1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #include "internal.h" 57 58 #ifndef arch_mmap_check 59 #define arch_mmap_check(addr, len, flags) (0) 60 #endif 61 62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 66 #endif 67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 71 #endif 72 73 static bool ignore_rlimit_data; 74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 75 76 static void unmap_region(struct mm_struct *mm, 77 struct vm_area_struct *vma, struct vm_area_struct *prev, 78 unsigned long start, unsigned long end); 79 80 /* description of effects of mapping type and prot in current implementation. 81 * this is due to the limited x86 page protection hardware. The expected 82 * behavior is in parens: 83 * 84 * map_type prot 85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 87 * w: (no) no w: (no) no w: (yes) yes w: (no) no 88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 89 * 90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 91 * w: (no) no w: (no) no w: (copy) copy w: (no) no 92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 93 */ 94 pgprot_t protection_map[16] __ro_after_init = { 95 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 96 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 97 }; 98 99 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 100 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 101 { 102 return prot; 103 } 104 #endif 105 106 pgprot_t vm_get_page_prot(unsigned long vm_flags) 107 { 108 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 109 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 110 pgprot_val(arch_vm_get_page_prot(vm_flags))); 111 112 return arch_filter_pgprot(ret); 113 } 114 EXPORT_SYMBOL(vm_get_page_prot); 115 116 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 117 { 118 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 119 } 120 121 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 122 void vma_set_page_prot(struct vm_area_struct *vma) 123 { 124 unsigned long vm_flags = vma->vm_flags; 125 pgprot_t vm_page_prot; 126 127 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 128 if (vma_wants_writenotify(vma, vm_page_prot)) { 129 vm_flags &= ~VM_SHARED; 130 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 131 } 132 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 133 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 134 } 135 136 /* 137 * Requires inode->i_mapping->i_mmap_rwsem 138 */ 139 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 140 struct file *file, struct address_space *mapping) 141 { 142 if (vma->vm_flags & VM_DENYWRITE) 143 atomic_inc(&file_inode(file)->i_writecount); 144 if (vma->vm_flags & VM_SHARED) 145 mapping_unmap_writable(mapping); 146 147 flush_dcache_mmap_lock(mapping); 148 vma_interval_tree_remove(vma, &mapping->i_mmap); 149 flush_dcache_mmap_unlock(mapping); 150 } 151 152 /* 153 * Unlink a file-based vm structure from its interval tree, to hide 154 * vma from rmap and vmtruncate before freeing its page tables. 155 */ 156 void unlink_file_vma(struct vm_area_struct *vma) 157 { 158 struct file *file = vma->vm_file; 159 160 if (file) { 161 struct address_space *mapping = file->f_mapping; 162 i_mmap_lock_write(mapping); 163 __remove_shared_vm_struct(vma, file, mapping); 164 i_mmap_unlock_write(mapping); 165 } 166 } 167 168 /* 169 * Close a vm structure and free it, returning the next. 170 */ 171 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 172 { 173 struct vm_area_struct *next = vma->vm_next; 174 175 might_sleep(); 176 if (vma->vm_ops && vma->vm_ops->close) 177 vma->vm_ops->close(vma); 178 if (vma->vm_file) 179 fput(vma->vm_file); 180 mpol_put(vma_policy(vma)); 181 vm_area_free(vma); 182 return next; 183 } 184 185 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 186 struct list_head *uf); 187 SYSCALL_DEFINE1(brk, unsigned long, brk) 188 { 189 unsigned long retval; 190 unsigned long newbrk, oldbrk, origbrk; 191 struct mm_struct *mm = current->mm; 192 struct vm_area_struct *next; 193 unsigned long min_brk; 194 bool populate; 195 bool downgraded = false; 196 LIST_HEAD(uf); 197 198 if (down_write_killable(&mm->mmap_sem)) 199 return -EINTR; 200 201 origbrk = mm->brk; 202 203 #ifdef CONFIG_COMPAT_BRK 204 /* 205 * CONFIG_COMPAT_BRK can still be overridden by setting 206 * randomize_va_space to 2, which will still cause mm->start_brk 207 * to be arbitrarily shifted 208 */ 209 if (current->brk_randomized) 210 min_brk = mm->start_brk; 211 else 212 min_brk = mm->end_data; 213 #else 214 min_brk = mm->start_brk; 215 #endif 216 if (brk < min_brk) 217 goto out; 218 219 /* 220 * Check against rlimit here. If this check is done later after the test 221 * of oldbrk with newbrk then it can escape the test and let the data 222 * segment grow beyond its set limit the in case where the limit is 223 * not page aligned -Ram Gupta 224 */ 225 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 226 mm->end_data, mm->start_data)) 227 goto out; 228 229 newbrk = PAGE_ALIGN(brk); 230 oldbrk = PAGE_ALIGN(mm->brk); 231 if (oldbrk == newbrk) { 232 mm->brk = brk; 233 goto success; 234 } 235 236 /* 237 * Always allow shrinking brk. 238 * __do_munmap() may downgrade mmap_sem to read. 239 */ 240 if (brk <= mm->brk) { 241 int ret; 242 243 /* 244 * mm->brk must to be protected by write mmap_sem so update it 245 * before downgrading mmap_sem. When __do_munmap() fails, 246 * mm->brk will be restored from origbrk. 247 */ 248 mm->brk = brk; 249 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 250 if (ret < 0) { 251 mm->brk = origbrk; 252 goto out; 253 } else if (ret == 1) { 254 downgraded = true; 255 } 256 goto success; 257 } 258 259 /* Check against existing mmap mappings. */ 260 next = find_vma(mm, oldbrk); 261 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 262 goto out; 263 264 /* Ok, looks good - let it rip. */ 265 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 266 goto out; 267 mm->brk = brk; 268 269 success: 270 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 271 if (downgraded) 272 up_read(&mm->mmap_sem); 273 else 274 up_write(&mm->mmap_sem); 275 userfaultfd_unmap_complete(mm, &uf); 276 if (populate) 277 mm_populate(oldbrk, newbrk - oldbrk); 278 return brk; 279 280 out: 281 retval = origbrk; 282 up_write(&mm->mmap_sem); 283 return retval; 284 } 285 286 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 287 { 288 unsigned long gap, prev_end; 289 290 /* 291 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 292 * allow two stack_guard_gaps between them here, and when choosing 293 * an unmapped area; whereas when expanding we only require one. 294 * That's a little inconsistent, but keeps the code here simpler. 295 */ 296 gap = vm_start_gap(vma); 297 if (vma->vm_prev) { 298 prev_end = vm_end_gap(vma->vm_prev); 299 if (gap > prev_end) 300 gap -= prev_end; 301 else 302 gap = 0; 303 } 304 return gap; 305 } 306 307 #ifdef CONFIG_DEBUG_VM_RB 308 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 309 { 310 unsigned long max = vma_compute_gap(vma), subtree_gap; 311 if (vma->vm_rb.rb_left) { 312 subtree_gap = rb_entry(vma->vm_rb.rb_left, 313 struct vm_area_struct, vm_rb)->rb_subtree_gap; 314 if (subtree_gap > max) 315 max = subtree_gap; 316 } 317 if (vma->vm_rb.rb_right) { 318 subtree_gap = rb_entry(vma->vm_rb.rb_right, 319 struct vm_area_struct, vm_rb)->rb_subtree_gap; 320 if (subtree_gap > max) 321 max = subtree_gap; 322 } 323 return max; 324 } 325 326 static int browse_rb(struct mm_struct *mm) 327 { 328 struct rb_root *root = &mm->mm_rb; 329 int i = 0, j, bug = 0; 330 struct rb_node *nd, *pn = NULL; 331 unsigned long prev = 0, pend = 0; 332 333 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 334 struct vm_area_struct *vma; 335 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 336 if (vma->vm_start < prev) { 337 pr_emerg("vm_start %lx < prev %lx\n", 338 vma->vm_start, prev); 339 bug = 1; 340 } 341 if (vma->vm_start < pend) { 342 pr_emerg("vm_start %lx < pend %lx\n", 343 vma->vm_start, pend); 344 bug = 1; 345 } 346 if (vma->vm_start > vma->vm_end) { 347 pr_emerg("vm_start %lx > vm_end %lx\n", 348 vma->vm_start, vma->vm_end); 349 bug = 1; 350 } 351 spin_lock(&mm->page_table_lock); 352 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 353 pr_emerg("free gap %lx, correct %lx\n", 354 vma->rb_subtree_gap, 355 vma_compute_subtree_gap(vma)); 356 bug = 1; 357 } 358 spin_unlock(&mm->page_table_lock); 359 i++; 360 pn = nd; 361 prev = vma->vm_start; 362 pend = vma->vm_end; 363 } 364 j = 0; 365 for (nd = pn; nd; nd = rb_prev(nd)) 366 j++; 367 if (i != j) { 368 pr_emerg("backwards %d, forwards %d\n", j, i); 369 bug = 1; 370 } 371 return bug ? -1 : i; 372 } 373 374 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 375 { 376 struct rb_node *nd; 377 378 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 379 struct vm_area_struct *vma; 380 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 381 VM_BUG_ON_VMA(vma != ignore && 382 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 383 vma); 384 } 385 } 386 387 static void validate_mm(struct mm_struct *mm) 388 { 389 int bug = 0; 390 int i = 0; 391 unsigned long highest_address = 0; 392 struct vm_area_struct *vma = mm->mmap; 393 394 while (vma) { 395 struct anon_vma *anon_vma = vma->anon_vma; 396 struct anon_vma_chain *avc; 397 398 if (anon_vma) { 399 anon_vma_lock_read(anon_vma); 400 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 401 anon_vma_interval_tree_verify(avc); 402 anon_vma_unlock_read(anon_vma); 403 } 404 405 highest_address = vm_end_gap(vma); 406 vma = vma->vm_next; 407 i++; 408 } 409 if (i != mm->map_count) { 410 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 411 bug = 1; 412 } 413 if (highest_address != mm->highest_vm_end) { 414 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 415 mm->highest_vm_end, highest_address); 416 bug = 1; 417 } 418 i = browse_rb(mm); 419 if (i != mm->map_count) { 420 if (i != -1) 421 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 422 bug = 1; 423 } 424 VM_BUG_ON_MM(bug, mm); 425 } 426 #else 427 #define validate_mm_rb(root, ignore) do { } while (0) 428 #define validate_mm(mm) do { } while (0) 429 #endif 430 431 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 432 struct vm_area_struct, vm_rb, 433 unsigned long, rb_subtree_gap, vma_compute_gap) 434 435 /* 436 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 437 * vma->vm_prev->vm_end values changed, without modifying the vma's position 438 * in the rbtree. 439 */ 440 static void vma_gap_update(struct vm_area_struct *vma) 441 { 442 /* 443 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 444 * a callback function that does exactly what we want. 445 */ 446 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 447 } 448 449 static inline void vma_rb_insert(struct vm_area_struct *vma, 450 struct rb_root *root) 451 { 452 /* All rb_subtree_gap values must be consistent prior to insertion */ 453 validate_mm_rb(root, NULL); 454 455 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 456 } 457 458 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 459 { 460 /* 461 * Note rb_erase_augmented is a fairly large inline function, 462 * so make sure we instantiate it only once with our desired 463 * augmented rbtree callbacks. 464 */ 465 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 466 } 467 468 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 469 struct rb_root *root, 470 struct vm_area_struct *ignore) 471 { 472 /* 473 * All rb_subtree_gap values must be consistent prior to erase, 474 * with the possible exception of the "next" vma being erased if 475 * next->vm_start was reduced. 476 */ 477 validate_mm_rb(root, ignore); 478 479 __vma_rb_erase(vma, root); 480 } 481 482 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 483 struct rb_root *root) 484 { 485 /* 486 * All rb_subtree_gap values must be consistent prior to erase, 487 * with the possible exception of the vma being erased. 488 */ 489 validate_mm_rb(root, vma); 490 491 __vma_rb_erase(vma, root); 492 } 493 494 /* 495 * vma has some anon_vma assigned, and is already inserted on that 496 * anon_vma's interval trees. 497 * 498 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 499 * vma must be removed from the anon_vma's interval trees using 500 * anon_vma_interval_tree_pre_update_vma(). 501 * 502 * After the update, the vma will be reinserted using 503 * anon_vma_interval_tree_post_update_vma(). 504 * 505 * The entire update must be protected by exclusive mmap_sem and by 506 * the root anon_vma's mutex. 