706 while (true) { 1707 struct rb_node *prev = &vma->vm_rb; 1708 if (!rb_parent(prev)) 1709 goto check_highest; 1710 vma = rb_entry(rb_parent(prev), 1711 struct vm_area_struct, vm_rb); 1712 if (prev == vma->vm_rb.rb_left) { 1713 gap_start = vma->vm_prev->vm_end; 1714 gap_end = vma->vm_start; 1715 goto check_current; 1716 } 1717 } 1718 } 1719 1720 check_highest: 1721 /* Check highest gap, which does not precede any rbtree node */ 1722 gap_start = mm->highest_vm_end; 1723 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1724 if (gap_start > high_limit) 1725 return -ENOMEM; 1726 1727 found: 1728 /* We found a suitable gap. Clip it with the original low_limit. */ 1729 if (gap_start < info->low_limit) 1730 gap_start = info->low_limit; 1731 1732 /* Adjust gap address to the desired alignment */ 1733 gap_start += (info->align_offset - gap_start) & info->align_mask; 1734 1735 VM_BUG_ON(gap_start + info->length > info->high_limit); 1736 VM_BUG_ON(gap_start + info->length > gap_end); 1737 return gap_start; 1738 } 1739 1740 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1741 { 1742 struct mm_struct *mm = current->mm; 1743 struct vm_area_struct *vma; 1744 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1745 1746 /* Adjust search length to account for worst case alignment overhead */ 1747 length = info->length + info->align_mask; 1748 if (length < info->length) 1749 return -ENOMEM; 1750 1751 /* 1752 * Adjust search limits by the desired length. 1753 * See implementation comment at top of unmapped_area(). 1754 */ 1755 gap_end = info->high_limit; 1756 if (gap_end < length) 1757 return -ENOMEM; 1758 high_limit = gap_end - length; 1759 1760 if (info->low_limit > high_limit) 1761 return -ENOMEM; 1762 low_limit = info->low_limit + length; 1763 1764 /* Check highest gap, which does not precede any rbtree node */ 1765 gap_start = mm->highest_vm_end; 1766 if (gap_start <= high_limit) 1767 goto found_highest; 1768 1769 /* Check if rbtree root looks promising */ 1770 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1771 return -ENOMEM; 1772 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1773 if (vma->rb_subtree_gap < length) 1774 return -ENOMEM; 1775 1776 while (true) { 1777 /* Visit right subtree if it looks promising */ 1778 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1779 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1780 struct vm_area_struct *right = 1781 rb_entry(vma->vm_rb.rb_right, 1782 struct vm_area_struct, vm_rb); 1783 if (right->rb_subtree_gap >= length) { 1784 vma = right; 1785 continue; 1786 } 1787 } 1788 1789 check_current: 1790 /* Check if current node has a suitable gap */ 1791 gap_end = vma->vm_start; 1792 if (gap_end < low_limit) 1793 return -ENOMEM; 1794 if (gap_start <= high_limit && gap_end - gap_start >= length) 1795 goto found; 1796 1797 /* Visit left subtree if it looks promising */ 1798 if (vma->vm_rb.rb_left) { 1799 struct vm_area_struct *left = 1800 rb_entry(vma->vm_rb.rb_left, 1801 struct vm_area_struct, vm_rb); 1802 if (left->rb_subtree_gap >= length) { 1803 vma = left; 1804 continue; 1805 } 1806 } 1807 1808 /* Go back up the rbtree to find next candidate node */ 1809 while (true) { 1810 struct rb_node *prev = &vma->vm_rb; 1811 if (!rb_parent(prev)) 1812 return -ENOMEM; 1813 vma = rb_entry(rb_parent(prev), 1814 struct vm_area_struct, vm_rb); 1815 if (prev == vma->vm_rb.rb_right) { 1816 gap_start = vma->vm_prev ? 1817 vma->vm_prev->vm_end : 0; 1818 goto check_current; 1819 } 1820 } 1821 } 1822 1823 found: 1824 /* We found a suitable gap. Clip it with the original high_limit. */ 1825 if (gap_end > info->high_limit) 1826 gap_end = info->high_limit; 1827 1828 found_highest: 1829 /* Compute highest gap address at the desired alignment */ 1830 gap_end -= info->length; 1831 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1832 1833 VM_BUG_ON(gap_end < info->low_limit); 1834 VM_BUG_ON(gap_end < gap_start); 1835 return gap_end; 1836 } 1837 1838 /* Get an address range which is currently unmapped. 1839 * For shmat() with addr=0. 1840 * 1841 * Ugly calling convention alert: 1842 * Return value with the low bits set means error value, 1843 * ie 1844 * if (ret & ~PAGE_MASK) 1845 * error = ret; 1846 * 1847 * This function "knows" that -ENOMEM has the bits set. 1848 */ 1849 #ifndef HAVE_ARCH_UNMAPPED_AREA 1850 unsigned long 1851 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1852 unsigned long len, unsigned long pgoff, unsigned long flags) 1853 { 1854 struct mm_struct *mm = current->mm; 1855 struct vm_area_struct *vma; 1856 struct vm_unmapped_area_info info; 1857 1858 if (len > TASK_SIZE) 1859 return -ENOMEM; 1860 1861 if (flags & MAP_FIXED) 1862 return addr; 1863 1864 if (addr) { 1865 addr = PAGE_ALIGN(addr); 1866 vma = find_vma(mm, addr); 1867 if (TASK_SIZE - len >= addr && 1868 (!vma || addr + len <= vma->vm_start)) 1869 return addr; 1870 } 1871 1872 info.flags = 0; 1873 info.length = len; 1874 info.low_limit = TASK_UNMAPPED_BASE; 1875 info.high_limit = TASK_SIZE; 1876 info.align_mask = 0; 1877 return vm_unmapped_area(&info); 1878 } 1879 #endif 1880 1881 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1882 { 1883 /* 1884 * Is this a new hole at the lowest possible address? 