xref: /openbmc/linux/mm/mmap.c (revision 6c8c1406)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mmap.h>
57 
58 #include "internal.h"
59 
60 #ifndef arch_mmap_check
61 #define arch_mmap_check(addr, len, flags)	(0)
62 #endif
63 
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
65 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
66 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
67 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
68 #endif
69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
70 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
71 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
72 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
73 #endif
74 
75 static bool ignore_rlimit_data;
76 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
77 
78 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
79 		struct vm_area_struct *vma, struct vm_area_struct *prev,
80 		struct vm_area_struct *next, unsigned long start,
81 		unsigned long end);
82 
83 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
84 {
85 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
86 }
87 
88 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
89 void vma_set_page_prot(struct vm_area_struct *vma)
90 {
91 	unsigned long vm_flags = vma->vm_flags;
92 	pgprot_t vm_page_prot;
93 
94 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
95 	if (vma_wants_writenotify(vma, vm_page_prot)) {
96 		vm_flags &= ~VM_SHARED;
97 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
98 	}
99 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
100 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
101 }
102 
103 /*
104  * Requires inode->i_mapping->i_mmap_rwsem
105  */
106 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
107 		struct file *file, struct address_space *mapping)
108 {
109 	if (vma->vm_flags & VM_SHARED)
110 		mapping_unmap_writable(mapping);
111 
112 	flush_dcache_mmap_lock(mapping);
113 	vma_interval_tree_remove(vma, &mapping->i_mmap);
114 	flush_dcache_mmap_unlock(mapping);
115 }
116 
117 /*
118  * Unlink a file-based vm structure from its interval tree, to hide
119  * vma from rmap and vmtruncate before freeing its page tables.
120  */
121 void unlink_file_vma(struct vm_area_struct *vma)
122 {
123 	struct file *file = vma->vm_file;
124 
125 	if (file) {
126 		struct address_space *mapping = file->f_mapping;
127 		i_mmap_lock_write(mapping);
128 		__remove_shared_vm_struct(vma, file, mapping);
129 		i_mmap_unlock_write(mapping);
130 	}
131 }
132 
133 /*
134  * Close a vm structure and free it.
135  */
136 static void remove_vma(struct vm_area_struct *vma)
137 {
138 	might_sleep();
139 	if (vma->vm_ops && vma->vm_ops->close)
140 		vma->vm_ops->close(vma);
141 	if (vma->vm_file)
142 		fput(vma->vm_file);
143 	mpol_put(vma_policy(vma));
144 	vm_area_free(vma);
145 }
146 
147 /*
148  * check_brk_limits() - Use platform specific check of range & verify mlock
149  * limits.
150  * @addr: The address to check
151  * @len: The size of increase.
152  *
153  * Return: 0 on success.
154  */
155 static int check_brk_limits(unsigned long addr, unsigned long len)
156 {
157 	unsigned long mapped_addr;
158 
159 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
160 	if (IS_ERR_VALUE(mapped_addr))
161 		return mapped_addr;
162 
163 	return mlock_future_check(current->mm, current->mm->def_flags, len);
164 }
165 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma,
166 			 unsigned long newbrk, unsigned long oldbrk,
167 			 struct list_head *uf);
168 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *brkvma,
169 		unsigned long addr, unsigned long request, unsigned long flags);
170 SYSCALL_DEFINE1(brk, unsigned long, brk)
171 {
172 	unsigned long newbrk, oldbrk, origbrk;
173 	struct mm_struct *mm = current->mm;
174 	struct vm_area_struct *brkvma, *next = NULL;
175 	unsigned long min_brk;
176 	bool populate;
177 	bool downgraded = false;
178 	LIST_HEAD(uf);
179 	MA_STATE(mas, &mm->mm_mt, 0, 0);
180 
181 	if (mmap_write_lock_killable(mm))
182 		return -EINTR;
183 
184 	origbrk = mm->brk;
185 
186 #ifdef CONFIG_COMPAT_BRK
187 	/*
188 	 * CONFIG_COMPAT_BRK can still be overridden by setting
189 	 * randomize_va_space to 2, which will still cause mm->start_brk
190 	 * to be arbitrarily shifted
191 	 */
192 	if (current->brk_randomized)
193 		min_brk = mm->start_brk;
194 	else
195 		min_brk = mm->end_data;
196 #else
197 	min_brk = mm->start_brk;
198 #endif
199 	if (brk < min_brk)
200 		goto out;
201 
202 	/*
203 	 * Check against rlimit here. If this check is done later after the test
204 	 * of oldbrk with newbrk then it can escape the test and let the data
205 	 * segment grow beyond its set limit the in case where the limit is
206 	 * not page aligned -Ram Gupta
207 	 */
208 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
209 			      mm->end_data, mm->start_data))
210 		goto out;
211 
212 	newbrk = PAGE_ALIGN(brk);
213 	oldbrk = PAGE_ALIGN(mm->brk);
214 	if (oldbrk == newbrk) {
215 		mm->brk = brk;
216 		goto success;
217 	}
218 
219 	/*
220 	 * Always allow shrinking brk.
221 	 * do_brk_munmap() may downgrade mmap_lock to read.
222 	 */
223 	if (brk <= mm->brk) {
224 		int ret;
225 
226 		/* Search one past newbrk */
227 		mas_set(&mas, newbrk);
228 		brkvma = mas_find(&mas, oldbrk);
229 		BUG_ON(brkvma == NULL);
230 		if (brkvma->vm_start >= oldbrk)
231 			goto out; /* mapping intersects with an existing non-brk vma. */
232 		/*
233 		 * mm->brk must be protected by write mmap_lock.
234 		 * do_brk_munmap() may downgrade the lock,  so update it
235 		 * before calling do_brk_munmap().
236 		 */
237 		mm->brk = brk;
238 		ret = do_brk_munmap(&mas, brkvma, newbrk, oldbrk, &uf);
239 		if (ret == 1)  {
240 			downgraded = true;
241 			goto success;
242 		} else if (!ret)
243 			goto success;
244 
245 		mm->brk = origbrk;
246 		goto out;
247 	}
248 
249 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
250 		goto out;
251 
252 	/*
253 	 * Only check if the next VMA is within the stack_guard_gap of the
254 	 * expansion area
255 	 */
256 	mas_set(&mas, oldbrk);
257 	next = mas_find(&mas, newbrk - 1 + PAGE_SIZE + stack_guard_gap);
258 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
259 		goto out;
260 
261 	brkvma = mas_prev(&mas, mm->start_brk);
262 	/* Ok, looks good - let it rip. */
263 	if (do_brk_flags(&mas, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
264 		goto out;
265 
266 	mm->brk = brk;
267 
268 success:
269 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
270 	if (downgraded)
271 		mmap_read_unlock(mm);
272 	else
273 		mmap_write_unlock(mm);
274 	userfaultfd_unmap_complete(mm, &uf);
275 	if (populate)
276 		mm_populate(oldbrk, newbrk - oldbrk);
277 	return brk;
278 
279 out:
280 	mmap_write_unlock(mm);
281 	return origbrk;
282 }
283 
284 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
285 extern void mt_validate(struct maple_tree *mt);
286 extern void mt_dump(const struct maple_tree *mt);
287 
288 /* Validate the maple tree */
289 static void validate_mm_mt(struct mm_struct *mm)
290 {
291 	struct maple_tree *mt = &mm->mm_mt;
292 	struct vm_area_struct *vma_mt;
293 
294 	MA_STATE(mas, mt, 0, 0);
295 
296 	mt_validate(&mm->mm_mt);
297 	mas_for_each(&mas, vma_mt, ULONG_MAX) {
298 		if ((vma_mt->vm_start != mas.index) ||
299 		    (vma_mt->vm_end - 1 != mas.last)) {
300 			pr_emerg("issue in %s\n", current->comm);
301 			dump_stack();
302 			dump_vma(vma_mt);
303 			pr_emerg("mt piv: %p %lu - %lu\n", vma_mt,
304 				 mas.index, mas.last);
305 			pr_emerg("mt vma: %p %lu - %lu\n", vma_mt,
306 				 vma_mt->vm_start, vma_mt->vm_end);
307 
308 			mt_dump(mas.tree);
309 			if (vma_mt->vm_end != mas.last + 1) {
310 				pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n",
311 						mm, vma_mt->vm_start, vma_mt->vm_end,
312 						mas.index, mas.last);
313 				mt_dump(mas.tree);
314 			}
315 			VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm);
316 			if (vma_mt->vm_start != mas.index) {
317 				pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n",
318 						mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end);
319 				mt_dump(mas.tree);
320 			}
321 			VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm);
322 		}
323 	}
324 }
325 
326 static void validate_mm(struct mm_struct *mm)
327 {
328 	int bug = 0;
329 	int i = 0;
330 	struct vm_area_struct *vma;
331 	MA_STATE(mas, &mm->mm_mt, 0, 0);
332 
333 	validate_mm_mt(mm);
334 
335 	mas_for_each(&mas, vma, ULONG_MAX) {
336 #ifdef CONFIG_DEBUG_VM_RB
337 		struct anon_vma *anon_vma = vma->anon_vma;
338 		struct anon_vma_chain *avc;
339 
340 		if (anon_vma) {
341 			anon_vma_lock_read(anon_vma);
342 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
343 				anon_vma_interval_tree_verify(avc);
344 			anon_vma_unlock_read(anon_vma);
345 		}
346 #endif
347 		i++;
348 	}
349 	if (i != mm->map_count) {
350 		pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i);
351 		bug = 1;
352 	}
353 	VM_BUG_ON_MM(bug, mm);
354 }
355 
356 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
357 #define validate_mm_mt(root) do { } while (0)
358 #define validate_mm(mm) do { } while (0)
359 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
360 
361 /*
362  * vma has some anon_vma assigned, and is already inserted on that
363  * anon_vma's interval trees.
364  *
365  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
366  * vma must be removed from the anon_vma's interval trees using
367  * anon_vma_interval_tree_pre_update_vma().
368  *
369  * After the update, the vma will be reinserted using
370  * anon_vma_interval_tree_post_update_vma().
371  *
372  * The entire update must be protected by exclusive mmap_lock and by
373  * the root anon_vma's mutex.
374  */
375 static inline void
376 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
377 {
378 	struct anon_vma_chain *avc;
379 
380 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
381 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
382 }
383 
384 static inline void
385 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
386 {
387 	struct anon_vma_chain *avc;
388 
389 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
390 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
391 }
392 
393 static unsigned long count_vma_pages_range(struct mm_struct *mm,
394 		unsigned long addr, unsigned long end)
395 {
396 	VMA_ITERATOR(vmi, mm, addr);
397 	struct vm_area_struct *vma;
398 	unsigned long nr_pages = 0;
399 
400 	for_each_vma_range(vmi, vma, end) {
401 		unsigned long vm_start = max(addr, vma->vm_start);
402 		unsigned long vm_end = min(end, vma->vm_end);
403 
404 		nr_pages += PHYS_PFN(vm_end - vm_start);
405 	}
406 
407 	return nr_pages;
408 }
409 
410 static void __vma_link_file(struct vm_area_struct *vma,
411 			    struct address_space *mapping)
412 {
413 	if (vma->vm_flags & VM_SHARED)
414 		mapping_allow_writable(mapping);
415 
416 	flush_dcache_mmap_lock(mapping);
417 	vma_interval_tree_insert(vma, &mapping->i_mmap);
418 	flush_dcache_mmap_unlock(mapping);
419 }
420 
421 /*
422  * vma_mas_store() - Store a VMA in the maple tree.
423  * @vma: The vm_area_struct
424  * @mas: The maple state
425  *
426  * Efficient way to store a VMA in the maple tree when the @mas has already
427  * walked to the correct location.
428  *
429  * Note: the end address is inclusive in the maple tree.
430  */
431 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas)
432 {
433 	trace_vma_store(mas->tree, vma);
434 	mas_set_range(mas, vma->vm_start, vma->vm_end - 1);
435 	mas_store_prealloc(mas, vma);
436 }
437 
438 /*
439  * vma_mas_remove() - Remove a VMA from the maple tree.
440  * @vma: The vm_area_struct
441  * @mas: The maple state
442  *
443  * Efficient way to remove a VMA from the maple tree when the @mas has already
444  * been established and points to the correct location.
445  * Note: the end address is inclusive in the maple tree.
446  */
447 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas)
448 {
449 	trace_vma_mas_szero(mas->tree, vma->vm_start, vma->vm_end - 1);
450 	mas->index = vma->vm_start;
451 	mas->last = vma->vm_end - 1;
452 	mas_store_prealloc(mas, NULL);
453 }
454 
455 /*
456  * vma_mas_szero() - Set a given range to zero.  Used when modifying a
457  * vm_area_struct start or end.
458  *
459  * @mm: The struct_mm
460  * @start: The start address to zero
461  * @end: The end address to zero.
462  */
463 static inline void vma_mas_szero(struct ma_state *mas, unsigned long start,
464 				unsigned long end)
465 {
466 	trace_vma_mas_szero(mas->tree, start, end - 1);
467 	mas_set_range(mas, start, end - 1);
468 	mas_store_prealloc(mas, NULL);
469 }
470 
471 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
472 {
473 	MA_STATE(mas, &mm->mm_mt, 0, 0);
474 	struct address_space *mapping = NULL;
475 
476 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
477 		return -ENOMEM;
478 
479 	if (vma->vm_file) {
480 		mapping = vma->vm_file->f_mapping;
481 		i_mmap_lock_write(mapping);
482 	}
483 
484 	vma_mas_store(vma, &mas);
485 
486 	if (mapping) {
487 		__vma_link_file(vma, mapping);
488 		i_mmap_unlock_write(mapping);
489 	}
490 
491 	mm->map_count++;
492 	validate_mm(mm);
493 	return 0;
494 }
495 
496 /*
497  * vma_expand - Expand an existing VMA
498  *
499  * @mas: The maple state
500  * @vma: The vma to expand
501  * @start: The start of the vma
502  * @end: The exclusive end of the vma
503  * @pgoff: The page offset of vma
504  * @next: The current of next vma.
505  *
506  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
507  * expand over @next if it's different from @vma and @end == @next->vm_end.
508  * Checking if the @vma can expand and merge with @next needs to be handled by
509  * the caller.
