1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/export.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 #include <linux/audit.h> 32 #include <linux/khugepaged.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/cacheflush.h> 36 #include <asm/tlb.h> 37 #include <asm/mmu_context.h> 38 39 #include "internal.h" 40 41 #ifndef arch_mmap_check 42 #define arch_mmap_check(addr, len, flags) (0) 43 #endif 44 45 #ifndef arch_rebalance_pgtables 46 #define arch_rebalance_pgtables(addr, len) (addr) 47 #endif 48 49 static void unmap_region(struct mm_struct *mm, 50 struct vm_area_struct *vma, struct vm_area_struct *prev, 51 unsigned long start, unsigned long end); 52 53 /* 54 * WARNING: the debugging will use recursive algorithms so never enable this 55 * unless you know what you are doing. 56 */ 57 #undef DEBUG_MM_RB 58 59 /* description of effects of mapping type and prot in current implementation. 60 * this is due to the limited x86 page protection hardware. The expected 61 * behavior is in parens: 62 * 63 * map_type prot 64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 66 * w: (no) no w: (no) no w: (yes) yes w: (no) no 67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 68 * 69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 70 * w: (no) no w: (no) no w: (copy) copy w: (no) no 71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 72 * 73 */ 74 pgprot_t protection_map[16] = { 75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 77 }; 78 79 pgprot_t vm_get_page_prot(unsigned long vm_flags) 80 { 81 return __pgprot(pgprot_val(protection_map[vm_flags & 82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 83 pgprot_val(arch_vm_get_page_prot(vm_flags))); 84 } 85 EXPORT_SYMBOL(vm_get_page_prot); 86 87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 90 /* 91 * Make sure vm_committed_as in one cacheline and not cacheline shared with 92 * other variables. It can be updated by several CPUs frequently. 93 */ 94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 95 96 /* 97 * Check that a process has enough memory to allocate a new virtual 98 * mapping. 0 means there is enough memory for the allocation to 99 * succeed and -ENOMEM implies there is not. 100 * 101 * We currently support three overcommit policies, which are set via the 102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 103 * 104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 105 * Additional code 2002 Jul 20 by Robert Love. 106 * 107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 108 * 109 * Note this is a helper function intended to be used by LSMs which 110 * wish to use this logic. 111 */ 112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 113 { 114 unsigned long free, allowed; 115 116 vm_acct_memory(pages); 117 118 /* 119 * Sometimes we want to use more memory than we have 120 */ 121 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 122 return 0; 123 124 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 125 free = global_page_state(NR_FREE_PAGES); 126 free += global_page_state(NR_FILE_PAGES); 127 128 /* 129 * shmem pages shouldn't be counted as free in this 130 * case, they can't be purged, only swapped out, and 131 * that won't affect the overall amount of available 132 * memory in the system. 133 */ 134 free -= global_page_state(NR_SHMEM); 135 136 free += nr_swap_pages; 137 138 /* 139 * Any slabs which are created with the 140 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 141 * which are reclaimable, under pressure. The dentry 142 * cache and most inode caches should fall into this 143 */ 144 free += global_page_state(NR_SLAB_RECLAIMABLE); 145 146 /* 147 * Leave reserved pages. The pages are not for anonymous pages. 148 */ 149 if (free <= totalreserve_pages) 150 goto error; 151 else 152 free -= totalreserve_pages; 153 154 /* 155 * Leave the last 3% for root 156 */ 157 if (!cap_sys_admin) 158 free -= free / 32; 159 160 if (free > pages) 161 return 0; 162 163 goto error; 164 } 165 166 allowed = (totalram_pages - hugetlb_total_pages()) 167 * sysctl_overcommit_ratio / 100; 168 /* 169 * Leave the last 3% for root 170 */ 171 if (!cap_sys_admin) 172 allowed -= allowed / 32; 173 allowed += total_swap_pages; 174 175 /* Don't let a single process grow too big: 176 leave 3% of the size of this process for other processes */ 177 if (mm) 178 allowed -= mm->total_vm / 32; 179 180 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 181 return 0; 182 error: 183 vm_unacct_memory(pages); 184 185 return -ENOMEM; 186 } 187 188 /* 189 * Requires inode->i_mapping->i_mmap_mutex 190 */ 191 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 192 struct file *file, struct address_space *mapping) 193 { 194 if (vma->vm_flags & VM_DENYWRITE) 195 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 196 if (vma->vm_flags & VM_SHARED) 197 mapping->i_mmap_writable--; 198 199 flush_dcache_mmap_lock(mapping); 200 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 201 list_del_init(&vma->shared.vm_set.list); 202 else 203 vma_prio_tree_remove(vma, &mapping->i_mmap); 204 flush_dcache_mmap_unlock(mapping); 205 } 206 207 /* 208 * Unlink a file-based vm structure from its prio_tree, to hide 209 * vma from rmap and vmtruncate before freeing its page tables. 210 */ 211 void unlink_file_vma(struct vm_area_struct *vma) 212 { 213 struct file *file = vma->vm_file; 214 215 if (file) { 216 struct address_space *mapping = file->f_mapping; 217 mutex_lock(&mapping->i_mmap_mutex); 218 __remove_shared_vm_struct(vma, file, mapping); 219 mutex_unlock(&mapping->i_mmap_mutex); 220 } 221 } 222 223 /* 224 * Close a vm structure and free it, returning the next. 225 */ 226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 227 { 228 struct vm_area_struct *next = vma->vm_next; 229 230 might_sleep(); 231 if (vma->vm_ops && vma->vm_ops->close) 232 vma->vm_ops->close(vma); 233 if (vma->vm_file) { 234 fput(vma->vm_file); 235 if (vma->vm_flags & VM_EXECUTABLE) 236 removed_exe_file_vma(vma->vm_mm); 237 } 238 mpol_put(vma_policy(vma)); 239 kmem_cache_free(vm_area_cachep, vma); 240 return next; 241 } 242 243 static unsigned long do_brk(unsigned long addr, unsigned long len); 244 245 SYSCALL_DEFINE1(brk, unsigned long, brk) 246 { 247 unsigned long rlim, retval; 248 unsigned long newbrk, oldbrk; 249 struct mm_struct *mm = current->mm; 250 unsigned long min_brk; 251 252 down_write(&mm->mmap_sem); 253 254 #ifdef CONFIG_COMPAT_BRK 255 /* 256 * CONFIG_COMPAT_BRK can still be overridden by setting 257 * randomize_va_space to 2, which will still cause mm->start_brk 258 * to be arbitrarily shifted 259 */ 260 if (current->brk_randomized) 261 min_brk = mm->start_brk; 262 else 263 min_brk = mm->end_data; 264 #else 265 min_brk = mm->start_brk; 266 #endif 267 if (brk < min_brk) 268 goto out; 269 270 /* 271 * Check against rlimit here. If this check is done later after the test 272 * of oldbrk with newbrk then it can escape the test and let the data 273 * segment grow beyond its set limit the in case where the limit is 274 * not page aligned -Ram Gupta 275 */ 276 rlim = rlimit(RLIMIT_DATA); 277 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 278 (mm->end_data - mm->start_data) > rlim) 279 goto out; 280 281 newbrk = PAGE_ALIGN(brk); 282 oldbrk = PAGE_ALIGN(mm->brk); 283 if (oldbrk == newbrk) 284 goto set_brk; 