xref: /openbmc/linux/mm/mmap.c (revision 6aa7de05)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlb.h>
52 #include <asm/mmu_context.h>
53 
54 #include "internal.h"
55 
56 #ifndef arch_mmap_check
57 #define arch_mmap_check(addr, len, flags)	(0)
58 #endif
59 
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
69 #endif
70 
71 static bool ignore_rlimit_data;
72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
73 
74 static void unmap_region(struct mm_struct *mm,
75 		struct vm_area_struct *vma, struct vm_area_struct *prev,
76 		unsigned long start, unsigned long end);
77 
78 /* description of effects of mapping type and prot in current implementation.
79  * this is due to the limited x86 page protection hardware.  The expected
80  * behavior is in parens:
81  *
82  * map_type	prot
83  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
84  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
85  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
86  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
87  *
88  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
89  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
90  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
91  *
92  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
93  * MAP_PRIVATE:
94  *								r: (no) no
95  *								w: (no) no
96  *								x: (yes) yes
97  */
98 pgprot_t protection_map[16] __ro_after_init = {
99 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
101 };
102 
103 pgprot_t vm_get_page_prot(unsigned long vm_flags)
104 {
105 	return __pgprot(pgprot_val(protection_map[vm_flags &
106 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
107 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
108 }
109 EXPORT_SYMBOL(vm_get_page_prot);
110 
111 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
112 {
113 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
114 }
115 
116 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
117 void vma_set_page_prot(struct vm_area_struct *vma)
118 {
119 	unsigned long vm_flags = vma->vm_flags;
120 	pgprot_t vm_page_prot;
121 
122 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
123 	if (vma_wants_writenotify(vma, vm_page_prot)) {
124 		vm_flags &= ~VM_SHARED;
125 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
126 	}
127 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
128 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
129 }
130 
131 /*
132  * Requires inode->i_mapping->i_mmap_rwsem
133  */
134 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
135 		struct file *file, struct address_space *mapping)
136 {
137 	if (vma->vm_flags & VM_DENYWRITE)
138 		atomic_inc(&file_inode(file)->i_writecount);
139 	if (vma->vm_flags & VM_SHARED)
140 		mapping_unmap_writable(mapping);
141 
142 	flush_dcache_mmap_lock(mapping);
143 	vma_interval_tree_remove(vma, &mapping->i_mmap);
144 	flush_dcache_mmap_unlock(mapping);
145 }
146 
147 /*
148  * Unlink a file-based vm structure from its interval tree, to hide
149  * vma from rmap and vmtruncate before freeing its page tables.
150  */
151 void unlink_file_vma(struct vm_area_struct *vma)
152 {
153 	struct file *file = vma->vm_file;
154 
155 	if (file) {
156 		struct address_space *mapping = file->f_mapping;
157 		i_mmap_lock_write(mapping);
158 		__remove_shared_vm_struct(vma, file, mapping);
159 		i_mmap_unlock_write(mapping);
160 	}
161 }
162 
163 /*
164  * Close a vm structure and free it, returning the next.
165  */
166 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
167 {
168 	struct vm_area_struct *next = vma->vm_next;
169 
170 	might_sleep();
171 	if (vma->vm_ops && vma->vm_ops->close)
172 		vma->vm_ops->close(vma);
173 	if (vma->vm_file)
174 		fput(vma->vm_file);
175 	mpol_put(vma_policy(vma));
176 	kmem_cache_free(vm_area_cachep, vma);
177 	return next;
178 }
179 
180 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf);
181 
182 SYSCALL_DEFINE1(brk, unsigned long, brk)
183 {
184 	unsigned long retval;
185 	unsigned long newbrk, oldbrk;
186 	struct mm_struct *mm = current->mm;
187 	struct vm_area_struct *next;
188 	unsigned long min_brk;
189 	bool populate;
190 	LIST_HEAD(uf);
191 
192 	if (down_write_killable(&mm->mmap_sem))
193 		return -EINTR;
194 
195 #ifdef CONFIG_COMPAT_BRK
196 	/*
197 	 * CONFIG_COMPAT_BRK can still be overridden by setting
198 	 * randomize_va_space to 2, which will still cause mm->start_brk
199 	 * to be arbitrarily shifted
200 	 */
201 	if (current->brk_randomized)
202 		min_brk = mm->start_brk;
203 	else
204 		min_brk = mm->end_data;
205 #else
206 	min_brk = mm->start_brk;
207 #endif
208 	if (brk < min_brk)
209 		goto out;
210 
211 	/*
212 	 * Check against rlimit here. If this check is done later after the test
213 	 * of oldbrk with newbrk then it can escape the test and let the data
214 	 * segment grow beyond its set limit the in case where the limit is
215 	 * not page aligned -Ram Gupta
216 	 */
217 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
218 			      mm->end_data, mm->start_data))
219 		goto out;
220 
221 	newbrk = PAGE_ALIGN(brk);
222 	oldbrk = PAGE_ALIGN(mm->brk);
223 	if (oldbrk == newbrk)
224 		goto set_brk;
225 
226 	/* Always allow shrinking brk. */
227 	if (brk <= mm->brk) {
228 		if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
229 			goto set_brk;
230 		goto out;
231 	}
232 
233 	/* Check against existing mmap mappings. */
234 	next = find_vma(mm, oldbrk);
235 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
236 		goto out;
237 
238 	/* Ok, looks good - let it rip. */
239 	if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
240 		goto out;
241 
242 set_brk:
243 	mm->brk = brk;
244 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
245 	up_write(&mm->mmap_sem);
246 	userfaultfd_unmap_complete(mm, &uf);
247 	if (populate)
248 		mm_populate(oldbrk, newbrk - oldbrk);
249 	return brk;
250 
251 out:
252 	retval = mm->brk;
253 	up_write(&mm->mmap_sem);
254 	return retval;
255 }
256 
257 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
258 {
259 	unsigned long max, prev_end, subtree_gap;
260 
261 	/*
262 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
263 	 * allow two stack_guard_gaps between them here, and when choosing
264 	 * an unmapped area; whereas when expanding we only require one.
265 	 * That's a little inconsistent, but keeps the code here simpler.
266 	 */
267 	max = vm_start_gap(vma);
268 	if (vma->vm_prev) {
269 		prev_end = vm_end_gap(vma->vm_prev);
270 		if (max > prev_end)
271 			max -= prev_end;
272 		else
273 			max = 0;
274 	}
275 	if (vma->vm_rb.rb_left) {
276 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
277 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
278 		if (subtree_gap > max)
279 			max = subtree_gap;
280 	}
281 	if (vma->vm_rb.rb_right) {
282 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
283 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
284 		if (subtree_gap > max)
285 			max = subtree_gap;
286 	}
287 	return max;
288 }
289 
290 #ifdef CONFIG_DEBUG_VM_RB
291 static int browse_rb(struct mm_struct *mm)
292 {
293 	struct rb_root *root = &mm->mm_rb;
294 	int i = 0, j, bug = 0;
295 	struct rb_node *nd, *pn = NULL;
296 	unsigned long prev = 0, pend = 0;
297 
298 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
299 		struct vm_area_struct *vma;
300 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
301 		if (vma->vm_start < prev) {
302 			pr_emerg("vm_start %lx < prev %lx\n",
303 				  vma->vm_start, prev);
304 			bug = 1;
305 		}
306 		if (vma->vm_start < pend) {
307 			pr_emerg("vm_start %lx < pend %lx\n",
308 				  vma->vm_start, pend);
309 			bug = 1;
310 		}
311 		if (vma->vm_start > vma->vm_end) {
312 			pr_emerg("vm_start %lx > vm_end %lx\n",
313 				  vma->vm_start, vma->vm_end);
314 			bug = 1;
315 		}
316 		spin_lock(&mm->page_table_lock);
317 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
318 			pr_emerg("free gap %lx, correct %lx\n",
319 			       vma->rb_subtree_gap,
320 			       vma_compute_subtree_gap(vma));
321 			bug = 1;
322 		}
323 		spin_unlock(&mm->page_table_lock);
324 		i++;
325 		pn = nd;
326 		prev = vma->vm_start;
327 		pend = vma->vm_end;
328 	}
329 	j = 0;
330 	for (nd = pn; nd; nd = rb_prev(nd))
331 		j++;
332 	if (i != j) {
333 		pr_emerg("backwards %d, forwards %d\n", j, i);
334 		bug = 1;
335 	}
336 	return bug ? -1 : i;
337 }
338 
339 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
340 {
341 	struct rb_node *nd;
342 
343 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
344 		struct vm_area_struct *vma;
345 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
346 		VM_BUG_ON_VMA(vma != ignore &&
347 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
348 			vma);
349 	}
350 }
351 
352 static void validate_mm(struct mm_struct *mm)
353 {
354 	int bug = 0;
355 	int i = 0;
356 	unsigned long highest_address = 0;
357 	struct vm_area_struct *vma = mm->mmap;
358 
359 	while (vma) {
360 		struct anon_vma *anon_vma = vma->anon_vma;
361 		struct anon_vma_chain *avc;
362 
363 		if (anon_vma) {
364 			anon_vma_lock_read(anon_vma);
365 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
366 				anon_vma_interval_tree_verify(avc);
367 			anon_vma_unlock_read(anon_vma);
368 		}
369 
370 		highest_address = vm_end_gap(vma);
371 		vma = vma->vm_next;
372 		i++;
373 	}
374 	if (i != mm->map_count) {
375 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
376 		bug = 1;
377 	}
378 	if (highest_address != mm->highest_vm_end) {
379 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
380 			  mm->highest_vm_end, highest_address);
381 		bug = 1;
382 	}
383 	i = browse_rb(mm);
384 	if (i != mm->map_count) {
385 		if (i != -1)
386 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
387 		bug = 1;
388 	}
389 	VM_BUG_ON_MM(bug, mm);
390 }
391 #else
392 #define validate_mm_rb(root, ignore) do { } while (0)
393 #define validate_mm(mm) do { } while (0)
394 #endif
395 
396 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
397 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
398 
399 /*
400  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
401  * vma->vm_prev->vm_end values changed, without modifying the vma's position
402  * in the rbtree.
403  */
404 static void vma_gap_update(struct vm_area_struct *vma)
405 {
406 	/*
407 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
408 	 * function that does exacltly what we want.
409 	 */
410 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
411 }
412 
413 static inline void vma_rb_insert(struct vm_area_struct *vma,
414 				 struct rb_root *root)
415 {
416 	/* All rb_subtree_gap values must be consistent prior to insertion */
417 	validate_mm_rb(root, NULL);
418 
419 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
420 }
421 
422 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
423 {
424 	/*
425 	 * Note rb_erase_augmented is a fairly large inline function,
426 	 * so make sure we instantiate it only once with our desired
427 	 * augmented rbtree callbacks.
428 	 */
429 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
430 }
431 
432 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
433 						struct rb_root *root,
434 						struct vm_area_struct *ignore)
435 {
436 	/*
437 	 * All rb_subtree_gap values must be consistent prior to erase,
438 	 * with the possible exception of the "next" vma being erased if
439 	 * next->vm_start was reduced.
440 	 */
441 	validate_mm_rb(root, ignore);
442 
443 	__vma_rb_erase(vma, root);
444 }
445 
446 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
447 					 struct rb_root *root)
448 {
449 	/*
450 	 * All rb_subtree_gap values must be consistent prior to erase,
451 	 * with the possible exception of the vma being erased.
452 	 */
453 	validate_mm_rb(root, vma);
454 
455 	__vma_rb_erase(vma, root);
456 }
457 
458 /*
459  * vma has some anon_vma assigned, and is already inserted on that
460  * anon_vma's interval trees.
461  *
462  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
463  * vma must be removed from the anon_vma's interval trees using
464  * anon_vma_interval_tree_pre_update_vma().
465  *
466  * After the update, the vma will be reinserted using
467  * anon_vma_interval_tree_post_update_vma().
468  *
469  * The entire update must be protected by exclusive mmap_sem and by
470  * the root anon_vma's mutex.
471  */
472 static inline void
473 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
474 {
475 	struct anon_vma_chain *avc;
476 
477 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
478 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
479 }
480 
481 static inline void
482 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
483 {
484 	struct anon_vma_chain *avc;
485 
486 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
487 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
488 }
489 
490 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
491 		unsigned long end, struct vm_area_struct **pprev,
492 		struct rb_node ***rb_link, struct rb_node **rb_parent)
493 {
494 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
495 
496 	__rb_link = &mm->mm_rb.rb_node;
497 	rb_prev = __rb_parent = NULL;
498 
499 	while (*__rb_link) {
500 		struct vm_area_struct *vma_tmp;
501 
502 		__rb_parent = *__rb_link;
503 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
504 
505 		if (vma_tmp->vm_end > addr) {
506 			/* Fail if an existing vma overlaps the area */
507 			if (vma_tmp->vm_start < end)
508 				return -ENOMEM;
509 			__rb_link = &__rb_parent->rb_left;
510 		} else {
511 			rb_prev = __rb_parent;
512 			__rb_link = &__rb_parent->rb_right;
513 		}
514 	}
515 
516 	*pprev = NULL;
517 	if (rb_prev)
518 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
519 	*rb_link = __rb_link;
520 	*rb_parent = __rb_parent;
521 	return 0;
522 }
523 
524 static unsigned long count_vma_pages_range(struct mm_struct *mm,
525 		unsigned long addr, unsigned long end)
526 {
527 	unsigned long nr_pages = 0;
528 	struct vm_area_struct *vma;
529 
530 	/* Find first overlaping mapping */
531 	vma = find_vma_intersection(mm, addr, end);
532 	if (!vma)
533 		return 0;
534 
535 	nr_pages = (min(end, vma->vm_end) -
536 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
537 
538 	/* Iterate over the rest of the overlaps */
539 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
540 		unsigned long overlap_len;
541 
542 		if (vma->vm_start > end)
543 			break;
544 
545 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
546 		nr_pages += overlap_len >> PAGE_SHIFT;
547 	}
548 
549 	return nr_pages;
550 }
551 
552 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
553 		struct rb_node **rb_link, struct rb_node *rb_parent)
554 {
555 	/* Update tracking information for the gap following the new vma. */
556 	if (vma->vm_next)
557 		vma_gap_update(vma->vm_next);
558 	else
559 		mm->highest_vm_end = vm_end_gap(vma);
560 
561 	/*
562 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
563 	 * correct insertion point for that vma. As a result, we could not
564 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
565 	 * So, we first insert the vma with a zero rb_subtree_gap value
566 	 * (to be consistent with what we did on the way down), and then
567 	 * immediately update the gap to the correct value. Finally we
568 	 * rebalance the rbtree after all augmented values have been set.