507 */ 508 static inline void 509 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 510 { 511 struct anon_vma_chain *avc; 512 513 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 514 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 515 } 516 517 static inline void 518 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 519 { 520 struct anon_vma_chain *avc; 521 522 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 523 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 524 } 525 526 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 527 unsigned long end, struct vm_area_struct **pprev, 528 struct rb_node ***rb_link, struct rb_node **rb_parent) 529 { 530 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 531 532 __rb_link = &mm->mm_rb.rb_node; 533 rb_prev = __rb_parent = NULL; 534 535 while (*__rb_link) { 536 struct vm_area_struct *vma_tmp; 537 538 __rb_parent = *__rb_link; 539 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 540 541 if (vma_tmp->vm_end > addr) { 542 /* Fail if an existing vma overlaps the area */ 543 if (vma_tmp->vm_start < end) 544 return -ENOMEM; 545 __rb_link = &__rb_parent->rb_left; 546 } else { 547 rb_prev = __rb_parent; 548 __rb_link = &__rb_parent->rb_right; 549 } 550 } 551 552 *pprev = NULL; 553 if (rb_prev) 554 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 555 *rb_link = __rb_link; 556 *rb_parent = __rb_parent; 557 return 0; 558 } 559 560 static unsigned long count_vma_pages_range(struct mm_struct *mm, 561 unsigned long addr, unsigned long end) 562 { 563 unsigned long nr_pages = 0; 564 struct vm_area_struct *vma; 565 566 /* Find first overlaping mapping */ 567 vma = find_vma_intersection(mm, addr, end); 568 if (!vma) 569 return 0; 570 571 nr_pages = (min(end, vma->vm_end) - 572 max(addr, vma->vm_start)) >> PAGE_SHIFT; 573 574 /* Iterate over the rest of the overlaps */ 575 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 576 unsigned long overlap_len; 577 578 if (vma->vm_start > end) 579 break; 580 581 overlap_len = min(end, vma->vm_end) - vma->vm_start; 582 nr_pages += overlap_len >> PAGE_SHIFT; 583 } 584 585 return nr_pages; 586 } 587 588 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 589 struct rb_node **rb_link, struct rb_node *rb_parent) 590 { 591 /* Update tracking information for the gap following the new vma. */ 592 if (vma->vm_next) 593 vma_gap_update(vma->vm_next); 594 else 595 mm->highest_vm_end = vm_end_gap(vma); 596 597 /* 598 * vma->vm_prev wasn't known when we followed the rbtree to find the 599 * correct insertion point for that vma. As a result, we could not 600 * update the vma vm_rb parents rb_subtree_gap values on the way down. 601 * So, we first insert the vma with a zero rb_subtree_gap value 602 * (to be consistent with what we did on the way down), and then 603 * immediately update the gap to the correct value. Finally we 604 * rebalance the rbtree after all augmented values have been set. 605 */ 606 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 607 vma->rb_subtree_gap = 0; 608 vma_gap_update(vma); 609 vma_rb_insert(vma, &mm->mm_rb); 610 } 611 612 static void __vma_link_file(struct vm_area_struct *vma) 613 { 614 struct file *file; 615 616 file = vma->vm_file; 617 if (file) { 618 struct address_space *mapping = file->f_mapping; 619 620 if (vma->vm_flags & VM_DENYWRITE) 621 atomic_dec(&file_inode(file)->i_writecount); 622 if (vma->vm_flags & VM_SHARED) 623 atomic_inc(&mapping->i_mmap_writable); 624 625 flush_dcache_mmap_lock(mapping); 626 vma_interval_tree_insert(vma, &mapping->i_mmap); 627 flush_dcache_mmap_unlock(mapping); 628 } 629 } 630 631 static void 632 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 633 struct vm_area_struct *prev, struct rb_node **rb_link, 634 struct rb_node *rb_parent) 635 { 636 __vma_link_list(mm, vma, prev); 637 __vma_link_rb(mm, vma, rb_link, rb_parent); 638 } 639 640 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 641 struct vm_area_struct *prev, struct rb_node **rb_link, 642 struct rb_node *rb_parent) 643 { 644 struct address_space *mapping = NULL; 645 646 if (vma->vm_file) { 647 mapping = vma->vm_file->f_mapping; 648 i_mmap_lock_write(mapping); 649 } 650 651 __vma_link(mm, vma, prev, rb_link, rb_parent); 652 __vma_link_file(vma); 653 654 if (mapping) 655 i_mmap_unlock_write(mapping); 656 657 mm->map_count++; 658 validate_mm(mm); 659 } 660 661 /* 662 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 663 * mm's list and rbtree. It has already been inserted into the interval tree. 664 */ 665 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 666 { 667 struct vm_area_struct *prev; 668 struct rb_node **rb_link, *rb_parent; 669 670 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 671 &prev, &rb_link, &rb_parent)) 672 BUG(); 673 __vma_link(mm, vma, prev, rb_link, rb_parent); 674 mm->map_count++; 675 } 676 677 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 678 struct vm_area_struct *vma, 679 struct vm_area_struct *ignore) 680 { 681 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 682 __vma_unlink_list(mm, vma); 683 /* Kill the cache */ 684 vmacache_invalidate(mm); 685 } 686 687 /* 688 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 689 * is already present in an i_mmap tree without adjusting the tree. 690 * The following helper function should be used when such adjustments 691 * are necessary. The "insert" vma (if any) is to be inserted 692 * before we drop the necessary locks. 693 */ 694 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 695 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 696 struct vm_area_struct *expand) 697 { 698 struct mm_struct *mm = vma->vm_mm; 699 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 700 struct address_space *mapping = NULL; 701 struct rb_root_cached *root = NULL; 702 struct anon_vma *anon_vma = NULL; 703 struct file *file = vma->vm_file; 704 bool start_changed = false, end_changed = false; 705 long adjust_next = 0; 706 int remove_next = 0; 707 708 if (next && !insert) { 709 struct vm_area_struct *exporter = NULL, *importer = NULL; 710 711 if (end >= next->vm_end) { 712 /* 713 * vma expands, overlapping all the next, and 714 * perhaps the one after too (mprotect case 6). 715 * The only other cases that gets here are 716 * case 1, case 7 and case 8. 717 */ 718 if (next == expand) { 719 /* 720 * The only case where we don't expand "vma" 721 * and we expand "next" instead is case 8. 722 */ 723 VM_WARN_ON(end != next->vm_end); 724 /* 725 * remove_next == 3 means we're 726 * removing "vma" and that to do so we 727 * swapped "vma" and "next". 728 */ 729 remove_next = 3; 730 VM_WARN_ON(file != next->vm_file); 731 swap(vma, next); 732 } else { 733 VM_WARN_ON(expand != vma); 734 /* 735 * case 1, 6, 7, remove_next == 2 is case 6, 736 * remove_next == 1 is case 1 or 7. 737 */ 738 remove_next = 1 + (end > next->vm_end); 739 VM_WARN_ON(remove_next == 2 && 740 end != next->vm_next->vm_end); 741 /* trim end to next, for case 6 first pass */ 742 end = next->vm_end; 743 } 744 745 exporter = next; 746 importer = vma; 747 748 /* 749 * If next doesn't have anon_vma, import from vma after 750 * next, if the vma overlaps with it. 751 */ 752 if (remove_next == 2 && !next->anon_vma) 753 exporter = next->vm_next; 754 755 } else if (end > next->vm_start) { 756 /* 757 * vma expands, overlapping part of the next: 758 * mprotect case 5 shifting the boundary up. 759 */ 760 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 761 exporter = next; 762 importer = vma; 763 VM_WARN_ON(expand != importer); 764 } else if (end < vma->vm_end) { 765 /* 766 * vma shrinks, and !insert tells it's not 767 * split_vma inserting another: so it must be 768 * mprotect case 4 shifting the boundary down. 769 */ 770 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 771 exporter = vma; 772 importer = next; 773 VM_WARN_ON(expand != importer); 774 } 775 776 /* 777 * Easily overlooked: when mprotect shifts the boundary, 778 * make sure the expanding vma has anon_vma set if the 779 * shrinking vma had, to cover any anon pages imported. 780 */ 781 if (exporter && exporter->anon_vma && !importer->anon_vma) { 782 int error; 783 784 importer->anon_vma = exporter->anon_vma; 785 error = anon_vma_clone(importer, exporter); 786 if (error) 787 return error; 788 } 789 } 790 again: 791 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 792 793 if (file) { 794 mapping = file->f_mapping; 795 root = &mapping->i_mmap; 796 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 797 798 if (adjust_next) 799 uprobe_munmap(next, next->vm_start, next->vm_end); 800 801 i_mmap_lock_write(mapping); 802 if (insert) { 803 /* 804 * Put into interval tree now, so instantiated pages 805 * are visible to arm/parisc __flush_dcache_page 806 * throughout; but we cannot insert into address 807 * space until vma start or end is updated. 808 */ 809 __vma_link_file(insert); 810 } 811 } 812 813 anon_vma = vma->anon_vma; 814 if (!anon_vma && adjust_next) 815 anon_vma = next->anon_vma; 816 if (anon_vma) { 817 VM_WARN_ON(adjust_next && next->anon_vma && 818 anon_vma != next->anon_vma); 819 anon_vma_lock_write(anon_vma); 820 anon_vma_interval_tree_pre_update_vma(vma); 821 if (adjust_next) 822 anon_vma_interval_tree_pre_update_vma(next); 823 } 824 825 if (root) { 826 flush_dcache_mmap_lock(mapping); 827 vma_interval_tree_remove(vma, root); 828 if (adjust_next) 829 vma_interval_tree_remove(next, root); 830 } 831 832 if (start != vma->vm_start) { 833 vma->vm_start = start; 834 start_changed = true; 835 } 836 if (end != vma->vm_end) { 837 vma->vm_end = end; 838 end_changed = true; 839 } 840 vma->vm_pgoff = pgoff; 841 if (adjust_next) { 842 next->vm_start += adjust_next << PAGE_SHIFT; 843 next->vm_pgoff += adjust_next; 844 } 845 846 if (root) { 847 if (adjust_next) 848 vma_interval_tree_insert(next, root); 849 vma_interval_tree_insert(vma, root); 850 flush_dcache_mmap_unlock(mapping); 851 } 852 853 if (remove_next) { 854 /* 855 * vma_merge has merged next into vma, and needs 856 * us to remove next before dropping the locks. 857 */ 858 if (remove_next != 3) 859 __vma_unlink_common(mm, next, next); 860 else 861 /* 862 * vma is not before next if they've been 863 * swapped. 864 * 865 * pre-swap() next->vm_start was reduced so 866 * tell validate_mm_rb to ignore pre-swap() 867 * "next" (which is stored in post-swap() 868 * "vma"). 869 */ 870 __vma_unlink_common(mm, next, vma); 871 if (file) 872 __remove_shared_vm_struct(next, file, mapping); 873 } else if (insert) { 874 /* 875 * split_vma has split insert from vma, and needs 876 * us to insert it before dropping the locks 877 * (it may either follow vma or precede it). 878 */ 879 __insert_vm_struct(mm, insert); 880 } else { 881 if (start_changed) 882 vma_gap_update(vma); 883 if (end_changed) { 884 if (!next) 885 mm->highest_vm_end = vm_end_gap(vma); 886 else if (!adjust_next) 887 vma_gap_update(next); 888 } 889 } 890 891 if (anon_vma) { 892 anon_vma_interval_tree_post_update_vma(vma); 893 if (adjust_next) 894 anon_vma_interval_tree_post_update_vma(next); 895 anon_vma_unlock_write(anon_vma); 896 } 897 if (mapping) 898 i_mmap_unlock_write(mapping); 899 900 if (root) { 901 uprobe_mmap(vma); 902 903 if (adjust_next) 904 uprobe_mmap(next); 905 } 906 907 if (remove_next) { 908 if (file) { 909 uprobe_munmap(next, next->vm_start, next->vm_end); 910 fput(file); 911 } 912 if (next->anon_vma) 913 anon_vma_merge(vma, next); 914 mm->map_count--; 915 mpol_put(vma_policy(next)); 916 vm_area_free(next); 917 /* 918 * In mprotect's case 6 (see comments on vma_merge), 919 * we must remove another next too. It would clutter 920 * up the code too much to do both in one go. 921 */ 922 if (remove_next != 3) { 923 /* 924 * If "next" was removed and vma->vm_end was 925 * expanded (up) over it, in turn 926 * "next->vm_prev->vm_end" changed and the 927 * "vma->vm_next" gap must be updated. 928 */ 929 next = vma->vm_next; 930 } else { 931 /* 932 * For the scope of the comment "next" and 933 * "vma" considered pre-swap(): if "vma" was 934 * removed, next->vm_start was expanded (down) 935 * over it and the "next" gap must be updated. 936 * Because of the swap() the post-swap() "vma" 937 * actually points to pre-swap() "next" 938 * (post-swap() "next" as opposed is now a 939 * dangling pointer). 940 */ 941 next = vma; 942 } 943 if (remove_next == 2) { 944 remove_next = 1; 945 end = next->vm_end; 946 goto again; 947 } 948 else if (next) 949 vma_gap_update(next); 950 else { 951 /* 952 * If remove_next == 2 we obviously can't 953 * reach this path. 954 * 955 * If remove_next == 3 we can't reach this 956 * path because pre-swap() next is always not 957 * NULL. pre-swap() "next" is not being 958 * removed and its next->vm_end is not altered 959 * (and furthermore "end" already matches 960 * next->vm_end in remove_next == 3). 961 * 962 * We reach this only in the remove_next == 1 963 * case if the "next" vma that was removed was 964 * the highest vma of the mm. However in such 965 * case next->vm_end == "end" and the extended 966 * "vma" has vma->vm_end == next->vm_end so 967 * mm->highest_vm_end doesn't need any update 968 * in remove_next == 1 case. 969 */ 970 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 971 } 972 } 973 if (insert && file) 974 uprobe_mmap(insert); 975 976 validate_mm(mm); 977 978 return 0; 979 } 980 981 /* 982 * If the vma has a ->close operation then the driver probably needs to release 983 * per-vma resources, so we don't attempt to merge those. 984 */ 985 static inline int is_mergeable_vma(struct vm_area_struct *vma, 986 struct file *file, unsigned long vm_flags, 987 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 988 { 989 /* 990 * VM_SOFTDIRTY should not prevent from VMA merging, if we 991 * match the flags but dirty bit -- the caller should mark 992 * merged VMA as dirty. If dirty bit won't be excluded from 993 * comparison, we increase pressure on the memory system forcing 994 * the kernel to generate new VMAs when old one could be 995 * extended instead. 