285 286 /* Always allow shrinking brk. */ 287 if (brk <= mm->brk) { 288 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 289 goto set_brk; 290 goto out; 291 } 292 293 /* Check against existing mmap mappings. */ 294 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 295 goto out; 296 297 /* Ok, looks good - let it rip. */ 298 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 299 goto out; 300 set_brk: 301 mm->brk = brk; 302 out: 303 retval = mm->brk; 304 up_write(&mm->mmap_sem); 305 return retval; 306 } 307 308 #ifdef DEBUG_MM_RB 309 static int browse_rb(struct rb_root *root) 310 { 311 int i = 0, j; 312 struct rb_node *nd, *pn = NULL; 313 unsigned long prev = 0, pend = 0; 314 315 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 316 struct vm_area_struct *vma; 317 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 318 if (vma->vm_start < prev) 319 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 320 if (vma->vm_start < pend) 321 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 322 if (vma->vm_start > vma->vm_end) 323 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 324 i++; 325 pn = nd; 326 prev = vma->vm_start; 327 pend = vma->vm_end; 328 } 329 j = 0; 330 for (nd = pn; nd; nd = rb_prev(nd)) { 331 j++; 332 } 333 if (i != j) 334 printk("backwards %d, forwards %d\n", j, i), i = 0; 335 return i; 336 } 337 338 void validate_mm(struct mm_struct *mm) 339 { 340 int bug = 0; 341 int i = 0; 342 struct vm_area_struct *tmp = mm->mmap; 343 while (tmp) { 344 tmp = tmp->vm_next; 345 i++; 346 } 347 if (i != mm->map_count) 348 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 349 i = browse_rb(&mm->mm_rb); 350 if (i != mm->map_count) 351 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 352 BUG_ON(bug); 353 } 354 #else 355 #define validate_mm(mm) do { } while (0) 356 #endif 357 358 static struct vm_area_struct * 359 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 360 struct vm_area_struct **pprev, struct rb_node ***rb_link, 361 struct rb_node ** rb_parent) 362 { 363 struct vm_area_struct * vma; 364 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 365 366 __rb_link = &mm->mm_rb.rb_node; 367 rb_prev = __rb_parent = NULL; 368 vma = NULL; 369 370 while (*__rb_link) { 371 struct vm_area_struct *vma_tmp; 372 373 __rb_parent = *__rb_link; 374 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 375 376 if (vma_tmp->vm_end > addr) { 377 vma = vma_tmp; 378 if (vma_tmp->vm_start <= addr) 379 break; 380 __rb_link = &__rb_parent->rb_left; 381 } else { 382 rb_prev = __rb_parent; 383 __rb_link = &__rb_parent->rb_right; 384 } 385 } 386 387 *pprev = NULL; 388 if (rb_prev) 389 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 390 *rb_link = __rb_link; 391 *rb_parent = __rb_parent; 392 return vma; 393 } 394 395 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 396 struct rb_node **rb_link, struct rb_node *rb_parent) 397 { 398 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 399 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 400 } 401 402 static void __vma_link_file(struct vm_area_struct *vma) 403 { 404 struct file *file; 405 406 file = vma->vm_file; 407 if (file) { 408 struct address_space *mapping = file->f_mapping; 409 410 if (vma->vm_flags & VM_DENYWRITE) 411 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 412 if (vma->vm_flags & VM_SHARED) 413 mapping->i_mmap_writable++; 414 415 flush_dcache_mmap_lock(mapping); 416 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 417 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 418 else 419 vma_prio_tree_insert(vma, &mapping->i_mmap); 420 flush_dcache_mmap_unlock(mapping); 421 } 422 } 423 424 static void 425 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 426 struct vm_area_struct *prev, struct rb_node **rb_link, 427 struct rb_node *rb_parent) 428 { 429 __vma_link_list(mm, vma, prev, rb_parent); 430 __vma_link_rb(mm, vma, rb_link, rb_parent); 431 } 432 433 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 434 struct vm_area_struct *prev, struct rb_node **rb_link, 435 struct rb_node *rb_parent) 436 { 437 struct address_space *mapping = NULL; 438 439 if (vma->vm_file) 440 mapping = vma->vm_file->f_mapping; 441 442 if (mapping) 443 mutex_lock(&mapping->i_mmap_mutex); 444 445 __vma_link(mm, vma, prev, rb_link, rb_parent); 446 __vma_link_file(vma); 447 448 if (mapping) 449 mutex_unlock(&mapping->i_mmap_mutex); 450 451 mm->map_count++; 452 validate_mm(mm); 453 } 454 455 /* 456 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 457 * mm's list and rbtree. It has already been inserted into the prio_tree. 458 */ 459 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 460 { 461 struct vm_area_struct *__vma, *prev; 462 struct rb_node **rb_link, *rb_parent; 463 464 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 465 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 466 __vma_link(mm, vma, prev, rb_link, rb_parent); 467 mm->map_count++; 468 } 469 470 static inline void 471 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 472 struct vm_area_struct *prev) 473 { 474 struct vm_area_struct *next = vma->vm_next; 475 476 prev->vm_next = next; 477 if (next) 478 next->vm_prev = prev; 479 rb_erase(&vma->vm_rb, &mm->mm_rb); 480 if (mm->mmap_cache == vma) 481 mm->mmap_cache = prev; 482 } 483 484 /* 485 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 486 * is already present in an i_mmap tree without adjusting the tree. 487 * The following helper function should be used when such adjustments 488 * are necessary. The "insert" vma (if any) is to be inserted 489 * before we drop the necessary locks. 490 */ 491 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 492 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 493 { 494 struct mm_struct *mm = vma->vm_mm; 495 struct vm_area_struct *next = vma->vm_next; 496 struct vm_area_struct *importer = NULL; 497 struct address_space *mapping = NULL; 498 struct prio_tree_root *root = NULL; 499 struct anon_vma *anon_vma = NULL; 500 struct file *file = vma->vm_file; 501 long adjust_next = 0; 502 int remove_next = 0; 503 504 if (next && !insert) { 505 struct vm_area_struct *exporter = NULL; 506 507 if (end >= next->vm_end) { 508 /* 509 * vma expands, overlapping all the next, and 510 * perhaps the one after too (mprotect case 6). 511 */ 512 again: remove_next = 1 + (end > next->vm_end); 513 end = next->vm_end; 514 exporter = next; 515 importer = vma; 516 } else if (end > next->vm_start) { 517 /* 518 * vma expands, overlapping part of the next: 519 * mprotect case 5 shifting the boundary up. 520 */ 521 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 522 exporter = next; 523 importer = vma; 524 } else if (end < vma->vm_end) { 525 /* 526 * vma shrinks, and !insert tells it's not 527 * split_vma inserting another: so it must be 528 * mprotect case 4 shifting the boundary down. 529 */ 530 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 531 exporter = vma; 532 importer = next; 533 } 534 535 /* 536 * Easily overlooked: when mprotect shifts the boundary, 537 * make sure the expanding vma has anon_vma set if the 538 * shrinking vma had, to cover any anon pages imported. 539 */ 540 if (exporter && exporter->anon_vma && !importer->anon_vma) { 541 if (anon_vma_clone(importer, exporter)) 542 return -ENOMEM; 543 importer->anon_vma = exporter->anon_vma; 544 } 545 } 546 547 if (file) { 548 mapping = file->f_mapping; 549 if (!