xref: /openbmc/linux/mm/mmap.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/vmacache.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/syscalls.h>
19 #include <linux/capability.h>
20 #include <linux/init.h>
21 #include <linux/file.h>
22 #include <linux/fs.h>
23 #include <linux/personality.h>
24 #include <linux/security.h>
25 #include <linux/hugetlb.h>
26 #include <linux/profile.h>
27 #include <linux/export.h>
28 #include <linux/mount.h>
29 #include <linux/mempolicy.h>
30 #include <linux/rmap.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/perf_event.h>
33 #include <linux/audit.h>
34 #include <linux/khugepaged.h>
35 #include <linux/uprobes.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/notifier.h>
39 #include <linux/memory.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45 
46 #include "internal.h"
47 
48 #ifndef arch_mmap_check
49 #define arch_mmap_check(addr, len, flags)	(0)
50 #endif
51 
52 #ifndef arch_rebalance_pgtables
53 #define arch_rebalance_pgtables(addr, len)		(addr)
54 #endif
55 
56 static void unmap_region(struct mm_struct *mm,
57 		struct vm_area_struct *vma, struct vm_area_struct *prev,
58 		unsigned long start, unsigned long end);
59 
60 /* description of effects of mapping type and prot in current implementation.
61  * this is due to the limited x86 page protection hardware.  The expected
62  * behavior is in parens:
63  *
64  * map_type	prot
65  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
66  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
67  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
68  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
69  *
70  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
71  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
72  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
73  *
74  */
75 pgprot_t protection_map[16] = {
76 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79 
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82 	return __pgprot(pgprot_val(protection_map[vm_flags &
83 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87 
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
90 unsigned long sysctl_overcommit_kbytes __read_mostly;
91 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
92 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
93 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
94 /*
95  * Make sure vm_committed_as in one cacheline and not cacheline shared with
96  * other variables. It can be updated by several CPUs frequently.
97  */
98 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
99 
100 /*
101  * The global memory commitment made in the system can be a metric
102  * that can be used to drive ballooning decisions when Linux is hosted
103  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
104  * balancing memory across competing virtual machines that are hosted.
105  * Several metrics drive this policy engine including the guest reported
106  * memory commitment.
107  */
108 unsigned long vm_memory_committed(void)
109 {
110 	return percpu_counter_read_positive(&vm_committed_as);
111 }
112 EXPORT_SYMBOL_GPL(vm_memory_committed);
113 
114 /*
115  * Check that a process has enough memory to allocate a new virtual
116  * mapping. 0 means there is enough memory for the allocation to
117  * succeed and -ENOMEM implies there is not.
118  *
119  * We currently support three overcommit policies, which are set via the
120  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
121  *
122  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
123  * Additional code 2002 Jul 20 by Robert Love.
124  *
125  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
126  *
127  * Note this is a helper function intended to be used by LSMs which
128  * wish to use this logic.
129  */
130 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
131 {
132 	unsigned long free, allowed, reserve;
133 
134 	vm_acct_memory(pages);
135 
136 	/*
137 	 * Sometimes we want to use more memory than we have
138 	 */
139 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
140 		return 0;
141 
142 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
143 		free = global_page_state(NR_FREE_PAGES);
144 		free += global_page_state(NR_FILE_PAGES);
145 
146 		/*
147 		 * shmem pages shouldn't be counted as free in this
148 		 * case, they can't be purged, only swapped out, and
149 		 * that won't affect the overall amount of available
150 		 * memory in the system.
151 		 */
152 		free -= global_page_state(NR_SHMEM);
153 
154 		free += get_nr_swap_pages();
155 
156 		/*
157 		 * Any slabs which are created with the
158 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
159 		 * which are reclaimable, under pressure.  The dentry
160 		 * cache and most inode caches should fall into this
161 		 */
162 		free += global_page_state(NR_SLAB_RECLAIMABLE);
163 
164 		/*
165 		 * Leave reserved pages. The pages are not for anonymous pages.
166 		 */
167 		if (free <= totalreserve_pages)
168 			goto error;
169 		else
170 			free -= totalreserve_pages;
171 
172 		/*
173 		 * Reserve some for root
174 		 */
175 		if (!cap_sys_admin)
176 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
177 
178 		if (free > pages)
179 			return 0;
180 
181 		goto error;
182 	}
183 
184 	allowed = vm_commit_limit();
185 	/*
186 	 * Reserve some for root
187 	 */
188 	if (!cap_sys_admin)
189 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
190 
191 	/*
192 	 * Don't let a single process grow so big a user can't recover
193 	 */
194 	if (mm) {
195 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196 		allowed -= min(mm->total_vm / 32, reserve);
197 	}
198 
199 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200 		return 0;
201 error:
202 	vm_unacct_memory(pages);
203 
204 	return -ENOMEM;
205 }
206 
207 /*
208  * Requires inode->i_mapping->i_mmap_mutex
209  */
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211 		struct file *file, struct address_space *mapping)
212 {
213 	if (vma->vm_flags & VM_DENYWRITE)
214 		atomic_inc(&file_inode(file)->i_writecount);
215 	if (vma->vm_flags & VM_SHARED)
216 		mapping->i_mmap_writable--;
217 
218 	flush_dcache_mmap_lock(mapping);
219 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
220 		list_del_init(&vma->shared.nonlinear);
221 	else
222 		vma_interval_tree_remove(vma, &mapping->i_mmap);
223 	flush_dcache_mmap_unlock(mapping);
224 }
225 
226 /*
227  * Unlink a file-based vm structure from its interval tree, to hide
228  * vma from rmap and vmtruncate before freeing its page tables.
229  */
230 void unlink_file_vma(struct vm_area_struct *vma)
231 {
232 	struct file *file = vma->vm_file;
233 
234 	if (file) {
235 		struct address_space *mapping = file->f_mapping;
236 		mutex_lock(&mapping->i_mmap_mutex);
237 		__remove_shared_vm_struct(vma, file, mapping);
238 		mutex_unlock(&mapping->i_mmap_mutex);
239 	}
240 }
241 
242 /*
243  * Close a vm structure and free it, returning the next.
244  */
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246 {
247 	struct vm_area_struct *next = vma->vm_next;
248 
249 	might_sleep();
250 	if (vma->vm_ops && vma->vm_ops->close)
251 		vma->vm_ops->close(vma);
252 	if (vma->vm_file)
253 		fput(vma->vm_file);
254 	mpol_put(vma_policy(vma));
255 	kmem_cache_free(vm_area_cachep, vma);
256 	return next;
257 }
258 
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
260 
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
262 {
263 	unsigned long rlim, retval;
264 	unsigned long newbrk, oldbrk;
265 	struct mm_struct *mm = current->mm;
266 	unsigned long min_brk;
267 	bool populate;
268 
269 	down_write(&mm->mmap_sem);
270 
271 #ifdef CONFIG_COMPAT_BRK
272 	/*
273 	 * CONFIG_COMPAT_BRK can still be overridden by setting
274 	 * randomize_va_space to 2, which will still cause mm->start_brk
275 	 * to be arbitrarily shifted
276 	 */
277 	if (current->brk_randomized)
278 		min_brk = mm->start_brk;
279 	else
280 		min_brk = mm->end_data;
281 #else
282 	min_brk = mm->start_brk;
283 #endif
284 	if (brk < min_brk)
285 		goto out;
286 
287 	/*
288 	 * Check against rlimit here. If this check is done later after the test
289 	 * of oldbrk with newbrk then it can escape the test and let the data
290 	 * segment grow beyond its set limit the in case where the limit is
291 	 * not page aligned -Ram Gupta
292 	 */
293 	rlim = rlimit(RLIMIT_DATA);
294 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295 			(mm->end_data - mm->start_data) > rlim)
296 		goto out;
297 
298 	newbrk = PAGE_ALIGN(brk);
299 	oldbrk = PAGE_ALIGN(mm->brk);
300 	if (oldbrk == newbrk)
301 		goto set_brk;
302 
303 	/* Always allow shrinking brk. */
304 	if (brk <= mm->brk) {
305 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306 			goto set_brk;
307 		goto out;
308 	}
309 
310 	/* Check against existing mmap mappings. */
311 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312 		goto out;
313 
314 	/* Ok, looks good - let it rip. */
315 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316 		goto out;
317 
318 set_brk:
319 	mm->brk = brk;
320 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321 	up_write(&mm->mmap_sem);
322 	if (populate)
323 		mm_populate(oldbrk, newbrk - oldbrk);
324 	return brk;
325 
326 out:
327 	retval = mm->brk;
328 	up_write(&mm->mmap_sem);
329 	return retval;
330 }
331 
332 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333 {
334 	unsigned long max, subtree_gap;
335 	max = vma->vm_start;
336 	if (vma->vm_prev)
337 		max -= vma->vm_prev->vm_end;
338 	if (vma->vm_rb.rb_left) {
339 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
340 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
341 		if (subtree_gap > max)
342 			max = subtree_gap;
343 	}
344 	if (vma->vm_rb.rb_right) {
345 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
346 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
347 		if (subtree_gap > max)
348 			max = subtree_gap;
349 	}
350 	return max;
351 }
352 
353 #ifdef CONFIG_DEBUG_VM_RB
354 static int browse_rb(struct rb_root *root)
355 {
356 	int i = 0, j, bug = 0;
357 	struct rb_node *nd, *pn = NULL;
358 	unsigned long prev = 0, pend = 0;
359 
360 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361 		struct vm_area_struct *vma;
362 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363 		if (vma->vm_start < prev) {
364 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365 			bug = 1;
366 		}
367 		if (vma->vm_start < pend) {
368 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369 			bug = 1;
370 		}
371 		if (vma->vm_start > vma->vm_end) {
372 			printk("vm_end %lx < vm_start %lx\n",
373 				vma->vm_end, vma->vm_start);
374 			bug = 1;
375 		}
376 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377 			printk("free gap %lx, correct %lx\n",
378 			       vma->rb_subtree_gap,
379 			       vma_compute_subtree_gap(vma));
380 			bug = 1;
381 		}
382 		i++;
383 		pn = nd;
384 		prev = vma->vm_start;
385 		pend = vma->vm_end;
386 	}
387 	j = 0;
388 	for (nd = pn; nd; nd = rb_prev(nd))
389 		j++;
390 	if (i != j) {
391 		printk("backwards %d, forwards %d\n", j, i);
392 		bug = 1;
393 	}
394 	return bug ? -1 : i;
395 }
396 
397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398 {
399 	struct rb_node *nd;
400 
401 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402 		struct vm_area_struct *vma;
403 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404 		BUG_ON(vma != ignore &&
405 		       vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406 	}
407 }
408 
409 static void validate_mm(struct mm_struct *mm)
410 {
411 	int bug = 0;
412 	int i = 0;
413 	unsigned long highest_address = 0;
414 	struct vm_area_struct *vma = mm->mmap;
415 	while (vma) {
416 		struct anon_vma_chain *avc;
417 		vma_lock_anon_vma(vma);
418 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419 			anon_vma_interval_tree_verify(avc);
420 		vma_unlock_anon_vma(vma);
421 		highest_address = vma->vm_end;
422 		vma = vma->vm_next;
423 		i++;
424 	}
425 	if (i != mm->map_count) {
426 		printk("map_count %d vm_next %d\n", mm->map_count, i);
427 		bug = 1;
428 	}
429 	if (highest_address != mm->highest_vm_end) {
430 		printk("mm->highest_vm_end %lx, found %lx\n",
431 		       mm->highest_vm_end, highest_address);
432 		bug = 1;
433 	}
434 	i = browse_rb(&mm->mm_rb);
435 	if (i != mm->map_count) {
436 		printk("map_count %d rb %d\n", mm->map_count, i);
437 		bug = 1;
438 	}
439 	BUG_ON(bug);
440 }
441 #else
442 #define validate_mm_rb(root, ignore) do { } while (0)
443 #define validate_mm(mm) do { } while (0)
444 #endif
445 
446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448 
449 /*
450  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451  * vma->vm_prev->vm_end values changed, without modifying the vma's position
452  * in the rbtree.
453  */
454 static void vma_gap_update(struct vm_area_struct *vma)
455 {
456 	/*
457 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458 	 * function that does exacltly what we want.
459 	 */
460 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461 }
462 
463 static inline void vma_rb_insert(struct vm_area_struct *vma,
464 				 struct rb_root *root)
465 {
466 	/* All rb_subtree_gap values must be consistent prior to insertion */
467 	validate_mm_rb(root, NULL);
468 
469 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 }
471 
472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473 {
474 	/*
475 	 * All rb_subtree_gap values must be consistent prior to erase,
476 	 * with the possible exception of the vma being erased.
