xref: /openbmc/linux/mm/mmap.c (revision 78beef62)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #include "internal.h"
57 
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags)	(0)
60 #endif
61 
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72 
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75 
76 static void unmap_region(struct mm_struct *mm,
77 		struct vm_area_struct *vma, struct vm_area_struct *prev,
78 		unsigned long start, unsigned long end);
79 
80 /* description of effects of mapping type and prot in current implementation.
81  * this is due to the limited x86 page protection hardware.  The expected
82  * behavior is in parens:
83  *
84  * map_type	prot
85  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
86  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
87  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
88  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
89  *
90  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
91  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
92  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
93  *
94  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
95  * MAP_PRIVATE:
96  *								r: (no) no
97  *								w: (no) no
98  *								x: (yes) yes
99  */
100 pgprot_t protection_map[16] __ro_after_init = {
101 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
102 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
103 };
104 
105 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
106 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
107 {
108 	return prot;
109 }
110 #endif
111 
112 pgprot_t vm_get_page_prot(unsigned long vm_flags)
113 {
114 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
115 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
116 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
117 
118 	return arch_filter_pgprot(ret);
119 }
120 EXPORT_SYMBOL(vm_get_page_prot);
121 
122 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
123 {
124 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
125 }
126 
127 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
128 void vma_set_page_prot(struct vm_area_struct *vma)
129 {
130 	unsigned long vm_flags = vma->vm_flags;
131 	pgprot_t vm_page_prot;
132 
133 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
134 	if (vma_wants_writenotify(vma, vm_page_prot)) {
135 		vm_flags &= ~VM_SHARED;
136 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
137 	}
138 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
139 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
140 }
141 
142 /*
143  * Requires inode->i_mapping->i_mmap_rwsem
144  */
145 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
146 		struct file *file, struct address_space *mapping)
147 {
148 	if (vma->vm_flags & VM_DENYWRITE)
149 		atomic_inc(&file_inode(file)->i_writecount);
150 	if (vma->vm_flags & VM_SHARED)
151 		mapping_unmap_writable(mapping);
152 
153 	flush_dcache_mmap_lock(mapping);
154 	vma_interval_tree_remove(vma, &mapping->i_mmap);
155 	flush_dcache_mmap_unlock(mapping);
156 }
157 
158 /*
159  * Unlink a file-based vm structure from its interval tree, to hide
160  * vma from rmap and vmtruncate before freeing its page tables.
161  */
162 void unlink_file_vma(struct vm_area_struct *vma)
163 {
164 	struct file *file = vma->vm_file;
165 
166 	if (file) {
167 		struct address_space *mapping = file->f_mapping;
168 		i_mmap_lock_write(mapping);
169 		__remove_shared_vm_struct(vma, file, mapping);
170 		i_mmap_unlock_write(mapping);
171 	}
172 }
173 
174 /*
175  * Close a vm structure and free it, returning the next.
176  */
177 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
178 {
179 	struct vm_area_struct *next = vma->vm_next;
180 
181 	might_sleep();
182 	if (vma->vm_ops && vma->vm_ops->close)
183 		vma->vm_ops->close(vma);
184 	if (vma->vm_file)
185 		fput(vma->vm_file);
186 	mpol_put(vma_policy(vma));
187 	vm_area_free(vma);
188 	return next;
189 }
190 
191 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
192 		struct list_head *uf);
193 SYSCALL_DEFINE1(brk, unsigned long, brk)
194 {
195 	unsigned long retval;
196 	unsigned long newbrk, oldbrk, origbrk;
197 	struct mm_struct *mm = current->mm;
198 	struct vm_area_struct *next;
199 	unsigned long min_brk;
200 	bool populate;
201 	bool downgraded = false;
202 	LIST_HEAD(uf);
203 
204 	if (down_write_killable(&mm->mmap_sem))
205 		return -EINTR;
206 
207 	origbrk = mm->brk;
208 
209 #ifdef CONFIG_COMPAT_BRK
210 	/*
211 	 * CONFIG_COMPAT_BRK can still be overridden by setting
212 	 * randomize_va_space to 2, which will still cause mm->start_brk
213 	 * to be arbitrarily shifted
214 	 */
215 	if (current->brk_randomized)
216 		min_brk = mm->start_brk;
217 	else
218 		min_brk = mm->end_data;
219 #else
220 	min_brk = mm->start_brk;
221 #endif
222 	if (brk < min_brk)
223 		goto out;
224 
225 	/*
226 	 * Check against rlimit here. If this check is done later after the test
227 	 * of oldbrk with newbrk then it can escape the test and let the data
228 	 * segment grow beyond its set limit the in case where the limit is
229 	 * not page aligned -Ram Gupta
230 	 */
231 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
232 			      mm->end_data, mm->start_data))
233 		goto out;
234 
235 	newbrk = PAGE_ALIGN(brk);
236 	oldbrk = PAGE_ALIGN(mm->brk);
237 	if (oldbrk == newbrk) {
238 		mm->brk = brk;
239 		goto success;
240 	}
241 
242 	/*
243 	 * Always allow shrinking brk.
244 	 * __do_munmap() may downgrade mmap_sem to read.
245 	 */
246 	if (brk <= mm->brk) {
247 		int ret;
248 
249 		/*
250 		 * mm->brk must to be protected by write mmap_sem so update it
251 		 * before downgrading mmap_sem. When __do_munmap() fails,
252 		 * mm->brk will be restored from origbrk.
253 		 */
254 		mm->brk = brk;
255 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
256 		if (ret < 0) {
257 			mm->brk = origbrk;
258 			goto out;
259 		} else if (ret == 1) {
260 			downgraded = true;
261 		}
262 		goto success;
263 	}
264 
265 	/* Check against existing mmap mappings. */
266 	next = find_vma(mm, oldbrk);
267 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
268 		goto out;
269 
270 	/* Ok, looks good - let it rip. */
271 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
272 		goto out;
273 	mm->brk = brk;
274 
275 success:
276 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
277 	if (downgraded)
278 		up_read(&mm->mmap_sem);
279 	else
280 		up_write(&mm->mmap_sem);
281 	userfaultfd_unmap_complete(mm, &uf);
282 	if (populate)
283 		mm_populate(oldbrk, newbrk - oldbrk);
284 	return brk;
285 
286 out:
287 	retval = origbrk;
288 	up_write(&mm->mmap_sem);
289 	return retval;
290 }
291 
292 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
293 {
294 	unsigned long max, prev_end, subtree_gap;
295 
296 	/*
297 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
298 	 * allow two stack_guard_gaps between them here, and when choosing
299 	 * an unmapped area; whereas when expanding we only require one.
300 	 * That's a little inconsistent, but keeps the code here simpler.
301 	 */
302 	max = vm_start_gap(vma);
303 	if (vma->vm_prev) {
304 		prev_end = vm_end_gap(vma->vm_prev);
305 		if (max > prev_end)
306 			max -= prev_end;
307 		else
308 			max = 0;
309 	}
310 	if (vma->vm_rb.rb_left) {
311 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
312 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
313 		if (subtree_gap > max)
314 			max = subtree_gap;
315 	}
316 	if (vma->vm_rb.rb_right) {
317 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
318 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
319 		if (subtree_gap > max)
320 			max = subtree_gap;
321 	}
322 	return max;
323 }
324 
325 #ifdef CONFIG_DEBUG_VM_RB
326 static int browse_rb(struct mm_struct *mm)
327 {
328 	struct rb_root *root = &mm->mm_rb;
329 	int i = 0, j, bug = 0;
330 	struct rb_node *nd, *pn = NULL;
331 	unsigned long prev = 0, pend = 0;
332 
333 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
334 		struct vm_area_struct *vma;
335 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
336 		if (vma->vm_start < prev) {
337 			pr_emerg("vm_start %lx < prev %lx\n",
338 				  vma->vm_start, prev);
339 			bug = 1;
340 		}
341 		if (vma->vm_start < pend) {
342 			pr_emerg("vm_start %lx < pend %lx\n",
343 				  vma->vm_start, pend);
344 			bug = 1;
345 		}
346 		if (vma->vm_start > vma->vm_end) {
347 			pr_emerg("vm_start %lx > vm_end %lx\n",
348 				  vma->vm_start, vma->vm_end);
349 			bug = 1;
350 		}
351 		spin_lock(&mm->page_table_lock);
352 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
353 			pr_emerg("free gap %lx, correct %lx\n",
354 			       vma->rb_subtree_gap,
355 			       vma_compute_subtree_gap(vma));
356 			bug = 1;
357 		}
358 		spin_unlock(&mm->page_table_lock);
359 		i++;
360 		pn = nd;
361 		prev = vma->vm_start;
362 		pend = vma->vm_end;
363 	}
364 	j = 0;
365 	for (nd = pn; nd; nd = rb_prev(nd))
366 		j++;
367 	if (i != j) {
368 		pr_emerg("backwards %d, forwards %d\n", j, i);
369 		bug = 1;
370 	}
371 	return bug ? -1 : i;
372 }
373 
374 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
375 {
376 	struct rb_node *nd;
377 
378 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
379 		struct vm_area_struct *vma;
380 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
381 		VM_BUG_ON_VMA(vma != ignore &&
382 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
383 			vma);
384 	}
385 }
386 
387 static void validate_mm(struct mm_struct *mm)
388 {
389 	int bug = 0;
390 	int i = 0;
391 	unsigned long highest_address = 0;
392 	struct vm_area_struct *vma = mm->mmap;
393 
394 	while (vma) {
395 		struct anon_vma *anon_vma = vma->anon_vma;
396 		struct anon_vma_chain *avc;
397 
398 		if (anon_vma) {
399 			anon_vma_lock_read(anon_vma);
400 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
401 				anon_vma_interval_tree_verify(avc);
402 			anon_vma_unlock_read(anon_vma);
403 		}
404 
405 		highest_address = vm_end_gap(vma);
406 		vma = vma->vm_next;
407 		i++;
408 	}
409 	if (i != mm->map_count) {
410 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
411 		bug = 1;
412 	}
413 	if (highest_address != mm->highest_vm_end) {
414 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
415 			  mm->highest_vm_end, highest_address);
416 		bug = 1;
417 	}
418 	i = browse_rb(mm);
419 	if (i != mm->map_count) {
420 		if (i != -1)
421 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
422 		bug = 1;
423 	}
424 	VM_BUG_ON_MM(bug, mm);
425 }
426 #else
427 #define validate_mm_rb(root, ignore) do { } while (0)
428 #define validate_mm(mm) do { } while (0)
429 #endif
430 
431 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
432 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
433 
434 /*
435  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
436  * vma->vm_prev->vm_end values changed, without modifying the vma's position
437  * in the rbtree.
438  */
439 static void vma_gap_update(struct vm_area_struct *vma)
440 {
441 	/*
442 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
443 	 * function that does exactly what we want.
444 	 */
445 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
446 }
447 
448 static inline void vma_rb_insert(struct vm_area_struct *vma,
449 				 struct rb_root *root)
450 {
451 	/* All rb_subtree_gap values must be consistent prior to insertion */
452 	validate_mm_rb(root, NULL);
453 
454 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
455 }
456 
457 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
458 {
459 	/*
460 	 * Note rb_erase_augmented is a fairly large inline function,
461 	 * so make sure we instantiate it only once with our desired
462 	 * augmented rbtree callbacks.
463 	 */
464 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
465 }
466 
467 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
468 						struct rb_root *root,
469 						struct vm_area_struct *ignore)
470 {
471 	/*
472 	 * All rb_subtree_gap values must be consistent prior to erase,
473 	 * with the possible exception of the "next" vma being erased if
474 	 * next->vm_start was reduced.
475 	 */
476 	validate_mm_rb(root, ignore);
477 
478 	__vma_rb_erase(vma, root);
479 }
480 
481 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
482 					 struct rb_root *root)
483 {
484 	/*
485 	 * All rb_subtree_gap values must be consistent prior to erase,
486 	 * with the possible exception of the vma being erased.
487 	 */
488 	validate_mm_rb(root, vma);
489 
490 	__vma_rb_erase(vma, root);
491 }
492 
493 /*
494  * vma has some anon_vma assigned, and is already inserted on that
495  * anon_vma's interval trees.
496  *
497  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
498  * vma must be removed from the anon_vma's interval trees using
499  * anon_vma_interval_tree_pre_update_vma().
500  *
501  * After the update, the vma will be reinserted using
502  * anon_vma_interval_tree_post_update_vma().
503  *
504  * The entire update must be protected by exclusive mmap_sem and by
505  * the root anon_vma's mutex.
506  */
507 static inline void
508 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
509 {
510 	struct anon_vma_chain *avc;
511 
512 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
513 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
514 }
515 
516 static inline void
517 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
518 {
519 	struct anon_vma_chain *avc;
520 
521 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
522 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
523 }
524 
525 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
526 		unsigned long end, struct vm_area_struct **pprev,
527 		struct rb_node ***rb_link, struct rb_node **rb_parent)
528 {
529 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
530 
531 	__rb_link = &mm->mm_rb.rb_node;
532 	rb_prev = __rb_parent = NULL;
533 
534 	while (*__rb_link) {
535 		struct vm_area_struct *vma_tmp;
536 
537 		__rb_parent = *__rb_link;
538 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
539 
540 		if (vma_tmp->vm_end > addr) {
541 			/* Fail if an existing vma overlaps the area */
542 			if (vma_tmp->vm_start < end)
543 				return -ENOMEM;
544 			__rb_link = &__rb_parent->rb_left;
545 		} else {
546 			rb_prev = __rb_parent;
547 			__rb_link = &__rb_parent->rb_right;
548 		}
549 	}
550 
551 	*pprev = NULL;
552 	if (rb_prev)
553 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
554 	*rb_link = __rb_link;
555 	*rb_parent = __rb_parent;
556 	return 0;
557 }
558 
559 static unsigned long count_vma_pages_range(struct mm_struct *mm,
560 		unsigned long addr, unsigned long end)
561 {
562 	unsigned long nr_pages = 0;
563 	struct vm_area_struct *vma;
564 
565 	/* Find first overlaping mapping */
566 	vma = find_vma_intersection(mm, addr, end);
567 	if (!vma)
568 		return 0;
569 
570 	nr_pages = (min(end, vma->vm_end) -
571 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
572 
573 	/* Iterate over the rest of the overlaps */
574 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
575 		unsigned long overlap_len;
576 
577 		if (vma->vm_start > end)
578 			break;
579 
580 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
581 		nr_pages += overlap_len >> PAGE_SHIFT;
582 	}
583 
584 	return nr_pages;
585 }
586 
587 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
588 		struct rb_node **rb_link, struct rb_node *rb_parent)
589 {
590 	/* Update tracking information for the gap following the new vma. */
591 	if (vma->vm_next)
592 		vma_gap_update(vma->vm_next);
593 	else
594 		mm->highest_vm_end = vm_end_gap(vma);
595 
596 	/*
597 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
598 	 * correct insertion point for that vma. As a result, we could not
599 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
600 	 * So, we first insert the vma with a zero rb_subtree_gap value
601 	 * (to be consistent with what we did on the way down), and then
602 	 * immediately update the gap to the correct value. Finally we
603 	 * rebalance the rbtree after all augmented values have been set.