(vma->vm_flags & VM_NONLINEAR)) 550 root = &mapping->i_mmap; 551 mutex_lock(&mapping->i_mmap_mutex); 552 if (insert) { 553 /* 554 * Put into prio_tree now, so instantiated pages 555 * are visible to arm/parisc __flush_dcache_page 556 * throughout; but we cannot insert into address 557 * space until vma start or end is updated. 558 */ 559 __vma_link_file(insert); 560 } 561 } 562 563 vma_adjust_trans_huge(vma, start, end, adjust_next); 564 565 /* 566 * When changing only vma->vm_end, we don't really need anon_vma 567 * lock. This is a fairly rare case by itself, but the anon_vma 568 * lock may be shared between many sibling processes. Skipping 569 * the lock for brk adjustments makes a difference sometimes. 570 */ 571 if (vma->anon_vma && (importer || start != vma->vm_start)) { 572 anon_vma = vma->anon_vma; 573 anon_vma_lock(anon_vma); 574 } 575 576 if (root) { 577 flush_dcache_mmap_lock(mapping); 578 vma_prio_tree_remove(vma, root); 579 if (adjust_next) 580 vma_prio_tree_remove(next, root); 581 } 582 583 vma->vm_start = start; 584 vma->vm_end = end; 585 vma->vm_pgoff = pgoff; 586 if (adjust_next) { 587 next->vm_start += adjust_next << PAGE_SHIFT; 588 next->vm_pgoff += adjust_next; 589 } 590 591 if (root) { 592 if (adjust_next) 593 vma_prio_tree_insert(next, root); 594 vma_prio_tree_insert(vma, root); 595 flush_dcache_mmap_unlock(mapping); 596 } 597 598 if (remove_next) { 599 /* 600 * vma_merge has merged next into vma, and needs 601 * us to remove next before dropping the locks. 602 */ 603 __vma_unlink(mm, next, vma); 604 if (file) 605 __remove_shared_vm_struct(next, file, mapping); 606 } else if (insert) { 607 /* 608 * split_vma has split insert from vma, and needs 609 * us to insert it before dropping the locks 610 * (it may either follow vma or precede it). 611 */ 612 __insert_vm_struct(mm, insert); 613 } 614 615 if (anon_vma) 616 anon_vma_unlock(anon_vma); 617 if (mapping) 618 mutex_unlock(&mapping->i_mmap_mutex); 619 620 if (remove_next) { 621 if (file) { 622 fput(file); 623 if (next->vm_flags & VM_EXECUTABLE) 624 removed_exe_file_vma(mm); 625 } 626 if (next->anon_vma) 627 anon_vma_merge(vma, next); 628 mm->map_count--; 629 mpol_put(vma_policy(next)); 630 kmem_cache_free(vm_area_cachep, next); 631 /* 632 * In mprotect's case 6 (see comments on vma_merge), 633 * we must remove another next too. It would clutter 634 * up the code too much to do both in one go. 635 */ 636 if (remove_next == 2) { 637 next = vma->vm_next; 638 goto again; 639 } 640 } 641 642 validate_mm(mm); 643 644 return 0; 645 } 646 647 /* 648 * If the vma has a ->close operation then the driver probably needs to release 649 * per-vma resources, so we don't attempt to merge those. 650 */ 651 static inline int is_mergeable_vma(struct vm_area_struct *vma, 652 struct file *file, unsigned long vm_flags) 653 { 654 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 655 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 656 return 0; 657 if (vma->vm_file != file) 658 return 0; 659 if (vma->vm_ops && vma->vm_ops->close) 660 return 0; 661 return 1; 662 } 663 664 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 665 struct anon_vma *anon_vma2, 666 struct vm_area_struct *vma) 667 { 668 /* 669 * The list_is_singular() test is to avoid merging VMA cloned from 670 * parents. This can improve scalability caused by anon_vma lock. 671 */ 672 if ((!anon_vma1 || !anon_vma2) && (!vma || 673 list_is_singular(&vma->anon_vma_chain))) 674 return 1; 675 return anon_vma1 == anon_vma2; 676 } 677 678 /* 679 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 680 * in front of (at a lower virtual address and file offset than) the vma. 681 * 682 * We cannot merge two vmas if they have differently assigned (non-NULL) 683 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 684 * 685 * We don't check here for the merged mmap wrapping around the end of pagecache 686 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 687 * wrap, nor mmaps which cover the final page at index -1UL. 688 */ 689 static int 690 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 691 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 692 { 693 if (is_mergeable_vma(vma, file, vm_flags) && 694 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 695 if (vma->vm_pgoff == vm_pgoff) 696 return 1; 697 } 698 return 0; 699 } 700 701 /* 702 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 703 * beyond (at a higher virtual address and file offset than) the vma. 704 * 705 * We cannot merge two vmas if they have differently assigned (non-NULL) 706 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 707 */ 708 static int 709 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 710 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 711 { 712 if (is_mergeable_vma(vma, file, vm_flags) && 713 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 714 pgoff_t vm_pglen; 715 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 716 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 717 return 1; 718 } 719 return 0; 720 } 721 722 /* 723 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 724 * whether that can be merged with its predecessor or its successor. 725 * Or both (it neatly fills a hole). 726 * 727 * In most cases - when called for mmap, brk or mremap - [addr,end) is 728 * certain not to be mapped by the time vma_merge is called; but when 729 * called for mprotect, it is certain to be already mapped (either at 730 * an offset within prev, or at the start of next), and the flags of 731 * this area are about to be changed to vm_flags - and the no-change 732 * case has already been eliminated. 733 * 734 * The following mprotect cases have to be considered, where AAAA is 735 * the area passed down from mprotect_fixup, never extending beyond one 736 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 737 * 738 * AAAA AAAA AAAA AAAA 739 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 740 * cannot merge might become might become might become 741 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 742 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 743 * mremap move: PPPPNNNNNNNN 8 744 * AAAA 745 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 746 * might become case 1 below case 2 below case 3 below 747 * 748 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 749 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 750 */ 751 struct vm_area_struct *vma_merge(struct mm_struct *mm, 752 struct vm_area_struct *prev, unsigned long addr, 753 unsigned long end, unsigned long vm_flags, 754 struct anon_vma *anon_vma, struct file *file, 755 pgoff_t pgoff, struct mempolicy *policy) 756 { 757 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 758 struct vm_area_struct *area, *next; 759 int err; 760 761 /* 762 * We later require that vma->vm_flags == vm_flags, 763 * so this tests vma->vm_flags & VM_SPECIAL, too. 764 */ 765 if (vm_flags & VM_SPECIAL) 766 return NULL; 767 768 if (prev) 769 next = prev->vm_next; 770 else 771 next = mm->mmap; 772 area = next; 773 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 774 next = next->vm_next; 775 776 /* 777 * Can it merge with the predecessor? 