1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 struct vm_area_struct *next, unsigned long start, 82 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 83 84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 85 { 86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 87 } 88 89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 90 void vma_set_page_prot(struct vm_area_struct *vma) 91 { 92 unsigned long vm_flags = vma->vm_flags; 93 pgprot_t vm_page_prot; 94 95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 96 if (vma_wants_writenotify(vma, vm_page_prot)) { 97 vm_flags &= ~VM_SHARED; 98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 99 } 100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 102 } 103 104 /* 105 * Requires inode->i_mapping->i_mmap_rwsem 106 */ 107 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 108 struct file *file, struct address_space *mapping) 109 { 110 if (vma->vm_flags & VM_SHARED) 111 mapping_unmap_writable(mapping); 112 113 flush_dcache_mmap_lock(mapping); 114 vma_interval_tree_remove(vma, &mapping->i_mmap); 115 flush_dcache_mmap_unlock(mapping); 116 } 117 118 /* 119 * Unlink a file-based vm structure from its interval tree, to hide 120 * vma from rmap and vmtruncate before freeing its page tables. 121 */ 122 void unlink_file_vma(struct vm_area_struct *vma) 123 { 124 struct file *file = vma->vm_file; 125 126 if (file) { 127 struct address_space *mapping = file->f_mapping; 128 i_mmap_lock_write(mapping); 129 __remove_shared_vm_struct(vma, file, mapping); 130 i_mmap_unlock_write(mapping); 131 } 132 } 133 134 /* 135 * Close a vm structure and free it. 136 */ 137 static void remove_vma(struct vm_area_struct *vma, bool unreachable) 138 { 139 might_sleep(); 140 if (vma->vm_ops && vma->vm_ops->close) 141 vma->vm_ops->close(vma); 142 if (vma->vm_file) 143 fput(vma->vm_file); 144 mpol_put(vma_policy(vma)); 145 if (unreachable) 146 __vm_area_free(vma); 147 else 148 vm_area_free(vma); 149 } 150 151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 152 unsigned long min) 153 { 154 return mas_prev(&vmi->mas, min); 155 } 156 157 /* 158 * check_brk_limits() - Use platform specific check of range & verify mlock 159 * limits. 160 * @addr: The address to check 161 * @len: The size of increase. 162 * 163 * Return: 0 on success. 164 */ 165 static int check_brk_limits(unsigned long addr, unsigned long len) 166 { 167 unsigned long mapped_addr; 168 169 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 170 if (IS_ERR_VALUE(mapped_addr)) 171 return mapped_addr; 172 173 return mlock_future_ok(current->mm, current->mm->def_flags, len) 174 ? 0 : -EAGAIN; 175 } 176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 177 unsigned long addr, unsigned long request, unsigned long flags); 178 SYSCALL_DEFINE1(brk, unsigned long, brk) 179 { 180 unsigned long newbrk, oldbrk, origbrk; 181 struct mm_struct *mm = current->mm; 182 struct vm_area_struct *brkvma, *next = NULL; 183 unsigned long min_brk; 184 bool populate = false; 185 LIST_HEAD(uf); 186 struct vma_iterator vmi; 187 188 if (mmap_write_lock_killable(mm)) 189 return -EINTR; 190 191 origbrk = mm->brk; 192 193 #ifdef CONFIG_COMPAT_BRK 194 /* 195 * CONFIG_COMPAT_BRK can still be overridden by setting 196 * randomize_va_space to 2, which will still cause mm->start_brk 197 * to be arbitrarily shifted 198 */ 199 if (current->brk_randomized) 200 min_brk = mm->start_brk; 201 else 202 min_brk = mm->end_data; 203 #else 204 min_brk = mm->start_brk; 205 #endif 206 if (brk < min_brk) 207 goto out; 208 209 /* 210 * Check against rlimit here. If this check is done later after the test 211 * of oldbrk with newbrk then it can escape the test and let the data 212 * segment grow beyond its set limit the in case where the limit is 213 * not page aligned -Ram Gupta 214 */ 215 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 216 mm->end_data, mm->start_data)) 217 goto out; 218 219 newbrk = PAGE_ALIGN(brk); 220 oldbrk = PAGE_ALIGN(mm->brk); 221 if (oldbrk == newbrk) { 222 mm->brk = brk; 223 goto success; 224 } 225 226 /* Always allow shrinking brk. */ 227 if (brk <= mm->brk) { 228 /* Search one past newbrk */ 229 vma_iter_init(&vmi, mm, newbrk); 230 brkvma = vma_find(&vmi, oldbrk); 231 if (!brkvma || brkvma->vm_start >= oldbrk) 232 goto out; /* mapping intersects with an existing non-brk vma. */ 233 /* 234 * mm->brk must be protected by write mmap_lock. 235 * do_vma_munmap() will drop the lock on success, so update it 236 * before calling do_vma_munmap(). 237 */ 238 mm->brk = brk; 239 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true)) 240 goto out; 241 242 goto success_unlocked; 243 } 244 245 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 246 goto out; 247 248 /* 249 * Only check if the next VMA is within the stack_guard_gap of the 250 * expansion area 251 */ 252 vma_iter_init(&vmi, mm, oldbrk); 253 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 254 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 255 goto out; 256 257 brkvma = vma_prev_limit(&vmi, mm->start_brk); 258 /* Ok, looks good - let it rip. */ 259 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 260 goto out; 261 262 mm->brk = brk; 263 if (mm->def_flags & VM_LOCKED) 264 populate = true; 265 266 success: 267 mmap_write_unlock(mm); 268 success_unlocked: 269 userfaultfd_unmap_complete(mm, &uf); 270 if (populate) 271 mm_populate(oldbrk, newbrk - oldbrk); 272 return brk; 273 274 out: 275 mm->brk = origbrk; 276 mmap_write_unlock(mm); 277 return origbrk; 278 } 279 280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 281 static void validate_mm(struct mm_struct *mm) 282 { 283 int bug = 0; 284 int i = 0; 285 struct vm_area_struct *vma; 286 VMA_ITERATOR(vmi, mm, 0); 287 288 mt_validate(&mm->mm_mt); 289 for_each_vma(vmi, vma) { 290 #ifdef CONFIG_DEBUG_VM_RB 291 struct anon_vma *anon_vma = vma->anon_vma; 292 struct anon_vma_chain *avc; 293 #endif 294 unsigned long vmi_start, vmi_end; 295 bool warn = 0; 296 297 vmi_start = vma_iter_addr(&vmi); 298 vmi_end = vma_iter_end(&vmi); 299 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 300 warn = 1; 301 302 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 303 warn = 1; 304 305 if (warn) { 306 pr_emerg("issue in %s\n", current->comm); 307 dump_stack(); 308 dump_vma(vma); 309 pr_emerg("tree range: %px start %lx end %lx\n", vma, 310 vmi_start, vmi_end - 1); 311 vma_iter_dump_tree(&vmi); 312 } 313 314 #ifdef CONFIG_DEBUG_VM_RB 315 if (anon_vma) { 316 anon_vma_lock_read(anon_vma); 317 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 318 anon_vma_interval_tree_verify(avc); 319 anon_vma_unlock_read(anon_vma); 320 } 321 #endif 322 i++; 323 } 324 if (i != mm->map_count) { 325 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 326 bug = 1; 327 } 328 VM_BUG_ON_MM(bug, mm); 329 } 330 331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 332 #define validate_mm(mm) do { } while (0) 333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 334 335 /* 336 * vma has some anon_vma assigned, and is already inserted on that 337 * anon_vma's interval trees. 338 * 339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 340 * vma must be removed from the anon_vma's interval trees using 341 * anon_vma_interval_tree_pre_update_vma(). 342 * 343 * After the update, the vma will be reinserted using 344 * anon_vma_interval_tree_post_update_vma(). 345 * 346 * The entire update must be protected by exclusive mmap_lock and by 347 * the root anon_vma's mutex. 348 */ 349 static inline void 350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 351 { 352 struct anon_vma_chain *avc; 353 354 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 355 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 356 } 357 358 static inline void 359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 360 { 361 struct anon_vma_chain *avc; 362 363 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 364 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 365 } 366 367 static unsigned long count_vma_pages_range(struct mm_struct *mm, 368 unsigned long addr, unsigned long end) 369 { 370 VMA_ITERATOR(vmi, mm, addr); 371 struct vm_area_struct *vma; 372 unsigned long nr_pages = 0; 373 374 for_each_vma_range(vmi, vma, end) { 375 unsigned long vm_start = max(addr, vma->vm_start); 376 unsigned long vm_end = min(end, vma->vm_end); 377 378 nr_pages += PHYS_PFN(vm_end - vm_start); 379 } 380 381 return nr_pages; 382 } 383 384 static void __vma_link_file(struct vm_area_struct *vma, 385 struct address_space *mapping) 386 { 387 if (vma->vm_flags & VM_SHARED) 388 mapping_allow_writable(mapping); 389 390 flush_dcache_mmap_lock(mapping); 391 vma_interval_tree_insert(vma, &mapping->i_mmap); 392 flush_dcache_mmap_unlock(mapping); 393 } 394 395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 396 { 397 VMA_ITERATOR(vmi, mm, 0); 398 struct address_space *mapping = NULL; 399 400 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 401 if (vma_iter_prealloc(&vmi, vma)) 402 return -ENOMEM; 403 404 vma_start_write(vma); 405 406 vma_iter_store(&vmi, vma); 407 408 if (vma->vm_file) { 409 mapping = vma->vm_file->f_mapping; 410 i_mmap_lock_write(mapping); 411 __vma_link_file(vma, mapping); 412 i_mmap_unlock_write(mapping); 413 } 414 415 mm->map_count++; 416 validate_mm(mm); 417 return 0; 418 } 419 420 /* 421 * init_multi_vma_prep() - Initializer for struct vma_prepare 422 * @vp: The vma_prepare struct 423 * @vma: The vma that will be altered once locked 424 * @next: The next vma if it is to be adjusted 425 * @remove: The first vma to be removed 426 * @remove2: The second vma to be removed 427 */ 428 static inline void init_multi_vma_prep(struct vma_prepare *vp, 429 struct vm_area_struct *vma, struct vm_area_struct *next, 430 struct vm_area_struct *remove, struct vm_area_struct *remove2) 431 { 432 memset(vp, 0, sizeof(struct vma_prepare)); 433 vp->vma = vma; 434 vp->anon_vma = vma->anon_vma; 435 vp->remove = remove; 436 vp->remove2 = remove2; 437 vp->adj_next = next; 438 if (!vp->anon_vma && next) 439 vp->anon_vma = next->anon_vma; 440 441 vp->file = vma->vm_file; 442 if (vp->file) 443 vp->mapping = vma->vm_file->f_mapping; 444 445 } 446 447 /* 448 * init_vma_prep() - Initializer wrapper for vma_prepare struct 449 * @vp: The vma_prepare struct 450 * @vma: The vma that will be altered once locked 451 */ 452 static inline void init_vma_prep(struct vma_prepare *vp, 453 struct vm_area_struct *vma) 454 { 455 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 456 } 457 458 459 /* 460 * vma_prepare() - Helper function for handling locking VMAs prior to altering 461 * @vp: The initialized vma_prepare struct 462 */ 463 static inline void vma_prepare(struct vma_prepare *vp) 464 { 465 if (vp->file) { 466 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 467 468 if (vp->adj_next) 469 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 470 vp->adj_next->vm_end); 471 472 i_mmap_lock_write(vp->mapping); 473 if (vp->insert && vp->insert->vm_file) { 474 /* 475 * Put into interval tree now, so instantiated pages 476 * are visible to arm/parisc __flush_dcache_page 477 * throughout; but we cannot insert into address 478 * space until vma start or end is updated. 479 */ 480 __vma_link_file(vp->insert, 481 vp->insert->vm_file->f_mapping); 482 } 483 } 484 485 if (vp->anon_vma) { 486 anon_vma_lock_write(vp->anon_vma); 487 anon_vma_interval_tree_pre_update_vma(vp->vma); 488 if (vp->adj_next) 489 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 490 } 491 492 if (vp->file) { 493 flush_dcache_mmap_lock(vp->mapping); 494 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 495 if (vp->adj_next) 496 vma_interval_tree_remove(vp->adj_next, 497 &vp->mapping->i_mmap); 498 } 499 500 } 501 502 /* 503 * vma_complete- Helper function for handling the unlocking after altering VMAs, 504 * or for inserting a VMA. 505 * 506 * @vp: The vma_prepare struct 507 * @vmi: The vma iterator 508 * @mm: The mm_struct 509 */ 510 static inline void vma_complete(struct vma_prepare *vp, 511 struct vma_iterator *vmi, struct mm_struct *mm) 512 { 513 if (vp->file) { 514 if (vp->adj_next) 515 vma_interval_tree_insert(vp->adj_next, 516 &vp->mapping->i_mmap); 517 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 518 flush_dcache_mmap_unlock(vp->mapping); 519 } 520 521 if (vp->remove && vp->file) { 522 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping); 523 if (vp->remove2) 524 __remove_shared_vm_struct(vp->remove2, vp->file, 525 vp->mapping); 526 } else if (vp->insert) { 527 /* 528 * split_vma has split insert from vma, and needs 529 * us to insert it before dropping the locks 530 * (it may either follow vma or precede it). 531 */ 532 vma_iter_store(vmi, vp->insert); 533 mm->map_count++; 534 } 535 536 if (vp->anon_vma) { 537 anon_vma_interval_tree_post_update_vma(vp->vma); 538 if (vp->adj_next) 539 anon_vma_interval_tree_post_update_vma(vp->adj_next); 540 anon_vma_unlock_write(vp->anon_vma); 541 } 542 543 if (vp->file) { 544 i_mmap_unlock_write(vp->mapping); 545 uprobe_mmap(vp->vma); 546 547 if (vp->adj_next) 548 uprobe_mmap(vp->adj_next); 549 } 550 551 if (vp->remove) { 552 again: 553 vma_mark_detached(vp->remove, true); 554 if (vp->file) { 555 uprobe_munmap(vp->remove, vp->remove->vm_start, 556 vp->remove->vm_end); 557 fput(vp->file); 558 } 559 if (vp->remove->anon_vma) 560 anon_vma_merge(vp->vma, vp->remove); 561 mm->map_count--; 562 mpol_put(vma_policy(vp->remove)); 563 if (!vp->remove2) 564 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 565 vm_area_free(vp->remove); 566 567 /* 568 * In mprotect's case 6 (see comments on vma_merge), 569 * we are removing both mid and next vmas 570 */ 571 if (vp->remove2) { 572 vp->remove = vp->remove2; 573 vp->remove2 = NULL; 574 goto again; 575 } 576 } 577 if (vp->insert && vp->file) 578 uprobe_mmap(vp->insert); 579 validate_mm(mm); 580 } 581 582 /* 583 * dup_anon_vma() - Helper function to duplicate anon_vma 584 * @dst: The destination VMA 585 * @src: The source VMA 586 * @dup: Pointer to the destination VMA when successful. 587 * 588 * Returns: 0 on success. 589 */ 590 static inline int dup_anon_vma(struct vm_area_struct *dst, 591 struct vm_area_struct *src, struct vm_area_struct **dup) 592 { 593 /* 594 * Easily overlooked: when mprotect shifts the boundary, make sure the 595 * expanding vma has anon_vma set if the shrinking vma had, to cover any 596 * anon pages imported. 