1885 */ 1886 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) 1887 mm->free_area_cache = addr; 1888 } 1889 1890 /* 1891 * This mmap-allocator allocates new areas top-down from below the 1892 * stack's low limit (the base): 1893 */ 1894 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1895 unsigned long 1896 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1897 const unsigned long len, const unsigned long pgoff, 1898 const unsigned long flags) 1899 { 1900 struct vm_area_struct *vma; 1901 struct mm_struct *mm = current->mm; 1902 unsigned long addr = addr0; 1903 struct vm_unmapped_area_info info; 1904 1905 /* requested length too big for entire address space */ 1906 if (len > TASK_SIZE) 1907 return -ENOMEM; 1908 1909 if (flags & MAP_FIXED) 1910 return addr; 1911 1912 /* requesting a specific address */ 1913 if (addr) { 1914 addr = PAGE_ALIGN(addr); 1915 vma = find_vma(mm, addr); 1916 if (TASK_SIZE - len >= addr && 1917 (!vma || addr + len <= vma->vm_start)) 1918 return addr; 1919 } 1920 1921 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1922 info.length = len; 1923 info.low_limit = PAGE_SIZE; 1924 info.high_limit = mm->mmap_base; 1925 info.align_mask = 0; 1926 addr = vm_unmapped_area(&info); 1927 1928 /* 1929 * A failed mmap() very likely causes application failure, 1930 * so fall back to the bottom-up function here. This scenario 1931 * can happen with large stack limits and large mmap() 1932 * allocations. 1933 */ 1934 if (addr & ~PAGE_MASK) { 1935 VM_BUG_ON(addr != -ENOMEM); 1936 info.flags = 0; 1937 info.low_limit = TASK_UNMAPPED_BASE; 1938 info.high_limit = TASK_SIZE; 1939 addr = vm_unmapped_area(&info); 1940 } 1941 1942 return addr; 1943 } 1944 #endif 1945 1946 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1947 { 1948 /* 1949 * Is this a new hole at the highest possible address? 1950 */ 1951 if (addr > mm->free_area_cache) 1952 mm->free_area_cache = addr; 1953 1954 /* dont allow allocations above current base */ 1955 if (mm->free_area_cache > mm->mmap_base) 1956 mm->free_area_cache = mm->mmap_base; 1957 } 1958 1959 unsigned long 1960 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1961 unsigned long pgoff, unsigned long flags) 1962 { 1963 unsigned long (*get_area)(struct file *, unsigned long, 1964 unsigned long, unsigned long, unsigned long); 1965 1966 unsigned long error = arch_mmap_check(addr, len, flags); 1967 if (error) 1968 return error; 1969 1970 /* Careful about overflows.. */ 1971 if (len > TASK_SIZE) 1972 return -ENOMEM; 1973 1974 get_area = current->mm->get_unmapped_area; 1975 if (file && file->f_op && file->f_op->get_unmapped_area) 1976 get_area = file->f_op->get_unmapped_area; 1977 addr = get_area(file, addr, len, pgoff, flags); 1978 if (IS_ERR_VALUE(addr)) 1979 return addr; 1980 1981 if (addr > TASK_SIZE - len) 1982 return -ENOMEM; 1983 if (addr & ~PAGE_MASK) 1984 return -EINVAL; 1985 1986 addr = arch_rebalance_pgtables(addr, len); 1987 error = security_mmap_addr(addr); 1988 return error ? error : addr; 1989 } 1990 1991 EXPORT_SYMBOL(get_unmapped_area); 1992 1993 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1994 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1995 { 1996 struct vm_area_struct *vma = NULL; 1997 1998 /* Check the cache first. */ 1999 /* (Cache hit rate is typically around 35%.) */ 2000 vma = ACCESS_ONCE(mm->mmap_cache); 2001 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 2002 struct rb_node *rb_node; 2003 2004 rb_node = mm->mm_rb.rb_node; 2005 vma = NULL; 2006 2007 while (rb_node) { 2008 struct vm_area_struct *vma_tmp; 2009 2010 vma_tmp = rb_entry(rb_node, 2011 struct vm_area_struct, vm_rb); 2012 2013 if (vma_tmp->vm_end > addr) { 2014 vma = vma_tmp; 2015 if (vma_tmp->vm_start <= addr) 2016 break; 2017 rb_node = rb_node->rb_left; 2018 } else 2019 rb_node = rb_node->rb_right; 2020 } 2021 if (vma) 2022 mm->mmap_cache = vma; 2023 } 2024 return vma; 2025 } 2026 2027 EXPORT_SYMBOL(find_vma); 2028 2029 /* 2030 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2031 */ 2032 struct vm_area_struct * 2033 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2034 struct vm_area_struct **pprev) 2035 { 2036 struct vm_area_struct *vma; 2037 2038 vma = find_vma(mm, addr); 2039 if (vma) { 2040 *pprev = vma->vm_prev; 2041 } else { 2042 struct rb_node *rb_node = mm->mm_rb.rb_node; 2043 *pprev = NULL; 2044 while (rb_node) { 2045 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2046 rb_node = rb_node->rb_right; 2047 } 2048 } 2049 return vma; 2050 } 2051 2052 /* 2053 * Verify that the stack growth is acceptable and 2054 * update accounting. This is shared with both the 2055 * grow-up and grow-down cases. 2056 */ 2057 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2058 { 2059 struct mm_struct *mm = vma->vm_mm; 2060 struct rlimit *rlim = current->signal->rlim; 2061 unsigned long new_start; 2062 2063 /* address space limit tests */ 2064 if (!may_expand_vm(mm, grow)) 2065 return -ENOMEM; 2066 2067 /* Stack limit test */ 2068 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2069 return -ENOMEM; 2070 2071 /* mlock limit tests */ 2072 if (vma->vm_flags & VM_LOCKED) { 2073 unsigned long locked; 2074 unsigned long limit; 2075 locked = mm->locked_vm + grow; 2076 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2077 limit >>= PAGE_SHIFT; 2078 if (locked > limit && !capable(CAP_IPC_LOCK)) 2079 return -ENOMEM; 2080 } 2081 2082 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2083 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2084 vma->vm_end - size; 2085 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2086 return -EFAULT; 2087 2088 /* 2089 * Overcommit.. This must be the final test, as it will 2090 * update security statistics. 2091 */ 2092 if (security_vm_enough_memory_mm(mm, grow)) 2093 return -ENOMEM; 2094 2095 /* Ok, everything looks good - let it rip */ 2096 if (vma->vm_flags & VM_LOCKED) 2097 mm->locked_vm += grow; 2098 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 2099 return 0; 2100 } 2101 2102 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2103 /* 2104 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2105 * vma is the last one with address > vma->vm_end. Have to extend vma. 2106 */ 2107 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2108 { 2109 int error; 2110 2111 if (!