xref: /openbmc/linux/mm/mmap.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlb.h>
52 #include <asm/mmu_context.h>
53 
54 #include "internal.h"
55 
56 #ifndef arch_mmap_check
57 #define arch_mmap_check(addr, len, flags)	(0)
58 #endif
59 
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
69 #endif
70 
71 static bool ignore_rlimit_data;
72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
73 
74 static void unmap_region(struct mm_struct *mm,
75 		struct vm_area_struct *vma, struct vm_area_struct *prev,
76 		unsigned long start, unsigned long end);
77 
78 /* description of effects of mapping type and prot in current implementation.
79  * this is due to the limited x86 page protection hardware.  The expected
80  * behavior is in parens:
81  *
82  * map_type	prot
83  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
84  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
85  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
86  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
87  *
88  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
89  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
90  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
91  *
92  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
93  * MAP_PRIVATE:
94  *								r: (no) no
95  *								w: (no) no
96  *								x: (yes) yes
97  */
98 pgprot_t protection_map[16] __ro_after_init = {
99 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
101 };
102 
103 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
104 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
105 {
106 	return prot;
107 }
108 #endif
109 
110 pgprot_t vm_get_page_prot(unsigned long vm_flags)
111 {
112 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
113 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
114 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
115 
116 	return arch_filter_pgprot(ret);
117 }
118 EXPORT_SYMBOL(vm_get_page_prot);
119 
120 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
121 {
122 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
123 }
124 
125 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
126 void vma_set_page_prot(struct vm_area_struct *vma)
127 {
128 	unsigned long vm_flags = vma->vm_flags;
129 	pgprot_t vm_page_prot;
130 
131 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
132 	if (vma_wants_writenotify(vma, vm_page_prot)) {
133 		vm_flags &= ~VM_SHARED;
134 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
135 	}
136 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
137 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
138 }
139 
140 /*
141  * Requires inode->i_mapping->i_mmap_rwsem
142  */
143 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144 		struct file *file, struct address_space *mapping)
145 {
146 	if (vma->vm_flags & VM_DENYWRITE)
147 		atomic_inc(&file_inode(file)->i_writecount);
148 	if (vma->vm_flags & VM_SHARED)
149 		mapping_unmap_writable(mapping);
150 
151 	flush_dcache_mmap_lock(mapping);
152 	vma_interval_tree_remove(vma, &mapping->i_mmap);
153 	flush_dcache_mmap_unlock(mapping);
154 }
155 
156 /*
157  * Unlink a file-based vm structure from its interval tree, to hide
158  * vma from rmap and vmtruncate before freeing its page tables.
159  */
160 void unlink_file_vma(struct vm_area_struct *vma)
161 {
162 	struct file *file = vma->vm_file;
163 
164 	if (file) {
165 		struct address_space *mapping = file->f_mapping;
166 		i_mmap_lock_write(mapping);
167 		__remove_shared_vm_struct(vma, file, mapping);
168 		i_mmap_unlock_write(mapping);
169 	}
170 }
171 
172 /*
173  * Close a vm structure and free it, returning the next.
174  */
175 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
176 {
177 	struct vm_area_struct *next = vma->vm_next;
178 
179 	might_sleep();
180 	if (vma->vm_ops && vma->vm_ops->close)
181 		vma->vm_ops->close(vma);
182 	if (vma->vm_file)
183 		fput(vma->vm_file);
184 	mpol_put(vma_policy(vma));
185 	kmem_cache_free(vm_area_cachep, vma);
186 	return next;
187 }
188 
189 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf);
190 
191 SYSCALL_DEFINE1(brk, unsigned long, brk)
192 {
193 	unsigned long retval;
194 	unsigned long newbrk, oldbrk;
195 	struct mm_struct *mm = current->mm;
196 	struct vm_area_struct *next;
197 	unsigned long min_brk;
198 	bool populate;
199 	LIST_HEAD(uf);
200 
201 	if (down_write_killable(&mm->mmap_sem))
202 		return -EINTR;
203 
204 #ifdef CONFIG_COMPAT_BRK
205 	/*
206 	 * CONFIG_COMPAT_BRK can still be overridden by setting
207 	 * randomize_va_space to 2, which will still cause mm->start_brk
208 	 * to be arbitrarily shifted
209 	 */
210 	if (current->brk_randomized)
211 		min_brk = mm->start_brk;
212 	else
213 		min_brk = mm->end_data;
214 #else
215 	min_brk = mm->start_brk;
216 #endif
217 	if (brk < min_brk)
218 		goto out;
219 
220 	/*
221 	 * Check against rlimit here. If this check is done later after the test
222 	 * of oldbrk with newbrk then it can escape the test and let the data
223 	 * segment grow beyond its set limit the in case where the limit is
224 	 * not page aligned -Ram Gupta
225 	 */
226 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
227 			      mm->end_data, mm->start_data))
228 		goto out;
229 
230 	newbrk = PAGE_ALIGN(brk);
231 	oldbrk = PAGE_ALIGN(mm->brk);
232 	if (oldbrk == newbrk)
233 		goto set_brk;
234 
235 	/* Always allow shrinking brk. */
236 	if (brk <= mm->brk) {
237 		if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
238 			goto set_brk;
239 		goto out;
240 	}
241 
242 	/* Check against existing mmap mappings. */
243 	next = find_vma(mm, oldbrk);
244 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
245 		goto out;
246 
247 	/* Ok, looks good - let it rip. */
248 	if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
249 		goto out;
250 
251 set_brk:
252 	mm->brk = brk;
253 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
254 	up_write(&mm->mmap_sem);
255 	userfaultfd_unmap_complete(mm, &uf);
256 	if (populate)
257 		mm_populate(oldbrk, newbrk - oldbrk);
258 	return brk;
259 
260 out:
261 	retval = mm->brk;
262 	up_write(&mm->mmap_sem);
263 	return retval;
264 }
265 
266 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
267 {
268 	unsigned long max, prev_end, subtree_gap;
269 
270 	/*
271 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
272 	 * allow two stack_guard_gaps between them here, and when choosing
273 	 * an unmapped area; whereas when expanding we only require one.
274 	 * That's a little inconsistent, but keeps the code here simpler.
275 	 */
276 	max = vm_start_gap(vma);
277 	if (vma->vm_prev) {
278 		prev_end = vm_end_gap(vma->vm_prev);
279 		if (max > prev_end)
280 			max -= prev_end;
281 		else
282 			max = 0;
283 	}
284 	if (vma->vm_rb.rb_left) {
285 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
286 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
287 		if (subtree_gap > max)
288 			max = subtree_gap;
289 	}
290 	if (vma->vm_rb.rb_right) {
291 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
292 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
293 		if (subtree_gap > max)
294 			max = subtree_gap;
295 	}
296 	return max;
297 }
298 
299 #ifdef CONFIG_DEBUG_VM_RB
300 static int browse_rb(struct mm_struct *mm)
301 {
302 	struct rb_root *root = &mm->mm_rb;
303 	int i = 0, j, bug = 0;
304 	struct rb_node *nd, *pn = NULL;
305 	unsigned long prev = 0, pend = 0;
306 
307 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 		struct vm_area_struct *vma;
309 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 		if (vma->vm_start < prev) {
311 			pr_emerg("vm_start %lx < prev %lx\n",
312 				  vma->vm_start, prev);
313 			bug = 1;
314 		}
315 		if (vma->vm_start < pend) {
316 			pr_emerg("vm_start %lx < pend %lx\n",
317 				  vma->vm_start, pend);
318 			bug = 1;
319 		}
320 		if (vma->vm_start > vma->vm_end) {
321 			pr_emerg("vm_start %lx > vm_end %lx\n",
322 				  vma->vm_start, vma->vm_end);
323 			bug = 1;
324 		}
325 		spin_lock(&mm->page_table_lock);
326 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
327 			pr_emerg("free gap %lx, correct %lx\n",
328 			       vma->rb_subtree_gap,
329 			       vma_compute_subtree_gap(vma));
330 			bug = 1;
331 		}
332 		spin_unlock(&mm->page_table_lock);
333 		i++;
334 		pn = nd;
335 		prev = vma->vm_start;
336 		pend = vma->vm_end;
337 	}
338 	j = 0;
339 	for (nd = pn; nd; nd = rb_prev(nd))
340 		j++;
341 	if (i != j) {
342 		pr_emerg("backwards %d, forwards %d\n", j, i);
343 		bug = 1;
344 	}
345 	return bug ? -1 : i;
346 }
347 
348 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
349 {
350 	struct rb_node *nd;
351 
352 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
353 		struct vm_area_struct *vma;
354 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
355 		VM_BUG_ON_VMA(vma != ignore &&
356 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
357 			vma);
358 	}
359 }
360 
361 static void validate_mm(struct mm_struct *mm)
362 {
363 	int bug = 0;
364 	int i = 0;
365 	unsigned long highest_address = 0;
366 	struct vm_area_struct *vma = mm->mmap;
367 
368 	while (vma) {
369 		struct anon_vma *anon_vma = vma->anon_vma;
370 		struct anon_vma_chain *avc;
371 
372 		if (anon_vma) {
373 			anon_vma_lock_read(anon_vma);
374 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
375 				anon_vma_interval_tree_verify(avc);
376 			anon_vma_unlock_read(anon_vma);
377 		}
378 
379 		highest_address = vm_end_gap(vma);
380 		vma = vma->vm_next;
381 		i++;
382 	}
383 	if (i != mm->map_count) {
384 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
385 		bug = 1;
386 	}
387 	if (highest_address != mm->highest_vm_end) {
388 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
389 			  mm->highest_vm_end, highest_address);
390 		bug = 1;
391 	}
392 	i = browse_rb(mm);
393 	if (i != mm->map_count) {
394 		if (i != -1)
395 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
396 		bug = 1;
397 	}
398 	VM_BUG_ON_MM(bug, mm);
399 }
400 #else
401 #define validate_mm_rb(root, ignore) do { } while (0)
402 #define validate_mm(mm) do { } while (0)
403 #endif
404 
405 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
406 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
407 
408 /*
409  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
410  * vma->vm_prev->vm_end values changed, without modifying the vma's position
411  * in the rbtree.
412  */
413 static void vma_gap_update(struct vm_area_struct *vma)
414 {
415 	/*
416 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
417 	 * function that does exacltly what we want.
418 	 */
419 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
420 }
421 
422 static inline void vma_rb_insert(struct vm_area_struct *vma,
423 				 struct rb_root *root)
424 {
425 	/* All rb_subtree_gap values must be consistent prior to insertion */
426 	validate_mm_rb(root, NULL);
427 
428 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
429 }
430 
431 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
432 {
433 	/*
434 	 * Note rb_erase_augmented is a fairly large inline function,
435 	 * so make sure we instantiate it only once with our desired
436 	 * augmented rbtree callbacks.
437 	 */
438 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
439 }
440 
441 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
442 						struct rb_root *root,
443 						struct vm_area_struct *ignore)
444 {
445 	/*
446 	 * All rb_subtree_gap values must be consistent prior to erase,
447 	 * with the possible exception of the "next" vma being erased if
448 	 * next->vm_start was reduced.
449 	 */
450 	validate_mm_rb(root, ignore);
451 
452 	__vma_rb_erase(vma, root);
453 }
454 
455 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
456 					 struct rb_root *root)
457 {
458 	/*
459 	 * All rb_subtree_gap values must be consistent prior to erase,
460 	 * with the possible exception of the vma being erased.
461 	 */
462 	validate_mm_rb(root, vma);
463 
464 	__vma_rb_erase(vma, root);
465 }
466 
467 /*
468  * vma has some anon_vma assigned, and is already inserted on that
469  * anon_vma's interval trees.
470  *
471  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
472  * vma must be removed from the anon_vma's interval trees using
473  * anon_vma_interval_tree_pre_update_vma().
474  *
475  * After the update, the vma will be reinserted using
476  * anon_vma_interval_tree_post_update_vma().
477  *
478  * The entire update must be protected by exclusive mmap_sem and by
479  * the root anon_vma's mutex.
480  */
481 static inline void
482 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
483 {
484 	struct anon_vma_chain *avc;
485 
486 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
487 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
488 }
489 
490 static inline void
491 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
492 {
493 	struct anon_vma_chain *avc;
494 
495 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
496 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
497 }
498 
499 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
500 		unsigned long end, struct vm_area_struct **pprev,
501 		struct rb_node ***rb_link, struct rb_node **rb_parent)
502 {
503 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
504 
505 	__rb_link = &mm->mm_rb.rb_node;
506 	rb_prev = __rb_parent = NULL;
507 
508 	while (*__rb_link) {
509 		struct vm_area_struct *vma_tmp;
510 
511 		__rb_parent = *__rb_link;
512 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
513 
514 		if (vma_tmp->vm_end > addr) {
515 			/* Fail if an existing vma overlaps the area */
516 			if (vma_tmp->vm_start < end)
517 				return -ENOMEM;
518 			__rb_link = &__rb_parent->rb_left;
519 		} else {
520 			rb_prev = __rb_parent;
521 			__rb_link = &__rb_parent->rb_right;
522 		}
523 	}
524 
525 	*pprev = NULL;
526 	if (rb_prev)
527 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
528 	*rb_link = __rb_link;
529 	*rb_parent = __rb_parent;
530 	return 0;
531 }
532 
533 static unsigned long count_vma_pages_range(struct mm_struct *mm,
534 		unsigned long addr, unsigned long end)
535 {
536 	unsigned long nr_pages = 0;
537 	struct vm_area_struct *vma;
538 
539 	/* Find first overlaping mapping */
540 	vma = find_vma_intersection(mm, addr, end);
541 	if (!vma)
542 		return 0;
543 
544 	nr_pages = (min(end, vma->vm_end) -
545 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
546 
547 	/* Iterate over the rest of the overlaps */
548 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
549 		unsigned long overlap_len;
550 
551 		if (vma->vm_start > end)
552 			break;
553 
554 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
555 		nr_pages += overlap_len >> PAGE_SHIFT;
556 	}
557 
558 	return nr_pages;
559 }
560 
561 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
562 		struct rb_node **rb_link, struct rb_node *rb_parent)
563 {
564 	/* Update tracking information for the gap following the new vma. */
565 	if (vma->vm_next)
566 		vma_gap_update(vma->vm_next);
567 	else
568 		mm->highest_vm_end = vm_end_gap(vma);
569 
570 	/*
571 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
572 	 * correct insertion point for that vma. As a result, we could not
573 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
574 	 * So, we first insert the vma with a zero rb_subtree_gap value
575 	 * (to be consistent with what we did on the way down), and then
576 	 * immediately update the gap to the correct value. Finally we
577 	 * rebalance the rbtree after all augmented values have been set.