597 */ 598 if (src->anon_vma && !dst->anon_vma) { 599 int ret; 600 601 vma_assert_write_locked(dst); 602 dst->anon_vma = src->anon_vma; 603 ret = anon_vma_clone(dst, src); 604 if (ret) 605 return ret; 606 607 *dup = dst; 608 } 609 610 return 0; 611 } 612 613 /* 614 * vma_expand - Expand an existing VMA 615 * 616 * @vmi: The vma iterator 617 * @vma: The vma to expand 618 * @start: The start of the vma 619 * @end: The exclusive end of the vma 620 * @pgoff: The page offset of vma 621 * @next: The current of next vma. 622 * 623 * Expand @vma to @start and @end. Can expand off the start and end. Will 624 * expand over @next if it's different from @vma and @end == @next->vm_end. 625 * Checking if the @vma can expand and merge with @next needs to be handled by 626 * the caller. 627 * 628 * Returns: 0 on success 629 */ 630 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 631 unsigned long start, unsigned long end, pgoff_t pgoff, 632 struct vm_area_struct *next) 633 { 634 struct vm_area_struct *anon_dup = NULL; 635 bool remove_next = false; 636 struct vma_prepare vp; 637 638 vma_start_write(vma); 639 if (next && (vma != next) && (end == next->vm_end)) { 640 int ret; 641 642 remove_next = true; 643 vma_start_write(next); 644 ret = dup_anon_vma(vma, next, &anon_dup); 645 if (ret) 646 return ret; 647 } 648 649 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 650 /* Not merging but overwriting any part of next is not handled. */ 651 VM_WARN_ON(next && !vp.remove && 652 next != vma && end > next->vm_start); 653 /* Only handles expanding */ 654 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 655 656 /* Note: vma iterator must be pointing to 'start' */ 657 vma_iter_config(vmi, start, end); 658 if (vma_iter_prealloc(vmi, vma)) 659 goto nomem; 660 661 vma_prepare(&vp); 662 vma_adjust_trans_huge(vma, start, end, 0); 663 vma->vm_start = start; 664 vma->vm_end = end; 665 vma->vm_pgoff = pgoff; 666 vma_iter_store(vmi, vma); 667 668 vma_complete(&vp, vmi, vma->vm_mm); 669 return 0; 670 671 nomem: 672 if (anon_dup) 673 unlink_anon_vmas(anon_dup); 674 return -ENOMEM; 675 } 676 677 /* 678 * vma_shrink() - Reduce an existing VMAs memory area 679 * @vmi: The vma iterator 680 * @vma: The VMA to modify 681 * @start: The new start 682 * @end: The new end 683 * 684 * Returns: 0 on success, -ENOMEM otherwise 685 */ 686 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 687 unsigned long start, unsigned long end, pgoff_t pgoff) 688 { 689 struct vma_prepare vp; 690 691 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 692 693 if (vma->vm_start < start) 694 vma_iter_config(vmi, vma->vm_start, start); 695 else 696 vma_iter_config(vmi, end, vma->vm_end); 697 698 if (vma_iter_prealloc(vmi, NULL)) 699 return -ENOMEM; 700 701 vma_start_write(vma); 702 703 init_vma_prep(&vp, vma); 704 vma_prepare(&vp); 705 vma_adjust_trans_huge(vma, start, end, 0); 706 707 vma_iter_clear(vmi); 708 vma->vm_start = start; 709 vma->vm_end = end; 710 vma->vm_pgoff = pgoff; 711 vma_complete(&vp, vmi, vma->vm_mm); 712 return 0; 713 } 714 715 /* 716 * If the vma has a ->close operation then the driver probably needs to release 717 * per-vma resources, so we don't attempt to merge those if the caller indicates 718 * the current vma may be removed as part of the merge. 719 */ 720 static inline bool is_mergeable_vma(struct vm_area_struct *vma, 721 struct file *file, unsigned long vm_flags, 722 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 723 struct anon_vma_name *anon_name, bool may_remove_vma) 724 { 725 /* 726 * VM_SOFTDIRTY should not prevent from VMA merging, if we 727 * match the flags but dirty bit -- the caller should mark 728 * merged VMA as dirty. If dirty bit won't be excluded from 729 * comparison, we increase pressure on the memory system forcing 730 * the kernel to generate new VMAs when old one could be 731 * extended instead. 732 */ 733 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 734 return false; 735 if (vma->vm_file != file) 736 return false; 737 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 738 return false; 739 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 740 return false; 741 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 742 return false; 743 return true; 744 } 745 746 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 747 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 748 { 749 /* 750 * The list_is_singular() test is to avoid merging VMA cloned from 751 * parents. This can improve scalability caused by anon_vma lock. 752 */ 753 if ((!anon_vma1 || !anon_vma2) && (!vma || 754 list_is_singular(&vma->anon_vma_chain))) 755 return true; 756 return anon_vma1 == anon_vma2; 757 } 758 759 /* 760 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 761 * in front of (at a lower virtual address and file offset than) the vma. 762 * 763 * We cannot merge two vmas if they have differently assigned (non-NULL) 764 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 765 * 766 * We don't check here for the merged mmap wrapping around the end of pagecache 767 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 768 * wrap, nor mmaps which cover the final page at index -1UL. 769 * 770 * We assume the vma may be removed as part of the merge. 771 */ 772 static bool 773 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 774 struct anon_vma *anon_vma, struct file *file, 775 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 776 struct anon_vma_name *anon_name) 777 { 778 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 779 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 780 if (vma->vm_pgoff == vm_pgoff) 781 return true; 782 } 783 return false; 784 } 785 786 /* 787 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 788 * beyond (at a higher virtual address and file offset than) the vma. 789 * 790 * We cannot merge two vmas if they have differently assigned (non-NULL) 791 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 792 * 793 * We assume that vma is not removed as part of the merge. 794 */ 795 static bool 796 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 797 struct anon_vma *anon_vma, struct file *file, 798 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 799 struct anon_vma_name *anon_name) 800 { 801 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 802 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 803 pgoff_t vm_pglen; 804 vm_pglen = vma_pages(vma); 805 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 806 return true; 807 } 808 return false; 809 } 810 811 /* 812 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 813 * figure out whether that can be merged with its predecessor or its 814 * successor. Or both (it neatly fills a hole). 815 * 816 * In most cases - when called for mmap, brk or mremap - [addr,end) is 817 * certain not to be mapped by the time vma_merge is called; but when 818 * called for mprotect, it is certain to be already mapped (either at 819 * an offset within prev, or at the start of next), and the flags of 820 * this area are about to be changed to vm_flags - and the no-change 821 * case has already been eliminated. 822 * 823 * The following mprotect cases have to be considered, where **** is 824 * the area passed down from mprotect_fixup, never extending beyond one 825 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 826 * at the same address as **** and is of the same or larger span, and 827 * NNNN the next vma after ****: 828 * 829 * **** **** **** 830 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 831 * cannot merge might become might become 832 * PPNNNNNNNNNN PPPPPPPPPPCC 833 * mmap, brk or case 4 below case 5 below 834 * mremap move: 835 * **** **** 836 * PPPP NNNN PPPPCCCCNNNN 837 * might become might become 838 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 839 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 840 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 841 * 842 * It is important for case 8 that the vma CCCC overlapping the 843 * region **** is never going to extended over NNNN. Instead NNNN must 844 * be extended in region **** and CCCC must be removed. This way in 845 * all cases where vma_merge succeeds, the moment vma_merge drops the 846 * rmap_locks, the properties of the merged vma will be already 847 * correct for the whole merged range. Some of those properties like 848 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 849 * be correct for the whole merged range immediately after the 850 * rmap_locks are released. Otherwise if NNNN would be removed and 851 * CCCC would be extended over the NNNN range, remove_migration_ptes 852 * or other rmap walkers (if working on addresses beyond the "end" 853 * parameter) may establish ptes with the wrong permissions of CCCC 854 * instead of the right permissions of NNNN. 855 * 856 * In the code below: 857 * PPPP is represented by *prev 858 * CCCC is represented by *curr or not represented at all (NULL) 859 * NNNN is represented by *next or not represented at all (NULL) 860 * **** is not represented - it will be merged and the vma containing the 861 * area is returned, or the function will return NULL 862 */ 863 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm, 864 struct vm_area_struct *prev, unsigned long addr, 865 unsigned long end, unsigned long vm_flags, 866 struct anon_vma *anon_vma, struct file *file, 867 pgoff_t pgoff, struct mempolicy *policy, 868 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 869 struct anon_vma_name *anon_name) 870 { 871 struct vm_area_struct *curr, *next, *res; 872 struct vm_area_struct *vma, *adjust, *remove, *remove2; 873 struct vm_area_struct *anon_dup = NULL; 874 struct vma_prepare vp; 875 pgoff_t vma_pgoff; 876 int err = 0; 877 bool merge_prev = false; 878 bool merge_next = false; 879 bool vma_expanded = false; 880 unsigned long vma_start = addr; 881 unsigned long vma_end = end; 882 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 883 long adj_start = 0; 884 885 /* 886 * We later require that vma->vm_flags == vm_flags, 887 * so this tests vma->vm_flags & VM_SPECIAL, too. 888 */ 889 if (vm_flags & VM_SPECIAL) 890 return NULL; 891 892 /* Does the input range span an existing VMA? (cases 5 - 8) */ 893 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 894 895 if (!curr || /* cases 1 - 4 */ 896 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 897 next = vma_lookup(mm, end); 898 else 899 next = NULL; /* case 5 */ 900 901 if (prev) { 902 vma_start = prev->vm_start; 903 vma_pgoff = prev->vm_pgoff; 904 905 /* Can we merge the predecessor? */ 906 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 907 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 908 pgoff, vm_userfaultfd_ctx, anon_name)) { 909 merge_prev = true; 910 vma_prev(vmi); 911 } 912 } 913 914 /* Can we merge the successor? */ 915 if (next && mpol_equal(policy, vma_policy(next)) && 916 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 917 vm_userfaultfd_ctx, anon_name)) { 918 merge_next = true; 919 } 920 921 /* Verify some invariant that must be enforced by the caller. */ 922 VM_WARN_ON(prev && addr <= prev->vm_start); 923 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 924 VM_WARN_ON(addr >= end); 925 926 if (!merge_prev && !merge_next) 927 return NULL; /* Not mergeable. */ 928 929 if (merge_prev) 930 vma_start_write(prev); 931 932 res = vma = prev; 933 remove = remove2 = adjust = NULL; 934 935 /* Can we merge both the predecessor and the successor? */ 936 if (merge_prev && merge_next && 937 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 938 vma_start_write(next); 939 remove = next; /* case 1 */ 940 vma_end = next->vm_end; 941 err = dup_anon_vma(prev, next, &anon_dup); 942 if (curr) { /* case 6 */ 943 vma_start_write(curr); 944 remove = curr; 945 remove2 = next; 946 if (!next->anon_vma) 947 err = dup_anon_vma(prev, curr, &anon_dup); 948 } 949 } else if (merge_prev) { /* case 2 */ 950 if (curr) { 951 vma_start_write(curr); 952 if (end == curr->vm_end) { /* case 7 */ 953 /* 954 * can_vma_merge_after() assumed we would not be 955 * removing prev vma, so it skipped the check 956 * for vm_ops->close, but we are removing curr 957 */ 958 if (curr->vm_ops && curr->vm_ops->close) 959 err = -EINVAL; 960 remove = curr; 961 } else { /* case 5 */ 962 adjust = curr; 963 adj_start = (end - curr->vm_start); 964 } 965 if (!err) 966 err = dup_anon_vma(prev, curr, &anon_dup); 967 } 968 } else { /* merge_next */ 969 vma_start_write(next); 970 res = next; 971 if (prev && addr < prev->vm_end) { /* case 4 */ 972 vma_start_write(prev); 973 vma_end = addr; 974 adjust = next; 975 adj_start = -(prev->vm_end - addr); 976 err = dup_anon_vma(next, prev, &anon_dup); 977 } else { 978 /* 979 * Note that cases 3 and 8 are the ONLY ones where prev 980 * is permitted to be (but is not necessarily) NULL. 981 */ 982 vma = next; /* case 3 */ 983 vma_start = addr; 984 vma_end = next->vm_end; 985 vma_pgoff = next->vm_pgoff - pglen; 986 if (curr) { /* case 8 */ 987 vma_pgoff = curr->vm_pgoff; 988 vma_start_write(curr); 989 remove = curr; 990 err = dup_anon_vma(next, curr, &anon_dup); 991 } 992 } 993 } 994 995 /* Error in anon_vma clone. */ 996 if (err) 997 goto anon_vma_fail; 998 999 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 1000 vma_expanded = true; 1001 1002 if (vma_expanded) { 1003 vma_iter_config(vmi, vma_start, vma_end); 1004 } else { 1005 vma_iter_config(vmi, adjust->vm_start + adj_start, 1006 adjust->vm_end); 1007 } 1008 1009 if (vma_iter_prealloc(vmi, vma)) 1010 goto prealloc_fail; 1011 1012 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 1013 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 1014 vp.anon_vma != adjust->anon_vma); 1015 1016 vma_prepare(&vp); 1017 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1018 1019 vma->vm_start = vma_start; 1020 vma->vm_end = vma_end; 1021 vma->vm_pgoff = vma_pgoff; 1022 1023 if (vma_expanded) 1024 vma_iter_store(vmi, vma); 1025 1026 if (adj_start) { 1027 adjust->vm_start += adj_start; 1028 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1029 if (adj_start < 0) { 1030 WARN_ON(vma_expanded); 1031 vma_iter_store(vmi, next); 1032 } 1033 } 1034 1035 vma_complete(&vp, vmi, mm); 1036 khugepaged_enter_vma(res, vm_flags); 1037 return res; 1038 1039 prealloc_fail: 1040 if (anon_dup) 1041 unlink_anon_vmas(anon_dup); 1042 1043 anon_vma_fail: 1044 vma_iter_set(vmi, addr); 1045 vma_iter_load(vmi); 1046 return NULL; 1047 } 1048 1049 /* 1050 * Rough compatibility check to quickly see if it's even worth looking 1051 * at sharing an anon_vma. 1052 * 1053 * They need to have the same vm_file, and the flags can only differ 1054 * in things that mprotect may change. 