604 	 */
605 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
606 	vma->rb_subtree_gap = 0;
607 	vma_gap_update(vma);
608 	vma_rb_insert(vma, &mm->mm_rb);
609 }
610 
611 static void __vma_link_file(struct vm_area_struct *vma)
612 {
613 	struct file *file;
614 
615 	file = vma->vm_file;
616 	if (file) {
617 		struct address_space *mapping = file->f_mapping;
618 
619 		if (vma->vm_flags & VM_DENYWRITE)
620 			atomic_dec(&file_inode(file)->i_writecount);
621 		if (vma->vm_flags & VM_SHARED)
622 			atomic_inc(&mapping->i_mmap_writable);
623 
624 		flush_dcache_mmap_lock(mapping);
625 		vma_interval_tree_insert(vma, &mapping->i_mmap);
626 		flush_dcache_mmap_unlock(mapping);
627 	}
628 }
629 
630 static void
631 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
632 	struct vm_area_struct *prev, struct rb_node **rb_link,
633 	struct rb_node *rb_parent)
634 {
635 	__vma_link_list(mm, vma, prev, rb_parent);
636 	__vma_link_rb(mm, vma, rb_link, rb_parent);
637 }
638 
639 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
640 			struct vm_area_struct *prev, struct rb_node **rb_link,
641 			struct rb_node *rb_parent)
642 {
643 	struct address_space *mapping = NULL;
644 
645 	if (vma->vm_file) {
646 		mapping = vma->vm_file->f_mapping;
647 		i_mmap_lock_write(mapping);
648 	}
649 
650 	__vma_link(mm, vma, prev, rb_link, rb_parent);
651 	__vma_link_file(vma);
652 
653 	if (mapping)
654 		i_mmap_unlock_write(mapping);
655 
656 	mm->map_count++;
657 	validate_mm(mm);
658 }
659 
660 /*
661  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
662  * mm's list and rbtree.  It has already been inserted into the interval tree.
663  */
664 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
665 {
666 	struct vm_area_struct *prev;
667 	struct rb_node **rb_link, *rb_parent;
668 
669 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
670 			   &prev, &rb_link, &rb_parent))
671 		BUG();
672 	__vma_link(mm, vma, prev, rb_link, rb_parent);
673 	mm->map_count++;
674 }
675 
676 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
677 						struct vm_area_struct *vma,
678 						struct vm_area_struct *prev,
679 						bool has_prev,
680 						struct vm_area_struct *ignore)
681 {
682 	struct vm_area_struct *next;
683 
684 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
685 	next = vma->vm_next;
686 	if (has_prev)
687 		prev->vm_next = next;
688 	else {
689 		prev = vma->vm_prev;
690 		if (prev)
691 			prev->vm_next = next;
692 		else
693 			mm->mmap = next;
694 	}
695 	if (next)
696 		next->vm_prev = prev;
697 
698 	/* Kill the cache */
699 	vmacache_invalidate(mm);
700 }
701 
702 static inline void __vma_unlink_prev(struct mm_struct *mm,
703 				     struct vm_area_struct *vma,
704 				     struct vm_area_struct *prev)
705 {
706 	__vma_unlink_common(mm, vma, prev, true, vma);
707 }
708 
709 /*
710  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
711  * is already present in an i_mmap tree without adjusting the tree.
712  * The following helper function should be used when such adjustments
713  * are necessary.  The "insert" vma (if any) is to be inserted
714  * before we drop the necessary locks.
715  */
716 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
717 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
718 	struct vm_area_struct *expand)
719 {
720 	struct mm_struct *mm = vma->vm_mm;
721 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
722 	struct address_space *mapping = NULL;
723 	struct rb_root_cached *root = NULL;
724 	struct anon_vma *anon_vma = NULL;
725 	struct file *file = vma->vm_file;
726 	bool start_changed = false, end_changed = false;
727 	long adjust_next = 0;
728 	int remove_next = 0;
729 
730 	if (next && !insert) {
731 		struct vm_area_struct *exporter = NULL, *importer = NULL;
732 
733 		if (end >= next->vm_end) {
734 			/*
735 			 * vma expands, overlapping all the next, and
736 			 * perhaps the one after too (mprotect case 6).
737 			 * The only other cases that gets here are
738 			 * case 1, case 7 and case 8.
739 			 */
740 			if (next == expand) {
741 				/*
742 				 * The only case where we don't expand "vma"
743 				 * and we expand "next" instead is case 8.
744 				 */
745 				VM_WARN_ON(end != next->vm_end);
746 				/*
747 				 * remove_next == 3 means we're
748 				 * removing "vma" and that to do so we
749 				 * swapped "vma" and "next".
750 				 */
751 				remove_next = 3;
752 				VM_WARN_ON(file != next->vm_file);
753 				swap(vma, next);
754 			} else {
755 				VM_WARN_ON(expand != vma);
756 				/*
757 				 * case 1, 6, 7, remove_next == 2 is case 6,
758 				 * remove_next == 1 is case 1 or 7.
759 				 */
760 				remove_next = 1 + (end > next->vm_end);
761 				VM_WARN_ON(remove_next == 2 &&
762 					   end != next->vm_next->vm_end);
763 				VM_WARN_ON(remove_next == 1 &&
764 					   end != next->vm_end);
765 				/* trim end to next, for case 6 first pass */
766 				end = next->vm_end;
767 			}
768 
769 			exporter = next;
770 			importer = vma;
771 
772 			/*
773 			 * If next doesn't have anon_vma, import from vma after
774 			 * next, if the vma overlaps with it.
775 			 */
776 			if (remove_next == 2 && !next->anon_vma)
777 				exporter = next->vm_next;
778 
779 		} else if (end > next->vm_start) {
780 			/*
781 			 * vma expands, overlapping part of the next:
782 			 * mprotect case 5 shifting the boundary up.
783 			 */
784 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
785 			exporter = next;
786 			importer = vma;
787 			VM_WARN_ON(expand != importer);
788 		} else if (end < vma->vm_end) {
789 			/*
790 			 * vma shrinks, and !insert tells it's not
791 			 * split_vma inserting another: so it must be
792 			 * mprotect case 4 shifting the boundary down.
793 			 */
794 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
795 			exporter = vma;
796 			importer = next;
797 			VM_WARN_ON(expand != importer);
798 		}
799 
800 		/*
801 		 * Easily overlooked: when mprotect shifts the boundary,
802 		 * make sure the expanding vma has anon_vma set if the
803 		 * shrinking vma had, to cover any anon pages imported.
804 		 */
805 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
806 			int error;
807 
808 			importer->anon_vma = exporter->anon_vma;
809 			error = anon_vma_clone(importer, exporter);
810 			if (error)
811 				return error;
812 		}
813 	}
814 again:
815 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
816 
817 	if (file) {
818 		mapping = file->f_mapping;
819 		root = &mapping->i_mmap;
820 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
821 
822 		if (adjust_next)
823 			uprobe_munmap(next, next->vm_start, next->vm_end);
824 
825 		i_mmap_lock_write(mapping);
826 		if (insert) {
827 			/*
828 			 * Put into interval tree now, so instantiated pages
829 			 * are visible to arm/parisc __flush_dcache_page
830 			 * throughout; but we cannot insert into address
831 			 * space until vma start or end is updated.
832 			 */
833 			__vma_link_file(insert);
834 		}
835 	}
836 
837 	anon_vma = vma->anon_vma;
838 	if (!anon_vma && adjust_next)
839 		anon_vma = next->anon_vma;
840 	if (anon_vma) {
841 		VM_WARN_ON(adjust_next && next->anon_vma &&
842 			   anon_vma != next->anon_vma);
843 		anon_vma_lock_write(anon_vma);
844 		anon_vma_interval_tree_pre_update_vma(vma);
845 		if (adjust_next)
846 			anon_vma_interval_tree_pre_update_vma(next);
847 	}
848 
849 	if (root) {
850 		flush_dcache_mmap_lock(mapping);
851 		vma_interval_tree_remove(vma, root);
852 		if (adjust_next)
853 			vma_interval_tree_remove(next, root);
854 	}
855 
856 	if (start != vma->vm_start) {
857 		vma->vm_start = start;
858 		start_changed = true;
859 	}
860 	if (end != vma->vm_end) {
861 		vma->vm_end = end;
862 		end_changed = true;
863 	}
864 	vma->vm_pgoff = pgoff;
865 	if (adjust_next) {
866 		next->vm_start += adjust_next << PAGE_SHIFT;
867 		next->vm_pgoff += adjust_next;
868 	}
869 
870 	if (root) {
871 		if (adjust_next)
872 			vma_interval_tree_insert(next, root);
873 		vma_interval_tree_insert(vma, root);
874 		flush_dcache_mmap_unlock(mapping);
875 	}
876 
877 	if (remove_next) {
878 		/*
879 		 * vma_merge has merged next into vma, and needs
880 		 * us to remove next before dropping the locks.
881 		 */
882 		if (remove_next != 3)
883 			__vma_unlink_prev(mm, next, vma);
884 		else
885 			/*
886 			 * vma is not before next if they've been
887 			 * swapped.
888 			 *
889 			 * pre-swap() next->vm_start was reduced so
890 			 * tell validate_mm_rb to ignore pre-swap()
891 			 * "next" (which is stored in post-swap()
892 			 * "vma").
893 			 */
894 			__vma_unlink_common(mm, next, NULL, false, vma);
895 		if (file)
896 			__remove_shared_vm_struct(next, file, mapping);
897 	} else if (insert) {
898 		/*
899 		 * split_vma has split insert from vma, and needs
900 		 * us to insert it before dropping the locks
901 		 * (it may either follow vma or precede it).
902 		 */
903 		__insert_vm_struct(mm, insert);
904 	} else {
905 		if (start_changed)
906 			vma_gap_update(vma);
907 		if (end_changed) {
908 			if (!next)
909 				mm->highest_vm_end = vm_end_gap(vma);
910 			else if (!adjust_next)
911 				vma_gap_update(next);
912 		}
913 	}
914 
915 	if (anon_vma) {
916 		anon_vma_interval_tree_post_update_vma(vma);
917 		if (adjust_next)
918 			anon_vma_interval_tree_post_update_vma(next);
919 		anon_vma_unlock_write(anon_vma);
920 	}
921 	if (mapping)
922 		i_mmap_unlock_write(mapping);
923 
924 	if (root) {
925 		uprobe_mmap(vma);
926 
927 		if (adjust_next)
928 			uprobe_mmap(next);
929 	}
930 
931 	if (remove_next) {
932 		if (file) {
933 			uprobe_munmap(next, next->vm_start, next->vm_end);
934 			fput(file);
935 		}
936 		if (next->anon_vma)
937 			anon_vma_merge(vma, next);
938 		mm->map_count--;
939 		mpol_put(vma_policy(next));
940 		vm_area_free(next);
941 		/*
942 		 * In mprotect's case 6 (see comments on vma_merge),
943 		 * we must remove another next too. It would clutter
944 		 * up the code too much to do both in one go.
945 		 */
946 		if (remove_next != 3) {
947 			/*
948 			 * If "next" was removed and vma->vm_end was
949 			 * expanded (up) over it, in turn
950 			 * "next->vm_prev->vm_end" changed and the
951 			 * "vma->vm_next" gap must be updated.
952 			 */
953 			next = vma->vm_next;
954 		} else {
955 			/*
956 			 * For the scope of the comment "next" and
957 			 * "vma" considered pre-swap(): if "vma" was
958 			 * removed, next->vm_start was expanded (down)
959 			 * over it and the "next" gap must be updated.
960 			 * Because of the swap() the post-swap() "vma"
961 			 * actually points to pre-swap() "next"
962 			 * (post-swap() "next" as opposed is now a
963 			 * dangling pointer).
964 			 */
965 			next = vma;
966 		}
967 		if (remove_next == 2) {
968 			remove_next = 1;
969 			end = next->vm_end;
970 			goto again;
971 		}
972 		else if (next)
973 			vma_gap_update(next);
974 		else {
975 			/*
976 			 * If remove_next == 2 we obviously can't
977 			 * reach this path.
978 			 *
979 			 * If remove_next == 3 we can't reach this
980 			 * path because pre-swap() next is always not
981 			 * NULL. pre-swap() "next" is not being
982 			 * removed and its next->vm_end is not altered
983 			 * (and furthermore "end" already matches
984 			 * next->vm_end in remove_next == 3).
985 			 *
986 			 * We reach this only in the remove_next == 1
987 			 * case if the "next" vma that was removed was
988 			 * the highest vma of the mm. However in such
989 			 * case next->vm_end == "end" and the extended
990 			 * "vma" has vma->vm_end == next->vm_end so
991 			 * mm->highest_vm_end doesn't need any update
992 			 * in remove_next == 1 case.
993 			 */
994 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
995 		}
996 	}
997 	if (insert && file)
998 		uprobe_mmap(insert);
999 
1000 	validate_mm(mm);
1001 
1002 	return 0;
1003 }
1004 
1005 /*
1006  * If the vma has a ->close operation then the driver probably needs to release
1007  * per-vma resources, so we don't attempt to merge those.
1008  */
1009 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1010 				struct file *file, unsigned long vm_flags,
1011 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1012 {
1013 	/*
1014 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1015 	 * match the flags but dirty bit -- the caller should mark
1016 	 * merged VMA as dirty. If dirty bit won't be excluded from
1017 	 * comparison, we increase pressure on the memory system forcing
1018 	 * the kernel to generate new VMAs when old one could be
1019 	 * extended instead.
1020 	 */
1021 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1022 		return 0;
1023 	if (vma->vm_file != file)
1024 		return 0;
1025 	if (vma->vm_ops && vma->vm_ops->close)
1026 		return 0;
1027 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1028 		return 0;
1029 	return 1;
1030 }
1031 
1032 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1033 					struct anon_vma *anon_vma2,
1034 					struct vm_area_struct *vma)
1035 {
1036 	/*
1037 	 * The list_is_singular() test is to avoid merging VMA cloned from
1038 	 * parents. This can improve scalability caused by anon_vma lock.