477 	 */
478 	validate_mm_rb(root, vma);
479 
480 	/*
481 	 * Note rb_erase_augmented is a fairly large inline function,
482 	 * so make sure we instantiate it only once with our desired
483 	 * augmented rbtree callbacks.
484 	 */
485 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486 }
487 
488 /*
489  * vma has some anon_vma assigned, and is already inserted on that
490  * anon_vma's interval trees.
491  *
492  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493  * vma must be removed from the anon_vma's interval trees using
494  * anon_vma_interval_tree_pre_update_vma().
495  *
496  * After the update, the vma will be reinserted using
497  * anon_vma_interval_tree_post_update_vma().
498  *
499  * The entire update must be protected by exclusive mmap_sem and by
500  * the root anon_vma's mutex.
501  */
502 static inline void
503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504 {
505 	struct anon_vma_chain *avc;
506 
507 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509 }
510 
511 static inline void
512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513 {
514 	struct anon_vma_chain *avc;
515 
516 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518 }
519 
520 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521 		unsigned long end, struct vm_area_struct **pprev,
522 		struct rb_node ***rb_link, struct rb_node **rb_parent)
523 {
524 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525 
526 	__rb_link = &mm->mm_rb.rb_node;
527 	rb_prev = __rb_parent = NULL;
528 
529 	while (*__rb_link) {
530 		struct vm_area_struct *vma_tmp;
531 
532 		__rb_parent = *__rb_link;
533 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534 
535 		if (vma_tmp->vm_end > addr) {
536 			/* Fail if an existing vma overlaps the area */
537 			if (vma_tmp->vm_start < end)
538 				return -ENOMEM;
539 			__rb_link = &__rb_parent->rb_left;
540 		} else {
541 			rb_prev = __rb_parent;
542 			__rb_link = &__rb_parent->rb_right;
543 		}
544 	}
545 
546 	*pprev = NULL;
547 	if (rb_prev)
548 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549 	*rb_link = __rb_link;
550 	*rb_parent = __rb_parent;
551 	return 0;
552 }
553 
554 static unsigned long count_vma_pages_range(struct mm_struct *mm,
555 		unsigned long addr, unsigned long end)
556 {
557 	unsigned long nr_pages = 0;
558 	struct vm_area_struct *vma;
559 
560 	/* Find first overlaping mapping */
561 	vma = find_vma_intersection(mm, addr, end);
562 	if (!vma)
563 		return 0;
564 
565 	nr_pages = (min(end, vma->vm_end) -
566 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
567 
568 	/* Iterate over the rest of the overlaps */
569 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570 		unsigned long overlap_len;
571 
572 		if (vma->vm_start > end)
573 			break;
574 
575 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
576 		nr_pages += overlap_len >> PAGE_SHIFT;
577 	}
578 
579 	return nr_pages;
580 }
581 
582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583 		struct rb_node **rb_link, struct rb_node *rb_parent)
584 {
585 	/* Update tracking information for the gap following the new vma. */
586 	if (vma->vm_next)
587 		vma_gap_update(vma->vm_next);
588 	else
589 		mm->highest_vm_end = vma->vm_end;
590 
591 	/*
592 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
593 	 * correct insertion point for that vma. As a result, we could not
594 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
595 	 * So, we first insert the vma with a zero rb_subtree_gap value
596 	 * (to be consistent with what we did on the way down), and then
597 	 * immediately update the gap to the correct value. Finally we
598 	 * rebalance the rbtree after all augmented values have been set.
599 	 */
600 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601 	vma->rb_subtree_gap = 0;
602 	vma_gap_update(vma);
603 	vma_rb_insert(vma, &mm->mm_rb);
604 }
605 
606 static void __vma_link_file(struct vm_area_struct *vma)
607 {
608 	struct file *file;
609 
610 	file = vma->vm_file;
611 	if (file) {
612 		struct address_space *mapping = file->f_mapping;
613 
614 		if (vma->vm_flags & VM_DENYWRITE)
615 			atomic_dec(&file_inode(file)->i_writecount);
616 		if (vma->vm_flags & VM_SHARED)
617 			mapping->i_mmap_writable++;
618 
619 		flush_dcache_mmap_lock(mapping);
620 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
621 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622 		else
623 			vma_interval_tree_insert(vma, &mapping->i_mmap);
624 		flush_dcache_mmap_unlock(mapping);
625 	}
626 }
627 
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630 	struct vm_area_struct *prev, struct rb_node **rb_link,
631 	struct rb_node *rb_parent)
632 {
633 	__vma_link_list(mm, vma, prev, rb_parent);
634 	__vma_link_rb(mm, vma, rb_link, rb_parent);
635 }
636 
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 			struct vm_area_struct *prev, struct rb_node **rb_link,
639 			struct rb_node *rb_parent)
640 {
641 	struct address_space *mapping = NULL;
642 
643 	if (vma->vm_file)
644 		mapping = vma->vm_file->f_mapping;
645 
646 	if (mapping)
647 		mutex_lock(&mapping->i_mmap_mutex);
648 
649 	__vma_link(mm, vma, prev, rb_link, rb_parent);
650 	__vma_link_file(vma);
651 
652 	if (mapping)
653 		mutex_unlock(&mapping->i_mmap_mutex);
654 
655 	mm->map_count++;
656 	validate_mm(mm);
657 }
658 
659 /*
660  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661  * mm's list and rbtree.  It has already been inserted into the interval tree.
662  */
663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665 	struct vm_area_struct *prev;
666 	struct rb_node **rb_link, *rb_parent;
667 
668 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669 			   &prev, &rb_link, &rb_parent))
670 		BUG();
671 	__vma_link(mm, vma, prev, rb_link, rb_parent);
672 	mm->map_count++;
673 }
674 
675 static inline void
676 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677 		struct vm_area_struct *prev)
678 {
679 	struct vm_area_struct *next;
680 
681 	vma_rb_erase(vma, &mm->mm_rb);
682 	prev->vm_next = next = vma->vm_next;
683 	if (next)
684 		next->vm_prev = prev;
685 
686 	/* Kill the cache */
687 	vmacache_invalidate(mm);
688 }
689 
690 /*
691  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
692  * is already present in an i_mmap tree without adjusting the tree.
693  * The following helper function should be used when such adjustments
694  * are necessary.  The "insert" vma (if any) is to be inserted
695  * before we drop the necessary locks.
696  */
697 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
698 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
699 {
700 	struct mm_struct *mm = vma->vm_mm;
701 	struct vm_area_struct *next = vma->vm_next;
702 	struct vm_area_struct *importer = NULL;
703 	struct address_space *mapping = NULL;
704 	struct rb_root *root = NULL;
705 	struct anon_vma *anon_vma = NULL;
706 	struct file *file = vma->vm_file;
707 	bool start_changed = false, end_changed = false;
708 	long adjust_next = 0;
709 	int remove_next = 0;
710 
711 	if (next && !insert) {
712 		struct vm_area_struct *exporter = NULL;
713 
714 		if (end >= next->vm_end) {
715 			/*
716 			 * vma expands, overlapping all the next, and
717 			 * perhaps the one after too (mprotect case 6).
718 			 */
719 again:			remove_next = 1 + (end > next->vm_end);
720 			end = next->vm_end;
721 			exporter = next;
722 			importer = vma;
723 		} else if (end > next->vm_start) {
724 			/*
725 			 * vma expands, overlapping part of the next:
726 			 * mprotect case 5 shifting the boundary up.
727 			 */
728 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
729 			exporter = next;
730 			importer = vma;
731 		} else if (end < vma->vm_end) {
732 			/*
733 			 * vma shrinks, and !insert tells it's not
734 			 * split_vma inserting another: so it must be
735 			 * mprotect case 4 shifting the boundary down.
736 			 */
737 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
738 			exporter = vma;
739 			importer = next;
740 		}
741 
742 		/*
743 		 * Easily overlooked: when mprotect shifts the boundary,
744 		 * make sure the expanding vma has anon_vma set if the
745 		 * shrinking vma had, to cover any anon pages imported.
746 		 */
747 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
748 			if (anon_vma_clone(importer, exporter))
749 				return -ENOMEM;
750 			importer->anon_vma = exporter->anon_vma;
751 		}
752 	}
753 
754 	if (file) {
755 		mapping = file->f_mapping;
756 		if (!(vma->vm_flags & VM_NONLINEAR)) {
757 			root = &mapping->i_mmap;
758 			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
759 
760 			if (adjust_next)
761 				uprobe_munmap(next, next->vm_start,
762 							next->vm_end);
763 		}
764 
765 		mutex_lock(&mapping->i_mmap_mutex);
766 		if (insert) {
767 			/*
768 			 * Put into interval tree now, so instantiated pages
769 			 * are visible to arm/parisc __flush_dcache_page
770 			 * throughout; but we cannot insert into address
771 			 * space until vma start or end is updated.
772 			 */
773 			__vma_link_file(insert);
774 		}
775 	}
776 
777 	vma_adjust_trans_huge(vma, start, end, adjust_next);
778 
779 	anon_vma = vma->anon_vma;
780 	if (!anon_vma && adjust_next)
781 		anon_vma = next->anon_vma;
782 	if (anon_vma) {
783 		VM_BUG_ON(adjust_next && next->anon_vma &&
784 			  anon_vma != next->anon_vma);
785 		anon_vma_lock_write(anon_vma);
786 		anon_vma_interval_tree_pre_update_vma(vma);
787 		if (adjust_next)
788 			anon_vma_interval_tree_pre_update_vma(next);
789 	}
790 
791 	if (root) {
792 		flush_dcache_mmap_lock(mapping);
793 		vma_interval_tree_remove(vma, root);
794 		if (adjust_next)
795 			vma_interval_tree_remove(next, root);
796 	}
797 
798 	if (start != vma->vm_start) {
799 		vma->vm_start = start;
800 		start_changed = true;
801 	}
802 	if (end != vma->vm_end) {
803 		vma->vm_end = end;
804 		end_changed = true;
805 	}
806 	vma->vm_pgoff = pgoff;
807 	if (adjust_next) {
808 		next->vm_start += adjust_next << PAGE_SHIFT;
809 		next->vm_pgoff += adjust_next;
810 	}
811 
812 	if (root) {
813 		if (adjust_next)
814 			vma_interval_tree_insert(next, root);
815 		vma_interval_tree_insert(vma, root);
816 		flush_dcache_mmap_unlock(mapping);
817 	}
818 
819 	if (remove_next) {
820 		/*
821 		 * vma_merge has merged next into vma, and needs
822 		 * us to remove next before dropping the locks.
823 		 */
824 		__vma_unlink(mm, next, vma);
825 		if (file)
826 			__remove_shared_vm_struct(next, file, mapping);
827 	} else if (insert) {
828 		/*
829 		 * split_vma has split insert from vma, and needs
830 		 * us to insert it before dropping the locks
831 		 * (it may either follow vma or precede it).
832 		 */
833 		__insert_vm_struct(mm, insert);
834 	} else {
835 		if (start_changed)
836 			vma_gap_update(vma);
837 		if (end_changed) {
838 			if (!next)
839 				mm->highest_vm_end = end;
840 			else if (!adjust_next)
841 				vma_gap_update(next);
842 		}
843 	}
844 
845 	if (anon_vma) {
846 		anon_vma_interval_tree_post_update_vma(vma);
847 		if (adjust_next)
848 			anon_vma_interval_tree_post_update_vma(next);
849 		anon_vma_unlock_write(anon_vma);
850 	}
851 	if (mapping)
852 		mutex_unlock(&mapping->i_mmap_mutex);
853 
854 	if (root) {
855 		uprobe_mmap(vma);
856 
857 		if (adjust_next)
858 			uprobe_mmap(next);
859 	}
860 
861 	if (remove_next) {
862 		if (file) {
863 			uprobe_munmap(next, next->vm_start, next->vm_end);
864 			fput(file);
865 		}
866 		if (next->anon_vma)
867 			anon_vma_merge(vma, next);
868 		mm->map_count--;
869 		mpol_put(vma_policy(next));
870 		kmem_cache_free(vm_area_cachep, next);
871 		/*
872 		 * In mprotect's case 6 (see comments on vma_merge),
873 		 * we must remove another next too. It would clutter
874 		 * up the code too much to do both in one go.
875 		 */
876 		next = vma->vm_next;
877 		if (remove_next == 2)
878 			goto again;
879 		else if (next)
880 			vma_gap_update(next);
881 		else
882 			mm->highest_vm_end = end;
883 	}
884 	if (insert && file)
885 		uprobe_mmap(insert);
886 
887 	validate_mm(mm);
888 
889 	return 0;
890 }
891 
892 /*
893  * If the vma has a ->close operation then the driver probably needs to release
894  * per-vma resources, so we don't attempt to merge those.