1055 * 1056 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1057 * we can merge the two vma's. For example, we refuse to merge a vma if 1058 * there is a vm_ops->close() function, because that indicates that the 1059 * driver is doing some kind of reference counting. But that doesn't 1060 * really matter for the anon_vma sharing case. 1061 */ 1062 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1063 { 1064 return a->vm_end == b->vm_start && 1065 mpol_equal(vma_policy(a), vma_policy(b)) && 1066 a->vm_file == b->vm_file && 1067 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1068 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1069 } 1070 1071 /* 1072 * Do some basic sanity checking to see if we can re-use the anon_vma 1073 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1074 * the same as 'old', the other will be the new one that is trying 1075 * to share the anon_vma. 1076 * 1077 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1078 * the anon_vma of 'old' is concurrently in the process of being set up 1079 * by another page fault trying to merge _that_. But that's ok: if it 1080 * is being set up, that automatically means that it will be a singleton 1081 * acceptable for merging, so we can do all of this optimistically. But 1082 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1083 * 1084 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1085 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1086 * is to return an anon_vma that is "complex" due to having gone through 1087 * a fork). 1088 * 1089 * We also make sure that the two vma's are compatible (adjacent, 1090 * and with the same memory policies). That's all stable, even with just 1091 * a read lock on the mmap_lock. 1092 */ 1093 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1094 { 1095 if (anon_vma_compatible(a, b)) { 1096 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1097 1098 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1099 return anon_vma; 1100 } 1101 return NULL; 1102 } 1103 1104 /* 1105 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1106 * neighbouring vmas for a suitable anon_vma, before it goes off 1107 * to allocate a new anon_vma. It checks because a repetitive 1108 * sequence of mprotects and faults may otherwise lead to distinct 1109 * anon_vmas being allocated, preventing vma merge in subsequent 1110 * mprotect. 1111 */ 1112 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1113 { 1114 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end); 1115 struct anon_vma *anon_vma = NULL; 1116 struct vm_area_struct *prev, *next; 1117 1118 /* Try next first. */ 1119 next = mas_walk(&mas); 1120 if (next) { 1121 anon_vma = reusable_anon_vma(next, vma, next); 1122 if (anon_vma) 1123 return anon_vma; 1124 } 1125 1126 prev = mas_prev(&mas, 0); 1127 VM_BUG_ON_VMA(prev != vma, vma); 1128 prev = mas_prev(&mas, 0); 1129 /* Try prev next. */ 1130 if (prev) 1131 anon_vma = reusable_anon_vma(prev, prev, vma); 1132 1133 /* 1134 * We might reach here with anon_vma == NULL if we can't find 1135 * any reusable anon_vma. 1136 * There's no absolute need to look only at touching neighbours: 1137 * we could search further afield for "compatible" anon_vmas. 1138 * But it would probably just be a waste of time searching, 1139 * or lead to too many vmas hanging off the same anon_vma. 1140 * We're trying to allow mprotect remerging later on, 1141 * not trying to minimize memory used for anon_vmas. 1142 */ 1143 return anon_vma; 1144 } 1145 1146 /* 1147 * If a hint addr is less than mmap_min_addr change hint to be as 1148 * low as possible but still greater than mmap_min_addr 1149 */ 1150 static inline unsigned long round_hint_to_min(unsigned long hint) 1151 { 1152 hint &= PAGE_MASK; 1153 if (((void *)hint != NULL) && 1154 (hint < mmap_min_addr)) 1155 return PAGE_ALIGN(mmap_min_addr); 1156 return hint; 1157 } 1158 1159 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 1160 unsigned long bytes) 1161 { 1162 unsigned long locked_pages, limit_pages; 1163 1164 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 1165 return true; 1166 1167 locked_pages = bytes >> PAGE_SHIFT; 1168 locked_pages += mm->locked_vm; 1169 1170 limit_pages = rlimit(RLIMIT_MEMLOCK); 1171 limit_pages >>= PAGE_SHIFT; 1172 1173 return locked_pages <= limit_pages; 1174 } 1175 1176 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1177 { 1178 if (S_ISREG(inode->i_mode)) 1179 return MAX_LFS_FILESIZE; 1180 1181 if (S_ISBLK(inode->i_mode)) 1182 return MAX_LFS_FILESIZE; 1183 1184 if (S_ISSOCK(inode->i_mode)) 1185 return MAX_LFS_FILESIZE; 1186 1187 /* Special "we do even unsigned file positions" case */ 1188 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1189 return 0; 1190 1191 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1192 return ULONG_MAX; 1193 } 1194 1195 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1196 unsigned long pgoff, unsigned long len) 1197 { 1198 u64 maxsize = file_mmap_size_max(file, inode); 1199 1200 if (maxsize && len > maxsize) 1201 return false; 1202 maxsize -= len; 1203 if (pgoff > maxsize >> PAGE_SHIFT) 1204 return false; 1205 return true; 1206 } 1207 1208 /* 1209 * The caller must write-lock current->mm->mmap_lock. 1210 */ 1211 unsigned long do_mmap(struct file *file, unsigned long addr, 1212 unsigned long len, unsigned long prot, 1213 unsigned long flags, vm_flags_t vm_flags, 1214 unsigned long pgoff, unsigned long *populate, 1215 struct list_head *uf) 1216 { 1217 struct mm_struct *mm = current->mm; 1218 int pkey = 0; 1219 1220 *populate = 0; 1221 1222 if (!len) 1223 return -EINVAL; 1224 1225 /* 1226 * Does the application expect PROT_READ to imply PROT_EXEC? 1227 * 1228 * (the exception is when the underlying filesystem is noexec 1229 * mounted, in which case we dont add PROT_EXEC.) 1230 */ 1231 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1232 if (!(file && path_noexec(&file->f_path))) 1233 prot |= PROT_EXEC; 1234 1235 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1236 if (flags & MAP_FIXED_NOREPLACE) 1237 flags |= MAP_FIXED; 1238 1239 if (!(flags & MAP_FIXED)) 1240 addr = round_hint_to_min(addr); 1241 1242 /* Careful about overflows.. */ 1243 len = PAGE_ALIGN(len); 1244 if (!len) 1245 return -ENOMEM; 1246 1247 /* offset overflow? */ 1248 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1249 return -EOVERFLOW; 1250 1251 /* Too many mappings? */ 1252 if (mm->map_count > sysctl_max_map_count) 1253 return -ENOMEM; 1254 1255 /* Obtain the address to map to. we verify (or select) it and ensure 1256 * that it represents a valid section of the address space. 1257 */ 1258 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1259 if (IS_ERR_VALUE(addr)) 1260 return addr; 1261 1262 if (flags & MAP_FIXED_NOREPLACE) { 1263 if (find_vma_intersection(mm, addr, addr + len)) 1264 return -EEXIST; 1265 } 1266 1267 if (prot == PROT_EXEC) { 1268 pkey = execute_only_pkey(mm); 1269 if (pkey < 0) 1270 pkey = 0; 1271 } 1272 1273 /* Do simple checking here so the lower-level routines won't have 1274 * to. we assume access permissions have been handled by the open 1275 * of the memory object, so we don't do any here. 1276 */ 1277 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1278 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1279 1280 if (flags & MAP_LOCKED) 1281 if (!can_do_mlock()) 1282 return -EPERM; 1283 1284 if (!mlock_future_ok(mm, vm_flags, len)) 1285 return -EAGAIN; 1286 1287 if (file) { 1288 struct inode *inode = file_inode(file); 1289 unsigned long flags_mask; 1290 1291 if (!file_mmap_ok(file, inode, pgoff, len)) 1292 return -EOVERFLOW; 1293 1294 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1295 1296 switch (flags & MAP_TYPE) { 1297 case MAP_SHARED: 1298 /* 1299 * Force use of MAP_SHARED_VALIDATE with non-legacy 1300 * flags. E.g. MAP_SYNC is dangerous to use with 1301 * MAP_SHARED as you don't know which consistency model 1302 * you will get. We silently ignore unsupported flags 1303 * with MAP_SHARED to preserve backward compatibility. 1304 */ 1305 flags &= LEGACY_MAP_MASK; 1306 fallthrough; 1307 case MAP_SHARED_VALIDATE: 1308 if (flags & ~flags_mask) 1309 return -EOPNOTSUPP; 1310 if (prot & PROT_WRITE) { 1311 if (!(file->f_mode & FMODE_WRITE)) 1312 return -EACCES; 1313 if (IS_SWAPFILE(file->f_mapping->host)) 1314 return -ETXTBSY; 1315 } 1316 1317 /* 1318 * Make sure we don't allow writing to an append-only 1319 * file.. 1320 */ 1321 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1322 return -EACCES; 1323 1324 vm_flags |= VM_SHARED | VM_MAYSHARE; 1325 if (!(file->f_mode & FMODE_WRITE)) 1326 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1327 fallthrough; 1328 case MAP_PRIVATE: 1329 if (!(file->f_mode & FMODE_READ)) 1330 return -EACCES; 1331 if (path_noexec(&file->f_path)) { 1332 if (vm_flags & VM_EXEC) 1333 return -EPERM; 1334 vm_flags &= ~VM_MAYEXEC; 1335 } 1336 1337 if (!file->f_op->mmap) 1338 return -ENODEV; 1339 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1340 return -EINVAL; 1341 break; 1342 1343 default: 1344 return -EINVAL; 1345 } 1346 } else { 1347 switch (flags & MAP_TYPE) { 1348 case MAP_SHARED: 1349 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1350 return -EINVAL; 1351 /* 1352 * Ignore pgoff. 1353 */ 1354 pgoff = 0; 1355 vm_flags |= VM_SHARED | VM_MAYSHARE; 1356 break; 1357 case MAP_PRIVATE: 1358 /* 1359 * Set pgoff according to addr for anon_vma. 1360 */ 1361 pgoff = addr >> PAGE_SHIFT; 1362 break; 1363 default: 1364 return -EINVAL; 1365 } 1366 } 1367 1368 /* 1369 * Set 'VM_NORESERVE' if we should not account for the 1370 * memory use of this mapping. 1371 */ 1372 if (flags & MAP_NORESERVE) { 1373 /* We honor MAP_NORESERVE if allowed to overcommit */ 1374 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1375 vm_flags |= VM_NORESERVE; 1376 1377 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1378 if (file && is_file_hugepages(file)) 1379 vm_flags |= VM_NORESERVE; 1380 } 1381 1382 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1383 if (!IS_ERR_VALUE(addr) && 1384 ((vm_flags & VM_LOCKED) || 1385 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1386 *populate = len; 1387 return addr; 1388 } 1389 1390 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1391 unsigned long prot, unsigned long flags, 1392 unsigned long fd, unsigned long pgoff) 1393 { 1394 struct file *file = NULL; 1395 unsigned long retval; 1396 1397 if (!(flags & MAP_ANONYMOUS)) { 1398 audit_mmap_fd(fd, flags); 1399 file = fget(fd); 1400 if (!file) 1401 return -EBADF; 1402 if (is_file_hugepages(file)) { 1403 len = ALIGN(len, huge_page_size(hstate_file(file))); 1404 } else if (unlikely(flags & MAP_HUGETLB)) { 1405 retval = -EINVAL; 1406 goto out_fput; 1407 } 1408 } else if (flags & MAP_HUGETLB) { 1409 struct hstate *hs; 1410 1411 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1412 if (!hs) 1413 return -EINVAL; 1414 1415 len = ALIGN(len, huge_page_size(hs)); 1416 /* 1417 * VM_NORESERVE is used because the reservations will be 1418 * taken when vm_ops->mmap() is called 1419 */ 1420 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1421 VM_NORESERVE, 1422 HUGETLB_ANONHUGE_INODE, 1423 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1424 if (IS_ERR(file)) 1425 return PTR_ERR(file); 1426 } 1427 1428 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1429 out_fput: 1430 if (file) 1431 fput(file); 1432 return retval; 1433 } 1434 1435 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1436 unsigned long, prot, unsigned long, flags, 1437 unsigned long, fd, unsigned long, pgoff) 1438 { 1439 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1440 } 1441 1442 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1443 struct mmap_arg_struct { 1444 unsigned long addr; 1445 unsigned long len; 1446 unsigned long prot; 1447 unsigned long flags; 1448 unsigned long fd; 1449 unsigned long offset; 1450 }; 1451 1452 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1453 { 1454 struct mmap_arg_struct a; 1455 1456 if (copy_from_user(&a, arg, sizeof(a))) 1457 return -EFAULT; 1458 if (offset_in_page(a.offset)) 1459 return -EINVAL; 1460 1461 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1462 a.offset >> PAGE_SHIFT); 1463 } 1464 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1465 1466 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1467 { 1468 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1469 } 1470 1471 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1472 { 1473 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1474 (VM_WRITE | VM_SHARED); 1475 } 1476 1477 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1478 { 1479 /* No managed pages to writeback. */ 1480 if (vma->vm_flags & VM_PFNMAP) 1481 return false; 1482 1483 return vma->vm_file && vma->vm_file->f_mapping && 1484 mapping_can_writeback(vma->vm_file->f_mapping); 1485 } 1486 1487 /* 1488 * Does this VMA require the underlying folios to have their dirty state 1489 * tracked? 1490 */ 1491 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1492 { 1493 /* Only shared, writable VMAs require dirty tracking. */ 1494 if (!vma_is_shared_writable(vma)) 1495 return false; 1496 1497 /* Does the filesystem need to be notified? */ 1498 if (vm_ops_needs_writenotify(vma->vm_ops)) 1499 return true; 1500 1501 /* 1502 * Even if the filesystem doesn't indicate a need for writenotify, if it 1503 * can writeback, dirty tracking is still required. 1504 */ 1505 return vma_fs_can_writeback(vma); 1506 } 1507 1508 /* 1509 * Some shared mappings will want the pages marked read-only 1510 * to track write events. If so, we'll downgrade vm_page_prot 1511 * to the private version (using protection_map[] without the 1512 * VM_SHARED bit). 