996 */ 997 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 998 return 0; 999 if (vma->vm_file != file) 1000 return 0; 1001 if (vma->vm_ops && vma->vm_ops->close) 1002 return 0; 1003 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1004 return 0; 1005 return 1; 1006 } 1007 1008 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1009 struct anon_vma *anon_vma2, 1010 struct vm_area_struct *vma) 1011 { 1012 /* 1013 * The list_is_singular() test is to avoid merging VMA cloned from 1014 * parents. This can improve scalability caused by anon_vma lock. 1015 */ 1016 if ((!anon_vma1 || !anon_vma2) && (!vma || 1017 list_is_singular(&vma->anon_vma_chain))) 1018 return 1; 1019 return anon_vma1 == anon_vma2; 1020 } 1021 1022 /* 1023 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1024 * in front of (at a lower virtual address and file offset than) the vma. 1025 * 1026 * We cannot merge two vmas if they have differently assigned (non-NULL) 1027 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1028 * 1029 * We don't check here for the merged mmap wrapping around the end of pagecache 1030 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1031 * wrap, nor mmaps which cover the final page at index -1UL. 1032 */ 1033 static int 1034 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1035 struct anon_vma *anon_vma, struct file *file, 1036 pgoff_t vm_pgoff, 1037 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1038 { 1039 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1040 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1041 if (vma->vm_pgoff == vm_pgoff) 1042 return 1; 1043 } 1044 return 0; 1045 } 1046 1047 /* 1048 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1049 * beyond (at a higher virtual address and file offset than) the vma. 1050 * 1051 * We cannot merge two vmas if they have differently assigned (non-NULL) 1052 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1053 */ 1054 static int 1055 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1056 struct anon_vma *anon_vma, struct file *file, 1057 pgoff_t vm_pgoff, 1058 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1059 { 1060 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1061 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1062 pgoff_t vm_pglen; 1063 vm_pglen = vma_pages(vma); 1064 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1065 return 1; 1066 } 1067 return 0; 1068 } 1069 1070 /* 1071 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1072 * whether that can be merged with its predecessor or its successor. 1073 * Or both (it neatly fills a hole). 1074 * 1075 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1076 * certain not to be mapped by the time vma_merge is called; but when 1077 * called for mprotect, it is certain to be already mapped (either at 1078 * an offset within prev, or at the start of next), and the flags of 1079 * this area are about to be changed to vm_flags - and the no-change 1080 * case has already been eliminated. 1081 * 1082 * The following mprotect cases have to be considered, where AAAA is 1083 * the area passed down from mprotect_fixup, never extending beyond one 1084 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1085 * 1086 * AAAA AAAA AAAA 1087 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1088 * cannot merge might become might become 1089 * PPNNNNNNNNNN PPPPPPPPPPNN 1090 * mmap, brk or case 4 below case 5 below 1091 * mremap move: 1092 * AAAA AAAA 1093 * PPPP NNNN PPPPNNNNXXXX 1094 * might become might become 1095 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1096 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1097 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1098 * 1099 * It is important for case 8 that the vma NNNN overlapping the 1100 * region AAAA is never going to extended over XXXX. Instead XXXX must 1101 * be extended in region AAAA and NNNN must be removed. This way in 1102 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1103 * rmap_locks, the properties of the merged vma will be already 1104 * correct for the whole merged range. Some of those properties like 1105 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1106 * be correct for the whole merged range immediately after the 1107 * rmap_locks are released. Otherwise if XXXX would be removed and 1108 * NNNN would be extended over the XXXX range, remove_migration_ptes 1109 * or other rmap walkers (if working on addresses beyond the "end" 1110 * parameter) may establish ptes with the wrong permissions of NNNN 1111 * instead of the right permissions of XXXX. 1112 */ 1113 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1114 struct vm_area_struct *prev, unsigned long addr, 1115 unsigned long end, unsigned long vm_flags, 1116 struct anon_vma *anon_vma, struct file *file, 1117 pgoff_t pgoff, struct mempolicy *policy, 1118 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1119 { 1120 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1121 struct vm_area_struct *area, *next; 1122 int err; 1123 1124 /* 1125 * We later require that vma->vm_flags == vm_flags, 1126 * so this tests vma->vm_flags & VM_SPECIAL, too. 1127 */ 1128 if (vm_flags & VM_SPECIAL) 1129 return NULL; 1130 1131 if (prev) 1132 next = prev->vm_next; 1133 else 1134 next = mm->mmap; 1135 area = next; 1136 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1137 next = next->vm_next; 1138 1139 /* verify some invariant that must be enforced by the caller */ 1140 VM_WARN_ON(prev && addr <= prev->vm_start); 1141 VM_WARN_ON(area && end > area->vm_end); 1142 VM_WARN_ON(addr >= end); 1143 1144 /* 1145 * Can it merge with the predecessor? 1146 */ 1147 if (prev && prev->vm_end == addr && 1148 mpol_equal(vma_policy(prev), policy) && 1149 can_vma_merge_after(prev, vm_flags, 1150 anon_vma, file, pgoff, 1151 vm_userfaultfd_ctx)) { 1152 /* 1153 * OK, it can. Can we now merge in the successor as well? 1154 */ 1155 if (next && end == next->vm_start && 1156 mpol_equal(policy, vma_policy(next)) && 1157 can_vma_merge_before(next, vm_flags, 1158 anon_vma, file, 1159 pgoff+pglen, 1160 vm_userfaultfd_ctx) && 1161 is_mergeable_anon_vma(prev->anon_vma, 1162 next->anon_vma, NULL)) { 1163 /* cases 1, 6 */ 1164 err = __vma_adjust(prev, prev->vm_start, 1165 next->vm_end, prev->vm_pgoff, NULL, 1166 prev); 1167 } else /* cases 2, 5, 7 */ 1168 err = __vma_adjust(prev, prev->vm_start, 1169 end, prev->vm_pgoff, NULL, prev); 1170 if (err) 1171 return NULL; 1172 khugepaged_enter_vma_merge(prev, vm_flags); 1173 return prev; 1174 } 1175 1176 /* 1177 * Can this new request be merged in front of next? 1178 */ 1179 if (next && end == next->vm_start && 1180 mpol_equal(policy, vma_policy(next)) && 1181 can_vma_merge_before(next, vm_flags, 1182 anon_vma, file, pgoff+pglen, 1183 vm_userfaultfd_ctx)) { 1184 if (prev && addr < prev->vm_end) /* case 4 */ 1185 err = __vma_adjust(prev, prev->vm_start, 1186 addr, prev->vm_pgoff, NULL, next); 1187 else { /* cases 3, 8 */ 1188 err = __vma_adjust(area, addr, next->vm_end, 1189 next->vm_pgoff - pglen, NULL, next); 1190 /* 1191 * In case 3 area is already equal to next and 1192 * this is a noop, but in case 8 "area" has 1193 * been removed and next was expanded over it. 1194 */ 1195 area = next; 1196 } 1197 if (err) 1198 return NULL; 1199 khugepaged_enter_vma_merge(area, vm_flags); 1200 return area; 1201 } 1202 1203 return NULL; 1204 } 1205 1206 /* 1207 * Rough compatbility check to quickly see if it's even worth looking 1208 * at sharing an anon_vma. 1209 * 1210 * They need to have the same vm_file, and the flags can only differ 1211 * in things that mprotect may change. 1212 * 1213 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1214 * we can merge the two vma's. For example, we refuse to merge a vma if 1215 * there is a vm_ops->close() function, because that indicates that the 1216 * driver is doing some kind of reference counting. But that doesn't 1217 * really matter for the anon_vma sharing case. 1218 */ 1219 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1220 { 1221 return a->vm_end == b->vm_start && 1222 mpol_equal(vma_policy(a), vma_policy(b)) && 1223 a->vm_file == b->vm_file && 1224 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1225 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1226 } 1227 1228 /* 1229 * Do some basic sanity checking to see if we can re-use the anon_vma 1230 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1231 * the same as 'old', the other will be the new one that is trying 1232 * to share the anon_vma. 1233 * 1234 * NOTE! This runs with mm_sem held for reading, so it is possible that 1235 * the anon_vma of 'old' is concurrently in the process of being set up 1236 * by another page fault trying to merge _that_. But that's ok: if it 1237 * is being set up, that automatically means that it will be a singleton 1238 * acceptable for merging, so we can do all of this optimistically. But 1239 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1240 * 1241 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1242 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1243 * is to return an anon_vma that is "complex" due to having gone through 1244 * a fork). 1245 * 1246 * We also make sure that the two vma's are compatible (adjacent, 1247 * and with the same memory policies). That's all stable, even with just 1248 * a read lock on the mm_sem. 1249 */ 1250 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1251 { 1252 if (anon_vma_compatible(a, b)) { 1253 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1254 1255 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1256 return anon_vma; 1257 } 1258 return NULL; 1259 } 1260 1261 /* 1262 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1263 * neighbouring vmas for a suitable anon_vma, before it goes off 1264 * to allocate a new anon_vma. It checks because a repetitive 1265 * sequence of mprotects and faults may otherwise lead to distinct 1266 * anon_vmas being allocated, preventing vma merge in subsequent 1267 * mprotect. 1268 */ 1269 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1270 { 1271 struct anon_vma *anon_vma = NULL; 1272 1273 /* Try next first. */ 1274 if (vma->vm_next) { 1275 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next); 1276 if (anon_vma) 1277 return anon_vma; 1278 } 1279 1280 /* Try prev next. */ 1281 if (vma->vm_prev) 1282 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma); 1283 1284 /* 1285 * We might reach here with anon_vma == NULL if we can't find 1286 * any reusable anon_vma. 1287 * There's no absolute need to look only at touching neighbours: 1288 * we could search further afield for "compatible" anon_vmas. 1289 * But it would probably just be a waste of time searching, 1290 * or lead to too many vmas hanging off the same anon_vma. 1291 * We're trying to allow mprotect remerging later on, 1292 * not trying to minimize memory used for anon_vmas. 1293 */ 1294 return anon_vma; 1295 } 1296 1297 /* 1298 * If a hint addr is less than mmap_min_addr change hint to be as 1299 * low as possible but still greater than mmap_min_addr 1300 */ 1301 static inline unsigned long round_hint_to_min(unsigned long hint) 1302 { 1303 hint &= PAGE_MASK; 1304 if (((void *)hint != NULL) && 1305 (hint < mmap_min_addr)) 1306 return PAGE_ALIGN(mmap_min_addr); 1307 return hint; 1308 } 1309 1310 static inline int mlock_future_check(struct mm_struct *mm, 1311 unsigned long flags, 1312 unsigned long len) 1313 { 1314 unsigned long locked, lock_limit; 1315 1316 /* mlock MCL_FUTURE? */ 1317 if (flags & VM_LOCKED) { 1318 locked = len >> PAGE_SHIFT; 1319 locked += mm->locked_vm; 1320 lock_limit = rlimit(RLIMIT_MEMLOCK); 1321 lock_limit >>= PAGE_SHIFT; 1322 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1323 return -EAGAIN; 1324 } 1325 return 0; 1326 } 1327 1328 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1329 { 1330 if (S_ISREG(inode->i_mode)) 1331 return MAX_LFS_FILESIZE; 1332 1333 if (S_ISBLK(inode->i_mode)) 1334 return MAX_LFS_FILESIZE; 1335 1336 if (S_ISSOCK(inode->i_mode)) 1337 return MAX_LFS_FILESIZE; 1338 1339 /* Special "we do even unsigned file positions" case */ 1340 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1341 return 0; 1342 1343 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1344 return ULONG_MAX; 1345 } 1346 1347 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1348 unsigned long pgoff, unsigned long len) 1349 { 1350 u64 maxsize = file_mmap_size_max(file, inode); 1351 1352 if (maxsize && len > maxsize) 1353 return false; 1354 maxsize -= len; 1355 if (pgoff > maxsize >> PAGE_SHIFT) 1356 return false; 1357 return true; 1358 } 1359 1360 /* 1361 * The caller must hold down_write(¤t->mm->mmap_sem). 1362 */ 1363 unsigned long do_mmap(struct file *file, unsigned long addr, 1364 unsigned long len, unsigned long prot, 1365 unsigned long flags, vm_flags_t vm_flags, 1366 unsigned long pgoff, unsigned long *populate, 1367 struct list_head *uf) 1368 { 1369 struct mm_struct *mm = current->mm; 1370 int pkey = 0; 1371 1372 *populate = 0; 1373 1374 if (!len) 1375 return -EINVAL; 1376 1377 /* 1378 * Does the application expect PROT_READ to imply PROT_EXEC? 1379 * 1380 * (the exception is when the underlying filesystem is noexec 1381 * mounted, in which case we dont add PROT_EXEC.) 1382 */ 1383 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1384 if (!(file && path_noexec(&file->f_path))) 1385 prot |= PROT_EXEC; 1386 1387 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1388 if (flags & MAP_FIXED_NOREPLACE) 1389 flags |= MAP_FIXED; 1390 1391 if (!(flags & MAP_FIXED)) 1392 addr = round_hint_to_min(addr); 1393 1394 /* Careful about overflows.. */ 1395 len = PAGE_ALIGN(len); 1396 if (!len) 1397 return -ENOMEM; 1398 1399 /* offset overflow? */ 1400 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1401 return -EOVERFLOW; 1402 1403 /* Too many mappings? */ 1404 if (mm->map_count > sysctl_max_map_count) 1405 return -ENOMEM; 1406 1407 /* Obtain the address to map to. we verify (or select) it and ensure 1408 * that it represents a valid section of the address space. 