895  */
896 static inline int is_mergeable_vma(struct vm_area_struct *vma,
897 			struct file *file, unsigned long vm_flags)
898 {
899 	/*
900 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
901 	 * match the flags but dirty bit -- the caller should mark
902 	 * merged VMA as dirty. If dirty bit won't be excluded from
903 	 * comparison, we increase pressue on the memory system forcing
904 	 * the kernel to generate new VMAs when old one could be
905 	 * extended instead.
906 	 */
907 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
908 		return 0;
909 	if (vma->vm_file != file)
910 		return 0;
911 	if (vma->vm_ops && vma->vm_ops->close)
912 		return 0;
913 	return 1;
914 }
915 
916 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
917 					struct anon_vma *anon_vma2,
918 					struct vm_area_struct *vma)
919 {
920 	/*
921 	 * The list_is_singular() test is to avoid merging VMA cloned from
922 	 * parents. This can improve scalability caused by anon_vma lock.
923 	 */
924 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
925 		list_is_singular(&vma->anon_vma_chain)))
926 		return 1;
927 	return anon_vma1 == anon_vma2;
928 }
929 
930 /*
931  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
932  * in front of (at a lower virtual address and file offset than) the vma.
933  *
934  * We cannot merge two vmas if they have differently assigned (non-NULL)
935  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
936  *
937  * We don't check here for the merged mmap wrapping around the end of pagecache
938  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
939  * wrap, nor mmaps which cover the final page at index -1UL.
940  */
941 static int
942 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
943 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
944 {
945 	if (is_mergeable_vma(vma, file, vm_flags) &&
946 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
947 		if (vma->vm_pgoff == vm_pgoff)
948 			return 1;
949 	}
950 	return 0;
951 }
952 
953 /*
954  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
955  * beyond (at a higher virtual address and file offset than) the vma.
956  *
957  * We cannot merge two vmas if they have differently assigned (non-NULL)
958  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
959  */
960 static int
961 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
962 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
963 {
964 	if (is_mergeable_vma(vma, file, vm_flags) &&
965 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
966 		pgoff_t vm_pglen;
967 		vm_pglen = vma_pages(vma);
968 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
969 			return 1;
970 	}
971 	return 0;
972 }
973 
974 /*
975  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
976  * whether that can be merged with its predecessor or its successor.
977  * Or both (it neatly fills a hole).
978  *
979  * In most cases - when called for mmap, brk or mremap - [addr,end) is
980  * certain not to be mapped by the time vma_merge is called; but when
981  * called for mprotect, it is certain to be already mapped (either at
982  * an offset within prev, or at the start of next), and the flags of
983  * this area are about to be changed to vm_flags - and the no-change
984  * case has already been eliminated.
985  *
986  * The following mprotect cases have to be considered, where AAAA is
987  * the area passed down from mprotect_fixup, never extending beyond one
988  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
989  *
990  *     AAAA             AAAA                AAAA          AAAA
991  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
992  *    cannot merge    might become    might become    might become
993  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
994  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
995  *    mremap move:                                    PPPPNNNNNNNN 8
996  *        AAAA
997  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
998  *    might become    case 1 below    case 2 below    case 3 below
999  *
1000  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1001  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1002  */
1003 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1004 			struct vm_area_struct *prev, unsigned long addr,
1005 			unsigned long end, unsigned long vm_flags,
1006 		     	struct anon_vma *anon_vma, struct file *file,
1007 			pgoff_t pgoff, struct mempolicy *policy)
1008 {
1009 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1010 	struct vm_area_struct *area, *next;
1011 	int err;
1012 
1013 	/*
1014 	 * We later require that vma->vm_flags == vm_flags,
1015 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1016 	 */
1017 	if (vm_flags & VM_SPECIAL)
1018 		return NULL;
1019 
1020 	if (prev)
1021 		next = prev->vm_next;
1022 	else
1023 		next = mm->mmap;
1024 	area = next;
1025 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1026 		next = next->vm_next;
1027 
1028 	/*
1029 	 * Can it merge with the predecessor?
1030 	 */
1031 	if (prev && prev->vm_end == addr &&
1032   			mpol_equal(vma_policy(prev), policy) &&
1033 			can_vma_merge_after(prev, vm_flags,
1034 						anon_vma, file, pgoff)) {
1035 		/*
1036 		 * OK, it can.  Can we now merge in the successor as well?
1037 		 */
1038 		if (next && end == next->vm_start &&
1039 				mpol_equal(policy, vma_policy(next)) &&
1040 				can_vma_merge_before(next, vm_flags,
1041 					anon_vma, file, pgoff+pglen) &&
1042 				is_mergeable_anon_vma(prev->anon_vma,
1043 						      next->anon_vma, NULL)) {
1044 							/* cases 1, 6 */
1045 			err = vma_adjust(prev, prev->vm_start,
1046 				next->vm_end, prev->vm_pgoff, NULL);
1047 		} else					/* cases 2, 5, 7 */
1048 			err = vma_adjust(prev, prev->vm_start,
1049 				end, prev->vm_pgoff, NULL);
1050 		if (err)
1051 			return NULL;
1052 		khugepaged_enter_vma_merge(prev);
1053 		return prev;
1054 	}
1055 
1056 	/*
1057 	 * Can this new request be merged in front of next?
1058 	 */
1059 	if (next && end == next->vm_start &&
1060  			mpol_equal(policy, vma_policy(next)) &&
1061 			can_vma_merge_before(next, vm_flags,
1062 					anon_vma, file, pgoff+pglen)) {
1063 		if (prev && addr < prev->vm_end)	/* case 4 */
1064 			err = vma_adjust(prev, prev->vm_start,
1065 				addr, prev->vm_pgoff, NULL);
1066 		else					/* cases 3, 8 */
1067 			err = vma_adjust(area, addr, next->vm_end,
1068 				next->vm_pgoff - pglen, NULL);
1069 		if (err)
1070 			return NULL;
1071 		khugepaged_enter_vma_merge(area);
1072 		return area;
1073 	}
1074 
1075 	return NULL;
1076 }
1077 
1078 /*
1079  * Rough compatbility check to quickly see if it's even worth looking
1080  * at sharing an anon_vma.
1081  *
1082  * They need to have the same vm_file, and the flags can only differ
1083  * in things that mprotect may change.
1084  *
1085  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1086  * we can merge the two vma's. For example, we refuse to merge a vma if
1087  * there is a vm_ops->close() function, because that indicates that the
1088  * driver is doing some kind of reference counting. But that doesn't
1089  * really matter for the anon_vma sharing case.
1090  */
1091 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1092 {
1093 	return a->vm_end == b->vm_start &&
1094 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1095 		a->vm_file == b->vm_file &&
1096 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1097 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1098 }
1099 
1100 /*
1101  * Do some basic sanity checking to see if we can re-use the anon_vma
1102  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1103  * the same as 'old', the other will be the new one that is trying
1104  * to share the anon_vma.
1105  *
1106  * NOTE! This runs with mm_sem held for reading, so it is possible that
1107  * the anon_vma of 'old' is concurrently in the process of being set up
1108  * by another page fault trying to merge _that_. But that's ok: if it
1109  * is being set up, that automatically means that it will be a singleton
1110  * acceptable for merging, so we can do all of this optimistically. But
1111  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1112  *
1113  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1114  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1115  * is to return an anon_vma that is "complex" due to having gone through
1116  * a fork).
1117  *
1118  * We also make sure that the two vma's are compatible (adjacent,
1119  * and with the same memory policies). That's all stable, even with just
1120  * a read lock on the mm_sem.
1121  */
1122 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1123 {
1124 	if (anon_vma_compatible(a, b)) {
1125 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1126 
1127 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1128 			return anon_vma;
1129 	}
1130 	return NULL;
1131 }
1132 
1133 /*
1134  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1135  * neighbouring vmas for a suitable anon_vma, before it goes off
1136  * to allocate a new anon_vma.  It checks because a repetitive
1137  * sequence of mprotects and faults may otherwise lead to distinct
1138  * anon_vmas being allocated, preventing vma merge in subsequent
1139  * mprotect.
1140  */
1141 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1142 {
1143 	struct anon_vma *anon_vma;
1144 	struct vm_area_struct *near;
1145 
1146 	near = vma->vm_next;
1147 	if (!near)
1148 		goto try_prev;
1149 
1150 	anon_vma = reusable_anon_vma(near, vma, near);
1151 	if (anon_vma)
1152 		return anon_vma;
1153 try_prev:
1154 	near = vma->vm_prev;
1155 	if (!near)
1156 		goto none;
1157 
1158 	anon_vma = reusable_anon_vma(near, near, vma);
1159 	if (anon_vma)
1160 		return anon_vma;
1161 none:
1162 	/*
1163 	 * There's no absolute need to look only at touching neighbours:
1164 	 * we could search further afield for "compatible" anon_vmas.
1165 	 * But it would probably just be a waste of time searching,
1166 	 * or lead to too many vmas hanging off the same anon_vma.
1167 	 * We're trying to allow mprotect remerging later on,
1168 	 * not trying to minimize memory used for anon_vmas.
1169 	 */
1170 	return NULL;
1171 }
1172 
1173 #ifdef CONFIG_PROC_FS
1174 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1175 						struct file *file, long pages)
1176 {
1177 	const unsigned long stack_flags
1178 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1179 
1180 	mm->total_vm += pages;
1181 
1182 	if (file) {
1183 		mm->shared_vm += pages;
1184 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1185 			mm->exec_vm += pages;
1186 	} else if (flags & stack_flags)
1187 		mm->stack_vm += pages;
1188 }
1189 #endif /* CONFIG_PROC_FS */
1190 
1191 /*
1192  * If a hint addr is less than mmap_min_addr change hint to be as
1193  * low as possible but still greater than mmap_min_addr
1194  */
1195 static inline unsigned long round_hint_to_min(unsigned long hint)
1196 {
1197 	hint &= PAGE_MASK;
1198 	if (((void *)hint != NULL) &&
1199 	    (hint < mmap_min_addr))
1200 		return PAGE_ALIGN(mmap_min_addr);
1201 	return hint;
1202 }
1203 
1204 static inline int mlock_future_check(struct mm_struct *mm,
1205 				     unsigned long flags,
1206 				     unsigned long len)
1207 {
1208 	unsigned long locked, lock_limit;
1209 
1210 	/*  mlock MCL_FUTURE? */
1211 	if (flags & VM_LOCKED) {
1212 		locked = len >> PAGE_SHIFT;
1213 		locked += mm->locked_vm;
1214 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1215 		lock_limit >>= PAGE_SHIFT;
1216 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1217 			return -EAGAIN;
1218 	}
1219 	return 0;
1220 }
1221 
1222 /*
1223  * The caller must hold down_write(&current->mm->mmap_sem).
1224  */
1225 
1226 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1227 			unsigned long len, unsigned long prot,
1228 			unsigned long flags, unsigned long pgoff,
1229 			unsigned long *populate)
1230 {
1231 	struct mm_struct * mm = current->mm;
1232 	vm_flags_t vm_flags;
1233 
1234 	*populate = 0;
1235 
1236 	/*
1237 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1238 	 *
1239 	 * (the exception is when the underlying filesystem is noexec
1240 	 *  mounted, in which case we dont add PROT_EXEC.)
1241 	 */
1242 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1243 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1244 			prot |= PROT_EXEC;
1245 
1246 	if (!len)
1247 		return -EINVAL;
1248 
1249 	if (!(flags & MAP_FIXED))
1250 		addr = round_hint_to_min(addr);
1251 
1252 	/* Careful about overflows.. */
1253 	len = PAGE_ALIGN(len);
1254 	if (!len)
1255 		return -ENOMEM;
1256 
1257 	/* offset overflow? */
1258 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1259                return -EOVERFLOW;
1260 
1261 	/* Too many mappings? */
1262 	if (mm->map_count > sysctl_max_map_count)
1263 		return -ENOMEM;
1264 
1265 	/* Obtain the address to map to. we verify (or select) it and ensure
1266 	 * that it represents a valid section of the address space.
1267 	 */
1268 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1269 	if (addr & ~PAGE_MASK)
1270 		return addr;
1271 
1272 	/* Do simple checking here so the lower-level routines won't have
1273 	 * to. we assume access permissions have been handled by the open
1274 	 * of the memory object, so we don't do any here.