1513 */ 1514 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1515 { 1516 /* If it was private or non-writable, the write bit is already clear */ 1517 if (!vma_is_shared_writable(vma)) 1518 return 0; 1519 1520 /* The backer wishes to know when pages are first written to? */ 1521 if (vm_ops_needs_writenotify(vma->vm_ops)) 1522 return 1; 1523 1524 /* The open routine did something to the protections that pgprot_modify 1525 * won't preserve? */ 1526 if (pgprot_val(vm_page_prot) != 1527 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1528 return 0; 1529 1530 /* 1531 * Do we need to track softdirty? hugetlb does not support softdirty 1532 * tracking yet. 1533 */ 1534 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1535 return 1; 1536 1537 /* Do we need write faults for uffd-wp tracking? */ 1538 if (userfaultfd_wp(vma)) 1539 return 1; 1540 1541 /* Can the mapping track the dirty pages? */ 1542 return vma_fs_can_writeback(vma); 1543 } 1544 1545 /* 1546 * We account for memory if it's a private writeable mapping, 1547 * not hugepages and VM_NORESERVE wasn't set. 1548 */ 1549 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1550 { 1551 /* 1552 * hugetlb has its own accounting separate from the core VM 1553 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1554 */ 1555 if (file && is_file_hugepages(file)) 1556 return 0; 1557 1558 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1559 } 1560 1561 /** 1562 * unmapped_area() - Find an area between the low_limit and the high_limit with 1563 * the correct alignment and offset, all from @info. Note: current->mm is used 1564 * for the search. 1565 * 1566 * @info: The unmapped area information including the range [low_limit - 1567 * high_limit), the alignment offset and mask. 1568 * 1569 * Return: A memory address or -ENOMEM. 1570 */ 1571 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1572 { 1573 unsigned long length, gap; 1574 unsigned long low_limit, high_limit; 1575 struct vm_area_struct *tmp; 1576 1577 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1578 1579 /* Adjust search length to account for worst case alignment overhead */ 1580 length = info->length + info->align_mask; 1581 if (length < info->length) 1582 return -ENOMEM; 1583 1584 low_limit = info->low_limit; 1585 if (low_limit < mmap_min_addr) 1586 low_limit = mmap_min_addr; 1587 high_limit = info->high_limit; 1588 retry: 1589 if (mas_empty_area(&mas, low_limit, high_limit - 1, length)) 1590 return -ENOMEM; 1591 1592 gap = mas.index; 1593 gap += (info->align_offset - gap) & info->align_mask; 1594 tmp = mas_next(&mas, ULONG_MAX); 1595 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1596 if (vm_start_gap(tmp) < gap + length - 1) { 1597 low_limit = tmp->vm_end; 1598 mas_reset(&mas); 1599 goto retry; 1600 } 1601 } else { 1602 tmp = mas_prev(&mas, 0); 1603 if (tmp && vm_end_gap(tmp) > gap) { 1604 low_limit = vm_end_gap(tmp); 1605 mas_reset(&mas); 1606 goto retry; 1607 } 1608 } 1609 1610 return gap; 1611 } 1612 1613 /** 1614 * unmapped_area_topdown() - Find an area between the low_limit and the 1615 * high_limit with the correct alignment and offset at the highest available 1616 * address, all from @info. Note: current->mm is used for the search. 1617 * 1618 * @info: The unmapped area information including the range [low_limit - 1619 * high_limit), the alignment offset and mask. 1620 * 1621 * Return: A memory address or -ENOMEM. 1622 */ 1623 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1624 { 1625 unsigned long length, gap, gap_end; 1626 unsigned long low_limit, high_limit; 1627 struct vm_area_struct *tmp; 1628 1629 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1630 /* Adjust search length to account for worst case alignment overhead */ 1631 length = info->length + info->align_mask; 1632 if (length < info->length) 1633 return -ENOMEM; 1634 1635 low_limit = info->low_limit; 1636 if (low_limit < mmap_min_addr) 1637 low_limit = mmap_min_addr; 1638 high_limit = info->high_limit; 1639 retry: 1640 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length)) 1641 return -ENOMEM; 1642 1643 gap = mas.last + 1 - info->length; 1644 gap -= (gap - info->align_offset) & info->align_mask; 1645 gap_end = mas.last; 1646 tmp = mas_next(&mas, ULONG_MAX); 1647 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1648 if (vm_start_gap(tmp) <= gap_end) { 1649 high_limit = vm_start_gap(tmp); 1650 mas_reset(&mas); 1651 goto retry; 1652 } 1653 } else { 1654 tmp = mas_prev(&mas, 0); 1655 if (tmp && vm_end_gap(tmp) > gap) { 1656 high_limit = tmp->vm_start; 1657 mas_reset(&mas); 1658 goto retry; 1659 } 1660 } 1661 1662 return gap; 1663 } 1664 1665 /* 1666 * Search for an unmapped address range. 1667 * 1668 * We are looking for a range that: 1669 * - does not intersect with any VMA; 1670 * - is contained within the [low_limit, high_limit) interval; 1671 * - is at least the desired size. 1672 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1673 */ 1674 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1675 { 1676 unsigned long addr; 1677 1678 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1679 addr = unmapped_area_topdown(info); 1680 else 1681 addr = unmapped_area(info); 1682 1683 trace_vm_unmapped_area(addr, info); 1684 return addr; 1685 } 1686 1687 /* Get an address range which is currently unmapped. 1688 * For shmat() with addr=0. 1689 * 1690 * Ugly calling convention alert: 1691 * Return value with the low bits set means error value, 1692 * ie 1693 * if (ret & ~PAGE_MASK) 1694 * error = ret; 1695 * 1696 * This function "knows" that -ENOMEM has the bits set. 1697 */ 1698 unsigned long 1699 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1700 unsigned long len, unsigned long pgoff, 1701 unsigned long flags) 1702 { 1703 struct mm_struct *mm = current->mm; 1704 struct vm_area_struct *vma, *prev; 1705 struct vm_unmapped_area_info info; 1706 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1707 1708 if (len > mmap_end - mmap_min_addr) 1709 return -ENOMEM; 1710 1711 if (flags & MAP_FIXED) 1712 return addr; 1713 1714 if (addr) { 1715 addr = PAGE_ALIGN(addr); 1716 vma = find_vma_prev(mm, addr, &prev); 1717 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1718 (!vma || addr + len <= vm_start_gap(vma)) && 1719 (!prev || addr >= vm_end_gap(prev))) 1720 return addr; 1721 } 1722 1723 info.flags = 0; 1724 info.length = len; 1725 info.low_limit = mm->mmap_base; 1726 info.high_limit = mmap_end; 1727 info.align_mask = 0; 1728 info.align_offset = 0; 1729 return vm_unmapped_area(&info); 1730 } 1731 1732 #ifndef HAVE_ARCH_UNMAPPED_AREA 1733 unsigned long 1734 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1735 unsigned long len, unsigned long pgoff, 1736 unsigned long flags) 1737 { 1738 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1739 } 1740 #endif 1741 1742 /* 1743 * This mmap-allocator allocates new areas top-down from below the 1744 * stack's low limit (the base): 1745 */ 1746 unsigned long 1747 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1748 unsigned long len, unsigned long pgoff, 1749 unsigned long flags) 1750 { 1751 struct vm_area_struct *vma, *prev; 1752 struct mm_struct *mm = current->mm; 1753 struct vm_unmapped_area_info info; 1754 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1755 1756 /* requested length too big for entire address space */ 1757 if (len > mmap_end - mmap_min_addr) 1758 return -ENOMEM; 1759 1760 if (flags & MAP_FIXED) 1761 return addr; 1762 1763 /* requesting a specific address */ 1764 if (addr) { 1765 addr = PAGE_ALIGN(addr); 1766 vma = find_vma_prev(mm, addr, &prev); 1767 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1768 (!vma || addr + len <= vm_start_gap(vma)) && 1769 (!prev || addr >= vm_end_gap(prev))) 1770 return addr; 1771 } 1772 1773 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1774 info.length = len; 1775 info.low_limit = PAGE_SIZE; 1776 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1777 info.align_mask = 0; 1778 info.align_offset = 0; 1779 addr = vm_unmapped_area(&info); 1780 1781 /* 1782 * A failed mmap() very likely causes application failure, 1783 * so fall back to the bottom-up function here. This scenario 1784 * can happen with large stack limits and large mmap() 1785 * allocations. 1786 */ 1787 if (offset_in_page(addr)) { 1788 VM_BUG_ON(addr != -ENOMEM); 1789 info.flags = 0; 1790 info.low_limit = TASK_UNMAPPED_BASE; 1791 info.high_limit = mmap_end; 1792 addr = vm_unmapped_area(&info); 1793 } 1794 1795 return addr; 1796 } 1797 1798 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1799 unsigned long 1800 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1801 unsigned long len, unsigned long pgoff, 1802 unsigned long flags) 1803 { 1804 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1805 } 1806 #endif 1807 1808 unsigned long 1809 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1810 unsigned long pgoff, unsigned long flags) 1811 { 1812 unsigned long (*get_area)(struct file *, unsigned long, 1813 unsigned long, unsigned long, unsigned long); 1814 1815 unsigned long error = arch_mmap_check(addr, len, flags); 1816 if (error) 1817 return error; 1818 1819 /* Careful about overflows.. */ 1820 if (len > TASK_SIZE) 1821 return -ENOMEM; 1822 1823 get_area = current->mm->get_unmapped_area; 1824 if (file) { 1825 if (file->f_op->get_unmapped_area) 1826 get_area = file->f_op->get_unmapped_area; 1827 } else if (flags & MAP_SHARED) { 1828 /* 1829 * mmap_region() will call shmem_zero_setup() to create a file, 1830 * so use shmem's get_unmapped_area in case it can be huge. 1831 * do_mmap() will clear pgoff, so match alignment. 1832 */ 1833 pgoff = 0; 1834 get_area = shmem_get_unmapped_area; 1835 } 1836 1837 addr = get_area(file, addr, len, pgoff, flags); 1838 if (IS_ERR_VALUE(addr)) 1839 return addr; 1840 1841 if (addr > TASK_SIZE - len) 1842 return -ENOMEM; 1843 if (offset_in_page(addr)) 1844 return -EINVAL; 1845 1846 error = security_mmap_addr(addr); 1847 return error ? error : addr; 1848 } 1849 1850 EXPORT_SYMBOL(get_unmapped_area); 1851 1852 /** 1853 * find_vma_intersection() - Look up the first VMA which intersects the interval 1854 * @mm: The process address space. 1855 * @start_addr: The inclusive start user address. 1856 * @end_addr: The exclusive end user address. 1857 * 1858 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1859 * start_addr < end_addr. 1860 */ 1861 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1862 unsigned long start_addr, 1863 unsigned long end_addr) 1864 { 1865 unsigned long index = start_addr; 1866 1867 mmap_assert_locked(mm); 1868 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1869 } 1870 EXPORT_SYMBOL(find_vma_intersection); 1871 1872 /** 1873 * find_vma() - Find the VMA for a given address, or the next VMA. 1874 * @mm: The mm_struct to check 1875 * @addr: The address 1876 * 1877 * Returns: The VMA associated with addr, or the next VMA. 1878 * May return %NULL in the case of no VMA at addr or above. 1879 */ 1880 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1881 { 1882 unsigned long index = addr; 1883 1884 mmap_assert_locked(mm); 1885 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1886 } 1887 EXPORT_SYMBOL(find_vma); 1888 1889 /** 1890 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1891 * set %pprev to the previous VMA, if any. 1892 * @mm: The mm_struct to check 1893 * @addr: The address 1894 * @pprev: The pointer to set to the previous VMA 1895 * 1896 * Note that RCU lock is missing here since the external mmap_lock() is used 1897 * instead. 1898 * 1899 * Returns: The VMA associated with @addr, or the next vma. 1900 * May return %NULL in the case of no vma at addr or above. 1901 */ 1902 struct vm_area_struct * 1903 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1904 struct vm_area_struct **pprev) 1905 { 1906 struct vm_area_struct *vma; 1907 MA_STATE(mas, &mm->mm_mt, addr, addr); 1908 1909 vma = mas_walk(&mas); 1910 *pprev = mas_prev(&mas, 0); 1911 if (!vma) 1912 vma = mas_next(&mas, ULONG_MAX); 1913 return vma; 1914 } 1915 1916 /* 1917 * Verify that the stack growth is acceptable and 1918 * update accounting. This is shared with both the 1919 * grow-up and grow-down cases. 1920 */ 1921 static int acct_stack_growth(struct vm_area_struct *vma, 1922 unsigned long size, unsigned long grow) 1923 { 1924 struct mm_struct *mm = vma->vm_mm; 1925 unsigned long new_start; 1926 1927 /* address space limit tests */ 1928 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1929 return -ENOMEM; 1930 1931 /* Stack limit test */ 1932 if (size > rlimit(RLIMIT_STACK)) 1933 return -ENOMEM; 1934 1935 /* mlock limit tests */ 1936 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1937 return -ENOMEM; 1938 1939 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1940 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1941 vma->vm_end - size; 1942 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1943 return -EFAULT; 1944 1945 /* 1946 * Overcommit.. This must be the final test, as it will 1947 * update security statistics. 1948 */ 1949 if (security_vm_enough_memory_mm(mm, grow)) 1950 return -ENOMEM; 1951 1952 return 0; 1953 } 1954 1955 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1956 /* 1957 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1958 * vma is the last one with address > vma->vm_end. Have to extend vma. 1959 */ 1960 static int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1961 { 1962 struct mm_struct *mm = vma->vm_mm; 1963 struct vm_area_struct *next; 1964 unsigned long gap_addr; 1965 int error = 0; 1966 MA_STATE(mas, &mm->mm_mt, vma->vm_start, address); 1967 1968 if (!(vma->vm_flags & VM_GROWSUP)) 1969 return -EFAULT; 1970 1971 /* Guard against exceeding limits of the address space. */ 1972 address &= PAGE_MASK; 1973 if (address >= (TASK_SIZE & PAGE_MASK)) 1974 return -ENOMEM; 1975 address += PAGE_SIZE; 1976 1977 /* Enforce stack_guard_gap */ 1978 gap_addr = address + stack_guard_gap; 1979 1980 /* Guard against overflow */ 1981 if (gap_addr < address || gap_addr > TASK_SIZE) 1982 gap_addr = TASK_SIZE; 1983 1984 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1985 if (next && vma_is_accessible(next)) { 1986 if (!