569 	 */
570 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
571 	vma->rb_subtree_gap = 0;
572 	vma_gap_update(vma);
573 	vma_rb_insert(vma, &mm->mm_rb);
574 }
575 
576 static void __vma_link_file(struct vm_area_struct *vma)
577 {
578 	struct file *file;
579 
580 	file = vma->vm_file;
581 	if (file) {
582 		struct address_space *mapping = file->f_mapping;
583 
584 		if (vma->vm_flags & VM_DENYWRITE)
585 			atomic_dec(&file_inode(file)->i_writecount);
586 		if (vma->vm_flags & VM_SHARED)
587 			atomic_inc(&mapping->i_mmap_writable);
588 
589 		flush_dcache_mmap_lock(mapping);
590 		vma_interval_tree_insert(vma, &mapping->i_mmap);
591 		flush_dcache_mmap_unlock(mapping);
592 	}
593 }
594 
595 static void
596 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
597 	struct vm_area_struct *prev, struct rb_node **rb_link,
598 	struct rb_node *rb_parent)
599 {
600 	__vma_link_list(mm, vma, prev, rb_parent);
601 	__vma_link_rb(mm, vma, rb_link, rb_parent);
602 }
603 
604 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
605 			struct vm_area_struct *prev, struct rb_node **rb_link,
606 			struct rb_node *rb_parent)
607 {
608 	struct address_space *mapping = NULL;
609 
610 	if (vma->vm_file) {
611 		mapping = vma->vm_file->f_mapping;
612 		i_mmap_lock_write(mapping);
613 	}
614 
615 	__vma_link(mm, vma, prev, rb_link, rb_parent);
616 	__vma_link_file(vma);
617 
618 	if (mapping)
619 		i_mmap_unlock_write(mapping);
620 
621 	mm->map_count++;
622 	validate_mm(mm);
623 }
624 
625 /*
626  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
627  * mm's list and rbtree.  It has already been inserted into the interval tree.
628  */
629 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
630 {
631 	struct vm_area_struct *prev;
632 	struct rb_node **rb_link, *rb_parent;
633 
634 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
635 			   &prev, &rb_link, &rb_parent))
636 		BUG();
637 	__vma_link(mm, vma, prev, rb_link, rb_parent);
638 	mm->map_count++;
639 }
640 
641 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
642 						struct vm_area_struct *vma,
643 						struct vm_area_struct *prev,
644 						bool has_prev,
645 						struct vm_area_struct *ignore)
646 {
647 	struct vm_area_struct *next;
648 
649 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
650 	next = vma->vm_next;
651 	if (has_prev)
652 		prev->vm_next = next;
653 	else {
654 		prev = vma->vm_prev;
655 		if (prev)
656 			prev->vm_next = next;
657 		else
658 			mm->mmap = next;
659 	}
660 	if (next)
661 		next->vm_prev = prev;
662 
663 	/* Kill the cache */
664 	vmacache_invalidate(mm);
665 }
666 
667 static inline void __vma_unlink_prev(struct mm_struct *mm,
668 				     struct vm_area_struct *vma,
669 				     struct vm_area_struct *prev)
670 {
671 	__vma_unlink_common(mm, vma, prev, true, vma);
672 }
673 
674 /*
675  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
676  * is already present in an i_mmap tree without adjusting the tree.
677  * The following helper function should be used when such adjustments
678  * are necessary.  The "insert" vma (if any) is to be inserted
679  * before we drop the necessary locks.
680  */
681 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
682 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
683 	struct vm_area_struct *expand)
684 {
685 	struct mm_struct *mm = vma->vm_mm;
686 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
687 	struct address_space *mapping = NULL;
688 	struct rb_root_cached *root = NULL;
689 	struct anon_vma *anon_vma = NULL;
690 	struct file *file = vma->vm_file;
691 	bool start_changed = false, end_changed = false;
692 	long adjust_next = 0;
693 	int remove_next = 0;
694 
695 	if (next && !insert) {
696 		struct vm_area_struct *exporter = NULL, *importer = NULL;
697 
698 		if (end >= next->vm_end) {
699 			/*
700 			 * vma expands, overlapping all the next, and
701 			 * perhaps the one after too (mprotect case 6).
702 			 * The only other cases that gets here are
703 			 * case 1, case 7 and case 8.
704 			 */
705 			if (next == expand) {
706 				/*
707 				 * The only case where we don't expand "vma"
708 				 * and we expand "next" instead is case 8.
709 				 */
710 				VM_WARN_ON(end != next->vm_end);
711 				/*
712 				 * remove_next == 3 means we're
713 				 * removing "vma" and that to do so we
714 				 * swapped "vma" and "next".
715 				 */
716 				remove_next = 3;
717 				VM_WARN_ON(file != next->vm_file);
718 				swap(vma, next);
719 			} else {
720 				VM_WARN_ON(expand != vma);
721 				/*
722 				 * case 1, 6, 7, remove_next == 2 is case 6,
723 				 * remove_next == 1 is case 1 or 7.
724 				 */
725 				remove_next = 1 + (end > next->vm_end);
726 				VM_WARN_ON(remove_next == 2 &&
727 					   end != next->vm_next->vm_end);
728 				VM_WARN_ON(remove_next == 1 &&
729 					   end != next->vm_end);
730 				/* trim end to next, for case 6 first pass */
731 				end = next->vm_end;
732 			}
733 
734 			exporter = next;
735 			importer = vma;
736 
737 			/*
738 			 * If next doesn't have anon_vma, import from vma after
739 			 * next, if the vma overlaps with it.
740 			 */
741 			if (remove_next == 2 && !next->anon_vma)
742 				exporter = next->vm_next;
743 
744 		} else if (end > next->vm_start) {
745 			/*
746 			 * vma expands, overlapping part of the next:
747 			 * mprotect case 5 shifting the boundary up.
748 			 */
749 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
750 			exporter = next;
751 			importer = vma;
752 			VM_WARN_ON(expand != importer);
753 		} else if (end < vma->vm_end) {
754 			/*
755 			 * vma shrinks, and !insert tells it's not
756 			 * split_vma inserting another: so it must be
757 			 * mprotect case 4 shifting the boundary down.
758 			 */
759 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
760 			exporter = vma;
761 			importer = next;
762 			VM_WARN_ON(expand != importer);
763 		}
764 
765 		/*
766 		 * Easily overlooked: when mprotect shifts the boundary,
767 		 * make sure the expanding vma has anon_vma set if the
768 		 * shrinking vma had, to cover any anon pages imported.
769 		 */
770 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
771 			int error;
772 
773 			importer->anon_vma = exporter->anon_vma;
774 			error = anon_vma_clone(importer, exporter);
775 			if (error)
776 				return error;
777 		}
778 	}
779 again:
780 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
781 
782 	if (file) {
783 		mapping = file->f_mapping;
784 		root = &mapping->i_mmap;
785 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
786 
787 		if (adjust_next)
788 			uprobe_munmap(next, next->vm_start, next->vm_end);
789 
790 		i_mmap_lock_write(mapping);
791 		if (insert) {
792 			/*
793 			 * Put into interval tree now, so instantiated pages
794 			 * are visible to arm/parisc __flush_dcache_page
795 			 * throughout; but we cannot insert into address
796 			 * space until vma start or end is updated.
797 			 */
798 			__vma_link_file(insert);
799 		}
800 	}
801 
802 	anon_vma = vma->anon_vma;
803 	if (!anon_vma && adjust_next)
804 		anon_vma = next->anon_vma;
805 	if (anon_vma) {
806 		VM_WARN_ON(adjust_next && next->anon_vma &&
807 			   anon_vma != next->anon_vma);
808 		anon_vma_lock_write(anon_vma);
809 		anon_vma_interval_tree_pre_update_vma(vma);
810 		if (adjust_next)
811 			anon_vma_interval_tree_pre_update_vma(next);
812 	}
813 
814 	if (root) {
815 		flush_dcache_mmap_lock(mapping);
816 		vma_interval_tree_remove(vma, root);
817 		if (adjust_next)
818 			vma_interval_tree_remove(next, root);
819 	}
820 
821 	if (start != vma->vm_start) {
822 		vma->vm_start = start;
823 		start_changed = true;
824 	}
825 	if (end != vma->vm_end) {
826 		vma->vm_end = end;
827 		end_changed = true;
828 	}
829 	vma->vm_pgoff = pgoff;
830 	if (adjust_next) {
831 		next->vm_start += adjust_next << PAGE_SHIFT;
832 		next->vm_pgoff += adjust_next;
833 	}
834 
835 	if (root) {
836 		if (adjust_next)
837 			vma_interval_tree_insert(next, root);
838 		vma_interval_tree_insert(vma, root);
839 		flush_dcache_mmap_unlock(mapping);
840 	}
841 
842 	if (remove_next) {
843 		/*
844 		 * vma_merge has merged next into vma, and needs
845 		 * us to remove next before dropping the locks.
846 		 */
847 		if (remove_next != 3)
848 			__vma_unlink_prev(mm, next, vma);
849 		else
850 			/*
851 			 * vma is not before next if they've been
852 			 * swapped.
853 			 *
854 			 * pre-swap() next->vm_start was reduced so
855 			 * tell validate_mm_rb to ignore pre-swap()
856 			 * "next" (which is stored in post-swap()
857 			 * "vma").
858 			 */
859 			__vma_unlink_common(mm, next, NULL, false, vma);
860 		if (file)
861 			__remove_shared_vm_struct(next, file, mapping);
862 	} else if (insert) {
863 		/*
864 		 * split_vma has split insert from vma, and needs
865 		 * us to insert it before dropping the locks
866 		 * (it may either follow vma or precede it).
867 		 */
868 		__insert_vm_struct(mm, insert);
869 	} else {
870 		if (start_changed)
871 			vma_gap_update(vma);
872 		if (end_changed) {
873 			if (!next)
874 				mm->highest_vm_end = vm_end_gap(vma);
875 			else if (!adjust_next)
876 				vma_gap_update(next);
877 		}
878 	}
879 
880 	if (anon_vma) {
881 		anon_vma_interval_tree_post_update_vma(vma);
882 		if (adjust_next)
883 			anon_vma_interval_tree_post_update_vma(next);
884 		anon_vma_unlock_write(anon_vma);
885 	}
886 	if (mapping)
887 		i_mmap_unlock_write(mapping);
888 
889 	if (root) {
890 		uprobe_mmap(vma);
891 
892 		if (adjust_next)
893 			uprobe_mmap(next);
894 	}
895 
896 	if (remove_next) {
897 		if (file) {
898 			uprobe_munmap(next, next->vm_start, next->vm_end);
899 			fput(file);
900 		}
901 		if (next->anon_vma)
902 			anon_vma_merge(vma, next);
903 		mm->map_count--;
904 		mpol_put(vma_policy(next));
905 		kmem_cache_free(vm_area_cachep, next);
906 		/*
907 		 * In mprotect's case 6 (see comments on vma_merge),
908 		 * we must remove another next too. It would clutter
909 		 * up the code too much to do both in one go.
910 		 */
911 		if (remove_next != 3) {
912 			/*
913 			 * If "next" was removed and vma->vm_end was
914 			 * expanded (up) over it, in turn
915 			 * "next->vm_prev->vm_end" changed and the
916 			 * "vma->vm_next" gap must be updated.
917 			 */
918 			next = vma->vm_next;
919 		} else {
920 			/*
921 			 * For the scope of the comment "next" and
922 			 * "vma" considered pre-swap(): if "vma" was
923 			 * removed, next->vm_start was expanded (down)
924 			 * over it and the "next" gap must be updated.
925 			 * Because of the swap() the post-swap() "vma"
926 			 * actually points to pre-swap() "next"
927 			 * (post-swap() "next" as opposed is now a
928 			 * dangling pointer).
929 			 */
930 			next = vma;
931 		}
932 		if (remove_next == 2) {
933 			remove_next = 1;
934 			end = next->vm_end;
935 			goto again;
936 		}
937 		else if (next)
938 			vma_gap_update(next);
939 		else {
940 			/*
941 			 * If remove_next == 2 we obviously can't
942 			 * reach this path.
943 			 *
944 			 * If remove_next == 3 we can't reach this
945 			 * path because pre-swap() next is always not
946 			 * NULL. pre-swap() "next" is not being
947 			 * removed and its next->vm_end is not altered
948 			 * (and furthermore "end" already matches
949 			 * next->vm_end in remove_next == 3).
950 			 *
951 			 * We reach this only in the remove_next == 1
952 			 * case if the "next" vma that was removed was
953 			 * the highest vma of the mm. However in such
954 			 * case next->vm_end == "end" and the extended
955 			 * "vma" has vma->vm_end == next->vm_end so
956 			 * mm->highest_vm_end doesn't need any update
957 			 * in remove_next == 1 case.
958 			 */
959 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
960 		}
961 	}
962 	if (insert && file)
963 		uprobe_mmap(insert);
964 
965 	validate_mm(mm);
966 
967 	return 0;
968 }
969 
970 /*
971  * If the vma has a ->close operation then the driver probably needs to release
972  * per-vma resources, so we don't attempt to merge those.
973  */
974 static inline int is_mergeable_vma(struct vm_area_struct *vma,
975 				struct file *file, unsigned long vm_flags,
976 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
977 {
978 	/*
979 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
980 	 * match the flags but dirty bit -- the caller should mark
981 	 * merged VMA as dirty. If dirty bit won't be excluded from
982 	 * comparison, we increase pressue on the memory system forcing
983 	 * the kernel to generate new VMAs when old one could be
984 	 * extended instead.