1275 	 */
1276 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1277 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1278 
1279 	if (flags & MAP_LOCKED)
1280 		if (!can_do_mlock())
1281 			return -EPERM;
1282 
1283 	if (mlock_future_check(mm, vm_flags, len))
1284 		return -EAGAIN;
1285 
1286 	if (file) {
1287 		struct inode *inode = file_inode(file);
1288 
1289 		switch (flags & MAP_TYPE) {
1290 		case MAP_SHARED:
1291 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1292 				return -EACCES;
1293 
1294 			/*
1295 			 * Make sure we don't allow writing to an append-only
1296 			 * file..
1297 			 */
1298 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1299 				return -EACCES;
1300 
1301 			/*
1302 			 * Make sure there are no mandatory locks on the file.
1303 			 */
1304 			if (locks_verify_locked(file))
1305 				return -EAGAIN;
1306 
1307 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1308 			if (!(file->f_mode & FMODE_WRITE))
1309 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1310 
1311 			/* fall through */
1312 		case MAP_PRIVATE:
1313 			if (!(file->f_mode & FMODE_READ))
1314 				return -EACCES;
1315 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1316 				if (vm_flags & VM_EXEC)
1317 					return -EPERM;
1318 				vm_flags &= ~VM_MAYEXEC;
1319 			}
1320 
1321 			if (!file->f_op->mmap)
1322 				return -ENODEV;
1323 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1324 				return -EINVAL;
1325 			break;
1326 
1327 		default:
1328 			return -EINVAL;
1329 		}
1330 	} else {
1331 		switch (flags & MAP_TYPE) {
1332 		case MAP_SHARED:
1333 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1334 				return -EINVAL;
1335 			/*
1336 			 * Ignore pgoff.
1337 			 */
1338 			pgoff = 0;
1339 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1340 			break;
1341 		case MAP_PRIVATE:
1342 			/*
1343 			 * Set pgoff according to addr for anon_vma.
1344 			 */
1345 			pgoff = addr >> PAGE_SHIFT;
1346 			break;
1347 		default:
1348 			return -EINVAL;
1349 		}
1350 	}
1351 
1352 	/*
1353 	 * Set 'VM_NORESERVE' if we should not account for the
1354 	 * memory use of this mapping.
1355 	 */
1356 	if (flags & MAP_NORESERVE) {
1357 		/* We honor MAP_NORESERVE if allowed to overcommit */
1358 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1359 			vm_flags |= VM_NORESERVE;
1360 
1361 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1362 		if (file && is_file_hugepages(file))
1363 			vm_flags |= VM_NORESERVE;
1364 	}
1365 
1366 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1367 	if (!IS_ERR_VALUE(addr) &&
1368 	    ((vm_flags & VM_LOCKED) ||
1369 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1370 		*populate = len;
1371 	return addr;
1372 }
1373 
1374 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1375 		unsigned long, prot, unsigned long, flags,
1376 		unsigned long, fd, unsigned long, pgoff)
1377 {
1378 	struct file *file = NULL;
1379 	unsigned long retval = -EBADF;
1380 
1381 	if (!(flags & MAP_ANONYMOUS)) {
1382 		audit_mmap_fd(fd, flags);
1383 		file = fget(fd);
1384 		if (!file)
1385 			goto out;
1386 		if (is_file_hugepages(file))
1387 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1388 		retval = -EINVAL;
1389 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1390 			goto out_fput;
1391 	} else if (flags & MAP_HUGETLB) {
1392 		struct user_struct *user = NULL;
1393 		struct hstate *hs;
1394 
1395 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1396 		if (!hs)
1397 			return -EINVAL;
1398 
1399 		len = ALIGN(len, huge_page_size(hs));
1400 		/*
1401 		 * VM_NORESERVE is used because the reservations will be
1402 		 * taken when vm_ops->mmap() is called
1403 		 * A dummy user value is used because we are not locking
1404 		 * memory so no accounting is necessary
1405 		 */
1406 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1407 				VM_NORESERVE,
1408 				&user, HUGETLB_ANONHUGE_INODE,
1409 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1410 		if (IS_ERR(file))
1411 			return PTR_ERR(file);
1412 	}
1413 
1414 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1415 
1416 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1417 out_fput:
1418 	if (file)
1419 		fput(file);
1420 out:
1421 	return retval;
1422 }
1423 
1424 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1425 struct mmap_arg_struct {
1426 	unsigned long addr;
1427 	unsigned long len;
1428 	unsigned long prot;
1429 	unsigned long flags;
1430 	unsigned long fd;
1431 	unsigned long offset;
1432 };
1433 
1434 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1435 {
1436 	struct mmap_arg_struct a;
1437 
1438 	if (copy_from_user(&a, arg, sizeof(a)))
1439 		return -EFAULT;
1440 	if (a.offset & ~PAGE_MASK)
1441 		return -EINVAL;
1442 
1443 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1444 			      a.offset >> PAGE_SHIFT);
1445 }
1446 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1447 
1448 /*
1449  * Some shared mappigns will want the pages marked read-only
1450  * to track write events. If so, we'll downgrade vm_page_prot
1451  * to the private version (using protection_map[] without the
1452  * VM_SHARED bit).
1453  */
1454 int vma_wants_writenotify(struct vm_area_struct *vma)
1455 {
1456 	vm_flags_t vm_flags = vma->vm_flags;
1457 
1458 	/* If it was private or non-writable, the write bit is already clear */
1459 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1460 		return 0;
1461 
1462 	/* The backer wishes to know when pages are first written to? */
1463 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1464 		return 1;
1465 
1466 	/* The open routine did something to the protections already? */
1467 	if (pgprot_val(vma->vm_page_prot) !=
1468 	    pgprot_val(vm_get_page_prot(vm_flags)))
1469 		return 0;
1470 
1471 	/* Specialty mapping? */
1472 	if (vm_flags & VM_PFNMAP)
1473 		return 0;
1474 
1475 	/* Can the mapping track the dirty pages? */
1476 	return vma->vm_file && vma->vm_file->f_mapping &&
1477 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1478 }
1479 
1480 /*
1481  * We account for memory if it's a private writeable mapping,
1482  * not hugepages and VM_NORESERVE wasn't set.
1483  */
1484 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1485 {
1486 	/*
1487 	 * hugetlb has its own accounting separate from the core VM
1488 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1489 	 */
1490 	if (file && is_file_hugepages(file))
1491 		return 0;
1492 
1493 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1494 }
1495 
1496 unsigned long mmap_region(struct file *file, unsigned long addr,
1497 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1498 {
1499 	struct mm_struct *mm = current->mm;
1500 	struct vm_area_struct *vma, *prev;
1501 	int error;
1502 	struct rb_node **rb_link, *rb_parent;
1503 	unsigned long charged = 0;
1504 
1505 	/* Check against address space limit. */
1506 	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1507 		unsigned long nr_pages;
1508 
1509 		/*
1510 		 * MAP_FIXED may remove pages of mappings that intersects with
1511 		 * requested mapping. Account for the pages it would unmap.
1512 		 */
1513 		if (!(vm_flags & MAP_FIXED))
1514 			return -ENOMEM;
1515 
1516 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1517 
1518 		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1519 			return -ENOMEM;
1520 	}
1521 
1522 	/* Clear old maps */
1523 	error = -ENOMEM;
1524 munmap_back:
1525 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1526 		if (do_munmap(mm, addr, len))
1527 			return -ENOMEM;
1528 		goto munmap_back;
1529 	}
1530 
1531 	/*
1532 	 * Private writable mapping: check memory availability
1533 	 */
1534 	if (accountable_mapping(file, vm_flags)) {
1535 		charged = len >> PAGE_SHIFT;
1536 		if (security_vm_enough_memory_mm(mm, charged))
1537 			return -ENOMEM;
1538 		vm_flags |= VM_ACCOUNT;
1539 	}
1540 
1541 	/*
1542 	 * Can we just expand an old mapping?
1543 	 */
1544 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1545 	if (vma)
1546 		goto out;
1547 
1548 	/*
1549 	 * Determine the object being mapped and call the appropriate
1550 	 * specific mapper. the address has already been validated, but
1551 	 * not unmapped, but the maps are removed from the list.
1552 	 */
1553 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1554 	if (!vma) {
1555 		error = -ENOMEM;
1556 		goto unacct_error;
1557 	}
1558 
1559 	vma->vm_mm = mm;
1560 	vma->vm_start = addr;
1561 	vma->vm_end = addr + len;
1562 	vma->vm_flags = vm_flags;
1563 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1564 	vma->vm_pgoff = pgoff;
1565 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1566 
1567 	if (file) {
1568 		if (vm_flags & VM_DENYWRITE) {
1569 			error = deny_write_access(file);
1570 			if (error)
1571 				goto free_vma;
1572 		}
1573 		vma->vm_file = get_file(file);
1574 		error = file->f_op->mmap(file, vma);
1575 		if (error)
1576 			goto unmap_and_free_vma;
1577 
1578 		/* Can addr have changed??
1579 		 *
1580 		 * Answer: Yes, several device drivers can do it in their
1581 		 *         f_op->mmap method. -DaveM
1582 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1583 		 *      be updated for vma_link()
1584 		 */
1585 		WARN_ON_ONCE(addr != vma->vm_start);
1586 
1587 		addr = vma->vm_start;
1588 		vm_flags = vma->vm_flags;
1589 	} else if (vm_flags & VM_SHARED) {
1590 		error = shmem_zero_setup(vma);
1591 		if (error)
1592 			goto free_vma;
1593 	}
1594 
1595 	if (vma_wants_writenotify(vma)) {
1596 		pgprot_t pprot = vma->vm_page_prot;
1597 
1598 		/* Can vma->vm_page_prot have changed??
1599 		 *
1600 		 * Answer: Yes, drivers may have changed it in their
1601 		 *         f_op->mmap method.
1602 		 *
1603 		 * Ensures that vmas marked as uncached stay that way.
1604 		 */
1605 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1606 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1607 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1608 	}
1609 
1610 	vma_link(mm, vma, prev, rb_link, rb_parent);
1611 	/* Once vma denies write, undo our temporary denial count */
1612 	if (vm_flags & VM_DENYWRITE)
1613 		allow_write_access(file);
1614 	file = vma->vm_file;
1615 out:
1616 	perf_event_mmap(vma);
1617 
1618 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1619 	if (vm_flags & VM_LOCKED) {
1620 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1621 					vma == get_gate_vma(current->mm)))
1622 			mm->locked_vm += (len >> PAGE_SHIFT);
1623 		else
1624 			vma->vm_flags &= ~VM_LOCKED;
1625 	}
1626 
1627 	if (file)
1628 		uprobe_mmap(vma);
1629 
1630 	/*
1631 	 * New (or expanded) vma always get soft dirty status.
1632 	 * Otherwise user-space soft-dirty page tracker won't
1633 	 * be able to distinguish situation when vma area unmapped,
1634 	 * then new mapped in-place (which must be aimed as
1635 	 * a completely new data area).