578 	 */
579 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
580 	vma->rb_subtree_gap = 0;
581 	vma_gap_update(vma);
582 	vma_rb_insert(vma, &mm->mm_rb);
583 }
584 
585 static void __vma_link_file(struct vm_area_struct *vma)
586 {
587 	struct file *file;
588 
589 	file = vma->vm_file;
590 	if (file) {
591 		struct address_space *mapping = file->f_mapping;
592 
593 		if (vma->vm_flags & VM_DENYWRITE)
594 			atomic_dec(&file_inode(file)->i_writecount);
595 		if (vma->vm_flags & VM_SHARED)
596 			atomic_inc(&mapping->i_mmap_writable);
597 
598 		flush_dcache_mmap_lock(mapping);
599 		vma_interval_tree_insert(vma, &mapping->i_mmap);
600 		flush_dcache_mmap_unlock(mapping);
601 	}
602 }
603 
604 static void
605 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
606 	struct vm_area_struct *prev, struct rb_node **rb_link,
607 	struct rb_node *rb_parent)
608 {
609 	__vma_link_list(mm, vma, prev, rb_parent);
610 	__vma_link_rb(mm, vma, rb_link, rb_parent);
611 }
612 
613 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
614 			struct vm_area_struct *prev, struct rb_node **rb_link,
615 			struct rb_node *rb_parent)
616 {
617 	struct address_space *mapping = NULL;
618 
619 	if (vma->vm_file) {
620 		mapping = vma->vm_file->f_mapping;
621 		i_mmap_lock_write(mapping);
622 	}
623 
624 	__vma_link(mm, vma, prev, rb_link, rb_parent);
625 	__vma_link_file(vma);
626 
627 	if (mapping)
628 		i_mmap_unlock_write(mapping);
629 
630 	mm->map_count++;
631 	validate_mm(mm);
632 }
633 
634 /*
635  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
636  * mm's list and rbtree.  It has already been inserted into the interval tree.
637  */
638 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
639 {
640 	struct vm_area_struct *prev;
641 	struct rb_node **rb_link, *rb_parent;
642 
643 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
644 			   &prev, &rb_link, &rb_parent))
645 		BUG();
646 	__vma_link(mm, vma, prev, rb_link, rb_parent);
647 	mm->map_count++;
648 }
649 
650 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
651 						struct vm_area_struct *vma,
652 						struct vm_area_struct *prev,
653 						bool has_prev,
654 						struct vm_area_struct *ignore)
655 {
656 	struct vm_area_struct *next;
657 
658 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
659 	next = vma->vm_next;
660 	if (has_prev)
661 		prev->vm_next = next;
662 	else {
663 		prev = vma->vm_prev;
664 		if (prev)
665 			prev->vm_next = next;
666 		else
667 			mm->mmap = next;
668 	}
669 	if (next)
670 		next->vm_prev = prev;
671 
672 	/* Kill the cache */
673 	vmacache_invalidate(mm);
674 }
675 
676 static inline void __vma_unlink_prev(struct mm_struct *mm,
677 				     struct vm_area_struct *vma,
678 				     struct vm_area_struct *prev)
679 {
680 	__vma_unlink_common(mm, vma, prev, true, vma);
681 }
682 
683 /*
684  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
685  * is already present in an i_mmap tree without adjusting the tree.
686  * The following helper function should be used when such adjustments
687  * are necessary.  The "insert" vma (if any) is to be inserted
688  * before we drop the necessary locks.
689  */
690 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
691 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
692 	struct vm_area_struct *expand)
693 {
694 	struct mm_struct *mm = vma->vm_mm;
695 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
696 	struct address_space *mapping = NULL;
697 	struct rb_root_cached *root = NULL;
698 	struct anon_vma *anon_vma = NULL;
699 	struct file *file = vma->vm_file;
700 	bool start_changed = false, end_changed = false;
701 	long adjust_next = 0;
702 	int remove_next = 0;
703 
704 	if (next && !insert) {
705 		struct vm_area_struct *exporter = NULL, *importer = NULL;
706 
707 		if (end >= next->vm_end) {
708 			/*
709 			 * vma expands, overlapping all the next, and
710 			 * perhaps the one after too (mprotect case 6).
711 			 * The only other cases that gets here are
712 			 * case 1, case 7 and case 8.
713 			 */
714 			if (next == expand) {
715 				/*
716 				 * The only case where we don't expand "vma"
717 				 * and we expand "next" instead is case 8.
718 				 */
719 				VM_WARN_ON(end != next->vm_end);
720 				/*
721 				 * remove_next == 3 means we're
722 				 * removing "vma" and that to do so we
723 				 * swapped "vma" and "next".
724 				 */
725 				remove_next = 3;
726 				VM_WARN_ON(file != next->vm_file);
727 				swap(vma, next);
728 			} else {
729 				VM_WARN_ON(expand != vma);
730 				/*
731 				 * case 1, 6, 7, remove_next == 2 is case 6,
732 				 * remove_next == 1 is case 1 or 7.
733 				 */
734 				remove_next = 1 + (end > next->vm_end);
735 				VM_WARN_ON(remove_next == 2 &&
736 					   end != next->vm_next->vm_end);
737 				VM_WARN_ON(remove_next == 1 &&
738 					   end != next->vm_end);
739 				/* trim end to next, for case 6 first pass */
740 				end = next->vm_end;
741 			}
742 
743 			exporter = next;
744 			importer = vma;
745 
746 			/*
747 			 * If next doesn't have anon_vma, import from vma after
748 			 * next, if the vma overlaps with it.
749 			 */
750 			if (remove_next == 2 && !next->anon_vma)
751 				exporter = next->vm_next;
752 
753 		} else if (end > next->vm_start) {
754 			/*
755 			 * vma expands, overlapping part of the next:
756 			 * mprotect case 5 shifting the boundary up.
757 			 */
758 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
759 			exporter = next;
760 			importer = vma;
761 			VM_WARN_ON(expand != importer);
762 		} else if (end < vma->vm_end) {
763 			/*
764 			 * vma shrinks, and !insert tells it's not
765 			 * split_vma inserting another: so it must be
766 			 * mprotect case 4 shifting the boundary down.
767 			 */
768 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
769 			exporter = vma;
770 			importer = next;
771 			VM_WARN_ON(expand != importer);
772 		}
773 
774 		/*
775 		 * Easily overlooked: when mprotect shifts the boundary,
776 		 * make sure the expanding vma has anon_vma set if the
777 		 * shrinking vma had, to cover any anon pages imported.
778 		 */
779 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
780 			int error;
781 
782 			importer->anon_vma = exporter->anon_vma;
783 			error = anon_vma_clone(importer, exporter);
784 			if (error)
785 				return error;
786 		}
787 	}
788 again:
789 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
790 
791 	if (file) {
792 		mapping = file->f_mapping;
793 		root = &mapping->i_mmap;
794 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
795 
796 		if (adjust_next)
797 			uprobe_munmap(next, next->vm_start, next->vm_end);
798 
799 		i_mmap_lock_write(mapping);
800 		if (insert) {
801 			/*
802 			 * Put into interval tree now, so instantiated pages
803 			 * are visible to arm/parisc __flush_dcache_page
804 			 * throughout; but we cannot insert into address
805 			 * space until vma start or end is updated.
806 			 */
807 			__vma_link_file(insert);
808 		}
809 	}
810 
811 	anon_vma = vma->anon_vma;
812 	if (!anon_vma && adjust_next)
813 		anon_vma = next->anon_vma;
814 	if (anon_vma) {
815 		VM_WARN_ON(adjust_next && next->anon_vma &&
816 			   anon_vma != next->anon_vma);
817 		anon_vma_lock_write(anon_vma);
818 		anon_vma_interval_tree_pre_update_vma(vma);
819 		if (adjust_next)
820 			anon_vma_interval_tree_pre_update_vma(next);
821 	}
822 
823 	if (root) {
824 		flush_dcache_mmap_lock(mapping);
825 		vma_interval_tree_remove(vma, root);
826 		if (adjust_next)
827 			vma_interval_tree_remove(next, root);
828 	}
829 
830 	if (start != vma->vm_start) {
831 		vma->vm_start = start;
832 		start_changed = true;
833 	}
834 	if (end != vma->vm_end) {
835 		vma->vm_end = end;
836 		end_changed = true;
837 	}
838 	vma->vm_pgoff = pgoff;
839 	if (adjust_next) {
840 		next->vm_start += adjust_next << PAGE_SHIFT;
841 		next->vm_pgoff += adjust_next;
842 	}
843 
844 	if (root) {
845 		if (adjust_next)
846 			vma_interval_tree_insert(next, root);
847 		vma_interval_tree_insert(vma, root);
848 		flush_dcache_mmap_unlock(mapping);
849 	}
850 
851 	if (remove_next) {
852 		/*
853 		 * vma_merge has merged next into vma, and needs
854 		 * us to remove next before dropping the locks.
855 		 */
856 		if (remove_next != 3)
857 			__vma_unlink_prev(mm, next, vma);
858 		else
859 			/*
860 			 * vma is not before next if they've been
861 			 * swapped.
862 			 *
863 			 * pre-swap() next->vm_start was reduced so
864 			 * tell validate_mm_rb to ignore pre-swap()
865 			 * "next" (which is stored in post-swap()
866 			 * "vma").
867 			 */
868 			__vma_unlink_common(mm, next, NULL, false, vma);
869 		if (file)
870 			__remove_shared_vm_struct(next, file, mapping);
871 	} else if (insert) {
872 		/*
873 		 * split_vma has split insert from vma, and needs
874 		 * us to insert it before dropping the locks
875 		 * (it may either follow vma or precede it).
876 		 */
877 		__insert_vm_struct(mm, insert);
878 	} else {
879 		if (start_changed)
880 			vma_gap_update(vma);
881 		if (end_changed) {
882 			if (!next)
883 				mm->highest_vm_end = vm_end_gap(vma);
884 			else if (!adjust_next)
885 				vma_gap_update(next);
886 		}
887 	}
888 
889 	if (anon_vma) {
890 		anon_vma_interval_tree_post_update_vma(vma);
891 		if (adjust_next)
892 			anon_vma_interval_tree_post_update_vma(next);
893 		anon_vma_unlock_write(anon_vma);
894 	}
895 	if (mapping)
896 		i_mmap_unlock_write(mapping);
897 
898 	if (root) {
899 		uprobe_mmap(vma);
900 
901 		if (adjust_next)
902 			uprobe_mmap(next);
903 	}
904 
905 	if (remove_next) {
906 		if (file) {
907 			uprobe_munmap(next, next->vm_start, next->vm_end);
908 			fput(file);
909 		}
910 		if (next->anon_vma)
911 			anon_vma_merge(vma, next);
912 		mm->map_count--;
913 		mpol_put(vma_policy(next));
914 		kmem_cache_free(vm_area_cachep, next);
915 		/*
916 		 * In mprotect's case 6 (see comments on vma_merge),
917 		 * we must remove another next too. It would clutter
918 		 * up the code too much to do both in one go.
919 		 */
920 		if (remove_next != 3) {
921 			/*
922 			 * If "next" was removed and vma->vm_end was
923 			 * expanded (up) over it, in turn
924 			 * "next->vm_prev->vm_end" changed and the
925 			 * "vma->vm_next" gap must be updated.
926 			 */
927 			next = vma->vm_next;
928 		} else {
929 			/*
930 			 * For the scope of the comment "next" and
931 			 * "vma" considered pre-swap(): if "vma" was
932 			 * removed, next->vm_start was expanded (down)
933 			 * over it and the "next" gap must be updated.
934 			 * Because of the swap() the post-swap() "vma"
935 			 * actually points to pre-swap() "next"
936 			 * (post-swap() "next" as opposed is now a
937 			 * dangling pointer).
938 			 */
939 			next = vma;
940 		}
941 		if (remove_next == 2) {
942 			remove_next = 1;
943 			end = next->vm_end;
944 			goto again;
945 		}
946 		else if (next)
947 			vma_gap_update(next);
948 		else {
949 			/*
950 			 * If remove_next == 2 we obviously can't
951 			 * reach this path.
952 			 *
953 			 * If remove_next == 3 we can't reach this
954 			 * path because pre-swap() next is always not
955 			 * NULL. pre-swap() "next" is not being
956 			 * removed and its next->vm_end is not altered
957 			 * (and furthermore "end" already matches
958 			 * next->vm_end in remove_next == 3).
959 			 *
960 			 * We reach this only in the remove_next == 1
961 			 * case if the "next" vma that was removed was
962 			 * the highest vma of the mm. However in such
963 			 * case next->vm_end == "end" and the extended
964 			 * "vma" has vma->vm_end == next->vm_end so
965 			 * mm->highest_vm_end doesn't need any update
966 			 * in remove_next == 1 case.
967 			 */
968 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
969 		}
970 	}
971 	if (insert && file)
972 		uprobe_mmap(insert);
973 
974 	validate_mm(mm);
975 
976 	return 0;
977 }
978 
979 /*
980  * If the vma has a ->close operation then the driver probably needs to release
981  * per-vma resources, so we don't attempt to merge those.
982  */
983 static inline int is_mergeable_vma(struct vm_area_struct *vma,
984 				struct file *file, unsigned long vm_flags,
985 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
986 {
987 	/*
988 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
989 	 * match the flags but dirty bit -- the caller should mark
990 	 * merged VMA as dirty. If dirty bit won't be excluded from
991 	 * comparison, we increase pressue on the memory system forcing
992 	 * the kernel to generate new VMAs when old one could be
993 	 * extended instead.
994 	 */
995 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
996 		return 0;
997 	if (vma->vm_file != file)
998 		return 0;
999 	if (vma->vm_ops && vma->vm_ops->close)
1000 		return 0;
1001 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1002 		return 0;
1003 	return 1;
1004 }
1005 
1006 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1007 					struct anon_vma *anon_vma2,
1008 					struct vm_area_struct *vma)
1009 {
1010 	/*
1011 	 * The list_is_singular() test is to avoid merging VMA cloned from
1012 	 * parents. This can improve scalability caused by anon_vma lock.