(vma->vm_flags & VM_GROWSUP)) 2112 return -EFAULT; 2113 2114 /* 2115 * We must make sure the anon_vma is allocated 2116 * so that the anon_vma locking is not a noop. 2117 */ 2118 if (unlikely(anon_vma_prepare(vma))) 2119 return -ENOMEM; 2120 vma_lock_anon_vma(vma); 2121 2122 /* 2123 * vma->vm_start/vm_end cannot change under us because the caller 2124 * is required to hold the mmap_sem in read mode. We need the 2125 * anon_vma lock to serialize against concurrent expand_stacks. 2126 * Also guard against wrapping around to address 0. 2127 */ 2128 if (address < PAGE_ALIGN(address+4)) 2129 address = PAGE_ALIGN(address+4); 2130 else { 2131 vma_unlock_anon_vma(vma); 2132 return -ENOMEM; 2133 } 2134 error = 0; 2135 2136 /* Somebody else might have raced and expanded it already */ 2137 if (address > vma->vm_end) { 2138 unsigned long size, grow; 2139 2140 size = address - vma->vm_start; 2141 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2142 2143 error = -ENOMEM; 2144 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2145 error = acct_stack_growth(vma, size, grow); 2146 if (!error) { 2147 /* 2148 * vma_gap_update() doesn't support concurrent 2149 * updates, but we only hold a shared mmap_sem 2150 * lock here, so we need to protect against 2151 * concurrent vma expansions. 2152 * vma_lock_anon_vma() doesn't help here, as 2153 * we don't guarantee that all growable vmas 2154 * in a mm share the same root anon vma. 2155 * So, we reuse mm->page_table_lock to guard 2156 * against concurrent vma expansions. 2157 */ 2158 spin_lock(&vma->vm_mm->page_table_lock); 2159 anon_vma_interval_tree_pre_update_vma(vma); 2160 vma->vm_end = address; 2161 anon_vma_interval_tree_post_update_vma(vma); 2162 if (vma->vm_next) 2163 vma_gap_update(vma->vm_next); 2164 else 2165 vma->vm_mm->highest_vm_end = address; 2166 spin_unlock(&vma->vm_mm->page_table_lock); 2167 2168 perf_event_mmap(vma); 2169 } 2170 } 2171 } 2172 vma_unlock_anon_vma(vma); 2173 khugepaged_enter_vma_merge(vma); 2174 validate_mm(vma->vm_mm); 2175 return error; 2176 } 2177 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2178 2179 /* 2180 * vma is the first one with address < vma->vm_start. Have to extend vma. 2181 */ 2182 int expand_downwards(struct vm_area_struct *vma, 2183 unsigned long address) 2184 { 2185 int error; 2186 2187 /* 2188 * We must make sure the anon_vma is allocated 2189 * so that the anon_vma locking is not a noop. 2190 */ 2191 if (unlikely(anon_vma_prepare(vma))) 2192 return -ENOMEM; 2193 2194 address &= PAGE_MASK; 2195 error = security_mmap_addr(address); 2196 if (error) 2197 return error; 2198 2199 vma_lock_anon_vma(vma); 2200 2201 /* 2202 * vma->vm_start/vm_end cannot change under us because the caller 2203 * is required to hold the mmap_sem in read mode. We need the 2204 * anon_vma lock to serialize against concurrent expand_stacks. 2205 */ 2206 2207 /* Somebody else might have raced and expanded it already */ 2208 if (address < vma->vm_start) { 2209 unsigned long size, grow; 2210 2211 size = vma->vm_end - address; 2212 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2213 2214 error = -ENOMEM; 2215 if (grow <= vma->vm_pgoff) { 2216 error = acct_stack_growth(vma, size, grow); 2217 if (!error) { 2218 /* 2219 * vma_gap_update() doesn't support concurrent 2220 * updates, but we only hold a shared mmap_sem 2221 * lock here, so we need to protect against 2222 * concurrent vma expansions. 2223 * vma_lock_anon_vma() doesn't help here, as 2224 * we don't guarantee that all growable vmas 2225 * in a mm share the same root anon vma. 2226 * So, we reuse mm->page_table_lock to guard 2227 * against concurrent vma expansions. 2228 */ 2229 spin_lock(&vma->vm_mm->page_table_lock); 2230 anon_vma_interval_tree_pre_update_vma(vma); 2231 vma->vm_start = address; 2232 vma->vm_pgoff -= grow; 2233 anon_vma_interval_tree_post_update_vma(vma); 2234 vma_gap_update(vma); 2235 spin_unlock(&vma->vm_mm->page_table_lock); 2236 2237 perf_event_mmap(vma); 2238 } 2239 } 2240 } 2241 vma_unlock_anon_vma(vma); 2242 khugepaged_enter_vma_merge(vma); 2243 validate_mm(vma->vm_mm); 2244 return error; 2245 } 2246 2247 /* 2248 * Note how expand_stack() refuses to expand the stack all the way to 2249 * abut the next virtual mapping, *unless* that mapping itself is also 2250 * a stack mapping. We want to leave room for a guard page, after all 2251 * (the guard page itself is not added here, that is done by the 2252 * actual page faulting logic) 2253 * 2254 * This matches the behavior of the guard page logic (see mm/memory.c: 2255 * check_stack_guard_page()), which only allows the guard page to be 2256 * removed under these circumstances. 2257 */ 2258 #ifdef CONFIG_STACK_GROWSUP 2259 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2260 { 2261 struct vm_area_struct *next; 2262 2263 address &= PAGE_MASK; 2264 next = vma->vm_next; 2265 if (next && next->vm_start == address + PAGE_SIZE) { 2266 if (!(next->vm_flags & VM_GROWSUP)) 2267 return -ENOMEM; 2268 } 2269 return expand_upwards(vma, address); 2270 } 2271 2272 struct vm_area_struct * 2273 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2274 { 2275 struct vm_area_struct *vma, *prev; 2276 2277 addr &= PAGE_MASK; 2278 vma = find_vma_prev(mm, addr, &prev); 2279 if (vma && (vma->vm_start <= addr)) 2280 return vma; 2281 if (!prev || expand_stack(prev, addr)) 2282 return NULL; 2283 if (prev->vm_flags & VM_LOCKED) 2284 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL); 2285 return prev; 2286 } 2287 #else 2288 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2289 { 2290 struct vm_area_struct *prev; 2291 2292 address &= PAGE_MASK; 2293 prev = vma->vm_prev; 2294 if (prev && prev->vm_end == address) { 2295 if (!