1039 	 */
1040 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1041 		list_is_singular(&vma->anon_vma_chain)))
1042 		return 1;
1043 	return anon_vma1 == anon_vma2;
1044 }
1045 
1046 /*
1047  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1048  * in front of (at a lower virtual address and file offset than) the vma.
1049  *
1050  * We cannot merge two vmas if they have differently assigned (non-NULL)
1051  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1052  *
1053  * We don't check here for the merged mmap wrapping around the end of pagecache
1054  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1055  * wrap, nor mmaps which cover the final page at index -1UL.
1056  */
1057 static int
1058 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1059 		     struct anon_vma *anon_vma, struct file *file,
1060 		     pgoff_t vm_pgoff,
1061 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1062 {
1063 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1064 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1065 		if (vma->vm_pgoff == vm_pgoff)
1066 			return 1;
1067 	}
1068 	return 0;
1069 }
1070 
1071 /*
1072  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1073  * beyond (at a higher virtual address and file offset than) the vma.
1074  *
1075  * We cannot merge two vmas if they have differently assigned (non-NULL)
1076  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1077  */
1078 static int
1079 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1080 		    struct anon_vma *anon_vma, struct file *file,
1081 		    pgoff_t vm_pgoff,
1082 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1083 {
1084 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1085 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1086 		pgoff_t vm_pglen;
1087 		vm_pglen = vma_pages(vma);
1088 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1089 			return 1;
1090 	}
1091 	return 0;
1092 }
1093 
1094 /*
1095  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1096  * whether that can be merged with its predecessor or its successor.
1097  * Or both (it neatly fills a hole).
1098  *
1099  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1100  * certain not to be mapped by the time vma_merge is called; but when
1101  * called for mprotect, it is certain to be already mapped (either at
1102  * an offset within prev, or at the start of next), and the flags of
1103  * this area are about to be changed to vm_flags - and the no-change
1104  * case has already been eliminated.
1105  *
1106  * The following mprotect cases have to be considered, where AAAA is
1107  * the area passed down from mprotect_fixup, never extending beyond one
1108  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1109  *
1110  *     AAAA             AAAA                AAAA          AAAA
1111  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1112  *    cannot merge    might become    might become    might become
1113  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1114  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1115  *    mremap move:                                    PPPPXXXXXXXX 8
1116  *        AAAA
1117  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1118  *    might become    case 1 below    case 2 below    case 3 below
1119  *
1120  * It is important for case 8 that the vma NNNN overlapping the
1121  * region AAAA is never going to extended over XXXX. Instead XXXX must
1122  * be extended in region AAAA and NNNN must be removed. This way in
1123  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1124  * rmap_locks, the properties of the merged vma will be already
1125  * correct for the whole merged range. Some of those properties like
1126  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1127  * be correct for the whole merged range immediately after the
1128  * rmap_locks are released. Otherwise if XXXX would be removed and
1129  * NNNN would be extended over the XXXX range, remove_migration_ptes
1130  * or other rmap walkers (if working on addresses beyond the "end"
1131  * parameter) may establish ptes with the wrong permissions of NNNN
1132  * instead of the right permissions of XXXX.
1133  */
1134 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1135 			struct vm_area_struct *prev, unsigned long addr,
1136 			unsigned long end, unsigned long vm_flags,
1137 			struct anon_vma *anon_vma, struct file *file,
1138 			pgoff_t pgoff, struct mempolicy *policy,
1139 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1140 {
1141 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1142 	struct vm_area_struct *area, *next;
1143 	int err;
1144 
1145 	/*
1146 	 * We later require that vma->vm_flags == vm_flags,
1147 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1148 	 */
1149 	if (vm_flags & VM_SPECIAL)
1150 		return NULL;
1151 
1152 	if (prev)
1153 		next = prev->vm_next;
1154 	else
1155 		next = mm->mmap;
1156 	area = next;
1157 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1158 		next = next->vm_next;
1159 
1160 	/* verify some invariant that must be enforced by the caller */
1161 	VM_WARN_ON(prev && addr <= prev->vm_start);
1162 	VM_WARN_ON(area && end > area->vm_end);
1163 	VM_WARN_ON(addr >= end);
1164 
1165 	/*
1166 	 * Can it merge with the predecessor?
1167 	 */
1168 	if (prev && prev->vm_end == addr &&
1169 			mpol_equal(vma_policy(prev), policy) &&
1170 			can_vma_merge_after(prev, vm_flags,
1171 					    anon_vma, file, pgoff,
1172 					    vm_userfaultfd_ctx)) {
1173 		/*
1174 		 * OK, it can.  Can we now merge in the successor as well?
1175 		 */
1176 		if (next && end == next->vm_start &&
1177 				mpol_equal(policy, vma_policy(next)) &&
1178 				can_vma_merge_before(next, vm_flags,
1179 						     anon_vma, file,
1180 						     pgoff+pglen,
1181 						     vm_userfaultfd_ctx) &&
1182 				is_mergeable_anon_vma(prev->anon_vma,
1183 						      next->anon_vma, NULL)) {
1184 							/* cases 1, 6 */
1185 			err = __vma_adjust(prev, prev->vm_start,
1186 					 next->vm_end, prev->vm_pgoff, NULL,
1187 					 prev);
1188 		} else					/* cases 2, 5, 7 */
1189 			err = __vma_adjust(prev, prev->vm_start,
1190 					 end, prev->vm_pgoff, NULL, prev);
1191 		if (err)
1192 			return NULL;
1193 		khugepaged_enter_vma_merge(prev, vm_flags);
1194 		return prev;
1195 	}
1196 
1197 	/*
1198 	 * Can this new request be merged in front of next?
1199 	 */
1200 	if (next && end == next->vm_start &&
1201 			mpol_equal(policy, vma_policy(next)) &&
1202 			can_vma_merge_before(next, vm_flags,
1203 					     anon_vma, file, pgoff+pglen,
1204 					     vm_userfaultfd_ctx)) {
1205 		if (prev && addr < prev->vm_end)	/* case 4 */
1206 			err = __vma_adjust(prev, prev->vm_start,
1207 					 addr, prev->vm_pgoff, NULL, next);
1208 		else {					/* cases 3, 8 */
1209 			err = __vma_adjust(area, addr, next->vm_end,
1210 					 next->vm_pgoff - pglen, NULL, next);
1211 			/*
1212 			 * In case 3 area is already equal to next and
1213 			 * this is a noop, but in case 8 "area" has
1214 			 * been removed and next was expanded over it.
1215 			 */
1216 			area = next;
1217 		}
1218 		if (err)
1219 			return NULL;
1220 		khugepaged_enter_vma_merge(area, vm_flags);
1221 		return area;
1222 	}
1223 
1224 	return NULL;
1225 }
1226 
1227 /*
1228  * Rough compatbility check to quickly see if it's even worth looking
1229  * at sharing an anon_vma.
1230  *
1231  * They need to have the same vm_file, and the flags can only differ
1232  * in things that mprotect may change.
1233  *
1234  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1235  * we can merge the two vma's. For example, we refuse to merge a vma if
1236  * there is a vm_ops->close() function, because that indicates that the
1237  * driver is doing some kind of reference counting. But that doesn't
1238  * really matter for the anon_vma sharing case.
1239  */
1240 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1241 {
1242 	return a->vm_end == b->vm_start &&
1243 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1244 		a->vm_file == b->vm_file &&
1245 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1246 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1247 }
1248 
1249 /*
1250  * Do some basic sanity checking to see if we can re-use the anon_vma
1251  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1252  * the same as 'old', the other will be the new one that is trying
1253  * to share the anon_vma.
1254  *
1255  * NOTE! This runs with mm_sem held for reading, so it is possible that
1256  * the anon_vma of 'old' is concurrently in the process of being set up
1257  * by another page fault trying to merge _that_. But that's ok: if it
1258  * is being set up, that automatically means that it will be a singleton
1259  * acceptable for merging, so we can do all of this optimistically. But
1260  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1261  *
1262  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1263  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1264  * is to return an anon_vma that is "complex" due to having gone through
1265  * a fork).
1266  *
1267  * We also make sure that the two vma's are compatible (adjacent,
1268  * and with the same memory policies). That's all stable, even with just
1269  * a read lock on the mm_sem.
1270  */
1271 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1272 {
1273 	if (anon_vma_compatible(a, b)) {
1274 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1275 
1276 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1277 			return anon_vma;
1278 	}
1279 	return NULL;
1280 }
1281 
1282 /*
1283  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1284  * neighbouring vmas for a suitable anon_vma, before it goes off
1285  * to allocate a new anon_vma.  It checks because a repetitive
1286  * sequence of mprotects and faults may otherwise lead to distinct
1287  * anon_vmas being allocated, preventing vma merge in subsequent
1288  * mprotect.
1289  */
1290 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1291 {
1292 	struct anon_vma *anon_vma;
1293 	struct vm_area_struct *near;
1294 
1295 	near = vma->vm_next;
1296 	if (!near)
1297 		goto try_prev;
1298 
1299 	anon_vma = reusable_anon_vma(near, vma, near);
1300 	if (anon_vma)
1301 		return anon_vma;
1302 try_prev:
1303 	near = vma->vm_prev;
1304 	if (!near)
1305 		goto none;
1306 
1307 	anon_vma = reusable_anon_vma(near, near, vma);
1308 	if (anon_vma)
1309 		return anon_vma;
1310 none:
1311 	/*
1312 	 * There's no absolute need to look only at touching neighbours:
1313 	 * we could search further afield for "compatible" anon_vmas.
1314 	 * But it would probably just be a waste of time searching,
1315 	 * or lead to too many vmas hanging off the same anon_vma.
1316 	 * We're trying to allow mprotect remerging later on,
1317 	 * not trying to minimize memory used for anon_vmas.
1318 	 */
1319 	return NULL;
1320 }
1321 
1322 /*
1323  * If a hint addr is less than mmap_min_addr change hint to be as
1324  * low as possible but still greater than mmap_min_addr
1325  */
1326 static inline unsigned long round_hint_to_min(unsigned long hint)
1327 {
1328 	hint &= PAGE_MASK;
1329 	if (((void *)hint != NULL) &&
1330 	    (hint < mmap_min_addr))
1331 		return PAGE_ALIGN(mmap_min_addr);
1332 	return hint;
1333 }
1334 
1335 static inline int mlock_future_check(struct mm_struct *mm,
1336 				     unsigned long flags,
1337 				     unsigned long len)
1338 {
1339 	unsigned long locked, lock_limit;
1340 
1341 	/*  mlock MCL_FUTURE? */
1342 	if (flags & VM_LOCKED) {
1343 		locked = len >> PAGE_SHIFT;
1344 		locked += mm->locked_vm;
1345 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1346 		lock_limit >>= PAGE_SHIFT;
1347 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1348 			return -EAGAIN;
1349 	}
1350 	return 0;
1351 }
1352 
1353 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1354 {
1355 	if (S_ISREG(inode->i_mode))
1356 		return MAX_LFS_FILESIZE;
1357 
1358 	if (S_ISBLK(inode->i_mode))
1359 		return MAX_LFS_FILESIZE;
1360 
1361 	/* Special "we do even unsigned file positions" case */
1362 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1363 		return 0;
1364 
1365 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1366 	return ULONG_MAX;
1367 }
1368 
1369 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1370 				unsigned long pgoff, unsigned long len)
1371 {
1372 	u64 maxsize = file_mmap_size_max(file, inode);
1373 
1374 	if (maxsize && len > maxsize)
1375 		return false;
1376 	maxsize -= len;
1377 	if (pgoff > maxsize >> PAGE_SHIFT)
1378 		return false;
1379 	return true;
1380 }
1381 
1382 /*
1383  * The caller must hold down_write(&current->mm->mmap_sem).
1384  */
1385 unsigned long do_mmap(struct file *file, unsigned long addr,
1386 			unsigned long len, unsigned long prot,
1387 			unsigned long flags, vm_flags_t vm_flags,
1388 			unsigned long pgoff, unsigned long *populate,
1389 			struct list_head *uf)
1390 {
1391 	struct mm_struct *mm = current->mm;
1392 	int pkey = 0;
1393 
1394 	*populate = 0;
1395 
1396 	if (!len)
1397 		return -EINVAL;
1398 
1399 	/*
1400 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1401 	 *
1402 	 * (the exception is when the underlying filesystem is noexec
1403 	 *  mounted, in which case we dont add PROT_EXEC.)
1404 	 */
1405 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1406 		if (!(file && path_noexec(&file->f_path)))
1407 			prot |= PROT_EXEC;
1408 
1409 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1410 	if (flags & MAP_FIXED_NOREPLACE)
1411 		flags |= MAP_FIXED;
1412 
1413 	if (!(flags & MAP_FIXED))
1414 		addr = round_hint_to_min(addr);
1415 
1416 	/* Careful about overflows.. */
1417 	len = PAGE_ALIGN(len);
1418 	if (!len)
1419 		return -ENOMEM;
1420 
1421 	/* offset overflow? */
1422 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1423 		return -EOVERFLOW;
1424 
1425 	/* Too many mappings? */
1426 	if (mm->map_count > sysctl_max_map_count)
1427 		return -ENOMEM;
1428 
1429 	/* Obtain the address to map to. we verify (or select) it and ensure
1430 	 * that it represents a valid section of the address space.
1431 	 */
1432 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1433 	if (offset_in_page(addr))
1434 		return addr;
1435 
1436 	if (flags & MAP_FIXED_NOREPLACE) {
1437 		struct vm_area_struct *vma = find_vma(mm, addr);
1438 
1439 		if (vma && vma->vm_start < addr + len)
1440 			return -EEXIST;
1441 	}
1442 
1443 	if (prot == PROT_EXEC) {
1444 		pkey = execute_only_pkey(mm);
1445 		if (pkey < 0)
1446 			pkey = 0;
1447 	}
1448 
1449 	/* Do simple checking here so the lower-level routines won't have
1450 	 * to. we assume access permissions have been handled by the open
1451 	 * of the memory object, so we don't do any here.