1013 	 */
1014 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1015 		list_is_singular(&vma->anon_vma_chain)))
1016 		return 1;
1017 	return anon_vma1 == anon_vma2;
1018 }
1019 
1020 /*
1021  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1022  * in front of (at a lower virtual address and file offset than) the vma.
1023  *
1024  * We cannot merge two vmas if they have differently assigned (non-NULL)
1025  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1026  *
1027  * We don't check here for the merged mmap wrapping around the end of pagecache
1028  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1029  * wrap, nor mmaps which cover the final page at index -1UL.
1030  */
1031 static int
1032 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1033 		     struct anon_vma *anon_vma, struct file *file,
1034 		     pgoff_t vm_pgoff,
1035 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036 {
1037 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1038 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1039 		if (vma->vm_pgoff == vm_pgoff)
1040 			return 1;
1041 	}
1042 	return 0;
1043 }
1044 
1045 /*
1046  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1047  * beyond (at a higher virtual address and file offset than) the vma.
1048  *
1049  * We cannot merge two vmas if they have differently assigned (non-NULL)
1050  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1051  */
1052 static int
1053 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1054 		    struct anon_vma *anon_vma, struct file *file,
1055 		    pgoff_t vm_pgoff,
1056 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1057 {
1058 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1059 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1060 		pgoff_t vm_pglen;
1061 		vm_pglen = vma_pages(vma);
1062 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1063 			return 1;
1064 	}
1065 	return 0;
1066 }
1067 
1068 /*
1069  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1070  * whether that can be merged with its predecessor or its successor.
1071  * Or both (it neatly fills a hole).
1072  *
1073  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1074  * certain not to be mapped by the time vma_merge is called; but when
1075  * called for mprotect, it is certain to be already mapped (either at
1076  * an offset within prev, or at the start of next), and the flags of
1077  * this area are about to be changed to vm_flags - and the no-change
1078  * case has already been eliminated.
1079  *
1080  * The following mprotect cases have to be considered, where AAAA is
1081  * the area passed down from mprotect_fixup, never extending beyond one
1082  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1083  *
1084  *     AAAA             AAAA                AAAA          AAAA
1085  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1086  *    cannot merge    might become    might become    might become
1087  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1088  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1089  *    mremap move:                                    PPPPXXXXXXXX 8
1090  *        AAAA
1091  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1092  *    might become    case 1 below    case 2 below    case 3 below
1093  *
1094  * It is important for case 8 that the the vma NNNN overlapping the
1095  * region AAAA is never going to extended over XXXX. Instead XXXX must
1096  * be extended in region AAAA and NNNN must be removed. This way in
1097  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1098  * rmap_locks, the properties of the merged vma will be already
1099  * correct for the whole merged range. Some of those properties like
1100  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1101  * be correct for the whole merged range immediately after the
1102  * rmap_locks are released. Otherwise if XXXX would be removed and
1103  * NNNN would be extended over the XXXX range, remove_migration_ptes
1104  * or other rmap walkers (if working on addresses beyond the "end"
1105  * parameter) may establish ptes with the wrong permissions of NNNN
1106  * instead of the right permissions of XXXX.
1107  */
1108 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1109 			struct vm_area_struct *prev, unsigned long addr,
1110 			unsigned long end, unsigned long vm_flags,
1111 			struct anon_vma *anon_vma, struct file *file,
1112 			pgoff_t pgoff, struct mempolicy *policy,
1113 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1114 {
1115 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1116 	struct vm_area_struct *area, *next;
1117 	int err;
1118 
1119 	/*
1120 	 * We later require that vma->vm_flags == vm_flags,
1121 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1122 	 */
1123 	if (vm_flags & VM_SPECIAL)
1124 		return NULL;
1125 
1126 	if (prev)
1127 		next = prev->vm_next;
1128 	else
1129 		next = mm->mmap;
1130 	area = next;
1131 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1132 		next = next->vm_next;
1133 
1134 	/* verify some invariant that must be enforced by the caller */
1135 	VM_WARN_ON(prev && addr <= prev->vm_start);
1136 	VM_WARN_ON(area && end > area->vm_end);
1137 	VM_WARN_ON(addr >= end);
1138 
1139 	/*
1140 	 * Can it merge with the predecessor?
1141 	 */
1142 	if (prev && prev->vm_end == addr &&
1143 			mpol_equal(vma_policy(prev), policy) &&
1144 			can_vma_merge_after(prev, vm_flags,
1145 					    anon_vma, file, pgoff,
1146 					    vm_userfaultfd_ctx)) {
1147 		/*
1148 		 * OK, it can.  Can we now merge in the successor as well?
1149 		 */
1150 		if (next && end == next->vm_start &&
1151 				mpol_equal(policy, vma_policy(next)) &&
1152 				can_vma_merge_before(next, vm_flags,
1153 						     anon_vma, file,
1154 						     pgoff+pglen,
1155 						     vm_userfaultfd_ctx) &&
1156 				is_mergeable_anon_vma(prev->anon_vma,
1157 						      next->anon_vma, NULL)) {
1158 							/* cases 1, 6 */
1159 			err = __vma_adjust(prev, prev->vm_start,
1160 					 next->vm_end, prev->vm_pgoff, NULL,
1161 					 prev);
1162 		} else					/* cases 2, 5, 7 */
1163 			err = __vma_adjust(prev, prev->vm_start,
1164 					 end, prev->vm_pgoff, NULL, prev);
1165 		if (err)
1166 			return NULL;
1167 		khugepaged_enter_vma_merge(prev, vm_flags);
1168 		return prev;
1169 	}
1170 
1171 	/*
1172 	 * Can this new request be merged in front of next?
1173 	 */
1174 	if (next && end == next->vm_start &&
1175 			mpol_equal(policy, vma_policy(next)) &&
1176 			can_vma_merge_before(next, vm_flags,
1177 					     anon_vma, file, pgoff+pglen,
1178 					     vm_userfaultfd_ctx)) {
1179 		if (prev && addr < prev->vm_end)	/* case 4 */
1180 			err = __vma_adjust(prev, prev->vm_start,
1181 					 addr, prev->vm_pgoff, NULL, next);
1182 		else {					/* cases 3, 8 */
1183 			err = __vma_adjust(area, addr, next->vm_end,
1184 					 next->vm_pgoff - pglen, NULL, next);
1185 			/*
1186 			 * In case 3 area is already equal to next and
1187 			 * this is a noop, but in case 8 "area" has
1188 			 * been removed and next was expanded over it.
1189 			 */
1190 			area = next;
1191 		}
1192 		if (err)
1193 			return NULL;
1194 		khugepaged_enter_vma_merge(area, vm_flags);
1195 		return area;
1196 	}
1197 
1198 	return NULL;
1199 }
1200 
1201 /*
1202  * Rough compatbility check to quickly see if it's even worth looking
1203  * at sharing an anon_vma.
1204  *
1205  * They need to have the same vm_file, and the flags can only differ
1206  * in things that mprotect may change.
1207  *
1208  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1209  * we can merge the two vma's. For example, we refuse to merge a vma if
1210  * there is a vm_ops->close() function, because that indicates that the
1211  * driver is doing some kind of reference counting. But that doesn't
1212  * really matter for the anon_vma sharing case.
1213  */
1214 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1215 {
1216 	return a->vm_end == b->vm_start &&
1217 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1218 		a->vm_file == b->vm_file &&
1219 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1220 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1221 }
1222 
1223 /*
1224  * Do some basic sanity checking to see if we can re-use the anon_vma
1225  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1226  * the same as 'old', the other will be the new one that is trying
1227  * to share the anon_vma.
1228  *
1229  * NOTE! This runs with mm_sem held for reading, so it is possible that
1230  * the anon_vma of 'old' is concurrently in the process of being set up
1231  * by another page fault trying to merge _that_. But that's ok: if it
1232  * is being set up, that automatically means that it will be a singleton
1233  * acceptable for merging, so we can do all of this optimistically. But
1234  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1235  *
1236  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1237  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1238  * is to return an anon_vma that is "complex" due to having gone through
1239  * a fork).
1240  *
1241  * We also make sure that the two vma's are compatible (adjacent,
1242  * and with the same memory policies). That's all stable, even with just
1243  * a read lock on the mm_sem.
1244  */
1245 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1246 {
1247 	if (anon_vma_compatible(a, b)) {
1248 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1249 
1250 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1251 			return anon_vma;
1252 	}
1253 	return NULL;
1254 }
1255 
1256 /*
1257  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1258  * neighbouring vmas for a suitable anon_vma, before it goes off
1259  * to allocate a new anon_vma.  It checks because a repetitive
1260  * sequence of mprotects and faults may otherwise lead to distinct
1261  * anon_vmas being allocated, preventing vma merge in subsequent
1262  * mprotect.
1263  */
1264 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1265 {
1266 	struct anon_vma *anon_vma;
1267 	struct vm_area_struct *near;
1268 
1269 	near = vma->vm_next;
1270 	if (!near)
1271 		goto try_prev;
1272 
1273 	anon_vma = reusable_anon_vma(near, vma, near);
1274 	if (anon_vma)
1275 		return anon_vma;
1276 try_prev:
1277 	near = vma->vm_prev;
1278 	if (!near)
1279 		goto none;
1280 
1281 	anon_vma = reusable_anon_vma(near, near, vma);
1282 	if (anon_vma)
1283 		return anon_vma;
1284 none:
1285 	/*
1286 	 * There's no absolute need to look only at touching neighbours:
1287 	 * we could search further afield for "compatible" anon_vmas.
1288 	 * But it would probably just be a waste of time searching,
1289 	 * or lead to too many vmas hanging off the same anon_vma.
1290 	 * We're trying to allow mprotect remerging later on,
1291 	 * not trying to minimize memory used for anon_vmas.
1292 	 */
1293 	return NULL;
1294 }
1295 
1296 /*
1297  * If a hint addr is less than mmap_min_addr change hint to be as
1298  * low as possible but still greater than mmap_min_addr
1299  */
1300 static inline unsigned long round_hint_to_min(unsigned long hint)
1301 {
1302 	hint &= PAGE_MASK;
1303 	if (((void *)hint != NULL) &&
1304 	    (hint < mmap_min_addr))
1305 		return PAGE_ALIGN(mmap_min_addr);
1306 	return hint;
1307 }
1308 
1309 static inline int mlock_future_check(struct mm_struct *mm,
1310 				     unsigned long flags,
1311 				     unsigned long len)
1312 {
1313 	unsigned long locked, lock_limit;
1314 
1315 	/*  mlock MCL_FUTURE? */
1316 	if (flags & VM_LOCKED) {
1317 		locked = len >> PAGE_SHIFT;
1318 		locked += mm->locked_vm;
1319 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1320 		lock_limit >>= PAGE_SHIFT;
1321 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1322 			return -EAGAIN;
1323 	}
1324 	return 0;
1325 }
1326 
1327 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1328 {
1329 	if (S_ISREG(inode->i_mode))
1330 		return MAX_LFS_FILESIZE;
1331 
1332 	if (S_ISBLK(inode->i_mode))
1333 		return MAX_LFS_FILESIZE;
1334 
1335 	/* Special "we do even unsigned file positions" case */
1336 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1337 		return 0;
1338 
1339 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1340 	return ULONG_MAX;
1341 }
1342 
1343 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1344 				unsigned long pgoff, unsigned long len)
1345 {
1346 	u64 maxsize = file_mmap_size_max(file, inode);
1347 
1348 	if (maxsize && len > maxsize)
1349 		return false;
1350 	maxsize -= len;
1351 	if (pgoff > maxsize >> PAGE_SHIFT)
1352 		return false;
1353 	return true;
1354 }
1355 
1356 /*
1357  * The caller must hold down_write(&current->mm->mmap_sem).
1358  */
1359 unsigned long do_mmap(struct file *file, unsigned long addr,
1360 			unsigned long len, unsigned long prot,
1361 			unsigned long flags, vm_flags_t vm_flags,
1362 			unsigned long pgoff, unsigned long *populate,
1363 			struct list_head *uf)
1364 {
1365 	struct mm_struct *mm = current->mm;
1366 	int pkey = 0;
1367 
1368 	*populate = 0;
1369 
1370 	if (!len)
1371 		return -EINVAL;
1372 
1373 	/*
1374 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1375 	 *
1376 	 * (the exception is when the underlying filesystem is noexec
1377 	 *  mounted, in which case we dont add PROT_EXEC.)
1378 	 */
1379 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1380 		if (!(file && path_noexec(&file->f_path)))
1381 			prot |= PROT_EXEC;
1382 
1383 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1384 	if (flags & MAP_FIXED_NOREPLACE)
1385 		flags |= MAP_FIXED;
1386 
1387 	if (!(flags & MAP_FIXED))
1388 		addr = round_hint_to_min(addr);
1389 
1390 	/* Careful about overflows.. */
1391 	len = PAGE_ALIGN(len);
1392 	if (!len)
1393 		return -ENOMEM;
1394 
1395 	/* offset overflow? */
1396 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1397 		return -EOVERFLOW;
1398 
1399 	/* Too many mappings? */
1400 	if (mm->map_count > sysctl_max_map_count)
1401 		return -ENOMEM;
1402 
1403 	/* Obtain the address to map to. we verify (or select) it and ensure
1404 	 * that it represents a valid section of the address space.
1405 	 */
1406 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1407 	if (offset_in_page(addr))
1408 		return addr;
1409 
1410 	if (flags & MAP_FIXED_NOREPLACE) {
1411 		struct vm_area_struct *vma = find_vma(mm, addr);
1412 
1413 		if (vma && vma->vm_start <= addr)
1414 			return -EEXIST;
1415 	}
1416 
1417 	if (prot == PROT_EXEC) {
1418 		pkey = execute_only_pkey(mm);
1419 		if (pkey < 0)
1420 			pkey = 0;
1421 	}
1422 
1423 	/* Do simple checking here so the lower-level routines won't have
1424 	 * to. we assume access permissions have been handled by the open
1425 	 * of the memory object, so we don't do any here.
1426 	 */
1427 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1428 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1429 
1430 	if (flags & MAP_LOCKED)
1431 		if (!can_do_mlock())
1432 			return -EPERM;
1433 
1434 	if (mlock_future_check(mm, vm_flags, len))
1435 		return -EAGAIN;
1436 
1437 	if (file) {
1438 		struct inode *inode = file_inode(file);
1439 		unsigned long flags_mask;
1440 
1441 		if (!file_mmap_ok(file, inode, pgoff, len))
1442 			return -EOVERFLOW;
1443 
1444 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1445 
1446 		switch (flags & MAP_TYPE) {
1447 		case MAP_SHARED:
1448 			/*
1449 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1450 			 * flags. E.g. MAP_SYNC is dangerous to use with
1451 			 * MAP_SHARED as you don't know which consistency model
1452 			 * you will get. We silently ignore unsupported flags
1453 			 * with MAP_SHARED to preserve backward compatibility.