(prev->vm_flags & VM_GROWSDOWN)) 2296 return -ENOMEM; 2297 } 2298 return expand_downwards(vma, address); 2299 } 2300 2301 struct vm_area_struct * 2302 find_extend_vma(struct mm_struct * mm, unsigned long addr) 2303 { 2304 struct vm_area_struct * vma; 2305 unsigned long start; 2306 2307 addr &= PAGE_MASK; 2308 vma = find_vma(mm,addr); 2309 if (!vma) 2310 return NULL; 2311 if (vma->vm_start <= addr) 2312 return vma; 2313 if (!(vma->vm_flags & VM_GROWSDOWN)) 2314 return NULL; 2315 start = vma->vm_start; 2316 if (expand_stack(vma, addr)) 2317 return NULL; 2318 if (vma->vm_flags & VM_LOCKED) 2319 __mlock_vma_pages_range(vma, addr, start, NULL); 2320 return vma; 2321 } 2322 #endif 2323 2324 /* 2325 * Ok - we have the memory areas we should free on the vma list, 2326 * so release them, and do the vma updates. 2327 * 2328 * Called with the mm semaphore held. 2329 */ 2330 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2331 { 2332 unsigned long nr_accounted = 0; 2333 2334 /* Update high watermark before we lower total_vm */ 2335 update_hiwater_vm(mm); 2336 do { 2337 long nrpages = vma_pages(vma); 2338 2339 if (vma->vm_flags & VM_ACCOUNT) 2340 nr_accounted += nrpages; 2341 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 2342 vma = remove_vma(vma); 2343 } while (vma); 2344 vm_unacct_memory(nr_accounted); 2345 validate_mm(mm); 2346 } 2347 2348 /* 2349 * Get rid of page table information in the indicated region. 2350 * 2351 * Called with the mm semaphore held. 2352 */ 2353 static void unmap_region(struct mm_struct *mm, 2354 struct vm_area_struct *vma, struct vm_area_struct *prev, 2355 unsigned long start, unsigned long end) 2356 { 2357 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 2358 struct mmu_gather tlb; 2359 2360 lru_add_drain(); 2361 tlb_gather_mmu(&tlb, mm, 0); 2362 update_hiwater_rss(mm); 2363 unmap_vmas(&tlb, vma, start, end); 2364 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2365 next ? next->vm_start : USER_PGTABLES_CEILING); 2366 tlb_finish_mmu(&tlb, start, end); 2367 } 2368 2369 /* 2370 * Create a list of vma's touched by the unmap, removing them from the mm's 2371 * vma list as we go.. 2372 */ 2373 static void 2374 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2375 struct vm_area_struct *prev, unsigned long end) 2376 { 2377 struct vm_area_struct **insertion_point; 2378 struct vm_area_struct *tail_vma = NULL; 2379 unsigned long addr; 2380 2381 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2382 vma->vm_prev = NULL; 2383 do { 2384 vma_rb_erase(vma, &mm->mm_rb); 2385 mm->map_count--; 2386 tail_vma = vma; 2387 vma = vma->vm_next; 2388 } while (vma && vma->vm_start < end); 2389 *insertion_point = vma; 2390 if (vma) { 2391 vma->vm_prev = prev; 2392 vma_gap_update(vma); 2393 } else 2394 mm->highest_vm_end = prev ? prev->vm_end : 0; 2395 tail_vma->vm_next = NULL; 2396 if (mm->unmap_area == arch_unmap_area) 2397 addr = prev ? prev->vm_end : mm->mmap_base; 2398 else 2399 addr = vma ? vma->vm_start : mm->mmap_base; 2400 mm->unmap_area(mm, addr); 2401 mm->mmap_cache = NULL; /* Kill the cache. */ 2402 } 2403 2404 /* 2405 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2406 * munmap path where it doesn't make sense to fail. 2407 */ 2408 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 2409 unsigned long addr, int new_below) 2410 { 2411 struct mempolicy *pol; 2412 struct vm_area_struct *new; 2413 int err = -ENOMEM; 2414 2415 if (is_vm_hugetlb_page(vma) && (addr & 2416 ~(huge_page_mask(hstate_vma(vma))))) 2417 return -EINVAL; 2418 2419 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2420 if (!new) 2421 goto out_err; 2422 2423 /* most fields are the same, copy all, and then fixup */ 2424 *new = *vma; 2425 2426 INIT_LIST_HEAD(&new->anon_vma_chain); 2427 2428 if (new_below) 2429 new->vm_end = addr; 2430 else { 2431 new->vm_start = addr; 2432 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2433 } 2434 2435 pol = mpol_dup(vma_policy(vma)); 2436 if (IS_ERR(pol)) { 2437 err = PTR_ERR(pol); 2438 goto out_free_vma; 2439 } 2440 vma_set_policy(new, pol); 2441 2442 if (anon_vma_clone(new, vma)) 2443 goto out_free_mpol; 2444 2445 if (new->vm_file) 2446 get_file(new->vm_file); 2447 2448 if (new->vm_ops && new->vm_ops->open) 2449 new->vm_ops->open(new); 2450 2451 if (new_below) 2452 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2453 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2454 else 2455 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2456 2457 /* Success. */ 2458 if (!err) 2459 return 0; 2460 2461 /* Clean everything up if vma_adjust failed. */ 2462 if (new->vm_ops && new->vm_ops->close) 2463 new->vm_ops->close(new); 2464 if (new->vm_file) 2465 fput(new->vm_file); 2466 unlink_anon_vmas(new); 2467 out_free_mpol: 2468 mpol_put(pol); 2469 out_free_vma: 2470 kmem_cache_free(vm_area_cachep, new); 2471 out_err: 2472 return err; 2473 } 2474 2475 /* 2476 * Split a vma into two pieces at address 'addr', a new vma is allocated 2477 * either for the first part or the tail. 2478 */ 2479 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2480 unsigned long addr, int new_below) 2481 { 2482 if (mm->map_count >= sysctl_max_map_count) 2483 return -ENOMEM; 2484 2485 return __split_vma(mm, vma, addr, new_below); 2486 } 2487 2488 /* Munmap is split into 2 main parts -- this part which finds 2489 * what needs doing, and the areas themselves, which do the 2490 * work. This now handles partial unmappings. 2491 * Jeremy Fitzhardinge <jeremy@goop.org> 2492 */ 2493 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2494 { 2495 unsigned long end; 2496 struct vm_area_struct *vma, *prev, *last; 2497 2498 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2499 return -EINVAL; 2500 2501 if ((len = PAGE_ALIGN(len)) == 0) 2502 return -EINVAL; 2503 2504 /* Find the first overlapping VMA */ 2505 vma = find_vma(mm, start); 2506 if (!vma) 2507 return 0; 2508 prev = vma->vm_prev; 2509 /* we have start < vma->vm_end */ 2510 2511 /* if it doesn't overlap, we have nothing.. */ 2512 end = start + len; 2513 if (vma->vm_start >= end) 2514 return 0; 2515 2516 /* 2517 * If we need to split any vma, do it now to save pain later. 