1636 	 */
1637 	vma->vm_flags |= VM_SOFTDIRTY;
1638 
1639 	return addr;
1640 
1641 unmap_and_free_vma:
1642 	if (vm_flags & VM_DENYWRITE)
1643 		allow_write_access(file);
1644 	vma->vm_file = NULL;
1645 	fput(file);
1646 
1647 	/* Undo any partial mapping done by a device driver. */
1648 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1649 	charged = 0;
1650 free_vma:
1651 	kmem_cache_free(vm_area_cachep, vma);
1652 unacct_error:
1653 	if (charged)
1654 		vm_unacct_memory(charged);
1655 	return error;
1656 }
1657 
1658 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1659 {
1660 	/*
1661 	 * We implement the search by looking for an rbtree node that
1662 	 * immediately follows a suitable gap. That is,
1663 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1664 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1665 	 * - gap_end - gap_start >= length
1666 	 */
1667 
1668 	struct mm_struct *mm = current->mm;
1669 	struct vm_area_struct *vma;
1670 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1671 
1672 	/* Adjust search length to account for worst case alignment overhead */
1673 	length = info->length + info->align_mask;
1674 	if (length < info->length)
1675 		return -ENOMEM;
1676 
1677 	/* Adjust search limits by the desired length */
1678 	if (info->high_limit < length)
1679 		return -ENOMEM;
1680 	high_limit = info->high_limit - length;
1681 
1682 	if (info->low_limit > high_limit)
1683 		return -ENOMEM;
1684 	low_limit = info->low_limit + length;
1685 
1686 	/* Check if rbtree root looks promising */
1687 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1688 		goto check_highest;
1689 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1690 	if (vma->rb_subtree_gap < length)
1691 		goto check_highest;
1692 
1693 	while (true) {
1694 		/* Visit left subtree if it looks promising */
1695 		gap_end = vma->vm_start;
1696 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1697 			struct vm_area_struct *left =
1698 				rb_entry(vma->vm_rb.rb_left,
1699 					 struct vm_area_struct, vm_rb);
1700 			if (left->rb_subtree_gap >= length) {
1701 				vma = left;
1702 				continue;
1703 			}
1704 		}
1705 
1706 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1707 check_current:
1708 		/* Check if current node has a suitable gap */
1709 		if (gap_start > high_limit)
1710 			return -ENOMEM;
1711 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1712 			goto found;
1713 
1714 		/* Visit right subtree if it looks promising */
1715 		if (vma->vm_rb.rb_right) {
1716 			struct vm_area_struct *right =
1717 				rb_entry(vma->vm_rb.rb_right,
1718 					 struct vm_area_struct, vm_rb);
1719 			if (right->rb_subtree_gap >= length) {
1720 				vma = right;
1721 				continue;
1722 			}
1723 		}
1724 
1725 		/* Go back up the rbtree to find next candidate node */
1726 		while (true) {
1727 			struct rb_node *prev = &vma->vm_rb;
1728 			if (!rb_parent(prev))
1729 				goto check_highest;
1730 			vma = rb_entry(rb_parent(prev),
1731 				       struct vm_area_struct, vm_rb);
1732 			if (prev == vma->vm_rb.rb_left) {
1733 				gap_start = vma->vm_prev->vm_end;
1734 				gap_end = vma->vm_start;
1735 				goto check_current;
1736 			}
1737 		}
1738 	}
1739 
1740 check_highest:
1741 	/* Check highest gap, which does not precede any rbtree node */
1742 	gap_start = mm->highest_vm_end;
1743 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1744 	if (gap_start > high_limit)
1745 		return -ENOMEM;
1746 
1747 found:
1748 	/* We found a suitable gap. Clip it with the original low_limit. */
1749 	if (gap_start < info->low_limit)
1750 		gap_start = info->low_limit;
1751 
1752 	/* Adjust gap address to the desired alignment */
1753 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1754 
1755 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1756 	VM_BUG_ON(gap_start + info->length > gap_end);
1757 	return gap_start;
1758 }
1759 
1760 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1761 {
1762 	struct mm_struct *mm = current->mm;
1763 	struct vm_area_struct *vma;
1764 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1765 
1766 	/* Adjust search length to account for worst case alignment overhead */
1767 	length = info->length + info->align_mask;
1768 	if (length < info->length)
1769 		return -ENOMEM;
1770 
1771 	/*
1772 	 * Adjust search limits by the desired length.
1773 	 * See implementation comment at top of unmapped_area().
1774 	 */
1775 	gap_end = info->high_limit;
1776 	if (gap_end < length)
1777 		return -ENOMEM;
1778 	high_limit = gap_end - length;
1779 
1780 	if (info->low_limit > high_limit)
1781 		return -ENOMEM;
1782 	low_limit = info->low_limit + length;
1783 
1784 	/* Check highest gap, which does not precede any rbtree node */
1785 	gap_start = mm->highest_vm_end;
1786 	if (gap_start <= high_limit)
1787 		goto found_highest;
1788 
1789 	/* Check if rbtree root looks promising */
1790 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1791 		return -ENOMEM;
1792 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1793 	if (vma->rb_subtree_gap < length)
1794 		return -ENOMEM;
1795 
1796 	while (true) {
1797 		/* Visit right subtree if it looks promising */
1798 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1799 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1800 			struct vm_area_struct *right =
1801 				rb_entry(vma->vm_rb.rb_right,
1802 					 struct vm_area_struct, vm_rb);
1803 			if (right->rb_subtree_gap >= length) {
1804 				vma = right;
1805 				continue;
1806 			}
1807 		}
1808 
1809 check_current:
1810 		/* Check if current node has a suitable gap */
1811 		gap_end = vma->vm_start;
1812 		if (gap_end < low_limit)
1813 			return -ENOMEM;
1814 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1815 			goto found;
1816 
1817 		/* Visit left subtree if it looks promising */
1818 		if (vma->vm_rb.rb_left) {
1819 			struct vm_area_struct *left =
1820 				rb_entry(vma->vm_rb.rb_left,
1821 					 struct vm_area_struct, vm_rb);
1822 			if (left->rb_subtree_gap >= length) {
1823 				vma = left;
1824 				continue;
1825 			}
1826 		}
1827 
1828 		/* Go back up the rbtree to find next candidate node */
1829 		while (true) {
1830 			struct rb_node *prev = &vma->vm_rb;
1831 			if (!rb_parent(prev))
1832 				return -ENOMEM;
1833 			vma = rb_entry(rb_parent(prev),
1834 				       struct vm_area_struct, vm_rb);
1835 			if (prev == vma->vm_rb.rb_right) {
1836 				gap_start = vma->vm_prev ?
1837 					vma->vm_prev->vm_end : 0;
1838 				goto check_current;
1839 			}
1840 		}
1841 	}
1842 
1843 found:
1844 	/* We found a suitable gap. Clip it with the original high_limit. */
1845 	if (gap_end > info->high_limit)
1846 		gap_end = info->high_limit;
1847 
1848 found_highest:
1849 	/* Compute highest gap address at the desired alignment */
1850 	gap_end -= info->length;
1851 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1852 
1853 	VM_BUG_ON(gap_end < info->low_limit);
1854 	VM_BUG_ON(gap_end < gap_start);
1855 	return gap_end;
1856 }
1857 
1858 /* Get an address range which is currently unmapped.
1859  * For shmat() with addr=0.
1860  *
1861  * Ugly calling convention alert:
1862  * Return value with the low bits set means error value,
1863  * ie
1864  *	if (ret & ~PAGE_MASK)
1865  *		error = ret;
1866  *
1867  * This function "knows" that -ENOMEM has the bits set.
1868  */
1869 #ifndef HAVE_ARCH_UNMAPPED_AREA
1870 unsigned long
1871 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1872 		unsigned long len, unsigned long pgoff, unsigned long flags)
1873 {
1874 	struct mm_struct *mm = current->mm;
1875 	struct vm_area_struct *vma;
1876 	struct vm_unmapped_area_info info;
1877 
1878 	if (len > TASK_SIZE - mmap_min_addr)
1879 		return -ENOMEM;
1880 
1881 	if (flags & MAP_FIXED)
1882 		return addr;
1883 
1884 	if (addr) {
1885 		addr = PAGE_ALIGN(addr);
1886 		vma = find_vma(mm, addr);
1887 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1888 		    (!vma || addr + len <= vma->vm_start))
1889 			return addr;
1890 	}
1891 
1892 	info.flags = 0;
1893 	info.length = len;
1894 	info.low_limit = mm->mmap_base;
1895 	info.high_limit = TASK_SIZE;
1896 	info.align_mask = 0;
1897 	return vm_unmapped_area(&info);
1898 }
1899 #endif
1900 
1901 /*
1902  * This mmap-allocator allocates new areas top-down from below the
1903  * stack's low limit (the base):
1904  */
1905 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1906 unsigned long
1907 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1908 			  const unsigned long len, const unsigned long pgoff,
1909 			  const unsigned long flags)
1910 {
1911 	struct vm_area_struct *vma;
1912 	struct mm_struct *mm = current->mm;
1913 	unsigned long addr = addr0;
1914 	struct vm_unmapped_area_info info;
1915 
1916 	/* requested length too big for entire address space */
1917 	if (len > TASK_SIZE - mmap_min_addr)
1918 		return -ENOMEM;
1919 
1920 	if (flags & MAP_FIXED)
1921 		return addr;
1922 
1923 	/* requesting a specific address */
1924 	if (addr) {
1925 		addr = PAGE_ALIGN(addr);
1926 		vma = find_vma(mm, addr);
1927 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1928 				(!vma || addr + len <= vma->vm_start))
1929 			return addr;
1930 	}
1931 
1932 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1933 	info.length = len;
1934 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1935 	info.high_limit = mm->mmap_base;
1936 	info.align_mask = 0;
1937 	addr = vm_unmapped_area(&info);
1938 
1939 	/*
1940 	 * A failed mmap() very likely causes application failure,
1941 	 * so fall back to the bottom-up function here. This scenario
1942 	 * can happen with large stack limits and large mmap()
1943 	 * allocations.
1944 	 */
1945 	if (addr & ~PAGE_MASK) {
1946 		VM_BUG_ON(addr != -ENOMEM);
1947 		info.flags = 0;
1948 		info.low_limit = TASK_UNMAPPED_BASE;
1949 		info.high_limit = TASK_SIZE;
1950 		addr = vm_unmapped_area(&info);
1951 	}
1952 
1953 	return addr;
1954 }
1955 #endif
1956 
1957 unsigned long
1958 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1959 		unsigned long pgoff, unsigned long flags)
1960 {
1961 	unsigned long (*get_area)(struct file *, unsigned long,
1962 				  unsigned long, unsigned long, unsigned long);
1963 
1964 	unsigned long error = arch_mmap_check(addr, len, flags);
1965 	if (error)
1966 		return error;
1967 
1968 	/* Careful about overflows.. */
1969 	if (len > TASK_SIZE)
1970 		return -ENOMEM;
1971 
1972 	get_area = current->mm->get_unmapped_area;
1973 	if (file && file->f_op->get_unmapped_area)
1974 		get_area = file->f_op->get_unmapped_area;
1975 	addr = get_area(file, addr, len, pgoff, flags);
1976 	if (IS_ERR_VALUE(addr))
1977 		return addr;
1978 
1979 	if (addr > TASK_SIZE - len)
1980 		return -ENOMEM;
1981 	if (addr & ~PAGE_MASK)
1982 		return -EINVAL;
1983 
1984 	addr = arch_rebalance_pgtables(addr, len);
1985 	error = security_mmap_addr(addr);
1986 	return error ? error : addr;
1987 }
1988 
1989 EXPORT_SYMBOL(get_unmapped_area);
1990 
1991 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1992 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1993 {
1994 	struct rb_node *rb_node;
1995 	struct vm_area_struct *vma;
1996 
1997 	/* Check the cache first. */
1998 	vma = vmacache_find(mm, addr);
1999 	if (likely(vma))
2000 		return vma;
2001 
2002 	rb_node = mm->mm_rb.rb_node;
2003 	vma = NULL;
2004 
2005 	while (rb_node) {
2006 		struct vm_area_struct *tmp;
2007 
2008 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2009 
2010 		if (tmp->vm_end > addr) {
2011 			vma = tmp;
2012 			if (tmp->vm_start <= addr)
2013 				break;
2014 			rb_node = rb_node->rb_left;
2015 		} else
2016 			rb_node = rb_node->rb_right;
2017 	}
2018 
2019 	if (vma)
2020 		vmacache_update(addr, vma);
2021 	return vma;
2022 }
2023 
2024 EXPORT_SYMBOL(find_vma);
2025 
2026 /*
2027  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2028  */
2029 struct vm_area_struct *
2030 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2031 			struct vm_area_struct **pprev)
2032 {
2033 	struct vm_area_struct *vma;
2034 
2035 	vma = find_vma(mm, addr);
2036 	if (vma) {
2037 		*pprev = vma->vm_prev;
2038 	} else {
2039 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2040 		*pprev = NULL;
2041 		while (rb_node) {
2042 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2043 			rb_node = rb_node->rb_right;
2044 		}
2045 	}
2046 	return vma;
2047 }
2048 
2049 /*
2050  * Verify that the stack growth is acceptable and
2051  * update accounting. This is shared with both the
2052  * grow-up and grow-down cases.
2053  */
2054 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2055 {
2056 	struct mm_struct *mm = vma->vm_mm;
2057 	struct rlimit *rlim = current->signal->rlim;
2058 	unsigned long new_start;
2059 
2060 	/* address space limit tests */
2061 	if (!may_expand_vm(mm, grow))
2062 		return -ENOMEM;
2063 
2064 	/* Stack limit test */
2065 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2066 		return -ENOMEM;
2067 
2068 	/* mlock limit tests */
2069 	if (vma->vm_flags & VM_LOCKED) {
2070 		unsigned long locked;
2071 		unsigned long limit;
2072 		locked = mm->locked_vm + grow;
2073 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2074 		limit >>= PAGE_SHIFT;
2075 		if (locked > limit && !capable(CAP_IPC_LOCK))
2076 			return -ENOMEM;
2077 	}
2078 
2079 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2080 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2081 			vma->vm_end - size;
2082 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2083 		return -EFAULT;
2084 
2085 	/*
2086 	 * Overcommit..  This must be the final test, as it will
2087 	 * update security statistics.