1454 			 */
1455 			flags &= LEGACY_MAP_MASK;
1456 			/* fall through */
1457 		case MAP_SHARED_VALIDATE:
1458 			if (flags & ~flags_mask)
1459 				return -EOPNOTSUPP;
1460 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1461 				return -EACCES;
1462 
1463 			/*
1464 			 * Make sure we don't allow writing to an append-only
1465 			 * file..
1466 			 */
1467 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1468 				return -EACCES;
1469 
1470 			/*
1471 			 * Make sure there are no mandatory locks on the file.
1472 			 */
1473 			if (locks_verify_locked(file))
1474 				return -EAGAIN;
1475 
1476 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1477 			if (!(file->f_mode & FMODE_WRITE))
1478 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1479 
1480 			/* fall through */
1481 		case MAP_PRIVATE:
1482 			if (!(file->f_mode & FMODE_READ))
1483 				return -EACCES;
1484 			if (path_noexec(&file->f_path)) {
1485 				if (vm_flags & VM_EXEC)
1486 					return -EPERM;
1487 				vm_flags &= ~VM_MAYEXEC;
1488 			}
1489 
1490 			if (!file->f_op->mmap)
1491 				return -ENODEV;
1492 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1493 				return -EINVAL;
1494 			break;
1495 
1496 		default:
1497 			return -EINVAL;
1498 		}
1499 	} else {
1500 		switch (flags & MAP_TYPE) {
1501 		case MAP_SHARED:
1502 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503 				return -EINVAL;
1504 			/*
1505 			 * Ignore pgoff.
1506 			 */
1507 			pgoff = 0;
1508 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1509 			break;
1510 		case MAP_PRIVATE:
1511 			/*
1512 			 * Set pgoff according to addr for anon_vma.
1513 			 */
1514 			pgoff = addr >> PAGE_SHIFT;
1515 			break;
1516 		default:
1517 			return -EINVAL;
1518 		}
1519 	}
1520 
1521 	/*
1522 	 * Set 'VM_NORESERVE' if we should not account for the
1523 	 * memory use of this mapping.
1524 	 */
1525 	if (flags & MAP_NORESERVE) {
1526 		/* We honor MAP_NORESERVE if allowed to overcommit */
1527 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1528 			vm_flags |= VM_NORESERVE;
1529 
1530 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1531 		if (file && is_file_hugepages(file))
1532 			vm_flags |= VM_NORESERVE;
1533 	}
1534 
1535 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1536 	if (!IS_ERR_VALUE(addr) &&
1537 	    ((vm_flags & VM_LOCKED) ||
1538 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1539 		*populate = len;
1540 	return addr;
1541 }
1542 
1543 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1544 			      unsigned long prot, unsigned long flags,
1545 			      unsigned long fd, unsigned long pgoff)
1546 {
1547 	struct file *file = NULL;
1548 	unsigned long retval;
1549 
1550 	if (!(flags & MAP_ANONYMOUS)) {
1551 		audit_mmap_fd(fd, flags);
1552 		file = fget(fd);
1553 		if (!file)
1554 			return -EBADF;
1555 		if (is_file_hugepages(file))
1556 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1557 		retval = -EINVAL;
1558 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1559 			goto out_fput;
1560 	} else if (flags & MAP_HUGETLB) {
1561 		struct user_struct *user = NULL;
1562 		struct hstate *hs;
1563 
1564 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1565 		if (!hs)
1566 			return -EINVAL;
1567 
1568 		len = ALIGN(len, huge_page_size(hs));
1569 		/*
1570 		 * VM_NORESERVE is used because the reservations will be
1571 		 * taken when vm_ops->mmap() is called
1572 		 * A dummy user value is used because we are not locking
1573 		 * memory so no accounting is necessary
1574 		 */
1575 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1576 				VM_NORESERVE,
1577 				&user, HUGETLB_ANONHUGE_INODE,
1578 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1579 		if (IS_ERR(file))
1580 			return PTR_ERR(file);
1581 	}
1582 
1583 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1584 
1585 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1586 out_fput:
1587 	if (file)
1588 		fput(file);
1589 	return retval;
1590 }
1591 
1592 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1593 		unsigned long, prot, unsigned long, flags,
1594 		unsigned long, fd, unsigned long, pgoff)
1595 {
1596 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1597 }
1598 
1599 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1600 struct mmap_arg_struct {
1601 	unsigned long addr;
1602 	unsigned long len;
1603 	unsigned long prot;
1604 	unsigned long flags;
1605 	unsigned long fd;
1606 	unsigned long offset;
1607 };
1608 
1609 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1610 {
1611 	struct mmap_arg_struct a;
1612 
1613 	if (copy_from_user(&a, arg, sizeof(a)))
1614 		return -EFAULT;
1615 	if (offset_in_page(a.offset))
1616 		return -EINVAL;
1617 
1618 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1619 			       a.offset >> PAGE_SHIFT);
1620 }
1621 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1622 
1623 /*
1624  * Some shared mappigns will want the pages marked read-only
1625  * to track write events. If so, we'll downgrade vm_page_prot
1626  * to the private version (using protection_map[] without the
1627  * VM_SHARED bit).
1628  */
1629 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1630 {
1631 	vm_flags_t vm_flags = vma->vm_flags;
1632 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1633 
1634 	/* If it was private or non-writable, the write bit is already clear */
1635 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1636 		return 0;
1637 
1638 	/* The backer wishes to know when pages are first written to? */
1639 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1640 		return 1;
1641 
1642 	/* The open routine did something to the protections that pgprot_modify
1643 	 * won't preserve? */
1644 	if (pgprot_val(vm_page_prot) !=
1645 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1646 		return 0;
1647 
1648 	/* Do we need to track softdirty? */
1649 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1650 		return 1;
1651 
1652 	/* Specialty mapping? */
1653 	if (vm_flags & VM_PFNMAP)
1654 		return 0;
1655 
1656 	/* Can the mapping track the dirty pages? */
1657 	return vma->vm_file && vma->vm_file->f_mapping &&
1658 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1659 }
1660 
1661 /*
1662  * We account for memory if it's a private writeable mapping,
1663  * not hugepages and VM_NORESERVE wasn't set.
1664  */
1665 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1666 {
1667 	/*
1668 	 * hugetlb has its own accounting separate from the core VM
1669 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1670 	 */
1671 	if (file && is_file_hugepages(file))
1672 		return 0;
1673 
1674 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1675 }
1676 
1677 unsigned long mmap_region(struct file *file, unsigned long addr,
1678 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1679 		struct list_head *uf)
1680 {
1681 	struct mm_struct *mm = current->mm;
1682 	struct vm_area_struct *vma, *prev;
1683 	int error;
1684 	struct rb_node **rb_link, *rb_parent;
1685 	unsigned long charged = 0;
1686 
1687 	/* Check against address space limit. */
1688 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1689 		unsigned long nr_pages;
1690 
1691 		/*
1692 		 * MAP_FIXED may remove pages of mappings that intersects with
1693 		 * requested mapping. Account for the pages it would unmap.
1694 		 */
1695 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1696 
1697 		if (!may_expand_vm(mm, vm_flags,
1698 					(len >> PAGE_SHIFT) - nr_pages))
1699 			return -ENOMEM;
1700 	}
1701 
1702 	/* Clear old maps */
1703 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1704 			      &rb_parent)) {
1705 		if (do_munmap(mm, addr, len, uf))
1706 			return -ENOMEM;
1707 	}
1708 
1709 	/*
1710 	 * Private writable mapping: check memory availability
1711 	 */
1712 	if (accountable_mapping(file, vm_flags)) {
1713 		charged = len >> PAGE_SHIFT;
1714 		if (security_vm_enough_memory_mm(mm, charged))
1715 			return -ENOMEM;
1716 		vm_flags |= VM_ACCOUNT;
1717 	}
1718 
1719 	/*
1720 	 * Can we just expand an old mapping?
1721 	 */
1722 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1723 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1724 	if (vma)
1725 		goto out;
1726 
1727 	/*
1728 	 * Determine the object being mapped and call the appropriate
1729 	 * specific mapper. the address has already been validated, but
1730 	 * not unmapped, but the maps are removed from the list.
1731 	 */
1732 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1733 	if (!vma) {
1734 		error = -ENOMEM;
1735 		goto unacct_error;
1736 	}
1737 
1738 	vma->vm_mm = mm;
1739 	vma->vm_start = addr;
1740 	vma->vm_end = addr + len;
1741 	vma->vm_flags = vm_flags;
1742 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1743 	vma->vm_pgoff = pgoff;
1744 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1745 
1746 	if (file) {
1747 		if (vm_flags & VM_DENYWRITE) {
1748 			error = deny_write_access(file);
1749 			if (error)
1750 				goto free_vma;
1751 		}
1752 		if (vm_flags & VM_SHARED) {
1753 			error = mapping_map_writable(file->f_mapping);
1754 			if (error)
1755 				goto allow_write_and_free_vma;
1756 		}
1757 
1758 		/* ->mmap() can change vma->vm_file, but must guarantee that
1759 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1760 		 * and map writably if VM_SHARED is set. This usually means the
1761 		 * new file must not have been exposed to user-space, yet.
1762 		 */
1763 		vma->vm_file = get_file(file);
1764 		error = call_mmap(file, vma);
1765 		if (error)
1766 			goto unmap_and_free_vma;
1767 
1768 		/* Can addr have changed??
1769 		 *
1770 		 * Answer: Yes, several device drivers can do it in their
1771 		 *         f_op->mmap method. -DaveM
1772 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1773 		 *      be updated for vma_link()
1774 		 */
1775 		WARN_ON_ONCE(addr != vma->vm_start);
1776 
1777 		addr = vma->vm_start;
1778 		vm_flags = vma->vm_flags;
1779 	} else if (vm_flags & VM_SHARED) {
1780 		error = shmem_zero_setup(vma);
1781 		if (error)
1782 			goto free_vma;
1783 	}
1784 
1785 	vma_link(mm, vma, prev, rb_link, rb_parent);
1786 	/* Once vma denies write, undo our temporary denial count */
1787 	if (file) {
1788 		if (vm_flags & VM_SHARED)
1789 			mapping_unmap_writable(file->f_mapping);
1790 		if (vm_flags & VM_DENYWRITE)
1791 			allow_write_access(file);
1792 	}
1793 	file = vma->vm_file;
1794 out:
1795 	perf_event_mmap(vma);
1796 
1797 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1798 	if (vm_flags & VM_LOCKED) {
1799 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1800 					vma == get_gate_vma(current->mm)))
1801 			mm->locked_vm += (len >> PAGE_SHIFT);
1802 		else
1803 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1804 	}
1805 
1806 	if (file)
1807 		uprobe_mmap(vma);
1808 
1809 	/*
1810 	 * New (or expanded) vma always get soft dirty status.
1811 	 * Otherwise user-space soft-dirty page tracker won't
1812 	 * be able to distinguish situation when vma area unmapped,
1813 	 * then new mapped in-place (which must be aimed as
1814 	 * a completely new data area).
1815 	 */
1816 	vma->vm_flags |= VM_SOFTDIRTY;
1817 
1818 	vma_set_page_prot(vma);
1819 
1820 	return addr;
1821 
1822 unmap_and_free_vma:
1823 	vma->vm_file = NULL;
1824 	fput(file);
1825 
1826 	/* Undo any partial mapping done by a device driver. */
1827 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1828 	charged = 0;
1829 	if (vm_flags & VM_SHARED)
1830 		mapping_unmap_writable(file->f_mapping);
1831 allow_write_and_free_vma:
1832 	if (vm_flags & VM_DENYWRITE)
1833 		allow_write_access(file);
1834 free_vma:
1835 	kmem_cache_free(vm_area_cachep, vma);
1836 unacct_error:
1837 	if (charged)
1838 		vm_unacct_memory(charged);
1839 	return error;
1840 }
1841 
1842 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1843 {
1844 	/*
1845 	 * We implement the search by looking for an rbtree node that
1846 	 * immediately follows a suitable gap. That is,
1847 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1848 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1849 	 * - gap_end - gap_start >= length
1850 	 */
1851 
1852 	struct mm_struct *mm = current->mm;
1853 	struct vm_area_struct *vma;
1854 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1855 
1856 	/* Adjust search length to account for worst case alignment overhead */
1857 	length = info->length + info->align_mask;
1858 	if (length < info->length)
1859 		return -ENOMEM;
1860 
1861 	/* Adjust search limits by the desired length */
1862 	if (info->high_limit < length)
1863 		return -ENOMEM;
1864 	high_limit = info->high_limit - length;
1865 
1866 	if (info->low_limit > high_limit)
1867 		return -ENOMEM;
1868 	low_limit = info->low_limit + length;
1869 
1870 	/* Check if rbtree root looks promising */
1871 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1872 		goto check_highest;
1873 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1874 	if (vma->rb_subtree_gap < length)
1875 		goto check_highest;
1876 
1877 	while (true) {
1878 		/* Visit left subtree if it looks promising */
1879 		gap_end = vm_start_gap(vma);
1880 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1881 			struct vm_area_struct *left =
1882 				rb_entry(vma->vm_rb.rb_left,
1883 					 struct vm_area_struct, vm_rb);
1884 			if (left->rb_subtree_gap >= length) {
1885 				vma = left;
1886 				continue;
1887 			}
1888 		}
1889 
1890 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1891 check_current:
1892 		/* Check if current node has a suitable gap */
1893 		if (gap_start > high_limit)
1894 			return -ENOMEM;
1895 		if (gap_end >= low_limit &&
1896 		    gap_end > gap_start && gap_end - gap_start >= length)
1897 			goto found;
1898 
1899 		/* Visit right subtree if it looks promising */
1900 		if (vma->vm_rb.rb_right) {
1901 			struct vm_area_struct *right =
1902 				rb_entry(vma->vm_rb.rb_right,
1903 					 struct vm_area_struct, vm_rb);
1904 			if (right->rb_subtree_gap >= length) {
1905 				vma = right;
1906 				continue;
1907 			}
1908 		}
1909 
1910 		/* Go back up the rbtree to find next candidate node */
1911 		while (true) {
1912 			struct rb_node *prev = &vma->vm_rb;
1913 			if (!rb_parent(prev))
1914 				goto check_highest;
1915 			vma = rb_entry(rb_parent(prev),
1916 				       struct vm_area_struct, vm_rb);
1917 			if (prev == vma->vm_rb.rb_left) {
1918 				gap_start = vm_end_gap(vma->vm_prev);
1919 				gap_end = vm_start_gap(vma);
1920 				goto check_current;
1921 			}
1922 		}
1923 	}
1924 
1925 check_highest:
1926 	/* Check highest gap, which does not precede any rbtree node */
1927 	gap_start = mm->highest_vm_end;
1928 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1929 	if (gap_start > high_limit)
1930 		return -ENOMEM;
1931 
1932 found:
1933 	/* We found a suitable gap. Clip it with the original low_limit. */
1934 	if (gap_start < info->low_limit)
1935 		gap_start = info->low_limit;
1936 
1937 	/* Adjust gap address to the desired alignment */
1938 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1939 
1940 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1941 	VM_BUG_ON(gap_start + info->length > gap_end);
1942 	return gap_start;
1943 }
1944 
1945 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1946 {
1947 	struct mm_struct *mm = current->mm;
1948 	struct vm_area_struct *vma;
1949 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1950 
1951 	/* Adjust search length to account for worst case alignment overhead */
1952 	length = info->length + info->align_mask;
1953 	if (length < info->length)
1954 		return -ENOMEM;
1955 
1956 	/*
1957 	 * Adjust search limits by the desired length.