778 */ 779 if (prev && prev->vm_end == addr && 780 mpol_equal(vma_policy(prev), policy) && 781 can_vma_merge_after(prev, vm_flags, 782 anon_vma, file, pgoff)) { 783 /* 784 * OK, it can. Can we now merge in the successor as well? 785 */ 786 if (next && end == next->vm_start && 787 mpol_equal(policy, vma_policy(next)) && 788 can_vma_merge_before(next, vm_flags, 789 anon_vma, file, pgoff+pglen) && 790 is_mergeable_anon_vma(prev->anon_vma, 791 next->anon_vma, NULL)) { 792 /* cases 1, 6 */ 793 err = vma_adjust(prev, prev->vm_start, 794 next->vm_end, prev->vm_pgoff, NULL); 795 } else /* cases 2, 5, 7 */ 796 err = vma_adjust(prev, prev->vm_start, 797 end, prev->vm_pgoff, NULL); 798 if (err) 799 return NULL; 800 khugepaged_enter_vma_merge(prev); 801 return prev; 802 } 803 804 /* 805 * Can this new request be merged in front of next? 806 */ 807 if (next && end == next->vm_start && 808 mpol_equal(policy, vma_policy(next)) && 809 can_vma_merge_before(next, vm_flags, 810 anon_vma, file, pgoff+pglen)) { 811 if (prev && addr < prev->vm_end) /* case 4 */ 812 err = vma_adjust(prev, prev->vm_start, 813 addr, prev->vm_pgoff, NULL); 814 else /* cases 3, 8 */ 815 err = vma_adjust(area, addr, next->vm_end, 816 next->vm_pgoff - pglen, NULL); 817 if (err) 818 return NULL; 819 khugepaged_enter_vma_merge(area); 820 return area; 821 } 822 823 return NULL; 824 } 825 826 /* 827 * Rough compatbility check to quickly see if it's even worth looking 828 * at sharing an anon_vma. 829 * 830 * They need to have the same vm_file, and the flags can only differ 831 * in things that mprotect may change. 832 * 833 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 834 * we can merge the two vma's. For example, we refuse to merge a vma if 835 * there is a vm_ops->close() function, because that indicates that the 836 * driver is doing some kind of reference counting. But that doesn't 837 * really matter for the anon_vma sharing case. 838 */ 839 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 840 { 841 return a->vm_end == b->vm_start && 842 mpol_equal(vma_policy(a), vma_policy(b)) && 843 a->vm_file == b->vm_file && 844 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 845 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 846 } 847 848 /* 849 * Do some basic sanity checking to see if we can re-use the anon_vma 850 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 851 * the same as 'old', the other will be the new one that is trying 852 * to share the anon_vma. 853 * 854 * NOTE! This runs with mm_sem held for reading, so it is possible that 855 * the anon_vma of 'old' is concurrently in the process of being set up 856 * by another page fault trying to merge _that_. But that's ok: if it 857 * is being set up, that automatically means that it will be a singleton 858 * acceptable for merging, so we can do all of this optimistically. But 859 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 860 * 861 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 862 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 863 * is to return an anon_vma that is "complex" due to having gone through 864 * a fork). 865 * 866 * We also make sure that the two vma's are compatible (adjacent, 867 * and with the same memory policies). That's all stable, even with just 868 * a read lock on the mm_sem. 869 */ 870 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 871 { 872 if (anon_vma_compatible(a, b)) { 873 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 874 875 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 876 return anon_vma; 877 } 878 return NULL; 879 } 880 881 /* 882 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 883 * neighbouring vmas for a suitable anon_vma, before it goes off 884 * to allocate a new anon_vma. It checks because a repetitive 885 * sequence of mprotects and faults may otherwise lead to distinct 886 * anon_vmas being allocated, preventing vma merge in subsequent 887 * mprotect. 888 */ 889 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 890 { 891 struct anon_vma *anon_vma; 892 struct vm_area_struct *near; 893 894 near = vma->vm_next; 895 if (!near) 896 goto try_prev; 897 898 anon_vma = reusable_anon_vma(near, vma, near); 899 if (anon_vma) 900 return anon_vma; 901 try_prev: 902 near = vma->vm_prev; 903 if (!near) 904 goto none; 905 906 anon_vma = reusable_anon_vma(near, near, vma); 907 if (anon_vma) 908 return anon_vma; 909 none: 910 /* 911 * There's no absolute need to look only at touching neighbours: 912 * we could search further afield for "compatible" anon_vmas. 913 * But it would probably just be a waste of time searching, 914 * or lead to too many vmas hanging off the same anon_vma. 915 * We're trying to allow mprotect remerging later on, 916 * not trying to minimize memory used for anon_vmas. 917 */ 918 return NULL; 919 } 920 921 #ifdef CONFIG_PROC_FS 922 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 923 struct file *file, long pages) 924 { 925 const unsigned long stack_flags 926 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 927 928 if (file) { 929 mm->shared_vm += pages; 930 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 931 mm->exec_vm += pages; 932 } else if (flags & stack_flags) 933 mm->stack_vm += pages; 934 if (flags & (VM_RESERVED|VM_IO)) 935 mm->reserved_vm += pages; 936 } 937 #endif /* CONFIG_PROC_FS */ 938 939 /* 940 * If a hint addr is less than mmap_min_addr change hint to be as 941 * low as possible but still greater than mmap_min_addr 942 */ 943 static inline unsigned long round_hint_to_min(unsigned long hint) 944 { 945 hint &= PAGE_MASK; 946 if (((void *)hint != NULL) && 947 (hint < mmap_min_addr)) 948 return PAGE_ALIGN(mmap_min_addr); 949 return hint; 950 } 951 952 /* 953 * The caller must hold down_write(¤t->mm->mmap_sem). 954 */ 955 956 static unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 957 unsigned long len, unsigned long prot, 958 unsigned long flags, unsigned long pgoff) 959 { 960 struct mm_struct * mm = current->mm; 961 struct inode *inode; 962 vm_flags_t vm_flags; 963 int error; 964 unsigned long reqprot = prot; 965 966 /* 967 * Does the application expect PROT_READ to imply PROT_EXEC? 968 * 969 * (the exception is when the underlying filesystem is noexec 970 * mounted, in which case we dont add PROT_EXEC.) 971 */ 972 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 973 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 974 prot |= PROT_EXEC; 975 976 if (!len) 977 return -EINVAL; 978 979 if (!(flags & MAP_FIXED)) 980 addr = round_hint_to_min(addr); 981 982 /* Careful about overflows.. */ 983 len = PAGE_ALIGN(len); 984 if (!len) 985 return -ENOMEM; 986 987 /* offset overflow? */ 988 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 989 return -EOVERFLOW; 990 991 /* Too many mappings? */ 992 if (mm->map_count > sysctl_max_map_count) 993 return -ENOMEM; 994 995 /* Obtain the address to map to. we verify (or select) it and ensure 996 * that it represents a valid section of the address space. 