510  *
511  * Returns: 0 on success
512  */
513 inline int vma_expand(struct ma_state *mas, struct vm_area_struct *vma,
514 		      unsigned long start, unsigned long end, pgoff_t pgoff,
515 		      struct vm_area_struct *next)
516 {
517 	struct mm_struct *mm = vma->vm_mm;
518 	struct address_space *mapping = NULL;
519 	struct rb_root_cached *root = NULL;
520 	struct anon_vma *anon_vma = vma->anon_vma;
521 	struct file *file = vma->vm_file;
522 	bool remove_next = false;
523 
524 	if (next && (vma != next) && (end == next->vm_end)) {
525 		remove_next = true;
526 		if (next->anon_vma && !vma->anon_vma) {
527 			int error;
528 
529 			anon_vma = next->anon_vma;
530 			vma->anon_vma = anon_vma;
531 			error = anon_vma_clone(vma, next);
532 			if (error)
533 				return error;
534 		}
535 	}
536 
537 	/* Not merging but overwriting any part of next is not handled. */
538 	VM_BUG_ON(next && !remove_next && next != vma && end > next->vm_start);
539 	/* Only handles expanding */
540 	VM_BUG_ON(vma->vm_start < start || vma->vm_end > end);
541 
542 	if (mas_preallocate(mas, vma, GFP_KERNEL))
543 		goto nomem;
544 
545 	vma_adjust_trans_huge(vma, start, end, 0);
546 
547 	if (file) {
548 		mapping = file->f_mapping;
549 		root = &mapping->i_mmap;
550 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
551 		i_mmap_lock_write(mapping);
552 	}
553 
554 	if (anon_vma) {
555 		anon_vma_lock_write(anon_vma);
556 		anon_vma_interval_tree_pre_update_vma(vma);
557 	}
558 
559 	if (file) {
560 		flush_dcache_mmap_lock(mapping);
561 		vma_interval_tree_remove(vma, root);
562 	}
563 
564 	vma->vm_start = start;
565 	vma->vm_end = end;
566 	vma->vm_pgoff = pgoff;
567 	/* Note: mas must be pointing to the expanding VMA */
568 	vma_mas_store(vma, mas);
569 
570 	if (file) {
571 		vma_interval_tree_insert(vma, root);
572 		flush_dcache_mmap_unlock(mapping);
573 	}
574 
575 	/* Expanding over the next vma */
576 	if (remove_next && file) {
577 		__remove_shared_vm_struct(next, file, mapping);
578 	}
579 
580 	if (anon_vma) {
581 		anon_vma_interval_tree_post_update_vma(vma);
582 		anon_vma_unlock_write(anon_vma);
583 	}
584 
585 	if (file) {
586 		i_mmap_unlock_write(mapping);
587 		uprobe_mmap(vma);
588 	}
589 
590 	if (remove_next) {
591 		if (file) {
592 			uprobe_munmap(next, next->vm_start, next->vm_end);
593 			fput(file);
594 		}
595 		if (next->anon_vma)
596 			anon_vma_merge(vma, next);
597 		mm->map_count--;
598 		mpol_put(vma_policy(next));
599 		vm_area_free(next);
600 	}
601 
602 	validate_mm(mm);
603 	return 0;
604 
605 nomem:
606 	return -ENOMEM;
607 }
608 
609 /*
610  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
611  * is already present in an i_mmap tree without adjusting the tree.
612  * The following helper function should be used when such adjustments
613  * are necessary.  The "insert" vma (if any) is to be inserted
614  * before we drop the necessary locks.
615  */
616 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
617 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
618 	struct vm_area_struct *expand)
619 {
620 	struct mm_struct *mm = vma->vm_mm;
621 	struct vm_area_struct *next_next = NULL;	/* uninit var warning */
622 	struct vm_area_struct *next = find_vma(mm, vma->vm_end);
623 	struct vm_area_struct *orig_vma = vma;
624 	struct address_space *mapping = NULL;
625 	struct rb_root_cached *root = NULL;
626 	struct anon_vma *anon_vma = NULL;
627 	struct file *file = vma->vm_file;
628 	bool vma_changed = false;
629 	long adjust_next = 0;
630 	int remove_next = 0;
631 	MA_STATE(mas, &mm->mm_mt, 0, 0);
632 	struct vm_area_struct *exporter = NULL, *importer = NULL;
633 
634 	if (next && !insert) {
635 		if (end >= next->vm_end) {
636 			/*
637 			 * vma expands, overlapping all the next, and
638 			 * perhaps the one after too (mprotect case 6).
639 			 * The only other cases that gets here are
640 			 * case 1, case 7 and case 8.
641 			 */
642 			if (next == expand) {
643 				/*
644 				 * The only case where we don't expand "vma"
645 				 * and we expand "next" instead is case 8.
646 				 */
647 				VM_WARN_ON(end != next->vm_end);
648 				/*
649 				 * remove_next == 3 means we're
650 				 * removing "vma" and that to do so we
651 				 * swapped "vma" and "next".
652 				 */
653 				remove_next = 3;
654 				VM_WARN_ON(file != next->vm_file);
655 				swap(vma, next);
656 			} else {
657 				VM_WARN_ON(expand != vma);
658 				/*
659 				 * case 1, 6, 7, remove_next == 2 is case 6,
660 				 * remove_next == 1 is case 1 or 7.
661 				 */
662 				remove_next = 1 + (end > next->vm_end);
663 				if (remove_next == 2)
664 					next_next = find_vma(mm, next->vm_end);
665 
666 				VM_WARN_ON(remove_next == 2 &&
667 					   end != next_next->vm_end);
668 			}
669 
670 			exporter = next;
671 			importer = vma;
672 
673 			/*
674 			 * If next doesn't have anon_vma, import from vma after
675 			 * next, if the vma overlaps with it.
676 			 */
677 			if (remove_next == 2 && !next->anon_vma)
678 				exporter = next_next;
679 
680 		} else if (end > next->vm_start) {
681 			/*
682 			 * vma expands, overlapping part of the next:
683 			 * mprotect case 5 shifting the boundary up.
684 			 */
685 			adjust_next = (end - next->vm_start);
686 			exporter = next;
687 			importer = vma;
688 			VM_WARN_ON(expand != importer);
689 		} else if (end < vma->vm_end) {
690 			/*
691 			 * vma shrinks, and !insert tells it's not
692 			 * split_vma inserting another: so it must be
693 			 * mprotect case 4 shifting the boundary down.
694 			 */
695 			adjust_next = -(vma->vm_end - end);
696 			exporter = vma;
697 			importer = next;
698 			VM_WARN_ON(expand != importer);
699 		}
700 
701 		/*
702 		 * Easily overlooked: when mprotect shifts the boundary,
703 		 * make sure the expanding vma has anon_vma set if the
704 		 * shrinking vma had, to cover any anon pages imported.
705 		 */
706 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
707 			int error;
708 
709 			importer->anon_vma = exporter->anon_vma;
710 			error = anon_vma_clone(importer, exporter);
711 			if (error)
712 				return error;
713 		}
714 	}
715 
716 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
717 		return -ENOMEM;
718 
719 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
720 	if (file) {
721 		mapping = file->f_mapping;
722 		root = &mapping->i_mmap;
723 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
724 
725 		if (adjust_next)
726 			uprobe_munmap(next, next->vm_start, next->vm_end);
727 
728 		i_mmap_lock_write(mapping);
729 		if (insert && insert->vm_file) {
730 			/*
731 			 * Put into interval tree now, so instantiated pages
732 			 * are visible to arm/parisc __flush_dcache_page
733 			 * throughout; but we cannot insert into address
734 			 * space until vma start or end is updated.
735 			 */
736 			__vma_link_file(insert, insert->vm_file->f_mapping);
737 		}
738 	}
739 
740 	anon_vma = vma->anon_vma;
741 	if (!anon_vma && adjust_next)
742 		anon_vma = next->anon_vma;
743 	if (anon_vma) {
744 		VM_WARN_ON(adjust_next && next->anon_vma &&
745 			   anon_vma != next->anon_vma);
746 		anon_vma_lock_write(anon_vma);
747 		anon_vma_interval_tree_pre_update_vma(vma);
748 		if (adjust_next)
749 			anon_vma_interval_tree_pre_update_vma(next);
750 	}
751 
752 	if (file) {
753 		flush_dcache_mmap_lock(mapping);
754 		vma_interval_tree_remove(vma, root);
755 		if (adjust_next)
756 			vma_interval_tree_remove(next, root);
757 	}
758 
759 	if (start != vma->vm_start) {
760 		if ((vma->vm_start < start) &&
761 		    (!insert || (insert->vm_end != start))) {
762 			vma_mas_szero(&mas, vma->vm_start, start);
763 			VM_WARN_ON(insert && insert->vm_start > vma->vm_start);
764 		} else {
765 			vma_changed = true;
766 		}
767 		vma->vm_start = start;
768 	}
769 	if (end != vma->vm_end) {
770 		if (vma->vm_end > end) {
771 			if (!insert || (insert->vm_start != end)) {
772 				vma_mas_szero(&mas, end, vma->vm_end);
773 				mas_reset(&mas);
774 				VM_WARN_ON(insert &&
775 					   insert->vm_end < vma->vm_end);
776 			}
777 		} else {
778 			vma_changed = true;
779 		}
780 		vma->vm_end = end;
781 	}
782 
783 	if (vma_changed)
784 		vma_mas_store(vma, &mas);
785 
786 	vma->vm_pgoff = pgoff;
787 	if (adjust_next) {
788 		next->vm_start += adjust_next;
789 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
790 		vma_mas_store(next, &mas);
791 	}
792 
793 	if (file) {
794 		if (adjust_next)
795 			vma_interval_tree_insert(next, root);
796 		vma_interval_tree_insert(vma, root);
797 		flush_dcache_mmap_unlock(mapping);
798 	}
799 
800 	if (remove_next && file) {
801 		__remove_shared_vm_struct(next, file, mapping);
802 		if (remove_next == 2)
803 			__remove_shared_vm_struct(next_next, file, mapping);
804 	} else if (insert) {
805 		/*
806 		 * split_vma has split insert from vma, and needs
807 		 * us to insert it before dropping the locks
808 		 * (it may either follow vma or precede it).
809 		 */
810 		mas_reset(&mas);
811 		vma_mas_store(insert, &mas);
812 		mm->map_count++;
813 	}
814 
815 	if (anon_vma) {
816 		anon_vma_interval_tree_post_update_vma(vma);
817 		if (adjust_next)
818 			anon_vma_interval_tree_post_update_vma(next);
819 		anon_vma_unlock_write(anon_vma);
820 	}
821 
822 	if (file) {
823 		i_mmap_unlock_write(mapping);
824 		uprobe_mmap(vma);
825 
826 		if (adjust_next)
827 			uprobe_mmap(next);
828 	}
829 
830 	if (remove_next) {
831 again:
832 		if (file) {
833 			uprobe_munmap(next, next->vm_start, next->vm_end);
834 			fput(file);
835 		}
836 		if (next->anon_vma)
837 			anon_vma_merge(vma, next);
838 		mm->map_count--;
839 		mpol_put(vma_policy(next));
840 		if (remove_next != 2)
841 			BUG_ON(vma->vm_end < next->vm_end);
842 		vm_area_free(next);
843 
844 		/*
845 		 * In mprotect's case 6 (see comments on vma_merge),
846 		 * we must remove next_next too.
847 		 */
848 		if (remove_next == 2) {
849 			remove_next = 1;
850 			next = next_next;
851 			goto again;
852 		}
853 	}
854 	if (insert && file)
855 		uprobe_mmap(insert);
856 
857 	mas_destroy(&mas);
858 	validate_mm(mm);
859 
860 	return 0;
861 }
862 
863 /*
864  * If the vma has a ->close operation then the driver probably needs to release
865  * per-vma resources, so we don't attempt to merge those.
866  */
867 static inline int is_mergeable_vma(struct vm_area_struct *vma,
868 				struct file *file, unsigned long vm_flags,
869 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
870 				struct anon_vma_name *anon_name)
871 {
872 	/*
873 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
874 	 * match the flags but dirty bit -- the caller should mark
875 	 * merged VMA as dirty. If dirty bit won't be excluded from
876 	 * comparison, we increase pressure on the memory system forcing
877 	 * the kernel to generate new VMAs when old one could be
878 	 * extended instead.
879 	 */
880 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
881 		return 0;
882 	if (vma->vm_file != file)
883 		return 0;
884 	if (vma->vm_ops && vma->vm_ops->close)
885 		return 0;
886 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
887 		return 0;
888 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
889 		return 0;
890 	return 1;
891 }
892 
893 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
894 					struct anon_vma *anon_vma2,
895 					struct vm_area_struct *vma)
896 {
897 	/*
898 	 * The list_is_singular() test is to avoid merging VMA cloned from
899 	 * parents. This can improve scalability caused by anon_vma lock.
900 	 */
901 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
902 		list_is_singular(&vma->anon_vma_chain)))
903 		return 1;
904 	return anon_vma1 == anon_vma2;
905 }
906 
907 /*
908  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
909  * in front of (at a lower virtual address and file offset than) the vma.
910  *
911  * We cannot merge two vmas if they have differently assigned (non-NULL)
912  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
913  *
914  * We don't check here for the merged mmap wrapping around the end of pagecache
915  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
916  * wrap, nor mmaps which cover the final page at index -1UL.
917  */
918 static int
919 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
920 		     struct anon_vma *anon_vma, struct file *file,
921 		     pgoff_t vm_pgoff,
922 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
923 		     struct anon_vma_name *anon_name)
924 {
925 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
926 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
927 		if (vma->vm_pgoff == vm_pgoff)
928 			return 1;
929 	}
930 	return 0;
931 }
932 
933 /*
934  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
935  * beyond (at a higher virtual address and file offset than) the vma.
936  *
937  * We cannot merge two vmas if they have differently assigned (non-NULL)
938  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
939  */
940 static int
941 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
942 		    struct anon_vma *anon_vma, struct file *file,
943 		    pgoff_t vm_pgoff,
944 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
945 		    struct anon_vma_name *anon_name)
946 {
947 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
948 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
949 		pgoff_t vm_pglen;
950 		vm_pglen = vma_pages(vma);
951 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
952 			return 1;
953 	}
954 	return 0;
955 }
956 
957 /*
958  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
959  * figure out whether that can be merged with its predecessor or its
960  * successor.  Or both (it neatly fills a hole).
961  *
962  * In most cases - when called for mmap, brk or mremap - [addr,end) is
963  * certain not to be mapped by the time vma_merge is called; but when
964  * called for mprotect, it is certain to be already mapped (either at
965  * an offset within prev, or at the start of next), and the flags of
966  * this area are about to be changed to vm_flags - and the no-change
967  * case has already been eliminated.
968  *
969  * The following mprotect cases have to be considered, where AAAA is
970  * the area passed down from mprotect_fixup, never extending beyond one
971  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
972  *
973  *     AAAA             AAAA                   AAAA
974  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
975  *    cannot merge    might become       might become
976  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
977  *    mmap, brk or    case 4 below       case 5 below
978  *    mremap move:
979  *                        AAAA               AAAA
980  *                    PPPP    NNNN       PPPPNNNNXXXX
981  *                    might become       might become
982  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
983  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
984  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
985  *
986  * It is important for case 8 that the vma NNNN overlapping the
987  * region AAAA is never going to extended over XXXX. Instead XXXX must
988  * be extended in region AAAA and NNNN must be removed. This way in
989  * all cases where vma_merge succeeds, the moment vma_adjust drops the
990  * rmap_locks, the properties of the merged vma will be already
991  * correct for the whole merged range. Some of those properties like
992  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
993  * be correct for the whole merged range immediately after the
994  * rmap_locks are released. Otherwise if XXXX would be removed and
995  * NNNN would be extended over the XXXX range, remove_migration_ptes
996  * or other rmap walkers (if working on addresses beyond the "end"
997  * parameter) may establish ptes with the wrong permissions of NNNN
998  * instead of the right permissions of XXXX.