1958 	 * See implementation comment at top of unmapped_area().
1959 	 */
1960 	gap_end = info->high_limit;
1961 	if (gap_end < length)
1962 		return -ENOMEM;
1963 	high_limit = gap_end - length;
1964 
1965 	if (info->low_limit > high_limit)
1966 		return -ENOMEM;
1967 	low_limit = info->low_limit + length;
1968 
1969 	/* Check highest gap, which does not precede any rbtree node */
1970 	gap_start = mm->highest_vm_end;
1971 	if (gap_start <= high_limit)
1972 		goto found_highest;
1973 
1974 	/* Check if rbtree root looks promising */
1975 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1976 		return -ENOMEM;
1977 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1978 	if (vma->rb_subtree_gap < length)
1979 		return -ENOMEM;
1980 
1981 	while (true) {
1982 		/* Visit right subtree if it looks promising */
1983 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1984 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1985 			struct vm_area_struct *right =
1986 				rb_entry(vma->vm_rb.rb_right,
1987 					 struct vm_area_struct, vm_rb);
1988 			if (right->rb_subtree_gap >= length) {
1989 				vma = right;
1990 				continue;
1991 			}
1992 		}
1993 
1994 check_current:
1995 		/* Check if current node has a suitable gap */
1996 		gap_end = vm_start_gap(vma);
1997 		if (gap_end < low_limit)
1998 			return -ENOMEM;
1999 		if (gap_start <= high_limit &&
2000 		    gap_end > gap_start && gap_end - gap_start >= length)
2001 			goto found;
2002 
2003 		/* Visit left subtree if it looks promising */
2004 		if (vma->vm_rb.rb_left) {
2005 			struct vm_area_struct *left =
2006 				rb_entry(vma->vm_rb.rb_left,
2007 					 struct vm_area_struct, vm_rb);
2008 			if (left->rb_subtree_gap >= length) {
2009 				vma = left;
2010 				continue;
2011 			}
2012 		}
2013 
2014 		/* Go back up the rbtree to find next candidate node */
2015 		while (true) {
2016 			struct rb_node *prev = &vma->vm_rb;
2017 			if (!rb_parent(prev))
2018 				return -ENOMEM;
2019 			vma = rb_entry(rb_parent(prev),
2020 				       struct vm_area_struct, vm_rb);
2021 			if (prev == vma->vm_rb.rb_right) {
2022 				gap_start = vma->vm_prev ?
2023 					vm_end_gap(vma->vm_prev) : 0;
2024 				goto check_current;
2025 			}
2026 		}
2027 	}
2028 
2029 found:
2030 	/* We found a suitable gap. Clip it with the original high_limit. */
2031 	if (gap_end > info->high_limit)
2032 		gap_end = info->high_limit;
2033 
2034 found_highest:
2035 	/* Compute highest gap address at the desired alignment */
2036 	gap_end -= info->length;
2037 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2038 
2039 	VM_BUG_ON(gap_end < info->low_limit);
2040 	VM_BUG_ON(gap_end < gap_start);
2041 	return gap_end;
2042 }
2043 
2044 /* Get an address range which is currently unmapped.
2045  * For shmat() with addr=0.
2046  *
2047  * Ugly calling convention alert:
2048  * Return value with the low bits set means error value,
2049  * ie
2050  *	if (ret & ~PAGE_MASK)
2051  *		error = ret;
2052  *
2053  * This function "knows" that -ENOMEM has the bits set.
2054  */
2055 #ifndef HAVE_ARCH_UNMAPPED_AREA
2056 unsigned long
2057 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2058 		unsigned long len, unsigned long pgoff, unsigned long flags)
2059 {
2060 	struct mm_struct *mm = current->mm;
2061 	struct vm_area_struct *vma, *prev;
2062 	struct vm_unmapped_area_info info;
2063 
2064 	if (len > TASK_SIZE - mmap_min_addr)
2065 		return -ENOMEM;
2066 
2067 	if (flags & MAP_FIXED)
2068 		return addr;
2069 
2070 	if (addr) {
2071 		addr = PAGE_ALIGN(addr);
2072 		vma = find_vma_prev(mm, addr, &prev);
2073 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2074 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2075 		    (!prev || addr >= vm_end_gap(prev)))
2076 			return addr;
2077 	}
2078 
2079 	info.flags = 0;
2080 	info.length = len;
2081 	info.low_limit = mm->mmap_base;
2082 	info.high_limit = TASK_SIZE;
2083 	info.align_mask = 0;
2084 	return vm_unmapped_area(&info);
2085 }
2086 #endif
2087 
2088 /*
2089  * This mmap-allocator allocates new areas top-down from below the
2090  * stack's low limit (the base):
2091  */
2092 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2093 unsigned long
2094 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2095 			  const unsigned long len, const unsigned long pgoff,
2096 			  const unsigned long flags)
2097 {
2098 	struct vm_area_struct *vma, *prev;
2099 	struct mm_struct *mm = current->mm;
2100 	unsigned long addr = addr0;
2101 	struct vm_unmapped_area_info info;
2102 
2103 	/* requested length too big for entire address space */
2104 	if (len > TASK_SIZE - mmap_min_addr)
2105 		return -ENOMEM;
2106 
2107 	if (flags & MAP_FIXED)
2108 		return addr;
2109 
2110 	/* requesting a specific address */
2111 	if (addr) {
2112 		addr = PAGE_ALIGN(addr);
2113 		vma = find_vma_prev(mm, addr, &prev);
2114 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2115 				(!vma || addr + len <= vm_start_gap(vma)) &&
2116 				(!prev || addr >= vm_end_gap(prev)))
2117 			return addr;
2118 	}
2119 
2120 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2121 	info.length = len;
2122 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2123 	info.high_limit = mm->mmap_base;
2124 	info.align_mask = 0;
2125 	addr = vm_unmapped_area(&info);
2126 
2127 	/*
2128 	 * A failed mmap() very likely causes application failure,
2129 	 * so fall back to the bottom-up function here. This scenario
2130 	 * can happen with large stack limits and large mmap()
2131 	 * allocations.
2132 	 */
2133 	if (offset_in_page(addr)) {
2134 		VM_BUG_ON(addr != -ENOMEM);
2135 		info.flags = 0;
2136 		info.low_limit = TASK_UNMAPPED_BASE;
2137 		info.high_limit = TASK_SIZE;
2138 		addr = vm_unmapped_area(&info);
2139 	}
2140 
2141 	return addr;
2142 }
2143 #endif
2144 
2145 unsigned long
2146 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2147 		unsigned long pgoff, unsigned long flags)
2148 {
2149 	unsigned long (*get_area)(struct file *, unsigned long,
2150 				  unsigned long, unsigned long, unsigned long);
2151 
2152 	unsigned long error = arch_mmap_check(addr, len, flags);
2153 	if (error)
2154 		return error;
2155 
2156 	/* Careful about overflows.. */
2157 	if (len > TASK_SIZE)
2158 		return -ENOMEM;
2159 
2160 	get_area = current->mm->get_unmapped_area;
2161 	if (file) {
2162 		if (file->f_op->get_unmapped_area)
2163 			get_area = file->f_op->get_unmapped_area;
2164 	} else if (flags & MAP_SHARED) {
2165 		/*
2166 		 * mmap_region() will call shmem_zero_setup() to create a file,
2167 		 * so use shmem's get_unmapped_area in case it can be huge.
2168 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2169 		 */
2170 		pgoff = 0;
2171 		get_area = shmem_get_unmapped_area;
2172 	}
2173 
2174 	addr = get_area(file, addr, len, pgoff, flags);
2175 	if (IS_ERR_VALUE(addr))
2176 		return addr;
2177 
2178 	if (addr > TASK_SIZE - len)
2179 		return -ENOMEM;
2180 	if (offset_in_page(addr))
2181 		return -EINVAL;
2182 
2183 	error = security_mmap_addr(addr);
2184 	return error ? error : addr;
2185 }
2186 
2187 EXPORT_SYMBOL(get_unmapped_area);
2188 
2189 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2190 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2191 {
2192 	struct rb_node *rb_node;
2193 	struct vm_area_struct *vma;
2194 
2195 	/* Check the cache first. */
2196 	vma = vmacache_find(mm, addr);
2197 	if (likely(vma))
2198 		return vma;
2199 
2200 	rb_node = mm->mm_rb.rb_node;
2201 
2202 	while (rb_node) {
2203 		struct vm_area_struct *tmp;
2204 
2205 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2206 
2207 		if (tmp->vm_end > addr) {
2208 			vma = tmp;
2209 			if (tmp->vm_start <= addr)
2210 				break;
2211 			rb_node = rb_node->rb_left;
2212 		} else
2213 			rb_node = rb_node->rb_right;
2214 	}
2215 
2216 	if (vma)
2217 		vmacache_update(addr, vma);
2218 	return vma;
2219 }
2220 
2221 EXPORT_SYMBOL(find_vma);
2222 
2223 /*
2224  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2225  */
2226 struct vm_area_struct *
2227 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2228 			struct vm_area_struct **pprev)
2229 {
2230 	struct vm_area_struct *vma;
2231 
2232 	vma = find_vma(mm, addr);
2233 	if (vma) {
2234 		*pprev = vma->vm_prev;
2235 	} else {
2236 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2237 		*pprev = NULL;
2238 		while (rb_node) {
2239 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2240 			rb_node = rb_node->rb_right;
2241 		}
2242 	}
2243 	return vma;
2244 }
2245 
2246 /*
2247  * Verify that the stack growth is acceptable and
2248  * update accounting. This is shared with both the
2249  * grow-up and grow-down cases.
2250  */
2251 static int acct_stack_growth(struct vm_area_struct *vma,
2252 			     unsigned long size, unsigned long grow)
2253 {
2254 	struct mm_struct *mm = vma->vm_mm;
2255 	unsigned long new_start;
2256 
2257 	/* address space limit tests */
2258 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2259 		return -ENOMEM;
2260 
2261 	/* Stack limit test */
2262 	if (size > rlimit(RLIMIT_STACK))
2263 		return -ENOMEM;
2264 
2265 	/* mlock limit tests */
2266 	if (vma->vm_flags & VM_LOCKED) {
2267 		unsigned long locked;
2268 		unsigned long limit;
2269 		locked = mm->locked_vm + grow;
2270 		limit = rlimit(RLIMIT_MEMLOCK);
2271 		limit >>= PAGE_SHIFT;
2272 		if (locked > limit && !capable(CAP_IPC_LOCK))
2273 			return -ENOMEM;
2274 	}
2275 
2276 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2277 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2278 			vma->vm_end - size;
2279 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2280 		return -EFAULT;
2281 
2282 	/*
2283 	 * Overcommit..  This must be the final test, as it will
2284 	 * update security statistics.
2285 	 */
2286 	if (security_vm_enough_memory_mm(mm, grow))
2287 		return -ENOMEM;
2288 
2289 	return 0;
2290 }
2291 
2292 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2293 /*
2294  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2295  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2296  */
2297 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2298 {
2299 	struct mm_struct *mm = vma->vm_mm;
2300 	struct vm_area_struct *next;
2301 	unsigned long gap_addr;
2302 	int error = 0;
2303 
2304 	if (!(vma->vm_flags & VM_GROWSUP))
2305 		return -EFAULT;
2306 
2307 	/* Guard against exceeding limits of the address space. */
2308 	address &= PAGE_MASK;
2309 	if (address >= (TASK_SIZE & PAGE_MASK))
2310 		return -ENOMEM;
2311 	address += PAGE_SIZE;
2312 
2313 	/* Enforce stack_guard_gap */
2314 	gap_addr = address + stack_guard_gap;
2315 
2316 	/* Guard against overflow */
2317 	if (gap_addr < address || gap_addr > TASK_SIZE)
2318 		gap_addr = TASK_SIZE;
2319 
2320 	next = vma->vm_next;
2321 	if (next && next->vm_start < gap_addr &&
2322 			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2323 		if (!(next->vm_flags & VM_GROWSUP))
2324 			return -ENOMEM;
2325 		/* Check that both stack segments have the same anon_vma? */
2326 	}
2327 
2328 	/* We must make sure the anon_vma is allocated. */
2329 	if (unlikely(anon_vma_prepare(vma)))
2330 		return -ENOMEM;
2331 
2332 	/*
2333 	 * vma->vm_start/vm_end cannot change under us because the caller
2334 	 * is required to hold the mmap_sem in read mode.  We need the
2335 	 * anon_vma lock to serialize against concurrent expand_stacks.
2336 	 */
2337 	anon_vma_lock_write(vma->anon_vma);
2338 
2339 	/* Somebody else might have raced and expanded it already */
2340 	if (address > vma->vm_end) {
2341 		unsigned long size, grow;
2342 
2343 		size = address - vma->vm_start;
2344 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2345 
2346 		error = -ENOMEM;
2347 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2348 			error = acct_stack_growth(vma, size, grow);
2349 			if (!error) {
2350 				/*
2351 				 * vma_gap_update() doesn't support concurrent
2352 				 * updates, but we only hold a shared mmap_sem
2353 				 * lock here, so we need to protect against
2354 				 * concurrent vma expansions.