2088 	 */
2089 	if (security_vm_enough_memory_mm(mm, grow))
2090 		return -ENOMEM;
2091 
2092 	/* Ok, everything looks good - let it rip */
2093 	if (vma->vm_flags & VM_LOCKED)
2094 		mm->locked_vm += grow;
2095 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2096 	return 0;
2097 }
2098 
2099 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2100 /*
2101  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2102  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2103  */
2104 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2105 {
2106 	int error;
2107 
2108 	if (!(vma->vm_flags & VM_GROWSUP))
2109 		return -EFAULT;
2110 
2111 	/*
2112 	 * We must make sure the anon_vma is allocated
2113 	 * so that the anon_vma locking is not a noop.
2114 	 */
2115 	if (unlikely(anon_vma_prepare(vma)))
2116 		return -ENOMEM;
2117 	vma_lock_anon_vma(vma);
2118 
2119 	/*
2120 	 * vma->vm_start/vm_end cannot change under us because the caller
2121 	 * is required to hold the mmap_sem in read mode.  We need the
2122 	 * anon_vma lock to serialize against concurrent expand_stacks.
2123 	 * Also guard against wrapping around to address 0.
2124 	 */
2125 	if (address < PAGE_ALIGN(address+4))
2126 		address = PAGE_ALIGN(address+4);
2127 	else {
2128 		vma_unlock_anon_vma(vma);
2129 		return -ENOMEM;
2130 	}
2131 	error = 0;
2132 
2133 	/* Somebody else might have raced and expanded it already */
2134 	if (address > vma->vm_end) {
2135 		unsigned long size, grow;
2136 
2137 		size = address - vma->vm_start;
2138 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2139 
2140 		error = -ENOMEM;
2141 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2142 			error = acct_stack_growth(vma, size, grow);
2143 			if (!error) {
2144 				/*
2145 				 * vma_gap_update() doesn't support concurrent
2146 				 * updates, but we only hold a shared mmap_sem
2147 				 * lock here, so we need to protect against
2148 				 * concurrent vma expansions.
2149 				 * vma_lock_anon_vma() doesn't help here, as
2150 				 * we don't guarantee that all growable vmas
2151 				 * in a mm share the same root anon vma.
2152 				 * So, we reuse mm->page_table_lock to guard
2153 				 * against concurrent vma expansions.
2154 				 */
2155 				spin_lock(&vma->vm_mm->page_table_lock);
2156 				anon_vma_interval_tree_pre_update_vma(vma);
2157 				vma->vm_end = address;
2158 				anon_vma_interval_tree_post_update_vma(vma);
2159 				if (vma->vm_next)
2160 					vma_gap_update(vma->vm_next);
2161 				else
2162 					vma->vm_mm->highest_vm_end = address;
2163 				spin_unlock(&vma->vm_mm->page_table_lock);
2164 
2165 				perf_event_mmap(vma);
2166 			}
2167 		}
2168 	}
2169 	vma_unlock_anon_vma(vma);
2170 	khugepaged_enter_vma_merge(vma);
2171 	validate_mm(vma->vm_mm);
2172 	return error;
2173 }
2174 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2175 
2176 /*
2177  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2178  */
2179 int expand_downwards(struct vm_area_struct *vma,
2180 				   unsigned long address)
2181 {
2182 	int error;
2183 
2184 	/*
2185 	 * We must make sure the anon_vma is allocated
2186 	 * so that the anon_vma locking is not a noop.
2187 	 */
2188 	if (unlikely(anon_vma_prepare(vma)))
2189 		return -ENOMEM;
2190 
2191 	address &= PAGE_MASK;
2192 	error = security_mmap_addr(address);
2193 	if (error)
2194 		return error;
2195 
2196 	vma_lock_anon_vma(vma);
2197 
2198 	/*
2199 	 * vma->vm_start/vm_end cannot change under us because the caller
2200 	 * is required to hold the mmap_sem in read mode.  We need the
2201 	 * anon_vma lock to serialize against concurrent expand_stacks.
2202 	 */
2203 
2204 	/* Somebody else might have raced and expanded it already */
2205 	if (address < vma->vm_start) {
2206 		unsigned long size, grow;
2207 
2208 		size = vma->vm_end - address;
2209 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2210 
2211 		error = -ENOMEM;
2212 		if (grow <= vma->vm_pgoff) {
2213 			error = acct_stack_growth(vma, size, grow);
2214 			if (!error) {
2215 				/*
2216 				 * vma_gap_update() doesn't support concurrent
2217 				 * updates, but we only hold a shared mmap_sem
2218 				 * lock here, so we need to protect against
2219 				 * concurrent vma expansions.
2220 				 * vma_lock_anon_vma() doesn't help here, as
2221 				 * we don't guarantee that all growable vmas
2222 				 * in a mm share the same root anon vma.
2223 				 * So, we reuse mm->page_table_lock to guard
2224 				 * against concurrent vma expansions.
2225 				 */
2226 				spin_lock(&vma->vm_mm->page_table_lock);
2227 				anon_vma_interval_tree_pre_update_vma(vma);
2228 				vma->vm_start = address;
2229 				vma->vm_pgoff -= grow;
2230 				anon_vma_interval_tree_post_update_vma(vma);
2231 				vma_gap_update(vma);
2232 				spin_unlock(&vma->vm_mm->page_table_lock);
2233 
2234 				perf_event_mmap(vma);
2235 			}
2236 		}
2237 	}
2238 	vma_unlock_anon_vma(vma);
2239 	khugepaged_enter_vma_merge(vma);
2240 	validate_mm(vma->vm_mm);
2241 	return error;
2242 }
2243 
2244 /*
2245  * Note how expand_stack() refuses to expand the stack all the way to
2246  * abut the next virtual mapping, *unless* that mapping itself is also
2247  * a stack mapping. We want to leave room for a guard page, after all
2248  * (the guard page itself is not added here, that is done by the
2249  * actual page faulting logic)
2250  *
2251  * This matches the behavior of the guard page logic (see mm/memory.c:
2252  * check_stack_guard_page()), which only allows the guard page to be
2253  * removed under these circumstances.
2254  */
2255 #ifdef CONFIG_STACK_GROWSUP
2256 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2257 {
2258 	struct vm_area_struct *next;
2259 
2260 	address &= PAGE_MASK;
2261 	next = vma->vm_next;
2262 	if (next && next->vm_start == address + PAGE_SIZE) {
2263 		if (!(next->vm_flags & VM_GROWSUP))
2264 			return -ENOMEM;
2265 	}
2266 	return expand_upwards(vma, address);
2267 }
2268 
2269 struct vm_area_struct *
2270 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2271 {
2272 	struct vm_area_struct *vma, *prev;
2273 
2274 	addr &= PAGE_MASK;
2275 	vma = find_vma_prev(mm, addr, &prev);
2276 	if (vma && (vma->vm_start <= addr))
2277 		return vma;
2278 	if (!prev || expand_stack(prev, addr))
2279 		return NULL;
2280 	if (prev->vm_flags & VM_LOCKED)
2281 		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2282 	return prev;
2283 }
2284 #else
2285 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2286 {
2287 	struct vm_area_struct *prev;
2288 
2289 	address &= PAGE_MASK;
2290 	prev = vma->vm_prev;
2291 	if (prev && prev->vm_end == address) {
2292 		if (!(prev->vm_flags & VM_GROWSDOWN))
2293 			return -ENOMEM;
2294 	}
2295 	return expand_downwards(vma, address);
2296 }
2297 
2298 struct vm_area_struct *
2299 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2300 {
2301 	struct vm_area_struct * vma;
2302 	unsigned long start;
2303 
2304 	addr &= PAGE_MASK;
2305 	vma = find_vma(mm,addr);
2306 	if (!vma)
2307 		return NULL;
2308 	if (vma->vm_start <= addr)
2309 		return vma;
2310 	if (!(vma->vm_flags & VM_GROWSDOWN))
2311 		return NULL;
2312 	start = vma->vm_start;
2313 	if (expand_stack(vma, addr))
2314 		return NULL;
2315 	if (vma->vm_flags & VM_LOCKED)
2316 		__mlock_vma_pages_range(vma, addr, start, NULL);
2317 	return vma;
2318 }
2319 #endif
2320 
2321 /*
2322  * Ok - we have the memory areas we should free on the vma list,
2323  * so release them, and do the vma updates.
2324  *
2325  * Called with the mm semaphore held.
2326  */
2327 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2328 {
2329 	unsigned long nr_accounted = 0;
2330 
2331 	/* Update high watermark before we lower total_vm */
2332 	update_hiwater_vm(mm);
2333 	do {
2334 		long nrpages = vma_pages(vma);
2335 
2336 		if (vma->vm_flags & VM_ACCOUNT)
2337 			nr_accounted += nrpages;
2338 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2339 		vma = remove_vma(vma);
2340 	} while (vma);
2341 	vm_unacct_memory(nr_accounted);
2342 	validate_mm(mm);
2343 }
2344 
2345 /*
2346  * Get rid of page table information in the indicated region.
2347  *
2348  * Called with the mm semaphore held.
2349  */
2350 static void unmap_region(struct mm_struct *mm,
2351 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2352 		unsigned long start, unsigned long end)
2353 {
2354 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2355 	struct mmu_gather tlb;
2356 
2357 	lru_add_drain();
2358 	tlb_gather_mmu(&tlb, mm, start, end);
2359 	update_hiwater_rss(mm);
2360 	unmap_vmas(&tlb, vma, start, end);
2361 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2362 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2363 	tlb_finish_mmu(&tlb, start, end);
2364 }
2365 
2366 /*
2367  * Create a list of vma's touched by the unmap, removing them from the mm's
2368  * vma list as we go..
2369  */
2370 static void
2371 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2372 	struct vm_area_struct *prev, unsigned long end)
2373 {
2374 	struct vm_area_struct **insertion_point;
2375 	struct vm_area_struct *tail_vma = NULL;
2376 
2377 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2378 	vma->vm_prev = NULL;
2379 	do {
2380 		vma_rb_erase(vma, &mm->mm_rb);
2381 		mm->map_count--;
2382 		tail_vma = vma;
2383 		vma = vma->vm_next;
2384 	} while (vma && vma->vm_start < end);
2385 	*insertion_point = vma;
2386 	if (vma) {
2387 		vma->vm_prev = prev;
2388 		vma_gap_update(vma);
2389 	} else
2390 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2391 	tail_vma->vm_next = NULL;
2392 
2393 	/* Kill the cache */
2394 	vmacache_invalidate(mm);
2395 }
2396 
2397 /*
2398  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2399  * munmap path where it doesn't make sense to fail.
2400  */
2401 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2402 	      unsigned long addr, int new_below)
2403 {
2404 	struct vm_area_struct *new;
2405 	int err = -ENOMEM;
2406 
2407 	if (is_vm_hugetlb_page(vma) && (addr &
2408 					~(huge_page_mask(hstate_vma(vma)))))
2409 		return -EINVAL;
2410 
2411 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2412 	if (!new)
2413 		goto out_err;
2414 
2415 	/* most fields are the same, copy all, and then fixup */
2416 	*new = *vma;
2417 
2418 	INIT_LIST_HEAD(&new->anon_vma_chain);
2419 
2420 	if (new_below)
2421 		new->vm_end = addr;
2422 	else {
2423 		new->vm_start = addr;
2424 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2425 	}
2426 
2427 	err = vma_dup_policy(vma, new);
2428 	if (err)
2429 		goto out_free_vma;
2430 
2431 	if (anon_vma_clone(new, vma))
2432 		goto out_free_mpol;
2433 
2434 	if (new->vm_file)
2435 		get_file(new->vm_file);
2436 
2437 	if (new->vm_ops && new->vm_ops->open)
2438 		new->vm_ops->open(new);
2439 
2440 	if (new_below)
2441 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2442 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2443 	else
2444 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2445 
2446 	/* Success. */
2447 	if (!err)
2448 		return 0;
2449 
2450 	/* Clean everything up if vma_adjust failed. */
2451 	if (new->vm_ops && new->vm_ops->close)
2452 		new->vm_ops->close(new);
2453 	if (new->vm_file)
2454 		fput(new->vm_file);
2455 	unlink_anon_vmas(new);
2456  out_free_mpol:
2457 	mpol_put(vma_policy(new));
2458  out_free_vma:
2459 	kmem_cache_free(vm_area_cachep, new);
2460  out_err:
2461 	return err;
2462 }
2463 
2464 /*
2465  * Split a vma into two pieces at address 'addr', a new vma is allocated
2466  * either for the first part or the tail.