1452 	 */
1453 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1454 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1455 
1456 	if (flags & MAP_LOCKED)
1457 		if (!can_do_mlock())
1458 			return -EPERM;
1459 
1460 	if (mlock_future_check(mm, vm_flags, len))
1461 		return -EAGAIN;
1462 
1463 	if (file) {
1464 		struct inode *inode = file_inode(file);
1465 		unsigned long flags_mask;
1466 
1467 		if (!file_mmap_ok(file, inode, pgoff, len))
1468 			return -EOVERFLOW;
1469 
1470 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1471 
1472 		switch (flags & MAP_TYPE) {
1473 		case MAP_SHARED:
1474 			/*
1475 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1476 			 * flags. E.g. MAP_SYNC is dangerous to use with
1477 			 * MAP_SHARED as you don't know which consistency model
1478 			 * you will get. We silently ignore unsupported flags
1479 			 * with MAP_SHARED to preserve backward compatibility.
1480 			 */
1481 			flags &= LEGACY_MAP_MASK;
1482 			/* fall through */
1483 		case MAP_SHARED_VALIDATE:
1484 			if (flags & ~flags_mask)
1485 				return -EOPNOTSUPP;
1486 			if (prot & PROT_WRITE) {
1487 				if (!(file->f_mode & FMODE_WRITE))
1488 					return -EACCES;
1489 				if (IS_SWAPFILE(file->f_mapping->host))
1490 					return -ETXTBSY;
1491 			}
1492 
1493 			/*
1494 			 * Make sure we don't allow writing to an append-only
1495 			 * file..
1496 			 */
1497 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1498 				return -EACCES;
1499 
1500 			/*
1501 			 * Make sure there are no mandatory locks on the file.
1502 			 */
1503 			if (locks_verify_locked(file))
1504 				return -EAGAIN;
1505 
1506 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1507 			if (!(file->f_mode & FMODE_WRITE))
1508 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1509 
1510 			/* fall through */
1511 		case MAP_PRIVATE:
1512 			if (!(file->f_mode & FMODE_READ))
1513 				return -EACCES;
1514 			if (path_noexec(&file->f_path)) {
1515 				if (vm_flags & VM_EXEC)
1516 					return -EPERM;
1517 				vm_flags &= ~VM_MAYEXEC;
1518 			}
1519 
1520 			if (!file->f_op->mmap)
1521 				return -ENODEV;
1522 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1523 				return -EINVAL;
1524 			break;
1525 
1526 		default:
1527 			return -EINVAL;
1528 		}
1529 	} else {
1530 		switch (flags & MAP_TYPE) {
1531 		case MAP_SHARED:
1532 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1533 				return -EINVAL;
1534 			/*
1535 			 * Ignore pgoff.
1536 			 */
1537 			pgoff = 0;
1538 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1539 			break;
1540 		case MAP_PRIVATE:
1541 			/*
1542 			 * Set pgoff according to addr for anon_vma.
1543 			 */
1544 			pgoff = addr >> PAGE_SHIFT;
1545 			break;
1546 		default:
1547 			return -EINVAL;
1548 		}
1549 	}
1550 
1551 	/*
1552 	 * Set 'VM_NORESERVE' if we should not account for the
1553 	 * memory use of this mapping.
1554 	 */
1555 	if (flags & MAP_NORESERVE) {
1556 		/* We honor MAP_NORESERVE if allowed to overcommit */
1557 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1558 			vm_flags |= VM_NORESERVE;
1559 
1560 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1561 		if (file && is_file_hugepages(file))
1562 			vm_flags |= VM_NORESERVE;
1563 	}
1564 
1565 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1566 	if (!IS_ERR_VALUE(addr) &&
1567 	    ((vm_flags & VM_LOCKED) ||
1568 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1569 		*populate = len;
1570 	return addr;
1571 }
1572 
1573 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1574 			      unsigned long prot, unsigned long flags,
1575 			      unsigned long fd, unsigned long pgoff)
1576 {
1577 	struct file *file = NULL;
1578 	unsigned long retval;
1579 
1580 	if (!(flags & MAP_ANONYMOUS)) {
1581 		audit_mmap_fd(fd, flags);
1582 		file = fget(fd);
1583 		if (!file)
1584 			return -EBADF;
1585 		if (is_file_hugepages(file))
1586 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1587 		retval = -EINVAL;
1588 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1589 			goto out_fput;
1590 	} else if (flags & MAP_HUGETLB) {
1591 		struct user_struct *user = NULL;
1592 		struct hstate *hs;
1593 
1594 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1595 		if (!hs)
1596 			return -EINVAL;
1597 
1598 		len = ALIGN(len, huge_page_size(hs));
1599 		/*
1600 		 * VM_NORESERVE is used because the reservations will be
1601 		 * taken when vm_ops->mmap() is called
1602 		 * A dummy user value is used because we are not locking
1603 		 * memory so no accounting is necessary
1604 		 */
1605 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1606 				VM_NORESERVE,
1607 				&user, HUGETLB_ANONHUGE_INODE,
1608 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1609 		if (IS_ERR(file))
1610 			return PTR_ERR(file);
1611 	}
1612 
1613 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1614 
1615 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1616 out_fput:
1617 	if (file)
1618 		fput(file);
1619 	return retval;
1620 }
1621 
1622 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1623 		unsigned long, prot, unsigned long, flags,
1624 		unsigned long, fd, unsigned long, pgoff)
1625 {
1626 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1627 }
1628 
1629 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1630 struct mmap_arg_struct {
1631 	unsigned long addr;
1632 	unsigned long len;
1633 	unsigned long prot;
1634 	unsigned long flags;
1635 	unsigned long fd;
1636 	unsigned long offset;
1637 };
1638 
1639 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1640 {
1641 	struct mmap_arg_struct a;
1642 
1643 	if (copy_from_user(&a, arg, sizeof(a)))
1644 		return -EFAULT;
1645 	if (offset_in_page(a.offset))
1646 		return -EINVAL;
1647 
1648 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1649 			       a.offset >> PAGE_SHIFT);
1650 }
1651 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1652 
1653 /*
1654  * Some shared mappings will want the pages marked read-only
1655  * to track write events. If so, we'll downgrade vm_page_prot
1656  * to the private version (using protection_map[] without the
1657  * VM_SHARED bit).
1658  */
1659 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1660 {
1661 	vm_flags_t vm_flags = vma->vm_flags;
1662 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1663 
1664 	/* If it was private or non-writable, the write bit is already clear */
1665 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1666 		return 0;
1667 
1668 	/* The backer wishes to know when pages are first written to? */
1669 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1670 		return 1;
1671 
1672 	/* The open routine did something to the protections that pgprot_modify
1673 	 * won't preserve? */
1674 	if (pgprot_val(vm_page_prot) !=
1675 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1676 		return 0;
1677 
1678 	/* Do we need to track softdirty? */
1679 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1680 		return 1;
1681 
1682 	/* Specialty mapping? */
1683 	if (vm_flags & VM_PFNMAP)
1684 		return 0;
1685 
1686 	/* Can the mapping track the dirty pages? */
1687 	return vma->vm_file && vma->vm_file->f_mapping &&
1688 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1689 }
1690 
1691 /*
1692  * We account for memory if it's a private writeable mapping,
1693  * not hugepages and VM_NORESERVE wasn't set.
1694  */
1695 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1696 {
1697 	/*
1698 	 * hugetlb has its own accounting separate from the core VM
1699 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1700 	 */
1701 	if (file && is_file_hugepages(file))
1702 		return 0;
1703 
1704 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1705 }
1706 
1707 unsigned long mmap_region(struct file *file, unsigned long addr,
1708 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1709 		struct list_head *uf)
1710 {
1711 	struct mm_struct *mm = current->mm;
1712 	struct vm_area_struct *vma, *prev;
1713 	int error;
1714 	struct rb_node **rb_link, *rb_parent;
1715 	unsigned long charged = 0;
1716 
1717 	/* Check against address space limit. */
1718 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1719 		unsigned long nr_pages;
1720 
1721 		/*
1722 		 * MAP_FIXED may remove pages of mappings that intersects with
1723 		 * requested mapping. Account for the pages it would unmap.
1724 		 */
1725 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1726 
1727 		if (!may_expand_vm(mm, vm_flags,
1728 					(len >> PAGE_SHIFT) - nr_pages))
1729 			return -ENOMEM;
1730 	}
1731 
1732 	/* Clear old maps */
1733 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1734 			      &rb_parent)) {
1735 		if (do_munmap(mm, addr, len, uf))
1736 			return -ENOMEM;
1737 	}
1738 
1739 	/*
1740 	 * Private writable mapping: check memory availability
1741 	 */
1742 	if (accountable_mapping(file, vm_flags)) {
1743 		charged = len >> PAGE_SHIFT;
1744 		if (security_vm_enough_memory_mm(mm, charged))
1745 			return -ENOMEM;
1746 		vm_flags |= VM_ACCOUNT;
1747 	}
1748 
1749 	/*
1750 	 * Can we just expand an old mapping?
1751 	 */
1752 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1753 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1754 	if (vma)
1755 		goto out;
1756 
1757 	/*
1758 	 * Determine the object being mapped and call the appropriate
1759 	 * specific mapper. the address has already been validated, but
1760 	 * not unmapped, but the maps are removed from the list.
1761 	 */
1762 	vma = vm_area_alloc(mm);
1763 	if (!vma) {
1764 		error = -ENOMEM;
1765 		goto unacct_error;
1766 	}
1767 
1768 	vma->vm_start = addr;
1769 	vma->vm_end = addr + len;
1770 	vma->vm_flags = vm_flags;
1771 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1772 	vma->vm_pgoff = pgoff;
1773 
1774 	if (file) {
1775 		if (vm_flags & VM_DENYWRITE) {
1776 			error = deny_write_access(file);
1777 			if (error)
1778 				goto free_vma;
1779 		}
1780 		if (vm_flags & VM_SHARED) {
1781 			error = mapping_map_writable(file->f_mapping);
1782 			if (error)
1783 				goto allow_write_and_free_vma;
1784 		}
1785 
1786 		/* ->mmap() can change vma->vm_file, but must guarantee that
1787 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1788 		 * and map writably if VM_SHARED is set. This usually means the
1789 		 * new file must not have been exposed to user-space, yet.
1790 		 */
1791 		vma->vm_file = get_file(file);
1792 		error = call_mmap(file, vma);
1793 		if (error)
1794 			goto unmap_and_free_vma;
1795 
1796 		/* Can addr have changed??
1797 		 *
1798 		 * Answer: Yes, several device drivers can do it in their
1799 		 *         f_op->mmap method. -DaveM
1800 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1801 		 *      be updated for vma_link()
1802 		 */
1803 		WARN_ON_ONCE(addr != vma->vm_start);
1804 
1805 		addr = vma->vm_start;
1806 		vm_flags = vma->vm_flags;
1807 	} else if (vm_flags & VM_SHARED) {
1808 		error = shmem_zero_setup(vma);
1809 		if (error)
1810 			goto free_vma;
1811 	} else {
1812 		vma_set_anonymous(vma);
1813 	}
1814 
1815 	vma_link(mm, vma, prev, rb_link, rb_parent);
1816 	/* Once vma denies write, undo our temporary denial count */
1817 	if (file) {
1818 		if (vm_flags & VM_SHARED)
1819 			mapping_unmap_writable(file->f_mapping);
1820 		if (vm_flags & VM_DENYWRITE)
1821 			allow_write_access(file);
1822 	}
1823 	file = vma->vm_file;
1824 out:
1825 	perf_event_mmap(vma);
1826 
1827 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1828 	if (vm_flags & VM_LOCKED) {
1829 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1830 					is_vm_hugetlb_page(vma) ||
1831 					vma == get_gate_vma(current->mm))
1832 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1833 		else
1834 			mm->locked_vm += (len >> PAGE_SHIFT);
1835 	}
1836 
1837 	if (file)
1838 		uprobe_mmap(vma);
1839 
1840 	/*
1841 	 * New (or expanded) vma always get soft dirty status.
1842 	 * Otherwise user-space soft-dirty page tracker won't
1843 	 * be able to distinguish situation when vma area unmapped,
1844 	 * then new mapped in-place (which must be aimed as
1845 	 * a completely new data area).
1846 	 */
1847 	vma->vm_flags |= VM_SOFTDIRTY;
1848 
1849 	vma_set_page_prot(vma);
1850 
1851 	return addr;
1852 
1853 unmap_and_free_vma:
1854 	vma->vm_file = NULL;
1855 	fput(file);
1856 
1857 	/* Undo any partial mapping done by a device driver. */
1858 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1859 	charged = 0;
1860 	if (vm_flags & VM_SHARED)
1861 		mapping_unmap_writable(file->f_mapping);
1862 allow_write_and_free_vma:
1863 	if (vm_flags & VM_DENYWRITE)
1864 		allow_write_access(file);
1865 free_vma:
1866 	vm_area_free(vma);
1867 unacct_error:
1868 	if (charged)
1869 		vm_unacct_memory(charged);
1870 	return error;
1871 }
1872 
1873 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1874 {
1875 	/*
1876 	 * We implement the search by looking for an rbtree node that
1877 	 * immediately follows a suitable gap. That is,
1878 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1879 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1880 	 * - gap_end - gap_start >= length
1881 	 */
1882 
1883 	struct mm_struct *mm = current->mm;
1884 	struct vm_area_struct *vma;
1885 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1886 
1887 	/* Adjust search length to account for worst case alignment overhead */
1888 	length = info->length + info->align_mask;
1889 	if (length < info->length)
1890 		return -ENOMEM;
1891 
1892 	/* Adjust search limits by the desired length */
1893 	if (info->high_limit < length)
1894 		return -ENOMEM;
1895 	high_limit = info->high_limit - length;
1896 
1897 	if (info->low_limit > high_limit)
1898 		return -ENOMEM;
1899 	low_limit = info->low_limit + length;
1900 
1901 	/* Check if rbtree root looks promising */
1902 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1903 		goto check_highest;
1904 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1905 	if (vma->rb_subtree_gap < length)
1906 		goto check_highest;
1907 
1908 	while (true) {
1909 		/* Visit left subtree if it looks promising */
1910 		gap_end = vm_start_gap(vma);
1911 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1912 			struct vm_area_struct *left =
1913 				rb_entry(vma->vm_rb.rb_left,
1914 					 struct vm_area_struct, vm_rb);
1915 			if (left->rb_subtree_gap >= length) {
1916 				vma = left;
1917 				continue;
1918 			}
1919 		}
1920 
1921 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1922 check_current:
1923 		/* Check if current node has a suitable gap */
1924 		if (gap_start > high_limit)
1925 			return -ENOMEM;
1926 		if (gap_end >= low_limit &&
1927 		    gap_end > gap_start && gap_end - gap_start >= length)
1928 			goto found;
1929 
1930 		/* Visit right subtree if it looks promising */
1931 		if (vma->vm_rb.rb_right) {
1932 			struct vm_area_struct *right =
1933 				rb_entry(vma->vm_rb.rb_right,
1934 					 struct vm_area_struct, vm_rb);
1935 			if (right->rb_subtree_gap >= length) {
1936 				vma = right;
1937 				continue;
1938 			}
1939 		}
1940 
1941 		/* Go back up the rbtree to find next candidate node */
1942 		while (true) {
1943 			struct rb_node *prev = &vma->vm_rb;
1944 			if (!rb_parent(prev))
1945 				goto check_highest;
1946 			vma = rb_entry(rb_parent(prev),
1947 				       struct vm_area_struct, vm_rb);
1948 			if (prev == vma->vm_rb.rb_left) {
1949 				gap_start = vm_end_gap(vma->vm_prev);
1950 				gap_end = vm_start_gap(vma);
1951 				goto check_current;
1952 			}
1953 		}
1954 	}
1955 
1956 check_highest:
1957 	/* Check highest gap, which does not precede any rbtree node */
1958 	gap_start = mm->highest_vm_end;
1959 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1960 	if (gap_start > high_limit)
1961 		return -ENOMEM;
1962 
1963 found:
1964 	/* We found a suitable gap. Clip it with the original low_limit. */
1965 	if (gap_start < info->low_limit)
1966 		gap_start = info->low_limit;
1967 
1968 	/* Adjust gap address to the desired alignment */
1969 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1970 
1971 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1972 	VM_BUG_ON(gap_start + info->length > gap_end);
1973 	return gap_start;
1974 }
1975 
1976 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1977 {
1978 	struct mm_struct *mm = current->mm;
1979 	struct vm_area_struct *vma;
1980 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1981 
1982 	/* Adjust search length to account for worst case alignment overhead */
1983 	length = info->length + info->align_mask;
1984 	if (length < info->length)
1985 		return -ENOMEM;
1986 
1987 	/*
1988 	 * Adjust search limits by the desired length.