2518 * 2519 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2520 * unmapped vm_area_struct will remain in use: so lower split_vma 2521 * places tmp vma above, and higher split_vma places tmp vma below. 2522 */ 2523 if (start > vma->vm_start) { 2524 int error; 2525 2526 /* 2527 * Make sure that map_count on return from munmap() will 2528 * not exceed its limit; but let map_count go just above 2529 * its limit temporarily, to help free resources as expected. 2530 */ 2531 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2532 return -ENOMEM; 2533 2534 error = __split_vma(mm, vma, start, 0); 2535 if (error) 2536 return error; 2537 prev = vma; 2538 } 2539 2540 /* Does it split the last one? */ 2541 last = find_vma(mm, end); 2542 if (last && end > last->vm_start) { 2543 int error = __split_vma(mm, last, end, 1); 2544 if (error) 2545 return error; 2546 } 2547 vma = prev? prev->vm_next: mm->mmap; 2548 2549 /* 2550 * unlock any mlock()ed ranges before detaching vmas 2551 */ 2552 if (mm->locked_vm) { 2553 struct vm_area_struct *tmp = vma; 2554 while (tmp && tmp->vm_start < end) { 2555 if (tmp->vm_flags & VM_LOCKED) { 2556 mm->locked_vm -= vma_pages(tmp); 2557 munlock_vma_pages_all(tmp); 2558 } 2559 tmp = tmp->vm_next; 2560 } 2561 } 2562 2563 /* 2564 * Remove the vma's, and unmap the actual pages 2565 */ 2566 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2567 unmap_region(mm, vma, prev, start, end); 2568 2569 /* Fix up all other VM information */ 2570 remove_vma_list(mm, vma); 2571 2572 return 0; 2573 } 2574 2575 int vm_munmap(unsigned long start, size_t len) 2576 { 2577 int ret; 2578 struct mm_struct *mm = current->mm; 2579 2580 down_write(&mm->mmap_sem); 2581 ret = do_munmap(mm, start, len); 2582 up_write(&mm->mmap_sem); 2583 return ret; 2584 } 2585 EXPORT_SYMBOL(vm_munmap); 2586 2587 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2588 { 2589 profile_munmap(addr); 2590 return vm_munmap(addr, len); 2591 } 2592 2593 static inline void verify_mm_writelocked(struct mm_struct *mm) 2594 { 2595 #ifdef CONFIG_DEBUG_VM 2596 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2597 WARN_ON(1); 2598 up_read(&mm->mmap_sem); 2599 } 2600 #endif 2601 } 2602 2603 /* 2604 * this is really a simplified "do_mmap". it only handles 2605 * anonymous maps. eventually we may be able to do some 2606 * brk-specific accounting here. 2607 */ 2608 static unsigned long do_brk(unsigned long addr, unsigned long len) 2609 { 2610 struct mm_struct * mm = current->mm; 2611 struct vm_area_struct * vma, * prev; 2612 unsigned long flags; 2613 struct rb_node ** rb_link, * rb_parent; 2614 pgoff_t pgoff = addr >> PAGE_SHIFT; 2615 int error; 2616 2617 len = PAGE_ALIGN(len); 2618 if (!len) 2619 return addr; 2620 2621 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2622 2623 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2624 if (error & ~PAGE_MASK) 2625 return error; 2626 2627 /* 2628 * mlock MCL_FUTURE? 2629 */ 2630 if (mm->def_flags & VM_LOCKED) { 2631 unsigned long locked, lock_limit; 2632 locked = len >> PAGE_SHIFT; 2633 locked += mm->locked_vm; 2634 lock_limit = rlimit(RLIMIT_MEMLOCK); 2635 lock_limit >>= PAGE_SHIFT; 2636 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2637 return -EAGAIN; 2638 } 2639 2640 /* 2641 * mm->mmap_sem is required to protect against another thread 2642 * changing the mappings in case we sleep. 2643 */ 2644 verify_mm_writelocked(mm); 2645 2646 /* 2647 * Clear old maps. this also does some error checking for us 2648 */ 2649 munmap_back: 2650 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 2651 if (do_munmap(mm, addr, len)) 2652 return -ENOMEM; 2653 goto munmap_back; 2654 } 2655 2656 /* Check against address space limits *after* clearing old maps... */ 2657 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2658 return -ENOMEM; 2659 2660 if (mm->map_count > sysctl_max_map_count) 2661 return -ENOMEM; 2662 2663 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2664 return -ENOMEM; 2665 2666 /* Can we just expand an old private anonymous mapping? */ 2667 vma = vma_merge(mm, prev, addr, addr + len, flags, 2668 NULL, NULL, pgoff, NULL); 2669 if (vma) 2670 goto out; 2671 2672 /* 2673 * create a vma struct for an anonymous mapping 2674 */ 2675 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2676 if (!vma) { 2677 vm_unacct_memory(len >> PAGE_SHIFT); 2678 return -ENOMEM; 2679 } 2680 2681 INIT_LIST_HEAD(&vma->anon_vma_chain); 2682 vma->vm_mm = mm; 2683 vma->vm_start = addr; 2684 vma->vm_end = addr + len; 2685 vma->vm_pgoff = pgoff; 2686 vma->vm_flags = flags; 2687 vma->vm_page_prot = vm_get_page_prot(flags); 2688 vma_link(mm, vma, prev, rb_link, rb_parent); 2689 out: 2690 perf_event_mmap(vma); 2691 mm->total_vm += len >> PAGE_SHIFT; 2692 if (flags & VM_LOCKED) 2693 mm->locked_vm += (len >> PAGE_SHIFT); 2694 return addr; 2695 } 2696 2697 unsigned long vm_brk(unsigned long addr, unsigned long len) 2698 { 2699 struct mm_struct *mm = current->mm; 2700 unsigned long ret; 2701 bool populate; 2702 2703 down_write(&mm->mmap_sem); 2704 ret = do_brk(addr, len); 2705 populate = ((mm->def_flags & VM_LOCKED) != 0); 2706 up_write(&mm->mmap_sem); 2707 if (populate) 2708 mm_populate(addr, len); 2709 return ret; 2710 } 2711 EXPORT_SYMBOL(vm_brk); 2712 2713 /* Release all mmaps. */ 2714 void exit_mmap(struct mm_struct *mm) 2715 { 2716 struct mmu_gather tlb; 2717 struct vm_area_struct *vma; 2718 unsigned long nr_accounted = 0; 2719 2720 /* mm's last user has gone, and its about to be pulled down */ 2721 mmu_notifier_release(mm); 2722 2723 if (mm->locked_vm) { 2724 vma = mm->mmap; 2725 while (vma) { 2726 if (vma->vm_flags & VM_LOCKED) 2727 munlock_vma_pages_all(vma); 2728 vma = vma->vm_next; 2729 } 2730 } 2731 2732 arch_exit_mmap(mm); 2733 2734 vma = mm->mmap; 2735 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2736 return; 2737 2738 lru_add_drain(); 2739 flush_cache_mm(mm); 2740 tlb_gather_mmu(&tlb, mm, 1); 2741 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2742 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2743 unmap_vmas(&tlb, vma, 0, -1); 2744 2745 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2746 tlb_finish_mmu(&tlb, 0, -1); 2747 2748 /* 2749 * Walk the list again, actually closing and freeing it, 2750 * with preemption enabled, without holding any MM locks. 