(next->vm_flags & VM_GROWSUP)) 1987 return -ENOMEM; 1988 /* Check that both stack segments have the same anon_vma? */ 1989 } 1990 1991 if (next) 1992 mas_prev_range(&mas, address); 1993 1994 __mas_set_range(&mas, vma->vm_start, address - 1); 1995 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 1996 return -ENOMEM; 1997 1998 /* We must make sure the anon_vma is allocated. */ 1999 if (unlikely(anon_vma_prepare(vma))) { 2000 mas_destroy(&mas); 2001 return -ENOMEM; 2002 } 2003 2004 /* Lock the VMA before expanding to prevent concurrent page faults */ 2005 vma_start_write(vma); 2006 /* 2007 * vma->vm_start/vm_end cannot change under us because the caller 2008 * is required to hold the mmap_lock in read mode. We need the 2009 * anon_vma lock to serialize against concurrent expand_stacks. 2010 */ 2011 anon_vma_lock_write(vma->anon_vma); 2012 2013 /* Somebody else might have raced and expanded it already */ 2014 if (address > vma->vm_end) { 2015 unsigned long size, grow; 2016 2017 size = address - vma->vm_start; 2018 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2019 2020 error = -ENOMEM; 2021 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2022 error = acct_stack_growth(vma, size, grow); 2023 if (!error) { 2024 /* 2025 * We only hold a shared mmap_lock lock here, so 2026 * we need to protect against concurrent vma 2027 * expansions. anon_vma_lock_write() doesn't 2028 * help here, as we don't guarantee that all 2029 * growable vmas in a mm share the same root 2030 * anon vma. So, we reuse mm->page_table_lock 2031 * to guard against concurrent vma expansions. 2032 */ 2033 spin_lock(&mm->page_table_lock); 2034 if (vma->vm_flags & VM_LOCKED) 2035 mm->locked_vm += grow; 2036 vm_stat_account(mm, vma->vm_flags, grow); 2037 anon_vma_interval_tree_pre_update_vma(vma); 2038 vma->vm_end = address; 2039 /* Overwrite old entry in mtree. */ 2040 mas_store_prealloc(&mas, vma); 2041 anon_vma_interval_tree_post_update_vma(vma); 2042 spin_unlock(&mm->page_table_lock); 2043 2044 perf_event_mmap(vma); 2045 } 2046 } 2047 } 2048 anon_vma_unlock_write(vma->anon_vma); 2049 khugepaged_enter_vma(vma, vma->vm_flags); 2050 mas_destroy(&mas); 2051 validate_mm(mm); 2052 return error; 2053 } 2054 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2055 2056 /* 2057 * vma is the first one with address < vma->vm_start. Have to extend vma. 2058 * mmap_lock held for writing. 2059 */ 2060 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2061 { 2062 struct mm_struct *mm = vma->vm_mm; 2063 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start); 2064 struct vm_area_struct *prev; 2065 int error = 0; 2066 2067 if (!(vma->vm_flags & VM_GROWSDOWN)) 2068 return -EFAULT; 2069 2070 address &= PAGE_MASK; 2071 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2072 return -EPERM; 2073 2074 /* Enforce stack_guard_gap */ 2075 prev = mas_prev(&mas, 0); 2076 /* Check that both stack segments have the same anon_vma? */ 2077 if (prev) { 2078 if (!(prev->vm_flags & VM_GROWSDOWN) && 2079 vma_is_accessible(prev) && 2080 (address - prev->vm_end < stack_guard_gap)) 2081 return -ENOMEM; 2082 } 2083 2084 if (prev) 2085 mas_next_range(&mas, vma->vm_start); 2086 2087 __mas_set_range(&mas, address, vma->vm_end - 1); 2088 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 2089 return -ENOMEM; 2090 2091 /* We must make sure the anon_vma is allocated. */ 2092 if (unlikely(anon_vma_prepare(vma))) { 2093 mas_destroy(&mas); 2094 return -ENOMEM; 2095 } 2096 2097 /* Lock the VMA before expanding to prevent concurrent page faults */ 2098 vma_start_write(vma); 2099 /* 2100 * vma->vm_start/vm_end cannot change under us because the caller 2101 * is required to hold the mmap_lock in read mode. We need the 2102 * anon_vma lock to serialize against concurrent expand_stacks. 2103 */ 2104 anon_vma_lock_write(vma->anon_vma); 2105 2106 /* Somebody else might have raced and expanded it already */ 2107 if (address < vma->vm_start) { 2108 unsigned long size, grow; 2109 2110 size = vma->vm_end - address; 2111 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2112 2113 error = -ENOMEM; 2114 if (grow <= vma->vm_pgoff) { 2115 error = acct_stack_growth(vma, size, grow); 2116 if (!error) { 2117 /* 2118 * We only hold a shared mmap_lock lock here, so 2119 * we need to protect against concurrent vma 2120 * expansions. anon_vma_lock_write() doesn't 2121 * help here, as we don't guarantee that all 2122 * growable vmas in a mm share the same root 2123 * anon vma. So, we reuse mm->page_table_lock 2124 * to guard against concurrent vma expansions. 2125 */ 2126 spin_lock(&mm->page_table_lock); 2127 if (vma->vm_flags & VM_LOCKED) 2128 mm->locked_vm += grow; 2129 vm_stat_account(mm, vma->vm_flags, grow); 2130 anon_vma_interval_tree_pre_update_vma(vma); 2131 vma->vm_start = address; 2132 vma->vm_pgoff -= grow; 2133 /* Overwrite old entry in mtree. */ 2134 mas_store_prealloc(&mas, vma); 2135 anon_vma_interval_tree_post_update_vma(vma); 2136 spin_unlock(&mm->page_table_lock); 2137 2138 perf_event_mmap(vma); 2139 } 2140 } 2141 } 2142 anon_vma_unlock_write(vma->anon_vma); 2143 khugepaged_enter_vma(vma, vma->vm_flags); 2144 mas_destroy(&mas); 2145 validate_mm(mm); 2146 return error; 2147 } 2148 2149 /* enforced gap between the expanding stack and other mappings. */ 2150 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2151 2152 static int __init cmdline_parse_stack_guard_gap(char *p) 2153 { 2154 unsigned long val; 2155 char *endptr; 2156 2157 val = simple_strtoul(p, &endptr, 10); 2158 if (!*endptr) 2159 stack_guard_gap = val << PAGE_SHIFT; 2160 2161 return 1; 2162 } 2163 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2164 2165 #ifdef CONFIG_STACK_GROWSUP 2166 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2167 { 2168 return expand_upwards(vma, address); 2169 } 2170 2171 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2172 { 2173 struct vm_area_struct *vma, *prev; 2174 2175 addr &= PAGE_MASK; 2176 vma = find_vma_prev(mm, addr, &prev); 2177 if (vma && (vma->vm_start <= addr)) 2178 return vma; 2179 if (!prev) 2180 return NULL; 2181 if (expand_stack_locked(prev, addr)) 2182 return NULL; 2183 if (prev->vm_flags & VM_LOCKED) 2184 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2185 return prev; 2186 } 2187 #else 2188 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2189 { 2190 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 2191 return -EINVAL; 2192 return expand_downwards(vma, address); 2193 } 2194 2195 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2196 { 2197 struct vm_area_struct *vma; 2198 unsigned long start; 2199 2200 addr &= PAGE_MASK; 2201 vma = find_vma(mm, addr); 2202 if (!vma) 2203 return NULL; 2204 if (vma->vm_start <= addr) 2205 return vma; 2206 start = vma->vm_start; 2207 if (expand_stack_locked(vma, addr)) 2208 return NULL; 2209 if (vma->vm_flags & VM_LOCKED) 2210 populate_vma_page_range(vma, addr, start, NULL); 2211 return vma; 2212 } 2213 #endif 2214 2215 /* 2216 * IA64 has some horrid mapping rules: it can expand both up and down, 2217 * but with various special rules. 2218 * 2219 * We'll get rid of this architecture eventually, so the ugliness is 2220 * temporary. 2221 */ 2222 #ifdef CONFIG_IA64 2223 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr) 2224 { 2225 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) && 2226 REGION_OFFSET(addr) < RGN_MAP_LIMIT; 2227 } 2228 2229 /* 2230 * IA64 stacks grow down, but there's a special register backing store 2231 * that can grow up. Only sequentially, though, so the new address must 2232 * match vm_end. 2233 */ 2234 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr) 2235 { 2236 if (!vma_expand_ok(vma, addr)) 2237 return -EFAULT; 2238 if (vma->vm_end != (addr & PAGE_MASK)) 2239 return -EFAULT; 2240 return expand_upwards(vma, addr); 2241 } 2242 2243 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr) 2244 { 2245 if (!vma_expand_ok(vma, addr)) 2246 return -EFAULT; 2247 return expand_downwards(vma, addr); 2248 } 2249 2250 #elif defined(CONFIG_STACK_GROWSUP) 2251 2252 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 2253 #define vma_expand_down(vma, addr) (-EFAULT) 2254 2255 #else 2256 2257 #define vma_expand_up(vma,addr) (-EFAULT) 2258 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 2259 2260 #endif 2261 2262 /* 2263 * expand_stack(): legacy interface for page faulting. Don't use unless 2264 * you have to. 2265 * 2266 * This is called with the mm locked for reading, drops the lock, takes 2267 * the lock for writing, tries to look up a vma again, expands it if 2268 * necessary, and downgrades the lock to reading again. 2269 * 2270 * If no vma is found or it can't be expanded, it returns NULL and has 2271 * dropped the lock. 2272 */ 2273 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 2274 { 2275 struct vm_area_struct *vma, *prev; 2276 2277 mmap_read_unlock(mm); 2278 if (mmap_write_lock_killable(mm)) 2279 return NULL; 2280 2281 vma = find_vma_prev(mm, addr, &prev); 2282 if (vma && vma->vm_start <= addr) 2283 goto success; 2284 2285 if (prev && !vma_expand_up(prev, addr)) { 2286 vma = prev; 2287 goto success; 2288 } 2289 2290 if (vma && !vma_expand_down(vma, addr)) 2291 goto success; 2292 2293 mmap_write_unlock(mm); 2294 return NULL; 2295 2296 success: 2297 mmap_write_downgrade(mm); 2298 return vma; 2299 } 2300 2301 /* 2302 * Ok - we have the memory areas we should free on a maple tree so release them, 2303 * and do the vma updates. 2304 * 2305 * Called with the mm semaphore held. 2306 */ 2307 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2308 { 2309 unsigned long nr_accounted = 0; 2310 struct vm_area_struct *vma; 2311 2312 /* Update high watermark before we lower total_vm */ 2313 update_hiwater_vm(mm); 2314 mas_for_each(mas, vma, ULONG_MAX) { 2315 long nrpages = vma_pages(vma); 2316 2317 if (vma->vm_flags & VM_ACCOUNT) 2318 nr_accounted += nrpages; 2319 vm_stat_account(mm, vma->vm_flags, -nrpages); 2320 remove_vma(vma, false); 2321 } 2322 vm_unacct_memory(nr_accounted); 2323 } 2324 2325 /* 2326 * Get rid of page table information in the indicated region. 2327 * 2328 * Called with the mm semaphore held. 2329 */ 2330 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 2331 struct vm_area_struct *vma, struct vm_area_struct *prev, 2332 struct vm_area_struct *next, unsigned long start, 2333 unsigned long end, unsigned long tree_end, bool mm_wr_locked) 2334 { 2335 struct mmu_gather tlb; 2336 unsigned long mt_start = mas->index; 2337 2338 lru_add_drain(); 2339 tlb_gather_mmu(&tlb, mm); 2340 update_hiwater_rss(mm); 2341 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked); 2342 mas_set(mas, mt_start); 2343 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2344 next ? next->vm_start : USER_PGTABLES_CEILING, 2345 mm_wr_locked); 2346 tlb_finish_mmu(&tlb); 2347 } 2348 2349 /* 2350 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2351 * has already been checked or doesn't make sense to fail. 2352 * VMA Iterator will point to the end VMA. 2353 */ 2354 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2355 unsigned long addr, int new_below) 2356 { 2357 struct vma_prepare vp; 2358 struct vm_area_struct *new; 2359 int err; 2360 2361 WARN_ON(vma->vm_start >= addr); 2362 WARN_ON(vma->vm_end <= addr); 2363 2364 if (vma->vm_ops && vma->vm_ops->may_split) { 2365 err = vma->vm_ops->may_split(vma, addr); 2366 if (err) 2367 return err; 2368 } 2369 2370 new = vm_area_dup(vma); 2371 if (!new) 2372 return -ENOMEM; 2373 2374 if (new_below) { 2375 new->vm_end = addr; 2376 } else { 2377 new->vm_start = addr; 2378 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2379 } 2380 2381 err = -ENOMEM; 2382 vma_iter_config(vmi, new->vm_start, new->vm_end); 2383 if (vma_iter_prealloc(vmi, new)) 2384 goto out_free_vma; 2385 2386 err = vma_dup_policy(vma, new); 2387 if (err) 2388 goto out_free_vmi; 2389 2390 err = anon_vma_clone(new, vma); 2391 if (err) 2392 goto out_free_mpol; 2393 2394 if (new->vm_file) 2395 get_file(new->vm_file); 2396 2397 if (new->vm_ops && new->vm_ops->open) 2398 new->vm_ops->open(new); 2399 2400 vma_start_write(vma); 2401 vma_start_write(new); 2402 2403 init_vma_prep(&vp, vma); 2404 vp.insert = new; 2405 vma_prepare(&vp); 2406 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 2407 2408 if (new_below) { 2409 vma->vm_start = addr; 2410 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 2411 } else { 2412 vma->vm_end = addr; 2413 } 2414 2415 /* vma_complete stores the new vma */ 2416 vma_complete(&vp, vmi, vma->vm_mm); 2417 2418 /* Success. */ 2419 if (new_below) 2420 vma_next(vmi); 2421 return 0; 2422 2423 out_free_mpol: 2424 mpol_put(vma_policy(new)); 2425 out_free_vmi: 2426 vma_iter_free(vmi); 2427 out_free_vma: 2428 vm_area_free(new); 2429 return err; 2430 } 2431 2432 /* 2433 * Split a vma into two pieces at address 'addr', a new vma is allocated 2434 * either for the first part or the tail. 2435 */ 2436 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2437 unsigned long addr, int new_below) 2438 { 2439 if (vma->vm_mm->map_count >= sysctl_max_map_count) 2440 return -ENOMEM; 2441 2442 return __split_vma(vmi, vma, addr, new_below); 2443 } 2444 2445 /* 2446 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 2447 * @vmi: The vma iterator 2448 * @vma: The starting vm_area_struct 2449 * @mm: The mm_struct 2450 * @start: The aligned start address to munmap. 2451 * @end: The aligned end address to munmap. 2452 * @uf: The userfaultfd list_head 2453 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 2454 * success. 2455 * 2456 * Return: 0 on success and drops the lock if so directed, error and leaves the 2457 * lock held otherwise. 2458 */ 2459 static int 2460 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2461 struct mm_struct *mm, unsigned long start, 2462 unsigned long end, struct list_head *uf, bool unlock) 2463 { 2464 struct vm_area_struct *prev, *next = NULL; 2465 struct maple_tree mt_detach; 2466 int count = 0; 2467 int error = -ENOMEM; 2468 unsigned long locked_vm = 0; 2469 MA_STATE(mas_detach, &mt_detach, 0, 0); 2470 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2471 mt_on_stack(mt_detach); 2472 2473 /* 2474 * If we need to split any vma, do it now to save pain later. 2475 * 2476 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2477 * unmapped vm_area_struct will remain in use: so lower split_vma 2478 * places tmp vma above, and higher split_vma places tmp vma below. 