985 	 */
986 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
987 		return 0;
988 	if (vma->vm_file != file)
989 		return 0;
990 	if (vma->vm_ops && vma->vm_ops->close)
991 		return 0;
992 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
993 		return 0;
994 	return 1;
995 }
996 
997 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
998 					struct anon_vma *anon_vma2,
999 					struct vm_area_struct *vma)
1000 {
1001 	/*
1002 	 * The list_is_singular() test is to avoid merging VMA cloned from
1003 	 * parents. This can improve scalability caused by anon_vma lock.
1004 	 */
1005 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1006 		list_is_singular(&vma->anon_vma_chain)))
1007 		return 1;
1008 	return anon_vma1 == anon_vma2;
1009 }
1010 
1011 /*
1012  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1013  * in front of (at a lower virtual address and file offset than) the vma.
1014  *
1015  * We cannot merge two vmas if they have differently assigned (non-NULL)
1016  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1017  *
1018  * We don't check here for the merged mmap wrapping around the end of pagecache
1019  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1020  * wrap, nor mmaps which cover the final page at index -1UL.
1021  */
1022 static int
1023 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1024 		     struct anon_vma *anon_vma, struct file *file,
1025 		     pgoff_t vm_pgoff,
1026 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1027 {
1028 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1029 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1030 		if (vma->vm_pgoff == vm_pgoff)
1031 			return 1;
1032 	}
1033 	return 0;
1034 }
1035 
1036 /*
1037  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1038  * beyond (at a higher virtual address and file offset than) the vma.
1039  *
1040  * We cannot merge two vmas if they have differently assigned (non-NULL)
1041  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1042  */
1043 static int
1044 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1045 		    struct anon_vma *anon_vma, struct file *file,
1046 		    pgoff_t vm_pgoff,
1047 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1048 {
1049 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1050 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1051 		pgoff_t vm_pglen;
1052 		vm_pglen = vma_pages(vma);
1053 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1054 			return 1;
1055 	}
1056 	return 0;
1057 }
1058 
1059 /*
1060  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1061  * whether that can be merged with its predecessor or its successor.
1062  * Or both (it neatly fills a hole).
1063  *
1064  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1065  * certain not to be mapped by the time vma_merge is called; but when
1066  * called for mprotect, it is certain to be already mapped (either at
1067  * an offset within prev, or at the start of next), and the flags of
1068  * this area are about to be changed to vm_flags - and the no-change
1069  * case has already been eliminated.
1070  *
1071  * The following mprotect cases have to be considered, where AAAA is
1072  * the area passed down from mprotect_fixup, never extending beyond one
1073  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1074  *
1075  *     AAAA             AAAA                AAAA          AAAA
1076  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1077  *    cannot merge    might become    might become    might become
1078  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1079  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1080  *    mremap move:                                    PPPPXXXXXXXX 8
1081  *        AAAA
1082  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1083  *    might become    case 1 below    case 2 below    case 3 below
1084  *
1085  * It is important for case 8 that the the vma NNNN overlapping the
1086  * region AAAA is never going to extended over XXXX. Instead XXXX must
1087  * be extended in region AAAA and NNNN must be removed. This way in
1088  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1089  * rmap_locks, the properties of the merged vma will be already
1090  * correct for the whole merged range. Some of those properties like
1091  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1092  * be correct for the whole merged range immediately after the
1093  * rmap_locks are released. Otherwise if XXXX would be removed and
1094  * NNNN would be extended over the XXXX range, remove_migration_ptes
1095  * or other rmap walkers (if working on addresses beyond the "end"
1096  * parameter) may establish ptes with the wrong permissions of NNNN
1097  * instead of the right permissions of XXXX.
1098  */
1099 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1100 			struct vm_area_struct *prev, unsigned long addr,
1101 			unsigned long end, unsigned long vm_flags,
1102 			struct anon_vma *anon_vma, struct file *file,
1103 			pgoff_t pgoff, struct mempolicy *policy,
1104 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1105 {
1106 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1107 	struct vm_area_struct *area, *next;
1108 	int err;
1109 
1110 	/*
1111 	 * We later require that vma->vm_flags == vm_flags,
1112 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1113 	 */
1114 	if (vm_flags & VM_SPECIAL)
1115 		return NULL;
1116 
1117 	if (prev)
1118 		next = prev->vm_next;
1119 	else
1120 		next = mm->mmap;
1121 	area = next;
1122 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1123 		next = next->vm_next;
1124 
1125 	/* verify some invariant that must be enforced by the caller */
1126 	VM_WARN_ON(prev && addr <= prev->vm_start);
1127 	VM_WARN_ON(area && end > area->vm_end);
1128 	VM_WARN_ON(addr >= end);
1129 
1130 	/*
1131 	 * Can it merge with the predecessor?
1132 	 */
1133 	if (prev && prev->vm_end == addr &&
1134 			mpol_equal(vma_policy(prev), policy) &&
1135 			can_vma_merge_after(prev, vm_flags,
1136 					    anon_vma, file, pgoff,
1137 					    vm_userfaultfd_ctx)) {
1138 		/*
1139 		 * OK, it can.  Can we now merge in the successor as well?
1140 		 */
1141 		if (next && end == next->vm_start &&
1142 				mpol_equal(policy, vma_policy(next)) &&
1143 				can_vma_merge_before(next, vm_flags,
1144 						     anon_vma, file,
1145 						     pgoff+pglen,
1146 						     vm_userfaultfd_ctx) &&
1147 				is_mergeable_anon_vma(prev->anon_vma,
1148 						      next->anon_vma, NULL)) {
1149 							/* cases 1, 6 */
1150 			err = __vma_adjust(prev, prev->vm_start,
1151 					 next->vm_end, prev->vm_pgoff, NULL,
1152 					 prev);
1153 		} else					/* cases 2, 5, 7 */
1154 			err = __vma_adjust(prev, prev->vm_start,
1155 					 end, prev->vm_pgoff, NULL, prev);
1156 		if (err)
1157 			return NULL;
1158 		khugepaged_enter_vma_merge(prev, vm_flags);
1159 		return prev;
1160 	}
1161 
1162 	/*
1163 	 * Can this new request be merged in front of next?
1164 	 */
1165 	if (next && end == next->vm_start &&
1166 			mpol_equal(policy, vma_policy(next)) &&
1167 			can_vma_merge_before(next, vm_flags,
1168 					     anon_vma, file, pgoff+pglen,
1169 					     vm_userfaultfd_ctx)) {
1170 		if (prev && addr < prev->vm_end)	/* case 4 */
1171 			err = __vma_adjust(prev, prev->vm_start,
1172 					 addr, prev->vm_pgoff, NULL, next);
1173 		else {					/* cases 3, 8 */
1174 			err = __vma_adjust(area, addr, next->vm_end,
1175 					 next->vm_pgoff - pglen, NULL, next);
1176 			/*
1177 			 * In case 3 area is already equal to next and
1178 			 * this is a noop, but in case 8 "area" has
1179 			 * been removed and next was expanded over it.
1180 			 */
1181 			area = next;
1182 		}
1183 		if (err)
1184 			return NULL;
1185 		khugepaged_enter_vma_merge(area, vm_flags);
1186 		return area;
1187 	}
1188 
1189 	return NULL;
1190 }
1191 
1192 /*
1193  * Rough compatbility check to quickly see if it's even worth looking
1194  * at sharing an anon_vma.
1195  *
1196  * They need to have the same vm_file, and the flags can only differ
1197  * in things that mprotect may change.
1198  *
1199  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1200  * we can merge the two vma's. For example, we refuse to merge a vma if
1201  * there is a vm_ops->close() function, because that indicates that the
1202  * driver is doing some kind of reference counting. But that doesn't
1203  * really matter for the anon_vma sharing case.
1204  */
1205 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1206 {
1207 	return a->vm_end == b->vm_start &&
1208 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1209 		a->vm_file == b->vm_file &&
1210 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1211 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1212 }
1213 
1214 /*
1215  * Do some basic sanity checking to see if we can re-use the anon_vma
1216  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1217  * the same as 'old', the other will be the new one that is trying
1218  * to share the anon_vma.
1219  *
1220  * NOTE! This runs with mm_sem held for reading, so it is possible that
1221  * the anon_vma of 'old' is concurrently in the process of being set up
1222  * by another page fault trying to merge _that_. But that's ok: if it
1223  * is being set up, that automatically means that it will be a singleton
1224  * acceptable for merging, so we can do all of this optimistically. But
1225  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1226  *
1227  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1228  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1229  * is to return an anon_vma that is "complex" due to having gone through
1230  * a fork).
1231  *
1232  * We also make sure that the two vma's are compatible (adjacent,
1233  * and with the same memory policies). That's all stable, even with just
1234  * a read lock on the mm_sem.
1235  */
1236 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1237 {
1238 	if (anon_vma_compatible(a, b)) {
1239 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1240 
1241 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1242 			return anon_vma;
1243 	}
1244 	return NULL;
1245 }
1246 
1247 /*
1248  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1249  * neighbouring vmas for a suitable anon_vma, before it goes off
1250  * to allocate a new anon_vma.  It checks because a repetitive
1251  * sequence of mprotects and faults may otherwise lead to distinct
1252  * anon_vmas being allocated, preventing vma merge in subsequent
1253  * mprotect.
1254  */
1255 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1256 {
1257 	struct anon_vma *anon_vma;
1258 	struct vm_area_struct *near;
1259 
1260 	near = vma->vm_next;
1261 	if (!near)
1262 		goto try_prev;
1263 
1264 	anon_vma = reusable_anon_vma(near, vma, near);
1265 	if (anon_vma)
1266 		return anon_vma;
1267 try_prev:
1268 	near = vma->vm_prev;
1269 	if (!near)
1270 		goto none;
1271 
1272 	anon_vma = reusable_anon_vma(near, near, vma);
1273 	if (anon_vma)
1274 		return anon_vma;
1275 none:
1276 	/*
1277 	 * There's no absolute need to look only at touching neighbours:
1278 	 * we could search further afield for "compatible" anon_vmas.
1279 	 * But it would probably just be a waste of time searching,
1280 	 * or lead to too many vmas hanging off the same anon_vma.
1281 	 * We're trying to allow mprotect remerging later on,
1282 	 * not trying to minimize memory used for anon_vmas.
1283 	 */
1284 	return NULL;
1285 }
1286 
1287 /*
1288  * If a hint addr is less than mmap_min_addr change hint to be as
1289  * low as possible but still greater than mmap_min_addr
1290  */
1291 static inline unsigned long round_hint_to_min(unsigned long hint)
1292 {
1293 	hint &= PAGE_MASK;
1294 	if (((void *)hint != NULL) &&
1295 	    (hint < mmap_min_addr))
1296 		return PAGE_ALIGN(mmap_min_addr);
1297 	return hint;
1298 }
1299 
1300 static inline int mlock_future_check(struct mm_struct *mm,
1301 				     unsigned long flags,
1302 				     unsigned long len)
1303 {
1304 	unsigned long locked, lock_limit;
1305 
1306 	/*  mlock MCL_FUTURE? */
1307 	if (flags & VM_LOCKED) {
1308 		locked = len >> PAGE_SHIFT;
1309 		locked += mm->locked_vm;
1310 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1311 		lock_limit >>= PAGE_SHIFT;
1312 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1313 			return -EAGAIN;
1314 	}
1315 	return 0;
1316 }
1317 
1318 /*
1319  * The caller must hold down_write(&current->mm->mmap_sem).
1320  */
1321 unsigned long do_mmap(struct file *file, unsigned long addr,
1322 			unsigned long len, unsigned long prot,
1323 			unsigned long flags, vm_flags_t vm_flags,
1324 			unsigned long pgoff, unsigned long *populate,
1325 			struct list_head *uf)
1326 {
1327 	struct mm_struct *mm = current->mm;
1328 	int pkey = 0;
1329 
1330 	*populate = 0;
1331 
1332 	if (!len)
1333 		return -EINVAL;
1334 
1335 	/*
1336 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1337 	 *
1338 	 * (the exception is when the underlying filesystem is noexec
1339 	 *  mounted, in which case we dont add PROT_EXEC.)
1340 	 */
1341 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1342 		if (!(file && path_noexec(&file->f_path)))
1343 			prot |= PROT_EXEC;
1344 
1345 	if (!(flags & MAP_FIXED))
1346 		addr = round_hint_to_min(addr);
1347 
1348 	/* Careful about overflows.. */
1349 	len = PAGE_ALIGN(len);
1350 	if (!len)
1351 		return -ENOMEM;
1352 
1353 	/* offset overflow? */
1354 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1355 		return -EOVERFLOW;
1356 
1357 	/* Too many mappings? */
1358 	if (mm->map_count > sysctl_max_map_count)
1359 		return -ENOMEM;
1360 
1361 	/* Obtain the address to map to. we verify (or select) it and ensure
1362 	 * that it represents a valid section of the address space.
1363 	 */
1364 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1365 	if (offset_in_page(addr))
1366 		return addr;
1367 
1368 	if (prot == PROT_EXEC) {
1369 		pkey = execute_only_pkey(mm);
1370 		if (pkey < 0)
1371 			pkey = 0;
1372 	}
1373 
1374 	/* Do simple checking here so the lower-level routines won't have
1375 	 * to. we assume access permissions have been handled by the open
1376 	 * of the memory object, so we don't do any here.
1377 	 */
1378 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1379 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1380 
1381 	if (flags & MAP_LOCKED)
1382 		if (!can_do_mlock())
1383 			return -EPERM;
1384 
1385 	if (mlock_future_check(mm, vm_flags, len))
1386 		return -EAGAIN;
1387 
1388 	if (file) {
1389 		struct inode *inode = file_inode(file);
1390 
1391 		switch (flags & MAP_TYPE) {
1392 		case MAP_SHARED:
1393 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1394 				return -EACCES;
1395 
1396 			/*
1397 			 * Make sure we don't allow writing to an append-only
1398 			 * file..
1399 			 */
1400 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1401 				return -EACCES;
1402 
1403 			/*
1404 			 * Make sure there are no mandatory locks on the file.