999  */
1000 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1001 			struct vm_area_struct *prev, unsigned long addr,
1002 			unsigned long end, unsigned long vm_flags,
1003 			struct anon_vma *anon_vma, struct file *file,
1004 			pgoff_t pgoff, struct mempolicy *policy,
1005 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1006 			struct anon_vma_name *anon_name)
1007 {
1008 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1009 	struct vm_area_struct *mid, *next, *res;
1010 	int err = -1;
1011 	bool merge_prev = false;
1012 	bool merge_next = false;
1013 
1014 	/*
1015 	 * We later require that vma->vm_flags == vm_flags,
1016 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1017 	 */
1018 	if (vm_flags & VM_SPECIAL)
1019 		return NULL;
1020 
1021 	next = find_vma(mm, prev ? prev->vm_end : 0);
1022 	mid = next;
1023 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1024 		next = find_vma(mm, next->vm_end);
1025 
1026 	/* verify some invariant that must be enforced by the caller */
1027 	VM_WARN_ON(prev && addr <= prev->vm_start);
1028 	VM_WARN_ON(mid && end > mid->vm_end);
1029 	VM_WARN_ON(addr >= end);
1030 
1031 	/* Can we merge the predecessor? */
1032 	if (prev && prev->vm_end == addr &&
1033 			mpol_equal(vma_policy(prev), policy) &&
1034 			can_vma_merge_after(prev, vm_flags,
1035 					    anon_vma, file, pgoff,
1036 					    vm_userfaultfd_ctx, anon_name)) {
1037 		merge_prev = true;
1038 	}
1039 	/* Can we merge the successor? */
1040 	if (next && end == next->vm_start &&
1041 			mpol_equal(policy, vma_policy(next)) &&
1042 			can_vma_merge_before(next, vm_flags,
1043 					     anon_vma, file, pgoff+pglen,
1044 					     vm_userfaultfd_ctx, anon_name)) {
1045 		merge_next = true;
1046 	}
1047 	/* Can we merge both the predecessor and the successor? */
1048 	if (merge_prev && merge_next &&
1049 			is_mergeable_anon_vma(prev->anon_vma,
1050 				next->anon_vma, NULL)) {	 /* cases 1, 6 */
1051 		err = __vma_adjust(prev, prev->vm_start,
1052 					next->vm_end, prev->vm_pgoff, NULL,
1053 					prev);
1054 		res = prev;
1055 	} else if (merge_prev) {			/* cases 2, 5, 7 */
1056 		err = __vma_adjust(prev, prev->vm_start,
1057 					end, prev->vm_pgoff, NULL, prev);
1058 		res = prev;
1059 	} else if (merge_next) {
1060 		if (prev && addr < prev->vm_end)	/* case 4 */
1061 			err = __vma_adjust(prev, prev->vm_start,
1062 					addr, prev->vm_pgoff, NULL, next);
1063 		else					/* cases 3, 8 */
1064 			err = __vma_adjust(mid, addr, next->vm_end,
1065 					next->vm_pgoff - pglen, NULL, next);
1066 		res = next;
1067 	}
1068 
1069 	/*
1070 	 * Cannot merge with predecessor or successor or error in __vma_adjust?
1071 	 */
1072 	if (err)
1073 		return NULL;
1074 	khugepaged_enter_vma(res, vm_flags);
1075 	return res;
1076 }
1077 
1078 /*
1079  * Rough compatibility check to quickly see if it's even worth looking
1080  * at sharing an anon_vma.
1081  *
1082  * They need to have the same vm_file, and the flags can only differ
1083  * in things that mprotect may change.
1084  *
1085  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1086  * we can merge the two vma's. For example, we refuse to merge a vma if
1087  * there is a vm_ops->close() function, because that indicates that the
1088  * driver is doing some kind of reference counting. But that doesn't
1089  * really matter for the anon_vma sharing case.
1090  */
1091 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1092 {
1093 	return a->vm_end == b->vm_start &&
1094 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1095 		a->vm_file == b->vm_file &&
1096 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1097 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1098 }
1099 
1100 /*
1101  * Do some basic sanity checking to see if we can re-use the anon_vma
1102  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1103  * the same as 'old', the other will be the new one that is trying
1104  * to share the anon_vma.
1105  *
1106  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1107  * the anon_vma of 'old' is concurrently in the process of being set up
1108  * by another page fault trying to merge _that_. But that's ok: if it
1109  * is being set up, that automatically means that it will be a singleton
1110  * acceptable for merging, so we can do all of this optimistically. But
1111  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1112  *
1113  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1114  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1115  * is to return an anon_vma that is "complex" due to having gone through
1116  * a fork).
1117  *
1118  * We also make sure that the two vma's are compatible (adjacent,
1119  * and with the same memory policies). That's all stable, even with just
1120  * a read lock on the mmap_lock.
1121  */
1122 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1123 {
1124 	if (anon_vma_compatible(a, b)) {
1125 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1126 
1127 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1128 			return anon_vma;
1129 	}
1130 	return NULL;
1131 }
1132 
1133 /*
1134  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1135  * neighbouring vmas for a suitable anon_vma, before it goes off
1136  * to allocate a new anon_vma.  It checks because a repetitive
1137  * sequence of mprotects and faults may otherwise lead to distinct
1138  * anon_vmas being allocated, preventing vma merge in subsequent
1139  * mprotect.
1140  */
1141 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1142 {
1143 	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1144 	struct anon_vma *anon_vma = NULL;
1145 	struct vm_area_struct *prev, *next;
1146 
1147 	/* Try next first. */
1148 	next = mas_walk(&mas);
1149 	if (next) {
1150 		anon_vma = reusable_anon_vma(next, vma, next);
1151 		if (anon_vma)
1152 			return anon_vma;
1153 	}
1154 
1155 	prev = mas_prev(&mas, 0);
1156 	VM_BUG_ON_VMA(prev != vma, vma);
1157 	prev = mas_prev(&mas, 0);
1158 	/* Try prev next. */
1159 	if (prev)
1160 		anon_vma = reusable_anon_vma(prev, prev, vma);
1161 
1162 	/*
1163 	 * We might reach here with anon_vma == NULL if we can't find
1164 	 * any reusable anon_vma.
1165 	 * There's no absolute need to look only at touching neighbours:
1166 	 * we could search further afield for "compatible" anon_vmas.
1167 	 * But it would probably just be a waste of time searching,
1168 	 * or lead to too many vmas hanging off the same anon_vma.
1169 	 * We're trying to allow mprotect remerging later on,
1170 	 * not trying to minimize memory used for anon_vmas.
1171 	 */
1172 	return anon_vma;
1173 }
1174 
1175 /*
1176  * If a hint addr is less than mmap_min_addr change hint to be as
1177  * low as possible but still greater than mmap_min_addr
1178  */
1179 static inline unsigned long round_hint_to_min(unsigned long hint)
1180 {
1181 	hint &= PAGE_MASK;
1182 	if (((void *)hint != NULL) &&
1183 	    (hint < mmap_min_addr))
1184 		return PAGE_ALIGN(mmap_min_addr);
1185 	return hint;
1186 }
1187 
1188 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1189 		       unsigned long len)
1190 {
1191 	unsigned long locked, lock_limit;
1192 
1193 	/*  mlock MCL_FUTURE? */
1194 	if (flags & VM_LOCKED) {
1195 		locked = len >> PAGE_SHIFT;
1196 		locked += mm->locked_vm;
1197 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1198 		lock_limit >>= PAGE_SHIFT;
1199 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1200 			return -EAGAIN;
1201 	}
1202 	return 0;
1203 }
1204 
1205 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1206 {
1207 	if (S_ISREG(inode->i_mode))
1208 		return MAX_LFS_FILESIZE;
1209 
1210 	if (S_ISBLK(inode->i_mode))
1211 		return MAX_LFS_FILESIZE;
1212 
1213 	if (S_ISSOCK(inode->i_mode))
1214 		return MAX_LFS_FILESIZE;
1215 
1216 	/* Special "we do even unsigned file positions" case */
1217 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1218 		return 0;
1219 
1220 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1221 	return ULONG_MAX;
1222 }
1223 
1224 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1225 				unsigned long pgoff, unsigned long len)
1226 {
1227 	u64 maxsize = file_mmap_size_max(file, inode);
1228 
1229 	if (maxsize && len > maxsize)
1230 		return false;
1231 	maxsize -= len;
1232 	if (pgoff > maxsize >> PAGE_SHIFT)
1233 		return false;
1234 	return true;
1235 }
1236 
1237 /*
1238  * The caller must write-lock current->mm->mmap_lock.
1239  */
1240 unsigned long do_mmap(struct file *file, unsigned long addr,
1241 			unsigned long len, unsigned long prot,
1242 			unsigned long flags, unsigned long pgoff,
1243 			unsigned long *populate, struct list_head *uf)
1244 {
1245 	struct mm_struct *mm = current->mm;
1246 	vm_flags_t vm_flags;
1247 	int pkey = 0;
1248 
1249 	validate_mm(mm);
1250 	*populate = 0;
1251 
1252 	if (!len)
1253 		return -EINVAL;
1254 
1255 	/*
1256 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1257 	 *
1258 	 * (the exception is when the underlying filesystem is noexec
1259 	 *  mounted, in which case we dont add PROT_EXEC.)
1260 	 */
1261 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1262 		if (!(file && path_noexec(&file->f_path)))
1263 			prot |= PROT_EXEC;
1264 
1265 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1266 	if (flags & MAP_FIXED_NOREPLACE)
1267 		flags |= MAP_FIXED;
1268 
1269 	if (!(flags & MAP_FIXED))
1270 		addr = round_hint_to_min(addr);
1271 
1272 	/* Careful about overflows.. */
1273 	len = PAGE_ALIGN(len);
1274 	if (!len)
1275 		return -ENOMEM;
1276 
1277 	/* offset overflow? */
1278 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1279 		return -EOVERFLOW;
1280 
1281 	/* Too many mappings? */
1282 	if (mm->map_count > sysctl_max_map_count)
1283 		return -ENOMEM;
1284 
1285 	/* Obtain the address to map to. we verify (or select) it and ensure
1286 	 * that it represents a valid section of the address space.
1287 	 */
1288 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1289 	if (IS_ERR_VALUE(addr))
1290 		return addr;
1291 
1292 	if (flags & MAP_FIXED_NOREPLACE) {
1293 		if (find_vma_intersection(mm, addr, addr + len))
1294 			return -EEXIST;
1295 	}
1296 
1297 	if (prot == PROT_EXEC) {
1298 		pkey = execute_only_pkey(mm);
1299 		if (pkey < 0)
1300 			pkey = 0;
1301 	}
1302 
1303 	/* Do simple checking here so the lower-level routines won't have
1304 	 * to. we assume access permissions have been handled by the open
1305 	 * of the memory object, so we don't do any here.
1306 	 */
1307 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1308 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1309 
1310 	if (flags & MAP_LOCKED)
1311 		if (!can_do_mlock())
1312 			return -EPERM;
1313 
1314 	if (mlock_future_check(mm, vm_flags, len))
1315 		return -EAGAIN;
1316 
1317 	if (file) {
1318 		struct inode *inode = file_inode(file);
1319 		unsigned long flags_mask;
1320 
1321 		if (!file_mmap_ok(file, inode, pgoff, len))
1322 			return -EOVERFLOW;
1323 
1324 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1325 
1326 		switch (flags & MAP_TYPE) {
1327 		case MAP_SHARED:
1328 			/*
1329 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1330 			 * flags. E.g. MAP_SYNC is dangerous to use with
1331 			 * MAP_SHARED as you don't know which consistency model
1332 			 * you will get. We silently ignore unsupported flags
1333 			 * with MAP_SHARED to preserve backward compatibility.
1334 			 */
1335 			flags &= LEGACY_MAP_MASK;
1336 			fallthrough;
1337 		case MAP_SHARED_VALIDATE:
1338 			if (flags & ~flags_mask)
1339 				return -EOPNOTSUPP;
1340 			if (prot & PROT_WRITE) {
1341 				if (!(file->f_mode & FMODE_WRITE))
1342 					return -EACCES;
1343 				if (IS_SWAPFILE(file->f_mapping->host))
1344 					return -ETXTBSY;
1345 			}
1346 
1347 			/*
1348 			 * Make sure we don't allow writing to an append-only
1349 			 * file..
1350 			 */
1351 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1352 				return -EACCES;
1353 
1354 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1355 			if (!(file->f_mode & FMODE_WRITE))
1356 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1357 			fallthrough;
1358 		case MAP_PRIVATE:
1359 			if (!(file->f_mode & FMODE_READ))
1360 				return -EACCES;
1361 			if (path_noexec(&file->f_path)) {
1362 				if (vm_flags & VM_EXEC)
1363 					return -EPERM;
1364 				vm_flags &= ~VM_MAYEXEC;
1365 			}
1366 
1367 			if (!file->f_op->mmap)
1368 				return -ENODEV;
1369 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1370 				return -EINVAL;
1371 			break;
1372 
1373 		default:
1374 			return -EINVAL;
1375 		}
1376 	} else {
1377 		switch (flags & MAP_TYPE) {
1378 		case MAP_SHARED:
1379 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1380 				return -EINVAL;
1381 			/*
1382 			 * Ignore pgoff.
1383 			 */
1384 			pgoff = 0;
1385 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1386 			break;
1387 		case MAP_PRIVATE:
1388 			/*
1389 			 * Set pgoff according to addr for anon_vma.
1390 			 */
1391 			pgoff = addr >> PAGE_SHIFT;
1392 			break;
1393 		default:
1394 			return -EINVAL;
1395 		}
1396 	}
1397 
1398 	/*
1399 	 * Set 'VM_NORESERVE' if we should not account for the
1400 	 * memory use of this mapping.