1409 */ 1410 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1411 if (IS_ERR_VALUE(addr)) 1412 return addr; 1413 1414 if (flags & MAP_FIXED_NOREPLACE) { 1415 struct vm_area_struct *vma = find_vma(mm, addr); 1416 1417 if (vma && vma->vm_start < addr + len) 1418 return -EEXIST; 1419 } 1420 1421 if (prot == PROT_EXEC) { 1422 pkey = execute_only_pkey(mm); 1423 if (pkey < 0) 1424 pkey = 0; 1425 } 1426 1427 /* Do simple checking here so the lower-level routines won't have 1428 * to. we assume access permissions have been handled by the open 1429 * of the memory object, so we don't do any here. 1430 */ 1431 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1432 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1433 1434 if (flags & MAP_LOCKED) 1435 if (!can_do_mlock()) 1436 return -EPERM; 1437 1438 if (mlock_future_check(mm, vm_flags, len)) 1439 return -EAGAIN; 1440 1441 if (file) { 1442 struct inode *inode = file_inode(file); 1443 unsigned long flags_mask; 1444 1445 if (!file_mmap_ok(file, inode, pgoff, len)) 1446 return -EOVERFLOW; 1447 1448 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1449 1450 switch (flags & MAP_TYPE) { 1451 case MAP_SHARED: 1452 /* 1453 * Force use of MAP_SHARED_VALIDATE with non-legacy 1454 * flags. E.g. MAP_SYNC is dangerous to use with 1455 * MAP_SHARED as you don't know which consistency model 1456 * you will get. We silently ignore unsupported flags 1457 * with MAP_SHARED to preserve backward compatibility. 1458 */ 1459 flags &= LEGACY_MAP_MASK; 1460 /* fall through */ 1461 case MAP_SHARED_VALIDATE: 1462 if (flags & ~flags_mask) 1463 return -EOPNOTSUPP; 1464 if (prot & PROT_WRITE) { 1465 if (!(file->f_mode & FMODE_WRITE)) 1466 return -EACCES; 1467 if (IS_SWAPFILE(file->f_mapping->host)) 1468 return -ETXTBSY; 1469 } 1470 1471 /* 1472 * Make sure we don't allow writing to an append-only 1473 * file.. 1474 */ 1475 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1476 return -EACCES; 1477 1478 /* 1479 * Make sure there are no mandatory locks on the file. 1480 */ 1481 if (locks_verify_locked(file)) 1482 return -EAGAIN; 1483 1484 vm_flags |= VM_SHARED | VM_MAYSHARE; 1485 if (!(file->f_mode & FMODE_WRITE)) 1486 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1487 1488 /* fall through */ 1489 case MAP_PRIVATE: 1490 if (!(file->f_mode & FMODE_READ)) 1491 return -EACCES; 1492 if (path_noexec(&file->f_path)) { 1493 if (vm_flags & VM_EXEC) 1494 return -EPERM; 1495 vm_flags &= ~VM_MAYEXEC; 1496 } 1497 1498 if (!file->f_op->mmap) 1499 return -ENODEV; 1500 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1501 return -EINVAL; 1502 break; 1503 1504 default: 1505 return -EINVAL; 1506 } 1507 } else { 1508 switch (flags & MAP_TYPE) { 1509 case MAP_SHARED: 1510 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1511 return -EINVAL; 1512 /* 1513 * Ignore pgoff. 1514 */ 1515 pgoff = 0; 1516 vm_flags |= VM_SHARED | VM_MAYSHARE; 1517 break; 1518 case MAP_PRIVATE: 1519 /* 1520 * Set pgoff according to addr for anon_vma. 1521 */ 1522 pgoff = addr >> PAGE_SHIFT; 1523 break; 1524 default: 1525 return -EINVAL; 1526 } 1527 } 1528 1529 /* 1530 * Set 'VM_NORESERVE' if we should not account for the 1531 * memory use of this mapping. 1532 */ 1533 if (flags & MAP_NORESERVE) { 1534 /* We honor MAP_NORESERVE if allowed to overcommit */ 1535 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1536 vm_flags |= VM_NORESERVE; 1537 1538 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1539 if (file && is_file_hugepages(file)) 1540 vm_flags |= VM_NORESERVE; 1541 } 1542 1543 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1544 if (!IS_ERR_VALUE(addr) && 1545 ((vm_flags & VM_LOCKED) || 1546 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1547 *populate = len; 1548 return addr; 1549 } 1550 1551 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1552 unsigned long prot, unsigned long flags, 1553 unsigned long fd, unsigned long pgoff) 1554 { 1555 struct file *file = NULL; 1556 unsigned long retval; 1557 1558 if (!(flags & MAP_ANONYMOUS)) { 1559 audit_mmap_fd(fd, flags); 1560 file = fget(fd); 1561 if (!file) 1562 return -EBADF; 1563 if (is_file_hugepages(file)) 1564 len = ALIGN(len, huge_page_size(hstate_file(file))); 1565 retval = -EINVAL; 1566 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1567 goto out_fput; 1568 } else if (flags & MAP_HUGETLB) { 1569 struct user_struct *user = NULL; 1570 struct hstate *hs; 1571 1572 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1573 if (!hs) 1574 return -EINVAL; 1575 1576 len = ALIGN(len, huge_page_size(hs)); 1577 /* 1578 * VM_NORESERVE is used because the reservations will be 1579 * taken when vm_ops->mmap() is called 1580 * A dummy user value is used because we are not locking 1581 * memory so no accounting is necessary 1582 */ 1583 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1584 VM_NORESERVE, 1585 &user, HUGETLB_ANONHUGE_INODE, 1586 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1587 if (IS_ERR(file)) 1588 return PTR_ERR(file); 1589 } 1590 1591 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1592 1593 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1594 out_fput: 1595 if (file) 1596 fput(file); 1597 return retval; 1598 } 1599 1600 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1601 unsigned long, prot, unsigned long, flags, 1602 unsigned long, fd, unsigned long, pgoff) 1603 { 1604 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1605 } 1606 1607 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1608 struct mmap_arg_struct { 1609 unsigned long addr; 1610 unsigned long len; 1611 unsigned long prot; 1612 unsigned long flags; 1613 unsigned long fd; 1614 unsigned long offset; 1615 }; 1616 1617 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1618 { 1619 struct mmap_arg_struct a; 1620 1621 if (copy_from_user(&a, arg, sizeof(a))) 1622 return -EFAULT; 1623 if (offset_in_page(a.offset)) 1624 return -EINVAL; 1625 1626 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1627 a.offset >> PAGE_SHIFT); 1628 } 1629 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1630 1631 /* 1632 * Some shared mappings will want the pages marked read-only 1633 * to track write events. If so, we'll downgrade vm_page_prot 1634 * to the private version (using protection_map[] without the 1635 * VM_SHARED bit). 1636 */ 1637 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1638 { 1639 vm_flags_t vm_flags = vma->vm_flags; 1640 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1641 1642 /* If it was private or non-writable, the write bit is already clear */ 1643 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1644 return 0; 1645 1646 /* The backer wishes to know when pages are first written to? */ 1647 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1648 return 1; 1649 1650 /* The open routine did something to the protections that pgprot_modify 1651 * won't preserve? */ 1652 if (pgprot_val(vm_page_prot) != 1653 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1654 return 0; 1655 1656 /* Do we need to track softdirty? */ 1657 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1658 return 1; 1659 1660 /* Specialty mapping? */ 1661 if (vm_flags & VM_PFNMAP) 1662 return 0; 1663 1664 /* Can the mapping track the dirty pages? */ 1665 return vma->vm_file && vma->vm_file->f_mapping && 1666 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1667 } 1668 1669 /* 1670 * We account for memory if it's a private writeable mapping, 1671 * not hugepages and VM_NORESERVE wasn't set. 1672 */ 1673 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1674 { 1675 /* 1676 * hugetlb has its own accounting separate from the core VM 1677 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1678 */ 1679 if (file && is_file_hugepages(file)) 1680 return 0; 1681 1682 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1683 } 1684 1685 unsigned long mmap_region(struct file *file, unsigned long addr, 1686 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1687 struct list_head *uf) 1688 { 1689 struct mm_struct *mm = current->mm; 1690 struct vm_area_struct *vma, *prev; 1691 int error; 1692 struct rb_node **rb_link, *rb_parent; 1693 unsigned long charged = 0; 1694 1695 /* Check against address space limit. */ 1696 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1697 unsigned long nr_pages; 1698 1699 /* 1700 * MAP_FIXED may remove pages of mappings that intersects with 1701 * requested mapping. Account for the pages it would unmap. 1702 */ 1703 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1704 1705 if (!may_expand_vm(mm, vm_flags, 1706 (len >> PAGE_SHIFT) - nr_pages)) 1707 return -ENOMEM; 1708 } 1709 1710 /* Clear old maps */ 1711 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1712 &rb_parent)) { 1713 if (do_munmap(mm, addr, len, uf)) 1714 return -ENOMEM; 1715 } 1716 1717 /* 1718 * Private writable mapping: check memory availability 1719 */ 1720 if (accountable_mapping(file, vm_flags)) { 1721 charged = len >> PAGE_SHIFT; 1722 if (security_vm_enough_memory_mm(mm, charged)) 1723 return -ENOMEM; 1724 vm_flags |= VM_ACCOUNT; 1725 } 1726 1727 /* 1728 * Can we just expand an old mapping? 1729 */ 1730 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1731 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1732 if (vma) 1733 goto out; 1734 1735 /* 1736 * Determine the object being mapped and call the appropriate 1737 * specific mapper. the address has already been validated, but 1738 * not unmapped, but the maps are removed from the list. 1739 */ 1740 vma = vm_area_alloc(mm); 1741 if (!vma) { 1742 error = -ENOMEM; 1743 goto unacct_error; 1744 } 1745 1746 vma->vm_start = addr; 1747 vma->vm_end = addr + len; 1748 vma->vm_flags = vm_flags; 1749 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1750 vma->vm_pgoff = pgoff; 1751 1752 if (file) { 1753 if (vm_flags & VM_DENYWRITE) { 1754 error = deny_write_access(file); 1755 if (error) 1756 goto free_vma; 1757 } 1758 if (vm_flags & VM_SHARED) { 1759 error = mapping_map_writable(file->f_mapping); 1760 if (error) 1761 goto allow_write_and_free_vma; 1762 } 1763 1764 /* ->mmap() can change vma->vm_file, but must guarantee that 1765 * vma_link() below can deny write-access if VM_DENYWRITE is set 1766 * and map writably if VM_SHARED is set. This usually means the 1767 * new file must not have been exposed to user-space, yet. 1768 */ 1769 vma->vm_file = get_file(file); 1770 error = call_mmap(file, vma); 1771 if (error) 1772 goto unmap_and_free_vma; 1773 1774 /* Can addr have changed?? 1775 * 1776 * Answer: Yes, several device drivers can do it in their 1777 * f_op->mmap method. -DaveM 1778 * Bug: If addr is changed, prev, rb_link, rb_parent should 1779 * be updated for vma_link() 1780 */ 1781 WARN_ON_ONCE(addr != vma->vm_start); 1782 1783 addr = vma->vm_start; 1784 vm_flags = vma->vm_flags; 1785 } else if (vm_flags & VM_SHARED) { 1786 error = shmem_zero_setup(vma); 1787 if (error) 1788 goto free_vma; 1789 } else { 1790 vma_set_anonymous(vma); 1791 } 1792 1793 vma_link(mm, vma, prev, rb_link, rb_parent); 1794 /* Once vma denies write, undo our temporary denial count */ 1795 if (file) { 1796 if (vm_flags & VM_SHARED) 1797 mapping_unmap_writable(file->f_mapping); 1798 if (vm_flags & VM_DENYWRITE) 1799 allow_write_access(file); 1800 } 1801 file = vma->vm_file; 1802 out: 1803 perf_event_mmap(vma); 1804 1805 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1806 if (vm_flags & VM_LOCKED) { 1807 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1808 is_vm_hugetlb_page(vma) || 1809 vma == get_gate_vma(current->mm)) 1810 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1811 else 1812 mm->locked_vm += (len >> PAGE_SHIFT); 1813 } 1814 1815 if (file) 1816 uprobe_mmap(vma); 1817 1818 /* 1819 * New (or expanded) vma always get soft dirty status. 1820 * Otherwise user-space soft-dirty page tracker won't 1821 * be able to distinguish situation when vma area unmapped, 1822 * then new mapped in-place (which must be aimed as 1823 * a completely new data area). 