997 */ 998 addr = get_unmapped_area(file, addr, len, pgoff, flags); 999 if (addr & ~PAGE_MASK) 1000 return addr; 1001 1002 /* Do simple checking here so the lower-level routines won't have 1003 * to. we assume access permissions have been handled by the open 1004 * of the memory object, so we don't do any here. 1005 */ 1006 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1007 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1008 1009 if (flags & MAP_LOCKED) 1010 if (!can_do_mlock()) 1011 return -EPERM; 1012 1013 /* mlock MCL_FUTURE? */ 1014 if (vm_flags & VM_LOCKED) { 1015 unsigned long locked, lock_limit; 1016 locked = len >> PAGE_SHIFT; 1017 locked += mm->locked_vm; 1018 lock_limit = rlimit(RLIMIT_MEMLOCK); 1019 lock_limit >>= PAGE_SHIFT; 1020 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1021 return -EAGAIN; 1022 } 1023 1024 inode = file ? file->f_path.dentry->d_inode : NULL; 1025 1026 if (file) { 1027 switch (flags & MAP_TYPE) { 1028 case MAP_SHARED: 1029 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1030 return -EACCES; 1031 1032 /* 1033 * Make sure we don't allow writing to an append-only 1034 * file.. 1035 */ 1036 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1037 return -EACCES; 1038 1039 /* 1040 * Make sure there are no mandatory locks on the file. 1041 */ 1042 if (locks_verify_locked(inode)) 1043 return -EAGAIN; 1044 1045 vm_flags |= VM_SHARED | VM_MAYSHARE; 1046 if (!(file->f_mode & FMODE_WRITE)) 1047 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1048 1049 /* fall through */ 1050 case MAP_PRIVATE: 1051 if (!(file->f_mode & FMODE_READ)) 1052 return -EACCES; 1053 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1054 if (vm_flags & VM_EXEC) 1055 return -EPERM; 1056 vm_flags &= ~VM_MAYEXEC; 1057 } 1058 1059 if (!file->f_op || !file->f_op->mmap) 1060 return -ENODEV; 1061 break; 1062 1063 default: 1064 return -EINVAL; 1065 } 1066 } else { 1067 switch (flags & MAP_TYPE) { 1068 case MAP_SHARED: 1069 /* 1070 * Ignore pgoff. 1071 */ 1072 pgoff = 0; 1073 vm_flags |= VM_SHARED | VM_MAYSHARE; 1074 break; 1075 case MAP_PRIVATE: 1076 /* 1077 * Set pgoff according to addr for anon_vma. 1078 */ 1079 pgoff = addr >> PAGE_SHIFT; 1080 break; 1081 default: 1082 return -EINVAL; 1083 } 1084 } 1085 1086 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1087 if (error) 1088 return error; 1089 1090 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1091 } 1092 1093 unsigned long do_mmap(struct file *file, unsigned long addr, 1094 unsigned long len, unsigned long prot, 1095 unsigned long flag, unsigned long offset) 1096 { 1097 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 1098 return -EINVAL; 1099 if (unlikely(offset & ~PAGE_MASK)) 1100 return -EINVAL; 1101 return do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1102 } 1103 EXPORT_SYMBOL(do_mmap); 1104 1105 unsigned long vm_mmap(struct file *file, unsigned long addr, 1106 unsigned long len, unsigned long prot, 1107 unsigned long flag, unsigned long offset) 1108 { 1109 unsigned long ret; 1110 struct mm_struct *mm = current->mm; 1111 1112 down_write(&mm->mmap_sem); 1113 ret = do_mmap(file, addr, len, prot, flag, offset); 1114 up_write(&mm->mmap_sem); 1115 return ret; 1116 } 1117 EXPORT_SYMBOL(vm_mmap); 1118 1119 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1120 unsigned long, prot, unsigned long, flags, 1121 unsigned long, fd, unsigned long, pgoff) 1122 { 1123 struct file *file = NULL; 1124 unsigned long retval = -EBADF; 1125 1126 if (!(flags & MAP_ANONYMOUS)) { 1127 audit_mmap_fd(fd, flags); 1128 if (unlikely(flags & MAP_HUGETLB)) 1129 return -EINVAL; 1130 file = fget(fd); 1131 if (!file) 1132 goto out; 1133 } else if (flags & MAP_HUGETLB) { 1134 struct user_struct *user = NULL; 1135 /* 1136 * VM_NORESERVE is used because the reservations will be 1137 * taken when vm_ops->mmap() is called 1138 * A dummy user value is used because we are not locking 1139 * memory so no accounting is necessary 1140 */ 1141 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len, 1142 VM_NORESERVE, &user, 1143 HUGETLB_ANONHUGE_INODE); 1144 if (IS_ERR(file)) 1145 return PTR_ERR(file); 1146 } 1147 1148 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1149 1150 down_write(¤t->mm->mmap_sem); 1151 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1152 up_write(¤t->mm->mmap_sem); 1153 1154 if (file) 1155 fput(file); 1156 out: 1157 return retval; 1158 } 1159 1160 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1161 struct mmap_arg_struct { 1162 unsigned long addr; 1163 unsigned long len; 1164 unsigned long prot; 1165 unsigned long flags; 1166 unsigned long fd; 1167 unsigned long offset; 1168 }; 1169 1170 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1171 { 1172 struct mmap_arg_struct a; 1173 1174 if (copy_from_user(&a, arg, sizeof(a))) 1175 return -EFAULT; 1176 if (a.offset & ~PAGE_MASK) 1177 return -EINVAL; 1178 1179 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1180 a.offset >> PAGE_SHIFT); 1181 } 1182 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1183 1184 /* 1185 * Some shared mappigns will want the pages marked read-only 1186 * to track write events. If so, we'll downgrade vm_page_prot 1187 * to the private version (using protection_map[] without the 1188 * VM_SHARED bit). 1189 */ 1190 int vma_wants_writenotify(struct vm_area_struct *vma) 1191 { 1192 vm_flags_t vm_flags = vma->vm_flags; 1193 1194 /* If it was private or non-writable, the write bit is already clear */ 1195 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1196 return 0; 1197 1198 /* The backer wishes to know when pages are first written to? */ 1199 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1200 return 1; 1201 1202 /* The open routine did something to the protections already? */ 1203 if (pgprot_val(vma->vm_page_prot) != 1204 pgprot_val(vm_get_page_prot(vm_flags))) 1205 return 0; 1206 1207 /* Specialty mapping? */ 1208 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1209 return 0; 1210 1211 /* Can the mapping track the dirty pages? */ 1212 return vma->vm_file && vma->vm_file->f_mapping && 1213 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1214 } 1215 1216 /* 1217 * We account for memory if it's a private writeable mapping, 1218 * not hugepages and VM_NORESERVE wasn't set. 1219 */ 1220 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1221 { 1222 /* 1223 * hugetlb has its own accounting separate from the core VM 1224 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1225 */ 1226 if (file && is_file_hugepages(file)) 1227 return 0; 1228 1229 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1230 } 1231 1232 unsigned long mmap_region(struct file *file, unsigned long addr, 1233 unsigned long len, unsigned long flags, 1234 vm_flags_t vm_flags, unsigned long pgoff) 1235 { 1236 struct mm_struct *mm = current->mm; 1237 struct vm_area_struct *vma, *prev; 1238 int correct_wcount = 0; 1239 int error; 1240 struct rb_node **rb_link, *rb_parent; 1241 unsigned long charged = 0; 1242 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1243 1244 /* Clear old maps */ 1245 error = -ENOMEM; 1246 munmap_back: 1247 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1248 if (vma && vma->vm_start < addr + len) { 1249 if (do_munmap(mm, addr, len)) 1250 return -ENOMEM; 1251 goto munmap_back; 1252 } 1253 1254 /* Check against address space limit. */ 1255 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1256 return -ENOMEM; 1257 1258 /* 1259 * Set 'VM_NORESERVE' if we should not account for the 1260 * memory use of this mapping. 