1401 	 */
1402 	if (flags & MAP_NORESERVE) {
1403 		/* We honor MAP_NORESERVE if allowed to overcommit */
1404 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1405 			vm_flags |= VM_NORESERVE;
1406 
1407 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1408 		if (file && is_file_hugepages(file))
1409 			vm_flags |= VM_NORESERVE;
1410 	}
1411 
1412 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1413 	if (!IS_ERR_VALUE(addr) &&
1414 	    ((vm_flags & VM_LOCKED) ||
1415 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1416 		*populate = len;
1417 	return addr;
1418 }
1419 
1420 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1421 			      unsigned long prot, unsigned long flags,
1422 			      unsigned long fd, unsigned long pgoff)
1423 {
1424 	struct file *file = NULL;
1425 	unsigned long retval;
1426 
1427 	if (!(flags & MAP_ANONYMOUS)) {
1428 		audit_mmap_fd(fd, flags);
1429 		file = fget(fd);
1430 		if (!file)
1431 			return -EBADF;
1432 		if (is_file_hugepages(file)) {
1433 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1434 		} else if (unlikely(flags & MAP_HUGETLB)) {
1435 			retval = -EINVAL;
1436 			goto out_fput;
1437 		}
1438 	} else if (flags & MAP_HUGETLB) {
1439 		struct hstate *hs;
1440 
1441 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1442 		if (!hs)
1443 			return -EINVAL;
1444 
1445 		len = ALIGN(len, huge_page_size(hs));
1446 		/*
1447 		 * VM_NORESERVE is used because the reservations will be
1448 		 * taken when vm_ops->mmap() is called
1449 		 */
1450 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1451 				VM_NORESERVE,
1452 				HUGETLB_ANONHUGE_INODE,
1453 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1454 		if (IS_ERR(file))
1455 			return PTR_ERR(file);
1456 	}
1457 
1458 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1459 out_fput:
1460 	if (file)
1461 		fput(file);
1462 	return retval;
1463 }
1464 
1465 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1466 		unsigned long, prot, unsigned long, flags,
1467 		unsigned long, fd, unsigned long, pgoff)
1468 {
1469 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1470 }
1471 
1472 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1473 struct mmap_arg_struct {
1474 	unsigned long addr;
1475 	unsigned long len;
1476 	unsigned long prot;
1477 	unsigned long flags;
1478 	unsigned long fd;
1479 	unsigned long offset;
1480 };
1481 
1482 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1483 {
1484 	struct mmap_arg_struct a;
1485 
1486 	if (copy_from_user(&a, arg, sizeof(a)))
1487 		return -EFAULT;
1488 	if (offset_in_page(a.offset))
1489 		return -EINVAL;
1490 
1491 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1492 			       a.offset >> PAGE_SHIFT);
1493 }
1494 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1495 
1496 /*
1497  * Some shared mappings will want the pages marked read-only
1498  * to track write events. If so, we'll downgrade vm_page_prot
1499  * to the private version (using protection_map[] without the
1500  * VM_SHARED bit).
1501  */
1502 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1503 {
1504 	vm_flags_t vm_flags = vma->vm_flags;
1505 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1506 
1507 	/* If it was private or non-writable, the write bit is already clear */
1508 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1509 		return 0;
1510 
1511 	/* The backer wishes to know when pages are first written to? */
1512 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1513 		return 1;
1514 
1515 	/* The open routine did something to the protections that pgprot_modify
1516 	 * won't preserve? */
1517 	if (pgprot_val(vm_page_prot) !=
1518 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1519 		return 0;
1520 
1521 	/*
1522 	 * Do we need to track softdirty? hugetlb does not support softdirty
1523 	 * tracking yet.
1524 	 */
1525 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1526 		return 1;
1527 
1528 	/* Specialty mapping? */
1529 	if (vm_flags & VM_PFNMAP)
1530 		return 0;
1531 
1532 	/* Can the mapping track the dirty pages? */
1533 	return vma->vm_file && vma->vm_file->f_mapping &&
1534 		mapping_can_writeback(vma->vm_file->f_mapping);
1535 }
1536 
1537 /*
1538  * We account for memory if it's a private writeable mapping,
1539  * not hugepages and VM_NORESERVE wasn't set.
1540  */
1541 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1542 {
1543 	/*
1544 	 * hugetlb has its own accounting separate from the core VM
1545 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1546 	 */
1547 	if (file && is_file_hugepages(file))
1548 		return 0;
1549 
1550 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1551 }
1552 
1553 /**
1554  * unmapped_area() - Find an area between the low_limit and the high_limit with
1555  * the correct alignment and offset, all from @info. Note: current->mm is used
1556  * for the search.
1557  *
1558  * @info: The unmapped area information including the range (low_limit -
1559  * hight_limit), the alignment offset and mask.
1560  *
1561  * Return: A memory address or -ENOMEM.
1562  */
1563 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1564 {
1565 	unsigned long length, gap;
1566 
1567 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1568 
1569 	/* Adjust search length to account for worst case alignment overhead */
1570 	length = info->length + info->align_mask;
1571 	if (length < info->length)
1572 		return -ENOMEM;
1573 
1574 	if (mas_empty_area(&mas, info->low_limit, info->high_limit - 1,
1575 				  length))
1576 		return -ENOMEM;
1577 
1578 	gap = mas.index;
1579 	gap += (info->align_offset - gap) & info->align_mask;
1580 	return gap;
1581 }
1582 
1583 /**
1584  * unmapped_area_topdown() - Find an area between the low_limit and the
1585  * high_limit with * the correct alignment and offset at the highest available
1586  * address, all from @info. Note: current->mm is used for the search.
1587  *
1588  * @info: The unmapped area information including the range (low_limit -
1589  * hight_limit), the alignment offset and mask.
1590  *
1591  * Return: A memory address or -ENOMEM.
1592  */
1593 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1594 {
1595 	unsigned long length, gap;
1596 
1597 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1598 	/* Adjust search length to account for worst case alignment overhead */
1599 	length = info->length + info->align_mask;
1600 	if (length < info->length)
1601 		return -ENOMEM;
1602 
1603 	if (mas_empty_area_rev(&mas, info->low_limit, info->high_limit - 1,
1604 				length))
1605 		return -ENOMEM;
1606 
1607 	gap = mas.last + 1 - info->length;
1608 	gap -= (gap - info->align_offset) & info->align_mask;
1609 	return gap;
1610 }
1611 
1612 /*
1613  * Search for an unmapped address range.
1614  *
1615  * We are looking for a range that:
1616  * - does not intersect with any VMA;
1617  * - is contained within the [low_limit, high_limit) interval;
1618  * - is at least the desired size.
1619  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1620  */
1621 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1622 {
1623 	unsigned long addr;
1624 
1625 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1626 		addr = unmapped_area_topdown(info);
1627 	else
1628 		addr = unmapped_area(info);
1629 
1630 	trace_vm_unmapped_area(addr, info);
1631 	return addr;
1632 }
1633 
1634 /* Get an address range which is currently unmapped.
1635  * For shmat() with addr=0.
1636  *
1637  * Ugly calling convention alert:
1638  * Return value with the low bits set means error value,
1639  * ie
1640  *	if (ret & ~PAGE_MASK)
1641  *		error = ret;
1642  *
1643  * This function "knows" that -ENOMEM has the bits set.
1644  */
1645 unsigned long
1646 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1647 			  unsigned long len, unsigned long pgoff,
1648 			  unsigned long flags)
1649 {
1650 	struct mm_struct *mm = current->mm;
1651 	struct vm_area_struct *vma, *prev;
1652 	struct vm_unmapped_area_info info;
1653 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1654 
1655 	if (len > mmap_end - mmap_min_addr)
1656 		return -ENOMEM;
1657 
1658 	if (flags & MAP_FIXED)
1659 		return addr;
1660 
1661 	if (addr) {
1662 		addr = PAGE_ALIGN(addr);
1663 		vma = find_vma_prev(mm, addr, &prev);
1664 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1665 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1666 		    (!prev || addr >= vm_end_gap(prev)))
1667 			return addr;
1668 	}
1669 
1670 	info.flags = 0;
1671 	info.length = len;
1672 	info.low_limit = mm->mmap_base;
1673 	info.high_limit = mmap_end;
1674 	info.align_mask = 0;
1675 	info.align_offset = 0;
1676 	return vm_unmapped_area(&info);
1677 }
1678 
1679 #ifndef HAVE_ARCH_UNMAPPED_AREA
1680 unsigned long
1681 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1682 		       unsigned long len, unsigned long pgoff,
1683 		       unsigned long flags)
1684 {
1685 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1686 }
1687 #endif
1688 
1689 /*
1690  * This mmap-allocator allocates new areas top-down from below the
1691  * stack's low limit (the base):
1692  */
1693 unsigned long
1694 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1695 				  unsigned long len, unsigned long pgoff,
1696 				  unsigned long flags)
1697 {
1698 	struct vm_area_struct *vma, *prev;
1699 	struct mm_struct *mm = current->mm;
1700 	struct vm_unmapped_area_info info;
1701 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1702 
1703 	/* requested length too big for entire address space */
1704 	if (len > mmap_end - mmap_min_addr)
1705 		return -ENOMEM;
1706 
1707 	if (flags & MAP_FIXED)
1708 		return addr;
1709 
1710 	/* requesting a specific address */
1711 	if (addr) {
1712 		addr = PAGE_ALIGN(addr);
1713 		vma = find_vma_prev(mm, addr, &prev);
1714 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1715 				(!vma || addr + len <= vm_start_gap(vma)) &&
1716 				(!prev || addr >= vm_end_gap(prev)))
1717 			return addr;
1718 	}
1719 
1720 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1721 	info.length = len;
1722 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1723 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1724 	info.align_mask = 0;
1725 	info.align_offset = 0;
1726 	addr = vm_unmapped_area(&info);
1727 
1728 	/*
1729 	 * A failed mmap() very likely causes application failure,
1730 	 * so fall back to the bottom-up function here. This scenario
1731 	 * can happen with large stack limits and large mmap()
1732 	 * allocations.
1733 	 */
1734 	if (offset_in_page(addr)) {
1735 		VM_BUG_ON(addr != -ENOMEM);
1736 		info.flags = 0;
1737 		info.low_limit = TASK_UNMAPPED_BASE;
1738 		info.high_limit = mmap_end;
1739 		addr = vm_unmapped_area(&info);
1740 	}
1741 
1742 	return addr;
1743 }
1744 
1745 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1746 unsigned long
1747 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1748 			       unsigned long len, unsigned long pgoff,
1749 			       unsigned long flags)
1750 {
1751 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1752 }
1753 #endif
1754 
1755 unsigned long
1756 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1757 		unsigned long pgoff, unsigned long flags)
1758 {
1759 	unsigned long (*get_area)(struct file *, unsigned long,
1760 				  unsigned long, unsigned long, unsigned long);
1761 
1762 	unsigned long error = arch_mmap_check(addr, len, flags);
1763 	if (error)
1764 		return error;
1765 
1766 	/* Careful about overflows.. */
1767 	if (len > TASK_SIZE)
1768 		return -ENOMEM;
1769 
1770 	get_area = current->mm->get_unmapped_area;
1771 	if (file) {
1772 		if (file->f_op->get_unmapped_area)
1773 			get_area = file->f_op->get_unmapped_area;
1774 	} else if (flags & MAP_SHARED) {
1775 		/*
1776 		 * mmap_region() will call shmem_zero_setup() to create a file,
1777 		 * so use shmem's get_unmapped_area in case it can be huge.
1778 		 * do_mmap() will clear pgoff, so match alignment.
1779 		 */
1780 		pgoff = 0;
1781 		get_area = shmem_get_unmapped_area;
1782 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1783 		/* Ensures that larger anonymous mappings are THP aligned. */
1784 		get_area = thp_get_unmapped_area;
1785 	}
1786 
1787 	addr = get_area(file, addr, len, pgoff, flags);
1788 	if (IS_ERR_VALUE(addr))
1789 		return addr;
1790 
1791 	if (addr > TASK_SIZE - len)
1792 		return -ENOMEM;
1793 	if (offset_in_page(addr))
1794 		return -EINVAL;
1795 
1796 	error = security_mmap_addr(addr);
1797 	return error ? error : addr;
1798 }
1799 
1800 EXPORT_SYMBOL(get_unmapped_area);
1801 
1802 /**
1803  * find_vma_intersection() - Look up the first VMA which intersects the interval
1804  * @mm: The process address space.
1805  * @start_addr: The inclusive start user address.
1806  * @end_addr: The exclusive end user address.
1807  *
1808  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1809  * start_addr < end_addr.
1810  */
1811 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1812 					     unsigned long start_addr,
1813 					     unsigned long end_addr)
1814 {
1815 	unsigned long index = start_addr;
1816 
1817 	mmap_assert_locked(mm);
1818 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1819 }
1820 EXPORT_SYMBOL(find_vma_intersection);
1821 
1822 /**
1823  * find_vma() - Find the VMA for a given address, or the next VMA.
1824  * @mm: The mm_struct to check
1825  * @addr: The address
1826  *
1827  * Returns: The VMA associated with addr, or the next VMA.
1828  * May return %NULL in the case of no VMA at addr or above.
1829  */
1830 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1831 {
1832 	unsigned long index = addr;
1833 
1834 	mmap_assert_locked(mm);
1835 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1836 }
1837 EXPORT_SYMBOL(find_vma);
1838 
1839 /**
1840  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1841  * set %pprev to the previous VMA, if any.
1842  * @mm: The mm_struct to check
1843  * @addr: The address
1844  * @pprev: The pointer to set to the previous VMA
1845  *
1846  * Note that RCU lock is missing here since the external mmap_lock() is used
1847  * instead.
1848  *
1849  * Returns: The VMA associated with @addr, or the next vma.
1850  * May return %NULL in the case of no vma at addr or above.
1851  */
1852 struct vm_area_struct *
1853 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1854 			struct vm_area_struct **pprev)
1855 {
1856 	struct vm_area_struct *vma;
1857 	MA_STATE(mas, &mm->mm_mt, addr, addr);
1858 
1859 	vma = mas_walk(&mas);
1860 	*pprev = mas_prev(&mas, 0);
1861 	if (!vma)
1862 		vma = mas_next(&mas, ULONG_MAX);
1863 	return vma;
1864 }
1865 
1866 /*
1867  * Verify that the stack growth is acceptable and
1868  * update accounting. This is shared with both the
1869  * grow-up and grow-down cases.
1870  */
1871 static int acct_stack_growth(struct vm_area_struct *vma,
1872 			     unsigned long size, unsigned long grow)
1873 {
1874 	struct mm_struct *mm = vma->vm_mm;
1875 	unsigned long new_start;
1876 
1877 	/* address space limit tests */
1878 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1879 		return -ENOMEM;
1880 
1881 	/* Stack limit test */
1882 	if (size > rlimit(RLIMIT_STACK))
1883 		return -ENOMEM;
1884 
1885 	/* mlock limit tests */
1886 	if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
1887 		return -ENOMEM;
1888 
1889 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1890 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1891 			vma->vm_end - size;
1892 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1893 		return -EFAULT;
1894 
1895 	/*
1896 	 * Overcommit..  This must be the final test, as it will
1897 	 * update security statistics.
1898 	 */
1899 	if (security_vm_enough_memory_mm(mm, grow))
1900 		return -ENOMEM;
1901 
1902 	return 0;
1903 }
1904 
1905 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1906 /*
1907  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1908  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1909  */
1910 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1911 {
1912 	struct mm_struct *mm = vma->vm_mm;
1913 	struct vm_area_struct *next;
1914 	unsigned long gap_addr;
1915 	int error = 0;
1916 	MA_STATE(mas, &mm->mm_mt, 0, 0);
1917 
1918 	if (!(vma->vm_flags & VM_GROWSUP))
1919 		return -EFAULT;
1920 
1921 	/* Guard against exceeding limits of the address space. */
1922 	address &= PAGE_MASK;
1923 	if (address >= (TASK_SIZE & PAGE_MASK))
1924 		return -ENOMEM;
1925 	address += PAGE_SIZE;
1926 
1927 	/* Enforce stack_guard_gap */
1928 	gap_addr = address + stack_guard_gap;
1929 
1930 	/* Guard against overflow */
1931 	if (gap_addr < address || gap_addr > TASK_SIZE)
1932 		gap_addr = TASK_SIZE;
1933 
1934 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1935 	if (next && vma_is_accessible(next)) {
1936 		if (!(next->vm_flags & VM_GROWSUP))
1937 			return -ENOMEM;
1938 		/* Check that both stack segments have the same anon_vma? */
1939 	}
1940 
1941 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
1942 		return -ENOMEM;
1943 
1944 	/* We must make sure the anon_vma is allocated. */
1945 	if (unlikely(anon_vma_prepare(vma))) {
1946 		mas_destroy(&mas);
1947 		return -ENOMEM;
1948 	}
1949 
1950 	/*
1951 	 * vma->vm_start/vm_end cannot change under us because the caller
1952 	 * is required to hold the mmap_lock in read mode.  We need the
1953 	 * anon_vma lock to serialize against concurrent expand_stacks.