2479 */ 2480 2481 /* Does it split the first one? */ 2482 if (start > vma->vm_start) { 2483 2484 /* 2485 * Make sure that map_count on return from munmap() will 2486 * not exceed its limit; but let map_count go just above 2487 * its limit temporarily, to help free resources as expected. 2488 */ 2489 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2490 goto map_count_exceeded; 2491 2492 error = __split_vma(vmi, vma, start, 1); 2493 if (error) 2494 goto start_split_failed; 2495 } 2496 2497 /* 2498 * Detach a range of VMAs from the mm. Using next as a temp variable as 2499 * it is always overwritten. 2500 */ 2501 next = vma; 2502 do { 2503 /* Does it split the end? */ 2504 if (next->vm_end > end) { 2505 error = __split_vma(vmi, next, end, 0); 2506 if (error) 2507 goto end_split_failed; 2508 } 2509 vma_start_write(next); 2510 mas_set(&mas_detach, count); 2511 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL); 2512 if (error) 2513 goto munmap_gather_failed; 2514 vma_mark_detached(next, true); 2515 if (next->vm_flags & VM_LOCKED) 2516 locked_vm += vma_pages(next); 2517 2518 count++; 2519 if (unlikely(uf)) { 2520 /* 2521 * If userfaultfd_unmap_prep returns an error the vmas 2522 * will remain split, but userland will get a 2523 * highly unexpected error anyway. This is no 2524 * different than the case where the first of the two 2525 * __split_vma fails, but we don't undo the first 2526 * split, despite we could. This is unlikely enough 2527 * failure that it's not worth optimizing it for. 2528 */ 2529 error = userfaultfd_unmap_prep(next, start, end, uf); 2530 2531 if (error) 2532 goto userfaultfd_error; 2533 } 2534 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2535 BUG_ON(next->vm_start < start); 2536 BUG_ON(next->vm_start > end); 2537 #endif 2538 } for_each_vma_range(*vmi, next, end); 2539 2540 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2541 /* Make sure no VMAs are about to be lost. */ 2542 { 2543 MA_STATE(test, &mt_detach, 0, 0); 2544 struct vm_area_struct *vma_mas, *vma_test; 2545 int test_count = 0; 2546 2547 vma_iter_set(vmi, start); 2548 rcu_read_lock(); 2549 vma_test = mas_find(&test, count - 1); 2550 for_each_vma_range(*vmi, vma_mas, end) { 2551 BUG_ON(vma_mas != vma_test); 2552 test_count++; 2553 vma_test = mas_next(&test, count - 1); 2554 } 2555 rcu_read_unlock(); 2556 BUG_ON(count != test_count); 2557 } 2558 #endif 2559 2560 while (vma_iter_addr(vmi) > start) 2561 vma_iter_prev_range(vmi); 2562 2563 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 2564 if (error) 2565 goto clear_tree_failed; 2566 2567 /* Point of no return */ 2568 mm->locked_vm -= locked_vm; 2569 mm->map_count -= count; 2570 if (unlock) 2571 mmap_write_downgrade(mm); 2572 2573 prev = vma_iter_prev_range(vmi); 2574 next = vma_next(vmi); 2575 if (next) 2576 vma_iter_prev_range(vmi); 2577 2578 /* 2579 * We can free page tables without write-locking mmap_lock because VMAs 2580 * were isolated before we downgraded mmap_lock. 2581 */ 2582 mas_set(&mas_detach, 1); 2583 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count, 2584 !unlock); 2585 /* Statistics and freeing VMAs */ 2586 mas_set(&mas_detach, 0); 2587 remove_mt(mm, &mas_detach); 2588 validate_mm(mm); 2589 if (unlock) 2590 mmap_read_unlock(mm); 2591 2592 __mt_destroy(&mt_detach); 2593 return 0; 2594 2595 clear_tree_failed: 2596 userfaultfd_error: 2597 munmap_gather_failed: 2598 end_split_failed: 2599 mas_set(&mas_detach, 0); 2600 mas_for_each(&mas_detach, next, end) 2601 vma_mark_detached(next, false); 2602 2603 __mt_destroy(&mt_detach); 2604 start_split_failed: 2605 map_count_exceeded: 2606 validate_mm(mm); 2607 return error; 2608 } 2609 2610 /* 2611 * do_vmi_munmap() - munmap a given range. 2612 * @vmi: The vma iterator 2613 * @mm: The mm_struct 2614 * @start: The start address to munmap 2615 * @len: The length of the range to munmap 2616 * @uf: The userfaultfd list_head 2617 * @unlock: set to true if the user wants to drop the mmap_lock on success 2618 * 2619 * This function takes a @mas that is either pointing to the previous VMA or set 2620 * to MA_START and sets it up to remove the mapping(s). The @len will be 2621 * aligned and any arch_unmap work will be preformed. 2622 * 2623 * Return: 0 on success and drops the lock if so directed, error and leaves the 2624 * lock held otherwise. 2625 */ 2626 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 2627 unsigned long start, size_t len, struct list_head *uf, 2628 bool unlock) 2629 { 2630 unsigned long end; 2631 struct vm_area_struct *vma; 2632 2633 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2634 return -EINVAL; 2635 2636 end = start + PAGE_ALIGN(len); 2637 if (end == start) 2638 return -EINVAL; 2639 2640 /* arch_unmap() might do unmaps itself. */ 2641 arch_unmap(mm, start, end); 2642 2643 /* Find the first overlapping VMA */ 2644 vma = vma_find(vmi, end); 2645 if (!vma) { 2646 if (unlock) 2647 mmap_write_unlock(mm); 2648 return 0; 2649 } 2650 2651 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 2652 } 2653 2654 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2655 * @mm: The mm_struct 2656 * @start: The start address to munmap 2657 * @len: The length to be munmapped. 2658 * @uf: The userfaultfd list_head 2659 * 2660 * Return: 0 on success, error otherwise. 2661 */ 2662 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2663 struct list_head *uf) 2664 { 2665 VMA_ITERATOR(vmi, mm, start); 2666 2667 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 2668 } 2669 2670 unsigned long mmap_region(struct file *file, unsigned long addr, 2671 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2672 struct list_head *uf) 2673 { 2674 struct mm_struct *mm = current->mm; 2675 struct vm_area_struct *vma = NULL; 2676 struct vm_area_struct *next, *prev, *merge; 2677 pgoff_t pglen = len >> PAGE_SHIFT; 2678 unsigned long charged = 0; 2679 unsigned long end = addr + len; 2680 unsigned long merge_start = addr, merge_end = end; 2681 pgoff_t vm_pgoff; 2682 int error; 2683 VMA_ITERATOR(vmi, mm, addr); 2684 2685 /* Check against address space limit. */ 2686 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2687 unsigned long nr_pages; 2688 2689 /* 2690 * MAP_FIXED may remove pages of mappings that intersects with 2691 * requested mapping. Account for the pages it would unmap. 2692 */ 2693 nr_pages = count_vma_pages_range(mm, addr, end); 2694 2695 if (!may_expand_vm(mm, vm_flags, 2696 (len >> PAGE_SHIFT) - nr_pages)) 2697 return -ENOMEM; 2698 } 2699 2700 /* Unmap any existing mapping in the area */ 2701 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false)) 2702 return -ENOMEM; 2703 2704 /* 2705 * Private writable mapping: check memory availability 2706 */ 2707 if (accountable_mapping(file, vm_flags)) { 2708 charged = len >> PAGE_SHIFT; 2709 if (security_vm_enough_memory_mm(mm, charged)) 2710 return -ENOMEM; 2711 vm_flags |= VM_ACCOUNT; 2712 } 2713 2714 next = vma_next(&vmi); 2715 prev = vma_prev(&vmi); 2716 if (vm_flags & VM_SPECIAL) { 2717 if (prev) 2718 vma_iter_next_range(&vmi); 2719 goto cannot_expand; 2720 } 2721 2722 /* Attempt to expand an old mapping */ 2723 /* Check next */ 2724 if (next && next->vm_start == end && !vma_policy(next) && 2725 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2726 NULL_VM_UFFD_CTX, NULL)) { 2727 merge_end = next->vm_end; 2728 vma = next; 2729 vm_pgoff = next->vm_pgoff - pglen; 2730 } 2731 2732 /* Check prev */ 2733 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2734 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2735 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2736 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2737 NULL_VM_UFFD_CTX, NULL))) { 2738 merge_start = prev->vm_start; 2739 vma = prev; 2740 vm_pgoff = prev->vm_pgoff; 2741 } else if (prev) { 2742 vma_iter_next_range(&vmi); 2743 } 2744 2745 /* Actually expand, if possible */ 2746 if (vma && 2747 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { 2748 khugepaged_enter_vma(vma, vm_flags); 2749 goto expanded; 2750 } 2751 2752 if (vma == prev) 2753 vma_iter_set(&vmi, addr); 2754 cannot_expand: 2755 2756 /* 2757 * Determine the object being mapped and call the appropriate 2758 * specific mapper. the address has already been validated, but 2759 * not unmapped, but the maps are removed from the list. 2760 */ 2761 vma = vm_area_alloc(mm); 2762 if (!vma) { 2763 error = -ENOMEM; 2764 goto unacct_error; 2765 } 2766 2767 vma_iter_config(&vmi, addr, end); 2768 vma->vm_start = addr; 2769 vma->vm_end = end; 2770 vm_flags_init(vma, vm_flags); 2771 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2772 vma->vm_pgoff = pgoff; 2773 2774 if (file) { 2775 if (vm_flags & VM_SHARED) { 2776 error = mapping_map_writable(file->f_mapping); 2777 if (error) 2778 goto free_vma; 2779 } 2780 2781 vma->vm_file = get_file(file); 2782 error = call_mmap(file, vma); 2783 if (error) 2784 goto unmap_and_free_vma; 2785 2786 /* 2787 * Expansion is handled above, merging is handled below. 2788 * Drivers should not alter the address of the VMA. 2789 */ 2790 error = -EINVAL; 2791 if (WARN_ON((addr != vma->vm_start))) 2792 goto close_and_free_vma; 2793 2794 vma_iter_config(&vmi, addr, end); 2795 /* 2796 * If vm_flags changed after call_mmap(), we should try merge 2797 * vma again as we may succeed this time. 2798 */ 2799 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2800 merge = vma_merge(&vmi, mm, prev, vma->vm_start, 2801 vma->vm_end, vma->vm_flags, NULL, 2802 vma->vm_file, vma->vm_pgoff, NULL, 2803 NULL_VM_UFFD_CTX, NULL); 2804 if (merge) { 2805 /* 2806 * ->mmap() can change vma->vm_file and fput 2807 * the original file. So fput the vma->vm_file 2808 * here or we would add an extra fput for file 2809 * and cause general protection fault 2810 * ultimately. 2811 */ 2812 fput(vma->vm_file); 2813 vm_area_free(vma); 2814 vma = merge; 2815 /* Update vm_flags to pick up the change. */ 2816 vm_flags = vma->vm_flags; 2817 goto unmap_writable; 2818 } 2819 } 2820 2821 vm_flags = vma->vm_flags; 2822 } else if (vm_flags & VM_SHARED) { 2823 error = shmem_zero_setup(vma); 2824 if (error) 2825 goto free_vma; 2826 } else { 2827 vma_set_anonymous(vma); 2828 } 2829 2830 if (map_deny_write_exec(vma, vma->vm_flags)) { 2831 error = -EACCES; 2832 goto close_and_free_vma; 2833 } 2834 2835 /* Allow architectures to sanity-check the vm_flags */ 2836 error = -EINVAL; 2837 if (!arch_validate_flags(vma->vm_flags)) 2838 goto close_and_free_vma; 2839 2840 error = -ENOMEM; 2841 if (vma_iter_prealloc(&vmi, vma)) 2842 goto close_and_free_vma; 2843 2844 /* Lock the VMA since it is modified after insertion into VMA tree */ 2845 vma_start_write(vma); 2846 vma_iter_store(&vmi, vma); 2847 mm->map_count++; 2848 if (vma->vm_file) { 2849 i_mmap_lock_write(vma->vm_file->f_mapping); 2850 if (vma->vm_flags & VM_SHARED) 2851 mapping_allow_writable(vma->vm_file->f_mapping); 2852 2853 flush_dcache_mmap_lock(vma->vm_file->f_mapping); 2854 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap); 2855 flush_dcache_mmap_unlock(vma->vm_file->f_mapping); 2856 i_mmap_unlock_write(vma->vm_file->f_mapping); 2857 } 2858 2859 /* 2860 * vma_merge() calls khugepaged_enter_vma() either, the below 2861 * call covers the non-merge case. 2862 */ 2863 khugepaged_enter_vma(vma, vma->vm_flags); 2864 2865 /* Once vma denies write, undo our temporary denial count */ 2866 unmap_writable: 2867 if (file && vm_flags & VM_SHARED) 2868 mapping_unmap_writable(file->f_mapping); 2869 file = vma->vm_file; 2870 ksm_add_vma(vma); 2871 expanded: 2872 perf_event_mmap(vma); 2873 2874 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 2875 if (vm_flags & VM_LOCKED) { 2876 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2877 is_vm_hugetlb_page(vma) || 2878 vma == get_gate_vma(current->mm)) 2879 vm_flags_clear(vma, VM_LOCKED_MASK); 2880 else 2881 mm->locked_vm += (len >> PAGE_SHIFT); 2882 } 2883 2884 if (file) 2885 uprobe_mmap(vma); 2886 2887 /* 2888 * New (or expanded) vma always get soft dirty status. 2889 * Otherwise user-space soft-dirty page tracker won't 2890 * be able to distinguish situation when vma area unmapped, 2891 * then new mapped in-place (which must be aimed as 2892 * a completely new data area). 2893 */ 2894 vm_flags_set(vma, VM_SOFTDIRTY); 2895 2896 vma_set_page_prot(vma); 2897 2898 validate_mm(mm); 2899 return addr; 2900 2901 close_and_free_vma: 2902 if (file && vma->vm_ops && vma->vm_ops->close) 2903 vma->vm_ops->close(vma); 2904 2905 if (file || vma->vm_file) { 2906 unmap_and_free_vma: 2907 fput(vma->vm_file); 2908 vma->vm_file = NULL; 2909 2910 vma_iter_set(&vmi, vma->vm_end); 2911 /* Undo any partial mapping done by a device driver. */ 2912 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start, 2913 vma->vm_end, vma->vm_end, true); 2914 } 2915 if (file && (vm_flags & VM_SHARED)) 2916 mapping_unmap_writable(file->f_mapping); 2917 free_vma: 2918 vm_area_free(vma); 2919 unacct_error: 2920 if (charged) 2921 vm_unacct_memory(charged); 2922 validate_mm(mm); 2923 return error; 2924 } 2925 2926 static int __vm_munmap(unsigned long start, size_t len, bool unlock) 2927 { 2928 int ret; 2929 struct mm_struct *mm = current->mm; 2930 LIST_HEAD(uf); 2931 VMA_ITERATOR(vmi, mm, start); 2932 2933 if (mmap_write_lock_killable(mm)) 2934 return -EINTR; 2935 2936 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 2937 if (ret || !unlock) 2938 mmap_write_unlock(mm); 2939 2940 userfaultfd_unmap_complete(mm, &uf); 2941 return ret; 2942 } 2943 2944 int vm_munmap(unsigned long start, size_t len) 2945 { 2946 return __vm_munmap(start, len, false); 2947 } 2948 EXPORT_SYMBOL(vm_munmap); 2949 2950 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2951 { 2952 addr = untagged_addr(addr); 2953 return __vm_munmap(addr, len, true); 2954 } 2955 2956 2957 /* 2958 * Emulation of deprecated remap_file_pages() syscall. 2959 */ 2960 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2961 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2962 { 2963 2964 struct mm_struct *mm = current->mm; 2965 struct vm_area_struct *vma; 2966 unsigned long populate = 0; 2967 unsigned long ret = -EINVAL; 2968 struct file *file; 2969 2970 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 2971 current->comm, current->pid); 2972 2973 if (prot) 2974 return ret; 2975 start = start & PAGE_MASK; 2976 size = size & PAGE_MASK; 2977 2978 if (start + size <= start) 2979 return ret; 2980 2981 /* Does pgoff wrap? */ 2982 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2983 return ret; 2984 2985 if (mmap_write_lock_killable(mm)) 2986 return -EINTR; 2987 2988 vma = vma_lookup(mm, start); 2989 2990 if (!vma || !