1824 */ 1825 vma->vm_flags |= VM_SOFTDIRTY; 1826 1827 vma_set_page_prot(vma); 1828 1829 return addr; 1830 1831 unmap_and_free_vma: 1832 vma->vm_file = NULL; 1833 fput(file); 1834 1835 /* Undo any partial mapping done by a device driver. */ 1836 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1837 charged = 0; 1838 if (vm_flags & VM_SHARED) 1839 mapping_unmap_writable(file->f_mapping); 1840 allow_write_and_free_vma: 1841 if (vm_flags & VM_DENYWRITE) 1842 allow_write_access(file); 1843 free_vma: 1844 vm_area_free(vma); 1845 unacct_error: 1846 if (charged) 1847 vm_unacct_memory(charged); 1848 return error; 1849 } 1850 1851 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1852 { 1853 /* 1854 * We implement the search by looking for an rbtree node that 1855 * immediately follows a suitable gap. That is, 1856 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1857 * - gap_end = vma->vm_start >= info->low_limit + length; 1858 * - gap_end - gap_start >= length 1859 */ 1860 1861 struct mm_struct *mm = current->mm; 1862 struct vm_area_struct *vma; 1863 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1864 1865 /* Adjust search length to account for worst case alignment overhead */ 1866 length = info->length + info->align_mask; 1867 if (length < info->length) 1868 return -ENOMEM; 1869 1870 /* Adjust search limits by the desired length */ 1871 if (info->high_limit < length) 1872 return -ENOMEM; 1873 high_limit = info->high_limit - length; 1874 1875 if (info->low_limit > high_limit) 1876 return -ENOMEM; 1877 low_limit = info->low_limit + length; 1878 1879 /* Check if rbtree root looks promising */ 1880 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1881 goto check_highest; 1882 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1883 if (vma->rb_subtree_gap < length) 1884 goto check_highest; 1885 1886 while (true) { 1887 /* Visit left subtree if it looks promising */ 1888 gap_end = vm_start_gap(vma); 1889 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1890 struct vm_area_struct *left = 1891 rb_entry(vma->vm_rb.rb_left, 1892 struct vm_area_struct, vm_rb); 1893 if (left->rb_subtree_gap >= length) { 1894 vma = left; 1895 continue; 1896 } 1897 } 1898 1899 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1900 check_current: 1901 /* Check if current node has a suitable gap */ 1902 if (gap_start > high_limit) 1903 return -ENOMEM; 1904 if (gap_end >= low_limit && 1905 gap_end > gap_start && gap_end - gap_start >= length) 1906 goto found; 1907 1908 /* Visit right subtree if it looks promising */ 1909 if (vma->vm_rb.rb_right) { 1910 struct vm_area_struct *right = 1911 rb_entry(vma->vm_rb.rb_right, 1912 struct vm_area_struct, vm_rb); 1913 if (right->rb_subtree_gap >= length) { 1914 vma = right; 1915 continue; 1916 } 1917 } 1918 1919 /* Go back up the rbtree to find next candidate node */ 1920 while (true) { 1921 struct rb_node *prev = &vma->vm_rb; 1922 if (!rb_parent(prev)) 1923 goto check_highest; 1924 vma = rb_entry(rb_parent(prev), 1925 struct vm_area_struct, vm_rb); 1926 if (prev == vma->vm_rb.rb_left) { 1927 gap_start = vm_end_gap(vma->vm_prev); 1928 gap_end = vm_start_gap(vma); 1929 goto check_current; 1930 } 1931 } 1932 } 1933 1934 check_highest: 1935 /* Check highest gap, which does not precede any rbtree node */ 1936 gap_start = mm->highest_vm_end; 1937 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1938 if (gap_start > high_limit) 1939 return -ENOMEM; 1940 1941 found: 1942 /* We found a suitable gap. Clip it with the original low_limit. */ 1943 if (gap_start < info->low_limit) 1944 gap_start = info->low_limit; 1945 1946 /* Adjust gap address to the desired alignment */ 1947 gap_start += (info->align_offset - gap_start) & info->align_mask; 1948 1949 VM_BUG_ON(gap_start + info->length > info->high_limit); 1950 VM_BUG_ON(gap_start + info->length > gap_end); 1951 return gap_start; 1952 } 1953 1954 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1955 { 1956 struct mm_struct *mm = current->mm; 1957 struct vm_area_struct *vma; 1958 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1959 1960 /* Adjust search length to account for worst case alignment overhead */ 1961 length = info->length + info->align_mask; 1962 if (length < info->length) 1963 return -ENOMEM; 1964 1965 /* 1966 * Adjust search limits by the desired length. 1967 * See implementation comment at top of unmapped_area(). 1968 */ 1969 gap_end = info->high_limit; 1970 if (gap_end < length) 1971 return -ENOMEM; 1972 high_limit = gap_end - length; 1973 1974 if (info->low_limit > high_limit) 1975 return -ENOMEM; 1976 low_limit = info->low_limit + length; 1977 1978 /* Check highest gap, which does not precede any rbtree node */ 1979 gap_start = mm->highest_vm_end; 1980 if (gap_start <= high_limit) 1981 goto found_highest; 1982 1983 /* Check if rbtree root looks promising */ 1984 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1985 return -ENOMEM; 1986 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1987 if (vma->rb_subtree_gap < length) 1988 return -ENOMEM; 1989 1990 while (true) { 1991 /* Visit right subtree if it looks promising */ 1992 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1993 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1994 struct vm_area_struct *right = 1995 rb_entry(vma->vm_rb.rb_right, 1996 struct vm_area_struct, vm_rb); 1997 if (right->rb_subtree_gap >= length) { 1998 vma = right; 1999 continue; 2000 } 2001 } 2002 2003 check_current: 2004 /* Check if current node has a suitable gap */ 2005 gap_end = vm_start_gap(vma); 2006 if (gap_end < low_limit) 2007 return -ENOMEM; 2008 if (gap_start <= high_limit && 2009 gap_end > gap_start && gap_end - gap_start >= length) 2010 goto found; 2011 2012 /* Visit left subtree if it looks promising */ 2013 if (vma->vm_rb.rb_left) { 2014 struct vm_area_struct *left = 2015 rb_entry(vma->vm_rb.rb_left, 2016 struct vm_area_struct, vm_rb); 2017 if (left->rb_subtree_gap >= length) { 2018 vma = left; 2019 continue; 2020 } 2021 } 2022 2023 /* Go back up the rbtree to find next candidate node */ 2024 while (true) { 2025 struct rb_node *prev = &vma->vm_rb; 2026 if (!rb_parent(prev)) 2027 return -ENOMEM; 2028 vma = rb_entry(rb_parent(prev), 2029 struct vm_area_struct, vm_rb); 2030 if (prev == vma->vm_rb.rb_right) { 2031 gap_start = vma->vm_prev ? 2032 vm_end_gap(vma->vm_prev) : 0; 2033 goto check_current; 2034 } 2035 } 2036 } 2037 2038 found: 2039 /* We found a suitable gap. Clip it with the original high_limit. */ 2040 if (gap_end > info->high_limit) 2041 gap_end = info->high_limit; 2042 2043 found_highest: 2044 /* Compute highest gap address at the desired alignment */ 2045 gap_end -= info->length; 2046 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2047 2048 VM_BUG_ON(gap_end < info->low_limit); 2049 VM_BUG_ON(gap_end < gap_start); 2050 return gap_end; 2051 } 2052 2053 2054 #ifndef arch_get_mmap_end 2055 #define arch_get_mmap_end(addr) (TASK_SIZE) 2056 #endif 2057 2058 #ifndef arch_get_mmap_base 2059 #define arch_get_mmap_base(addr, base) (base) 2060 #endif 2061 2062 /* Get an address range which is currently unmapped. 2063 * For shmat() with addr=0. 2064 * 2065 * Ugly calling convention alert: 2066 * Return value with the low bits set means error value, 2067 * ie 2068 * if (ret & ~PAGE_MASK) 2069 * error = ret; 2070 * 2071 * This function "knows" that -ENOMEM has the bits set. 2072 */ 2073 #ifndef HAVE_ARCH_UNMAPPED_AREA 2074 unsigned long 2075 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2076 unsigned long len, unsigned long pgoff, unsigned long flags) 2077 { 2078 struct mm_struct *mm = current->mm; 2079 struct vm_area_struct *vma, *prev; 2080 struct vm_unmapped_area_info info; 2081 const unsigned long mmap_end = arch_get_mmap_end(addr); 2082 2083 if (len > mmap_end - mmap_min_addr) 2084 return -ENOMEM; 2085 2086 if (flags & MAP_FIXED) 2087 return addr; 2088 2089 if (addr) { 2090 addr = PAGE_ALIGN(addr); 2091 vma = find_vma_prev(mm, addr, &prev); 2092 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2093 (!vma || addr + len <= vm_start_gap(vma)) && 2094 (!prev || addr >= vm_end_gap(prev))) 2095 return addr; 2096 } 2097 2098 info.flags = 0; 2099 info.length = len; 2100 info.low_limit = mm->mmap_base; 2101 info.high_limit = mmap_end; 2102 info.align_mask = 0; 2103 return vm_unmapped_area(&info); 2104 } 2105 #endif 2106 2107 /* 2108 * This mmap-allocator allocates new areas top-down from below the 2109 * stack's low limit (the base): 2110 */ 2111 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2112 unsigned long 2113 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2114 unsigned long len, unsigned long pgoff, 2115 unsigned long flags) 2116 { 2117 struct vm_area_struct *vma, *prev; 2118 struct mm_struct *mm = current->mm; 2119 struct vm_unmapped_area_info info; 2120 const unsigned long mmap_end = arch_get_mmap_end(addr); 2121 2122 /* requested length too big for entire address space */ 2123 if (len > mmap_end - mmap_min_addr) 2124 return -ENOMEM; 2125 2126 if (flags & MAP_FIXED) 2127 return addr; 2128 2129 /* requesting a specific address */ 2130 if (addr) { 2131 addr = PAGE_ALIGN(addr); 2132 vma = find_vma_prev(mm, addr, &prev); 2133 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2134 (!vma || addr + len <= vm_start_gap(vma)) && 2135 (!prev || addr >= vm_end_gap(prev))) 2136 return addr; 2137 } 2138 2139 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2140 info.length = len; 2141 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2142 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2143 info.align_mask = 0; 2144 addr = vm_unmapped_area(&info); 2145 2146 /* 2147 * A failed mmap() very likely causes application failure, 2148 * so fall back to the bottom-up function here. This scenario 2149 * can happen with large stack limits and large mmap() 2150 * allocations. 2151 */ 2152 if (offset_in_page(addr)) { 2153 VM_BUG_ON(addr != -ENOMEM); 2154 info.flags = 0; 2155 info.low_limit = TASK_UNMAPPED_BASE; 2156 info.high_limit = mmap_end; 2157 addr = vm_unmapped_area(&info); 2158 } 2159 2160 return addr; 2161 } 2162 #endif 2163 2164 unsigned long 2165 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2166 unsigned long pgoff, unsigned long flags) 2167 { 2168 unsigned long (*get_area)(struct file *, unsigned long, 2169 unsigned long, unsigned long, unsigned long); 2170 2171 unsigned long error = arch_mmap_check(addr, len, flags); 2172 if (error) 2173 return error; 2174 2175 /* Careful about overflows.. */ 2176 if (len > TASK_SIZE) 2177 return -ENOMEM; 2178 2179 get_area = current->mm->get_unmapped_area; 2180 if (file) { 2181 if (file->f_op->get_unmapped_area) 2182 get_area = file->f_op->get_unmapped_area; 2183 } else if (flags & MAP_SHARED) { 2184 /* 2185 * mmap_region() will call shmem_zero_setup() to create a file, 2186 * so use shmem's get_unmapped_area in case it can be huge. 2187 * do_mmap_pgoff() will clear pgoff, so match alignment. 2188 */ 2189 pgoff = 0; 2190 get_area = shmem_get_unmapped_area; 2191 } 2192 2193 addr = get_area(file, addr, len, pgoff, flags); 2194 if (IS_ERR_VALUE(addr)) 2195 return addr; 2196 2197 if (addr > TASK_SIZE - len) 2198 return -ENOMEM; 2199 if (offset_in_page(addr)) 2200 return -EINVAL; 2201 2202 error = security_mmap_addr(addr); 2203 return error ? error : addr; 2204 } 2205 2206 EXPORT_SYMBOL(get_unmapped_area); 2207 2208 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2209 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2210 { 2211 struct rb_node *rb_node; 2212 struct vm_area_struct *vma; 2213 2214 /* Check the cache first. */ 2215 vma = vmacache_find(mm, addr); 2216 if (likely(vma)) 2217 return vma; 2218 2219 rb_node = mm->mm_rb.rb_node; 2220 2221 while (rb_node) { 2222 struct vm_area_struct *tmp; 2223 2224 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2225 2226 if (tmp->vm_end > addr) { 2227 vma = tmp; 2228 if (tmp->vm_start <= addr) 2229 break; 2230 rb_node = rb_node->rb_left; 2231 } else 2232 rb_node = rb_node->rb_right; 2233 } 2234 2235 if (vma) 2236 vmacache_update(addr, vma); 2237 return vma; 2238 } 2239 2240 EXPORT_SYMBOL(find_vma); 2241 2242 /* 2243 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2244 */ 2245 struct vm_area_struct * 2246 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2247 struct vm_area_struct **pprev) 2248 { 2249 struct vm_area_struct *vma; 2250 2251 vma = find_vma(mm, addr); 2252 if (vma) { 2253 *pprev = vma->vm_prev; 2254 } else { 2255 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2256 2257 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2258 } 2259 return vma; 2260 } 2261 2262 /* 2263 * Verify that the stack growth is acceptable and 2264 * update accounting. This is shared with both the 2265 * grow-up and grow-down cases. 2266 */ 2267 static int acct_stack_growth(struct vm_area_struct *vma, 2268 unsigned long size, unsigned long grow) 2269 { 2270 struct mm_struct *mm = vma->vm_mm; 2271 unsigned long new_start; 2272 2273 /* address space limit tests */ 2274 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2275 return -ENOMEM; 2276 2277 /* Stack limit test */ 2278 if (size > rlimit(RLIMIT_STACK)) 2279 return -ENOMEM; 2280 2281 /* mlock limit tests */ 2282 if (vma->vm_flags & VM_LOCKED) { 2283 unsigned long locked; 2284 unsigned long limit; 2285 locked = mm->locked_vm + grow; 2286 limit = rlimit(RLIMIT_MEMLOCK); 2287 limit >>= PAGE_SHIFT; 2288 if (locked > limit && !capable(CAP_IPC_LOCK)) 2289 return -ENOMEM; 2290 } 2291 2292 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2293 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2294 vma->vm_end - size; 2295 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2296 return -EFAULT; 2297 2298 /* 2299 * Overcommit.. This must be the final test, as it will 2300 * update security statistics. 2301 */ 2302 if (security_vm_enough_memory_mm(mm, grow)) 2303 return -ENOMEM; 2304 2305 return 0; 2306 } 2307 2308 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2309 /* 2310 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2311 * vma is the last one with address > vma->vm_end. Have to extend vma. 2312 */ 2313 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2314 { 2315 struct mm_struct *mm = vma->vm_mm; 2316 struct vm_area_struct *next; 2317 unsigned long gap_addr; 2318 int error = 0; 2319 2320 if (!(vma->vm_flags & VM_GROWSUP)) 2321 return -EFAULT; 2322 2323 /* Guard against exceeding limits of the address space. */ 2324 address &= PAGE_MASK; 2325 if (address >= (TASK_SIZE & PAGE_MASK)) 2326 return -ENOMEM; 2327 address += PAGE_SIZE; 2328 2329 /* Enforce stack_guard_gap */ 2330 gap_addr = address + stack_guard_gap; 2331 2332 /* Guard against overflow */ 2333 if (gap_addr < address || gap_addr > TASK_SIZE) 2334 gap_addr = TASK_SIZE; 2335 2336 next = vma->vm_next; 2337 if (next && next->vm_start < gap_addr && 2338 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2339 if (!(next->vm_flags & VM_GROWSUP)) 2340 return -ENOMEM; 2341 /* Check that both stack segments have the same anon_vma? */ 2342 } 2343 2344 /* We must make sure the anon_vma is allocated. */ 2345 if (unlikely(anon_vma_prepare(vma))) 2346 return -ENOMEM; 2347 2348 /* 2349 * vma->vm_start/vm_end cannot change under us because the caller 2350 * is required to hold the mmap_sem in read mode. We need the 2351 * anon_vma lock to serialize against concurrent expand_stacks. 