1405 			 */
1406 			if (locks_verify_locked(file))
1407 				return -EAGAIN;
1408 
1409 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1410 			if (!(file->f_mode & FMODE_WRITE))
1411 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1412 
1413 			/* fall through */
1414 		case MAP_PRIVATE:
1415 			if (!(file->f_mode & FMODE_READ))
1416 				return -EACCES;
1417 			if (path_noexec(&file->f_path)) {
1418 				if (vm_flags & VM_EXEC)
1419 					return -EPERM;
1420 				vm_flags &= ~VM_MAYEXEC;
1421 			}
1422 
1423 			if (!file->f_op->mmap)
1424 				return -ENODEV;
1425 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1426 				return -EINVAL;
1427 			break;
1428 
1429 		default:
1430 			return -EINVAL;
1431 		}
1432 	} else {
1433 		switch (flags & MAP_TYPE) {
1434 		case MAP_SHARED:
1435 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1436 				return -EINVAL;
1437 			/*
1438 			 * Ignore pgoff.
1439 			 */
1440 			pgoff = 0;
1441 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1442 			break;
1443 		case MAP_PRIVATE:
1444 			/*
1445 			 * Set pgoff according to addr for anon_vma.
1446 			 */
1447 			pgoff = addr >> PAGE_SHIFT;
1448 			break;
1449 		default:
1450 			return -EINVAL;
1451 		}
1452 	}
1453 
1454 	/*
1455 	 * Set 'VM_NORESERVE' if we should not account for the
1456 	 * memory use of this mapping.
1457 	 */
1458 	if (flags & MAP_NORESERVE) {
1459 		/* We honor MAP_NORESERVE if allowed to overcommit */
1460 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1461 			vm_flags |= VM_NORESERVE;
1462 
1463 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1464 		if (file && is_file_hugepages(file))
1465 			vm_flags |= VM_NORESERVE;
1466 	}
1467 
1468 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1469 	if (!IS_ERR_VALUE(addr) &&
1470 	    ((vm_flags & VM_LOCKED) ||
1471 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1472 		*populate = len;
1473 	return addr;
1474 }
1475 
1476 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1477 		unsigned long, prot, unsigned long, flags,
1478 		unsigned long, fd, unsigned long, pgoff)
1479 {
1480 	struct file *file = NULL;
1481 	unsigned long retval;
1482 
1483 	if (!(flags & MAP_ANONYMOUS)) {
1484 		audit_mmap_fd(fd, flags);
1485 		file = fget(fd);
1486 		if (!file)
1487 			return -EBADF;
1488 		if (is_file_hugepages(file))
1489 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1490 		retval = -EINVAL;
1491 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1492 			goto out_fput;
1493 	} else if (flags & MAP_HUGETLB) {
1494 		struct user_struct *user = NULL;
1495 		struct hstate *hs;
1496 
1497 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1498 		if (!hs)
1499 			return -EINVAL;
1500 
1501 		len = ALIGN(len, huge_page_size(hs));
1502 		/*
1503 		 * VM_NORESERVE is used because the reservations will be
1504 		 * taken when vm_ops->mmap() is called
1505 		 * A dummy user value is used because we are not locking
1506 		 * memory so no accounting is necessary
1507 		 */
1508 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1509 				VM_NORESERVE,
1510 				&user, HUGETLB_ANONHUGE_INODE,
1511 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1512 		if (IS_ERR(file))
1513 			return PTR_ERR(file);
1514 	}
1515 
1516 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1517 
1518 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1519 out_fput:
1520 	if (file)
1521 		fput(file);
1522 	return retval;
1523 }
1524 
1525 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1526 struct mmap_arg_struct {
1527 	unsigned long addr;
1528 	unsigned long len;
1529 	unsigned long prot;
1530 	unsigned long flags;
1531 	unsigned long fd;
1532 	unsigned long offset;
1533 };
1534 
1535 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1536 {
1537 	struct mmap_arg_struct a;
1538 
1539 	if (copy_from_user(&a, arg, sizeof(a)))
1540 		return -EFAULT;
1541 	if (offset_in_page(a.offset))
1542 		return -EINVAL;
1543 
1544 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1545 			      a.offset >> PAGE_SHIFT);
1546 }
1547 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1548 
1549 /*
1550  * Some shared mappigns will want the pages marked read-only
1551  * to track write events. If so, we'll downgrade vm_page_prot
1552  * to the private version (using protection_map[] without the
1553  * VM_SHARED bit).
1554  */
1555 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1556 {
1557 	vm_flags_t vm_flags = vma->vm_flags;
1558 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1559 
1560 	/* If it was private or non-writable, the write bit is already clear */
1561 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1562 		return 0;
1563 
1564 	/* The backer wishes to know when pages are first written to? */
1565 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1566 		return 1;
1567 
1568 	/* The open routine did something to the protections that pgprot_modify
1569 	 * won't preserve? */
1570 	if (pgprot_val(vm_page_prot) !=
1571 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1572 		return 0;
1573 
1574 	/* Do we need to track softdirty? */
1575 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1576 		return 1;
1577 
1578 	/* Specialty mapping? */
1579 	if (vm_flags & VM_PFNMAP)
1580 		return 0;
1581 
1582 	/* Can the mapping track the dirty pages? */
1583 	return vma->vm_file && vma->vm_file->f_mapping &&
1584 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1585 }
1586 
1587 /*
1588  * We account for memory if it's a private writeable mapping,
1589  * not hugepages and VM_NORESERVE wasn't set.
1590  */
1591 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1592 {
1593 	/*
1594 	 * hugetlb has its own accounting separate from the core VM
1595 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1596 	 */
1597 	if (file && is_file_hugepages(file))
1598 		return 0;
1599 
1600 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1601 }
1602 
1603 unsigned long mmap_region(struct file *file, unsigned long addr,
1604 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1605 		struct list_head *uf)
1606 {
1607 	struct mm_struct *mm = current->mm;
1608 	struct vm_area_struct *vma, *prev;
1609 	int error;
1610 	struct rb_node **rb_link, *rb_parent;
1611 	unsigned long charged = 0;
1612 
1613 	/* Check against address space limit. */
1614 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1615 		unsigned long nr_pages;
1616 
1617 		/*
1618 		 * MAP_FIXED may remove pages of mappings that intersects with
1619 		 * requested mapping. Account for the pages it would unmap.
1620 		 */
1621 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1622 
1623 		if (!may_expand_vm(mm, vm_flags,
1624 					(len >> PAGE_SHIFT) - nr_pages))
1625 			return -ENOMEM;
1626 	}
1627 
1628 	/* Clear old maps */
1629 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1630 			      &rb_parent)) {
1631 		if (do_munmap(mm, addr, len, uf))
1632 			return -ENOMEM;
1633 	}
1634 
1635 	/*
1636 	 * Private writable mapping: check memory availability
1637 	 */
1638 	if (accountable_mapping(file, vm_flags)) {
1639 		charged = len >> PAGE_SHIFT;
1640 		if (security_vm_enough_memory_mm(mm, charged))
1641 			return -ENOMEM;
1642 		vm_flags |= VM_ACCOUNT;
1643 	}
1644 
1645 	/*
1646 	 * Can we just expand an old mapping?
1647 	 */
1648 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1649 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1650 	if (vma)
1651 		goto out;
1652 
1653 	/*
1654 	 * Determine the object being mapped and call the appropriate
1655 	 * specific mapper. the address has already been validated, but
1656 	 * not unmapped, but the maps are removed from the list.
1657 	 */
1658 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1659 	if (!vma) {
1660 		error = -ENOMEM;
1661 		goto unacct_error;
1662 	}
1663 
1664 	vma->vm_mm = mm;
1665 	vma->vm_start = addr;
1666 	vma->vm_end = addr + len;
1667 	vma->vm_flags = vm_flags;
1668 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1669 	vma->vm_pgoff = pgoff;
1670 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1671 
1672 	if (file) {
1673 		if (vm_flags & VM_DENYWRITE) {
1674 			error = deny_write_access(file);
1675 			if (error)
1676 				goto free_vma;
1677 		}
1678 		if (vm_flags & VM_SHARED) {
1679 			error = mapping_map_writable(file->f_mapping);
1680 			if (error)
1681 				goto allow_write_and_free_vma;
1682 		}
1683 
1684 		/* ->mmap() can change vma->vm_file, but must guarantee that
1685 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1686 		 * and map writably if VM_SHARED is set. This usually means the
1687 		 * new file must not have been exposed to user-space, yet.
1688 		 */
1689 		vma->vm_file = get_file(file);
1690 		error = call_mmap(file, vma);
1691 		if (error)
1692 			goto unmap_and_free_vma;
1693 
1694 		/* Can addr have changed??
1695 		 *
1696 		 * Answer: Yes, several device drivers can do it in their
1697 		 *         f_op->mmap method. -DaveM
1698 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1699 		 *      be updated for vma_link()
1700 		 */
1701 		WARN_ON_ONCE(addr != vma->vm_start);
1702 
1703 		addr = vma->vm_start;
1704 		vm_flags = vma->vm_flags;
1705 	} else if (vm_flags & VM_SHARED) {
1706 		error = shmem_zero_setup(vma);
1707 		if (error)
1708 			goto free_vma;
1709 	}
1710 
1711 	vma_link(mm, vma, prev, rb_link, rb_parent);
1712 	/* Once vma denies write, undo our temporary denial count */
1713 	if (file) {
1714 		if (vm_flags & VM_SHARED)
1715 			mapping_unmap_writable(file->f_mapping);
1716 		if (vm_flags & VM_DENYWRITE)
1717 			allow_write_access(file);
1718 	}
1719 	file = vma->vm_file;
1720 out:
1721 	perf_event_mmap(vma);
1722 
1723 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1724 	if (vm_flags & VM_LOCKED) {
1725 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1726 					vma == get_gate_vma(current->mm)))
1727 			mm->locked_vm += (len >> PAGE_SHIFT);
1728 		else
1729 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1730 	}
1731 
1732 	if (file)
1733 		uprobe_mmap(vma);
1734 
1735 	/*
1736 	 * New (or expanded) vma always get soft dirty status.
1737 	 * Otherwise user-space soft-dirty page tracker won't
1738 	 * be able to distinguish situation when vma area unmapped,
1739 	 * then new mapped in-place (which must be aimed as
1740 	 * a completely new data area).
1741 	 */
1742 	vma->vm_flags |= VM_SOFTDIRTY;
1743 
1744 	vma_set_page_prot(vma);
1745 
1746 	return addr;
1747 
1748 unmap_and_free_vma:
1749 	vma->vm_file = NULL;
1750 	fput(file);
1751 
1752 	/* Undo any partial mapping done by a device driver. */
1753 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1754 	charged = 0;
1755 	if (vm_flags & VM_SHARED)
1756 		mapping_unmap_writable(file->f_mapping);
1757 allow_write_and_free_vma:
1758 	if (vm_flags & VM_DENYWRITE)
1759 		allow_write_access(file);
1760 free_vma:
1761 	kmem_cache_free(vm_area_cachep, vma);
1762 unacct_error:
1763 	if (charged)
1764 		vm_unacct_memory(charged);
1765 	return error;
1766 }
1767 
1768 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1769 {
1770 	/*
1771 	 * We implement the search by looking for an rbtree node that
1772 	 * immediately follows a suitable gap. That is,
1773 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1774 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1775 	 * - gap_end - gap_start >= length
1776 	 */
1777 
1778 	struct mm_struct *mm = current->mm;
1779 	struct vm_area_struct *vma;
1780 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1781 
1782 	/* Adjust search length to account for worst case alignment overhead */
1783 	length = info->length + info->align_mask;
1784 	if (length < info->length)
1785 		return -ENOMEM;
1786 
1787 	/* Adjust search limits by the desired length */
1788 	if (info->high_limit < length)
1789 		return -ENOMEM;
1790 	high_limit = info->high_limit - length;
1791 
1792 	if (info->low_limit > high_limit)
1793 		return -ENOMEM;
1794 	low_limit = info->low_limit + length;
1795 
1796 	/* Check if rbtree root looks promising */
1797 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1798 		goto check_highest;
1799 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1800 	if (vma->rb_subtree_gap < length)
1801 		goto check_highest;
1802 
1803 	while (true) {
1804 		/* Visit left subtree if it looks promising */
1805 		gap_end = vm_start_gap(vma);
1806 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1807 			struct vm_area_struct *left =
1808 				rb_entry(vma->vm_rb.rb_left,
1809 					 struct vm_area_struct, vm_rb);
1810 			if (left->rb_subtree_gap >= length) {
1811 				vma = left;
1812 				continue;
1813 			}
1814 		}
1815 
1816 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1817 check_current:
1818 		/* Check if current node has a suitable gap */
1819 		if (gap_start > high_limit)
1820 			return -ENOMEM;
1821 		if (gap_end >= low_limit &&
1822 		    gap_end > gap_start && gap_end - gap_start >= length)
1823 			goto found;
1824 
1825 		/* Visit right subtree if it looks promising */
1826 		if (vma->vm_rb.rb_right) {
1827 			struct vm_area_struct *right =
1828 				rb_entry(vma->vm_rb.rb_right,
1829 					 struct vm_area_struct, vm_rb);
1830 			if (right->rb_subtree_gap >= length) {
1831 				vma = right;
1832 				continue;
1833 			}
1834 		}
1835 
1836 		/* Go back up the rbtree to find next candidate node */
1837 		while (true) {
1838 			struct rb_node *prev = &vma->vm_rb;
1839 			if (!rb_parent(prev))
1840 				goto check_highest;
1841 			vma = rb_entry(rb_parent(prev),
1842 				       struct vm_area_struct, vm_rb);
1843 			if (prev == vma->vm_rb.rb_left) {
1844 				gap_start = vm_end_gap(vma->vm_prev);
1845 				gap_end = vm_start_gap(vma);
1846 				goto check_current;
1847 			}
1848 		}
1849 	}
1850 
1851 check_highest:
1852 	/* Check highest gap, which does not precede any rbtree node */
1853 	gap_start = mm->highest_vm_end;
1854 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1855 	if (gap_start > high_limit)
1856 		return -ENOMEM;
1857 
1858 found:
1859 	/* We found a suitable gap. Clip it with the original low_limit. */
1860 	if (gap_start < info->low_limit)
1861 		gap_start = info->low_limit;
1862 
1863 	/* Adjust gap address to the desired alignment */
1864 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1865 
1866 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1867 	VM_BUG_ON(gap_start + info->length > gap_end);
1868 	return gap_start;
1869 }
1870 
1871 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1872 {
1873 	struct mm_struct *mm = current->mm;
1874 	struct vm_area_struct *vma;
1875 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1876 
1877 	/* Adjust search length to account for worst case alignment overhead */
1878 	length = info->length + info->align_mask;
1879 	if (length < info->length)
1880 		return -ENOMEM;
1881 
1882 	/*
1883 	 * Adjust search limits by the desired length.