1954 	 */
1955 	anon_vma_lock_write(vma->anon_vma);
1956 
1957 	/* Somebody else might have raced and expanded it already */
1958 	if (address > vma->vm_end) {
1959 		unsigned long size, grow;
1960 
1961 		size = address - vma->vm_start;
1962 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1963 
1964 		error = -ENOMEM;
1965 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1966 			error = acct_stack_growth(vma, size, grow);
1967 			if (!error) {
1968 				/*
1969 				 * We only hold a shared mmap_lock lock here, so
1970 				 * we need to protect against concurrent vma
1971 				 * expansions.  anon_vma_lock_write() doesn't
1972 				 * help here, as we don't guarantee that all
1973 				 * growable vmas in a mm share the same root
1974 				 * anon vma.  So, we reuse mm->page_table_lock
1975 				 * to guard against concurrent vma expansions.
1976 				 */
1977 				spin_lock(&mm->page_table_lock);
1978 				if (vma->vm_flags & VM_LOCKED)
1979 					mm->locked_vm += grow;
1980 				vm_stat_account(mm, vma->vm_flags, grow);
1981 				anon_vma_interval_tree_pre_update_vma(vma);
1982 				vma->vm_end = address;
1983 				/* Overwrite old entry in mtree. */
1984 				vma_mas_store(vma, &mas);
1985 				anon_vma_interval_tree_post_update_vma(vma);
1986 				spin_unlock(&mm->page_table_lock);
1987 
1988 				perf_event_mmap(vma);
1989 			}
1990 		}
1991 	}
1992 	anon_vma_unlock_write(vma->anon_vma);
1993 	khugepaged_enter_vma(vma, vma->vm_flags);
1994 	mas_destroy(&mas);
1995 	return error;
1996 }
1997 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1998 
1999 /*
2000  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2001  */
2002 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2003 {
2004 	struct mm_struct *mm = vma->vm_mm;
2005 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2006 	struct vm_area_struct *prev;
2007 	int error = 0;
2008 
2009 	address &= PAGE_MASK;
2010 	if (address < mmap_min_addr)
2011 		return -EPERM;
2012 
2013 	/* Enforce stack_guard_gap */
2014 	prev = mas_prev(&mas, 0);
2015 	/* Check that both stack segments have the same anon_vma? */
2016 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2017 			vma_is_accessible(prev)) {
2018 		if (address - prev->vm_end < stack_guard_gap)
2019 			return -ENOMEM;
2020 	}
2021 
2022 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2023 		return -ENOMEM;
2024 
2025 	/* We must make sure the anon_vma is allocated. */
2026 	if (unlikely(anon_vma_prepare(vma))) {
2027 		mas_destroy(&mas);
2028 		return -ENOMEM;
2029 	}
2030 
2031 	/*
2032 	 * vma->vm_start/vm_end cannot change under us because the caller
2033 	 * is required to hold the mmap_lock in read mode.  We need the
2034 	 * anon_vma lock to serialize against concurrent expand_stacks.
2035 	 */
2036 	anon_vma_lock_write(vma->anon_vma);
2037 
2038 	/* Somebody else might have raced and expanded it already */
2039 	if (address < vma->vm_start) {
2040 		unsigned long size, grow;
2041 
2042 		size = vma->vm_end - address;
2043 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2044 
2045 		error = -ENOMEM;
2046 		if (grow <= vma->vm_pgoff) {
2047 			error = acct_stack_growth(vma, size, grow);
2048 			if (!error) {
2049 				/*
2050 				 * We only hold a shared mmap_lock lock here, so
2051 				 * we need to protect against concurrent vma
2052 				 * expansions.  anon_vma_lock_write() doesn't
2053 				 * help here, as we don't guarantee that all
2054 				 * growable vmas in a mm share the same root
2055 				 * anon vma.  So, we reuse mm->page_table_lock
2056 				 * to guard against concurrent vma expansions.
2057 				 */
2058 				spin_lock(&mm->page_table_lock);
2059 				if (vma->vm_flags & VM_LOCKED)
2060 					mm->locked_vm += grow;
2061 				vm_stat_account(mm, vma->vm_flags, grow);
2062 				anon_vma_interval_tree_pre_update_vma(vma);
2063 				vma->vm_start = address;
2064 				vma->vm_pgoff -= grow;
2065 				/* Overwrite old entry in mtree. */
2066 				vma_mas_store(vma, &mas);
2067 				anon_vma_interval_tree_post_update_vma(vma);
2068 				spin_unlock(&mm->page_table_lock);
2069 
2070 				perf_event_mmap(vma);
2071 			}
2072 		}
2073 	}
2074 	anon_vma_unlock_write(vma->anon_vma);
2075 	khugepaged_enter_vma(vma, vma->vm_flags);
2076 	mas_destroy(&mas);
2077 	return error;
2078 }
2079 
2080 /* enforced gap between the expanding stack and other mappings. */
2081 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2082 
2083 static int __init cmdline_parse_stack_guard_gap(char *p)
2084 {
2085 	unsigned long val;
2086 	char *endptr;
2087 
2088 	val = simple_strtoul(p, &endptr, 10);
2089 	if (!*endptr)
2090 		stack_guard_gap = val << PAGE_SHIFT;
2091 
2092 	return 1;
2093 }
2094 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2095 
2096 #ifdef CONFIG_STACK_GROWSUP
2097 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2098 {
2099 	return expand_upwards(vma, address);
2100 }
2101 
2102 struct vm_area_struct *
2103 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2104 {
2105 	struct vm_area_struct *vma, *prev;
2106 
2107 	addr &= PAGE_MASK;
2108 	vma = find_vma_prev(mm, addr, &prev);
2109 	if (vma && (vma->vm_start <= addr))
2110 		return vma;
2111 	if (!prev || expand_stack(prev, addr))
2112 		return NULL;
2113 	if (prev->vm_flags & VM_LOCKED)
2114 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2115 	return prev;
2116 }
2117 #else
2118 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2119 {
2120 	return expand_downwards(vma, address);
2121 }
2122 
2123 struct vm_area_struct *
2124 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2125 {
2126 	struct vm_area_struct *vma;
2127 	unsigned long start;
2128 
2129 	addr &= PAGE_MASK;
2130 	vma = find_vma(mm, addr);
2131 	if (!vma)
2132 		return NULL;
2133 	if (vma->vm_start <= addr)
2134 		return vma;
2135 	if (!(vma->vm_flags & VM_GROWSDOWN))
2136 		return NULL;
2137 	start = vma->vm_start;
2138 	if (expand_stack(vma, addr))
2139 		return NULL;
2140 	if (vma->vm_flags & VM_LOCKED)
2141 		populate_vma_page_range(vma, addr, start, NULL);
2142 	return vma;
2143 }
2144 #endif
2145 
2146 EXPORT_SYMBOL_GPL(find_extend_vma);
2147 
2148 /*
2149  * Ok - we have the memory areas we should free on a maple tree so release them,
2150  * and do the vma updates.
2151  *
2152  * Called with the mm semaphore held.
2153  */
2154 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2155 {
2156 	unsigned long nr_accounted = 0;
2157 	struct vm_area_struct *vma;
2158 
2159 	/* Update high watermark before we lower total_vm */
2160 	update_hiwater_vm(mm);
2161 	mas_for_each(mas, vma, ULONG_MAX) {
2162 		long nrpages = vma_pages(vma);
2163 
2164 		if (vma->vm_flags & VM_ACCOUNT)
2165 			nr_accounted += nrpages;
2166 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2167 		remove_vma(vma);
2168 	}
2169 	vm_unacct_memory(nr_accounted);
2170 	validate_mm(mm);
2171 }
2172 
2173 /*
2174  * Get rid of page table information in the indicated region.
2175  *
2176  * Called with the mm semaphore held.
2177  */
2178 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2179 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2180 		struct vm_area_struct *next,
2181 		unsigned long start, unsigned long end)
2182 {
2183 	struct mmu_gather tlb;
2184 
2185 	lru_add_drain();
2186 	tlb_gather_mmu(&tlb, mm);
2187 	update_hiwater_rss(mm);
2188 	unmap_vmas(&tlb, mt, vma, start, end);
2189 	free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2190 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2191 	tlb_finish_mmu(&tlb);
2192 }
2193 
2194 /*
2195  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2196  * has already been checked or doesn't make sense to fail.
2197  */
2198 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2199 		unsigned long addr, int new_below)
2200 {
2201 	struct vm_area_struct *new;
2202 	int err;
2203 	validate_mm_mt(mm);
2204 
2205 	if (vma->vm_ops && vma->vm_ops->may_split) {
2206 		err = vma->vm_ops->may_split(vma, addr);
2207 		if (err)
2208 			return err;
2209 	}
2210 
2211 	new = vm_area_dup(vma);
2212 	if (!new)
2213 		return -ENOMEM;
2214 
2215 	if (new_below)
2216 		new->vm_end = addr;
2217 	else {
2218 		new->vm_start = addr;
2219 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2220 	}
2221 
2222 	err = vma_dup_policy(vma, new);
2223 	if (err)
2224 		goto out_free_vma;
2225 
2226 	err = anon_vma_clone(new, vma);
2227 	if (err)
2228 		goto out_free_mpol;
2229 
2230 	if (new->vm_file)
2231 		get_file(new->vm_file);
2232 
2233 	if (new->vm_ops && new->vm_ops->open)
2234 		new->vm_ops->open(new);
2235 
2236 	if (new_below)
2237 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2238 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2239 	else
2240 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2241 
2242 	/* Success. */
2243 	if (!err)
2244 		return 0;
2245 
2246 	/* Avoid vm accounting in close() operation */
2247 	new->vm_start = new->vm_end;
2248 	new->vm_pgoff = 0;
2249 	/* Clean everything up if vma_adjust failed. */
2250 	if (new->vm_ops && new->vm_ops->close)
2251 		new->vm_ops->close(new);
2252 	if (new->vm_file)
2253 		fput(new->vm_file);
2254 	unlink_anon_vmas(new);
2255  out_free_mpol:
2256 	mpol_put(vma_policy(new));
2257  out_free_vma:
2258 	vm_area_free(new);
2259 	validate_mm_mt(mm);
2260 	return err;
2261 }
2262 
2263 /*
2264  * Split a vma into two pieces at address 'addr', a new vma is allocated
2265  * either for the first part or the tail.
2266  */
2267 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2268 	      unsigned long addr, int new_below)
2269 {
2270 	if (mm->map_count >= sysctl_max_map_count)
2271 		return -ENOMEM;
2272 
2273 	return __split_vma(mm, vma, addr, new_below);
2274 }
2275 
2276 static inline int munmap_sidetree(struct vm_area_struct *vma,
2277 				   struct ma_state *mas_detach)
2278 {
2279 	mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1);
2280 	if (mas_store_gfp(mas_detach, vma, GFP_KERNEL))
2281 		return -ENOMEM;
2282 
2283 	if (vma->vm_flags & VM_LOCKED)
2284 		vma->vm_mm->locked_vm -= vma_pages(vma);
2285 
2286 	return 0;
2287 }
2288 
2289 /*
2290  * do_mas_align_munmap() - munmap the aligned region from @start to @end.
2291  * @mas: The maple_state, ideally set up to alter the correct tree location.
2292  * @vma: The starting vm_area_struct
2293  * @mm: The mm_struct
2294  * @start: The aligned start address to munmap.
2295  * @end: The aligned end address to munmap.
2296  * @uf: The userfaultfd list_head
2297  * @downgrade: Set to true to attempt a write downgrade of the mmap_sem
2298  *
2299  * If @downgrade is true, check return code for potential release of the lock.
2300  */
2301 static int
2302 do_mas_align_munmap(struct ma_state *mas, struct vm_area_struct *vma,
2303 		    struct mm_struct *mm, unsigned long start,
2304 		    unsigned long end, struct list_head *uf, bool downgrade)
2305 {
2306 	struct vm_area_struct *prev, *next = NULL;
2307 	struct maple_tree mt_detach;
2308 	int count = 0;
2309 	int error = -ENOMEM;
2310 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2311 	mt_init_flags(&mt_detach, MT_FLAGS_LOCK_EXTERN);
2312 	mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2313 
2314 	if (mas_preallocate(mas, vma, GFP_KERNEL))
2315 		return -ENOMEM;
2316 
2317 	mas->last = end - 1;
2318 	/*
2319 	 * If we need to split any vma, do it now to save pain later.
2320 	 *
2321 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2322 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2323 	 * places tmp vma above, and higher split_vma places tmp vma below.
2324 	 */
2325 
2326 	/* Does it split the first one? */
2327 	if (start > vma->vm_start) {
2328 
2329 		/*
2330 		 * Make sure that map_count on return from munmap() will
2331 		 * not exceed its limit; but let map_count go just above
2332 		 * its limit temporarily, to help free resources as expected.
2333 		 */
2334 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2335 			goto map_count_exceeded;
2336 
2337 		/*
2338 		 * mas_pause() is not needed since mas->index needs to be set
2339 		 * differently than vma->vm_end anyways.
2340 		 */
2341 		error = __split_vma(mm, vma, start, 0);
2342 		if (error)
2343 			goto start_split_failed;
2344 
2345 		mas_set(mas, start);
2346 		vma = mas_walk(mas);
2347 	}
2348 
2349 	prev = mas_prev(mas, 0);
2350 	if (unlikely((!prev)))
2351 		mas_set(mas, start);
2352 
2353 	/*
2354 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2355 	 * it is always overwritten.
2356 	 */
2357 	mas_for_each(mas, next, end - 1) {
2358 		/* Does it split the end? */
2359 		if (next->vm_end > end) {
2360 			struct vm_area_struct *split;
2361 
2362 			error = __split_vma(mm, next, end, 1);
2363 			if (error)
2364 				goto end_split_failed;
2365 
2366 			mas_set(mas, end);
2367 			split = mas_prev(mas, 0);
2368 			error = munmap_sidetree(split, &mas_detach);
2369 			if (error)
2370 				goto munmap_sidetree_failed;
2371 
2372 			count++;
2373 			if (vma == next)
2374 				vma = split;
2375 			break;
2376 		}
2377 		error = munmap_sidetree(next, &mas_detach);
2378 		if (error)
2379 			goto munmap_sidetree_failed;
2380 
2381 		count++;
2382 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2383 		BUG_ON(next->vm_start < start);
2384 		BUG_ON(next->vm_start > end);
2385 #endif
2386 	}
2387 
2388 	if (!next)
2389 		next = mas_next(mas, ULONG_MAX);
2390 
2391 	if (unlikely(uf)) {
2392 		/*
2393 		 * If userfaultfd_unmap_prep returns an error the vmas
2394 		 * will remain split, but userland will get a
2395 		 * highly unexpected error anyway. This is no
2396 		 * different than the case where the first of the two
2397 		 * __split_vma fails, but we don't undo the first
2398 		 * split, despite we could. This is unlikely enough
2399 		 * failure that it's not worth optimizing it for.