2355 				 * anon_vma_lock_write() doesn't help here, as
2356 				 * we don't guarantee that all growable vmas
2357 				 * in a mm share the same root anon vma.
2358 				 * So, we reuse mm->page_table_lock to guard
2359 				 * against concurrent vma expansions.
2360 				 */
2361 				spin_lock(&mm->page_table_lock);
2362 				if (vma->vm_flags & VM_LOCKED)
2363 					mm->locked_vm += grow;
2364 				vm_stat_account(mm, vma->vm_flags, grow);
2365 				anon_vma_interval_tree_pre_update_vma(vma);
2366 				vma->vm_end = address;
2367 				anon_vma_interval_tree_post_update_vma(vma);
2368 				if (vma->vm_next)
2369 					vma_gap_update(vma->vm_next);
2370 				else
2371 					mm->highest_vm_end = vm_end_gap(vma);
2372 				spin_unlock(&mm->page_table_lock);
2373 
2374 				perf_event_mmap(vma);
2375 			}
2376 		}
2377 	}
2378 	anon_vma_unlock_write(vma->anon_vma);
2379 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2380 	validate_mm(mm);
2381 	return error;
2382 }
2383 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2384 
2385 /*
2386  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2387  */
2388 int expand_downwards(struct vm_area_struct *vma,
2389 				   unsigned long address)
2390 {
2391 	struct mm_struct *mm = vma->vm_mm;
2392 	struct vm_area_struct *prev;
2393 	int error;
2394 
2395 	address &= PAGE_MASK;
2396 	error = security_mmap_addr(address);
2397 	if (error)
2398 		return error;
2399 
2400 	/* Enforce stack_guard_gap */
2401 	prev = vma->vm_prev;
2402 	/* Check that both stack segments have the same anon_vma? */
2403 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2404 			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2405 		if (address - prev->vm_end < stack_guard_gap)
2406 			return -ENOMEM;
2407 	}
2408 
2409 	/* We must make sure the anon_vma is allocated. */
2410 	if (unlikely(anon_vma_prepare(vma)))
2411 		return -ENOMEM;
2412 
2413 	/*
2414 	 * vma->vm_start/vm_end cannot change under us because the caller
2415 	 * is required to hold the mmap_sem in read mode.  We need the
2416 	 * anon_vma lock to serialize against concurrent expand_stacks.
2417 	 */
2418 	anon_vma_lock_write(vma->anon_vma);
2419 
2420 	/* Somebody else might have raced and expanded it already */
2421 	if (address < vma->vm_start) {
2422 		unsigned long size, grow;
2423 
2424 		size = vma->vm_end - address;
2425 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2426 
2427 		error = -ENOMEM;
2428 		if (grow <= vma->vm_pgoff) {
2429 			error = acct_stack_growth(vma, size, grow);
2430 			if (!error) {
2431 				/*
2432 				 * vma_gap_update() doesn't support concurrent
2433 				 * updates, but we only hold a shared mmap_sem
2434 				 * lock here, so we need to protect against
2435 				 * concurrent vma expansions.
2436 				 * anon_vma_lock_write() doesn't help here, as
2437 				 * we don't guarantee that all growable vmas
2438 				 * in a mm share the same root anon vma.
2439 				 * So, we reuse mm->page_table_lock to guard
2440 				 * against concurrent vma expansions.
2441 				 */
2442 				spin_lock(&mm->page_table_lock);
2443 				if (vma->vm_flags & VM_LOCKED)
2444 					mm->locked_vm += grow;
2445 				vm_stat_account(mm, vma->vm_flags, grow);
2446 				anon_vma_interval_tree_pre_update_vma(vma);
2447 				vma->vm_start = address;
2448 				vma->vm_pgoff -= grow;
2449 				anon_vma_interval_tree_post_update_vma(vma);
2450 				vma_gap_update(vma);
2451 				spin_unlock(&mm->page_table_lock);
2452 
2453 				perf_event_mmap(vma);
2454 			}
2455 		}
2456 	}
2457 	anon_vma_unlock_write(vma->anon_vma);
2458 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2459 	validate_mm(mm);
2460 	return error;
2461 }
2462 
2463 /* enforced gap between the expanding stack and other mappings. */
2464 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2465 
2466 static int __init cmdline_parse_stack_guard_gap(char *p)
2467 {
2468 	unsigned long val;
2469 	char *endptr;
2470 
2471 	val = simple_strtoul(p, &endptr, 10);
2472 	if (!*endptr)
2473 		stack_guard_gap = val << PAGE_SHIFT;
2474 
2475 	return 0;
2476 }
2477 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2478 
2479 #ifdef CONFIG_STACK_GROWSUP
2480 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2481 {
2482 	return expand_upwards(vma, address);
2483 }
2484 
2485 struct vm_area_struct *
2486 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2487 {
2488 	struct vm_area_struct *vma, *prev;
2489 
2490 	addr &= PAGE_MASK;
2491 	vma = find_vma_prev(mm, addr, &prev);
2492 	if (vma && (vma->vm_start <= addr))
2493 		return vma;
2494 	if (!prev || expand_stack(prev, addr))
2495 		return NULL;
2496 	if (prev->vm_flags & VM_LOCKED)
2497 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2498 	return prev;
2499 }
2500 #else
2501 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2502 {
2503 	return expand_downwards(vma, address);
2504 }
2505 
2506 struct vm_area_struct *
2507 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2508 {
2509 	struct vm_area_struct *vma;
2510 	unsigned long start;
2511 
2512 	addr &= PAGE_MASK;
2513 	vma = find_vma(mm, addr);
2514 	if (!vma)
2515 		return NULL;
2516 	if (vma->vm_start <= addr)
2517 		return vma;
2518 	if (!(vma->vm_flags & VM_GROWSDOWN))
2519 		return NULL;
2520 	start = vma->vm_start;
2521 	if (expand_stack(vma, addr))
2522 		return NULL;
2523 	if (vma->vm_flags & VM_LOCKED)
2524 		populate_vma_page_range(vma, addr, start, NULL);
2525 	return vma;
2526 }
2527 #endif
2528 
2529 EXPORT_SYMBOL_GPL(find_extend_vma);
2530 
2531 /*
2532  * Ok - we have the memory areas we should free on the vma list,
2533  * so release them, and do the vma updates.
2534  *
2535  * Called with the mm semaphore held.
2536  */
2537 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2538 {
2539 	unsigned long nr_accounted = 0;
2540 
2541 	/* Update high watermark before we lower total_vm */
2542 	update_hiwater_vm(mm);
2543 	do {
2544 		long nrpages = vma_pages(vma);
2545 
2546 		if (vma->vm_flags & VM_ACCOUNT)
2547 			nr_accounted += nrpages;
2548 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2549 		vma = remove_vma(vma);
2550 	} while (vma);
2551 	vm_unacct_memory(nr_accounted);
2552 	validate_mm(mm);
2553 }
2554 
2555 /*
2556  * Get rid of page table information in the indicated region.
2557  *
2558  * Called with the mm semaphore held.
2559  */
2560 static void unmap_region(struct mm_struct *mm,
2561 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2562 		unsigned long start, unsigned long end)
2563 {
2564 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2565 	struct mmu_gather tlb;
2566 
2567 	lru_add_drain();
2568 	tlb_gather_mmu(&tlb, mm, start, end);
2569 	update_hiwater_rss(mm);
2570 	unmap_vmas(&tlb, vma, start, end);
2571 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2572 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2573 	tlb_finish_mmu(&tlb, start, end);
2574 }
2575 
2576 /*
2577  * Create a list of vma's touched by the unmap, removing them from the mm's
2578  * vma list as we go..
2579  */
2580 static void
2581 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2582 	struct vm_area_struct *prev, unsigned long end)
2583 {
2584 	struct vm_area_struct **insertion_point;
2585 	struct vm_area_struct *tail_vma = NULL;
2586 
2587 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2588 	vma->vm_prev = NULL;
2589 	do {
2590 		vma_rb_erase(vma, &mm->mm_rb);
2591 		mm->map_count--;
2592 		tail_vma = vma;
2593 		vma = vma->vm_next;
2594 	} while (vma && vma->vm_start < end);
2595 	*insertion_point = vma;
2596 	if (vma) {
2597 		vma->vm_prev = prev;
2598 		vma_gap_update(vma);
2599 	} else
2600 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2601 	tail_vma->vm_next = NULL;
2602 
2603 	/* Kill the cache */
2604 	vmacache_invalidate(mm);
2605 }
2606 
2607 /*
2608  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2609  * has already been checked or doesn't make sense to fail.
2610  */
2611 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2612 		unsigned long addr, int new_below)
2613 {
2614 	struct vm_area_struct *new;
2615 	int err;
2616 
2617 	if (vma->vm_ops && vma->vm_ops->split) {
2618 		err = vma->vm_ops->split(vma, addr);
2619 		if (err)
2620 			return err;
2621 	}
2622 
2623 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2624 	if (!new)
2625 		return -ENOMEM;
2626 
2627 	/* most fields are the same, copy all, and then fixup */
2628 	*new = *vma;
2629 
2630 	INIT_LIST_HEAD(&new->anon_vma_chain);
2631 
2632 	if (new_below)
2633 		new->vm_end = addr;
2634 	else {
2635 		new->vm_start = addr;
2636 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2637 	}
2638 
2639 	err = vma_dup_policy(vma, new);
2640 	if (err)
2641 		goto out_free_vma;
2642 
2643 	err = anon_vma_clone(new, vma);
2644 	if (err)
2645 		goto out_free_mpol;
2646 
2647 	if (new->vm_file)
2648 		get_file(new->vm_file);
2649 
2650 	if (new->vm_ops && new->vm_ops->open)
2651 		new->vm_ops->open(new);
2652 
2653 	if (new_below)
2654 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2655 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2656 	else
2657 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2658 
2659 	/* Success. */
2660 	if (!err)
2661 		return 0;
2662 
2663 	/* Clean everything up if vma_adjust failed. */
2664 	if (new->vm_ops && new->vm_ops->close)
2665 		new->vm_ops->close(new);
2666 	if (new->vm_file)
2667 		fput(new->vm_file);
2668 	unlink_anon_vmas(new);
2669  out_free_mpol:
2670 	mpol_put(vma_policy(new));
2671  out_free_vma:
2672 	kmem_cache_free(vm_area_cachep, new);
2673 	return err;
2674 }
2675 
2676 /*
2677  * Split a vma into two pieces at address 'addr', a new vma is allocated
2678  * either for the first part or the tail.
2679  */
2680 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2681 	      unsigned long addr, int new_below)
2682 {
2683 	if (mm->map_count >= sysctl_max_map_count)
2684 		return -ENOMEM;
2685 
2686 	return __split_vma(mm, vma, addr, new_below);
2687 }
2688 
2689 /* Munmap is split into 2 main parts -- this part which finds
2690  * what needs doing, and the areas themselves, which do the
2691  * work.  This now handles partial unmappings.
2692  * Jeremy Fitzhardinge <jeremy@goop.org>
2693  */
2694 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2695 	      struct list_head *uf)
2696 {
2697 	unsigned long end;
2698 	struct vm_area_struct *vma, *prev, *last;
2699 
2700 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2701 		return -EINVAL;
2702 
2703 	len = PAGE_ALIGN(len);
2704 	if (len == 0)
2705 		return -EINVAL;
2706 
2707 	/* Find the first overlapping VMA */
2708 	vma = find_vma(mm, start);
2709 	if (!vma)
2710 		return 0;
2711 	prev = vma->vm_prev;
2712 	/* we have  start < vma->vm_end  */
2713 
2714 	/* if it doesn't overlap, we have nothing.. */
2715 	end = start + len;
2716 	if (vma->vm_start >= end)
2717 		return 0;
2718 
2719 	/*
2720 	 * If we need to split any vma, do it now to save pain later.
2721 	 *
2722 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2723 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2724 	 * places tmp vma above, and higher split_vma places tmp vma below.
2725 	 */
2726 	if (start > vma->vm_start) {
2727 		int error;
2728 
2729 		/*
2730 		 * Make sure that map_count on return from munmap() will
2731 		 * not exceed its limit; but let map_count go just above
2732 		 * its limit temporarily, to help free resources as expected.
2733 		 */
2734 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2735 			return -ENOMEM;
2736 
2737 		error = __split_vma(mm, vma, start, 0);
2738 		if (error)
2739 			return error;
2740 		prev = vma;
2741 	}
2742 
2743 	/* Does it split the last one? */
2744 	last = find_vma(mm, end);
2745 	if (last && end > last->vm_start) {
2746 		int error = __split_vma(mm, last, end, 1);
2747 		if (error)
2748 			return error;
2749 	}
2750 	vma = prev ? prev->vm_next : mm->mmap;
2751 
2752 	if (unlikely(uf)) {
2753 		/*
2754 		 * If userfaultfd_unmap_prep returns an error the vmas
2755 		 * will remain splitted, but userland will get a
2756 		 * highly unexpected error anyway. This is no
2757 		 * different than the case where the first of the two
2758 		 * __split_vma fails, but we don't undo the first
2759 		 * split, despite we could. This is unlikely enough
2760 		 * failure that it's not worth optimizing it for.
2761 		 */
2762 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2763 		if (error)
2764 			return error;
2765 	}
2766 
2767 	/*
2768 	 * unlock any mlock()ed ranges before detaching vmas
2769 	 */
2770 	if (mm->locked_vm) {
2771 		struct vm_area_struct *tmp = vma;
2772 		while (tmp && tmp->vm_start < end) {
2773 			if (tmp->vm_flags & VM_LOCKED) {
2774 				mm->locked_vm -= vma_pages(tmp);
2775 				munlock_vma_pages_all(tmp);
2776 			}
2777 			tmp = tmp->vm_next;
2778 		}
2779 	}
2780 
2781 	/*
2782 	 * Remove the vma's, and unmap the actual pages
2783 	 */
2784 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2785 	unmap_region(mm, vma, prev, start, end);
2786 
2787 	arch_unmap(mm, vma, start, end);
2788 
2789 	/* Fix up all other VM information */
2790 	remove_vma_list(mm, vma);
2791 
2792 	return 0;
2793 }
2794 
2795 int vm_munmap(unsigned long start, size_t len)
2796 {
2797 	int ret;
2798 	struct mm_struct *mm = current->mm;
2799 	LIST_HEAD(uf);
2800 
2801 	if (down_write_killable(&mm->mmap_sem))
2802 		return -EINTR;
2803 
2804 	ret = do_munmap(mm, start, len, &uf);
2805 	up_write(&mm->mmap_sem);
2806 	userfaultfd_unmap_complete(mm, &uf);
2807 	return ret;
2808 }
2809 EXPORT_SYMBOL(vm_munmap);
2810 
2811 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2812 {
2813 	profile_munmap(addr);
2814 	return vm_munmap(addr, len);
2815 }
2816 
2817 
2818 /*
2819  * Emulation of deprecated remap_file_pages() syscall.