2751 */ 2752 while (vma) { 2753 if (vma->vm_flags & VM_ACCOUNT) 2754 nr_accounted += vma_pages(vma); 2755 vma = remove_vma(vma); 2756 } 2757 vm_unacct_memory(nr_accounted); 2758 2759 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2760 } 2761 2762 /* Insert vm structure into process list sorted by address 2763 * and into the inode's i_mmap tree. If vm_file is non-NULL 2764 * then i_mmap_mutex is taken here. 2765 */ 2766 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2767 { 2768 struct vm_area_struct *prev; 2769 struct rb_node **rb_link, *rb_parent; 2770 2771 /* 2772 * The vm_pgoff of a purely anonymous vma should be irrelevant 2773 * until its first write fault, when page's anon_vma and index 2774 * are set. But now set the vm_pgoff it will almost certainly 2775 * end up with (unless mremap moves it elsewhere before that 2776 * first wfault), so /proc/pid/maps tells a consistent story. 2777 * 2778 * By setting it to reflect the virtual start address of the 2779 * vma, merges and splits can happen in a seamless way, just 2780 * using the existing file pgoff checks and manipulations. 2781 * Similarly in do_mmap_pgoff and in do_brk. 2782 */ 2783 if (!vma->vm_file) { 2784 BUG_ON(vma->anon_vma); 2785 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2786 } 2787 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2788 &prev, &rb_link, &rb_parent)) 2789 return -ENOMEM; 2790 if ((vma->vm_flags & VM_ACCOUNT) && 2791 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2792 return -ENOMEM; 2793 2794 vma_link(mm, vma, prev, rb_link, rb_parent); 2795 return 0; 2796 } 2797 2798 /* 2799 * Copy the vma structure to a new location in the same mm, 2800 * prior to moving page table entries, to effect an mremap move. 2801 */ 2802 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2803 unsigned long addr, unsigned long len, pgoff_t pgoff, 2804 bool *need_rmap_locks) 2805 { 2806 struct vm_area_struct *vma = *vmap; 2807 unsigned long vma_start = vma->vm_start; 2808 struct mm_struct *mm = vma->vm_mm; 2809 struct vm_area_struct *new_vma, *prev; 2810 struct rb_node **rb_link, *rb_parent; 2811 struct mempolicy *pol; 2812 bool faulted_in_anon_vma = true; 2813 2814 /* 2815 * If anonymous vma has not yet been faulted, update new pgoff 2816 * to match new location, to increase its chance of merging. 2817 */ 2818 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2819 pgoff = addr >> PAGE_SHIFT; 2820 faulted_in_anon_vma = false; 2821 } 2822 2823 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2824 return NULL; /* should never get here */ 2825 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2826 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2827 if (new_vma) { 2828 /* 2829 * Source vma may have been merged into new_vma 2830 */ 2831 if (unlikely(vma_start >= new_vma->vm_start && 2832 vma_start < new_vma->vm_end)) { 2833 /* 2834 * The only way we can get a vma_merge with 2835 * self during an mremap is if the vma hasn't 2836 * been faulted in yet and we were allowed to 2837 * reset the dst vma->vm_pgoff to the 2838 * destination address of the mremap to allow 2839 * the merge to happen. mremap must change the 2840 * vm_pgoff linearity between src and dst vmas 2841 * (in turn preventing a vma_merge) to be 2842 * safe. It is only safe to keep the vm_pgoff 2843 * linear if there are no pages mapped yet. 2844 */ 2845 VM_BUG_ON(faulted_in_anon_vma); 2846 *vmap = vma = new_vma; 2847 } 2848 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2849 } else { 2850 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2851 if (new_vma) { 2852 *new_vma = *vma; 2853 new_vma->vm_start = addr; 2854 new_vma->vm_end = addr + len; 2855 new_vma->vm_pgoff = pgoff; 2856 pol = mpol_dup(vma_policy(vma)); 2857 if (IS_ERR(pol)) 2858 goto out_free_vma; 2859 vma_set_policy(new_vma, pol); 2860 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2861 if (anon_vma_clone(new_vma, vma)) 2862 goto out_free_mempol; 2863 if (new_vma->vm_file) 2864 get_file(new_vma->vm_file); 2865 if (new_vma->vm_ops && new_vma->vm_ops->open) 2866 new_vma->vm_ops->open(new_vma); 2867 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2868 *need_rmap_locks = false; 2869 } 2870 } 2871 return new_vma; 2872 2873 out_free_mempol: 2874 mpol_put(pol); 2875 out_free_vma: 2876 kmem_cache_free(vm_area_cachep, new_vma); 2877 return NULL; 2878 } 2879 2880 /* 2881 * Return true if the calling process may expand its vm space by the passed 2882 * number of pages 2883 */ 2884 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2885 { 2886 unsigned long cur = mm->total_vm; /* pages */ 2887 unsigned long lim; 2888 2889 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2890 2891 if (cur + npages > lim) 2892 return 0; 2893 return 1; 2894 } 2895 2896 2897 static int special_mapping_fault(struct vm_area_struct *vma, 2898 struct vm_fault *vmf) 2899 { 2900 pgoff_t pgoff; 2901 struct page **pages; 2902 2903 /* 2904 * special mappings have no vm_file, and in that case, the mm 2905 * uses vm_pgoff internally. So we have to subtract it from here. 2906 * We are allowed to do this because we are the mm; do not copy 2907 * this code into drivers! 