1884 	 * See implementation comment at top of unmapped_area().
1885 	 */
1886 	gap_end = info->high_limit;
1887 	if (gap_end < length)
1888 		return -ENOMEM;
1889 	high_limit = gap_end - length;
1890 
1891 	if (info->low_limit > high_limit)
1892 		return -ENOMEM;
1893 	low_limit = info->low_limit + length;
1894 
1895 	/* Check highest gap, which does not precede any rbtree node */
1896 	gap_start = mm->highest_vm_end;
1897 	if (gap_start <= high_limit)
1898 		goto found_highest;
1899 
1900 	/* Check if rbtree root looks promising */
1901 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1902 		return -ENOMEM;
1903 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1904 	if (vma->rb_subtree_gap < length)
1905 		return -ENOMEM;
1906 
1907 	while (true) {
1908 		/* Visit right subtree if it looks promising */
1909 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1910 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1911 			struct vm_area_struct *right =
1912 				rb_entry(vma->vm_rb.rb_right,
1913 					 struct vm_area_struct, vm_rb);
1914 			if (right->rb_subtree_gap >= length) {
1915 				vma = right;
1916 				continue;
1917 			}
1918 		}
1919 
1920 check_current:
1921 		/* Check if current node has a suitable gap */
1922 		gap_end = vm_start_gap(vma);
1923 		if (gap_end < low_limit)
1924 			return -ENOMEM;
1925 		if (gap_start <= high_limit &&
1926 		    gap_end > gap_start && gap_end - gap_start >= length)
1927 			goto found;
1928 
1929 		/* Visit left subtree if it looks promising */
1930 		if (vma->vm_rb.rb_left) {
1931 			struct vm_area_struct *left =
1932 				rb_entry(vma->vm_rb.rb_left,
1933 					 struct vm_area_struct, vm_rb);
1934 			if (left->rb_subtree_gap >= length) {
1935 				vma = left;
1936 				continue;
1937 			}
1938 		}
1939 
1940 		/* Go back up the rbtree to find next candidate node */
1941 		while (true) {
1942 			struct rb_node *prev = &vma->vm_rb;
1943 			if (!rb_parent(prev))
1944 				return -ENOMEM;
1945 			vma = rb_entry(rb_parent(prev),
1946 				       struct vm_area_struct, vm_rb);
1947 			if (prev == vma->vm_rb.rb_right) {
1948 				gap_start = vma->vm_prev ?
1949 					vm_end_gap(vma->vm_prev) : 0;
1950 				goto check_current;
1951 			}
1952 		}
1953 	}
1954 
1955 found:
1956 	/* We found a suitable gap. Clip it with the original high_limit. */
1957 	if (gap_end > info->high_limit)
1958 		gap_end = info->high_limit;
1959 
1960 found_highest:
1961 	/* Compute highest gap address at the desired alignment */
1962 	gap_end -= info->length;
1963 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1964 
1965 	VM_BUG_ON(gap_end < info->low_limit);
1966 	VM_BUG_ON(gap_end < gap_start);
1967 	return gap_end;
1968 }
1969 
1970 /* Get an address range which is currently unmapped.
1971  * For shmat() with addr=0.
1972  *
1973  * Ugly calling convention alert:
1974  * Return value with the low bits set means error value,
1975  * ie
1976  *	if (ret & ~PAGE_MASK)
1977  *		error = ret;
1978  *
1979  * This function "knows" that -ENOMEM has the bits set.
1980  */
1981 #ifndef HAVE_ARCH_UNMAPPED_AREA
1982 unsigned long
1983 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1984 		unsigned long len, unsigned long pgoff, unsigned long flags)
1985 {
1986 	struct mm_struct *mm = current->mm;
1987 	struct vm_area_struct *vma, *prev;
1988 	struct vm_unmapped_area_info info;
1989 
1990 	if (len > TASK_SIZE - mmap_min_addr)
1991 		return -ENOMEM;
1992 
1993 	if (flags & MAP_FIXED)
1994 		return addr;
1995 
1996 	if (addr) {
1997 		addr = PAGE_ALIGN(addr);
1998 		vma = find_vma_prev(mm, addr, &prev);
1999 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2000 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2001 		    (!prev || addr >= vm_end_gap(prev)))
2002 			return addr;
2003 	}
2004 
2005 	info.flags = 0;
2006 	info.length = len;
2007 	info.low_limit = mm->mmap_base;
2008 	info.high_limit = TASK_SIZE;
2009 	info.align_mask = 0;
2010 	return vm_unmapped_area(&info);
2011 }
2012 #endif
2013 
2014 /*
2015  * This mmap-allocator allocates new areas top-down from below the
2016  * stack's low limit (the base):
2017  */
2018 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2019 unsigned long
2020 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2021 			  const unsigned long len, const unsigned long pgoff,
2022 			  const unsigned long flags)
2023 {
2024 	struct vm_area_struct *vma, *prev;
2025 	struct mm_struct *mm = current->mm;
2026 	unsigned long addr = addr0;
2027 	struct vm_unmapped_area_info info;
2028 
2029 	/* requested length too big for entire address space */
2030 	if (len > TASK_SIZE - mmap_min_addr)
2031 		return -ENOMEM;
2032 
2033 	if (flags & MAP_FIXED)
2034 		return addr;
2035 
2036 	/* requesting a specific address */
2037 	if (addr) {
2038 		addr = PAGE_ALIGN(addr);
2039 		vma = find_vma_prev(mm, addr, &prev);
2040 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2041 				(!vma || addr + len <= vm_start_gap(vma)) &&
2042 				(!prev || addr >= vm_end_gap(prev)))
2043 			return addr;
2044 	}
2045 
2046 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2047 	info.length = len;
2048 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2049 	info.high_limit = mm->mmap_base;
2050 	info.align_mask = 0;
2051 	addr = vm_unmapped_area(&info);
2052 
2053 	/*
2054 	 * A failed mmap() very likely causes application failure,
2055 	 * so fall back to the bottom-up function here. This scenario
2056 	 * can happen with large stack limits and large mmap()
2057 	 * allocations.
2058 	 */
2059 	if (offset_in_page(addr)) {
2060 		VM_BUG_ON(addr != -ENOMEM);
2061 		info.flags = 0;
2062 		info.low_limit = TASK_UNMAPPED_BASE;
2063 		info.high_limit = TASK_SIZE;
2064 		addr = vm_unmapped_area(&info);
2065 	}
2066 
2067 	return addr;
2068 }
2069 #endif
2070 
2071 unsigned long
2072 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2073 		unsigned long pgoff, unsigned long flags)
2074 {
2075 	unsigned long (*get_area)(struct file *, unsigned long,
2076 				  unsigned long, unsigned long, unsigned long);
2077 
2078 	unsigned long error = arch_mmap_check(addr, len, flags);
2079 	if (error)
2080 		return error;
2081 
2082 	/* Careful about overflows.. */
2083 	if (len > TASK_SIZE)
2084 		return -ENOMEM;
2085 
2086 	get_area = current->mm->get_unmapped_area;
2087 	if (file) {
2088 		if (file->f_op->get_unmapped_area)
2089 			get_area = file->f_op->get_unmapped_area;
2090 	} else if (flags & MAP_SHARED) {
2091 		/*
2092 		 * mmap_region() will call shmem_zero_setup() to create a file,
2093 		 * so use shmem's get_unmapped_area in case it can be huge.
2094 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2095 		 */
2096 		pgoff = 0;
2097 		get_area = shmem_get_unmapped_area;
2098 	}
2099 
2100 	addr = get_area(file, addr, len, pgoff, flags);
2101 	if (IS_ERR_VALUE(addr))
2102 		return addr;
2103 
2104 	if (addr > TASK_SIZE - len)
2105 		return -ENOMEM;
2106 	if (offset_in_page(addr))
2107 		return -EINVAL;
2108 
2109 	error = security_mmap_addr(addr);
2110 	return error ? error : addr;
2111 }
2112 
2113 EXPORT_SYMBOL(get_unmapped_area);
2114 
2115 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2116 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2117 {
2118 	struct rb_node *rb_node;
2119 	struct vm_area_struct *vma;
2120 
2121 	/* Check the cache first. */
2122 	vma = vmacache_find(mm, addr);
2123 	if (likely(vma))
2124 		return vma;
2125 
2126 	rb_node = mm->mm_rb.rb_node;
2127 
2128 	while (rb_node) {
2129 		struct vm_area_struct *tmp;
2130 
2131 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2132 
2133 		if (tmp->vm_end > addr) {
2134 			vma = tmp;
2135 			if (tmp->vm_start <= addr)
2136 				break;
2137 			rb_node = rb_node->rb_left;
2138 		} else
2139 			rb_node = rb_node->rb_right;
2140 	}
2141 
2142 	if (vma)
2143 		vmacache_update(addr, vma);
2144 	return vma;
2145 }
2146 
2147 EXPORT_SYMBOL(find_vma);
2148 
2149 /*
2150  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2151  */
2152 struct vm_area_struct *
2153 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2154 			struct vm_area_struct **pprev)
2155 {
2156 	struct vm_area_struct *vma;
2157 
2158 	vma = find_vma(mm, addr);
2159 	if (vma) {
2160 		*pprev = vma->vm_prev;
2161 	} else {
2162 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2163 		*pprev = NULL;
2164 		while (rb_node) {
2165 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2166 			rb_node = rb_node->rb_right;
2167 		}
2168 	}
2169 	return vma;
2170 }
2171 
2172 /*
2173  * Verify that the stack growth is acceptable and
2174  * update accounting. This is shared with both the
2175  * grow-up and grow-down cases.
2176  */
2177 static int acct_stack_growth(struct vm_area_struct *vma,
2178 			     unsigned long size, unsigned long grow)
2179 {
2180 	struct mm_struct *mm = vma->vm_mm;
2181 	unsigned long new_start;
2182 
2183 	/* address space limit tests */
2184 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2185 		return -ENOMEM;
2186 
2187 	/* Stack limit test */
2188 	if (size > rlimit(RLIMIT_STACK))
2189 		return -ENOMEM;
2190 
2191 	/* mlock limit tests */
2192 	if (vma->vm_flags & VM_LOCKED) {
2193 		unsigned long locked;
2194 		unsigned long limit;
2195 		locked = mm->locked_vm + grow;
2196 		limit = rlimit(RLIMIT_MEMLOCK);
2197 		limit >>= PAGE_SHIFT;
2198 		if (locked > limit && !capable(CAP_IPC_LOCK))
2199 			return -ENOMEM;
2200 	}
2201 
2202 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2203 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2204 			vma->vm_end - size;
2205 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2206 		return -EFAULT;
2207 
2208 	/*
2209 	 * Overcommit..  This must be the final test, as it will
2210 	 * update security statistics.
2211 	 */
2212 	if (security_vm_enough_memory_mm(mm, grow))
2213 		return -ENOMEM;
2214 
2215 	return 0;
2216 }
2217 
2218 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2219 /*
2220  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2221  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2222  */
2223 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2224 {
2225 	struct mm_struct *mm = vma->vm_mm;
2226 	struct vm_area_struct *next;
2227 	unsigned long gap_addr;
2228 	int error = 0;
2229 
2230 	if (!(vma->vm_flags & VM_GROWSUP))
2231 		return -EFAULT;
2232 
2233 	/* Guard against exceeding limits of the address space. */
2234 	address &= PAGE_MASK;
2235 	if (address >= (TASK_SIZE & PAGE_MASK))
2236 		return -ENOMEM;
2237 	address += PAGE_SIZE;
2238 
2239 	/* Enforce stack_guard_gap */
2240 	gap_addr = address + stack_guard_gap;
2241 
2242 	/* Guard against overflow */
2243 	if (gap_addr < address || gap_addr > TASK_SIZE)
2244 		gap_addr = TASK_SIZE;
2245 
2246 	next = vma->vm_next;
2247 	if (next && next->vm_start < gap_addr &&
2248 			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2249 		if (!(next->vm_flags & VM_GROWSUP))
2250 			return -ENOMEM;
2251 		/* Check that both stack segments have the same anon_vma? */
2252 	}
2253 
2254 	/* We must make sure the anon_vma is allocated. */
2255 	if (unlikely(anon_vma_prepare(vma)))
2256 		return -ENOMEM;
2257 
2258 	/*
2259 	 * vma->vm_start/vm_end cannot change under us because the caller
2260 	 * is required to hold the mmap_sem in read mode.  We need the
2261 	 * anon_vma lock to serialize against concurrent expand_stacks.
2262 	 */
2263 	anon_vma_lock_write(vma->anon_vma);
2264 
2265 	/* Somebody else might have raced and expanded it already */
2266 	if (address > vma->vm_end) {
2267 		unsigned long size, grow;
2268 
2269 		size = address - vma->vm_start;
2270 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2271 
2272 		error = -ENOMEM;
2273 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2274 			error = acct_stack_growth(vma, size, grow);
2275 			if (!error) {
2276 				/*
2277 				 * vma_gap_update() doesn't support concurrent
2278 				 * updates, but we only hold a shared mmap_sem
2279 				 * lock here, so we need to protect against
2280 				 * concurrent vma expansions.
2281 				 * anon_vma_lock_write() doesn't help here, as
2282 				 * we don't guarantee that all growable vmas
2283 				 * in a mm share the same root anon vma.
2284 				 * So, we reuse mm->page_table_lock to guard
2285 				 * against concurrent vma expansions.