(vma->vm_flags & VM_SHARED)) 2991 goto out; 2992 2993 if (start + size > vma->vm_end) { 2994 VMA_ITERATOR(vmi, mm, vma->vm_end); 2995 struct vm_area_struct *next, *prev = vma; 2996 2997 for_each_vma_range(vmi, next, start + size) { 2998 /* hole between vmas ? */ 2999 if (next->vm_start != prev->vm_end) 3000 goto out; 3001 3002 if (next->vm_file != vma->vm_file) 3003 goto out; 3004 3005 if (next->vm_flags != vma->vm_flags) 3006 goto out; 3007 3008 if (start + size <= next->vm_end) 3009 break; 3010 3011 prev = next; 3012 } 3013 3014 if (!next) 3015 goto out; 3016 } 3017 3018 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 3019 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 3020 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 3021 3022 flags &= MAP_NONBLOCK; 3023 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 3024 if (vma->vm_flags & VM_LOCKED) 3025 flags |= MAP_LOCKED; 3026 3027 file = get_file(vma->vm_file); 3028 ret = security_mmap_file(vma->vm_file, prot, flags); 3029 if (ret) 3030 goto out_fput; 3031 ret = do_mmap(vma->vm_file, start, size, 3032 prot, flags, 0, pgoff, &populate, NULL); 3033 out_fput: 3034 fput(file); 3035 out: 3036 mmap_write_unlock(mm); 3037 if (populate) 3038 mm_populate(ret, populate); 3039 if (!IS_ERR_VALUE(ret)) 3040 ret = 0; 3041 return ret; 3042 } 3043 3044 /* 3045 * do_vma_munmap() - Unmap a full or partial vma. 3046 * @vmi: The vma iterator pointing at the vma 3047 * @vma: The first vma to be munmapped 3048 * @start: the start of the address to unmap 3049 * @end: The end of the address to unmap 3050 * @uf: The userfaultfd list_head 3051 * @unlock: Drop the lock on success 3052 * 3053 * unmaps a VMA mapping when the vma iterator is already in position. 3054 * Does not handle alignment. 3055 * 3056 * Return: 0 on success drops the lock of so directed, error on failure and will 3057 * still hold the lock. 3058 */ 3059 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3060 unsigned long start, unsigned long end, struct list_head *uf, 3061 bool unlock) 3062 { 3063 struct mm_struct *mm = vma->vm_mm; 3064 3065 arch_unmap(mm, start, end); 3066 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 3067 } 3068 3069 /* 3070 * do_brk_flags() - Increase the brk vma if the flags match. 3071 * @vmi: The vma iterator 3072 * @addr: The start address 3073 * @len: The length of the increase 3074 * @vma: The vma, 3075 * @flags: The VMA Flags 3076 * 3077 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 3078 * do not match then create a new anonymous VMA. Eventually we may be able to 3079 * do some brk-specific accounting here. 3080 */ 3081 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 3082 unsigned long addr, unsigned long len, unsigned long flags) 3083 { 3084 struct mm_struct *mm = current->mm; 3085 struct vma_prepare vp; 3086 3087 /* 3088 * Check against address space limits by the changed size 3089 * Note: This happens *after* clearing old mappings in some code paths. 3090 */ 3091 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3092 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3093 return -ENOMEM; 3094 3095 if (mm->map_count > sysctl_max_map_count) 3096 return -ENOMEM; 3097 3098 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3099 return -ENOMEM; 3100 3101 /* 3102 * Expand the existing vma if possible; Note that singular lists do not 3103 * occur after forking, so the expand will only happen on new VMAs. 3104 */ 3105 if (vma && vma->vm_end == addr && !vma_policy(vma) && 3106 can_vma_merge_after(vma, flags, NULL, NULL, 3107 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { 3108 vma_iter_config(vmi, vma->vm_start, addr + len); 3109 if (vma_iter_prealloc(vmi, vma)) 3110 goto unacct_fail; 3111 3112 vma_start_write(vma); 3113 3114 init_vma_prep(&vp, vma); 3115 vma_prepare(&vp); 3116 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 3117 vma->vm_end = addr + len; 3118 vm_flags_set(vma, VM_SOFTDIRTY); 3119 vma_iter_store(vmi, vma); 3120 3121 vma_complete(&vp, vmi, mm); 3122 khugepaged_enter_vma(vma, flags); 3123 goto out; 3124 } 3125 3126 if (vma) 3127 vma_iter_next_range(vmi); 3128 /* create a vma struct for an anonymous mapping */ 3129 vma = vm_area_alloc(mm); 3130 if (!vma) 3131 goto unacct_fail; 3132 3133 vma_set_anonymous(vma); 3134 vma->vm_start = addr; 3135 vma->vm_end = addr + len; 3136 vma->vm_pgoff = addr >> PAGE_SHIFT; 3137 vm_flags_init(vma, flags); 3138 vma->vm_page_prot = vm_get_page_prot(flags); 3139 vma_start_write(vma); 3140 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 3141 goto mas_store_fail; 3142 3143 mm->map_count++; 3144 validate_mm(mm); 3145 ksm_add_vma(vma); 3146 out: 3147 perf_event_mmap(vma); 3148 mm->total_vm += len >> PAGE_SHIFT; 3149 mm->data_vm += len >> PAGE_SHIFT; 3150 if (flags & VM_LOCKED) 3151 mm->locked_vm += (len >> PAGE_SHIFT); 3152 vm_flags_set(vma, VM_SOFTDIRTY); 3153 return 0; 3154 3155 mas_store_fail: 3156 vm_area_free(vma); 3157 unacct_fail: 3158 vm_unacct_memory(len >> PAGE_SHIFT); 3159 return -ENOMEM; 3160 } 3161 3162 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3163 { 3164 struct mm_struct *mm = current->mm; 3165 struct vm_area_struct *vma = NULL; 3166 unsigned long len; 3167 int ret; 3168 bool populate; 3169 LIST_HEAD(uf); 3170 VMA_ITERATOR(vmi, mm, addr); 3171 3172 len = PAGE_ALIGN(request); 3173 if (len < request) 3174 return -ENOMEM; 3175 if (!len) 3176 return 0; 3177 3178 /* Until we need other flags, refuse anything except VM_EXEC. */ 3179 if ((flags & (~VM_EXEC)) != 0) 3180 return -EINVAL; 3181 3182 if (mmap_write_lock_killable(mm)) 3183 return -EINTR; 3184 3185 ret = check_brk_limits(addr, len); 3186 if (ret) 3187 goto limits_failed; 3188 3189 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 3190 if (ret) 3191 goto munmap_failed; 3192 3193 vma = vma_prev(&vmi); 3194 ret = do_brk_flags(&vmi, vma, addr, len, flags); 3195 populate = ((mm->def_flags & VM_LOCKED) != 0); 3196 mmap_write_unlock(mm); 3197 userfaultfd_unmap_complete(mm, &uf); 3198 if (populate && !ret) 3199 mm_populate(addr, len); 3200 return ret; 3201 3202 munmap_failed: 3203 limits_failed: 3204 mmap_write_unlock(mm); 3205 return ret; 3206 } 3207 EXPORT_SYMBOL(vm_brk_flags); 3208 3209 int vm_brk(unsigned long addr, unsigned long len) 3210 { 3211 return vm_brk_flags(addr, len, 0); 3212 } 3213 EXPORT_SYMBOL(vm_brk); 3214 3215 /* Release all mmaps. */ 3216 void exit_mmap(struct mm_struct *mm) 3217 { 3218 struct mmu_gather tlb; 3219 struct vm_area_struct *vma; 3220 unsigned long nr_accounted = 0; 3221 MA_STATE(mas, &mm->mm_mt, 0, 0); 3222 int count = 0; 3223 3224 /* mm's last user has gone, and its about to be pulled down */ 3225 mmu_notifier_release(mm); 3226 3227 mmap_read_lock(mm); 3228 arch_exit_mmap(mm); 3229 3230 vma = mas_find(&mas, ULONG_MAX); 3231 if (!vma) { 3232 /* Can happen if dup_mmap() received an OOM */ 3233 mmap_read_unlock(mm); 3234 return; 3235 } 3236 3237 lru_add_drain(); 3238 flush_cache_mm(mm); 3239 tlb_gather_mmu_fullmm(&tlb, mm); 3240 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3241 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3242 unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false); 3243 mmap_read_unlock(mm); 3244 3245 /* 3246 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3247 * because the memory has been already freed. 3248 */ 3249 set_bit(MMF_OOM_SKIP, &mm->flags); 3250 mmap_write_lock(mm); 3251 mt_clear_in_rcu(&mm->mm_mt); 3252 mas_set(&mas, vma->vm_end); 3253 free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS, 3254 USER_PGTABLES_CEILING, true); 3255 tlb_finish_mmu(&tlb); 3256 3257 /* 3258 * Walk the list again, actually closing and freeing it, with preemption 3259 * enabled, without holding any MM locks besides the unreachable 3260 * mmap_write_lock. 3261 */ 3262 mas_set(&mas, vma->vm_end); 3263 do { 3264 if (vma->vm_flags & VM_ACCOUNT) 3265 nr_accounted += vma_pages(vma); 3266 remove_vma(vma, true); 3267 count++; 3268 cond_resched(); 3269 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL); 3270 3271 BUG_ON(count != mm->map_count); 3272 3273 trace_exit_mmap(mm); 3274 __mt_destroy(&mm->mm_mt); 3275 mmap_write_unlock(mm); 3276 vm_unacct_memory(nr_accounted); 3277 } 3278 3279 /* Insert vm structure into process list sorted by address 3280 * and into the inode's i_mmap tree. If vm_file is non-NULL 3281 * then i_mmap_rwsem is taken here. 3282 */ 3283 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3284 { 3285 unsigned long charged = vma_pages(vma); 3286 3287 3288 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3289 return -ENOMEM; 3290 3291 if ((vma->vm_flags & VM_ACCOUNT) && 3292 security_vm_enough_memory_mm(mm, charged)) 3293 return -ENOMEM; 3294 3295 /* 3296 * The vm_pgoff of a purely anonymous vma should be irrelevant 3297 * until its first write fault, when page's anon_vma and index 3298 * are set. But now set the vm_pgoff it will almost certainly 3299 * end up with (unless mremap moves it elsewhere before that 3300 * first wfault), so /proc/pid/maps tells a consistent story. 3301 * 3302 * By setting it to reflect the virtual start address of the 3303 * vma, merges and splits can happen in a seamless way, just 3304 * using the existing file pgoff checks and manipulations. 3305 * Similarly in do_mmap and in do_brk_flags. 3306 */ 3307 if (vma_is_anonymous(vma)) { 3308 BUG_ON(vma->anon_vma); 3309 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3310 } 3311 3312 if (vma_link(mm, vma)) { 3313 vm_unacct_memory(charged); 3314 return -ENOMEM; 3315 } 3316 3317 return 0; 3318 } 3319 3320 /* 3321 * Copy the vma structure to a new location in the same mm, 3322 * prior to moving page table entries, to effect an mremap move. 3323 */ 3324 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3325 unsigned long addr, unsigned long len, pgoff_t pgoff, 3326 bool *need_rmap_locks) 3327 { 3328 struct vm_area_struct *vma = *vmap; 3329 unsigned long vma_start = vma->vm_start; 3330 struct mm_struct *mm = vma->vm_mm; 3331 struct vm_area_struct *new_vma, *prev; 3332 bool faulted_in_anon_vma = true; 3333 VMA_ITERATOR(vmi, mm, addr); 3334 3335 /* 3336 * If anonymous vma has not yet been faulted, update new pgoff 3337 * to match new location, to increase its chance of merging. 3338 */ 3339 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3340 pgoff = addr >> PAGE_SHIFT; 3341 faulted_in_anon_vma = false; 3342 } 3343 3344 new_vma = find_vma_prev(mm, addr, &prev); 3345 if (new_vma && new_vma->vm_start < addr + len) 3346 return NULL; /* should never get here */ 3347 3348 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags, 3349 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3350 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3351 if (new_vma) { 3352 /* 3353 * Source vma may have been merged into new_vma 3354 */ 3355 if (unlikely(vma_start >= new_vma->vm_start && 3356 vma_start < new_vma->vm_end)) { 3357 /* 3358 * The only way we can get a vma_merge with 3359 * self during an mremap is if the vma hasn't 3360 * been faulted in yet and we were allowed to 3361 * reset the dst vma->vm_pgoff to the 3362 * destination address of the mremap to allow 3363 * the merge to happen. mremap must change the 3364 * vm_pgoff linearity between src and dst vmas 3365 * (in turn preventing a vma_merge) to be 3366 * safe. It is only safe to keep the vm_pgoff 3367 * linear if there are no pages mapped yet. 3368 */ 3369 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3370 *vmap = vma = new_vma; 3371 } 3372 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3373 } else { 3374 new_vma = vm_area_dup(vma); 3375 if (!new_vma) 3376 goto out; 3377 new_vma->vm_start = addr; 3378 new_vma->vm_end = addr + len; 3379 new_vma->vm_pgoff = pgoff; 3380 if (vma_dup_policy(vma, new_vma)) 3381 goto out_free_vma; 3382 if (anon_vma_clone(new_vma, vma)) 3383 goto out_free_mempol; 3384 if (new_vma->vm_file) 3385 get_file(new_vma->vm_file); 3386 if (new_vma->vm_ops && new_vma->vm_ops->open) 3387 new_vma->vm_ops->open(new_vma); 3388 if (vma_link(mm, new_vma)) 3389 goto out_vma_link; 3390 *need_rmap_locks = false; 3391 } 3392 return new_vma; 3393 3394 out_vma_link: 3395 if (new_vma->vm_ops && new_vma->vm_ops->close) 3396 new_vma->vm_ops->close(new_vma); 3397 3398 if (new_vma->vm_file) 3399 fput(new_vma->vm_file); 3400 3401 unlink_anon_vmas(new_vma); 3402 out_free_mempol: 3403 mpol_put(vma_policy(new_vma)); 3404 out_free_vma: 3405 vm_area_free(new_vma); 3406 out: 3407 return NULL; 3408 } 3409 3410 /* 3411 * Return true if the calling process may expand its vm space by the passed 3412 * number of pages 3413 */ 3414 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3415 { 3416 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3417 return false; 3418 3419 if (is_data_mapping(flags) && 3420 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3421 /* Workaround for Valgrind */ 3422 if (rlimit(RLIMIT_DATA) == 0 && 3423 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3424 return true; 3425 3426 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3427 current->comm, current->pid, 3428 (mm->data_vm + npages) << PAGE_SHIFT, 3429 rlimit(RLIMIT_DATA), 3430 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3431 3432 if (!ignore_rlimit_data) 3433 return false; 3434 } 3435 3436 return true; 3437 } 3438 3439 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3440 { 3441 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3442 3443 if (is_exec_mapping(flags)) 3444 mm->exec_vm += npages; 3445 else if (is_stack_mapping(flags)) 3446 mm->stack_vm += npages; 3447 else if (is_data_mapping(flags)) 3448 mm->data_vm += npages; 3449 } 3450 3451 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3452 3453 /* 3454 * Having a close hook prevents vma merging regardless of flags. 