2908 */ 2909 pgoff = vmf->pgoff - vma->vm_pgoff; 2910 2911 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2912 pgoff--; 2913 2914 if (*pages) { 2915 struct page *page = *pages; 2916 get_page(page); 2917 vmf->page = page; 2918 return 0; 2919 } 2920 2921 return VM_FAULT_SIGBUS; 2922 } 2923 2924 /* 2925 * Having a close hook prevents vma merging regardless of flags. 2926 */ 2927 static void special_mapping_close(struct vm_area_struct *vma) 2928 { 2929 } 2930 2931 static const struct vm_operations_struct special_mapping_vmops = { 2932 .close = special_mapping_close, 2933 .fault = special_mapping_fault, 2934 }; 2935 2936 /* 2937 * Called with mm->mmap_sem held for writing. 2938 * Insert a new vma covering the given region, with the given flags. 2939 * Its pages are supplied by the given array of struct page *. 2940 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2941 * The region past the last page supplied will always produce SIGBUS. 2942 * The array pointer and the pages it points to are assumed to stay alive 2943 * for as long as this mapping might exist. 2944 */ 2945 int install_special_mapping(struct mm_struct *mm, 2946 unsigned long addr, unsigned long len, 2947 unsigned long vm_flags, struct page **pages) 2948 { 2949 int ret; 2950 struct vm_area_struct *vma; 2951 2952 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2953 if (unlikely(vma == NULL)) 2954 return -ENOMEM; 2955 2956 INIT_LIST_HEAD(&vma->anon_vma_chain); 2957 vma->vm_mm = mm; 2958 vma->vm_start = addr; 2959 vma->vm_end = addr + len; 2960 2961 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2962 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2963 2964 vma->vm_ops = &special_mapping_vmops; 2965 vma->vm_private_data = pages; 2966 2967 ret = insert_vm_struct(mm, vma); 2968 if (ret) 2969 goto out; 2970 2971 mm->total_vm += len >> PAGE_SHIFT; 2972 2973 perf_event_mmap(vma); 2974 2975 return 0; 2976 2977 out: 2978 kmem_cache_free(vm_area_cachep, vma); 2979 return ret; 2980 } 2981 2982 static DEFINE_MUTEX(mm_all_locks_mutex); 2983 2984 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2985 { 2986 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 2987 /* 2988 * The LSB of head.next can't change from under us 2989 * because we hold the mm_all_locks_mutex. 2990 */ 2991 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 2992 /* 2993 * We can safely modify head.next after taking the 2994 * anon_vma->root->rwsem. If some other vma in this mm shares 2995 * the same anon_vma we won't take it again. 2996 * 2997 * No need of atomic instructions here, head.next 2998 * can't change from under us thanks to the 2999 * anon_vma->root->rwsem. 3000 */ 3001 if (__test_and_set_bit(0, (unsigned long *) 3002 &anon_vma->root->rb_root.rb_node)) 3003 BUG(); 3004 } 3005 } 3006 3007 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3008 { 3009 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3010 /* 3011 * AS_MM_ALL_LOCKS can't change from under us because 3012 * we hold the mm_all_locks_mutex. 3013 * 3014 * Operations on ->flags have to be atomic because 3015 * even if AS_MM_ALL_LOCKS is stable thanks to the 3016 * mm_all_locks_mutex, there may be other cpus 3017 * changing other bitflags in parallel to us. 3018 */ 3019 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3020 BUG(); 3021 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 3022 } 3023 } 3024 3025 /* 3026 * This operation locks against the VM for all pte/vma/mm related 3027 * operations that could ever happen on a certain mm. This includes 3028 * vmtruncate, try_to_unmap, and all page faults. 3029 * 3030 * The caller must take the mmap_sem in write mode before calling 3031 * mm_take_all_locks(). The caller isn't allowed to release the 3032 * mmap_sem until mm_drop_all_locks() returns. 3033 * 3034 * mmap_sem in write mode is required in order to block all operations 3035 * that could modify pagetables and free pages without need of 3036 * altering the vma layout (for example populate_range() with 3037 * nonlinear vmas). It's also needed in write mode to avoid new 3038 * anon_vmas to be associated with existing vmas. 3039 * 3040 * A single task can't take more than one mm_take_all_locks() in a row 3041 * or it would deadlock. 3042 * 3043 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3044 * mapping->flags avoid to take the same lock twice, if more than one 3045 * vma in this mm is backed by the same anon_vma or address_space. 3046 * 3047 * We can take all the locks in random order because the VM code 3048 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never 3049 * takes more than one of them in a row. Secondly we're protected 3050 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 3051 * 3052 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3053 * that may have to take thousand of locks. 3054 * 3055 * mm_take_all_locks() can fail if it's interrupted by signals. 3056 */ 3057 int mm_take_all_locks(struct mm_struct *mm) 3058 { 3059 struct vm_area_struct *vma; 3060 struct anon_vma_chain *avc; 3061 3062 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3063 3064 mutex_lock(&mm_all_locks_mutex); 3065 3066 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3067 if (signal_pending(current)) 3068 goto out_unlock; 3069 if (vma->vm_file && vma->vm_file->f_mapping) 3070 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3071 } 3072 3073 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3074 if (signal_pending(current)) 3075 goto out_unlock; 3076 if (vma->anon_vma) 3077 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3078 vm_lock_anon_vma(mm, avc->anon_vma); 3079 } 3080 3081 return 0; 3082 3083 out_unlock: 3084 mm_drop_all_locks(mm); 3085 return -EINTR; 3086 } 3087 3088 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3089 { 3090 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3091 /* 3092 * The LSB of head.next can't change to 0 from under 3093 * us because we hold the mm_all_locks_mutex. 