2352 */ 2353 anon_vma_lock_write(vma->anon_vma); 2354 2355 /* Somebody else might have raced and expanded it already */ 2356 if (address > vma->vm_end) { 2357 unsigned long size, grow; 2358 2359 size = address - vma->vm_start; 2360 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2361 2362 error = -ENOMEM; 2363 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2364 error = acct_stack_growth(vma, size, grow); 2365 if (!error) { 2366 /* 2367 * vma_gap_update() doesn't support concurrent 2368 * updates, but we only hold a shared mmap_sem 2369 * lock here, so we need to protect against 2370 * concurrent vma expansions. 2371 * anon_vma_lock_write() doesn't help here, as 2372 * we don't guarantee that all growable vmas 2373 * in a mm share the same root anon vma. 2374 * So, we reuse mm->page_table_lock to guard 2375 * against concurrent vma expansions. 2376 */ 2377 spin_lock(&mm->page_table_lock); 2378 if (vma->vm_flags & VM_LOCKED) 2379 mm->locked_vm += grow; 2380 vm_stat_account(mm, vma->vm_flags, grow); 2381 anon_vma_interval_tree_pre_update_vma(vma); 2382 vma->vm_end = address; 2383 anon_vma_interval_tree_post_update_vma(vma); 2384 if (vma->vm_next) 2385 vma_gap_update(vma->vm_next); 2386 else 2387 mm->highest_vm_end = vm_end_gap(vma); 2388 spin_unlock(&mm->page_table_lock); 2389 2390 perf_event_mmap(vma); 2391 } 2392 } 2393 } 2394 anon_vma_unlock_write(vma->anon_vma); 2395 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2396 validate_mm(mm); 2397 return error; 2398 } 2399 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2400 2401 /* 2402 * vma is the first one with address < vma->vm_start. Have to extend vma. 2403 */ 2404 int expand_downwards(struct vm_area_struct *vma, 2405 unsigned long address) 2406 { 2407 struct mm_struct *mm = vma->vm_mm; 2408 struct vm_area_struct *prev; 2409 int error = 0; 2410 2411 address &= PAGE_MASK; 2412 if (address < mmap_min_addr) 2413 return -EPERM; 2414 2415 /* Enforce stack_guard_gap */ 2416 prev = vma->vm_prev; 2417 /* Check that both stack segments have the same anon_vma? */ 2418 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2419 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2420 if (address - prev->vm_end < stack_guard_gap) 2421 return -ENOMEM; 2422 } 2423 2424 /* We must make sure the anon_vma is allocated. */ 2425 if (unlikely(anon_vma_prepare(vma))) 2426 return -ENOMEM; 2427 2428 /* 2429 * vma->vm_start/vm_end cannot change under us because the caller 2430 * is required to hold the mmap_sem in read mode. We need the 2431 * anon_vma lock to serialize against concurrent expand_stacks. 2432 */ 2433 anon_vma_lock_write(vma->anon_vma); 2434 2435 /* Somebody else might have raced and expanded it already */ 2436 if (address < vma->vm_start) { 2437 unsigned long size, grow; 2438 2439 size = vma->vm_end - address; 2440 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2441 2442 error = -ENOMEM; 2443 if (grow <= vma->vm_pgoff) { 2444 error = acct_stack_growth(vma, size, grow); 2445 if (!error) { 2446 /* 2447 * vma_gap_update() doesn't support concurrent 2448 * updates, but we only hold a shared mmap_sem 2449 * lock here, so we need to protect against 2450 * concurrent vma expansions. 2451 * anon_vma_lock_write() doesn't help here, as 2452 * we don't guarantee that all growable vmas 2453 * in a mm share the same root anon vma. 2454 * So, we reuse mm->page_table_lock to guard 2455 * against concurrent vma expansions. 2456 */ 2457 spin_lock(&mm->page_table_lock); 2458 if (vma->vm_flags & VM_LOCKED) 2459 mm->locked_vm += grow; 2460 vm_stat_account(mm, vma->vm_flags, grow); 2461 anon_vma_interval_tree_pre_update_vma(vma); 2462 vma->vm_start = address; 2463 vma->vm_pgoff -= grow; 2464 anon_vma_interval_tree_post_update_vma(vma); 2465 vma_gap_update(vma); 2466 spin_unlock(&mm->page_table_lock); 2467 2468 perf_event_mmap(vma); 2469 } 2470 } 2471 } 2472 anon_vma_unlock_write(vma->anon_vma); 2473 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2474 validate_mm(mm); 2475 return error; 2476 } 2477 2478 /* enforced gap between the expanding stack and other mappings. */ 2479 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2480 2481 static int __init cmdline_parse_stack_guard_gap(char *p) 2482 { 2483 unsigned long val; 2484 char *endptr; 2485 2486 val = simple_strtoul(p, &endptr, 10); 2487 if (!*endptr) 2488 stack_guard_gap = val << PAGE_SHIFT; 2489 2490 return 0; 2491 } 2492 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2493 2494 #ifdef CONFIG_STACK_GROWSUP 2495 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2496 { 2497 return expand_upwards(vma, address); 2498 } 2499 2500 struct vm_area_struct * 2501 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2502 { 2503 struct vm_area_struct *vma, *prev; 2504 2505 addr &= PAGE_MASK; 2506 vma = find_vma_prev(mm, addr, &prev); 2507 if (vma && (vma->vm_start <= addr)) 2508 return vma; 2509 /* don't alter vm_end if the coredump is running */ 2510 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr)) 2511 return NULL; 2512 if (prev->vm_flags & VM_LOCKED) 2513 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2514 return prev; 2515 } 2516 #else 2517 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2518 { 2519 return expand_downwards(vma, address); 2520 } 2521 2522 struct vm_area_struct * 2523 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2524 { 2525 struct vm_area_struct *vma; 2526 unsigned long start; 2527 2528 addr &= PAGE_MASK; 2529 vma = find_vma(mm, addr); 2530 if (!vma) 2531 return NULL; 2532 if (vma->vm_start <= addr) 2533 return vma; 2534 if (!(vma->vm_flags & VM_GROWSDOWN)) 2535 return NULL; 2536 /* don't alter vm_start if the coredump is running */ 2537 if (!mmget_still_valid(mm)) 2538 return NULL; 2539 start = vma->vm_start; 2540 if (expand_stack(vma, addr)) 2541 return NULL; 2542 if (vma->vm_flags & VM_LOCKED) 2543 populate_vma_page_range(vma, addr, start, NULL); 2544 return vma; 2545 } 2546 #endif 2547 2548 EXPORT_SYMBOL_GPL(find_extend_vma); 2549 2550 /* 2551 * Ok - we have the memory areas we should free on the vma list, 2552 * so release them, and do the vma updates. 2553 * 2554 * Called with the mm semaphore held. 2555 */ 2556 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2557 { 2558 unsigned long nr_accounted = 0; 2559 2560 /* Update high watermark before we lower total_vm */ 2561 update_hiwater_vm(mm); 2562 do { 2563 long nrpages = vma_pages(vma); 2564 2565 if (vma->vm_flags & VM_ACCOUNT) 2566 nr_accounted += nrpages; 2567 vm_stat_account(mm, vma->vm_flags, -nrpages); 2568 vma = remove_vma(vma); 2569 } while (vma); 2570 vm_unacct_memory(nr_accounted); 2571 validate_mm(mm); 2572 } 2573 2574 /* 2575 * Get rid of page table information in the indicated region. 2576 * 2577 * Called with the mm semaphore held. 2578 */ 2579 static void unmap_region(struct mm_struct *mm, 2580 struct vm_area_struct *vma, struct vm_area_struct *prev, 2581 unsigned long start, unsigned long end) 2582 { 2583 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2584 struct mmu_gather tlb; 2585 2586 lru_add_drain(); 2587 tlb_gather_mmu(&tlb, mm, start, end); 2588 update_hiwater_rss(mm); 2589 unmap_vmas(&tlb, vma, start, end); 2590 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2591 next ? next->vm_start : USER_PGTABLES_CEILING); 2592 tlb_finish_mmu(&tlb, start, end); 2593 } 2594 2595 /* 2596 * Create a list of vma's touched by the unmap, removing them from the mm's 2597 * vma list as we go.. 2598 */ 2599 static void 2600 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2601 struct vm_area_struct *prev, unsigned long end) 2602 { 2603 struct vm_area_struct **insertion_point; 2604 struct vm_area_struct *tail_vma = NULL; 2605 2606 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2607 vma->vm_prev = NULL; 2608 do { 2609 vma_rb_erase(vma, &mm->mm_rb); 2610 mm->map_count--; 2611 tail_vma = vma; 2612 vma = vma->vm_next; 2613 } while (vma && vma->vm_start < end); 2614 *insertion_point = vma; 2615 if (vma) { 2616 vma->vm_prev = prev; 2617 vma_gap_update(vma); 2618 } else 2619 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2620 tail_vma->vm_next = NULL; 2621 2622 /* Kill the cache */ 2623 vmacache_invalidate(mm); 2624 } 2625 2626 /* 2627 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2628 * has already been checked or doesn't make sense to fail. 2629 */ 2630 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2631 unsigned long addr, int new_below) 2632 { 2633 struct vm_area_struct *new; 2634 int err; 2635 2636 if (vma->vm_ops && vma->vm_ops->split) { 2637 err = vma->vm_ops->split(vma, addr); 2638 if (err) 2639 return err; 2640 } 2641 2642 new = vm_area_dup(vma); 2643 if (!new) 2644 return -ENOMEM; 2645 2646 if (new_below) 2647 new->vm_end = addr; 2648 else { 2649 new->vm_start = addr; 2650 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2651 } 2652 2653 err = vma_dup_policy(vma, new); 2654 if (err) 2655 goto out_free_vma; 2656 2657 err = anon_vma_clone(new, vma); 2658 if (err) 2659 goto out_free_mpol; 2660 2661 if (new->vm_file) 2662 get_file(new->vm_file); 2663 2664 if (new->vm_ops && new->vm_ops->open) 2665 new->vm_ops->open(new); 2666 2667 if (new_below) 2668 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2669 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2670 else 2671 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2672 2673 /* Success. */ 2674 if (!err) 2675 return 0; 2676 2677 /* Clean everything up if vma_adjust failed. */ 2678 if (new->vm_ops && new->vm_ops->close) 2679 new->vm_ops->close(new); 2680 if (new->vm_file) 2681 fput(new->vm_file); 2682 unlink_anon_vmas(new); 2683 out_free_mpol: 2684 mpol_put(vma_policy(new)); 2685 out_free_vma: 2686 vm_area_free(new); 2687 return err; 2688 } 2689 2690 /* 2691 * Split a vma into two pieces at address 'addr', a new vma is allocated 2692 * either for the first part or the tail. 2693 */ 2694 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2695 unsigned long addr, int new_below) 2696 { 2697 if (mm->map_count >= sysctl_max_map_count) 2698 return -ENOMEM; 2699 2700 return __split_vma(mm, vma, addr, new_below); 2701 } 2702 2703 /* Munmap is split into 2 main parts -- this part which finds 2704 * what needs doing, and the areas themselves, which do the 2705 * work. This now handles partial unmappings. 2706 * Jeremy Fitzhardinge <jeremy@goop.org> 2707 */ 2708 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2709 struct list_head *uf, bool downgrade) 2710 { 2711 unsigned long end; 2712 struct vm_area_struct *vma, *prev, *last; 2713 2714 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2715 return -EINVAL; 2716 2717 len = PAGE_ALIGN(len); 2718 end = start + len; 2719 if (len == 0) 2720 return -EINVAL; 2721 2722 /* 2723 * arch_unmap() might do unmaps itself. It must be called 2724 * and finish any rbtree manipulation before this code 2725 * runs and also starts to manipulate the rbtree. 2726 */ 2727 arch_unmap(mm, start, end); 2728 2729 /* Find the first overlapping VMA */ 2730 vma = find_vma(mm, start); 2731 if (!vma) 2732 return 0; 2733 prev = vma->vm_prev; 2734 /* we have start < vma->vm_end */ 2735 2736 /* if it doesn't overlap, we have nothing.. */ 2737 if (vma->vm_start >= end) 2738 return 0; 2739 2740 /* 2741 * If we need to split any vma, do it now to save pain later. 2742 * 2743 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2744 * unmapped vm_area_struct will remain in use: so lower split_vma 2745 * places tmp vma above, and higher split_vma places tmp vma below. 2746 */ 2747 if (start > vma->vm_start) { 2748 int error; 2749 2750 /* 2751 * Make sure that map_count on return from munmap() will 2752 * not exceed its limit; but let map_count go just above 2753 * its limit temporarily, to help free resources as expected. 2754 */ 2755 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2756 return -ENOMEM; 2757 2758 error = __split_vma(mm, vma, start, 0); 2759 if (error) 2760 return error; 2761 prev = vma; 2762 } 2763 2764 /* Does it split the last one? */ 2765 last = find_vma(mm, end); 2766 if (last && end > last->vm_start) { 2767 int error = __split_vma(mm, last, end, 1); 2768 if (error) 2769 return error; 2770 } 2771 vma = prev ? prev->vm_next : mm->mmap; 2772 2773 if (unlikely(uf)) { 2774 /* 2775 * If userfaultfd_unmap_prep returns an error the vmas 2776 * will remain splitted, but userland will get a 2777 * highly unexpected error anyway. This is no 2778 * different than the case where the first of the two 2779 * __split_vma fails, but we don't undo the first 2780 * split, despite we could. This is unlikely enough 2781 * failure that it's not worth optimizing it for. 2782 */ 2783 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2784 if (error) 2785 return error; 2786 } 2787 2788 /* 2789 * unlock any mlock()ed ranges before detaching vmas 2790 */ 2791 if (mm->locked_vm) { 2792 struct vm_area_struct *tmp = vma; 2793 while (tmp && tmp->vm_start < end) { 2794 if (tmp->vm_flags & VM_LOCKED) { 2795 mm->locked_vm -= vma_pages(tmp); 2796 munlock_vma_pages_all(tmp); 2797 } 2798 2799 tmp = tmp->vm_next; 2800 } 2801 } 2802 2803 /* Detach vmas from rbtree */ 2804 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2805 2806 if (downgrade) 2807 downgrade_write(&mm->mmap_sem); 2808 2809 unmap_region(mm, vma, prev, start, end); 2810 2811 /* Fix up all other VM information */ 2812 remove_vma_list(mm, vma); 2813 2814 return downgrade ? 1 : 0; 2815 } 2816 2817 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2818 struct list_head *uf) 2819 { 2820 return __do_munmap(mm, start, len, uf, false); 2821 } 2822 2823 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2824 { 2825 int ret; 2826 struct mm_struct *mm = current->mm; 2827 LIST_HEAD(uf); 2828 2829 if (down_write_killable(&mm->mmap_sem)) 2830 return -EINTR; 2831 2832 ret = __do_munmap(mm, start, len, &uf, downgrade); 2833 /* 2834 * Returning 1 indicates mmap_sem is downgraded. 