1261 */ 1262 if ((flags & MAP_NORESERVE)) { 1263 /* We honor MAP_NORESERVE if allowed to overcommit */ 1264 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1265 vm_flags |= VM_NORESERVE; 1266 1267 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1268 if (file && is_file_hugepages(file)) 1269 vm_flags |= VM_NORESERVE; 1270 } 1271 1272 /* 1273 * Private writable mapping: check memory availability 1274 */ 1275 if (accountable_mapping(file, vm_flags)) { 1276 charged = len >> PAGE_SHIFT; 1277 if (security_vm_enough_memory_mm(mm, charged)) 1278 return -ENOMEM; 1279 vm_flags |= VM_ACCOUNT; 1280 } 1281 1282 /* 1283 * Can we just expand an old mapping? 1284 */ 1285 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1286 if (vma) 1287 goto out; 1288 1289 /* 1290 * Determine the object being mapped and call the appropriate 1291 * specific mapper. the address has already been validated, but 1292 * not unmapped, but the maps are removed from the list. 1293 */ 1294 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1295 if (!vma) { 1296 error = -ENOMEM; 1297 goto unacct_error; 1298 } 1299 1300 vma->vm_mm = mm; 1301 vma->vm_start = addr; 1302 vma->vm_end = addr + len; 1303 vma->vm_flags = vm_flags; 1304 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1305 vma->vm_pgoff = pgoff; 1306 INIT_LIST_HEAD(&vma->anon_vma_chain); 1307 1308 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */ 1309 1310 if (file) { 1311 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1312 goto free_vma; 1313 if (vm_flags & VM_DENYWRITE) { 1314 error = deny_write_access(file); 1315 if (error) 1316 goto free_vma; 1317 correct_wcount = 1; 1318 } 1319 vma->vm_file = file; 1320 get_file(file); 1321 error = file->f_op->mmap(file, vma); 1322 if (error) 1323 goto unmap_and_free_vma; 1324 if (vm_flags & VM_EXECUTABLE) 1325 added_exe_file_vma(mm); 1326 1327 /* Can addr have changed?? 1328 * 1329 * Answer: Yes, several device drivers can do it in their 1330 * f_op->mmap method. -DaveM 1331 */ 1332 addr = vma->vm_start; 1333 pgoff = vma->vm_pgoff; 1334 vm_flags = vma->vm_flags; 1335 } else if (vm_flags & VM_SHARED) { 1336 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP))) 1337 goto free_vma; 1338 error = shmem_zero_setup(vma); 1339 if (error) 1340 goto free_vma; 1341 } 1342 1343 if (vma_wants_writenotify(vma)) { 1344 pgprot_t pprot = vma->vm_page_prot; 1345 1346 /* Can vma->vm_page_prot have changed?? 1347 * 1348 * Answer: Yes, drivers may have changed it in their 1349 * f_op->mmap method. 1350 * 1351 * Ensures that vmas marked as uncached stay that way. 1352 */ 1353 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1354 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1355 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1356 } 1357 1358 vma_link(mm, vma, prev, rb_link, rb_parent); 1359 file = vma->vm_file; 1360 1361 /* Once vma denies write, undo our temporary denial count */ 1362 if (correct_wcount) 1363 atomic_inc(&inode->i_writecount); 1364 out: 1365 perf_event_mmap(vma); 1366 1367 mm->total_vm += len >> PAGE_SHIFT; 1368 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1369 if (vm_flags & VM_LOCKED) { 1370 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1371 mm->locked_vm += (len >> PAGE_SHIFT); 1372 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1373 make_pages_present(addr, addr + len); 1374 return addr; 1375 1376 unmap_and_free_vma: 1377 if (correct_wcount) 1378 atomic_inc(&inode->i_writecount); 1379 vma->vm_file = NULL; 1380 fput(file); 1381 1382 /* Undo any partial mapping done by a device driver. */ 1383 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1384 charged = 0; 1385 free_vma: 1386 kmem_cache_free(vm_area_cachep, vma); 1387 unacct_error: 1388 if (charged) 1389 vm_unacct_memory(charged); 1390 return error; 1391 } 1392 1393 /* Get an address range which is currently unmapped. 1394 * For shmat() with addr=0. 1395 * 1396 * Ugly calling convention alert: 1397 * Return value with the low bits set means error value, 1398 * ie 1399 * if (ret & ~PAGE_MASK) 1400 * error = ret; 1401 * 1402 * This function "knows" that -ENOMEM has the bits set. 1403 */ 1404 #ifndef HAVE_ARCH_UNMAPPED_AREA 1405 unsigned long 1406 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1407 unsigned long len, unsigned long pgoff, unsigned long flags) 1408 { 1409 struct mm_struct *mm = current->mm; 1410 struct vm_area_struct *vma; 1411 unsigned long start_addr; 1412 1413 if (len > TASK_SIZE) 1414 return -ENOMEM; 1415 1416 if (flags & MAP_FIXED) 1417 return addr; 1418 1419 if (addr) { 1420 addr = PAGE_ALIGN(addr); 1421 vma = find_vma(mm, addr); 1422 if (TASK_SIZE - len >= addr && 1423 (!vma || addr + len <= vma->vm_start)) 1424 return addr; 1425 } 1426 if (len > mm->cached_hole_size) { 1427 start_addr = addr = mm->free_area_cache; 1428 } else { 1429 start_addr = addr = TASK_UNMAPPED_BASE; 1430 mm->cached_hole_size = 0; 1431 } 1432 1433 full_search: 1434 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1435 /* At this point: (!vma || addr < vma->vm_end). */ 1436 if (TASK_SIZE - len < addr) { 1437 /* 1438 * Start a new search - just in case we missed 1439 * some holes. 1440 */ 1441 if (start_addr != TASK_UNMAPPED_BASE) { 1442 addr = TASK_UNMAPPED_BASE; 1443 start_addr = addr; 1444 mm->cached_hole_size = 0; 1445 goto full_search; 1446 } 1447 return -ENOMEM; 1448 } 1449 if (!vma || addr + len <= vma->vm_start) { 1450 /* 1451 * Remember the place where we stopped the search: 1452 */ 1453 mm->free_area_cache = addr + len; 1454 return addr; 1455 } 1456 if (addr + mm->cached_hole_size < vma->vm_start) 1457 mm->cached_hole_size = vma->vm_start - addr; 1458 addr = vma->vm_end; 1459 } 1460 } 1461 #endif 1462 1463 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1464 { 1465 /* 1466 * Is this a new hole at the lowest possible address? 1467 */ 1468 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) 1469 mm->free_area_cache = addr; 1470 } 1471 1472 /* 1473 * This mmap-allocator allocates new areas top-down from below the 1474 * stack's low limit (the base): 1475 */ 1476 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1477 unsigned long 1478 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1479 const unsigned long len, const unsigned long pgoff, 1480 const unsigned long flags) 1481 { 1482 struct vm_area_struct *vma; 1483 struct mm_struct *mm = current->mm; 1484 unsigned long addr = addr0, start_addr; 1485 1486 /* requested length too big for entire address space */ 1487 if (len > TASK_SIZE) 1488 return -ENOMEM; 1489 1490 if (flags & MAP_FIXED) 1491 return addr; 1492 1493 /* requesting a specific address */ 1494 if (addr) { 1495 addr = PAGE_ALIGN(addr); 1496 vma = find_vma(mm, addr); 1497 if (TASK_SIZE - len >= addr && 1498 (!vma || addr + len <= vma->vm_start)) 1499 return addr; 1500 } 1501 1502 /* check if free_area_cache is useful for us */ 1503 if (len <= mm->cached_hole_size) { 1504 mm->cached_hole_size = 0; 1505 mm->free_area_cache = mm->mmap_base; 1506 } 1507 1508 try_again: 1509 /* either no address requested or can't fit in requested address hole */ 1510 start_addr = addr = mm->free_area_cache; 1511 1512 if (addr < len) 1513 goto fail; 1514 1515 addr -= len; 1516 do { 1517 /* 1518 * Lookup failure means no vma is above this address, 1519 * else if new region fits below vma->vm_start, 1520 * return with success: 1521 */ 1522 vma = find_vma(mm, addr); 1523 if (!vma || addr+len <= vma->vm_start) 1524 /* remember the address as a hint for next time */ 1525 return (mm->free_area_cache = addr); 1526 1527 /* remember the largest hole we saw so far */ 1528 if (addr + mm->cached_hole_size < vma->vm_start) 1529 mm->cached_hole_size = vma->vm_start - addr; 1530 1531 /* try just below the current vma->vm_start */ 1532 addr = vma->vm_start-len; 1533 } while (len < vma->vm_start); 1534 1535 fail: 1536 /* 1537 * if hint left us with no space for the requested 1538 * mapping then try again: 1539 * 1540 * Note: this is different with the case of bottomup 1541 * which does the fully line-search, but we use find_vma 1542 * here that causes some holes skipped. 