2286 				 */
2287 				spin_lock(&mm->page_table_lock);
2288 				if (vma->vm_flags & VM_LOCKED)
2289 					mm->locked_vm += grow;
2290 				vm_stat_account(mm, vma->vm_flags, grow);
2291 				anon_vma_interval_tree_pre_update_vma(vma);
2292 				vma->vm_end = address;
2293 				anon_vma_interval_tree_post_update_vma(vma);
2294 				if (vma->vm_next)
2295 					vma_gap_update(vma->vm_next);
2296 				else
2297 					mm->highest_vm_end = vm_end_gap(vma);
2298 				spin_unlock(&mm->page_table_lock);
2299 
2300 				perf_event_mmap(vma);
2301 			}
2302 		}
2303 	}
2304 	anon_vma_unlock_write(vma->anon_vma);
2305 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2306 	validate_mm(mm);
2307 	return error;
2308 }
2309 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2310 
2311 /*
2312  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2313  */
2314 int expand_downwards(struct vm_area_struct *vma,
2315 				   unsigned long address)
2316 {
2317 	struct mm_struct *mm = vma->vm_mm;
2318 	struct vm_area_struct *prev;
2319 	int error;
2320 
2321 	address &= PAGE_MASK;
2322 	error = security_mmap_addr(address);
2323 	if (error)
2324 		return error;
2325 
2326 	/* Enforce stack_guard_gap */
2327 	prev = vma->vm_prev;
2328 	/* Check that both stack segments have the same anon_vma? */
2329 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2330 			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2331 		if (address - prev->vm_end < stack_guard_gap)
2332 			return -ENOMEM;
2333 	}
2334 
2335 	/* We must make sure the anon_vma is allocated. */
2336 	if (unlikely(anon_vma_prepare(vma)))
2337 		return -ENOMEM;
2338 
2339 	/*
2340 	 * vma->vm_start/vm_end cannot change under us because the caller
2341 	 * is required to hold the mmap_sem in read mode.  We need the
2342 	 * anon_vma lock to serialize against concurrent expand_stacks.
2343 	 */
2344 	anon_vma_lock_write(vma->anon_vma);
2345 
2346 	/* Somebody else might have raced and expanded it already */
2347 	if (address < vma->vm_start) {
2348 		unsigned long size, grow;
2349 
2350 		size = vma->vm_end - address;
2351 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2352 
2353 		error = -ENOMEM;
2354 		if (grow <= vma->vm_pgoff) {
2355 			error = acct_stack_growth(vma, size, grow);
2356 			if (!error) {
2357 				/*
2358 				 * vma_gap_update() doesn't support concurrent
2359 				 * updates, but we only hold a shared mmap_sem
2360 				 * lock here, so we need to protect against
2361 				 * concurrent vma expansions.
2362 				 * anon_vma_lock_write() doesn't help here, as
2363 				 * we don't guarantee that all growable vmas
2364 				 * in a mm share the same root anon vma.
2365 				 * So, we reuse mm->page_table_lock to guard
2366 				 * against concurrent vma expansions.
2367 				 */
2368 				spin_lock(&mm->page_table_lock);
2369 				if (vma->vm_flags & VM_LOCKED)
2370 					mm->locked_vm += grow;
2371 				vm_stat_account(mm, vma->vm_flags, grow);
2372 				anon_vma_interval_tree_pre_update_vma(vma);
2373 				vma->vm_start = address;
2374 				vma->vm_pgoff -= grow;
2375 				anon_vma_interval_tree_post_update_vma(vma);
2376 				vma_gap_update(vma);
2377 				spin_unlock(&mm->page_table_lock);
2378 
2379 				perf_event_mmap(vma);
2380 			}
2381 		}
2382 	}
2383 	anon_vma_unlock_write(vma->anon_vma);
2384 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2385 	validate_mm(mm);
2386 	return error;
2387 }
2388 
2389 /* enforced gap between the expanding stack and other mappings. */
2390 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2391 
2392 static int __init cmdline_parse_stack_guard_gap(char *p)
2393 {
2394 	unsigned long val;
2395 	char *endptr;
2396 
2397 	val = simple_strtoul(p, &endptr, 10);
2398 	if (!*endptr)
2399 		stack_guard_gap = val << PAGE_SHIFT;
2400 
2401 	return 0;
2402 }
2403 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2404 
2405 #ifdef CONFIG_STACK_GROWSUP
2406 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2407 {
2408 	return expand_upwards(vma, address);
2409 }
2410 
2411 struct vm_area_struct *
2412 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2413 {
2414 	struct vm_area_struct *vma, *prev;
2415 
2416 	addr &= PAGE_MASK;
2417 	vma = find_vma_prev(mm, addr, &prev);
2418 	if (vma && (vma->vm_start <= addr))
2419 		return vma;
2420 	if (!prev || expand_stack(prev, addr))
2421 		return NULL;
2422 	if (prev->vm_flags & VM_LOCKED)
2423 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2424 	return prev;
2425 }
2426 #else
2427 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2428 {
2429 	return expand_downwards(vma, address);
2430 }
2431 
2432 struct vm_area_struct *
2433 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2434 {
2435 	struct vm_area_struct *vma;
2436 	unsigned long start;
2437 
2438 	addr &= PAGE_MASK;
2439 	vma = find_vma(mm, addr);
2440 	if (!vma)
2441 		return NULL;
2442 	if (vma->vm_start <= addr)
2443 		return vma;
2444 	if (!(vma->vm_flags & VM_GROWSDOWN))
2445 		return NULL;
2446 	start = vma->vm_start;
2447 	if (expand_stack(vma, addr))
2448 		return NULL;
2449 	if (vma->vm_flags & VM_LOCKED)
2450 		populate_vma_page_range(vma, addr, start, NULL);
2451 	return vma;
2452 }
2453 #endif
2454 
2455 EXPORT_SYMBOL_GPL(find_extend_vma);
2456 
2457 /*
2458  * Ok - we have the memory areas we should free on the vma list,
2459  * so release them, and do the vma updates.
2460  *
2461  * Called with the mm semaphore held.
2462  */
2463 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2464 {
2465 	unsigned long nr_accounted = 0;
2466 
2467 	/* Update high watermark before we lower total_vm */
2468 	update_hiwater_vm(mm);
2469 	do {
2470 		long nrpages = vma_pages(vma);
2471 
2472 		if (vma->vm_flags & VM_ACCOUNT)
2473 			nr_accounted += nrpages;
2474 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2475 		vma = remove_vma(vma);
2476 	} while (vma);
2477 	vm_unacct_memory(nr_accounted);
2478 	validate_mm(mm);
2479 }
2480 
2481 /*
2482  * Get rid of page table information in the indicated region.
2483  *
2484  * Called with the mm semaphore held.
2485  */
2486 static void unmap_region(struct mm_struct *mm,
2487 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2488 		unsigned long start, unsigned long end)
2489 {
2490 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2491 	struct mmu_gather tlb;
2492 
2493 	lru_add_drain();
2494 	tlb_gather_mmu(&tlb, mm, start, end);
2495 	update_hiwater_rss(mm);
2496 	unmap_vmas(&tlb, vma, start, end);
2497 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2498 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2499 	tlb_finish_mmu(&tlb, start, end);
2500 }
2501 
2502 /*
2503  * Create a list of vma's touched by the unmap, removing them from the mm's
2504  * vma list as we go..
2505  */
2506 static void
2507 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2508 	struct vm_area_struct *prev, unsigned long end)
2509 {
2510 	struct vm_area_struct **insertion_point;
2511 	struct vm_area_struct *tail_vma = NULL;
2512 
2513 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2514 	vma->vm_prev = NULL;
2515 	do {
2516 		vma_rb_erase(vma, &mm->mm_rb);
2517 		mm->map_count--;
2518 		tail_vma = vma;
2519 		vma = vma->vm_next;
2520 	} while (vma && vma->vm_start < end);
2521 	*insertion_point = vma;
2522 	if (vma) {
2523 		vma->vm_prev = prev;
2524 		vma_gap_update(vma);
2525 	} else
2526 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2527 	tail_vma->vm_next = NULL;
2528 
2529 	/* Kill the cache */
2530 	vmacache_invalidate(mm);
2531 }
2532 
2533 /*
2534  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2535  * has already been checked or doesn't make sense to fail.
2536  */
2537 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2538 		unsigned long addr, int new_below)
2539 {
2540 	struct vm_area_struct *new;
2541 	int err;
2542 
2543 	if (is_vm_hugetlb_page(vma) && (addr &
2544 					~(huge_page_mask(hstate_vma(vma)))))
2545 		return -EINVAL;
2546 
2547 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2548 	if (!new)
2549 		return -ENOMEM;
2550 
2551 	/* most fields are the same, copy all, and then fixup */
2552 	*new = *vma;
2553 
2554 	INIT_LIST_HEAD(&new->anon_vma_chain);
2555 
2556 	if (new_below)
2557 		new->vm_end = addr;
2558 	else {
2559 		new->vm_start = addr;
2560 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2561 	}
2562 
2563 	err = vma_dup_policy(vma, new);
2564 	if (err)
2565 		goto out_free_vma;
2566 
2567 	err = anon_vma_clone(new, vma);
2568 	if (err)
2569 		goto out_free_mpol;
2570 
2571 	if (new->vm_file)
2572 		get_file(new->vm_file);
2573 
2574 	if (new->vm_ops && new->vm_ops->open)
2575 		new->vm_ops->open(new);
2576 
2577 	if (new_below)
2578 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2579 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2580 	else
2581 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2582 
2583 	/* Success. */
2584 	if (!err)
2585 		return 0;
2586 
2587 	/* Clean everything up if vma_adjust failed. */
2588 	if (new->vm_ops && new->vm_ops->close)
2589 		new->vm_ops->close(new);
2590 	if (new->vm_file)
2591 		fput(new->vm_file);
2592 	unlink_anon_vmas(new);
2593  out_free_mpol:
2594 	mpol_put(vma_policy(new));
2595  out_free_vma:
2596 	kmem_cache_free(vm_area_cachep, new);
2597 	return err;
2598 }
2599 
2600 /*
2601  * Split a vma into two pieces at address 'addr', a new vma is allocated
2602  * either for the first part or the tail.
2603  */
2604 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2605 	      unsigned long addr, int new_below)
2606 {
2607 	if (mm->map_count >= sysctl_max_map_count)
2608 		return -ENOMEM;
2609 
2610 	return __split_vma(mm, vma, addr, new_below);
2611 }
2612 
2613 /* Munmap is split into 2 main parts -- this part which finds
2614  * what needs doing, and the areas themselves, which do the
2615  * work.  This now handles partial unmappings.
2616  * Jeremy Fitzhardinge <jeremy@goop.org>
2617  */
2618 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2619 	      struct list_head *uf)
2620 {
2621 	unsigned long end;
2622 	struct vm_area_struct *vma, *prev, *last;
2623 
2624 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2625 		return -EINVAL;
2626 
2627 	len = PAGE_ALIGN(len);
2628 	if (len == 0)
2629 		return -EINVAL;
2630 
2631 	/* Find the first overlapping VMA */
2632 	vma = find_vma(mm, start);
2633 	if (!vma)
2634 		return 0;
2635 	prev = vma->vm_prev;
2636 	/* we have  start < vma->vm_end  */
2637 
2638 	/* if it doesn't overlap, we have nothing.. */
2639 	end = start + len;
2640 	if (vma->vm_start >= end)
2641 		return 0;
2642 
2643 	/*
2644 	 * If we need to split any vma, do it now to save pain later.
2645 	 *
2646 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2647 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2648 	 * places tmp vma above, and higher split_vma places tmp vma below.
2649 	 */
2650 	if (start > vma->vm_start) {
2651 		int error;
2652 
2653 		/*
2654 		 * Make sure that map_count on return from munmap() will
2655 		 * not exceed its limit; but let map_count go just above
2656 		 * its limit temporarily, to help free resources as expected.
2657 		 */
2658 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2659 			return -ENOMEM;
2660 
2661 		error = __split_vma(mm, vma, start, 0);
2662 		if (error)
2663 			return error;
2664 		prev = vma;
2665 	}
2666 
2667 	/* Does it split the last one? */
2668 	last = find_vma(mm, end);
2669 	if (last && end > last->vm_start) {
2670 		int error = __split_vma(mm, last, end, 1);
2671 		if (error)
2672 			return error;
2673 	}
2674 	vma = prev ? prev->vm_next : mm->mmap;
2675 
2676 	if (unlikely(uf)) {
2677 		/*
2678 		 * If userfaultfd_unmap_prep returns an error the vmas
2679 		 * will remain splitted, but userland will get a
2680 		 * highly unexpected error anyway. This is no
2681 		 * different than the case where the first of the two
2682 		 * __split_vma fails, but we don't undo the first
2683 		 * split, despite we could. This is unlikely enough
2684 		 * failure that it's not worth optimizing it for.
2685 		 */
2686 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2687 		if (error)
2688 			return error;
2689 	}
2690 
2691 	/*
2692 	 * unlock any mlock()ed ranges before detaching vmas
2693 	 */
2694 	if (mm->locked_vm) {
2695 		struct vm_area_struct *tmp = vma;
2696 		while (tmp && tmp->vm_start < end) {
2697 			if (tmp->vm_flags & VM_LOCKED) {
2698 				mm->locked_vm -= vma_pages(tmp);
2699 				munlock_vma_pages_all(tmp);
2700 			}
2701 			tmp = tmp->vm_next;
2702 		}
2703 	}
2704 
2705 	/*
2706 	 * Remove the vma's, and unmap the actual pages
2707 	 */
2708 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2709 	unmap_region(mm, vma, prev, start, end);
2710 
2711 	arch_unmap(mm, vma, start, end);
2712 
2713 	/* Fix up all other VM information */
2714 	remove_vma_list(mm, vma);
2715 
2716 	return 0;
2717 }
2718 
2719 int vm_munmap(unsigned long start, size_t len)
2720 {
2721 	int ret;
2722 	struct mm_struct *mm = current->mm;
2723 	LIST_HEAD(uf);
2724 
2725 	if (down_write_killable(&mm->mmap_sem))
2726 		return -EINTR;
2727 
2728 	ret = do_munmap(mm, start, len, &uf);
2729 	up_write(&mm->mmap_sem);
2730 	userfaultfd_unmap_complete(mm, &uf);
2731 	return ret;
2732 }
2733 EXPORT_SYMBOL(vm_munmap);
2734 
2735 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2736 {
2737 	profile_munmap(addr);
2738 	return vm_munmap(addr, len);
2739 }
2740 
2741 
2742 /*
2743  * Emulation of deprecated remap_file_pages() syscall.