2400 		 */
2401 		error = userfaultfd_unmap_prep(mm, start, end, uf);
2402 
2403 		if (error)
2404 			goto userfaultfd_error;
2405 	}
2406 
2407 	/* Point of no return */
2408 	mas_set_range(mas, start, end - 1);
2409 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2410 	/* Make sure no VMAs are about to be lost. */
2411 	{
2412 		MA_STATE(test, &mt_detach, start, end - 1);
2413 		struct vm_area_struct *vma_mas, *vma_test;
2414 		int test_count = 0;
2415 
2416 		rcu_read_lock();
2417 		vma_test = mas_find(&test, end - 1);
2418 		mas_for_each(mas, vma_mas, end - 1) {
2419 			BUG_ON(vma_mas != vma_test);
2420 			test_count++;
2421 			vma_test = mas_next(&test, end - 1);
2422 		}
2423 		rcu_read_unlock();
2424 		BUG_ON(count != test_count);
2425 		mas_set_range(mas, start, end - 1);
2426 	}
2427 #endif
2428 	mas_store_prealloc(mas, NULL);
2429 	mm->map_count -= count;
2430 	/*
2431 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2432 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2433 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2434 	 */
2435 	if (downgrade) {
2436 		if (next && (next->vm_flags & VM_GROWSDOWN))
2437 			downgrade = false;
2438 		else if (prev && (prev->vm_flags & VM_GROWSUP))
2439 			downgrade = false;
2440 		else
2441 			mmap_write_downgrade(mm);
2442 	}
2443 
2444 	unmap_region(mm, &mt_detach, vma, prev, next, start, end);
2445 	/* Statistics and freeing VMAs */
2446 	mas_set(&mas_detach, start);
2447 	remove_mt(mm, &mas_detach);
2448 	__mt_destroy(&mt_detach);
2449 
2450 
2451 	validate_mm(mm);
2452 	return downgrade ? 1 : 0;
2453 
2454 userfaultfd_error:
2455 munmap_sidetree_failed:
2456 end_split_failed:
2457 	__mt_destroy(&mt_detach);
2458 start_split_failed:
2459 map_count_exceeded:
2460 	mas_destroy(mas);
2461 	return error;
2462 }
2463 
2464 /*
2465  * do_mas_munmap() - munmap a given range.
2466  * @mas: The maple state
2467  * @mm: The mm_struct
2468  * @start: The start address to munmap
2469  * @len: The length of the range to munmap
2470  * @uf: The userfaultfd list_head
2471  * @downgrade: set to true if the user wants to attempt to write_downgrade the
2472  * mmap_sem
2473  *
2474  * This function takes a @mas that is either pointing to the previous VMA or set
2475  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2476  * aligned and any arch_unmap work will be preformed.
2477  *
2478  * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2479  */
2480 int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2481 		  unsigned long start, size_t len, struct list_head *uf,
2482 		  bool downgrade)
2483 {
2484 	unsigned long end;
2485 	struct vm_area_struct *vma;
2486 
2487 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2488 		return -EINVAL;
2489 
2490 	end = start + PAGE_ALIGN(len);
2491 	if (end == start)
2492 		return -EINVAL;
2493 
2494 	 /* arch_unmap() might do unmaps itself.  */
2495 	arch_unmap(mm, start, end);
2496 
2497 	/* Find the first overlapping VMA */
2498 	vma = mas_find(mas, end - 1);
2499 	if (!vma)
2500 		return 0;
2501 
2502 	return do_mas_align_munmap(mas, vma, mm, start, end, uf, downgrade);
2503 }
2504 
2505 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2506  * @mm: The mm_struct
2507  * @start: The start address to munmap
2508  * @len: The length to be munmapped.
2509  * @uf: The userfaultfd list_head
2510  */
2511 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2512 	      struct list_head *uf)
2513 {
2514 	MA_STATE(mas, &mm->mm_mt, start, start);
2515 
2516 	return do_mas_munmap(&mas, mm, start, len, uf, false);
2517 }
2518 
2519 unsigned long mmap_region(struct file *file, unsigned long addr,
2520 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2521 		struct list_head *uf)
2522 {
2523 	struct mm_struct *mm = current->mm;
2524 	struct vm_area_struct *vma = NULL;
2525 	struct vm_area_struct *next, *prev, *merge;
2526 	pgoff_t pglen = len >> PAGE_SHIFT;
2527 	unsigned long charged = 0;
2528 	unsigned long end = addr + len;
2529 	unsigned long merge_start = addr, merge_end = end;
2530 	pgoff_t vm_pgoff;
2531 	int error;
2532 	MA_STATE(mas, &mm->mm_mt, addr, end - 1);
2533 
2534 	/* Check against address space limit. */
2535 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2536 		unsigned long nr_pages;
2537 
2538 		/*
2539 		 * MAP_FIXED may remove pages of mappings that intersects with
2540 		 * requested mapping. Account for the pages it would unmap.
2541 		 */
2542 		nr_pages = count_vma_pages_range(mm, addr, end);
2543 
2544 		if (!may_expand_vm(mm, vm_flags,
2545 					(len >> PAGE_SHIFT) - nr_pages))
2546 			return -ENOMEM;
2547 	}
2548 
2549 	/* Unmap any existing mapping in the area */
2550 	if (do_mas_munmap(&mas, mm, addr, len, uf, false))
2551 		return -ENOMEM;
2552 
2553 	/*
2554 	 * Private writable mapping: check memory availability
2555 	 */
2556 	if (accountable_mapping(file, vm_flags)) {
2557 		charged = len >> PAGE_SHIFT;
2558 		if (security_vm_enough_memory_mm(mm, charged))
2559 			return -ENOMEM;
2560 		vm_flags |= VM_ACCOUNT;
2561 	}
2562 
2563 	next = mas_next(&mas, ULONG_MAX);
2564 	prev = mas_prev(&mas, 0);
2565 	if (vm_flags & VM_SPECIAL)
2566 		goto cannot_expand;
2567 
2568 	/* Attempt to expand an old mapping */
2569 	/* Check next */
2570 	if (next && next->vm_start == end && !vma_policy(next) &&
2571 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2572 				 NULL_VM_UFFD_CTX, NULL)) {
2573 		merge_end = next->vm_end;
2574 		vma = next;
2575 		vm_pgoff = next->vm_pgoff - pglen;
2576 	}
2577 
2578 	/* Check prev */
2579 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2580 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2581 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2582 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2583 				       NULL_VM_UFFD_CTX, NULL))) {
2584 		merge_start = prev->vm_start;
2585 		vma = prev;
2586 		vm_pgoff = prev->vm_pgoff;
2587 	}
2588 
2589 
2590 	/* Actually expand, if possible */
2591 	if (vma &&
2592 	    !vma_expand(&mas, vma, merge_start, merge_end, vm_pgoff, next)) {
2593 		khugepaged_enter_vma(vma, vm_flags);
2594 		goto expanded;
2595 	}
2596 
2597 	mas.index = addr;
2598 	mas.last = end - 1;
2599 cannot_expand:
2600 	/*
2601 	 * Determine the object being mapped and call the appropriate
2602 	 * specific mapper. the address has already been validated, but
2603 	 * not unmapped, but the maps are removed from the list.
2604 	 */
2605 	vma = vm_area_alloc(mm);
2606 	if (!vma) {
2607 		error = -ENOMEM;
2608 		goto unacct_error;
2609 	}
2610 
2611 	vma->vm_start = addr;
2612 	vma->vm_end = end;
2613 	vma->vm_flags = vm_flags;
2614 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2615 	vma->vm_pgoff = pgoff;
2616 
2617 	if (file) {
2618 		if (vm_flags & VM_SHARED) {
2619 			error = mapping_map_writable(file->f_mapping);
2620 			if (error)
2621 				goto free_vma;
2622 		}
2623 
2624 		vma->vm_file = get_file(file);
2625 		error = call_mmap(file, vma);
2626 		if (error)
2627 			goto unmap_and_free_vma;
2628 
2629 		/*
2630 		 * Expansion is handled above, merging is handled below.
2631 		 * Drivers should not alter the address of the VMA.
2632 		 */
2633 		if (WARN_ON((addr != vma->vm_start))) {
2634 			error = -EINVAL;
2635 			goto close_and_free_vma;
2636 		}
2637 		mas_reset(&mas);
2638 
2639 		/*
2640 		 * If vm_flags changed after call_mmap(), we should try merge
2641 		 * vma again as we may succeed this time.
2642 		 */
2643 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2644 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
2645 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
2646 			if (merge) {
2647 				/*
2648 				 * ->mmap() can change vma->vm_file and fput
2649 				 * the original file. So fput the vma->vm_file
2650 				 * here or we would add an extra fput for file
2651 				 * and cause general protection fault
2652 				 * ultimately.
2653 				 */
2654 				fput(vma->vm_file);
2655 				vm_area_free(vma);
2656 				vma = merge;
2657 				/* Update vm_flags to pick up the change. */
2658 				vm_flags = vma->vm_flags;
2659 				goto unmap_writable;
2660 			}
2661 		}
2662 
2663 		vm_flags = vma->vm_flags;
2664 	} else if (vm_flags & VM_SHARED) {
2665 		error = shmem_zero_setup(vma);
2666 		if (error)
2667 			goto free_vma;
2668 	} else {
2669 		vma_set_anonymous(vma);
2670 	}
2671 
2672 	/* Allow architectures to sanity-check the vm_flags */
2673 	if (!arch_validate_flags(vma->vm_flags)) {
2674 		error = -EINVAL;
2675 		if (file)
2676 			goto close_and_free_vma;
2677 		else if (vma->vm_file)
2678 			goto unmap_and_free_vma;
2679 		else
2680 			goto free_vma;
2681 	}
2682 
2683 	if (mas_preallocate(&mas, vma, GFP_KERNEL)) {
2684 		error = -ENOMEM;
2685 		if (file)
2686 			goto close_and_free_vma;
2687 		else if (vma->vm_file)
2688 			goto unmap_and_free_vma;
2689 		else
2690 			goto free_vma;
2691 	}
2692 
2693 	if (vma->vm_file)
2694 		i_mmap_lock_write(vma->vm_file->f_mapping);
2695 
2696 	vma_mas_store(vma, &mas);
2697 	mm->map_count++;
2698 	if (vma->vm_file) {
2699 		if (vma->vm_flags & VM_SHARED)
2700 			mapping_allow_writable(vma->vm_file->f_mapping);
2701 
2702 		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2703 		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2704 		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2705 		i_mmap_unlock_write(vma->vm_file->f_mapping);
2706 	}
2707 
2708 	/*
2709 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2710 	 * call covers the non-merge case.
2711 	 */
2712 	khugepaged_enter_vma(vma, vma->vm_flags);
2713 
2714 	/* Once vma denies write, undo our temporary denial count */
2715 unmap_writable:
2716 	if (file && vm_flags & VM_SHARED)
2717 		mapping_unmap_writable(file->f_mapping);
2718 	file = vma->vm_file;
2719 expanded:
2720 	perf_event_mmap(vma);
2721 
2722 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2723 	if (vm_flags & VM_LOCKED) {
2724 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2725 					is_vm_hugetlb_page(vma) ||
2726 					vma == get_gate_vma(current->mm))
2727 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
2728 		else
2729 			mm->locked_vm += (len >> PAGE_SHIFT);
2730 	}
2731 
2732 	if (file)
2733 		uprobe_mmap(vma);
2734 
2735 	/*
2736 	 * New (or expanded) vma always get soft dirty status.
2737 	 * Otherwise user-space soft-dirty page tracker won't
2738 	 * be able to distinguish situation when vma area unmapped,
2739 	 * then new mapped in-place (which must be aimed as
2740 	 * a completely new data area).
2741 	 */
2742 	vma->vm_flags |= VM_SOFTDIRTY;
2743 
2744 	vma_set_page_prot(vma);
2745 
2746 	validate_mm(mm);
2747 	return addr;
2748 
2749 close_and_free_vma:
2750 	if (vma->vm_ops && vma->vm_ops->close)
2751 		vma->vm_ops->close(vma);
2752 unmap_and_free_vma:
2753 	fput(vma->vm_file);
2754 	vma->vm_file = NULL;
2755 
2756 	/* Undo any partial mapping done by a device driver. */
2757 	unmap_region(mm, mas.tree, vma, prev, next, vma->vm_start, vma->vm_end);
2758 	if (file && (vm_flags & VM_SHARED))
2759 		mapping_unmap_writable(file->f_mapping);
2760 free_vma:
2761 	vm_area_free(vma);
2762 unacct_error:
2763 	if (charged)
2764 		vm_unacct_memory(charged);
2765 	validate_mm(mm);
2766 	return error;
2767 }
2768 
2769 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2770 {
2771 	int ret;
2772 	struct mm_struct *mm = current->mm;
2773 	LIST_HEAD(uf);
2774 	MA_STATE(mas, &mm->mm_mt, start, start);
2775 
2776 	if (mmap_write_lock_killable(mm))
2777 		return -EINTR;
2778 
2779 	ret = do_mas_munmap(&mas, mm, start, len, &uf, downgrade);
2780 	/*
2781 	 * Returning 1 indicates mmap_lock is downgraded.
2782 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2783 	 * it to 0 before return.
2784 	 */
2785 	if (ret == 1) {
2786 		mmap_read_unlock(mm);
2787 		ret = 0;
2788 	} else
2789 		mmap_write_unlock(mm);
2790 
2791 	userfaultfd_unmap_complete(mm, &uf);
2792 	return ret;
2793 }
2794 
2795 int vm_munmap(unsigned long start, size_t len)
2796 {
2797 	return __vm_munmap(start, len, false);
2798 }
2799 EXPORT_SYMBOL(vm_munmap);
2800 
2801 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2802 {
2803 	addr = untagged_addr(addr);
2804 	return __vm_munmap(addr, len, true);
2805 }
2806 
2807 
2808 /*
2809  * Emulation of deprecated remap_file_pages() syscall.