2467  */
2468 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2469 	      unsigned long addr, int new_below)
2470 {
2471 	if (mm->map_count >= sysctl_max_map_count)
2472 		return -ENOMEM;
2473 
2474 	return __split_vma(mm, vma, addr, new_below);
2475 }
2476 
2477 /* Munmap is split into 2 main parts -- this part which finds
2478  * what needs doing, and the areas themselves, which do the
2479  * work.  This now handles partial unmappings.
2480  * Jeremy Fitzhardinge <jeremy@goop.org>
2481  */
2482 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2483 {
2484 	unsigned long end;
2485 	struct vm_area_struct *vma, *prev, *last;
2486 
2487 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2488 		return -EINVAL;
2489 
2490 	if ((len = PAGE_ALIGN(len)) == 0)
2491 		return -EINVAL;
2492 
2493 	/* Find the first overlapping VMA */
2494 	vma = find_vma(mm, start);
2495 	if (!vma)
2496 		return 0;
2497 	prev = vma->vm_prev;
2498 	/* we have  start < vma->vm_end  */
2499 
2500 	/* if it doesn't overlap, we have nothing.. */
2501 	end = start + len;
2502 	if (vma->vm_start >= end)
2503 		return 0;
2504 
2505 	/*
2506 	 * If we need to split any vma, do it now to save pain later.
2507 	 *
2508 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2509 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2510 	 * places tmp vma above, and higher split_vma places tmp vma below.
2511 	 */
2512 	if (start > vma->vm_start) {
2513 		int error;
2514 
2515 		/*
2516 		 * Make sure that map_count on return from munmap() will
2517 		 * not exceed its limit; but let map_count go just above
2518 		 * its limit temporarily, to help free resources as expected.
2519 		 */
2520 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2521 			return -ENOMEM;
2522 
2523 		error = __split_vma(mm, vma, start, 0);
2524 		if (error)
2525 			return error;
2526 		prev = vma;
2527 	}
2528 
2529 	/* Does it split the last one? */
2530 	last = find_vma(mm, end);
2531 	if (last && end > last->vm_start) {
2532 		int error = __split_vma(mm, last, end, 1);
2533 		if (error)
2534 			return error;
2535 	}
2536 	vma = prev? prev->vm_next: mm->mmap;
2537 
2538 	/*
2539 	 * unlock any mlock()ed ranges before detaching vmas
2540 	 */
2541 	if (mm->locked_vm) {
2542 		struct vm_area_struct *tmp = vma;
2543 		while (tmp && tmp->vm_start < end) {
2544 			if (tmp->vm_flags & VM_LOCKED) {
2545 				mm->locked_vm -= vma_pages(tmp);
2546 				munlock_vma_pages_all(tmp);
2547 			}
2548 			tmp = tmp->vm_next;
2549 		}
2550 	}
2551 
2552 	/*
2553 	 * Remove the vma's, and unmap the actual pages
2554 	 */
2555 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2556 	unmap_region(mm, vma, prev, start, end);
2557 
2558 	/* Fix up all other VM information */
2559 	remove_vma_list(mm, vma);
2560 
2561 	return 0;
2562 }
2563 
2564 int vm_munmap(unsigned long start, size_t len)
2565 {
2566 	int ret;
2567 	struct mm_struct *mm = current->mm;
2568 
2569 	down_write(&mm->mmap_sem);
2570 	ret = do_munmap(mm, start, len);
2571 	up_write(&mm->mmap_sem);
2572 	return ret;
2573 }
2574 EXPORT_SYMBOL(vm_munmap);
2575 
2576 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2577 {
2578 	profile_munmap(addr);
2579 	return vm_munmap(addr, len);
2580 }
2581 
2582 static inline void verify_mm_writelocked(struct mm_struct *mm)
2583 {
2584 #ifdef CONFIG_DEBUG_VM
2585 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2586 		WARN_ON(1);
2587 		up_read(&mm->mmap_sem);
2588 	}
2589 #endif
2590 }
2591 
2592 /*
2593  *  this is really a simplified "do_mmap".  it only handles
2594  *  anonymous maps.  eventually we may be able to do some
2595  *  brk-specific accounting here.
2596  */
2597 static unsigned long do_brk(unsigned long addr, unsigned long len)
2598 {
2599 	struct mm_struct * mm = current->mm;
2600 	struct vm_area_struct * vma, * prev;
2601 	unsigned long flags;
2602 	struct rb_node ** rb_link, * rb_parent;
2603 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2604 	int error;
2605 
2606 	len = PAGE_ALIGN(len);
2607 	if (!len)
2608 		return addr;
2609 
2610 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2611 
2612 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2613 	if (error & ~PAGE_MASK)
2614 		return error;
2615 
2616 	error = mlock_future_check(mm, mm->def_flags, len);
2617 	if (error)
2618 		return error;
2619 
2620 	/*
2621 	 * mm->mmap_sem is required to protect against another thread
2622 	 * changing the mappings in case we sleep.
2623 	 */
2624 	verify_mm_writelocked(mm);
2625 
2626 	/*
2627 	 * Clear old maps.  this also does some error checking for us
2628 	 */
2629  munmap_back:
2630 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2631 		if (do_munmap(mm, addr, len))
2632 			return -ENOMEM;
2633 		goto munmap_back;
2634 	}
2635 
2636 	/* Check against address space limits *after* clearing old maps... */
2637 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2638 		return -ENOMEM;
2639 
2640 	if (mm->map_count > sysctl_max_map_count)
2641 		return -ENOMEM;
2642 
2643 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2644 		return -ENOMEM;
2645 
2646 	/* Can we just expand an old private anonymous mapping? */
2647 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2648 					NULL, NULL, pgoff, NULL);
2649 	if (vma)
2650 		goto out;
2651 
2652 	/*
2653 	 * create a vma struct for an anonymous mapping
2654 	 */
2655 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2656 	if (!vma) {
2657 		vm_unacct_memory(len >> PAGE_SHIFT);
2658 		return -ENOMEM;
2659 	}
2660 
2661 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2662 	vma->vm_mm = mm;
2663 	vma->vm_start = addr;
2664 	vma->vm_end = addr + len;
2665 	vma->vm_pgoff = pgoff;
2666 	vma->vm_flags = flags;
2667 	vma->vm_page_prot = vm_get_page_prot(flags);
2668 	vma_link(mm, vma, prev, rb_link, rb_parent);
2669 out:
2670 	perf_event_mmap(vma);
2671 	mm->total_vm += len >> PAGE_SHIFT;
2672 	if (flags & VM_LOCKED)
2673 		mm->locked_vm += (len >> PAGE_SHIFT);
2674 	vma->vm_flags |= VM_SOFTDIRTY;
2675 	return addr;
2676 }
2677 
2678 unsigned long vm_brk(unsigned long addr, unsigned long len)
2679 {
2680 	struct mm_struct *mm = current->mm;
2681 	unsigned long ret;
2682 	bool populate;
2683 
2684 	down_write(&mm->mmap_sem);
2685 	ret = do_brk(addr, len);
2686 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2687 	up_write(&mm->mmap_sem);
2688 	if (populate)
2689 		mm_populate(addr, len);
2690 	return ret;
2691 }
2692 EXPORT_SYMBOL(vm_brk);
2693 
2694 /* Release all mmaps. */
2695 void exit_mmap(struct mm_struct *mm)
2696 {
2697 	struct mmu_gather tlb;
2698 	struct vm_area_struct *vma;
2699 	unsigned long nr_accounted = 0;
2700 
2701 	/* mm's last user has gone, and its about to be pulled down */
2702 	mmu_notifier_release(mm);
2703 
2704 	if (mm->locked_vm) {
2705 		vma = mm->mmap;
2706 		while (vma) {
2707 			if (vma->vm_flags & VM_LOCKED)
2708 				munlock_vma_pages_all(vma);
2709 			vma = vma->vm_next;
2710 		}
2711 	}
2712 
2713 	arch_exit_mmap(mm);
2714 
2715 	vma = mm->mmap;
2716 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2717 		return;
2718 
2719 	lru_add_drain();
2720 	flush_cache_mm(mm);
2721 	tlb_gather_mmu(&tlb, mm, 0, -1);
2722 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2723 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2724 	unmap_vmas(&tlb, vma, 0, -1);
2725 
2726 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2727 	tlb_finish_mmu(&tlb, 0, -1);
2728 
2729 	/*
2730 	 * Walk the list again, actually closing and freeing it,
2731 	 * with preemption enabled, without holding any MM locks.
2732 	 */
2733 	while (vma) {
2734 		if (vma->vm_flags & VM_ACCOUNT)
2735 			nr_accounted += vma_pages(vma);
2736 		vma = remove_vma(vma);
2737 	}
2738 	vm_unacct_memory(nr_accounted);
2739 
2740 	WARN_ON(atomic_long_read(&mm->nr_ptes) >
2741 			(FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2742 }
2743 
2744 /* Insert vm structure into process list sorted by address
2745  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2746  * then i_mmap_mutex is taken here.
2747  */
2748 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2749 {
2750 	struct vm_area_struct *prev;
2751 	struct rb_node **rb_link, *rb_parent;
2752 
2753 	/*
2754 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2755 	 * until its first write fault, when page's anon_vma and index
2756 	 * are set.  But now set the vm_pgoff it will almost certainly
2757 	 * end up with (unless mremap moves it elsewhere before that
2758 	 * first wfault), so /proc/pid/maps tells a consistent story.
2759 	 *
2760 	 * By setting it to reflect the virtual start address of the
2761 	 * vma, merges and splits can happen in a seamless way, just
2762 	 * using the existing file pgoff checks and manipulations.
2763 	 * Similarly in do_mmap_pgoff and in do_brk.
2764 	 */
2765 	if (!vma->vm_file) {
2766 		BUG_ON(vma->anon_vma);
2767 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2768 	}
2769 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2770 			   &prev, &rb_link, &rb_parent))
2771 		return -ENOMEM;
2772 	if ((vma->vm_flags & VM_ACCOUNT) &&
2773 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2774 		return -ENOMEM;
2775 
2776 	vma_link(mm, vma, prev, rb_link, rb_parent);
2777 	return 0;
2778 }
2779 
2780 /*
2781  * Copy the vma structure to a new location in the same mm,
2782  * prior to moving page table entries, to effect an mremap move.
2783  */
2784 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2785 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2786 	bool *need_rmap_locks)
2787 {
2788 	struct vm_area_struct *vma = *vmap;
2789 	unsigned long vma_start = vma->vm_start;
2790 	struct mm_struct *mm = vma->vm_mm;
2791 	struct vm_area_struct *new_vma, *prev;
2792 	struct rb_node **rb_link, *rb_parent;
2793 	bool faulted_in_anon_vma = true;
2794 
2795 	/*
2796 	 * If anonymous vma has not yet been faulted, update new pgoff
2797 	 * to match new location, to increase its chance of merging.
2798 	 */
2799 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2800 		pgoff = addr >> PAGE_SHIFT;
2801 		faulted_in_anon_vma = false;
2802 	}
2803 
2804 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2805 		return NULL;	/* should never get here */
2806 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2807 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2808 	if (new_vma) {
2809 		/*
2810 		 * Source vma may have been merged into new_vma
2811 		 */
2812 		if (unlikely(vma_start >= new_vma->vm_start &&
2813 			     vma_start < new_vma->vm_end)) {
2814 			/*
2815 			 * The only way we can get a vma_merge with
2816 			 * self during an mremap is if the vma hasn't
2817 			 * been faulted in yet and we were allowed to
2818 			 * reset the dst vma->vm_pgoff to the
2819 			 * destination address of the mremap to allow
2820 			 * the merge to happen. mremap must change the
2821 			 * vm_pgoff linearity between src and dst vmas
2822 			 * (in turn preventing a vma_merge) to be
2823 			 * safe. It is only safe to keep the vm_pgoff
2824 			 * linear if there are no pages mapped yet.