1543 */ 1544 if (start_addr != mm->mmap_base) { 1545 mm->free_area_cache = mm->mmap_base; 1546 mm->cached_hole_size = 0; 1547 goto try_again; 1548 } 1549 1550 /* 1551 * A failed mmap() very likely causes application failure, 1552 * so fall back to the bottom-up function here. This scenario 1553 * can happen with large stack limits and large mmap() 1554 * allocations. 1555 */ 1556 mm->cached_hole_size = ~0UL; 1557 mm->free_area_cache = TASK_UNMAPPED_BASE; 1558 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1559 /* 1560 * Restore the topdown base: 1561 */ 1562 mm->free_area_cache = mm->mmap_base; 1563 mm->cached_hole_size = ~0UL; 1564 1565 return addr; 1566 } 1567 #endif 1568 1569 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1570 { 1571 /* 1572 * Is this a new hole at the highest possible address? 1573 */ 1574 if (addr > mm->free_area_cache) 1575 mm->free_area_cache = addr; 1576 1577 /* dont allow allocations above current base */ 1578 if (mm->free_area_cache > mm->mmap_base) 1579 mm->free_area_cache = mm->mmap_base; 1580 } 1581 1582 unsigned long 1583 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1584 unsigned long pgoff, unsigned long flags) 1585 { 1586 unsigned long (*get_area)(struct file *, unsigned long, 1587 unsigned long, unsigned long, unsigned long); 1588 1589 unsigned long error = arch_mmap_check(addr, len, flags); 1590 if (error) 1591 return error; 1592 1593 /* Careful about overflows.. */ 1594 if (len > TASK_SIZE) 1595 return -ENOMEM; 1596 1597 get_area = current->mm->get_unmapped_area; 1598 if (file && file->f_op && file->f_op->get_unmapped_area) 1599 get_area = file->f_op->get_unmapped_area; 1600 addr = get_area(file, addr, len, pgoff, flags); 1601 if (IS_ERR_VALUE(addr)) 1602 return addr; 1603 1604 if (addr > TASK_SIZE - len) 1605 return -ENOMEM; 1606 if (addr & ~PAGE_MASK) 1607 return -EINVAL; 1608 1609 return arch_rebalance_pgtables(addr, len); 1610 } 1611 1612 EXPORT_SYMBOL(get_unmapped_area); 1613 1614 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1615 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1616 { 1617 struct vm_area_struct *vma = NULL; 1618 1619 if (mm) { 1620 /* Check the cache first. */ 1621 /* (Cache hit rate is typically around 35%.) */ 1622 vma = mm->mmap_cache; 1623 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1624 struct rb_node * rb_node; 1625 1626 rb_node = mm->mm_rb.rb_node; 1627 vma = NULL; 1628 1629 while (rb_node) { 1630 struct vm_area_struct * vma_tmp; 1631 1632 vma_tmp = rb_entry(rb_node, 1633 struct vm_area_struct, vm_rb); 1634 1635 if (vma_tmp->vm_end > addr) { 1636 vma = vma_tmp; 1637 if (vma_tmp->vm_start <= addr) 1638 break; 1639 rb_node = rb_node->rb_left; 1640 } else 1641 rb_node = rb_node->rb_right; 1642 } 1643 if (vma) 1644 mm->mmap_cache = vma; 1645 } 1646 } 1647 return vma; 1648 } 1649 1650 EXPORT_SYMBOL(find_vma); 1651 1652 /* 1653 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 1654 */ 1655 struct vm_area_struct * 1656 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1657 struct vm_area_struct **pprev) 1658 { 1659 struct vm_area_struct *vma; 1660 1661 vma = find_vma(mm, addr); 1662 if (vma) { 1663 *pprev = vma->vm_prev; 1664 } else { 1665 struct rb_node *rb_node = mm->mm_rb.rb_node; 1666 *pprev = NULL; 1667 while (rb_node) { 1668 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1669 rb_node = rb_node->rb_right; 1670 } 1671 } 1672 return vma; 1673 } 1674 1675 /* 1676 * Verify that the stack growth is acceptable and 1677 * update accounting. This is shared with both the 1678 * grow-up and grow-down cases. 1679 */ 1680 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1681 { 1682 struct mm_struct *mm = vma->vm_mm; 1683 struct rlimit *rlim = current->signal->rlim; 1684 unsigned long new_start; 1685 1686 /* address space limit tests */ 1687 if (!may_expand_vm(mm, grow)) 1688 return -ENOMEM; 1689 1690 /* Stack limit test */ 1691 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1692 return -ENOMEM; 1693 1694 /* mlock limit tests */ 1695 if (vma->vm_flags & VM_LOCKED) { 1696 unsigned long locked; 1697 unsigned long limit; 1698 locked = mm->locked_vm + grow; 1699 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1700 limit >>= PAGE_SHIFT; 1701 if (locked > limit && !capable(CAP_IPC_LOCK)) 1702 return -ENOMEM; 1703 } 1704 1705 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1706 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1707 vma->vm_end - size; 1708 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1709 return -EFAULT; 1710 1711 /* 1712 * Overcommit.. This must be the final test, as it will 1713 * update security statistics. 1714 */ 1715 if (security_vm_enough_memory_mm(mm, grow)) 1716 return -ENOMEM; 1717 1718 /* Ok, everything looks good - let it rip */ 1719 mm->total_vm += grow; 1720 if (vma->vm_flags & VM_LOCKED) 1721 mm->locked_vm += grow; 1722 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1723 return 0; 1724 } 1725 1726 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1727 /* 1728 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1729 * vma is the last one with address > vma->vm_end. Have to extend vma. 1730 */ 1731 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1732 { 1733 int error; 1734 1735 if (!(vma->vm_flags & VM_GROWSUP)) 1736 return -EFAULT; 1737 1738 /* 1739 * We must make sure the anon_vma is allocated 1740 * so that the anon_vma locking is not a noop. 1741 */ 1742 if (unlikely(anon_vma_prepare(vma))) 1743 return -ENOMEM; 1744 vma_lock_anon_vma(vma); 1745 1746 /* 1747 * vma->vm_start/vm_end cannot change under us because the caller 1748 * is required to hold the mmap_sem in read mode. We need the 1749 * anon_vma lock to serialize against concurrent expand_stacks. 1750 * Also guard against wrapping around to address 0. 1751 */ 1752 if (address < PAGE_ALIGN(address+4)) 1753 address = PAGE_ALIGN(address+4); 1754 else { 1755 vma_unlock_anon_vma(vma); 1756 return -ENOMEM; 1757 } 1758 error = 0; 1759 1760 /* Somebody else might have raced and expanded it already */ 1761 if (address > vma->vm_end) { 1762 unsigned long size, grow; 1763 1764 size = address - vma->vm_start; 1765 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1766 1767 error = -ENOMEM; 1768 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1769 error = acct_stack_growth(vma, size, grow); 1770 if (!error) { 1771 vma->vm_end = address; 1772 perf_event_mmap(vma); 1773 } 1774 } 1775 } 1776 vma_unlock_anon_vma(vma); 1777 khugepaged_enter_vma_merge(vma); 1778 return error; 1779 } 1780 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1781 1782 /* 1783 * vma is the first one with address < vma->vm_start. Have to extend vma. 1784 */ 1785 int expand_downwards(struct vm_area_struct *vma, 1786 unsigned long address) 1787 { 1788 int error; 1789 1790 /* 1791 * We must make sure the anon_vma is allocated 1792 * so that the anon_vma locking is not a noop. 1793 */ 1794 if (unlikely(anon_vma_prepare(vma))) 1795 return -ENOMEM; 1796 1797 address &= PAGE_MASK; 1798 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1799 if (error) 1800 return error; 1801 1802 vma_lock_anon_vma(vma); 1803 1804 /* 1805 * vma->vm_start/vm_end cannot change under us because the caller 1806 * is required to hold the mmap_sem in read mode. We need the 1807 * anon_vma lock to serialize against concurrent expand_stacks. 