2820  */
2821 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2822 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2823 {
2824 
2825 	struct mm_struct *mm = current->mm;
2826 	struct vm_area_struct *vma;
2827 	unsigned long populate = 0;
2828 	unsigned long ret = -EINVAL;
2829 	struct file *file;
2830 
2831 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2832 		     current->comm, current->pid);
2833 
2834 	if (prot)
2835 		return ret;
2836 	start = start & PAGE_MASK;
2837 	size = size & PAGE_MASK;
2838 
2839 	if (start + size <= start)
2840 		return ret;
2841 
2842 	/* Does pgoff wrap? */
2843 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2844 		return ret;
2845 
2846 	if (down_write_killable(&mm->mmap_sem))
2847 		return -EINTR;
2848 
2849 	vma = find_vma(mm, start);
2850 
2851 	if (!vma || !(vma->vm_flags & VM_SHARED))
2852 		goto out;
2853 
2854 	if (start < vma->vm_start)
2855 		goto out;
2856 
2857 	if (start + size > vma->vm_end) {
2858 		struct vm_area_struct *next;
2859 
2860 		for (next = vma->vm_next; next; next = next->vm_next) {
2861 			/* hole between vmas ? */
2862 			if (next->vm_start != next->vm_prev->vm_end)
2863 				goto out;
2864 
2865 			if (next->vm_file != vma->vm_file)
2866 				goto out;
2867 
2868 			if (next->vm_flags != vma->vm_flags)
2869 				goto out;
2870 
2871 			if (start + size <= next->vm_end)
2872 				break;
2873 		}
2874 
2875 		if (!next)
2876 			goto out;
2877 	}
2878 
2879 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2880 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2881 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2882 
2883 	flags &= MAP_NONBLOCK;
2884 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2885 	if (vma->vm_flags & VM_LOCKED) {
2886 		struct vm_area_struct *tmp;
2887 		flags |= MAP_LOCKED;
2888 
2889 		/* drop PG_Mlocked flag for over-mapped range */
2890 		for (tmp = vma; tmp->vm_start >= start + size;
2891 				tmp = tmp->vm_next) {
2892 			/*
2893 			 * Split pmd and munlock page on the border
2894 			 * of the range.
2895 			 */
2896 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2897 
2898 			munlock_vma_pages_range(tmp,
2899 					max(tmp->vm_start, start),
2900 					min(tmp->vm_end, start + size));
2901 		}
2902 	}
2903 
2904 	file = get_file(vma->vm_file);
2905 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2906 			prot, flags, pgoff, &populate, NULL);
2907 	fput(file);
2908 out:
2909 	up_write(&mm->mmap_sem);
2910 	if (populate)
2911 		mm_populate(ret, populate);
2912 	if (!IS_ERR_VALUE(ret))
2913 		ret = 0;
2914 	return ret;
2915 }
2916 
2917 static inline void verify_mm_writelocked(struct mm_struct *mm)
2918 {
2919 #ifdef CONFIG_DEBUG_VM
2920 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2921 		WARN_ON(1);
2922 		up_read(&mm->mmap_sem);
2923 	}
2924 #endif
2925 }
2926 
2927 /*
2928  *  this is really a simplified "do_mmap".  it only handles
2929  *  anonymous maps.  eventually we may be able to do some
2930  *  brk-specific accounting here.
2931  */
2932 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
2933 {
2934 	struct mm_struct *mm = current->mm;
2935 	struct vm_area_struct *vma, *prev;
2936 	unsigned long len;
2937 	struct rb_node **rb_link, *rb_parent;
2938 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2939 	int error;
2940 
2941 	len = PAGE_ALIGN(request);
2942 	if (len < request)
2943 		return -ENOMEM;
2944 	if (!len)
2945 		return 0;
2946 
2947 	/* Until we need other flags, refuse anything except VM_EXEC. */
2948 	if ((flags & (~VM_EXEC)) != 0)
2949 		return -EINVAL;
2950 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2951 
2952 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2953 	if (offset_in_page(error))
2954 		return error;
2955 
2956 	error = mlock_future_check(mm, mm->def_flags, len);
2957 	if (error)
2958 		return error;
2959 
2960 	/*
2961 	 * mm->mmap_sem is required to protect against another thread
2962 	 * changing the mappings in case we sleep.
2963 	 */
2964 	verify_mm_writelocked(mm);
2965 
2966 	/*
2967 	 * Clear old maps.  this also does some error checking for us
2968 	 */
2969 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2970 			      &rb_parent)) {
2971 		if (do_munmap(mm, addr, len, uf))
2972 			return -ENOMEM;
2973 	}
2974 
2975 	/* Check against address space limits *after* clearing old maps... */
2976 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2977 		return -ENOMEM;
2978 
2979 	if (mm->map_count > sysctl_max_map_count)
2980 		return -ENOMEM;
2981 
2982 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2983 		return -ENOMEM;
2984 
2985 	/* Can we just expand an old private anonymous mapping? */
2986 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2987 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2988 	if (vma)
2989 		goto out;
2990 
2991 	/*
2992 	 * create a vma struct for an anonymous mapping
2993 	 */
2994 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2995 	if (!vma) {
2996 		vm_unacct_memory(len >> PAGE_SHIFT);
2997 		return -ENOMEM;
2998 	}
2999 
3000 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3001 	vma->vm_mm = mm;
3002 	vma->vm_start = addr;
3003 	vma->vm_end = addr + len;
3004 	vma->vm_pgoff = pgoff;
3005 	vma->vm_flags = flags;
3006 	vma->vm_page_prot = vm_get_page_prot(flags);
3007 	vma_link(mm, vma, prev, rb_link, rb_parent);
3008 out:
3009 	perf_event_mmap(vma);
3010 	mm->total_vm += len >> PAGE_SHIFT;
3011 	mm->data_vm += len >> PAGE_SHIFT;
3012 	if (flags & VM_LOCKED)
3013 		mm->locked_vm += (len >> PAGE_SHIFT);
3014 	vma->vm_flags |= VM_SOFTDIRTY;
3015 	return 0;
3016 }
3017 
3018 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
3019 {
3020 	return do_brk_flags(addr, len, 0, uf);
3021 }
3022 
3023 int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags)
3024 {
3025 	struct mm_struct *mm = current->mm;
3026 	int ret;
3027 	bool populate;
3028 	LIST_HEAD(uf);
3029 
3030 	if (down_write_killable(&mm->mmap_sem))
3031 		return -EINTR;
3032 
3033 	ret = do_brk_flags(addr, len, flags, &uf);
3034 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3035 	up_write(&mm->mmap_sem);
3036 	userfaultfd_unmap_complete(mm, &uf);
3037 	if (populate && !ret)
3038 		mm_populate(addr, len);
3039 	return ret;
3040 }
3041 EXPORT_SYMBOL(vm_brk_flags);
3042 
3043 int vm_brk(unsigned long addr, unsigned long len)
3044 {
3045 	return vm_brk_flags(addr, len, 0);
3046 }
3047 EXPORT_SYMBOL(vm_brk);
3048 
3049 /* Release all mmaps. */
3050 void exit_mmap(struct mm_struct *mm)
3051 {
3052 	struct mmu_gather tlb;
3053 	struct vm_area_struct *vma;
3054 	unsigned long nr_accounted = 0;
3055 
3056 	/* mm's last user has gone, and its about to be pulled down */
3057 	mmu_notifier_release(mm);
3058 
3059 	if (unlikely(mm_is_oom_victim(mm))) {
3060 		/*
3061 		 * Manually reap the mm to free as much memory as possible.
3062 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3063 		 * this mm from further consideration.  Taking mm->mmap_sem for
3064 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3065 		 * reaper will not run on this mm again after mmap_sem is
3066 		 * dropped.
3067 		 *
3068 		 * Nothing can be holding mm->mmap_sem here and the above call
3069 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3070 		 * __oom_reap_task_mm() will not block.
3071 		 *
3072 		 * This needs to be done before calling munlock_vma_pages_all(),
3073 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3074 		 * reliably test it.
3075 		 */
3076 		mutex_lock(&oom_lock);
3077 		__oom_reap_task_mm(mm);
3078 		mutex_unlock(&oom_lock);
3079 
3080 		set_bit(MMF_OOM_SKIP, &mm->flags);
3081 		down_write(&mm->mmap_sem);
3082 		up_write(&mm->mmap_sem);
3083 	}
3084 
3085 	if (mm->locked_vm) {
3086 		vma = mm->mmap;
3087 		while (vma) {
3088 			if (vma->vm_flags & VM_LOCKED)
3089 				munlock_vma_pages_all(vma);
3090 			vma = vma->vm_next;
3091 		}
3092 	}
3093 
3094 	arch_exit_mmap(mm);
3095 
3096 	vma = mm->mmap;
3097 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3098 		return;
3099 
3100 	lru_add_drain();
3101 	flush_cache_mm(mm);
3102 	tlb_gather_mmu(&tlb, mm, 0, -1);
3103 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3104 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3105 	unmap_vmas(&tlb, vma, 0, -1);
3106 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3107 	tlb_finish_mmu(&tlb, 0, -1);
3108 
3109 	/*
3110 	 * Walk the list again, actually closing and freeing it,
3111 	 * with preemption enabled, without holding any MM locks.
3112 	 */
3113 	while (vma) {
3114 		if (vma->vm_flags & VM_ACCOUNT)
3115 			nr_accounted += vma_pages(vma);
3116 		vma = remove_vma(vma);
3117 	}
3118 	vm_unacct_memory(nr_accounted);
3119 }
3120 
3121 /* Insert vm structure into process list sorted by address
3122  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3123  * then i_mmap_rwsem is taken here.
3124  */
3125 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3126 {
3127 	struct vm_area_struct *prev;
3128 	struct rb_node **rb_link, *rb_parent;
3129 
3130 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3131 			   &prev, &rb_link, &rb_parent))
3132 		return -ENOMEM;
3133 	if ((vma->vm_flags & VM_ACCOUNT) &&
3134 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3135 		return -ENOMEM;
3136 
3137 	/*
3138 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3139 	 * until its first write fault, when page's anon_vma and index
3140 	 * are set.  But now set the vm_pgoff it will almost certainly
3141 	 * end up with (unless mremap moves it elsewhere before that
3142 	 * first wfault), so /proc/pid/maps tells a consistent story.
3143 	 *
3144 	 * By setting it to reflect the virtual start address of the
3145 	 * vma, merges and splits can happen in a seamless way, just
3146 	 * using the existing file pgoff checks and manipulations.
3147 	 * Similarly in do_mmap_pgoff and in do_brk.
3148 	 */
3149 	if (vma_is_anonymous(vma)) {
3150 		BUG_ON(vma->anon_vma);
3151 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3152 	}
3153 
3154 	vma_link(mm, vma, prev, rb_link, rb_parent);
3155 	return 0;
3156 }
3157 
3158 /*
3159  * Copy the vma structure to a new location in the same mm,
3160  * prior to moving page table entries, to effect an mremap move.
3161  */
3162 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3163 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3164 	bool *need_rmap_locks)
3165 {
3166 	struct vm_area_struct *vma = *vmap;
3167 	unsigned long vma_start = vma->vm_start;
3168 	struct mm_struct *mm = vma->vm_mm;
3169 	struct vm_area_struct *new_vma, *prev;
3170 	struct rb_node **rb_link, *rb_parent;
3171 	bool faulted_in_anon_vma = true;
3172 
3173 	/*
3174 	 * If anonymous vma has not yet been faulted, update new pgoff
3175 	 * to match new location, to increase its chance of merging.
3176 	 */
3177 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3178 		pgoff = addr >> PAGE_SHIFT;
3179 		faulted_in_anon_vma = false;
3180 	}
3181 
3182 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3183 		return NULL;	/* should never get here */
3184 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3185 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3186 			    vma->vm_userfaultfd_ctx);
3187 	if (new_vma) {
3188 		/*
3189 		 * Source vma may have been merged into new_vma
3190 		 */
3191 		if (unlikely(vma_start >= new_vma->vm_start &&
3192 			     vma_start < new_vma->vm_end)) {
3193 			/*
3194 			 * The only way we can get a vma_merge with
3195 			 * self during an mremap is if the vma hasn't
3196 			 * been faulted in yet and we were allowed to
3197 			 * reset the dst vma->vm_pgoff to the
3198 			 * destination address of the mremap to allow
3199 			 * the merge to happen. mremap must change the
3200 			 * vm_pgoff linearity between src and dst vmas
3201 			 * (in turn preventing a vma_merge) to be
3202 			 * safe. It is only safe to keep the vm_pgoff
3203 			 * linear if there are no pages mapped yet.