2835 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2836 * it to 0 before return. 2837 */ 2838 if (ret == 1) { 2839 up_read(&mm->mmap_sem); 2840 ret = 0; 2841 } else 2842 up_write(&mm->mmap_sem); 2843 2844 userfaultfd_unmap_complete(mm, &uf); 2845 return ret; 2846 } 2847 2848 int vm_munmap(unsigned long start, size_t len) 2849 { 2850 return __vm_munmap(start, len, false); 2851 } 2852 EXPORT_SYMBOL(vm_munmap); 2853 2854 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2855 { 2856 addr = untagged_addr(addr); 2857 profile_munmap(addr); 2858 return __vm_munmap(addr, len, true); 2859 } 2860 2861 2862 /* 2863 * Emulation of deprecated remap_file_pages() syscall. 2864 */ 2865 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2866 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2867 { 2868 2869 struct mm_struct *mm = current->mm; 2870 struct vm_area_struct *vma; 2871 unsigned long populate = 0; 2872 unsigned long ret = -EINVAL; 2873 struct file *file; 2874 2875 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2876 current->comm, current->pid); 2877 2878 if (prot) 2879 return ret; 2880 start = start & PAGE_MASK; 2881 size = size & PAGE_MASK; 2882 2883 if (start + size <= start) 2884 return ret; 2885 2886 /* Does pgoff wrap? */ 2887 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2888 return ret; 2889 2890 if (down_write_killable(&mm->mmap_sem)) 2891 return -EINTR; 2892 2893 vma = find_vma(mm, start); 2894 2895 if (!vma || !(vma->vm_flags & VM_SHARED)) 2896 goto out; 2897 2898 if (start < vma->vm_start) 2899 goto out; 2900 2901 if (start + size > vma->vm_end) { 2902 struct vm_area_struct *next; 2903 2904 for (next = vma->vm_next; next; next = next->vm_next) { 2905 /* hole between vmas ? */ 2906 if (next->vm_start != next->vm_prev->vm_end) 2907 goto out; 2908 2909 if (next->vm_file != vma->vm_file) 2910 goto out; 2911 2912 if (next->vm_flags != vma->vm_flags) 2913 goto out; 2914 2915 if (start + size <= next->vm_end) 2916 break; 2917 } 2918 2919 if (!next) 2920 goto out; 2921 } 2922 2923 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2924 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2925 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2926 2927 flags &= MAP_NONBLOCK; 2928 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2929 if (vma->vm_flags & VM_LOCKED) { 2930 struct vm_area_struct *tmp; 2931 flags |= MAP_LOCKED; 2932 2933 /* drop PG_Mlocked flag for over-mapped range */ 2934 for (tmp = vma; tmp->vm_start >= start + size; 2935 tmp = tmp->vm_next) { 2936 /* 2937 * Split pmd and munlock page on the border 2938 * of the range. 2939 */ 2940 vma_adjust_trans_huge(tmp, start, start + size, 0); 2941 2942 munlock_vma_pages_range(tmp, 2943 max(tmp->vm_start, start), 2944 min(tmp->vm_end, start + size)); 2945 } 2946 } 2947 2948 file = get_file(vma->vm_file); 2949 ret = do_mmap_pgoff(vma->vm_file, start, size, 2950 prot, flags, pgoff, &populate, NULL); 2951 fput(file); 2952 out: 2953 up_write(&mm->mmap_sem); 2954 if (populate) 2955 mm_populate(ret, populate); 2956 if (!IS_ERR_VALUE(ret)) 2957 ret = 0; 2958 return ret; 2959 } 2960 2961 /* 2962 * this is really a simplified "do_mmap". it only handles 2963 * anonymous maps. eventually we may be able to do some 2964 * brk-specific accounting here. 2965 */ 2966 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 2967 { 2968 struct mm_struct *mm = current->mm; 2969 struct vm_area_struct *vma, *prev; 2970 struct rb_node **rb_link, *rb_parent; 2971 pgoff_t pgoff = addr >> PAGE_SHIFT; 2972 int error; 2973 unsigned long mapped_addr; 2974 2975 /* Until we need other flags, refuse anything except VM_EXEC. */ 2976 if ((flags & (~VM_EXEC)) != 0) 2977 return -EINVAL; 2978 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2979 2980 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2981 if (IS_ERR_VALUE(mapped_addr)) 2982 return mapped_addr; 2983 2984 error = mlock_future_check(mm, mm->def_flags, len); 2985 if (error) 2986 return error; 2987 2988 /* 2989 * Clear old maps. this also does some error checking for us 2990 */ 2991 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2992 &rb_parent)) { 2993 if (do_munmap(mm, addr, len, uf)) 2994 return -ENOMEM; 2995 } 2996 2997 /* Check against address space limits *after* clearing old maps... */ 2998 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2999 return -ENOMEM; 3000 3001 if (mm->map_count > sysctl_max_map_count) 3002 return -ENOMEM; 3003 3004 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3005 return -ENOMEM; 3006 3007 /* Can we just expand an old private anonymous mapping? */ 3008 vma = vma_merge(mm, prev, addr, addr + len, flags, 3009 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3010 if (vma) 3011 goto out; 3012 3013 /* 3014 * create a vma struct for an anonymous mapping 3015 */ 3016 vma = vm_area_alloc(mm); 3017 if (!vma) { 3018 vm_unacct_memory(len >> PAGE_SHIFT); 3019 return -ENOMEM; 3020 } 3021 3022 vma_set_anonymous(vma); 3023 vma->vm_start = addr; 3024 vma->vm_end = addr + len; 3025 vma->vm_pgoff = pgoff; 3026 vma->vm_flags = flags; 3027 vma->vm_page_prot = vm_get_page_prot(flags); 3028 vma_link(mm, vma, prev, rb_link, rb_parent); 3029 out: 3030 perf_event_mmap(vma); 3031 mm->total_vm += len >> PAGE_SHIFT; 3032 mm->data_vm += len >> PAGE_SHIFT; 3033 if (flags & VM_LOCKED) 3034 mm->locked_vm += (len >> PAGE_SHIFT); 3035 vma->vm_flags |= VM_SOFTDIRTY; 3036 return 0; 3037 } 3038 3039 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3040 { 3041 struct mm_struct *mm = current->mm; 3042 unsigned long len; 3043 int ret; 3044 bool populate; 3045 LIST_HEAD(uf); 3046 3047 len = PAGE_ALIGN(request); 3048 if (len < request) 3049 return -ENOMEM; 3050 if (!len) 3051 return 0; 3052 3053 if (down_write_killable(&mm->mmap_sem)) 3054 return -EINTR; 3055 3056 ret = do_brk_flags(addr, len, flags, &uf); 3057 populate = ((mm->def_flags & VM_LOCKED) != 0); 3058 up_write(&mm->mmap_sem); 3059 userfaultfd_unmap_complete(mm, &uf); 3060 if (populate && !ret) 3061 mm_populate(addr, len); 3062 return ret; 3063 } 3064 EXPORT_SYMBOL(vm_brk_flags); 3065 3066 int vm_brk(unsigned long addr, unsigned long len) 3067 { 3068 return vm_brk_flags(addr, len, 0); 3069 } 3070 EXPORT_SYMBOL(vm_brk); 3071 3072 /* Release all mmaps. */ 3073 void exit_mmap(struct mm_struct *mm) 3074 { 3075 struct mmu_gather tlb; 3076 struct vm_area_struct *vma; 3077 unsigned long nr_accounted = 0; 3078 3079 /* mm's last user has gone, and its about to be pulled down */ 3080 mmu_notifier_release(mm); 3081 3082 if (unlikely(mm_is_oom_victim(mm))) { 3083 /* 3084 * Manually reap the mm to free as much memory as possible. 3085 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3086 * this mm from further consideration. Taking mm->mmap_sem for 3087 * write after setting MMF_OOM_SKIP will guarantee that the oom 3088 * reaper will not run on this mm again after mmap_sem is 3089 * dropped. 3090 * 3091 * Nothing can be holding mm->mmap_sem here and the above call 3092 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3093 * __oom_reap_task_mm() will not block. 3094 * 3095 * This needs to be done before calling munlock_vma_pages_all(), 3096 * which clears VM_LOCKED, otherwise the oom reaper cannot 3097 * reliably test it. 3098 */ 3099 (void)__oom_reap_task_mm(mm); 3100 3101 set_bit(MMF_OOM_SKIP, &mm->flags); 3102 down_write(&mm->mmap_sem); 3103 up_write(&mm->mmap_sem); 3104 } 3105 3106 if (mm->locked_vm) { 3107 vma = mm->mmap; 3108 while (vma) { 3109 if (vma->vm_flags & VM_LOCKED) 3110 munlock_vma_pages_all(vma); 3111 vma = vma->vm_next; 3112 } 3113 } 3114 3115 arch_exit_mmap(mm); 3116 3117 vma = mm->mmap; 3118 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3119 return; 3120 3121 lru_add_drain(); 3122 flush_cache_mm(mm); 3123 tlb_gather_mmu(&tlb, mm, 0, -1); 3124 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3125 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3126 unmap_vmas(&tlb, vma, 0, -1); 3127 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3128 tlb_finish_mmu(&tlb, 0, -1); 3129 3130 /* 3131 * Walk the list again, actually closing and freeing it, 3132 * with preemption enabled, without holding any MM locks. 3133 */ 3134 while (vma) { 3135 if (vma->vm_flags & VM_ACCOUNT) 3136 nr_accounted += vma_pages(vma); 3137 vma = remove_vma(vma); 3138 } 3139 vm_unacct_memory(nr_accounted); 3140 } 3141 3142 /* Insert vm structure into process list sorted by address 3143 * and into the inode's i_mmap tree. If vm_file is non-NULL 3144 * then i_mmap_rwsem is taken here. 3145 */ 3146 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3147 { 3148 struct vm_area_struct *prev; 3149 struct rb_node **rb_link, *rb_parent; 3150 3151 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3152 &prev, &rb_link, &rb_parent)) 3153 return -ENOMEM; 3154 if ((vma->vm_flags & VM_ACCOUNT) && 3155 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3156 return -ENOMEM; 3157 3158 /* 3159 * The vm_pgoff of a purely anonymous vma should be irrelevant 3160 * until its first write fault, when page's anon_vma and index 3161 * are set. But now set the vm_pgoff it will almost certainly 3162 * end up with (unless mremap moves it elsewhere before that 3163 * first wfault), so /proc/pid/maps tells a consistent story. 3164 * 3165 * By setting it to reflect the virtual start address of the 3166 * vma, merges and splits can happen in a seamless way, just 3167 * using the existing file pgoff checks and manipulations. 3168 * Similarly in do_mmap_pgoff and in do_brk. 3169 */ 3170 if (vma_is_anonymous(vma)) { 3171 BUG_ON(vma->anon_vma); 3172 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3173 } 3174 3175 vma_link(mm, vma, prev, rb_link, rb_parent); 3176 return 0; 3177 } 3178 3179 /* 3180 * Copy the vma structure to a new location in the same mm, 3181 * prior to moving page table entries, to effect an mremap move. 3182 */ 3183 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3184 unsigned long addr, unsigned long len, pgoff_t pgoff, 3185 bool *need_rmap_locks) 3186 { 3187 struct vm_area_struct *vma = *vmap; 3188 unsigned long vma_start = vma->vm_start; 3189 struct mm_struct *mm = vma->vm_mm; 3190 struct vm_area_struct *new_vma, *prev; 3191 struct rb_node **rb_link, *rb_parent; 3192 bool faulted_in_anon_vma = true; 3193 3194 /* 3195 * If anonymous vma has not yet been faulted, update new pgoff 3196 * to match new location, to increase its chance of merging. 3197 */ 3198 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3199 pgoff = addr >> PAGE_SHIFT; 3200 faulted_in_anon_vma = false; 3201 } 3202 3203 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3204 return NULL; /* should never get here */ 3205 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3206 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3207 vma->vm_userfaultfd_ctx); 3208 if (new_vma) { 3209 /* 3210 * Source vma may have been merged into new_vma 3211 */ 3212 if (unlikely(vma_start >= new_vma->vm_start && 3213 vma_start < new_vma->vm_end)) { 3214 /* 3215 * The only way we can get a vma_merge with 3216 * self during an mremap is if the vma hasn't 3217 * been faulted in yet and we were allowed to 3218 * reset the dst vma->vm_pgoff to the 3219 * destination address of the mremap to allow 3220 * the merge to happen. mremap must change the 3221 * vm_pgoff linearity between src and dst vmas 3222 * (in turn preventing a vma_merge) to be 3223 * safe. It is only safe to keep the vm_pgoff 3224 * linear if there are no pages mapped yet. 3225 */ 3226 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3227 *vmap = vma = new_vma; 3228 } 3229 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3230 } else { 3231 new_vma = vm_area_dup(vma); 3232 if (!new_vma) 3233 goto out; 3234 new_vma->vm_start = addr; 3235 new_vma->vm_end = addr + len; 3236 new_vma->vm_pgoff = pgoff; 3237 if (vma_dup_policy(vma, new_vma)) 3238 goto out_free_vma; 3239 if (anon_vma_clone(new_vma, vma)) 3240 goto out_free_mempol; 3241 if (new_vma->vm_file) 3242 get_file(new_vma->vm_file); 3243 if (new_vma->vm_ops && new_vma->vm_ops->open) 3244 new_vma->vm_ops->open(new_vma); 3245 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3246 *need_rmap_locks = false; 3247 } 3248 return new_vma; 3249 3250 out_free_mempol: 3251 mpol_put(vma_policy(new_vma)); 3252 out_free_vma: 3253 vm_area_free(new_vma); 3254 out: 3255 return NULL; 3256 } 3257 3258 /* 3259 * Return true if the calling process may expand its vm space by the passed 3260 * number of pages 3261 */ 3262 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3263 { 3264 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3265 return false; 3266 3267 if (is_data_mapping(flags) && 3268 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3269 /* Workaround for Valgrind */ 3270 if (rlimit(RLIMIT_DATA) == 0 && 3271 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3272 return true; 3273 3274 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3275 current->comm, current->pid, 3276 (mm->data_vm + npages) << PAGE_SHIFT, 3277 rlimit(RLIMIT_DATA), 3278 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3279 3280 if (!ignore_rlimit_data) 3281 return false; 3282 } 3283 3284 return true; 3285 } 3286 3287 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3288 { 3289 mm->total_vm += npages; 3290 3291 if (is_exec_mapping(flags)) 3292 mm->exec_vm += npages; 3293 else if (is_stack_mapping(flags)) 3294 mm->stack_vm += npages; 3295 else if (is_data_mapping(flags)) 3296 mm->data_vm += npages; 3297 } 3298 3299 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3300 3301 /* 3302 * Having a close hook prevents vma merging regardless of flags. 