2810  */
2811 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2812 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2813 {
2814 
2815 	struct mm_struct *mm = current->mm;
2816 	struct vm_area_struct *vma;
2817 	unsigned long populate = 0;
2818 	unsigned long ret = -EINVAL;
2819 	struct file *file;
2820 
2821 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2822 		     current->comm, current->pid);
2823 
2824 	if (prot)
2825 		return ret;
2826 	start = start & PAGE_MASK;
2827 	size = size & PAGE_MASK;
2828 
2829 	if (start + size <= start)
2830 		return ret;
2831 
2832 	/* Does pgoff wrap? */
2833 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2834 		return ret;
2835 
2836 	if (mmap_write_lock_killable(mm))
2837 		return -EINTR;
2838 
2839 	vma = vma_lookup(mm, start);
2840 
2841 	if (!vma || !(vma->vm_flags & VM_SHARED))
2842 		goto out;
2843 
2844 	if (start + size > vma->vm_end) {
2845 		VMA_ITERATOR(vmi, mm, vma->vm_end);
2846 		struct vm_area_struct *next, *prev = vma;
2847 
2848 		for_each_vma_range(vmi, next, start + size) {
2849 			/* hole between vmas ? */
2850 			if (next->vm_start != prev->vm_end)
2851 				goto out;
2852 
2853 			if (next->vm_file != vma->vm_file)
2854 				goto out;
2855 
2856 			if (next->vm_flags != vma->vm_flags)
2857 				goto out;
2858 
2859 			if (start + size <= next->vm_end)
2860 				break;
2861 
2862 			prev = next;
2863 		}
2864 
2865 		if (!next)
2866 			goto out;
2867 	}
2868 
2869 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2870 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2871 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2872 
2873 	flags &= MAP_NONBLOCK;
2874 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2875 	if (vma->vm_flags & VM_LOCKED)
2876 		flags |= MAP_LOCKED;
2877 
2878 	file = get_file(vma->vm_file);
2879 	ret = do_mmap(vma->vm_file, start, size,
2880 			prot, flags, pgoff, &populate, NULL);
2881 	fput(file);
2882 out:
2883 	mmap_write_unlock(mm);
2884 	if (populate)
2885 		mm_populate(ret, populate);
2886 	if (!IS_ERR_VALUE(ret))
2887 		ret = 0;
2888 	return ret;
2889 }
2890 
2891 /*
2892  * brk_munmap() - Unmap a parital vma.
2893  * @mas: The maple tree state.
2894  * @vma: The vma to be modified
2895  * @newbrk: the start of the address to unmap
2896  * @oldbrk: The end of the address to unmap
2897  * @uf: The userfaultfd list_head
2898  *
2899  * Returns: 1 on success.
2900  * unmaps a partial VMA mapping.  Does not handle alignment, downgrades lock if
2901  * possible.
2902  */
2903 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma,
2904 			 unsigned long newbrk, unsigned long oldbrk,
2905 			 struct list_head *uf)
2906 {
2907 	struct mm_struct *mm = vma->vm_mm;
2908 	int ret;
2909 
2910 	arch_unmap(mm, newbrk, oldbrk);
2911 	ret = do_mas_align_munmap(mas, vma, mm, newbrk, oldbrk, uf, true);
2912 	validate_mm_mt(mm);
2913 	return ret;
2914 }
2915 
2916 /*
2917  * do_brk_flags() - Increase the brk vma if the flags match.
2918  * @mas: The maple tree state.
2919  * @addr: The start address
2920  * @len: The length of the increase
2921  * @vma: The vma,
2922  * @flags: The VMA Flags
2923  *
2924  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
2925  * do not match then create a new anonymous VMA.  Eventually we may be able to
2926  * do some brk-specific accounting here.
2927  */
2928 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *vma,
2929 		unsigned long addr, unsigned long len, unsigned long flags)
2930 {
2931 	struct mm_struct *mm = current->mm;
2932 
2933 	validate_mm_mt(mm);
2934 	/*
2935 	 * Check against address space limits by the changed size
2936 	 * Note: This happens *after* clearing old mappings in some code paths.
2937 	 */
2938 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2939 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2940 		return -ENOMEM;
2941 
2942 	if (mm->map_count > sysctl_max_map_count)
2943 		return -ENOMEM;
2944 
2945 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2946 		return -ENOMEM;
2947 
2948 	/*
2949 	 * Expand the existing vma if possible; Note that singular lists do not
2950 	 * occur after forking, so the expand will only happen on new VMAs.
2951 	 */
2952 	if (vma &&
2953 	    (!vma->anon_vma || list_is_singular(&vma->anon_vma_chain)) &&
2954 	    ((vma->vm_flags & ~VM_SOFTDIRTY) == flags)) {
2955 		mas_set_range(mas, vma->vm_start, addr + len - 1);
2956 		if (mas_preallocate(mas, vma, GFP_KERNEL))
2957 			return -ENOMEM;
2958 
2959 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
2960 		if (vma->anon_vma) {
2961 			anon_vma_lock_write(vma->anon_vma);
2962 			anon_vma_interval_tree_pre_update_vma(vma);
2963 		}
2964 		vma->vm_end = addr + len;
2965 		vma->vm_flags |= VM_SOFTDIRTY;
2966 		mas_store_prealloc(mas, vma);
2967 
2968 		if (vma->anon_vma) {
2969 			anon_vma_interval_tree_post_update_vma(vma);
2970 			anon_vma_unlock_write(vma->anon_vma);
2971 		}
2972 		khugepaged_enter_vma(vma, flags);
2973 		goto out;
2974 	}
2975 
2976 	/* create a vma struct for an anonymous mapping */
2977 	vma = vm_area_alloc(mm);
2978 	if (!vma)
2979 		goto vma_alloc_fail;
2980 
2981 	vma_set_anonymous(vma);
2982 	vma->vm_start = addr;
2983 	vma->vm_end = addr + len;
2984 	vma->vm_pgoff = addr >> PAGE_SHIFT;
2985 	vma->vm_flags = flags;
2986 	vma->vm_page_prot = vm_get_page_prot(flags);
2987 	mas_set_range(mas, vma->vm_start, addr + len - 1);
2988 	if (mas_store_gfp(mas, vma, GFP_KERNEL))
2989 		goto mas_store_fail;
2990 
2991 	mm->map_count++;
2992 out:
2993 	perf_event_mmap(vma);
2994 	mm->total_vm += len >> PAGE_SHIFT;
2995 	mm->data_vm += len >> PAGE_SHIFT;
2996 	if (flags & VM_LOCKED)
2997 		mm->locked_vm += (len >> PAGE_SHIFT);
2998 	vma->vm_flags |= VM_SOFTDIRTY;
2999 	validate_mm(mm);
3000 	return 0;
3001 
3002 mas_store_fail:
3003 	vm_area_free(vma);
3004 vma_alloc_fail:
3005 	vm_unacct_memory(len >> PAGE_SHIFT);
3006 	return -ENOMEM;
3007 }
3008 
3009 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3010 {
3011 	struct mm_struct *mm = current->mm;
3012 	struct vm_area_struct *vma = NULL;
3013 	unsigned long len;
3014 	int ret;
3015 	bool populate;
3016 	LIST_HEAD(uf);
3017 	MA_STATE(mas, &mm->mm_mt, addr, addr);
3018 
3019 	len = PAGE_ALIGN(request);
3020 	if (len < request)
3021 		return -ENOMEM;
3022 	if (!len)
3023 		return 0;
3024 
3025 	if (mmap_write_lock_killable(mm))
3026 		return -EINTR;
3027 
3028 	/* Until we need other flags, refuse anything except VM_EXEC. */
3029 	if ((flags & (~VM_EXEC)) != 0)
3030 		return -EINVAL;
3031 
3032 	ret = check_brk_limits(addr, len);
3033 	if (ret)
3034 		goto limits_failed;
3035 
3036 	ret = do_mas_munmap(&mas, mm, addr, len, &uf, 0);
3037 	if (ret)
3038 		goto munmap_failed;
3039 
3040 	vma = mas_prev(&mas, 0);
3041 	if (!vma || vma->vm_end != addr || vma_policy(vma) ||
3042 	    !can_vma_merge_after(vma, flags, NULL, NULL,
3043 				 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL))
3044 		vma = NULL;
3045 
3046 	ret = do_brk_flags(&mas, vma, addr, len, flags);
3047 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3048 	mmap_write_unlock(mm);
3049 	userfaultfd_unmap_complete(mm, &uf);
3050 	if (populate && !ret)
3051 		mm_populate(addr, len);
3052 	return ret;
3053 
3054 munmap_failed:
3055 limits_failed:
3056 	mmap_write_unlock(mm);
3057 	return ret;
3058 }
3059 EXPORT_SYMBOL(vm_brk_flags);
3060 
3061 int vm_brk(unsigned long addr, unsigned long len)
3062 {
3063 	return vm_brk_flags(addr, len, 0);
3064 }
3065 EXPORT_SYMBOL(vm_brk);
3066 
3067 /* Release all mmaps. */
3068 void exit_mmap(struct mm_struct *mm)
3069 {
3070 	struct mmu_gather tlb;
3071 	struct vm_area_struct *vma;
3072 	unsigned long nr_accounted = 0;
3073 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3074 	int count = 0;
3075 
3076 	/* mm's last user has gone, and its about to be pulled down */
3077 	mmu_notifier_release(mm);
3078 
3079 	mmap_read_lock(mm);
3080 	arch_exit_mmap(mm);
3081 
3082 	vma = mas_find(&mas, ULONG_MAX);
3083 	if (!vma) {
3084 		/* Can happen if dup_mmap() received an OOM */
3085 		mmap_read_unlock(mm);
3086 		return;
3087 	}
3088 
3089 	lru_add_drain();
3090 	flush_cache_mm(mm);
3091 	tlb_gather_mmu_fullmm(&tlb, mm);
3092 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3093 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3094 	unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX);
3095 	mmap_read_unlock(mm);
3096 
3097 	/*
3098 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3099 	 * because the memory has been already freed.
3100 	 */
3101 	set_bit(MMF_OOM_SKIP, &mm->flags);
3102 	mmap_write_lock(mm);
3103 	free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3104 		      USER_PGTABLES_CEILING);
3105 	tlb_finish_mmu(&tlb);
3106 
3107 	/*
3108 	 * Walk the list again, actually closing and freeing it, with preemption
3109 	 * enabled, without holding any MM locks besides the unreachable
3110 	 * mmap_write_lock.
3111 	 */
3112 	do {
3113 		if (vma->vm_flags & VM_ACCOUNT)
3114 			nr_accounted += vma_pages(vma);
3115 		remove_vma(vma);
3116 		count++;
3117 		cond_resched();
3118 	} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3119 
3120 	BUG_ON(count != mm->map_count);
3121 
3122 	trace_exit_mmap(mm);
3123 	__mt_destroy(&mm->mm_mt);
3124 	mmap_write_unlock(mm);
3125 	vm_unacct_memory(nr_accounted);
3126 }
3127 
3128 /* Insert vm structure into process list sorted by address
3129  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3130  * then i_mmap_rwsem is taken here.
3131  */
3132 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3133 {
3134 	unsigned long charged = vma_pages(vma);
3135 
3136 
3137 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3138 		return -ENOMEM;
3139 
3140 	if ((vma->vm_flags & VM_ACCOUNT) &&
3141 	     security_vm_enough_memory_mm(mm, charged))
3142 		return -ENOMEM;
3143 
3144 	/*
3145 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3146 	 * until its first write fault, when page's anon_vma and index
3147 	 * are set.  But now set the vm_pgoff it will almost certainly
3148 	 * end up with (unless mremap moves it elsewhere before that
3149 	 * first wfault), so /proc/pid/maps tells a consistent story.
3150 	 *
3151 	 * By setting it to reflect the virtual start address of the
3152 	 * vma, merges and splits can happen in a seamless way, just
3153 	 * using the existing file pgoff checks and manipulations.
3154 	 * Similarly in do_mmap and in do_brk_flags.
3155 	 */
3156 	if (vma_is_anonymous(vma)) {
3157 		BUG_ON(vma->anon_vma);
3158 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3159 	}
3160 
3161 	if (vma_link(mm, vma)) {
3162 		vm_unacct_memory(charged);
3163 		return -ENOMEM;
3164 	}
3165 
3166 	return 0;
3167 }
3168 
3169 /*
3170  * Copy the vma structure to a new location in the same mm,
3171  * prior to moving page table entries, to effect an mremap move.
3172  */
3173 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3174 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3175 	bool *need_rmap_locks)
3176 {
3177 	struct vm_area_struct *vma = *vmap;
3178 	unsigned long vma_start = vma->vm_start;
3179 	struct mm_struct *mm = vma->vm_mm;
3180 	struct vm_area_struct *new_vma, *prev;
3181 	bool faulted_in_anon_vma = true;
3182 
3183 	validate_mm_mt(mm);
3184 	/*
3185 	 * If anonymous vma has not yet been faulted, update new pgoff
3186 	 * to match new location, to increase its chance of merging.
3187 	 */
3188 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3189 		pgoff = addr >> PAGE_SHIFT;
3190 		faulted_in_anon_vma = false;
3191 	}
3192 
3193 	new_vma = find_vma_prev(mm, addr, &prev);
3194 	if (new_vma && new_vma->vm_start < addr + len)
3195 		return NULL;	/* should never get here */
3196 
3197 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3198 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3199 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3200 	if (new_vma) {
3201 		/*
3202 		 * Source vma may have been merged into new_vma
3203 		 */
3204 		if (unlikely(vma_start >= new_vma->vm_start &&
3205 			     vma_start < new_vma->vm_end)) {
3206 			/*
3207 			 * The only way we can get a vma_merge with
3208 			 * self during an mremap is if the vma hasn't
3209 			 * been faulted in yet and we were allowed to
3210 			 * reset the dst vma->vm_pgoff to the
3211 			 * destination address of the mremap to allow
3212 			 * the merge to happen. mremap must change the
3213 			 * vm_pgoff linearity between src and dst vmas
3214 			 * (in turn preventing a vma_merge) to be
3215 			 * safe. It is only safe to keep the vm_pgoff
3216 			 * linear if there are no pages mapped yet.
3217 			 */
3218 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3219 			*vmap = vma = new_vma;
3220 		}
3221 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3222 	} else {
3223 		new_vma = vm_area_dup(vma);
3224 		if (!new_vma)
3225 			goto out;
3226 		new_vma->vm_start = addr;
3227 		new_vma->vm_end = addr + len;
3228 		new_vma->vm_pgoff = pgoff;
3229 		if (vma_dup_policy(vma, new_vma))
3230 			goto out_free_vma;
3231 		if (anon_vma_clone(new_vma, vma))
3232 			goto out_free_mempol;
3233 		if (new_vma->vm_file)
3234 			get_file(new_vma->vm_file);
3235 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3236 			new_vma->vm_ops->open(new_vma);
3237 		if (vma_link(mm, new_vma))
3238 			goto out_vma_link;
3239 		*need_rmap_locks = false;
3240 	}
3241 	validate_mm_mt(mm);
3242 	return new_vma;
3243 
3244 out_vma_link:
3245 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3246 		new_vma->vm_ops->close(new_vma);
3247 
3248 	if (new_vma->vm_file)
3249 		fput(new_vma->vm_file);
3250 
3251 	unlink_anon_vmas(new_vma);
3252 out_free_mempol:
3253 	mpol_put(vma_policy(new_vma));
3254 out_free_vma:
3255 	vm_area_free(new_vma);
3256 out:
3257 	validate_mm_mt(mm);
3258 	return NULL;
3259 }
3260 
3261 /*
3262  * Return true if the calling process may expand its vm space by the passed
3263  * number of pages
3264  */
3265 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3266 {
3267 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3268 		return false;
3269 
3270 	if (is_data_mapping(flags) &&
3271 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3272 		/* Workaround for Valgrind */
3273 		if (rlimit(RLIMIT_DATA) == 0 &&
3274 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3275 			return true;
3276 
3277 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3278 			     current->comm, current->pid,
3279 			     (mm->data_vm + npages) << PAGE_SHIFT,
3280 			     rlimit(RLIMIT_DATA),
3281 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3282 
3283 		if (!ignore_rlimit_data)
3284 			return false;
3285 	}
3286 
3287 	return true;
3288 }
3289 
3290 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3291 {
3292 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3293 
3294 	if (is_exec_mapping(flags))
3295 		mm->exec_vm += npages;
3296 	else if (is_stack_mapping(flags))
3297 		mm->stack_vm += npages;
3298 	else if (is_data_mapping(flags))
3299 		mm->data_vm += npages;
3300 }
3301 
3302 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3303 
3304 /*
3305  * Having a close hook prevents vma merging regardless of flags.