3455 */ 3456 static void special_mapping_close(struct vm_area_struct *vma) 3457 { 3458 } 3459 3460 static const char *special_mapping_name(struct vm_area_struct *vma) 3461 { 3462 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3463 } 3464 3465 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3466 { 3467 struct vm_special_mapping *sm = new_vma->vm_private_data; 3468 3469 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3470 return -EFAULT; 3471 3472 if (sm->mremap) 3473 return sm->mremap(sm, new_vma); 3474 3475 return 0; 3476 } 3477 3478 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3479 { 3480 /* 3481 * Forbid splitting special mappings - kernel has expectations over 3482 * the number of pages in mapping. Together with VM_DONTEXPAND 3483 * the size of vma should stay the same over the special mapping's 3484 * lifetime. 3485 */ 3486 return -EINVAL; 3487 } 3488 3489 static const struct vm_operations_struct special_mapping_vmops = { 3490 .close = special_mapping_close, 3491 .fault = special_mapping_fault, 3492 .mremap = special_mapping_mremap, 3493 .name = special_mapping_name, 3494 /* vDSO code relies that VVAR can't be accessed remotely */ 3495 .access = NULL, 3496 .may_split = special_mapping_split, 3497 }; 3498 3499 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3500 .close = special_mapping_close, 3501 .fault = special_mapping_fault, 3502 }; 3503 3504 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3505 { 3506 struct vm_area_struct *vma = vmf->vma; 3507 pgoff_t pgoff; 3508 struct page **pages; 3509 3510 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3511 pages = vma->vm_private_data; 3512 } else { 3513 struct vm_special_mapping *sm = vma->vm_private_data; 3514 3515 if (sm->fault) 3516 return sm->fault(sm, vmf->vma, vmf); 3517 3518 pages = sm->pages; 3519 } 3520 3521 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3522 pgoff--; 3523 3524 if (*pages) { 3525 struct page *page = *pages; 3526 get_page(page); 3527 vmf->page = page; 3528 return 0; 3529 } 3530 3531 return VM_FAULT_SIGBUS; 3532 } 3533 3534 static struct vm_area_struct *__install_special_mapping( 3535 struct mm_struct *mm, 3536 unsigned long addr, unsigned long len, 3537 unsigned long vm_flags, void *priv, 3538 const struct vm_operations_struct *ops) 3539 { 3540 int ret; 3541 struct vm_area_struct *vma; 3542 3543 vma = vm_area_alloc(mm); 3544 if (unlikely(vma == NULL)) 3545 return ERR_PTR(-ENOMEM); 3546 3547 vma->vm_start = addr; 3548 vma->vm_end = addr + len; 3549 3550 vm_flags_init(vma, (vm_flags | mm->def_flags | 3551 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 3552 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3553 3554 vma->vm_ops = ops; 3555 vma->vm_private_data = priv; 3556 3557 ret = insert_vm_struct(mm, vma); 3558 if (ret) 3559 goto out; 3560 3561 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3562 3563 perf_event_mmap(vma); 3564 3565 return vma; 3566 3567 out: 3568 vm_area_free(vma); 3569 return ERR_PTR(ret); 3570 } 3571 3572 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3573 const struct vm_special_mapping *sm) 3574 { 3575 return vma->vm_private_data == sm && 3576 (vma->vm_ops == &special_mapping_vmops || 3577 vma->vm_ops == &legacy_special_mapping_vmops); 3578 } 3579 3580 /* 3581 * Called with mm->mmap_lock held for writing. 3582 * Insert a new vma covering the given region, with the given flags. 3583 * Its pages are supplied by the given array of struct page *. 3584 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3585 * The region past the last page supplied will always produce SIGBUS. 3586 * The array pointer and the pages it points to are assumed to stay alive 3587 * for as long as this mapping might exist. 3588 */ 3589 struct vm_area_struct *_install_special_mapping( 3590 struct mm_struct *mm, 3591 unsigned long addr, unsigned long len, 3592 unsigned long vm_flags, const struct vm_special_mapping *spec) 3593 { 3594 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3595 &special_mapping_vmops); 3596 } 3597 3598 int install_special_mapping(struct mm_struct *mm, 3599 unsigned long addr, unsigned long len, 3600 unsigned long vm_flags, struct page **pages) 3601 { 3602 struct vm_area_struct *vma = __install_special_mapping( 3603 mm, addr, len, vm_flags, (void *)pages, 3604 &legacy_special_mapping_vmops); 3605 3606 return PTR_ERR_OR_ZERO(vma); 3607 } 3608 3609 static DEFINE_MUTEX(mm_all_locks_mutex); 3610 3611 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3612 { 3613 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3614 /* 3615 * The LSB of head.next can't change from under us 3616 * because we hold the mm_all_locks_mutex. 3617 */ 3618 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3619 /* 3620 * We can safely modify head.next after taking the 3621 * anon_vma->root->rwsem. If some other vma in this mm shares 3622 * the same anon_vma we won't take it again. 3623 * 3624 * No need of atomic instructions here, head.next 3625 * can't change from under us thanks to the 3626 * anon_vma->root->rwsem. 3627 */ 3628 if (__test_and_set_bit(0, (unsigned long *) 3629 &anon_vma->root->rb_root.rb_root.rb_node)) 3630 BUG(); 3631 } 3632 } 3633 3634 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3635 { 3636 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3637 /* 3638 * AS_MM_ALL_LOCKS can't change from under us because 3639 * we hold the mm_all_locks_mutex. 3640 * 3641 * Operations on ->flags have to be atomic because 3642 * even if AS_MM_ALL_LOCKS is stable thanks to the 3643 * mm_all_locks_mutex, there may be other cpus 3644 * changing other bitflags in parallel to us. 3645 */ 3646 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3647 BUG(); 3648 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3649 } 3650 } 3651 3652 /* 3653 * This operation locks against the VM for all pte/vma/mm related 3654 * operations that could ever happen on a certain mm. This includes 3655 * vmtruncate, try_to_unmap, and all page faults. 3656 * 3657 * The caller must take the mmap_lock in write mode before calling 3658 * mm_take_all_locks(). The caller isn't allowed to release the 3659 * mmap_lock until mm_drop_all_locks() returns. 3660 * 3661 * mmap_lock in write mode is required in order to block all operations 3662 * that could modify pagetables and free pages without need of 3663 * altering the vma layout. It's also needed in write mode to avoid new 3664 * anon_vmas to be associated with existing vmas. 3665 * 3666 * A single task can't take more than one mm_take_all_locks() in a row 3667 * or it would deadlock. 3668 * 3669 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3670 * mapping->flags avoid to take the same lock twice, if more than one 3671 * vma in this mm is backed by the same anon_vma or address_space. 3672 * 3673 * We take locks in following order, accordingly to comment at beginning 3674 * of mm/rmap.c: 3675 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3676 * hugetlb mapping); 3677 * - all vmas marked locked 3678 * - all i_mmap_rwsem locks; 3679 * - all anon_vma->rwseml 3680 * 3681 * We can take all locks within these types randomly because the VM code 3682 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3683 * mm_all_locks_mutex. 3684 * 3685 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3686 * that may have to take thousand of locks. 3687 * 3688 * mm_take_all_locks() can fail if it's interrupted by signals. 3689 */ 3690 int mm_take_all_locks(struct mm_struct *mm) 3691 { 3692 struct vm_area_struct *vma; 3693 struct anon_vma_chain *avc; 3694 MA_STATE(mas, &mm->mm_mt, 0, 0); 3695 3696 mmap_assert_write_locked(mm); 3697 3698 mutex_lock(&mm_all_locks_mutex); 3699 3700 /* 3701 * vma_start_write() does not have a complement in mm_drop_all_locks() 3702 * because vma_start_write() is always asymmetrical; it marks a VMA as 3703 * being written to until mmap_write_unlock() or mmap_write_downgrade() 3704 * is reached. 3705 */ 3706 mas_for_each(&mas, vma, ULONG_MAX) { 3707 if (signal_pending(current)) 3708 goto out_unlock; 3709 vma_start_write(vma); 3710 } 3711 3712 mas_set(&mas, 0); 3713 mas_for_each(&mas, vma, ULONG_MAX) { 3714 if (signal_pending(current)) 3715 goto out_unlock; 3716 if (vma->vm_file && vma->vm_file->f_mapping && 3717 is_vm_hugetlb_page(vma)) 3718 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3719 } 3720 3721 mas_set(&mas, 0); 3722 mas_for_each(&mas, vma, ULONG_MAX) { 3723 if (signal_pending(current)) 3724 goto out_unlock; 3725 if (vma->vm_file && vma->vm_file->f_mapping && 3726 !is_vm_hugetlb_page(vma)) 3727 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3728 } 3729 3730 mas_set(&mas, 0); 3731 mas_for_each(&mas, vma, ULONG_MAX) { 3732 if (signal_pending(current)) 3733 goto out_unlock; 3734 if (vma->anon_vma) 3735 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3736 vm_lock_anon_vma(mm, avc->anon_vma); 3737 } 3738 3739 return 0; 3740 3741 out_unlock: 3742 mm_drop_all_locks(mm); 3743 return -EINTR; 3744 } 3745 3746 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3747 { 3748 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3749 /* 3750 * The LSB of head.next can't change to 0 from under 3751 * us because we hold the mm_all_locks_mutex. 3752 * 3753 * We must however clear the bitflag before unlocking 3754 * the vma so the users using the anon_vma->rb_root will 3755 * never see our bitflag. 3756 * 3757 * No need of atomic instructions here, head.next 3758 * can't change from under us until we release the 3759 * anon_vma->root->rwsem. 3760 */ 3761 if (!__test_and_clear_bit(0, (unsigned long *) 3762 &anon_vma->root->rb_root.rb_root.rb_node)) 3763 BUG(); 3764 anon_vma_unlock_write(anon_vma); 3765 } 3766 } 3767 3768 static void vm_unlock_mapping(struct address_space *mapping) 3769 { 3770 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3771 /* 3772 * AS_MM_ALL_LOCKS can't change to 0 from under us 3773 * because we hold the mm_all_locks_mutex. 3774 */ 3775 i_mmap_unlock_write(mapping); 3776 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3777 &mapping->flags)) 3778 BUG(); 3779 } 3780 } 3781 3782 /* 3783 * The mmap_lock cannot be released by the caller until 3784 * mm_drop_all_locks() returns. 3785 */ 3786 void mm_drop_all_locks(struct mm_struct *mm) 3787 { 3788 struct vm_area_struct *vma; 3789 struct anon_vma_chain *avc; 3790 MA_STATE(mas, &mm->mm_mt, 0, 0); 3791 3792 mmap_assert_write_locked(mm); 3793 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3794 3795 mas_for_each(&mas, vma, ULONG_MAX) { 3796 if (vma->anon_vma) 3797 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3798 vm_unlock_anon_vma(avc->anon_vma); 3799 if (vma->vm_file && vma->vm_file->f_mapping) 3800 vm_unlock_mapping(vma->vm_file->f_mapping); 3801 } 3802 3803 mutex_unlock(&mm_all_locks_mutex); 3804 } 3805 3806 /* 3807 * initialise the percpu counter for VM 3808 */ 3809 void __init mmap_init(void) 3810 { 3811 int ret; 3812 3813 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3814 VM_BUG_ON(ret); 3815 } 3816 3817 /* 3818 * Initialise sysctl_user_reserve_kbytes. 3819 * 3820 * This is intended to prevent a user from starting a single memory hogging 3821 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3822 * mode. 3823 * 3824 * The default value is min(3% of free memory, 128MB) 3825 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3826 */ 3827 static int init_user_reserve(void) 3828 { 3829 unsigned long free_kbytes; 3830 3831 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3832 3833 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3834 return 0; 3835 } 3836 subsys_initcall(init_user_reserve); 3837 3838 /* 3839 * Initialise sysctl_admin_reserve_kbytes. 3840 * 3841 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3842 * to log in and kill a memory hogging process. 3843 * 3844 * Systems with more than 256MB will reserve 8MB, enough to recover 3845 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3846 * only reserve 3% of free pages by default. 3847 */ 3848 static int init_admin_reserve(void) 3849 { 3850 unsigned long free_kbytes; 3851 3852 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3853 3854 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3855 return 0; 3856 } 3857 subsys_initcall(init_admin_reserve); 3858 3859 /* 3860 * Reinititalise user and admin reserves if memory is added or removed. 3861 * 3862 * The default user reserve max is 128MB, and the default max for the 3863 * admin reserve is 8MB. These are usually, but not always, enough to 3864 * enable recovery from a memory hogging process using login/sshd, a shell, 3865 * and tools like top. It may make sense to increase or even disable the 3866 * reserve depending on the existence of swap or variations in the recovery 3867 * tools. So, the admin may have changed them. 3868 * 3869 * If memory is added and the reserves have been eliminated or increased above 3870 * the default max, then we'll trust the admin. 3871 * 3872 * If memory is removed and there isn't enough free memory, then we 3873 * need to reset the reserves. 3874 * 3875 * Otherwise keep the reserve set by the admin. 3876 */ 3877 static int reserve_mem_notifier(struct notifier_block *nb, 3878 unsigned long action, void *data) 3879 { 3880 unsigned long tmp, free_kbytes; 3881 3882 switch (action) { 3883 case MEM_ONLINE: 3884 /* Default max is 128MB. Leave alone if modified by operator. */ 3885 tmp = sysctl_user_reserve_kbytes; 3886 if (0 < tmp && tmp < (1UL << 17)) 3887 init_user_reserve(); 3888 3889 /* Default max is 8MB. Leave alone if modified by operator. */ 3890 tmp = sysctl_admin_reserve_kbytes; 3891 if (0 < tmp && tmp < (1UL << 13)) 3892 init_admin_reserve(); 3893 3894 break; 3895 case MEM_OFFLINE: 3896 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3897 3898 if (sysctl_user_reserve_kbytes > free_kbytes) { 3899 init_user_reserve(); 3900 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3901 sysctl_user_reserve_kbytes); 3902 } 3903 3904 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3905 init_admin_reserve(); 3906 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3907 sysctl_admin_reserve_kbytes); 3908 } 3909 break; 3910 default: 3911 break; 3912 } 3913 return NOTIFY_OK; 3914 } 3915 3916 static int __meminit init_reserve_notifier(void) 3917 { 3918 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 3919 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3920 3921 return 0; 3922 } 3923 subsys_initcall(init_reserve_notifier); 3924