3303 */ 3304 static void special_mapping_close(struct vm_area_struct *vma) 3305 { 3306 } 3307 3308 static const char *special_mapping_name(struct vm_area_struct *vma) 3309 { 3310 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3311 } 3312 3313 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3314 { 3315 struct vm_special_mapping *sm = new_vma->vm_private_data; 3316 3317 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3318 return -EFAULT; 3319 3320 if (sm->mremap) 3321 return sm->mremap(sm, new_vma); 3322 3323 return 0; 3324 } 3325 3326 static const struct vm_operations_struct special_mapping_vmops = { 3327 .close = special_mapping_close, 3328 .fault = special_mapping_fault, 3329 .mremap = special_mapping_mremap, 3330 .name = special_mapping_name, 3331 /* vDSO code relies that VVAR can't be accessed remotely */ 3332 .access = NULL, 3333 }; 3334 3335 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3336 .close = special_mapping_close, 3337 .fault = special_mapping_fault, 3338 }; 3339 3340 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3341 { 3342 struct vm_area_struct *vma = vmf->vma; 3343 pgoff_t pgoff; 3344 struct page **pages; 3345 3346 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3347 pages = vma->vm_private_data; 3348 } else { 3349 struct vm_special_mapping *sm = vma->vm_private_data; 3350 3351 if (sm->fault) 3352 return sm->fault(sm, vmf->vma, vmf); 3353 3354 pages = sm->pages; 3355 } 3356 3357 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3358 pgoff--; 3359 3360 if (*pages) { 3361 struct page *page = *pages; 3362 get_page(page); 3363 vmf->page = page; 3364 return 0; 3365 } 3366 3367 return VM_FAULT_SIGBUS; 3368 } 3369 3370 static struct vm_area_struct *__install_special_mapping( 3371 struct mm_struct *mm, 3372 unsigned long addr, unsigned long len, 3373 unsigned long vm_flags, void *priv, 3374 const struct vm_operations_struct *ops) 3375 { 3376 int ret; 3377 struct vm_area_struct *vma; 3378 3379 vma = vm_area_alloc(mm); 3380 if (unlikely(vma == NULL)) 3381 return ERR_PTR(-ENOMEM); 3382 3383 vma->vm_start = addr; 3384 vma->vm_end = addr + len; 3385 3386 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3387 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3388 3389 vma->vm_ops = ops; 3390 vma->vm_private_data = priv; 3391 3392 ret = insert_vm_struct(mm, vma); 3393 if (ret) 3394 goto out; 3395 3396 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3397 3398 perf_event_mmap(vma); 3399 3400 return vma; 3401 3402 out: 3403 vm_area_free(vma); 3404 return ERR_PTR(ret); 3405 } 3406 3407 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3408 const struct vm_special_mapping *sm) 3409 { 3410 return vma->vm_private_data == sm && 3411 (vma->vm_ops == &special_mapping_vmops || 3412 vma->vm_ops == &legacy_special_mapping_vmops); 3413 } 3414 3415 /* 3416 * Called with mm->mmap_sem held for writing. 3417 * Insert a new vma covering the given region, with the given flags. 3418 * Its pages are supplied by the given array of struct page *. 3419 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3420 * The region past the last page supplied will always produce SIGBUS. 3421 * The array pointer and the pages it points to are assumed to stay alive 3422 * for as long as this mapping might exist. 3423 */ 3424 struct vm_area_struct *_install_special_mapping( 3425 struct mm_struct *mm, 3426 unsigned long addr, unsigned long len, 3427 unsigned long vm_flags, const struct vm_special_mapping *spec) 3428 { 3429 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3430 &special_mapping_vmops); 3431 } 3432 3433 int install_special_mapping(struct mm_struct *mm, 3434 unsigned long addr, unsigned long len, 3435 unsigned long vm_flags, struct page **pages) 3436 { 3437 struct vm_area_struct *vma = __install_special_mapping( 3438 mm, addr, len, vm_flags, (void *)pages, 3439 &legacy_special_mapping_vmops); 3440 3441 return PTR_ERR_OR_ZERO(vma); 3442 } 3443 3444 static DEFINE_MUTEX(mm_all_locks_mutex); 3445 3446 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3447 { 3448 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3449 /* 3450 * The LSB of head.next can't change from under us 3451 * because we hold the mm_all_locks_mutex. 3452 */ 3453 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3454 /* 3455 * We can safely modify head.next after taking the 3456 * anon_vma->root->rwsem. If some other vma in this mm shares 3457 * the same anon_vma we won't take it again. 3458 * 3459 * No need of atomic instructions here, head.next 3460 * can't change from under us thanks to the 3461 * anon_vma->root->rwsem. 3462 */ 3463 if (__test_and_set_bit(0, (unsigned long *) 3464 &anon_vma->root->rb_root.rb_root.rb_node)) 3465 BUG(); 3466 } 3467 } 3468 3469 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3470 { 3471 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3472 /* 3473 * AS_MM_ALL_LOCKS can't change from under us because 3474 * we hold the mm_all_locks_mutex. 3475 * 3476 * Operations on ->flags have to be atomic because 3477 * even if AS_MM_ALL_LOCKS is stable thanks to the 3478 * mm_all_locks_mutex, there may be other cpus 3479 * changing other bitflags in parallel to us. 3480 */ 3481 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3482 BUG(); 3483 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3484 } 3485 } 3486 3487 /* 3488 * This operation locks against the VM for all pte/vma/mm related 3489 * operations that could ever happen on a certain mm. This includes 3490 * vmtruncate, try_to_unmap, and all page faults. 3491 * 3492 * The caller must take the mmap_sem in write mode before calling 3493 * mm_take_all_locks(). The caller isn't allowed to release the 3494 * mmap_sem until mm_drop_all_locks() returns. 3495 * 3496 * mmap_sem in write mode is required in order to block all operations 3497 * that could modify pagetables and free pages without need of 3498 * altering the vma layout. It's also needed in write mode to avoid new 3499 * anon_vmas to be associated with existing vmas. 3500 * 3501 * A single task can't take more than one mm_take_all_locks() in a row 3502 * or it would deadlock. 3503 * 3504 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3505 * mapping->flags avoid to take the same lock twice, if more than one 3506 * vma in this mm is backed by the same anon_vma or address_space. 3507 * 3508 * We take locks in following order, accordingly to comment at beginning 3509 * of mm/rmap.c: 3510 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3511 * hugetlb mapping); 3512 * - all i_mmap_rwsem locks; 3513 * - all anon_vma->rwseml 3514 * 3515 * We can take all locks within these types randomly because the VM code 3516 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3517 * mm_all_locks_mutex. 3518 * 3519 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3520 * that may have to take thousand of locks. 3521 * 3522 * mm_take_all_locks() can fail if it's interrupted by signals. 3523 */ 3524 int mm_take_all_locks(struct mm_struct *mm) 3525 { 3526 struct vm_area_struct *vma; 3527 struct anon_vma_chain *avc; 3528 3529 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3530 3531 mutex_lock(&mm_all_locks_mutex); 3532 3533 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3534 if (signal_pending(current)) 3535 goto out_unlock; 3536 if (vma->vm_file && vma->vm_file->f_mapping && 3537 is_vm_hugetlb_page(vma)) 3538 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3539 } 3540 3541 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3542 if (signal_pending(current)) 3543 goto out_unlock; 3544 if (vma->vm_file && vma->vm_file->f_mapping && 3545 !is_vm_hugetlb_page(vma)) 3546 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3547 } 3548 3549 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3550 if (signal_pending(current)) 3551 goto out_unlock; 3552 if (vma->anon_vma) 3553 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3554 vm_lock_anon_vma(mm, avc->anon_vma); 3555 } 3556 3557 return 0; 3558 3559 out_unlock: 3560 mm_drop_all_locks(mm); 3561 return -EINTR; 3562 } 3563 3564 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3565 { 3566 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3567 /* 3568 * The LSB of head.next can't change to 0 from under 3569 * us because we hold the mm_all_locks_mutex. 3570 * 3571 * We must however clear the bitflag before unlocking 3572 * the vma so the users using the anon_vma->rb_root will 3573 * never see our bitflag. 3574 * 3575 * No need of atomic instructions here, head.next 3576 * can't change from under us until we release the 3577 * anon_vma->root->rwsem. 3578 */ 3579 if (!__test_and_clear_bit(0, (unsigned long *) 3580 &anon_vma->root->rb_root.rb_root.rb_node)) 3581 BUG(); 3582 anon_vma_unlock_write(anon_vma); 3583 } 3584 } 3585 3586 static void vm_unlock_mapping(struct address_space *mapping) 3587 { 3588 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3589 /* 3590 * AS_MM_ALL_LOCKS can't change to 0 from under us 3591 * because we hold the mm_all_locks_mutex. 3592 */ 3593 i_mmap_unlock_write(mapping); 3594 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3595 &mapping->flags)) 3596 BUG(); 3597 } 3598 } 3599 3600 /* 3601 * The mmap_sem cannot be released by the caller until 3602 * mm_drop_all_locks() returns. 3603 */ 3604 void mm_drop_all_locks(struct mm_struct *mm) 3605 { 3606 struct vm_area_struct *vma; 3607 struct anon_vma_chain *avc; 3608 3609 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3610 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3611 3612 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3613 if (vma->anon_vma) 3614 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3615 vm_unlock_anon_vma(avc->anon_vma); 3616 if (vma->vm_file && vma->vm_file->f_mapping) 3617 vm_unlock_mapping(vma->vm_file->f_mapping); 3618 } 3619 3620 mutex_unlock(&mm_all_locks_mutex); 3621 } 3622 3623 /* 3624 * initialise the percpu counter for VM 3625 */ 3626 void __init mmap_init(void) 3627 { 3628 int ret; 3629 3630 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3631 VM_BUG_ON(ret); 3632 } 3633 3634 /* 3635 * Initialise sysctl_user_reserve_kbytes. 3636 * 3637 * This is intended to prevent a user from starting a single memory hogging 3638 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3639 * mode. 3640 * 3641 * The default value is min(3% of free memory, 128MB) 3642 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3643 */ 3644 static int init_user_reserve(void) 3645 { 3646 unsigned long free_kbytes; 3647 3648 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3649 3650 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3651 return 0; 3652 } 3653 subsys_initcall(init_user_reserve); 3654 3655 /* 3656 * Initialise sysctl_admin_reserve_kbytes. 3657 * 3658 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3659 * to log in and kill a memory hogging process. 3660 * 3661 * Systems with more than 256MB will reserve 8MB, enough to recover 3662 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3663 * only reserve 3% of free pages by default. 3664 */ 3665 static int init_admin_reserve(void) 3666 { 3667 unsigned long free_kbytes; 3668 3669 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3670 3671 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3672 return 0; 3673 } 3674 subsys_initcall(init_admin_reserve); 3675 3676 /* 3677 * Reinititalise user and admin reserves if memory is added or removed. 3678 * 3679 * The default user reserve max is 128MB, and the default max for the 3680 * admin reserve is 8MB. These are usually, but not always, enough to 3681 * enable recovery from a memory hogging process using login/sshd, a shell, 3682 * and tools like top. It may make sense to increase or even disable the 3683 * reserve depending on the existence of swap or variations in the recovery 3684 * tools. So, the admin may have changed them. 3685 * 3686 * If memory is added and the reserves have been eliminated or increased above 3687 * the default max, then we'll trust the admin. 3688 * 3689 * If memory is removed and there isn't enough free memory, then we 3690 * need to reset the reserves. 3691 * 3692 * Otherwise keep the reserve set by the admin. 3693 */ 3694 static int reserve_mem_notifier(struct notifier_block *nb, 3695 unsigned long action, void *data) 3696 { 3697 unsigned long tmp, free_kbytes; 3698 3699 switch (action) { 3700 case MEM_ONLINE: 3701 /* Default max is 128MB. Leave alone if modified by operator. */ 3702 tmp = sysctl_user_reserve_kbytes; 3703 if (0 < tmp && tmp < (1UL << 17)) 3704 init_user_reserve(); 3705 3706 /* Default max is 8MB. Leave alone if modified by operator. */ 3707 tmp = sysctl_admin_reserve_kbytes; 3708 if (0 < tmp && tmp < (1UL << 13)) 3709 init_admin_reserve(); 3710 3711 break; 3712 case MEM_OFFLINE: 3713 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3714 3715 if (sysctl_user_reserve_kbytes > free_kbytes) { 3716 init_user_reserve(); 3717 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3718 sysctl_user_reserve_kbytes); 3719 } 3720 3721 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3722 init_admin_reserve(); 3723 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3724 sysctl_admin_reserve_kbytes); 3725 } 3726 break; 3727 default: 3728 break; 3729 } 3730 return NOTIFY_OK; 3731 } 3732 3733 static struct notifier_block reserve_mem_nb = { 3734 .notifier_call = reserve_mem_notifier, 3735 }; 3736 3737 static int __meminit init_reserve_notifier(void) 3738 { 3739 if (register_hotmemory_notifier(&reserve_mem_nb)) 3740 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3741 3742 return 0; 3743 } 3744 subsys_initcall(init_reserve_notifier); 3745