1989 	 * See implementation comment at top of unmapped_area().
1990 	 */
1991 	gap_end = info->high_limit;
1992 	if (gap_end < length)
1993 		return -ENOMEM;
1994 	high_limit = gap_end - length;
1995 
1996 	if (info->low_limit > high_limit)
1997 		return -ENOMEM;
1998 	low_limit = info->low_limit + length;
1999 
2000 	/* Check highest gap, which does not precede any rbtree node */
2001 	gap_start = mm->highest_vm_end;
2002 	if (gap_start <= high_limit)
2003 		goto found_highest;
2004 
2005 	/* Check if rbtree root looks promising */
2006 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2007 		return -ENOMEM;
2008 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2009 	if (vma->rb_subtree_gap < length)
2010 		return -ENOMEM;
2011 
2012 	while (true) {
2013 		/* Visit right subtree if it looks promising */
2014 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2015 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2016 			struct vm_area_struct *right =
2017 				rb_entry(vma->vm_rb.rb_right,
2018 					 struct vm_area_struct, vm_rb);
2019 			if (right->rb_subtree_gap >= length) {
2020 				vma = right;
2021 				continue;
2022 			}
2023 		}
2024 
2025 check_current:
2026 		/* Check if current node has a suitable gap */
2027 		gap_end = vm_start_gap(vma);
2028 		if (gap_end < low_limit)
2029 			return -ENOMEM;
2030 		if (gap_start <= high_limit &&
2031 		    gap_end > gap_start && gap_end - gap_start >= length)
2032 			goto found;
2033 
2034 		/* Visit left subtree if it looks promising */
2035 		if (vma->vm_rb.rb_left) {
2036 			struct vm_area_struct *left =
2037 				rb_entry(vma->vm_rb.rb_left,
2038 					 struct vm_area_struct, vm_rb);
2039 			if (left->rb_subtree_gap >= length) {
2040 				vma = left;
2041 				continue;
2042 			}
2043 		}
2044 
2045 		/* Go back up the rbtree to find next candidate node */
2046 		while (true) {
2047 			struct rb_node *prev = &vma->vm_rb;
2048 			if (!rb_parent(prev))
2049 				return -ENOMEM;
2050 			vma = rb_entry(rb_parent(prev),
2051 				       struct vm_area_struct, vm_rb);
2052 			if (prev == vma->vm_rb.rb_right) {
2053 				gap_start = vma->vm_prev ?
2054 					vm_end_gap(vma->vm_prev) : 0;
2055 				goto check_current;
2056 			}
2057 		}
2058 	}
2059 
2060 found:
2061 	/* We found a suitable gap. Clip it with the original high_limit. */
2062 	if (gap_end > info->high_limit)
2063 		gap_end = info->high_limit;
2064 
2065 found_highest:
2066 	/* Compute highest gap address at the desired alignment */
2067 	gap_end -= info->length;
2068 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2069 
2070 	VM_BUG_ON(gap_end < info->low_limit);
2071 	VM_BUG_ON(gap_end < gap_start);
2072 	return gap_end;
2073 }
2074 
2075 
2076 #ifndef arch_get_mmap_end
2077 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2078 #endif
2079 
2080 #ifndef arch_get_mmap_base
2081 #define arch_get_mmap_base(addr, base) (base)
2082 #endif
2083 
2084 /* Get an address range which is currently unmapped.
2085  * For shmat() with addr=0.
2086  *
2087  * Ugly calling convention alert:
2088  * Return value with the low bits set means error value,
2089  * ie
2090  *	if (ret & ~PAGE_MASK)
2091  *		error = ret;
2092  *
2093  * This function "knows" that -ENOMEM has the bits set.
2094  */
2095 #ifndef HAVE_ARCH_UNMAPPED_AREA
2096 unsigned long
2097 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2098 		unsigned long len, unsigned long pgoff, unsigned long flags)
2099 {
2100 	struct mm_struct *mm = current->mm;
2101 	struct vm_area_struct *vma, *prev;
2102 	struct vm_unmapped_area_info info;
2103 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2104 
2105 	if (len > mmap_end - mmap_min_addr)
2106 		return -ENOMEM;
2107 
2108 	if (flags & MAP_FIXED)
2109 		return addr;
2110 
2111 	if (addr) {
2112 		addr = PAGE_ALIGN(addr);
2113 		vma = find_vma_prev(mm, addr, &prev);
2114 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2115 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2116 		    (!prev || addr >= vm_end_gap(prev)))
2117 			return addr;
2118 	}
2119 
2120 	info.flags = 0;
2121 	info.length = len;
2122 	info.low_limit = mm->mmap_base;
2123 	info.high_limit = mmap_end;
2124 	info.align_mask = 0;
2125 	return vm_unmapped_area(&info);
2126 }
2127 #endif
2128 
2129 /*
2130  * This mmap-allocator allocates new areas top-down from below the
2131  * stack's low limit (the base):
2132  */
2133 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2134 unsigned long
2135 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2136 			  unsigned long len, unsigned long pgoff,
2137 			  unsigned long flags)
2138 {
2139 	struct vm_area_struct *vma, *prev;
2140 	struct mm_struct *mm = current->mm;
2141 	struct vm_unmapped_area_info info;
2142 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2143 
2144 	/* requested length too big for entire address space */
2145 	if (len > mmap_end - mmap_min_addr)
2146 		return -ENOMEM;
2147 
2148 	if (flags & MAP_FIXED)
2149 		return addr;
2150 
2151 	/* requesting a specific address */
2152 	if (addr) {
2153 		addr = PAGE_ALIGN(addr);
2154 		vma = find_vma_prev(mm, addr, &prev);
2155 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2156 				(!vma || addr + len <= vm_start_gap(vma)) &&
2157 				(!prev || addr >= vm_end_gap(prev)))
2158 			return addr;
2159 	}
2160 
2161 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2162 	info.length = len;
2163 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2164 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2165 	info.align_mask = 0;
2166 	addr = vm_unmapped_area(&info);
2167 
2168 	/*
2169 	 * A failed mmap() very likely causes application failure,
2170 	 * so fall back to the bottom-up function here. This scenario
2171 	 * can happen with large stack limits and large mmap()
2172 	 * allocations.
2173 	 */
2174 	if (offset_in_page(addr)) {
2175 		VM_BUG_ON(addr != -ENOMEM);
2176 		info.flags = 0;
2177 		info.low_limit = TASK_UNMAPPED_BASE;
2178 		info.high_limit = mmap_end;
2179 		addr = vm_unmapped_area(&info);
2180 	}
2181 
2182 	return addr;
2183 }
2184 #endif
2185 
2186 unsigned long
2187 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2188 		unsigned long pgoff, unsigned long flags)
2189 {
2190 	unsigned long (*get_area)(struct file *, unsigned long,
2191 				  unsigned long, unsigned long, unsigned long);
2192 
2193 	unsigned long error = arch_mmap_check(addr, len, flags);
2194 	if (error)
2195 		return error;
2196 
2197 	/* Careful about overflows.. */
2198 	if (len > TASK_SIZE)
2199 		return -ENOMEM;
2200 
2201 	get_area = current->mm->get_unmapped_area;
2202 	if (file) {
2203 		if (file->f_op->get_unmapped_area)
2204 			get_area = file->f_op->get_unmapped_area;
2205 	} else if (flags & MAP_SHARED) {
2206 		/*
2207 		 * mmap_region() will call shmem_zero_setup() to create a file,
2208 		 * so use shmem's get_unmapped_area in case it can be huge.
2209 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2210 		 */
2211 		pgoff = 0;
2212 		get_area = shmem_get_unmapped_area;
2213 	}
2214 
2215 	addr = get_area(file, addr, len, pgoff, flags);
2216 	if (IS_ERR_VALUE(addr))
2217 		return addr;
2218 
2219 	if (addr > TASK_SIZE - len)
2220 		return -ENOMEM;
2221 	if (offset_in_page(addr))
2222 		return -EINVAL;
2223 
2224 	error = security_mmap_addr(addr);
2225 	return error ? error : addr;
2226 }
2227 
2228 EXPORT_SYMBOL(get_unmapped_area);
2229 
2230 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2231 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2232 {
2233 	struct rb_node *rb_node;
2234 	struct vm_area_struct *vma;
2235 
2236 	/* Check the cache first. */
2237 	vma = vmacache_find(mm, addr);
2238 	if (likely(vma))
2239 		return vma;
2240 
2241 	rb_node = mm->mm_rb.rb_node;
2242 
2243 	while (rb_node) {
2244 		struct vm_area_struct *tmp;
2245 
2246 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2247 
2248 		if (tmp->vm_end > addr) {
2249 			vma = tmp;
2250 			if (tmp->vm_start <= addr)
2251 				break;
2252 			rb_node = rb_node->rb_left;
2253 		} else
2254 			rb_node = rb_node->rb_right;
2255 	}
2256 
2257 	if (vma)
2258 		vmacache_update(addr, vma);
2259 	return vma;
2260 }
2261 
2262 EXPORT_SYMBOL(find_vma);
2263 
2264 /*
2265  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2266  */
2267 struct vm_area_struct *
2268 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2269 			struct vm_area_struct **pprev)
2270 {
2271 	struct vm_area_struct *vma;
2272 
2273 	vma = find_vma(mm, addr);
2274 	if (vma) {
2275 		*pprev = vma->vm_prev;
2276 	} else {
2277 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2278 		*pprev = NULL;
2279 		while (rb_node) {
2280 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2281 			rb_node = rb_node->rb_right;
2282 		}
2283 	}
2284 	return vma;
2285 }
2286 
2287 /*
2288  * Verify that the stack growth is acceptable and
2289  * update accounting. This is shared with both the
2290  * grow-up and grow-down cases.
2291  */
2292 static int acct_stack_growth(struct vm_area_struct *vma,
2293 			     unsigned long size, unsigned long grow)
2294 {
2295 	struct mm_struct *mm = vma->vm_mm;
2296 	unsigned long new_start;
2297 
2298 	/* address space limit tests */
2299 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2300 		return -ENOMEM;
2301 
2302 	/* Stack limit test */
2303 	if (size > rlimit(RLIMIT_STACK))
2304 		return -ENOMEM;
2305 
2306 	/* mlock limit tests */
2307 	if (vma->vm_flags & VM_LOCKED) {
2308 		unsigned long locked;
2309 		unsigned long limit;
2310 		locked = mm->locked_vm + grow;
2311 		limit = rlimit(RLIMIT_MEMLOCK);
2312 		limit >>= PAGE_SHIFT;
2313 		if (locked > limit && !capable(CAP_IPC_LOCK))
2314 			return -ENOMEM;
2315 	}
2316 
2317 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2318 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2319 			vma->vm_end - size;
2320 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2321 		return -EFAULT;
2322 
2323 	/*
2324 	 * Overcommit..  This must be the final test, as it will
2325 	 * update security statistics.
2326 	 */
2327 	if (security_vm_enough_memory_mm(mm, grow))
2328 		return -ENOMEM;
2329 
2330 	return 0;
2331 }
2332 
2333 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2334 /*
2335  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2336  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2337  */
2338 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2339 {
2340 	struct mm_struct *mm = vma->vm_mm;
2341 	struct vm_area_struct *next;
2342 	unsigned long gap_addr;
2343 	int error = 0;
2344 
2345 	if (!(vma->vm_flags & VM_GROWSUP))
2346 		return -EFAULT;
2347 
2348 	/* Guard against exceeding limits of the address space. */
2349 	address &= PAGE_MASK;
2350 	if (address >= (TASK_SIZE & PAGE_MASK))
2351 		return -ENOMEM;
2352 	address += PAGE_SIZE;
2353 
2354 	/* Enforce stack_guard_gap */
2355 	gap_addr = address + stack_guard_gap;
2356 
2357 	/* Guard against overflow */
2358 	if (gap_addr < address || gap_addr > TASK_SIZE)
2359 		gap_addr = TASK_SIZE;
2360 
2361 	next = vma->vm_next;
2362 	if (next && next->vm_start < gap_addr &&
2363 			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2364 		if (!(next->vm_flags & VM_GROWSUP))
2365 			return -ENOMEM;
2366 		/* Check that both stack segments have the same anon_vma? */
2367 	}
2368 
2369 	/* We must make sure the anon_vma is allocated. */
2370 	if (unlikely(anon_vma_prepare(vma)))
2371 		return -ENOMEM;
2372 
2373 	/*
2374 	 * vma->vm_start/vm_end cannot change under us because the caller
2375 	 * is required to hold the mmap_sem in read mode.  We need the
2376 	 * anon_vma lock to serialize against concurrent expand_stacks.