2744  */
2745 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2746 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2747 {
2748 
2749 	struct mm_struct *mm = current->mm;
2750 	struct vm_area_struct *vma;
2751 	unsigned long populate = 0;
2752 	unsigned long ret = -EINVAL;
2753 	struct file *file;
2754 
2755 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2756 		     current->comm, current->pid);
2757 
2758 	if (prot)
2759 		return ret;
2760 	start = start & PAGE_MASK;
2761 	size = size & PAGE_MASK;
2762 
2763 	if (start + size <= start)
2764 		return ret;
2765 
2766 	/* Does pgoff wrap? */
2767 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2768 		return ret;
2769 
2770 	if (down_write_killable(&mm->mmap_sem))
2771 		return -EINTR;
2772 
2773 	vma = find_vma(mm, start);
2774 
2775 	if (!vma || !(vma->vm_flags & VM_SHARED))
2776 		goto out;
2777 
2778 	if (start < vma->vm_start)
2779 		goto out;
2780 
2781 	if (start + size > vma->vm_end) {
2782 		struct vm_area_struct *next;
2783 
2784 		for (next = vma->vm_next; next; next = next->vm_next) {
2785 			/* hole between vmas ? */
2786 			if (next->vm_start != next->vm_prev->vm_end)
2787 				goto out;
2788 
2789 			if (next->vm_file != vma->vm_file)
2790 				goto out;
2791 
2792 			if (next->vm_flags != vma->vm_flags)
2793 				goto out;
2794 
2795 			if (start + size <= next->vm_end)
2796 				break;
2797 		}
2798 
2799 		if (!next)
2800 			goto out;
2801 	}
2802 
2803 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2804 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2805 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2806 
2807 	flags &= MAP_NONBLOCK;
2808 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2809 	if (vma->vm_flags & VM_LOCKED) {
2810 		struct vm_area_struct *tmp;
2811 		flags |= MAP_LOCKED;
2812 
2813 		/* drop PG_Mlocked flag for over-mapped range */
2814 		for (tmp = vma; tmp->vm_start >= start + size;
2815 				tmp = tmp->vm_next) {
2816 			/*
2817 			 * Split pmd and munlock page on the border
2818 			 * of the range.
2819 			 */
2820 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2821 
2822 			munlock_vma_pages_range(tmp,
2823 					max(tmp->vm_start, start),
2824 					min(tmp->vm_end, start + size));
2825 		}
2826 	}
2827 
2828 	file = get_file(vma->vm_file);
2829 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2830 			prot, flags, pgoff, &populate, NULL);
2831 	fput(file);
2832 out:
2833 	up_write(&mm->mmap_sem);
2834 	if (populate)
2835 		mm_populate(ret, populate);
2836 	if (!IS_ERR_VALUE(ret))
2837 		ret = 0;
2838 	return ret;
2839 }
2840 
2841 static inline void verify_mm_writelocked(struct mm_struct *mm)
2842 {
2843 #ifdef CONFIG_DEBUG_VM
2844 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2845 		WARN_ON(1);
2846 		up_read(&mm->mmap_sem);
2847 	}
2848 #endif
2849 }
2850 
2851 /*
2852  *  this is really a simplified "do_mmap".  it only handles
2853  *  anonymous maps.  eventually we may be able to do some
2854  *  brk-specific accounting here.
2855  */
2856 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
2857 {
2858 	struct mm_struct *mm = current->mm;
2859 	struct vm_area_struct *vma, *prev;
2860 	unsigned long len;
2861 	struct rb_node **rb_link, *rb_parent;
2862 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2863 	int error;
2864 
2865 	len = PAGE_ALIGN(request);
2866 	if (len < request)
2867 		return -ENOMEM;
2868 	if (!len)
2869 		return 0;
2870 
2871 	/* Until we need other flags, refuse anything except VM_EXEC. */
2872 	if ((flags & (~VM_EXEC)) != 0)
2873 		return -EINVAL;
2874 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2875 
2876 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2877 	if (offset_in_page(error))
2878 		return error;
2879 
2880 	error = mlock_future_check(mm, mm->def_flags, len);
2881 	if (error)
2882 		return error;
2883 
2884 	/*
2885 	 * mm->mmap_sem is required to protect against another thread
2886 	 * changing the mappings in case we sleep.
2887 	 */
2888 	verify_mm_writelocked(mm);
2889 
2890 	/*
2891 	 * Clear old maps.  this also does some error checking for us
2892 	 */
2893 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2894 			      &rb_parent)) {
2895 		if (do_munmap(mm, addr, len, uf))
2896 			return -ENOMEM;
2897 	}
2898 
2899 	/* Check against address space limits *after* clearing old maps... */
2900 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2901 		return -ENOMEM;
2902 
2903 	if (mm->map_count > sysctl_max_map_count)
2904 		return -ENOMEM;
2905 
2906 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2907 		return -ENOMEM;
2908 
2909 	/* Can we just expand an old private anonymous mapping? */
2910 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2911 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2912 	if (vma)
2913 		goto out;
2914 
2915 	/*
2916 	 * create a vma struct for an anonymous mapping
2917 	 */
2918 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2919 	if (!vma) {
2920 		vm_unacct_memory(len >> PAGE_SHIFT);
2921 		return -ENOMEM;
2922 	}
2923 
2924 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2925 	vma->vm_mm = mm;
2926 	vma->vm_start = addr;
2927 	vma->vm_end = addr + len;
2928 	vma->vm_pgoff = pgoff;
2929 	vma->vm_flags = flags;
2930 	vma->vm_page_prot = vm_get_page_prot(flags);
2931 	vma_link(mm, vma, prev, rb_link, rb_parent);
2932 out:
2933 	perf_event_mmap(vma);
2934 	mm->total_vm += len >> PAGE_SHIFT;
2935 	mm->data_vm += len >> PAGE_SHIFT;
2936 	if (flags & VM_LOCKED)
2937 		mm->locked_vm += (len >> PAGE_SHIFT);
2938 	vma->vm_flags |= VM_SOFTDIRTY;
2939 	return 0;
2940 }
2941 
2942 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
2943 {
2944 	return do_brk_flags(addr, len, 0, uf);
2945 }
2946 
2947 int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags)
2948 {
2949 	struct mm_struct *mm = current->mm;
2950 	int ret;
2951 	bool populate;
2952 	LIST_HEAD(uf);
2953 
2954 	if (down_write_killable(&mm->mmap_sem))
2955 		return -EINTR;
2956 
2957 	ret = do_brk_flags(addr, len, flags, &uf);
2958 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2959 	up_write(&mm->mmap_sem);
2960 	userfaultfd_unmap_complete(mm, &uf);
2961 	if (populate && !ret)
2962 		mm_populate(addr, len);
2963 	return ret;
2964 }
2965 EXPORT_SYMBOL(vm_brk_flags);
2966 
2967 int vm_brk(unsigned long addr, unsigned long len)
2968 {
2969 	return vm_brk_flags(addr, len, 0);
2970 }
2971 EXPORT_SYMBOL(vm_brk);
2972 
2973 /* Release all mmaps. */
2974 void exit_mmap(struct mm_struct *mm)
2975 {
2976 	struct mmu_gather tlb;
2977 	struct vm_area_struct *vma;
2978 	unsigned long nr_accounted = 0;
2979 
2980 	/* mm's last user has gone, and its about to be pulled down */
2981 	mmu_notifier_release(mm);
2982 
2983 	if (mm->locked_vm) {
2984 		vma = mm->mmap;
2985 		while (vma) {
2986 			if (vma->vm_flags & VM_LOCKED)
2987 				munlock_vma_pages_all(vma);
2988 			vma = vma->vm_next;
2989 		}
2990 	}
2991 
2992 	arch_exit_mmap(mm);
2993 
2994 	vma = mm->mmap;
2995 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2996 		return;
2997 
2998 	lru_add_drain();
2999 	flush_cache_mm(mm);
3000 	tlb_gather_mmu(&tlb, mm, 0, -1);
3001 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3002 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3003 	unmap_vmas(&tlb, vma, 0, -1);
3004 
3005 	set_bit(MMF_OOM_SKIP, &mm->flags);
3006 	if (unlikely(tsk_is_oom_victim(current))) {
3007 		/*
3008 		 * Wait for oom_reap_task() to stop working on this
3009 		 * mm. Because MMF_OOM_SKIP is already set before
3010 		 * calling down_read(), oom_reap_task() will not run
3011 		 * on this "mm" post up_write().
3012 		 *
3013 		 * tsk_is_oom_victim() cannot be set from under us
3014 		 * either because current->mm is already set to NULL
3015 		 * under task_lock before calling mmput and oom_mm is
3016 		 * set not NULL by the OOM killer only if current->mm
3017 		 * is found not NULL while holding the task_lock.
3018 		 */
3019 		down_write(&mm->mmap_sem);
3020 		up_write(&mm->mmap_sem);
3021 	}
3022 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3023 	tlb_finish_mmu(&tlb, 0, -1);
3024 
3025 	/*
3026 	 * Walk the list again, actually closing and freeing it,
3027 	 * with preemption enabled, without holding any MM locks.
3028 	 */
3029 	while (vma) {
3030 		if (vma->vm_flags & VM_ACCOUNT)
3031 			nr_accounted += vma_pages(vma);
3032 		vma = remove_vma(vma);
3033 	}
3034 	vm_unacct_memory(nr_accounted);
3035 }
3036 
3037 /* Insert vm structure into process list sorted by address
3038  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3039  * then i_mmap_rwsem is taken here.
3040  */
3041 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3042 {
3043 	struct vm_area_struct *prev;
3044 	struct rb_node **rb_link, *rb_parent;
3045 
3046 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3047 			   &prev, &rb_link, &rb_parent))
3048 		return -ENOMEM;
3049 	if ((vma->vm_flags & VM_ACCOUNT) &&
3050 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3051 		return -ENOMEM;
3052 
3053 	/*
3054 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3055 	 * until its first write fault, when page's anon_vma and index
3056 	 * are set.  But now set the vm_pgoff it will almost certainly
3057 	 * end up with (unless mremap moves it elsewhere before that
3058 	 * first wfault), so /proc/pid/maps tells a consistent story.
3059 	 *
3060 	 * By setting it to reflect the virtual start address of the
3061 	 * vma, merges and splits can happen in a seamless way, just
3062 	 * using the existing file pgoff checks and manipulations.
3063 	 * Similarly in do_mmap_pgoff and in do_brk.
3064 	 */
3065 	if (vma_is_anonymous(vma)) {
3066 		BUG_ON(vma->anon_vma);
3067 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3068 	}
3069 
3070 	vma_link(mm, vma, prev, rb_link, rb_parent);
3071 	return 0;
3072 }
3073 
3074 /*
3075  * Copy the vma structure to a new location in the same mm,
3076  * prior to moving page table entries, to effect an mremap move.
3077  */
3078 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3079 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3080 	bool *need_rmap_locks)
3081 {
3082 	struct vm_area_struct *vma = *vmap;
3083 	unsigned long vma_start = vma->vm_start;
3084 	struct mm_struct *mm = vma->vm_mm;
3085 	struct vm_area_struct *new_vma, *prev;
3086 	struct rb_node **rb_link, *rb_parent;
3087 	bool faulted_in_anon_vma = true;
3088 
3089 	/*
3090 	 * If anonymous vma has not yet been faulted, update new pgoff
3091 	 * to match new location, to increase its chance of merging.
3092 	 */
3093 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3094 		pgoff = addr >> PAGE_SHIFT;
3095 		faulted_in_anon_vma = false;
3096 	}
3097 
3098 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3099 		return NULL;	/* should never get here */
3100 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3101 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3102 			    vma->vm_userfaultfd_ctx);
3103 	if (new_vma) {
3104 		/*
3105 		 * Source vma may have been merged into new_vma
3106 		 */
3107 		if (unlikely(vma_start >= new_vma->vm_start &&
3108 			     vma_start < new_vma->vm_end)) {
3109 			/*
3110 			 * The only way we can get a vma_merge with
3111 			 * self during an mremap is if the vma hasn't
3112 			 * been faulted in yet and we were allowed to
3113 			 * reset the dst vma->vm_pgoff to the
3114 			 * destination address of the mremap to allow
3115 			 * the merge to happen. mremap must change the
3116 			 * vm_pgoff linearity between src and dst vmas
3117 			 * (in turn preventing a vma_merge) to be
3118 			 * safe. It is only safe to keep the vm_pgoff
3119 			 * linear if there are no pages mapped yet.
3120 			 */
3121 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3122 			*vmap = vma = new_vma;
3123 		}
3124 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3125 	} else {
3126 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3127 		if (!new_vma)
3128 			goto out;
3129 		*new_vma = *vma;
3130 		new_vma->vm_start = addr;
3131 		new_vma->vm_end = addr + len;
3132 		new_vma->vm_pgoff = pgoff;
3133 		if (vma_dup_policy(vma, new_vma))
3134 			goto out_free_vma;
3135 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3136 		if (anon_vma_clone(new_vma, vma))
3137 			goto out_free_mempol;
3138 		if (new_vma->vm_file)
3139 			get_file(new_vma->vm_file);
3140 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3141 			new_vma->vm_ops->open(new_vma);
3142 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3143 		*need_rmap_locks = false;
3144 	}
3145 	return new_vma;
3146 
3147 out_free_mempol:
3148 	mpol_put(vma_policy(new_vma));
3149 out_free_vma:
3150 	kmem_cache_free(vm_area_cachep, new_vma);
3151 out:
3152 	return NULL;
3153 }
3154 
3155 /*
3156  * Return true if the calling process may expand its vm space by the passed
3157  * number of pages
3158  */
3159 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3160 {
3161 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3162 		return false;
3163 
3164 	if (is_data_mapping(flags) &&
3165 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3166 		/* Workaround for Valgrind */
3167 		if (rlimit(RLIMIT_DATA) == 0 &&
3168 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3169 			return true;
3170 		if (!ignore_rlimit_data) {
3171 			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3172 				     current->comm, current->pid,
3173 				     (mm->data_vm + npages) << PAGE_SHIFT,
3174 				     rlimit(RLIMIT_DATA));
3175 			return false;
3176 		}
3177 	}
3178 
3179 	return true;
3180 }
3181 
3182 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3183 {
3184 	mm->total_vm += npages;
3185 
3186 	if (is_exec_mapping(flags))
3187 		mm->exec_vm += npages;
3188 	else if (is_stack_mapping(flags))
3189 		mm->stack_vm += npages;
3190 	else if (is_data_mapping(flags))
3191 		mm->data_vm += npages;
3192 }
3193 
3194 static int special_mapping_fault(struct vm_fault *vmf);
3195 
3196 /*
3197  * Having a close hook prevents vma merging regardless of flags.