3094 * 3095 * We must however clear the bitflag before unlocking 3096 * the vma so the users using the anon_vma->rb_root will 3097 * never see our bitflag. 3098 * 3099 * No need of atomic instructions here, head.next 3100 * can't change from under us until we release the 3101 * anon_vma->root->rwsem. 3102 */ 3103 if (!__test_and_clear_bit(0, (unsigned long *) 3104 &anon_vma->root->rb_root.rb_node)) 3105 BUG(); 3106 anon_vma_unlock_write(anon_vma); 3107 } 3108 } 3109 3110 static void vm_unlock_mapping(struct address_space *mapping) 3111 { 3112 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3113 /* 3114 * AS_MM_ALL_LOCKS can't change to 0 from under us 3115 * because we hold the mm_all_locks_mutex. 3116 */ 3117 mutex_unlock(&mapping->i_mmap_mutex); 3118 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3119 &mapping->flags)) 3120 BUG(); 3121 } 3122 } 3123 3124 /* 3125 * The mmap_sem cannot be released by the caller until 3126 * mm_drop_all_locks() returns. 3127 */ 3128 void mm_drop_all_locks(struct mm_struct *mm) 3129 { 3130 struct vm_area_struct *vma; 3131 struct anon_vma_chain *avc; 3132 3133 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3134 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3135 3136 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3137 if (vma->anon_vma) 3138 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3139 vm_unlock_anon_vma(avc->anon_vma); 3140 if (vma->vm_file && vma->vm_file->f_mapping) 3141 vm_unlock_mapping(vma->vm_file->f_mapping); 3142 } 3143 3144 mutex_unlock(&mm_all_locks_mutex); 3145 } 3146 3147 /* 3148 * initialise the VMA slab 3149 */ 3150 void __init mmap_init(void) 3151 { 3152 int ret; 3153 3154 ret = percpu_counter_init(&vm_committed_as, 0); 3155 VM_BUG_ON(ret); 3156 } 3157 3158 /* 3159 * Initialise sysctl_user_reserve_kbytes. 3160 * 3161 * This is intended to prevent a user from starting a single memory hogging 3162 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3163 * mode. 3164 * 3165 * The default value is min(3% of free memory, 128MB) 3166 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3167 */ 3168 static int init_user_reserve(void) 3169 { 3170 unsigned long free_kbytes; 3171 3172 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3173 3174 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3175 return 0; 3176 } 3177 module_init(init_user_reserve) 3178 3179 /* 3180 * Initialise sysctl_admin_reserve_kbytes. 3181 * 3182 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3183 * to log in and kill a memory hogging process. 3184 * 3185 * Systems with more than 256MB will reserve 8MB, enough to recover 3186 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3187 * only reserve 3% of free pages by default. 3188 */ 3189 static int init_admin_reserve(void) 3190 { 3191 unsigned long free_kbytes; 3192 3193 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3194 3195 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3196 return 0; 3197 } 3198 module_init(init_admin_reserve) 3199 3200 /* 3201 * Reinititalise user and admin reserves if memory is added or removed. 3202 * 3203 * The default user reserve max is 128MB, and the default max for the 3204 * admin reserve is 8MB. These are usually, but not always, enough to 3205 * enable recovery from a memory hogging process using login/sshd, a shell, 3206 * and tools like top. It may make sense to increase or even disable the 3207 * reserve depending on the existence of swap or variations in the recovery 3208 * tools. So, the admin may have changed them. 3209 * 3210 * If memory is added and the reserves have been eliminated or increased above 3211 * the default max, then we'll trust the admin. 3212 * 3213 * If memory is removed and there isn't enough free memory, then we 3214 * need to reset the reserves. 3215 * 3216 * Otherwise keep the reserve set by the admin. 3217 */ 3218 static int reserve_mem_notifier(struct notifier_block *nb, 3219 unsigned long action, void *data) 3220 { 3221 unsigned long tmp, free_kbytes; 3222 3223 switch (action) { 3224 case MEM_ONLINE: 3225 /* Default max is 128MB. Leave alone if modified by operator. */ 3226 tmp = sysctl_user_reserve_kbytes; 3227 if (0 < tmp && tmp < (1UL << 17)) 3228 init_user_reserve(); 3229 3230 /* Default max is 8MB. Leave alone if modified by operator. */ 3231 tmp = sysctl_admin_reserve_kbytes; 3232 if (0 < tmp && tmp < (1UL << 13)) 3233 init_admin_reserve(); 3234 3235 break; 3236 case MEM_OFFLINE: 3237 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3238 3239 if (sysctl_user_reserve_kbytes > free_kbytes) { 3240 init_user_reserve(); 3241 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3242 sysctl_user_reserve_kbytes); 3243 } 3244 3245 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3246 init_admin_reserve(); 3247 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3248 sysctl_admin_reserve_kbytes); 3249 } 3250 break; 3251 default: 3252 break; 3253 } 3254 return NOTIFY_OK; 3255 } 3256 3257 static struct notifier_block reserve_mem_nb = { 3258 .notifier_call = reserve_mem_notifier, 3259 }; 3260 3261 static int __meminit init_reserve_notifier(void) 3262 { 3263 if (register_hotmemory_notifier(&reserve_mem_nb)) 3264 printk("Failed registering memory add/remove notifier for admin reserve"); 3265 3266 return 0; 3267 } 3268 module_init(init_reserve_notifier) 3269