2825 			 */
2826 			VM_BUG_ON(faulted_in_anon_vma);
2827 			*vmap = vma = new_vma;
2828 		}
2829 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2830 	} else {
2831 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2832 		if (new_vma) {
2833 			*new_vma = *vma;
2834 			new_vma->vm_start = addr;
2835 			new_vma->vm_end = addr + len;
2836 			new_vma->vm_pgoff = pgoff;
2837 			if (vma_dup_policy(vma, new_vma))
2838 				goto out_free_vma;
2839 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2840 			if (anon_vma_clone(new_vma, vma))
2841 				goto out_free_mempol;
2842 			if (new_vma->vm_file)
2843 				get_file(new_vma->vm_file);
2844 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2845 				new_vma->vm_ops->open(new_vma);
2846 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2847 			*need_rmap_locks = false;
2848 		}
2849 	}
2850 	return new_vma;
2851 
2852  out_free_mempol:
2853 	mpol_put(vma_policy(new_vma));
2854  out_free_vma:
2855 	kmem_cache_free(vm_area_cachep, new_vma);
2856 	return NULL;
2857 }
2858 
2859 /*
2860  * Return true if the calling process may expand its vm space by the passed
2861  * number of pages
2862  */
2863 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2864 {
2865 	unsigned long cur = mm->total_vm;	/* pages */
2866 	unsigned long lim;
2867 
2868 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2869 
2870 	if (cur + npages > lim)
2871 		return 0;
2872 	return 1;
2873 }
2874 
2875 
2876 static int special_mapping_fault(struct vm_area_struct *vma,
2877 				struct vm_fault *vmf)
2878 {
2879 	pgoff_t pgoff;
2880 	struct page **pages;
2881 
2882 	/*
2883 	 * special mappings have no vm_file, and in that case, the mm
2884 	 * uses vm_pgoff internally. So we have to subtract it from here.
2885 	 * We are allowed to do this because we are the mm; do not copy
2886 	 * this code into drivers!
2887 	 */
2888 	pgoff = vmf->pgoff - vma->vm_pgoff;
2889 
2890 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2891 		pgoff--;
2892 
2893 	if (*pages) {
2894 		struct page *page = *pages;
2895 		get_page(page);
2896 		vmf->page = page;
2897 		return 0;
2898 	}
2899 
2900 	return VM_FAULT_SIGBUS;
2901 }
2902 
2903 /*
2904  * Having a close hook prevents vma merging regardless of flags.
2905  */
2906 static void special_mapping_close(struct vm_area_struct *vma)
2907 {
2908 }
2909 
2910 static const struct vm_operations_struct special_mapping_vmops = {
2911 	.close = special_mapping_close,
2912 	.fault = special_mapping_fault,
2913 };
2914 
2915 /*
2916  * Called with mm->mmap_sem held for writing.
2917  * Insert a new vma covering the given region, with the given flags.
2918  * Its pages are supplied by the given array of struct page *.
2919  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2920  * The region past the last page supplied will always produce SIGBUS.
2921  * The array pointer and the pages it points to are assumed to stay alive
2922  * for as long as this mapping might exist.
2923  */
2924 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2925 			    unsigned long addr, unsigned long len,
2926 			    unsigned long vm_flags, struct page **pages)
2927 {
2928 	int ret;
2929 	struct vm_area_struct *vma;
2930 
2931 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2932 	if (unlikely(vma == NULL))
2933 		return ERR_PTR(-ENOMEM);
2934 
2935 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2936 	vma->vm_mm = mm;
2937 	vma->vm_start = addr;
2938 	vma->vm_end = addr + len;
2939 
2940 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2941 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2942 
2943 	vma->vm_ops = &special_mapping_vmops;
2944 	vma->vm_private_data = pages;
2945 
2946 	ret = insert_vm_struct(mm, vma);
2947 	if (ret)
2948 		goto out;
2949 
2950 	mm->total_vm += len >> PAGE_SHIFT;
2951 
2952 	perf_event_mmap(vma);
2953 
2954 	return vma;
2955 
2956 out:
2957 	kmem_cache_free(vm_area_cachep, vma);
2958 	return ERR_PTR(ret);
2959 }
2960 
2961 int install_special_mapping(struct mm_struct *mm,
2962 			    unsigned long addr, unsigned long len,
2963 			    unsigned long vm_flags, struct page **pages)
2964 {
2965 	struct vm_area_struct *vma = _install_special_mapping(mm,
2966 			    addr, len, vm_flags, pages);
2967 
2968 	if (IS_ERR(vma))
2969 		return PTR_ERR(vma);
2970 	return 0;
2971 }
2972 
2973 static DEFINE_MUTEX(mm_all_locks_mutex);
2974 
2975 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2976 {
2977 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2978 		/*
2979 		 * The LSB of head.next can't change from under us
2980 		 * because we hold the mm_all_locks_mutex.
2981 		 */
2982 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2983 		/*
2984 		 * We can safely modify head.next after taking the
2985 		 * anon_vma->root->rwsem. If some other vma in this mm shares
2986 		 * the same anon_vma we won't take it again.
2987 		 *
2988 		 * No need of atomic instructions here, head.next
2989 		 * can't change from under us thanks to the
2990 		 * anon_vma->root->rwsem.
2991 		 */
2992 		if (__test_and_set_bit(0, (unsigned long *)
2993 				       &anon_vma->root->rb_root.rb_node))
2994 			BUG();
2995 	}
2996 }
2997 
2998 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2999 {
3000 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3001 		/*
3002 		 * AS_MM_ALL_LOCKS can't change from under us because
3003 		 * we hold the mm_all_locks_mutex.
3004 		 *
3005 		 * Operations on ->flags have to be atomic because
3006 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3007 		 * mm_all_locks_mutex, there may be other cpus
3008 		 * changing other bitflags in parallel to us.
3009 		 */
3010 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3011 			BUG();
3012 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3013 	}
3014 }
3015 
3016 /*
3017  * This operation locks against the VM for all pte/vma/mm related
3018  * operations that could ever happen on a certain mm. This includes
3019  * vmtruncate, try_to_unmap, and all page faults.
3020  *
3021  * The caller must take the mmap_sem in write mode before calling
3022  * mm_take_all_locks(). The caller isn't allowed to release the
3023  * mmap_sem until mm_drop_all_locks() returns.
3024  *
3025  * mmap_sem in write mode is required in order to block all operations
3026  * that could modify pagetables and free pages without need of
3027  * altering the vma layout (for example populate_range() with
3028  * nonlinear vmas). It's also needed in write mode to avoid new
3029  * anon_vmas to be associated with existing vmas.
3030  *
3031  * A single task can't take more than one mm_take_all_locks() in a row
3032  * or it would deadlock.
3033  *
3034  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3035  * mapping->flags avoid to take the same lock twice, if more than one
3036  * vma in this mm is backed by the same anon_vma or address_space.
3037  *
3038  * We can take all the locks in random order because the VM code
3039  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3040  * takes more than one of them in a row. Secondly we're protected
3041  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3042  *
3043  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3044  * that may have to take thousand of locks.
3045  *
3046  * mm_take_all_locks() can fail if it's interrupted by signals.
3047  */
3048 int mm_take_all_locks(struct mm_struct *mm)
3049 {
3050 	struct vm_area_struct *vma;
3051 	struct anon_vma_chain *avc;
3052 
3053 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3054 
3055 	mutex_lock(&mm_all_locks_mutex);
3056 
3057 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3058 		if (signal_pending(current))
3059 			goto out_unlock;
3060 		if (vma->vm_file && vma->vm_file->f_mapping)
3061 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3062 	}
3063 
3064 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3065 		if (signal_pending(current))
3066 			goto out_unlock;
3067 		if (vma->anon_vma)
3068 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3069 				vm_lock_anon_vma(mm, avc->anon_vma);
3070 	}
3071 
3072 	return 0;
3073 
3074 out_unlock:
3075 	mm_drop_all_locks(mm);
3076 	return -EINTR;
3077 }
3078 
3079 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3080 {
3081 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3082 		/*
3083 		 * The LSB of head.next can't change to 0 from under
3084 		 * us because we hold the mm_all_locks_mutex.
3085 		 *
3086 		 * We must however clear the bitflag before unlocking
3087 		 * the vma so the users using the anon_vma->rb_root will
3088 		 * never see our bitflag.
3089 		 *
3090 		 * No need of atomic instructions here, head.next
3091 		 * can't change from under us until we release the
3092 		 * anon_vma->root->rwsem.
3093 		 */
3094 		if (!__test_and_clear_bit(0, (unsigned long *)
3095 					  &anon_vma->root->rb_root.rb_node))
3096 			BUG();
3097 		anon_vma_unlock_write(anon_vma);
3098 	}
3099 }
3100 
3101 static void vm_unlock_mapping(struct address_space *mapping)
3102 {
3103 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3104 		/*
3105 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3106 		 * because we hold the mm_all_locks_mutex.
3107 		 */
3108 		mutex_unlock(&mapping->i_mmap_mutex);
3109 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3110 					&mapping->flags))
3111 			BUG();
3112 	}
3113 }
3114 
3115 /*
3116  * The mmap_sem cannot be released by the caller until
3117  * mm_drop_all_locks() returns.
3118  */
3119 void mm_drop_all_locks(struct mm_struct *mm)
3120 {
3121 	struct vm_area_struct *vma;
3122 	struct anon_vma_chain *avc;
3123 
3124 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3125 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3126 
3127 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3128 		if (vma->anon_vma)
3129 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3130 				vm_unlock_anon_vma(avc->anon_vma);
3131 		if (vma->vm_file && vma->vm_file->f_mapping)
3132 			vm_unlock_mapping(vma->vm_file->f_mapping);
3133 	}
3134 
3135 	mutex_unlock(&mm_all_locks_mutex);
3136 }
3137 
3138 /*
3139  * initialise the VMA slab
3140  */
3141 void __init mmap_init(void)
3142 {
3143 	int ret;
3144 
3145 	ret = percpu_counter_init(&vm_committed_as, 0);
3146 	VM_BUG_ON(ret);
3147 }
3148 
3149 /*
3150  * Initialise sysctl_user_reserve_kbytes.
3151  *
3152  * This is intended to prevent a user from starting a single memory hogging
3153  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3154  * mode.
3155  *
3156  * The default value is min(3% of free memory, 128MB)
3157  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3158  */
3159 static int init_user_reserve(void)
3160 {
3161 	unsigned long free_kbytes;
3162 
3163 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3164 
3165 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3166 	return 0;
3167 }
3168 subsys_initcall(init_user_reserve);
3169 
3170 /*
3171  * Initialise sysctl_admin_reserve_kbytes.
3172  *
3173  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3174  * to log in and kill a memory hogging process.
3175  *
3176  * Systems with more than 256MB will reserve 8MB, enough to recover
3177  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3178  * only reserve 3% of free pages by default.
3179  */
3180 static int init_admin_reserve(void)
3181 {
3182 	unsigned long free_kbytes;
3183 
3184 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3185 
3186 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3187 	return 0;
3188 }
3189 subsys_initcall(init_admin_reserve);
3190 
3191 /*
3192  * Reinititalise user and admin reserves if memory is added or removed.
3193  *
3194  * The default user reserve max is 128MB, and the default max for the
3195  * admin reserve is 8MB. These are usually, but not always, enough to
3196  * enable recovery from a memory hogging process using login/sshd, a shell,
3197  * and tools like top. It may make sense to increase or even disable the
3198  * reserve depending on the existence of swap or variations in the recovery
3199  * tools. So, the admin may have changed them.
3200  *
3201  * If memory is added and the reserves have been eliminated or increased above
3202  * the default max, then we'll trust the admin.
3203  *
3204  * If memory is removed and there isn't enough free memory, then we
3205  * need to reset the reserves.
3206  *
3207  * Otherwise keep the reserve set by the admin.
3208  */
3209 static int reserve_mem_notifier(struct notifier_block *nb,
3210 			     unsigned long action, void *data)
3211 {
3212 	unsigned long tmp, free_kbytes;
3213 
3214 	switch (action) {
3215 	case MEM_ONLINE:
3216 		/* Default max is 128MB. Leave alone if modified by operator. */
3217 		tmp = sysctl_user_reserve_kbytes;
3218 		if (0 < tmp && tmp < (1UL << 17))
3219 			init_user_reserve();
3220 
3221 		/* Default max is 8MB.  Leave alone if modified by operator. */
3222 		tmp = sysctl_admin_reserve_kbytes;
3223 		if (0 < tmp && tmp < (1UL << 13))
3224 			init_admin_reserve();
3225 
3226 		break;
3227 	case MEM_OFFLINE:
3228 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3229 
3230 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3231 			init_user_reserve();
3232 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3233 				sysctl_user_reserve_kbytes);
3234 		}
3235 
3236 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3237 			init_admin_reserve();
3238 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3239 				sysctl_admin_reserve_kbytes);
3240 		}
3241 		break;
3242 	default:
3243 		break;
3244 	}
3245 	return NOTIFY_OK;
3246 }
3247 
3248 static struct notifier_block reserve_mem_nb = {
3249 	.notifier_call = reserve_mem_notifier,
3250 };
3251 
3252 static int __meminit init_reserve_notifier(void)
3253 {
3254 	if (register_hotmemory_notifier(&reserve_mem_nb))
3255 		printk("Failed registering memory add/remove notifier for admin reserve");
3256 
3257 	return 0;
3258 }
3259 subsys_initcall(init_reserve_notifier);
3260