3198  */
3199 static void special_mapping_close(struct vm_area_struct *vma)
3200 {
3201 }
3202 
3203 static const char *special_mapping_name(struct vm_area_struct *vma)
3204 {
3205 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3206 }
3207 
3208 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3209 {
3210 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3211 
3212 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3213 		return -EFAULT;
3214 
3215 	if (sm->mremap)
3216 		return sm->mremap(sm, new_vma);
3217 
3218 	return 0;
3219 }
3220 
3221 static const struct vm_operations_struct special_mapping_vmops = {
3222 	.close = special_mapping_close,
3223 	.fault = special_mapping_fault,
3224 	.mremap = special_mapping_mremap,
3225 	.name = special_mapping_name,
3226 };
3227 
3228 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3229 	.close = special_mapping_close,
3230 	.fault = special_mapping_fault,
3231 };
3232 
3233 static int special_mapping_fault(struct vm_fault *vmf)
3234 {
3235 	struct vm_area_struct *vma = vmf->vma;
3236 	pgoff_t pgoff;
3237 	struct page **pages;
3238 
3239 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3240 		pages = vma->vm_private_data;
3241 	} else {
3242 		struct vm_special_mapping *sm = vma->vm_private_data;
3243 
3244 		if (sm->fault)
3245 			return sm->fault(sm, vmf->vma, vmf);
3246 
3247 		pages = sm->pages;
3248 	}
3249 
3250 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3251 		pgoff--;
3252 
3253 	if (*pages) {
3254 		struct page *page = *pages;
3255 		get_page(page);
3256 		vmf->page = page;
3257 		return 0;
3258 	}
3259 
3260 	return VM_FAULT_SIGBUS;
3261 }
3262 
3263 static struct vm_area_struct *__install_special_mapping(
3264 	struct mm_struct *mm,
3265 	unsigned long addr, unsigned long len,
3266 	unsigned long vm_flags, void *priv,
3267 	const struct vm_operations_struct *ops)
3268 {
3269 	int ret;
3270 	struct vm_area_struct *vma;
3271 
3272 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3273 	if (unlikely(vma == NULL))
3274 		return ERR_PTR(-ENOMEM);
3275 
3276 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3277 	vma->vm_mm = mm;
3278 	vma->vm_start = addr;
3279 	vma->vm_end = addr + len;
3280 
3281 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3282 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3283 
3284 	vma->vm_ops = ops;
3285 	vma->vm_private_data = priv;
3286 
3287 	ret = insert_vm_struct(mm, vma);
3288 	if (ret)
3289 		goto out;
3290 
3291 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3292 
3293 	perf_event_mmap(vma);
3294 
3295 	return vma;
3296 
3297 out:
3298 	kmem_cache_free(vm_area_cachep, vma);
3299 	return ERR_PTR(ret);
3300 }
3301 
3302 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3303 	const struct vm_special_mapping *sm)
3304 {
3305 	return vma->vm_private_data == sm &&
3306 		(vma->vm_ops == &special_mapping_vmops ||
3307 		 vma->vm_ops == &legacy_special_mapping_vmops);
3308 }
3309 
3310 /*
3311  * Called with mm->mmap_sem held for writing.
3312  * Insert a new vma covering the given region, with the given flags.
3313  * Its pages are supplied by the given array of struct page *.
3314  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3315  * The region past the last page supplied will always produce SIGBUS.
3316  * The array pointer and the pages it points to are assumed to stay alive
3317  * for as long as this mapping might exist.
3318  */
3319 struct vm_area_struct *_install_special_mapping(
3320 	struct mm_struct *mm,
3321 	unsigned long addr, unsigned long len,
3322 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3323 {
3324 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3325 					&special_mapping_vmops);
3326 }
3327 
3328 int install_special_mapping(struct mm_struct *mm,
3329 			    unsigned long addr, unsigned long len,
3330 			    unsigned long vm_flags, struct page **pages)
3331 {
3332 	struct vm_area_struct *vma = __install_special_mapping(
3333 		mm, addr, len, vm_flags, (void *)pages,
3334 		&legacy_special_mapping_vmops);
3335 
3336 	return PTR_ERR_OR_ZERO(vma);
3337 }
3338 
3339 static DEFINE_MUTEX(mm_all_locks_mutex);
3340 
3341 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3342 {
3343 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3344 		/*
3345 		 * The LSB of head.next can't change from under us
3346 		 * because we hold the mm_all_locks_mutex.
3347 		 */
3348 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3349 		/*
3350 		 * We can safely modify head.next after taking the
3351 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3352 		 * the same anon_vma we won't take it again.
3353 		 *
3354 		 * No need of atomic instructions here, head.next
3355 		 * can't change from under us thanks to the
3356 		 * anon_vma->root->rwsem.
3357 		 */
3358 		if (__test_and_set_bit(0, (unsigned long *)
3359 				       &anon_vma->root->rb_root.rb_root.rb_node))
3360 			BUG();
3361 	}
3362 }
3363 
3364 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3365 {
3366 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3367 		/*
3368 		 * AS_MM_ALL_LOCKS can't change from under us because
3369 		 * we hold the mm_all_locks_mutex.
3370 		 *
3371 		 * Operations on ->flags have to be atomic because
3372 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3373 		 * mm_all_locks_mutex, there may be other cpus
3374 		 * changing other bitflags in parallel to us.
3375 		 */
3376 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3377 			BUG();
3378 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3379 	}
3380 }
3381 
3382 /*
3383  * This operation locks against the VM for all pte/vma/mm related
3384  * operations that could ever happen on a certain mm. This includes
3385  * vmtruncate, try_to_unmap, and all page faults.
3386  *
3387  * The caller must take the mmap_sem in write mode before calling
3388  * mm_take_all_locks(). The caller isn't allowed to release the
3389  * mmap_sem until mm_drop_all_locks() returns.
3390  *
3391  * mmap_sem in write mode is required in order to block all operations
3392  * that could modify pagetables and free pages without need of
3393  * altering the vma layout. It's also needed in write mode to avoid new
3394  * anon_vmas to be associated with existing vmas.
3395  *
3396  * A single task can't take more than one mm_take_all_locks() in a row
3397  * or it would deadlock.
3398  *
3399  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3400  * mapping->flags avoid to take the same lock twice, if more than one
3401  * vma in this mm is backed by the same anon_vma or address_space.
3402  *
3403  * We take locks in following order, accordingly to comment at beginning
3404  * of mm/rmap.c:
3405  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3406  *     hugetlb mapping);
3407  *   - all i_mmap_rwsem locks;
3408  *   - all anon_vma->rwseml
3409  *
3410  * We can take all locks within these types randomly because the VM code
3411  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3412  * mm_all_locks_mutex.
3413  *
3414  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3415  * that may have to take thousand of locks.
3416  *
3417  * mm_take_all_locks() can fail if it's interrupted by signals.
3418  */
3419 int mm_take_all_locks(struct mm_struct *mm)
3420 {
3421 	struct vm_area_struct *vma;
3422 	struct anon_vma_chain *avc;
3423 
3424 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3425 
3426 	mutex_lock(&mm_all_locks_mutex);
3427 
3428 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3429 		if (signal_pending(current))
3430 			goto out_unlock;
3431 		if (vma->vm_file && vma->vm_file->f_mapping &&
3432 				is_vm_hugetlb_page(vma))
3433 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3434 	}
3435 
3436 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3437 		if (signal_pending(current))
3438 			goto out_unlock;
3439 		if (vma->vm_file && vma->vm_file->f_mapping &&
3440 				!is_vm_hugetlb_page(vma))
3441 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3442 	}
3443 
3444 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3445 		if (signal_pending(current))
3446 			goto out_unlock;
3447 		if (vma->anon_vma)
3448 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3449 				vm_lock_anon_vma(mm, avc->anon_vma);
3450 	}
3451 
3452 	return 0;
3453 
3454 out_unlock:
3455 	mm_drop_all_locks(mm);
3456 	return -EINTR;
3457 }
3458 
3459 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3460 {
3461 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3462 		/*
3463 		 * The LSB of head.next can't change to 0 from under
3464 		 * us because we hold the mm_all_locks_mutex.
3465 		 *
3466 		 * We must however clear the bitflag before unlocking
3467 		 * the vma so the users using the anon_vma->rb_root will
3468 		 * never see our bitflag.
3469 		 *
3470 		 * No need of atomic instructions here, head.next
3471 		 * can't change from under us until we release the
3472 		 * anon_vma->root->rwsem.
3473 		 */
3474 		if (!__test_and_clear_bit(0, (unsigned long *)
3475 					  &anon_vma->root->rb_root.rb_root.rb_node))
3476 			BUG();
3477 		anon_vma_unlock_write(anon_vma);
3478 	}
3479 }
3480 
3481 static void vm_unlock_mapping(struct address_space *mapping)
3482 {
3483 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3484 		/*
3485 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3486 		 * because we hold the mm_all_locks_mutex.
3487 		 */
3488 		i_mmap_unlock_write(mapping);
3489 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3490 					&mapping->flags))
3491 			BUG();
3492 	}
3493 }
3494 
3495 /*
3496  * The mmap_sem cannot be released by the caller until
3497  * mm_drop_all_locks() returns.
3498  */
3499 void mm_drop_all_locks(struct mm_struct *mm)
3500 {
3501 	struct vm_area_struct *vma;
3502 	struct anon_vma_chain *avc;
3503 
3504 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3505 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3506 
3507 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3508 		if (vma->anon_vma)
3509 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3510 				vm_unlock_anon_vma(avc->anon_vma);
3511 		if (vma->vm_file && vma->vm_file->f_mapping)
3512 			vm_unlock_mapping(vma->vm_file->f_mapping);
3513 	}
3514 
3515 	mutex_unlock(&mm_all_locks_mutex);
3516 }
3517 
3518 /*
3519  * initialise the percpu counter for VM
3520  */
3521 void __init mmap_init(void)
3522 {
3523 	int ret;
3524 
3525 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3526 	VM_BUG_ON(ret);
3527 }
3528 
3529 /*
3530  * Initialise sysctl_user_reserve_kbytes.
3531  *
3532  * This is intended to prevent a user from starting a single memory hogging
3533  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3534  * mode.
3535  *
3536  * The default value is min(3% of free memory, 128MB)
3537  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3538  */
3539 static int init_user_reserve(void)
3540 {
3541 	unsigned long free_kbytes;
3542 
3543 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3544 
3545 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3546 	return 0;
3547 }
3548 subsys_initcall(init_user_reserve);
3549 
3550 /*
3551  * Initialise sysctl_admin_reserve_kbytes.
3552  *
3553  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3554  * to log in and kill a memory hogging process.
3555  *
3556  * Systems with more than 256MB will reserve 8MB, enough to recover
3557  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3558  * only reserve 3% of free pages by default.
3559  */
3560 static int init_admin_reserve(void)
3561 {
3562 	unsigned long free_kbytes;
3563 
3564 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3565 
3566 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3567 	return 0;
3568 }
3569 subsys_initcall(init_admin_reserve);
3570 
3571 /*
3572  * Reinititalise user and admin reserves if memory is added or removed.
3573  *
3574  * The default user reserve max is 128MB, and the default max for the
3575  * admin reserve is 8MB. These are usually, but not always, enough to
3576  * enable recovery from a memory hogging process using login/sshd, a shell,
3577  * and tools like top. It may make sense to increase or even disable the
3578  * reserve depending on the existence of swap or variations in the recovery
3579  * tools. So, the admin may have changed them.
3580  *
3581  * If memory is added and the reserves have been eliminated or increased above
3582  * the default max, then we'll trust the admin.
3583  *
3584  * If memory is removed and there isn't enough free memory, then we
3585  * need to reset the reserves.
3586  *
3587  * Otherwise keep the reserve set by the admin.
3588  */
3589 static int reserve_mem_notifier(struct notifier_block *nb,
3590 			     unsigned long action, void *data)
3591 {
3592 	unsigned long tmp, free_kbytes;
3593 
3594 	switch (action) {
3595 	case MEM_ONLINE:
3596 		/* Default max is 128MB. Leave alone if modified by operator. */
3597 		tmp = sysctl_user_reserve_kbytes;
3598 		if (0 < tmp && tmp < (1UL << 17))
3599 			init_user_reserve();
3600 
3601 		/* Default max is 8MB.  Leave alone if modified by operator. */
3602 		tmp = sysctl_admin_reserve_kbytes;
3603 		if (0 < tmp && tmp < (1UL << 13))
3604 			init_admin_reserve();
3605 
3606 		break;
3607 	case MEM_OFFLINE:
3608 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3609 
3610 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3611 			init_user_reserve();
3612 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3613 				sysctl_user_reserve_kbytes);
3614 		}
3615 
3616 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3617 			init_admin_reserve();
3618 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3619 				sysctl_admin_reserve_kbytes);
3620 		}
3621 		break;
3622 	default:
3623 		break;
3624 	}
3625 	return NOTIFY_OK;
3626 }
3627 
3628 static struct notifier_block reserve_mem_nb = {
3629 	.notifier_call = reserve_mem_notifier,
3630 };
3631 
3632 static int __meminit init_reserve_notifier(void)
3633 {
3634 	if (register_hotmemory_notifier(&reserve_mem_nb))
3635 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3636 
3637 	return 0;
3638 }
3639 subsys_initcall(init_reserve_notifier);
3640