2377 	 */
2378 	anon_vma_lock_write(vma->anon_vma);
2379 
2380 	/* Somebody else might have raced and expanded it already */
2381 	if (address > vma->vm_end) {
2382 		unsigned long size, grow;
2383 
2384 		size = address - vma->vm_start;
2385 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2386 
2387 		error = -ENOMEM;
2388 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2389 			error = acct_stack_growth(vma, size, grow);
2390 			if (!error) {
2391 				/*
2392 				 * vma_gap_update() doesn't support concurrent
2393 				 * updates, but we only hold a shared mmap_sem
2394 				 * lock here, so we need to protect against
2395 				 * concurrent vma expansions.
2396 				 * anon_vma_lock_write() doesn't help here, as
2397 				 * we don't guarantee that all growable vmas
2398 				 * in a mm share the same root anon vma.
2399 				 * So, we reuse mm->page_table_lock to guard
2400 				 * against concurrent vma expansions.
2401 				 */
2402 				spin_lock(&mm->page_table_lock);
2403 				if (vma->vm_flags & VM_LOCKED)
2404 					mm->locked_vm += grow;
2405 				vm_stat_account(mm, vma->vm_flags, grow);
2406 				anon_vma_interval_tree_pre_update_vma(vma);
2407 				vma->vm_end = address;
2408 				anon_vma_interval_tree_post_update_vma(vma);
2409 				if (vma->vm_next)
2410 					vma_gap_update(vma->vm_next);
2411 				else
2412 					mm->highest_vm_end = vm_end_gap(vma);
2413 				spin_unlock(&mm->page_table_lock);
2414 
2415 				perf_event_mmap(vma);
2416 			}
2417 		}
2418 	}
2419 	anon_vma_unlock_write(vma->anon_vma);
2420 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2421 	validate_mm(mm);
2422 	return error;
2423 }
2424 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2425 
2426 /*
2427  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2428  */
2429 int expand_downwards(struct vm_area_struct *vma,
2430 				   unsigned long address)
2431 {
2432 	struct mm_struct *mm = vma->vm_mm;
2433 	struct vm_area_struct *prev;
2434 	int error = 0;
2435 
2436 	address &= PAGE_MASK;
2437 	if (address < mmap_min_addr)
2438 		return -EPERM;
2439 
2440 	/* Enforce stack_guard_gap */
2441 	prev = vma->vm_prev;
2442 	/* Check that both stack segments have the same anon_vma? */
2443 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2444 			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2445 		if (address - prev->vm_end < stack_guard_gap)
2446 			return -ENOMEM;
2447 	}
2448 
2449 	/* We must make sure the anon_vma is allocated. */
2450 	if (unlikely(anon_vma_prepare(vma)))
2451 		return -ENOMEM;
2452 
2453 	/*
2454 	 * vma->vm_start/vm_end cannot change under us because the caller
2455 	 * is required to hold the mmap_sem in read mode.  We need the
2456 	 * anon_vma lock to serialize against concurrent expand_stacks.
2457 	 */
2458 	anon_vma_lock_write(vma->anon_vma);
2459 
2460 	/* Somebody else might have raced and expanded it already */
2461 	if (address < vma->vm_start) {
2462 		unsigned long size, grow;
2463 
2464 		size = vma->vm_end - address;
2465 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2466 
2467 		error = -ENOMEM;
2468 		if (grow <= vma->vm_pgoff) {
2469 			error = acct_stack_growth(vma, size, grow);
2470 			if (!error) {
2471 				/*
2472 				 * vma_gap_update() doesn't support concurrent
2473 				 * updates, but we only hold a shared mmap_sem
2474 				 * lock here, so we need to protect against
2475 				 * concurrent vma expansions.
2476 				 * anon_vma_lock_write() doesn't help here, as
2477 				 * we don't guarantee that all growable vmas
2478 				 * in a mm share the same root anon vma.
2479 				 * So, we reuse mm->page_table_lock to guard
2480 				 * against concurrent vma expansions.
2481 				 */
2482 				spin_lock(&mm->page_table_lock);
2483 				if (vma->vm_flags & VM_LOCKED)
2484 					mm->locked_vm += grow;
2485 				vm_stat_account(mm, vma->vm_flags, grow);
2486 				anon_vma_interval_tree_pre_update_vma(vma);
2487 				vma->vm_start = address;
2488 				vma->vm_pgoff -= grow;
2489 				anon_vma_interval_tree_post_update_vma(vma);
2490 				vma_gap_update(vma);
2491 				spin_unlock(&mm->page_table_lock);
2492 
2493 				perf_event_mmap(vma);
2494 			}
2495 		}
2496 	}
2497 	anon_vma_unlock_write(vma->anon_vma);
2498 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2499 	validate_mm(mm);
2500 	return error;
2501 }
2502 
2503 /* enforced gap between the expanding stack and other mappings. */
2504 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2505 
2506 static int __init cmdline_parse_stack_guard_gap(char *p)
2507 {
2508 	unsigned long val;
2509 	char *endptr;
2510 
2511 	val = simple_strtoul(p, &endptr, 10);
2512 	if (!*endptr)
2513 		stack_guard_gap = val << PAGE_SHIFT;
2514 
2515 	return 0;
2516 }
2517 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2518 
2519 #ifdef CONFIG_STACK_GROWSUP
2520 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2521 {
2522 	return expand_upwards(vma, address);
2523 }
2524 
2525 struct vm_area_struct *
2526 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2527 {
2528 	struct vm_area_struct *vma, *prev;
2529 
2530 	addr &= PAGE_MASK;
2531 	vma = find_vma_prev(mm, addr, &prev);
2532 	if (vma && (vma->vm_start <= addr))
2533 		return vma;
2534 	/* don't alter vm_end if the coredump is running */
2535 	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2536 		return NULL;
2537 	if (prev->vm_flags & VM_LOCKED)
2538 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2539 	return prev;
2540 }
2541 #else
2542 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2543 {
2544 	return expand_downwards(vma, address);
2545 }
2546 
2547 struct vm_area_struct *
2548 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2549 {
2550 	struct vm_area_struct *vma;
2551 	unsigned long start;
2552 
2553 	addr &= PAGE_MASK;
2554 	vma = find_vma(mm, addr);
2555 	if (!vma)
2556 		return NULL;
2557 	if (vma->vm_start <= addr)
2558 		return vma;
2559 	if (!(vma->vm_flags & VM_GROWSDOWN))
2560 		return NULL;
2561 	/* don't alter vm_start if the coredump is running */
2562 	if (!mmget_still_valid(mm))
2563 		return NULL;
2564 	start = vma->vm_start;
2565 	if (expand_stack(vma, addr))
2566 		return NULL;
2567 	if (vma->vm_flags & VM_LOCKED)
2568 		populate_vma_page_range(vma, addr, start, NULL);
2569 	return vma;
2570 }
2571 #endif
2572 
2573 EXPORT_SYMBOL_GPL(find_extend_vma);
2574 
2575 /*
2576  * Ok - we have the memory areas we should free on the vma list,
2577  * so release them, and do the vma updates.
2578  *
2579  * Called with the mm semaphore held.
2580  */
2581 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2582 {
2583 	unsigned long nr_accounted = 0;
2584 
2585 	/* Update high watermark before we lower total_vm */
2586 	update_hiwater_vm(mm);
2587 	do {
2588 		long nrpages = vma_pages(vma);
2589 
2590 		if (vma->vm_flags & VM_ACCOUNT)
2591 			nr_accounted += nrpages;
2592 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2593 		vma = remove_vma(vma);
2594 	} while (vma);
2595 	vm_unacct_memory(nr_accounted);
2596 	validate_mm(mm);
2597 }
2598 
2599 /*
2600  * Get rid of page table information in the indicated region.
2601  *
2602  * Called with the mm semaphore held.
2603  */
2604 static void unmap_region(struct mm_struct *mm,
2605 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2606 		unsigned long start, unsigned long end)
2607 {
2608 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2609 	struct mmu_gather tlb;
2610 
2611 	lru_add_drain();
2612 	tlb_gather_mmu(&tlb, mm, start, end);
2613 	update_hiwater_rss(mm);
2614 	unmap_vmas(&tlb, vma, start, end);
2615 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2616 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2617 	tlb_finish_mmu(&tlb, start, end);
2618 }
2619 
2620 /*
2621  * Create a list of vma's touched by the unmap, removing them from the mm's
2622  * vma list as we go..
2623  */
2624 static void
2625 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2626 	struct vm_area_struct *prev, unsigned long end)
2627 {
2628 	struct vm_area_struct **insertion_point;
2629 	struct vm_area_struct *tail_vma = NULL;
2630 
2631 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2632 	vma->vm_prev = NULL;
2633 	do {
2634 		vma_rb_erase(vma, &mm->mm_rb);
2635 		mm->map_count--;
2636 		tail_vma = vma;
2637 		vma = vma->vm_next;
2638 	} while (vma && vma->vm_start < end);
2639 	*insertion_point = vma;
2640 	if (vma) {
2641 		vma->vm_prev = prev;
2642 		vma_gap_update(vma);
2643 	} else
2644 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2645 	tail_vma->vm_next = NULL;
2646 
2647 	/* Kill the cache */
2648 	vmacache_invalidate(mm);
2649 }
2650 
2651 /*
2652  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2653  * has already been checked or doesn't make sense to fail.
2654  */
2655 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2656 		unsigned long addr, int new_below)
2657 {
2658 	struct vm_area_struct *new;
2659 	int err;
2660 
2661 	if (vma->vm_ops && vma->vm_ops->split) {
2662 		err = vma->vm_ops->split(vma, addr);
2663 		if (err)
2664 			return err;
2665 	}
2666 
2667 	new = vm_area_dup(vma);
2668 	if (!new)
2669 		return -ENOMEM;
2670 
2671 	if (new_below)
2672 		new->vm_end = addr;
2673 	else {
2674 		new->vm_start = addr;
2675 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2676 	}
2677 
2678 	err = vma_dup_policy(vma, new);
2679 	if (err)
2680 		goto out_free_vma;
2681 
2682 	err = anon_vma_clone(new, vma);
2683 	if (err)
2684 		goto out_free_mpol;
2685 
2686 	if (new->vm_file)
2687 		get_file(new->vm_file);
2688 
2689 	if (new->vm_ops && new->vm_ops->open)
2690 		new->vm_ops->open(new);
2691 
2692 	if (new_below)
2693 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2694 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2695 	else
2696 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2697 
2698 	/* Success. */
2699 	if (!err)
2700 		return 0;
2701 
2702 	/* Clean everything up if vma_adjust failed. */
2703 	if (new->vm_ops && new->vm_ops->close)
2704 		new->vm_ops->close(new);
2705 	if (new->vm_file)
2706 		fput(new->vm_file);
2707 	unlink_anon_vmas(new);
2708  out_free_mpol:
2709 	mpol_put(vma_policy(new));
2710  out_free_vma:
2711 	vm_area_free(new);
2712 	return err;
2713 }
2714 
2715 /*
2716  * Split a vma into two pieces at address 'addr', a new vma is allocated
2717  * either for the first part or the tail.
2718  */
2719 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2720 	      unsigned long addr, int new_below)
2721 {
2722 	if (mm->map_count >= sysctl_max_map_count)
2723 		return -ENOMEM;
2724 
2725 	return __split_vma(mm, vma, addr, new_below);
2726 }
2727 
2728 /* Munmap is split into 2 main parts -- this part which finds
2729  * what needs doing, and the areas themselves, which do the
2730  * work.  This now handles partial unmappings.
2731  * Jeremy Fitzhardinge <jeremy@goop.org>
2732  */
2733 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2734 		struct list_head *uf, bool downgrade)
2735 {
2736 	unsigned long end;
2737 	struct vm_area_struct *vma, *prev, *last;
2738 
2739 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2740 		return -EINVAL;
2741 
2742 	len = PAGE_ALIGN(len);
2743 	end = start + len;
2744 	if (len == 0)
2745 		return -EINVAL;
2746 
2747 	/*
2748 	 * arch_unmap() might do unmaps itself.  It must be called
2749 	 * and finish any rbtree manipulation before this code
2750 	 * runs and also starts to manipulate the rbtree.
2751 	 */
2752 	arch_unmap(mm, start, end);
2753 
2754 	/* Find the first overlapping VMA */
2755 	vma = find_vma(mm, start);
2756 	if (!vma)
2757 		return 0;
2758 	prev = vma->vm_prev;
2759 	/* we have  start < vma->vm_end  */
2760 
2761 	/* if it doesn't overlap, we have nothing.. */
2762 	if (vma->vm_start >= end)
2763 		return 0;
2764 
2765 	/*
2766 	 * If we need to split any vma, do it now to save pain later.
2767 	 *
2768 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2769 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2770 	 * places tmp vma above, and higher split_vma places tmp vma below.
2771 	 */
2772 	if (start > vma->vm_start) {
2773 		int error;
2774 
2775 		/*
2776 		 * Make sure that map_count on return from munmap() will
2777 		 * not exceed its limit; but let map_count go just above
2778 		 * its limit temporarily, to help free resources as expected.
2779 		 */
2780 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2781 			return -ENOMEM;
2782 
2783 		error = __split_vma(mm, vma, start, 0);
2784 		if (error)
2785 			return error;
2786 		prev = vma;
2787 	}
2788 
2789 	/* Does it split the last one? */
2790 	last = find_vma(mm, end);
2791 	if (last && end > last->vm_start) {
2792 		int error = __split_vma(mm, last, end, 1);
2793 		if (error)
2794 			return error;
2795 	}
2796 	vma = prev ? prev->vm_next : mm->mmap;
2797 
2798 	if (unlikely(uf)) {
2799 		/*
2800 		 * If userfaultfd_unmap_prep returns an error the vmas
2801 		 * will remain splitted, but userland will get a
2802 		 * highly unexpected error anyway. This is no
2803 		 * different than the case where the first of the two
2804 		 * __split_vma fails, but we don't undo the first
2805 		 * split, despite we could. This is unlikely enough
2806 		 * failure that it's not worth optimizing it for.