3204 			 */
3205 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3206 			*vmap = vma = new_vma;
3207 		}
3208 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3209 	} else {
3210 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3211 		if (!new_vma)
3212 			goto out;
3213 		*new_vma = *vma;
3214 		new_vma->vm_start = addr;
3215 		new_vma->vm_end = addr + len;
3216 		new_vma->vm_pgoff = pgoff;
3217 		if (vma_dup_policy(vma, new_vma))
3218 			goto out_free_vma;
3219 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3220 		if (anon_vma_clone(new_vma, vma))
3221 			goto out_free_mempol;
3222 		if (new_vma->vm_file)
3223 			get_file(new_vma->vm_file);
3224 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3225 			new_vma->vm_ops->open(new_vma);
3226 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3227 		*need_rmap_locks = false;
3228 	}
3229 	return new_vma;
3230 
3231 out_free_mempol:
3232 	mpol_put(vma_policy(new_vma));
3233 out_free_vma:
3234 	kmem_cache_free(vm_area_cachep, new_vma);
3235 out:
3236 	return NULL;
3237 }
3238 
3239 /*
3240  * Return true if the calling process may expand its vm space by the passed
3241  * number of pages
3242  */
3243 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3244 {
3245 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3246 		return false;
3247 
3248 	if (is_data_mapping(flags) &&
3249 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3250 		/* Workaround for Valgrind */
3251 		if (rlimit(RLIMIT_DATA) == 0 &&
3252 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3253 			return true;
3254 
3255 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3256 			     current->comm, current->pid,
3257 			     (mm->data_vm + npages) << PAGE_SHIFT,
3258 			     rlimit(RLIMIT_DATA),
3259 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3260 
3261 		if (!ignore_rlimit_data)
3262 			return false;
3263 	}
3264 
3265 	return true;
3266 }
3267 
3268 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3269 {
3270 	mm->total_vm += npages;
3271 
3272 	if (is_exec_mapping(flags))
3273 		mm->exec_vm += npages;
3274 	else if (is_stack_mapping(flags))
3275 		mm->stack_vm += npages;
3276 	else if (is_data_mapping(flags))
3277 		mm->data_vm += npages;
3278 }
3279 
3280 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3281 
3282 /*
3283  * Having a close hook prevents vma merging regardless of flags.
3284  */
3285 static void special_mapping_close(struct vm_area_struct *vma)
3286 {
3287 }
3288 
3289 static const char *special_mapping_name(struct vm_area_struct *vma)
3290 {
3291 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3292 }
3293 
3294 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3295 {
3296 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3297 
3298 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3299 		return -EFAULT;
3300 
3301 	if (sm->mremap)
3302 		return sm->mremap(sm, new_vma);
3303 
3304 	return 0;
3305 }
3306 
3307 static const struct vm_operations_struct special_mapping_vmops = {
3308 	.close = special_mapping_close,
3309 	.fault = special_mapping_fault,
3310 	.mremap = special_mapping_mremap,
3311 	.name = special_mapping_name,
3312 };
3313 
3314 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3315 	.close = special_mapping_close,
3316 	.fault = special_mapping_fault,
3317 };
3318 
3319 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3320 {
3321 	struct vm_area_struct *vma = vmf->vma;
3322 	pgoff_t pgoff;
3323 	struct page **pages;
3324 
3325 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3326 		pages = vma->vm_private_data;
3327 	} else {
3328 		struct vm_special_mapping *sm = vma->vm_private_data;
3329 
3330 		if (sm->fault)
3331 			return sm->fault(sm, vmf->vma, vmf);
3332 
3333 		pages = sm->pages;
3334 	}
3335 
3336 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3337 		pgoff--;
3338 
3339 	if (*pages) {
3340 		struct page *page = *pages;
3341 		get_page(page);
3342 		vmf->page = page;
3343 		return 0;
3344 	}
3345 
3346 	return VM_FAULT_SIGBUS;
3347 }
3348 
3349 static struct vm_area_struct *__install_special_mapping(
3350 	struct mm_struct *mm,
3351 	unsigned long addr, unsigned long len,
3352 	unsigned long vm_flags, void *priv,
3353 	const struct vm_operations_struct *ops)
3354 {
3355 	int ret;
3356 	struct vm_area_struct *vma;
3357 
3358 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3359 	if (unlikely(vma == NULL))
3360 		return ERR_PTR(-ENOMEM);
3361 
3362 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3363 	vma->vm_mm = mm;
3364 	vma->vm_start = addr;
3365 	vma->vm_end = addr + len;
3366 
3367 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3368 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3369 
3370 	vma->vm_ops = ops;
3371 	vma->vm_private_data = priv;
3372 
3373 	ret = insert_vm_struct(mm, vma);
3374 	if (ret)
3375 		goto out;
3376 
3377 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3378 
3379 	perf_event_mmap(vma);
3380 
3381 	return vma;
3382 
3383 out:
3384 	kmem_cache_free(vm_area_cachep, vma);
3385 	return ERR_PTR(ret);
3386 }
3387 
3388 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3389 	const struct vm_special_mapping *sm)
3390 {
3391 	return vma->vm_private_data == sm &&
3392 		(vma->vm_ops == &special_mapping_vmops ||
3393 		 vma->vm_ops == &legacy_special_mapping_vmops);
3394 }
3395 
3396 /*
3397  * Called with mm->mmap_sem held for writing.
3398  * Insert a new vma covering the given region, with the given flags.
3399  * Its pages are supplied by the given array of struct page *.
3400  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3401  * The region past the last page supplied will always produce SIGBUS.
3402  * The array pointer and the pages it points to are assumed to stay alive
3403  * for as long as this mapping might exist.
3404  */
3405 struct vm_area_struct *_install_special_mapping(
3406 	struct mm_struct *mm,
3407 	unsigned long addr, unsigned long len,
3408 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3409 {
3410 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3411 					&special_mapping_vmops);
3412 }
3413 
3414 int install_special_mapping(struct mm_struct *mm,
3415 			    unsigned long addr, unsigned long len,
3416 			    unsigned long vm_flags, struct page **pages)
3417 {
3418 	struct vm_area_struct *vma = __install_special_mapping(
3419 		mm, addr, len, vm_flags, (void *)pages,
3420 		&legacy_special_mapping_vmops);
3421 
3422 	return PTR_ERR_OR_ZERO(vma);
3423 }
3424 
3425 static DEFINE_MUTEX(mm_all_locks_mutex);
3426 
3427 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3428 {
3429 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3430 		/*
3431 		 * The LSB of head.next can't change from under us
3432 		 * because we hold the mm_all_locks_mutex.
3433 		 */
3434 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3435 		/*
3436 		 * We can safely modify head.next after taking the
3437 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3438 		 * the same anon_vma we won't take it again.
3439 		 *
3440 		 * No need of atomic instructions here, head.next
3441 		 * can't change from under us thanks to the
3442 		 * anon_vma->root->rwsem.
3443 		 */
3444 		if (__test_and_set_bit(0, (unsigned long *)
3445 				       &anon_vma->root->rb_root.rb_root.rb_node))
3446 			BUG();
3447 	}
3448 }
3449 
3450 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3451 {
3452 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3453 		/*
3454 		 * AS_MM_ALL_LOCKS can't change from under us because
3455 		 * we hold the mm_all_locks_mutex.
3456 		 *
3457 		 * Operations on ->flags have to be atomic because
3458 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3459 		 * mm_all_locks_mutex, there may be other cpus
3460 		 * changing other bitflags in parallel to us.
3461 		 */
3462 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3463 			BUG();
3464 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3465 	}
3466 }
3467 
3468 /*
3469  * This operation locks against the VM for all pte/vma/mm related
3470  * operations that could ever happen on a certain mm. This includes
3471  * vmtruncate, try_to_unmap, and all page faults.
3472  *
3473  * The caller must take the mmap_sem in write mode before calling
3474  * mm_take_all_locks(). The caller isn't allowed to release the
3475  * mmap_sem until mm_drop_all_locks() returns.
3476  *
3477  * mmap_sem in write mode is required in order to block all operations
3478  * that could modify pagetables and free pages without need of
3479  * altering the vma layout. It's also needed in write mode to avoid new
3480  * anon_vmas to be associated with existing vmas.
3481  *
3482  * A single task can't take more than one mm_take_all_locks() in a row
3483  * or it would deadlock.
3484  *
3485  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3486  * mapping->flags avoid to take the same lock twice, if more than one
3487  * vma in this mm is backed by the same anon_vma or address_space.
3488  *
3489  * We take locks in following order, accordingly to comment at beginning
3490  * of mm/rmap.c:
3491  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3492  *     hugetlb mapping);
3493  *   - all i_mmap_rwsem locks;
3494  *   - all anon_vma->rwseml
3495  *
3496  * We can take all locks within these types randomly because the VM code
3497  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3498  * mm_all_locks_mutex.
3499  *
3500  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3501  * that may have to take thousand of locks.
3502  *
3503  * mm_take_all_locks() can fail if it's interrupted by signals.
3504  */
3505 int mm_take_all_locks(struct mm_struct *mm)
3506 {
3507 	struct vm_area_struct *vma;
3508 	struct anon_vma_chain *avc;
3509 
3510 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3511 
3512 	mutex_lock(&mm_all_locks_mutex);
3513 
3514 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3515 		if (signal_pending(current))
3516 			goto out_unlock;
3517 		if (vma->vm_file && vma->vm_file->f_mapping &&
3518 				is_vm_hugetlb_page(vma))
3519 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3520 	}
3521 
3522 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3523 		if (signal_pending(current))
3524 			goto out_unlock;
3525 		if (vma->vm_file && vma->vm_file->f_mapping &&
3526 				!is_vm_hugetlb_page(vma))
3527 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3528 	}
3529 
3530 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3531 		if (signal_pending(current))
3532 			goto out_unlock;
3533 		if (vma->anon_vma)
3534 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3535 				vm_lock_anon_vma(mm, avc->anon_vma);
3536 	}
3537 
3538 	return 0;
3539 
3540 out_unlock:
3541 	mm_drop_all_locks(mm);
3542 	return -EINTR;
3543 }
3544 
3545 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3546 {
3547 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3548 		/*
3549 		 * The LSB of head.next can't change to 0 from under
3550 		 * us because we hold the mm_all_locks_mutex.
3551 		 *
3552 		 * We must however clear the bitflag before unlocking
3553 		 * the vma so the users using the anon_vma->rb_root will
3554 		 * never see our bitflag.
3555 		 *
3556 		 * No need of atomic instructions here, head.next
3557 		 * can't change from under us until we release the
3558 		 * anon_vma->root->rwsem.
3559 		 */
3560 		if (!__test_and_clear_bit(0, (unsigned long *)
3561 					  &anon_vma->root->rb_root.rb_root.rb_node))
3562 			BUG();
3563 		anon_vma_unlock_write(anon_vma);
3564 	}
3565 }
3566 
3567 static void vm_unlock_mapping(struct address_space *mapping)
3568 {
3569 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3570 		/*
3571 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3572 		 * because we hold the mm_all_locks_mutex.
3573 		 */
3574 		i_mmap_unlock_write(mapping);
3575 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3576 					&mapping->flags))
3577 			BUG();
3578 	}
3579 }
3580 
3581 /*
3582  * The mmap_sem cannot be released by the caller until
3583  * mm_drop_all_locks() returns.
3584  */
3585 void mm_drop_all_locks(struct mm_struct *mm)
3586 {
3587 	struct vm_area_struct *vma;
3588 	struct anon_vma_chain *avc;
3589 
3590 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3591 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3592 
3593 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3594 		if (vma->anon_vma)
3595 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3596 				vm_unlock_anon_vma(avc->anon_vma);
3597 		if (vma->vm_file && vma->vm_file->f_mapping)
3598 			vm_unlock_mapping(vma->vm_file->f_mapping);
3599 	}
3600 
3601 	mutex_unlock(&mm_all_locks_mutex);
3602 }
3603 
3604 /*
3605  * initialise the percpu counter for VM
3606  */
3607 void __init mmap_init(void)
3608 {
3609 	int ret;
3610 
3611 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3612 	VM_BUG_ON(ret);
3613 }
3614 
3615 /*
3616  * Initialise sysctl_user_reserve_kbytes.
3617  *
3618  * This is intended to prevent a user from starting a single memory hogging
3619  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3620  * mode.
3621  *
3622  * The default value is min(3% of free memory, 128MB)
3623  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3624  */
3625 static int init_user_reserve(void)
3626 {
3627 	unsigned long free_kbytes;
3628 
3629 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3630 
3631 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3632 	return 0;
3633 }
3634 subsys_initcall(init_user_reserve);
3635 
3636 /*
3637  * Initialise sysctl_admin_reserve_kbytes.
3638  *
3639  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3640  * to log in and kill a memory hogging process.
3641  *
3642  * Systems with more than 256MB will reserve 8MB, enough to recover
3643  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3644  * only reserve 3% of free pages by default.
3645  */
3646 static int init_admin_reserve(void)
3647 {
3648 	unsigned long free_kbytes;
3649 
3650 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3651 
3652 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3653 	return 0;
3654 }
3655 subsys_initcall(init_admin_reserve);
3656 
3657 /*
3658  * Reinititalise user and admin reserves if memory is added or removed.
3659  *
3660  * The default user reserve max is 128MB, and the default max for the
3661  * admin reserve is 8MB. These are usually, but not always, enough to
3662  * enable recovery from a memory hogging process using login/sshd, a shell,
3663  * and tools like top. It may make sense to increase or even disable the
3664  * reserve depending on the existence of swap or variations in the recovery
3665  * tools. So, the admin may have changed them.
3666  *
3667  * If memory is added and the reserves have been eliminated or increased above
3668  * the default max, then we'll trust the admin.
3669  *
3670  * If memory is removed and there isn't enough free memory, then we
3671  * need to reset the reserves.
3672  *
3673  * Otherwise keep the reserve set by the admin.
3674  */
3675 static int reserve_mem_notifier(struct notifier_block *nb,
3676 			     unsigned long action, void *data)
3677 {
3678 	unsigned long tmp, free_kbytes;
3679 
3680 	switch (action) {
3681 	case MEM_ONLINE:
3682 		/* Default max is 128MB. Leave alone if modified by operator. */
3683 		tmp = sysctl_user_reserve_kbytes;
3684 		if (0 < tmp && tmp < (1UL << 17))
3685 			init_user_reserve();
3686 
3687 		/* Default max is 8MB.  Leave alone if modified by operator. */
3688 		tmp = sysctl_admin_reserve_kbytes;
3689 		if (0 < tmp && tmp < (1UL << 13))
3690 			init_admin_reserve();
3691 
3692 		break;
3693 	case MEM_OFFLINE:
3694 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3695 
3696 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3697 			init_user_reserve();
3698 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3699 				sysctl_user_reserve_kbytes);
3700 		}
3701 
3702 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3703 			init_admin_reserve();
3704 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3705 				sysctl_admin_reserve_kbytes);
3706 		}
3707 		break;
3708 	default:
3709 		break;
3710 	}
3711 	return NOTIFY_OK;
3712 }
3713 
3714 static struct notifier_block reserve_mem_nb = {
3715 	.notifier_call = reserve_mem_notifier,
3716 };
3717 
3718 static int __meminit init_reserve_notifier(void)
3719 {
3720 	if (register_hotmemory_notifier(&reserve_mem_nb))
3721 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3722 
3723 	return 0;
3724 }
3725 subsys_initcall(init_reserve_notifier);
3726