3306  */
3307 static void special_mapping_close(struct vm_area_struct *vma)
3308 {
3309 }
3310 
3311 static const char *special_mapping_name(struct vm_area_struct *vma)
3312 {
3313 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3314 }
3315 
3316 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3317 {
3318 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3319 
3320 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3321 		return -EFAULT;
3322 
3323 	if (sm->mremap)
3324 		return sm->mremap(sm, new_vma);
3325 
3326 	return 0;
3327 }
3328 
3329 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3330 {
3331 	/*
3332 	 * Forbid splitting special mappings - kernel has expectations over
3333 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3334 	 * the size of vma should stay the same over the special mapping's
3335 	 * lifetime.
3336 	 */
3337 	return -EINVAL;
3338 }
3339 
3340 static const struct vm_operations_struct special_mapping_vmops = {
3341 	.close = special_mapping_close,
3342 	.fault = special_mapping_fault,
3343 	.mremap = special_mapping_mremap,
3344 	.name = special_mapping_name,
3345 	/* vDSO code relies that VVAR can't be accessed remotely */
3346 	.access = NULL,
3347 	.may_split = special_mapping_split,
3348 };
3349 
3350 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3351 	.close = special_mapping_close,
3352 	.fault = special_mapping_fault,
3353 };
3354 
3355 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3356 {
3357 	struct vm_area_struct *vma = vmf->vma;
3358 	pgoff_t pgoff;
3359 	struct page **pages;
3360 
3361 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3362 		pages = vma->vm_private_data;
3363 	} else {
3364 		struct vm_special_mapping *sm = vma->vm_private_data;
3365 
3366 		if (sm->fault)
3367 			return sm->fault(sm, vmf->vma, vmf);
3368 
3369 		pages = sm->pages;
3370 	}
3371 
3372 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3373 		pgoff--;
3374 
3375 	if (*pages) {
3376 		struct page *page = *pages;
3377 		get_page(page);
3378 		vmf->page = page;
3379 		return 0;
3380 	}
3381 
3382 	return VM_FAULT_SIGBUS;
3383 }
3384 
3385 static struct vm_area_struct *__install_special_mapping(
3386 	struct mm_struct *mm,
3387 	unsigned long addr, unsigned long len,
3388 	unsigned long vm_flags, void *priv,
3389 	const struct vm_operations_struct *ops)
3390 {
3391 	int ret;
3392 	struct vm_area_struct *vma;
3393 
3394 	validate_mm_mt(mm);
3395 	vma = vm_area_alloc(mm);
3396 	if (unlikely(vma == NULL))
3397 		return ERR_PTR(-ENOMEM);
3398 
3399 	vma->vm_start = addr;
3400 	vma->vm_end = addr + len;
3401 
3402 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3403 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3404 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3405 
3406 	vma->vm_ops = ops;
3407 	vma->vm_private_data = priv;
3408 
3409 	ret = insert_vm_struct(mm, vma);
3410 	if (ret)
3411 		goto out;
3412 
3413 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3414 
3415 	perf_event_mmap(vma);
3416 
3417 	validate_mm_mt(mm);
3418 	return vma;
3419 
3420 out:
3421 	vm_area_free(vma);
3422 	validate_mm_mt(mm);
3423 	return ERR_PTR(ret);
3424 }
3425 
3426 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3427 	const struct vm_special_mapping *sm)
3428 {
3429 	return vma->vm_private_data == sm &&
3430 		(vma->vm_ops == &special_mapping_vmops ||
3431 		 vma->vm_ops == &legacy_special_mapping_vmops);
3432 }
3433 
3434 /*
3435  * Called with mm->mmap_lock held for writing.
3436  * Insert a new vma covering the given region, with the given flags.
3437  * Its pages are supplied by the given array of struct page *.
3438  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3439  * The region past the last page supplied will always produce SIGBUS.
3440  * The array pointer and the pages it points to are assumed to stay alive
3441  * for as long as this mapping might exist.
3442  */
3443 struct vm_area_struct *_install_special_mapping(
3444 	struct mm_struct *mm,
3445 	unsigned long addr, unsigned long len,
3446 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3447 {
3448 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3449 					&special_mapping_vmops);
3450 }
3451 
3452 int install_special_mapping(struct mm_struct *mm,
3453 			    unsigned long addr, unsigned long len,
3454 			    unsigned long vm_flags, struct page **pages)
3455 {
3456 	struct vm_area_struct *vma = __install_special_mapping(
3457 		mm, addr, len, vm_flags, (void *)pages,
3458 		&legacy_special_mapping_vmops);
3459 
3460 	return PTR_ERR_OR_ZERO(vma);
3461 }
3462 
3463 static DEFINE_MUTEX(mm_all_locks_mutex);
3464 
3465 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3466 {
3467 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3468 		/*
3469 		 * The LSB of head.next can't change from under us
3470 		 * because we hold the mm_all_locks_mutex.
3471 		 */
3472 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3473 		/*
3474 		 * We can safely modify head.next after taking the
3475 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3476 		 * the same anon_vma we won't take it again.
3477 		 *
3478 		 * No need of atomic instructions here, head.next
3479 		 * can't change from under us thanks to the
3480 		 * anon_vma->root->rwsem.
3481 		 */
3482 		if (__test_and_set_bit(0, (unsigned long *)
3483 				       &anon_vma->root->rb_root.rb_root.rb_node))
3484 			BUG();
3485 	}
3486 }
3487 
3488 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3489 {
3490 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3491 		/*
3492 		 * AS_MM_ALL_LOCKS can't change from under us because
3493 		 * we hold the mm_all_locks_mutex.
3494 		 *
3495 		 * Operations on ->flags have to be atomic because
3496 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3497 		 * mm_all_locks_mutex, there may be other cpus
3498 		 * changing other bitflags in parallel to us.
3499 		 */
3500 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3501 			BUG();
3502 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3503 	}
3504 }
3505 
3506 /*
3507  * This operation locks against the VM for all pte/vma/mm related
3508  * operations that could ever happen on a certain mm. This includes
3509  * vmtruncate, try_to_unmap, and all page faults.
3510  *
3511  * The caller must take the mmap_lock in write mode before calling
3512  * mm_take_all_locks(). The caller isn't allowed to release the
3513  * mmap_lock until mm_drop_all_locks() returns.
3514  *
3515  * mmap_lock in write mode is required in order to block all operations
3516  * that could modify pagetables and free pages without need of
3517  * altering the vma layout. It's also needed in write mode to avoid new
3518  * anon_vmas to be associated with existing vmas.
3519  *
3520  * A single task can't take more than one mm_take_all_locks() in a row
3521  * or it would deadlock.
3522  *
3523  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3524  * mapping->flags avoid to take the same lock twice, if more than one
3525  * vma in this mm is backed by the same anon_vma or address_space.
3526  *
3527  * We take locks in following order, accordingly to comment at beginning
3528  * of mm/rmap.c:
3529  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3530  *     hugetlb mapping);
3531  *   - all i_mmap_rwsem locks;
3532  *   - all anon_vma->rwseml
3533  *
3534  * We can take all locks within these types randomly because the VM code
3535  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3536  * mm_all_locks_mutex.
3537  *
3538  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3539  * that may have to take thousand of locks.
3540  *
3541  * mm_take_all_locks() can fail if it's interrupted by signals.
3542  */
3543 int mm_take_all_locks(struct mm_struct *mm)
3544 {
3545 	struct vm_area_struct *vma;
3546 	struct anon_vma_chain *avc;
3547 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3548 
3549 	mmap_assert_write_locked(mm);
3550 
3551 	mutex_lock(&mm_all_locks_mutex);
3552 
3553 	mas_for_each(&mas, vma, ULONG_MAX) {
3554 		if (signal_pending(current))
3555 			goto out_unlock;
3556 		if (vma->vm_file && vma->vm_file->f_mapping &&
3557 				is_vm_hugetlb_page(vma))
3558 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3559 	}
3560 
3561 	mas_set(&mas, 0);
3562 	mas_for_each(&mas, vma, ULONG_MAX) {
3563 		if (signal_pending(current))
3564 			goto out_unlock;
3565 		if (vma->vm_file && vma->vm_file->f_mapping &&
3566 				!is_vm_hugetlb_page(vma))
3567 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3568 	}
3569 
3570 	mas_set(&mas, 0);
3571 	mas_for_each(&mas, vma, ULONG_MAX) {
3572 		if (signal_pending(current))
3573 			goto out_unlock;
3574 		if (vma->anon_vma)
3575 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3576 				vm_lock_anon_vma(mm, avc->anon_vma);
3577 	}
3578 
3579 	return 0;
3580 
3581 out_unlock:
3582 	mm_drop_all_locks(mm);
3583 	return -EINTR;
3584 }
3585 
3586 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3587 {
3588 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3589 		/*
3590 		 * The LSB of head.next can't change to 0 from under
3591 		 * us because we hold the mm_all_locks_mutex.
3592 		 *
3593 		 * We must however clear the bitflag before unlocking
3594 		 * the vma so the users using the anon_vma->rb_root will
3595 		 * never see our bitflag.
3596 		 *
3597 		 * No need of atomic instructions here, head.next
3598 		 * can't change from under us until we release the
3599 		 * anon_vma->root->rwsem.
3600 		 */
3601 		if (!__test_and_clear_bit(0, (unsigned long *)
3602 					  &anon_vma->root->rb_root.rb_root.rb_node))
3603 			BUG();
3604 		anon_vma_unlock_write(anon_vma);
3605 	}
3606 }
3607 
3608 static void vm_unlock_mapping(struct address_space *mapping)
3609 {
3610 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3611 		/*
3612 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3613 		 * because we hold the mm_all_locks_mutex.
3614 		 */
3615 		i_mmap_unlock_write(mapping);
3616 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3617 					&mapping->flags))
3618 			BUG();
3619 	}
3620 }
3621 
3622 /*
3623  * The mmap_lock cannot be released by the caller until
3624  * mm_drop_all_locks() returns.
3625  */
3626 void mm_drop_all_locks(struct mm_struct *mm)
3627 {
3628 	struct vm_area_struct *vma;
3629 	struct anon_vma_chain *avc;
3630 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3631 
3632 	mmap_assert_write_locked(mm);
3633 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3634 
3635 	mas_for_each(&mas, vma, ULONG_MAX) {
3636 		if (vma->anon_vma)
3637 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3638 				vm_unlock_anon_vma(avc->anon_vma);
3639 		if (vma->vm_file && vma->vm_file->f_mapping)
3640 			vm_unlock_mapping(vma->vm_file->f_mapping);
3641 	}
3642 
3643 	mutex_unlock(&mm_all_locks_mutex);
3644 }
3645 
3646 /*
3647  * initialise the percpu counter for VM
3648  */
3649 void __init mmap_init(void)
3650 {
3651 	int ret;
3652 
3653 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3654 	VM_BUG_ON(ret);
3655 }
3656 
3657 /*
3658  * Initialise sysctl_user_reserve_kbytes.
3659  *
3660  * This is intended to prevent a user from starting a single memory hogging
3661  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3662  * mode.
3663  *
3664  * The default value is min(3% of free memory, 128MB)
3665  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3666  */
3667 static int init_user_reserve(void)
3668 {
3669 	unsigned long free_kbytes;
3670 
3671 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3672 
3673 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3674 	return 0;
3675 }
3676 subsys_initcall(init_user_reserve);
3677 
3678 /*
3679  * Initialise sysctl_admin_reserve_kbytes.
3680  *
3681  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3682  * to log in and kill a memory hogging process.
3683  *
3684  * Systems with more than 256MB will reserve 8MB, enough to recover
3685  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3686  * only reserve 3% of free pages by default.
3687  */
3688 static int init_admin_reserve(void)
3689 {
3690 	unsigned long free_kbytes;
3691 
3692 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3693 
3694 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3695 	return 0;
3696 }
3697 subsys_initcall(init_admin_reserve);
3698 
3699 /*
3700  * Reinititalise user and admin reserves if memory is added or removed.
3701  *
3702  * The default user reserve max is 128MB, and the default max for the
3703  * admin reserve is 8MB. These are usually, but not always, enough to
3704  * enable recovery from a memory hogging process using login/sshd, a shell,
3705  * and tools like top. It may make sense to increase or even disable the
3706  * reserve depending on the existence of swap or variations in the recovery
3707  * tools. So, the admin may have changed them.
3708  *
3709  * If memory is added and the reserves have been eliminated or increased above
3710  * the default max, then we'll trust the admin.
3711  *
3712  * If memory is removed and there isn't enough free memory, then we
3713  * need to reset the reserves.
3714  *
3715  * Otherwise keep the reserve set by the admin.
3716  */
3717 static int reserve_mem_notifier(struct notifier_block *nb,
3718 			     unsigned long action, void *data)
3719 {
3720 	unsigned long tmp, free_kbytes;
3721 
3722 	switch (action) {
3723 	case MEM_ONLINE:
3724 		/* Default max is 128MB. Leave alone if modified by operator. */
3725 		tmp = sysctl_user_reserve_kbytes;
3726 		if (0 < tmp && tmp < (1UL << 17))
3727 			init_user_reserve();
3728 
3729 		/* Default max is 8MB.  Leave alone if modified by operator. */
3730 		tmp = sysctl_admin_reserve_kbytes;
3731 		if (0 < tmp && tmp < (1UL << 13))
3732 			init_admin_reserve();
3733 
3734 		break;
3735 	case MEM_OFFLINE:
3736 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3737 
3738 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3739 			init_user_reserve();
3740 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3741 				sysctl_user_reserve_kbytes);
3742 		}
3743 
3744 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3745 			init_admin_reserve();
3746 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3747 				sysctl_admin_reserve_kbytes);
3748 		}
3749 		break;
3750 	default:
3751 		break;
3752 	}
3753 	return NOTIFY_OK;
3754 }
3755 
3756 static struct notifier_block reserve_mem_nb = {
3757 	.notifier_call = reserve_mem_notifier,
3758 };
3759 
3760 static int __meminit init_reserve_notifier(void)
3761 {
3762 	if (register_hotmemory_notifier(&reserve_mem_nb))
3763 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3764 
3765 	return 0;
3766 }
3767 subsys_initcall(init_reserve_notifier);
3768