2807 		 */
2808 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2809 		if (error)
2810 			return error;
2811 	}
2812 
2813 	/*
2814 	 * unlock any mlock()ed ranges before detaching vmas
2815 	 */
2816 	if (mm->locked_vm) {
2817 		struct vm_area_struct *tmp = vma;
2818 		while (tmp && tmp->vm_start < end) {
2819 			if (tmp->vm_flags & VM_LOCKED) {
2820 				mm->locked_vm -= vma_pages(tmp);
2821 				munlock_vma_pages_all(tmp);
2822 			}
2823 
2824 			tmp = tmp->vm_next;
2825 		}
2826 	}
2827 
2828 	/* Detach vmas from rbtree */
2829 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2830 
2831 	if (downgrade)
2832 		downgrade_write(&mm->mmap_sem);
2833 
2834 	unmap_region(mm, vma, prev, start, end);
2835 
2836 	/* Fix up all other VM information */
2837 	remove_vma_list(mm, vma);
2838 
2839 	return downgrade ? 1 : 0;
2840 }
2841 
2842 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2843 	      struct list_head *uf)
2844 {
2845 	return __do_munmap(mm, start, len, uf, false);
2846 }
2847 
2848 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2849 {
2850 	int ret;
2851 	struct mm_struct *mm = current->mm;
2852 	LIST_HEAD(uf);
2853 
2854 	if (down_write_killable(&mm->mmap_sem))
2855 		return -EINTR;
2856 
2857 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2858 	/*
2859 	 * Returning 1 indicates mmap_sem is downgraded.
2860 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2861 	 * it to 0 before return.
2862 	 */
2863 	if (ret == 1) {
2864 		up_read(&mm->mmap_sem);
2865 		ret = 0;
2866 	} else
2867 		up_write(&mm->mmap_sem);
2868 
2869 	userfaultfd_unmap_complete(mm, &uf);
2870 	return ret;
2871 }
2872 
2873 int vm_munmap(unsigned long start, size_t len)
2874 {
2875 	return __vm_munmap(start, len, false);
2876 }
2877 EXPORT_SYMBOL(vm_munmap);
2878 
2879 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2880 {
2881 	profile_munmap(addr);
2882 	return __vm_munmap(addr, len, true);
2883 }
2884 
2885 
2886 /*
2887  * Emulation of deprecated remap_file_pages() syscall.
2888  */
2889 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2890 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2891 {
2892 
2893 	struct mm_struct *mm = current->mm;
2894 	struct vm_area_struct *vma;
2895 	unsigned long populate = 0;
2896 	unsigned long ret = -EINVAL;
2897 	struct file *file;
2898 
2899 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2900 		     current->comm, current->pid);
2901 
2902 	if (prot)
2903 		return ret;
2904 	start = start & PAGE_MASK;
2905 	size = size & PAGE_MASK;
2906 
2907 	if (start + size <= start)
2908 		return ret;
2909 
2910 	/* Does pgoff wrap? */
2911 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2912 		return ret;
2913 
2914 	if (down_write_killable(&mm->mmap_sem))
2915 		return -EINTR;
2916 
2917 	vma = find_vma(mm, start);
2918 
2919 	if (!vma || !(vma->vm_flags & VM_SHARED))
2920 		goto out;
2921 
2922 	if (start < vma->vm_start)
2923 		goto out;
2924 
2925 	if (start + size > vma->vm_end) {
2926 		struct vm_area_struct *next;
2927 
2928 		for (next = vma->vm_next; next; next = next->vm_next) {
2929 			/* hole between vmas ? */
2930 			if (next->vm_start != next->vm_prev->vm_end)
2931 				goto out;
2932 
2933 			if (next->vm_file != vma->vm_file)
2934 				goto out;
2935 
2936 			if (next->vm_flags != vma->vm_flags)
2937 				goto out;
2938 
2939 			if (start + size <= next->vm_end)
2940 				break;
2941 		}
2942 
2943 		if (!next)
2944 			goto out;
2945 	}
2946 
2947 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2948 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2949 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2950 
2951 	flags &= MAP_NONBLOCK;
2952 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2953 	if (vma->vm_flags & VM_LOCKED) {
2954 		struct vm_area_struct *tmp;
2955 		flags |= MAP_LOCKED;
2956 
2957 		/* drop PG_Mlocked flag for over-mapped range */
2958 		for (tmp = vma; tmp->vm_start >= start + size;
2959 				tmp = tmp->vm_next) {
2960 			/*
2961 			 * Split pmd and munlock page on the border
2962 			 * of the range.
2963 			 */
2964 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2965 
2966 			munlock_vma_pages_range(tmp,
2967 					max(tmp->vm_start, start),
2968 					min(tmp->vm_end, start + size));
2969 		}
2970 	}
2971 
2972 	file = get_file(vma->vm_file);
2973 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2974 			prot, flags, pgoff, &populate, NULL);
2975 	fput(file);
2976 out:
2977 	up_write(&mm->mmap_sem);
2978 	if (populate)
2979 		mm_populate(ret, populate);
2980 	if (!IS_ERR_VALUE(ret))
2981 		ret = 0;
2982 	return ret;
2983 }
2984 
2985 /*
2986  *  this is really a simplified "do_mmap".  it only handles
2987  *  anonymous maps.  eventually we may be able to do some
2988  *  brk-specific accounting here.
2989  */
2990 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2991 {
2992 	struct mm_struct *mm = current->mm;
2993 	struct vm_area_struct *vma, *prev;
2994 	struct rb_node **rb_link, *rb_parent;
2995 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2996 	int error;
2997 
2998 	/* Until we need other flags, refuse anything except VM_EXEC. */
2999 	if ((flags & (~VM_EXEC)) != 0)
3000 		return -EINVAL;
3001 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3002 
3003 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3004 	if (offset_in_page(error))
3005 		return error;
3006 
3007 	error = mlock_future_check(mm, mm->def_flags, len);
3008 	if (error)
3009 		return error;
3010 
3011 	/*
3012 	 * Clear old maps.  this also does some error checking for us
3013 	 */
3014 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3015 			      &rb_parent)) {
3016 		if (do_munmap(mm, addr, len, uf))
3017 			return -ENOMEM;
3018 	}
3019 
3020 	/* Check against address space limits *after* clearing old maps... */
3021 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3022 		return -ENOMEM;
3023 
3024 	if (mm->map_count > sysctl_max_map_count)
3025 		return -ENOMEM;
3026 
3027 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3028 		return -ENOMEM;
3029 
3030 	/* Can we just expand an old private anonymous mapping? */
3031 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3032 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3033 	if (vma)
3034 		goto out;
3035 
3036 	/*
3037 	 * create a vma struct for an anonymous mapping
3038 	 */
3039 	vma = vm_area_alloc(mm);
3040 	if (!vma) {
3041 		vm_unacct_memory(len >> PAGE_SHIFT);
3042 		return -ENOMEM;
3043 	}
3044 
3045 	vma_set_anonymous(vma);
3046 	vma->vm_start = addr;
3047 	vma->vm_end = addr + len;
3048 	vma->vm_pgoff = pgoff;
3049 	vma->vm_flags = flags;
3050 	vma->vm_page_prot = vm_get_page_prot(flags);
3051 	vma_link(mm, vma, prev, rb_link, rb_parent);
3052 out:
3053 	perf_event_mmap(vma);
3054 	mm->total_vm += len >> PAGE_SHIFT;
3055 	mm->data_vm += len >> PAGE_SHIFT;
3056 	if (flags & VM_LOCKED)
3057 		mm->locked_vm += (len >> PAGE_SHIFT);
3058 	vma->vm_flags |= VM_SOFTDIRTY;
3059 	return 0;
3060 }
3061 
3062 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3063 {
3064 	struct mm_struct *mm = current->mm;
3065 	unsigned long len;
3066 	int ret;
3067 	bool populate;
3068 	LIST_HEAD(uf);
3069 
3070 	len = PAGE_ALIGN(request);
3071 	if (len < request)
3072 		return -ENOMEM;
3073 	if (!len)
3074 		return 0;
3075 
3076 	if (down_write_killable(&mm->mmap_sem))
3077 		return -EINTR;
3078 
3079 	ret = do_brk_flags(addr, len, flags, &uf);
3080 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3081 	up_write(&mm->mmap_sem);
3082 	userfaultfd_unmap_complete(mm, &uf);
3083 	if (populate && !ret)
3084 		mm_populate(addr, len);
3085 	return ret;
3086 }
3087 EXPORT_SYMBOL(vm_brk_flags);
3088 
3089 int vm_brk(unsigned long addr, unsigned long len)
3090 {
3091 	return vm_brk_flags(addr, len, 0);
3092 }
3093 EXPORT_SYMBOL(vm_brk);
3094 
3095 /* Release all mmaps. */
3096 void exit_mmap(struct mm_struct *mm)
3097 {
3098 	struct mmu_gather tlb;
3099 	struct vm_area_struct *vma;
3100 	unsigned long nr_accounted = 0;
3101 
3102 	/* mm's last user has gone, and its about to be pulled down */
3103 	mmu_notifier_release(mm);
3104 
3105 	if (unlikely(mm_is_oom_victim(mm))) {
3106 		/*
3107 		 * Manually reap the mm to free as much memory as possible.
3108 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3109 		 * this mm from further consideration.  Taking mm->mmap_sem for
3110 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3111 		 * reaper will not run on this mm again after mmap_sem is
3112 		 * dropped.
3113 		 *
3114 		 * Nothing can be holding mm->mmap_sem here and the above call
3115 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3116 		 * __oom_reap_task_mm() will not block.
3117 		 *
3118 		 * This needs to be done before calling munlock_vma_pages_all(),
3119 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3120 		 * reliably test it.
3121 		 */
3122 		(void)__oom_reap_task_mm(mm);
3123 
3124 		set_bit(MMF_OOM_SKIP, &mm->flags);
3125 		down_write(&mm->mmap_sem);
3126 		up_write(&mm->mmap_sem);
3127 	}
3128 
3129 	if (mm->locked_vm) {
3130 		vma = mm->mmap;
3131 		while (vma) {
3132 			if (vma->vm_flags & VM_LOCKED)
3133 				munlock_vma_pages_all(vma);
3134 			vma = vma->vm_next;
3135 		}
3136 	}
3137 
3138 	arch_exit_mmap(mm);
3139 
3140 	vma = mm->mmap;
3141 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3142 		return;
3143 
3144 	lru_add_drain();
3145 	flush_cache_mm(mm);
3146 	tlb_gather_mmu(&tlb, mm, 0, -1);
3147 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3148 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3149 	unmap_vmas(&tlb, vma, 0, -1);
3150 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3151 	tlb_finish_mmu(&tlb, 0, -1);
3152 
3153 	/*
3154 	 * Walk the list again, actually closing and freeing it,
3155 	 * with preemption enabled, without holding any MM locks.
3156 	 */
3157 	while (vma) {
3158 		if (vma->vm_flags & VM_ACCOUNT)
3159 			nr_accounted += vma_pages(vma);
3160 		vma = remove_vma(vma);
3161 	}
3162 	vm_unacct_memory(nr_accounted);
3163 }
3164 
3165 /* Insert vm structure into process list sorted by address
3166  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3167  * then i_mmap_rwsem is taken here.
3168  */
3169 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3170 {
3171 	struct vm_area_struct *prev;
3172 	struct rb_node **rb_link, *rb_parent;
3173 
3174 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3175 			   &prev, &rb_link, &rb_parent))
3176 		return -ENOMEM;
3177 	if ((vma->vm_flags & VM_ACCOUNT) &&
3178 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3179 		return -ENOMEM;
3180 
3181 	/*
3182 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3183 	 * until its first write fault, when page's anon_vma and index
3184 	 * are set.  But now set the vm_pgoff it will almost certainly
3185 	 * end up with (unless mremap moves it elsewhere before that
3186 	 * first wfault), so /proc/pid/maps tells a consistent story.
3187 	 *
3188 	 * By setting it to reflect the virtual start address of the
3189 	 * vma, merges and splits can happen in a seamless way, just
3190 	 * using the existing file pgoff checks and manipulations.
3191 	 * Similarly in do_mmap_pgoff and in do_brk.
3192 	 */
3193 	if (vma_is_anonymous(vma)) {
3194 		BUG_ON(vma->anon_vma);
3195 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3196 	}
3197 
3198 	vma_link(mm, vma, prev, rb_link, rb_parent);
3199 	return 0;
3200 }
3201 
3202 /*
3203  * Copy the vma structure to a new location in the same mm,
3204  * prior to moving page table entries, to effect an mremap move.
3205  */
3206 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3207 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3208 	bool *need_rmap_locks)
3209 {
3210 	struct vm_area_struct *vma = *vmap;
3211 	unsigned long vma_start = vma->vm_start;
3212 	struct mm_struct *mm = vma->vm_mm;
3213 	struct vm_area_struct *new_vma, *prev;
3214 	struct rb_node **rb_link, *rb_parent;
3215 	bool faulted_in_anon_vma = true;
3216 
3217 	/*
3218 	 * If anonymous vma has not yet been faulted, update new pgoff
3219 	 * to match new location, to increase its chance of merging.
3220 	 */
3221 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3222 		pgoff = addr >> PAGE_SHIFT;
3223 		faulted_in_anon_vma = false;
3224 	}
3225 
3226 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3227 		return NULL;	/* should never get here */
3228 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3229 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3230 			    vma->vm_userfaultfd_ctx);
3231 	if (new_vma) {
3232 		/*
3233 		 * Source vma may have been merged into new_vma
3234 		 */
3235 		if (unlikely(vma_start >= new_vma->vm_start &&
3236 			     vma_start < new_vma->vm_end)) {
3237 			/*
3238 			 * The only way we can get a vma_merge with
3239 			 * self during an mremap is if the vma hasn't
3240 			 * been faulted in yet and we were allowed to
3241 			 * reset the dst vma->vm_pgoff to the
3242 			 * destination address of the mremap to allow
3243 			 * the merge to happen. mremap must change the
3244 			 * vm_pgoff linearity between src and dst vmas
3245 			 * (in turn preventing a vma_merge) to be
3246 			 * safe. It is only safe to keep the vm_pgoff
3247 			 * linear if there are no pages mapped yet.
3248 			 */
3249 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3250 			*vmap = vma = new_vma;
3251 		}
3252 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3253 	} else {
3254 		new_vma = vm_area_dup(vma);
3255 		if (!new_vma)
3256 			goto out;
3257 		new_vma->vm_start = addr;
3258 		new_vma->vm_end = addr + len;
3259 		new_vma->vm_pgoff = pgoff;
3260 		if (vma_dup_policy(vma, new_vma))
3261 			goto out_free_vma;
3262 		if (anon_vma_clone(new_vma, vma))
3263 			goto out_free_mempol;
3264 		if (new_vma->vm_file)
3265 			get_file(new_vma->vm_file);
3266 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3267 			new_vma->vm_ops->open(new_vma);
3268 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3269 		*need_rmap_locks = false;
3270 	}
3271 	return new_vma;
3272 
3273 out_free_mempol:
3274 	mpol_put(vma_policy(new_vma));
3275 out_free_vma:
3276 	vm_area_free(new_vma);
3277 out:
3278 	return NULL;
3279 }
3280 
3281 /*
3282  * Return true if the calling process may expand its vm space by the passed
3283  * number of pages
3284  */
3285 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3286 {
3287 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3288 		return false;
3289 
3290 	if (is_data_mapping(flags) &&
3291 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3292 		/* Workaround for Valgrind */
3293 		if (rlimit(RLIMIT_DATA) == 0 &&
3294 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3295 			return true;
3296 
3297 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3298 			     current->comm, current->pid,
3299 			     (mm->data_vm + npages) << PAGE_SHIFT,
3300 			     rlimit(RLIMIT_DATA),
3301 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3302 
3303 		if (!ignore_rlimit_data)
3304 			return false;
3305 	}
3306 
3307 	return true;
3308 }
3309 
3310 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3311 {
3312 	mm->total_vm += npages;
3313 
3314 	if (is_exec_mapping(flags))
3315 		mm->exec_vm += npages;
3316 	else if (is_stack_mapping(flags))
3317 		mm->stack_vm += npages;
3318 	else if (is_data_mapping(flags))
3319 		mm->data_vm += npages;
3320 }
3321 
3322 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3323 
3324 /*
3325  * Having a close hook prevents vma merging regardless of flags.
3326  */
3327 static void special_mapping_close(struct vm_area_struct *vma)
3328 {
3329 }
3330 
3331 static const char *special_mapping_name(struct vm_area_struct *vma)
3332 {
3333 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3334 }
3335 
3336 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3337 {
3338 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3339 
3340 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3341 		return -EFAULT;
3342 
3343 	if (sm->mremap)
3344 		return sm->mremap(sm, new_vma);
3345 
3346 	return 0;
3347 }
3348 
3349 static const struct vm_operations_struct special_mapping_vmops = {
3350 	.close = special_mapping_close,
3351 	.fault = special_mapping_fault,
3352 	.mremap = special_mapping_mremap,
3353 	.name = special_mapping_name,
3354 };
3355 
3356 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3357 	.close = special_mapping_close,
3358 	.fault = special_mapping_fault,
3359 };
3360 
3361 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3362 {
3363 	struct vm_area_struct *vma = vmf->vma;
3364 	pgoff_t pgoff;
3365 	struct page **pages;
3366 
3367 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3368 		pages = vma->vm_private_data;
3369 	} else {
3370 		struct vm_special_mapping *sm = vma->vm_private_data;
3371 
3372 		if (sm->fault)
3373 			return sm->fault(sm, vmf->vma, vmf);
3374 
3375 		pages = sm->pages;
3376 	}
3377 
3378 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3379 		pgoff--;
3380 
3381 	if (*pages) {
3382 		struct page *page = *pages;
3383 		get_page(page);
3384 		vmf->page = page;
3385 		return 0;
3386 	}
3387 
3388 	return VM_FAULT_SIGBUS;
3389 }
3390 
3391 static struct vm_area_struct *__install_special_mapping(
3392 	struct mm_struct *mm,
3393 	unsigned long addr, unsigned long len,
3394 	unsigned long vm_flags, void *priv,
3395 	const struct vm_operations_struct *ops)
3396 {
3397 	int ret;
3398 	struct vm_area_struct *vma;
3399 
3400 	vma = vm_area_alloc(mm);
3401 	if (unlikely(vma == NULL))
3402 		return ERR_PTR(-ENOMEM);
3403 
3404 	vma->vm_start = addr;
3405 	vma->vm_end = addr + len;
3406 
3407 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3408 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3409 
3410 	vma->vm_ops = ops;
3411 	vma->vm_private_data = priv;
3412 
3413 	ret = insert_vm_struct(mm, vma);
3414 	if (ret)
3415 		goto out;
3416 
3417 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3418 
3419 	perf_event_mmap(vma);
3420 
3421 	return vma;
3422 
3423 out:
3424 	vm_area_free(vma);
3425 	return ERR_PTR(ret);
3426 }
3427 
3428 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3429 	const struct vm_special_mapping *sm)
3430 {
3431 	return vma->vm_private_data == sm &&
3432 		(vma->vm_ops == &special_mapping_vmops ||
3433 		 vma->vm_ops == &legacy_special_mapping_vmops);
3434 }
3435 
3436 /*
3437  * Called with mm->mmap_sem held for writing.
3438  * Insert a new vma covering the given region, with the given flags.
3439  * Its pages are supplied by the given array of struct page *.
3440  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3441  * The region past the last page supplied will always produce SIGBUS.
3442  * The array pointer and the pages it points to are assumed to stay alive
3443  * for as long as this mapping might exist.
3444  */
3445 struct vm_area_struct *_install_special_mapping(
3446 	struct mm_struct *mm,
3447 	unsigned long addr, unsigned long len,
3448 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3449 {
3450 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3451 					&special_mapping_vmops);
3452 }
3453 
3454 int install_special_mapping(struct mm_struct *mm,
3455 			    unsigned long addr, unsigned long len,
3456 			    unsigned long vm_flags, struct page **pages)
3457 {
3458 	struct vm_area_struct *vma = __install_special_mapping(
3459 		mm, addr, len, vm_flags, (void *)pages,
3460 		&legacy_special_mapping_vmops);
3461 
3462 	return PTR_ERR_OR_ZERO(vma);
3463 }
3464 
3465 static DEFINE_MUTEX(mm_all_locks_mutex);
3466 
3467 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3468 {
3469 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3470 		/*
3471 		 * The LSB of head.next can't change from under us
3472 		 * because we hold the mm_all_locks_mutex.
3473 		 */
3474 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3475 		/*
3476 		 * We can safely modify head.next after taking the
3477 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3478 		 * the same anon_vma we won't take it again.
3479 		 *
3480 		 * No need of atomic instructions here, head.next
3481 		 * can't change from under us thanks to the
3482 		 * anon_vma->root->rwsem.
3483 		 */
3484 		if (__test_and_set_bit(0, (unsigned long *)
3485 				       &anon_vma->root->rb_root.rb_root.rb_node))
3486 			BUG();
3487 	}
3488 }
3489 
3490 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3491 {
3492 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3493 		/*
3494 		 * AS_MM_ALL_LOCKS can't change from under us because
3495 		 * we hold the mm_all_locks_mutex.
3496 		 *
3497 		 * Operations on ->flags have to be atomic because
3498 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3499 		 * mm_all_locks_mutex, there may be other cpus
3500 		 * changing other bitflags in parallel to us.
3501 		 */
3502 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3503 			BUG();
3504 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3505 	}
3506 }
3507 
3508 /*
3509  * This operation locks against the VM for all pte/vma/mm related
3510  * operations that could ever happen on a certain mm. This includes
3511  * vmtruncate, try_to_unmap, and all page faults.
3512  *
3513  * The caller must take the mmap_sem in write mode before calling
3514  * mm_take_all_locks(). The caller isn't allowed to release the
3515  * mmap_sem until mm_drop_all_locks() returns.
3516  *
3517  * mmap_sem in write mode is required in order to block all operations
3518  * that could modify pagetables and free pages without need of
3519  * altering the vma layout. It's also needed in write mode to avoid new
3520  * anon_vmas to be associated with existing vmas.
3521  *
3522  * A single task can't take more than one mm_take_all_locks() in a row
3523  * or it would deadlock.
3524  *
3525  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3526  * mapping->flags avoid to take the same lock twice, if more than one
3527  * vma in this mm is backed by the same anon_vma or address_space.
3528  *
3529  * We take locks in following order, accordingly to comment at beginning
3530  * of mm/rmap.c:
3531  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3532  *     hugetlb mapping);
3533  *   - all i_mmap_rwsem locks;
3534  *   - all anon_vma->rwseml
3535  *
3536  * We can take all locks within these types randomly because the VM code
3537  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3538  * mm_all_locks_mutex.
3539  *
3540  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3541  * that may have to take thousand of locks.
3542  *
3543  * mm_take_all_locks() can fail if it's interrupted by signals.
3544  */
3545 int mm_take_all_locks(struct mm_struct *mm)
3546 {
3547 	struct vm_area_struct *vma;
3548 	struct anon_vma_chain *avc;
3549 
3550 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3551 
3552 	mutex_lock(&mm_all_locks_mutex);
3553 
3554 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3555 		if (signal_pending(current))
3556 			goto out_unlock;
3557 		if (vma->vm_file && vma->vm_file->f_mapping &&
3558 				is_vm_hugetlb_page(vma))
3559 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3560 	}
3561 
3562 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3563 		if (signal_pending(current))
3564 			goto out_unlock;
3565 		if (vma->vm_file && vma->vm_file->f_mapping &&
3566 				!is_vm_hugetlb_page(vma))
3567 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3568 	}
3569 
3570 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3571 		if (signal_pending(current))
3572 			goto out_unlock;
3573 		if (vma->anon_vma)
3574 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3575 				vm_lock_anon_vma(mm, avc->anon_vma);
3576 	}
3577 
3578 	return 0;
3579 
3580 out_unlock:
3581 	mm_drop_all_locks(mm);
3582 	return -EINTR;
3583 }
3584 
3585 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3586 {
3587 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3588 		/*
3589 		 * The LSB of head.next can't change to 0 from under
3590 		 * us because we hold the mm_all_locks_mutex.
3591 		 *
3592 		 * We must however clear the bitflag before unlocking
3593 		 * the vma so the users using the anon_vma->rb_root will
3594 		 * never see our bitflag.
3595 		 *
3596 		 * No need of atomic instructions here, head.next
3597 		 * can't change from under us until we release the
3598 		 * anon_vma->root->rwsem.
3599 		 */
3600 		if (!__test_and_clear_bit(0, (unsigned long *)
3601 					  &anon_vma->root->rb_root.rb_root.rb_node))
3602 			BUG();
3603 		anon_vma_unlock_write(anon_vma);
3604 	}
3605 }
3606 
3607 static void vm_unlock_mapping(struct address_space *mapping)
3608 {
3609 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3610 		/*
3611 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3612 		 * because we hold the mm_all_locks_mutex.
3613 		 */
3614 		i_mmap_unlock_write(mapping);
3615 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3616 					&mapping->flags))
3617 			BUG();
3618 	}
3619 }
3620 
3621 /*
3622  * The mmap_sem cannot be released by the caller until
3623  * mm_drop_all_locks() returns.
3624  */
3625 void mm_drop_all_locks(struct mm_struct *mm)
3626 {
3627 	struct vm_area_struct *vma;
3628 	struct anon_vma_chain *avc;
3629 
3630 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3631 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3632 
3633 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3634 		if (vma->anon_vma)
3635 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3636 				vm_unlock_anon_vma(avc->anon_vma);
3637 		if (vma->vm_file && vma->vm_file->f_mapping)
3638 			vm_unlock_mapping(vma->vm_file->f_mapping);
3639 	}
3640 
3641 	mutex_unlock(&mm_all_locks_mutex);
3642 }
3643 
3644 /*
3645  * initialise the percpu counter for VM
3646  */
3647 void __init mmap_init(void)
3648 {
3649 	int ret;
3650 
3651 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3652 	VM_BUG_ON(ret);
3653 }
3654 
3655 /*
3656  * Initialise sysctl_user_reserve_kbytes.
3657  *
3658  * This is intended to prevent a user from starting a single memory hogging
3659  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3660  * mode.
3661  *
3662  * The default value is min(3% of free memory, 128MB)
3663  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3664  */
3665 static int init_user_reserve(void)
3666 {
3667 	unsigned long free_kbytes;
3668 
3669 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3670 
3671 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3672 	return 0;
3673 }
3674 subsys_initcall(init_user_reserve);
3675 
3676 /*
3677  * Initialise sysctl_admin_reserve_kbytes.
3678  *
3679  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3680  * to log in and kill a memory hogging process.
3681  *
3682  * Systems with more than 256MB will reserve 8MB, enough to recover
3683  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3684  * only reserve 3% of free pages by default.
3685  */
3686 static int init_admin_reserve(void)
3687 {
3688 	unsigned long free_kbytes;
3689 
3690 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3691 
3692 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3693 	return 0;
3694 }
3695 subsys_initcall(init_admin_reserve);
3696 
3697 /*
3698  * Reinititalise user and admin reserves if memory is added or removed.
3699  *
3700  * The default user reserve max is 128MB, and the default max for the
3701  * admin reserve is 8MB. These are usually, but not always, enough to
3702  * enable recovery from a memory hogging process using login/sshd, a shell,
3703  * and tools like top. It may make sense to increase or even disable the
3704  * reserve depending on the existence of swap or variations in the recovery
3705  * tools. So, the admin may have changed them.
3706  *
3707  * If memory is added and the reserves have been eliminated or increased above
3708  * the default max, then we'll trust the admin.
3709  *
3710  * If memory is removed and there isn't enough free memory, then we
3711  * need to reset the reserves.
3712  *
3713  * Otherwise keep the reserve set by the admin.
3714  */
3715 static int reserve_mem_notifier(struct notifier_block *nb,
3716 			     unsigned long action, void *data)
3717 {
3718 	unsigned long tmp, free_kbytes;
3719 
3720 	switch (action) {
3721 	case MEM_ONLINE:
3722 		/* Default max is 128MB. Leave alone if modified by operator. */
3723 		tmp = sysctl_user_reserve_kbytes;
3724 		if (0 < tmp && tmp < (1UL << 17))
3725 			init_user_reserve();
3726 
3727 		/* Default max is 8MB.  Leave alone if modified by operator. */
3728 		tmp = sysctl_admin_reserve_kbytes;
3729 		if (0 < tmp && tmp < (1UL << 13))
3730 			init_admin_reserve();
3731 
3732 		break;
3733 	case MEM_OFFLINE:
3734 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3735 
3736 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3737 			init_user_reserve();
3738 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3739 				sysctl_user_reserve_kbytes);
3740 		}
3741 
3742 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3743 			init_admin_reserve();
3744 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3745 				sysctl_admin_reserve_kbytes);
3746 		}
3747 		break;
3748 	default:
3749 		break;
3750 	}
3751 	return NOTIFY_OK;
3752 }
3753 
3754 static struct notifier_block reserve_mem_nb = {
3755 	.notifier_call = reserve_mem_notifier,
3756 };
3757 
3758 static int __meminit init_reserve_notifier(void)
3759 {
3760 	if (register_hotmemory_notifier(&reserve_mem_nb))
3761 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3762 
3763 	return 0;
3764 }
3765 subsys_initcall(init_reserve_notifier);
3766