1808 */ 1809 1810 /* Somebody else might have raced and expanded it already */ 1811 if (address < vma->vm_start) { 1812 unsigned long size, grow; 1813 1814 size = vma->vm_end - address; 1815 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1816 1817 error = -ENOMEM; 1818 if (grow <= vma->vm_pgoff) { 1819 error = acct_stack_growth(vma, size, grow); 1820 if (!error) { 1821 vma->vm_start = address; 1822 vma->vm_pgoff -= grow; 1823 perf_event_mmap(vma); 1824 } 1825 } 1826 } 1827 vma_unlock_anon_vma(vma); 1828 khugepaged_enter_vma_merge(vma); 1829 return error; 1830 } 1831 1832 #ifdef CONFIG_STACK_GROWSUP 1833 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1834 { 1835 return expand_upwards(vma, address); 1836 } 1837 1838 struct vm_area_struct * 1839 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1840 { 1841 struct vm_area_struct *vma, *prev; 1842 1843 addr &= PAGE_MASK; 1844 vma = find_vma_prev(mm, addr, &prev); 1845 if (vma && (vma->vm_start <= addr)) 1846 return vma; 1847 if (!prev || expand_stack(prev, addr)) 1848 return NULL; 1849 if (prev->vm_flags & VM_LOCKED) { 1850 mlock_vma_pages_range(prev, addr, prev->vm_end); 1851 } 1852 return prev; 1853 } 1854 #else 1855 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1856 { 1857 return expand_downwards(vma, address); 1858 } 1859 1860 struct vm_area_struct * 1861 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1862 { 1863 struct vm_area_struct * vma; 1864 unsigned long start; 1865 1866 addr &= PAGE_MASK; 1867 vma = find_vma(mm,addr); 1868 if (!vma) 1869 return NULL; 1870 if (vma->vm_start <= addr) 1871 return vma; 1872 if (!(vma->vm_flags & VM_GROWSDOWN)) 1873 return NULL; 1874 start = vma->vm_start; 1875 if (expand_stack(vma, addr)) 1876 return NULL; 1877 if (vma->vm_flags & VM_LOCKED) { 1878 mlock_vma_pages_range(vma, addr, start); 1879 } 1880 return vma; 1881 } 1882 #endif 1883 1884 /* 1885 * Ok - we have the memory areas we should free on the vma list, 1886 * so release them, and do the vma updates. 1887 * 1888 * Called with the mm semaphore held. 1889 */ 1890 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1891 { 1892 /* Update high watermark before we lower total_vm */ 1893 update_hiwater_vm(mm); 1894 do { 1895 long nrpages = vma_pages(vma); 1896 1897 mm->total_vm -= nrpages; 1898 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1899 vma = remove_vma(vma); 1900 } while (vma); 1901 validate_mm(mm); 1902 } 1903 1904 /* 1905 * Get rid of page table information in the indicated region. 1906 * 1907 * Called with the mm semaphore held. 1908 */ 1909 static void unmap_region(struct mm_struct *mm, 1910 struct vm_area_struct *vma, struct vm_area_struct *prev, 1911 unsigned long start, unsigned long end) 1912 { 1913 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1914 struct mmu_gather tlb; 1915 unsigned long nr_accounted = 0; 1916 1917 lru_add_drain(); 1918 tlb_gather_mmu(&tlb, mm, 0); 1919 update_hiwater_rss(mm); 1920 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1921 vm_unacct_memory(nr_accounted); 1922 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 1923 next ? next->vm_start : 0); 1924 tlb_finish_mmu(&tlb, start, end); 1925 } 1926 1927 /* 1928 * Create a list of vma's touched by the unmap, removing them from the mm's 1929 * vma list as we go.. 1930 */ 1931 static void 1932 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1933 struct vm_area_struct *prev, unsigned long end) 1934 { 1935 struct vm_area_struct **insertion_point; 1936 struct vm_area_struct *tail_vma = NULL; 1937 unsigned long addr; 1938 1939 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1940 vma->vm_prev = NULL; 1941 do { 1942 rb_erase(&vma->vm_rb, &mm->mm_rb); 1943 mm->map_count--; 1944 tail_vma = vma; 1945 vma = vma->vm_next; 1946 } while (vma && vma->vm_start < end); 1947 *insertion_point = vma; 1948 if (vma) 1949 vma->vm_prev = prev; 1950 tail_vma->vm_next = NULL; 1951 if (mm->unmap_area == arch_unmap_area) 1952 addr = prev ? prev->vm_end : mm->mmap_base; 1953 else 1954 addr = vma ? vma->vm_start : mm->mmap_base; 1955 mm->unmap_area(mm, addr); 1956 mm->mmap_cache = NULL; /* Kill the cache. */ 1957 } 1958 1959 /* 1960 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1961 * munmap path where it doesn't make sense to fail. 1962 */ 1963 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1964 unsigned long addr, int new_below) 1965 { 1966 struct mempolicy *pol; 1967 struct vm_area_struct *new; 1968 int err = -ENOMEM; 1969 1970 if (is_vm_hugetlb_page(vma) && (addr & 1971 ~(huge_page_mask(hstate_vma(vma))))) 1972 return -EINVAL; 1973 1974 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1975 if (!new) 1976 goto out_err; 1977 1978 /* most fields are the same, copy all, and then fixup */ 1979 *new = *vma; 1980 1981 INIT_LIST_HEAD(&new->anon_vma_chain); 1982 1983 if (new_below) 1984 new->vm_end = addr; 1985 else { 1986 new->vm_start = addr; 1987 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1988 } 1989 1990 pol = mpol_dup(vma_policy(vma)); 1991 if (IS_ERR(pol)) { 1992 err = PTR_ERR(pol); 1993 goto out_free_vma; 1994 } 1995 vma_set_policy(new, pol); 1996 1997 if (anon_vma_clone(new, vma)) 1998 goto out_free_mpol; 1999 2000 if (new->vm_file) { 2001 get_file(new->vm_file); 2002 if (vma->vm_flags & VM_EXECUTABLE) 2003 added_exe_file_vma(mm); 2004 } 2005 2006 if (new->vm_ops && new->vm_ops->open) 2007 new->vm_ops->open(new); 2008 2009 if (new_below) 2010 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2011 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2012 else 2013 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2014 2015 /* Success. */ 2016 if (!err) 2017 return 0; 2018 2019 /* Clean everything up if vma_adjust failed. */ 2020 if (new->vm_ops && new->vm_ops->close) 2021 new->vm_ops->close(new); 2022 if (new->vm_file) { 2023 if (vma->vm_flags & VM_EXECUTABLE) 2024 removed_exe_file_vma(mm); 2025 fput(new->vm_file); 2026 } 2027 unlink_anon_vmas(new); 2028 out_free_mpol: 2029 mpol_put(pol); 2030 out_free_vma: 2031 kmem_cache_free(vm_area_cachep, new); 2032 out_err: 2033 return err; 2034 } 2035 2036 /* 2037 * Split a vma into two pieces at address 'addr', a new vma is allocated 2038 * either for the first part or the tail. 2039 */ 2040 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2041 unsigned long addr, int new_below) 2042 { 2043 if (mm->map_count >= sysctl_max_map_count) 2044 return -ENOMEM; 2045 2046 return __split_vma(mm, vma, addr, new_below); 2047 } 2048 2049 /* Munmap is split into 2 main parts -- this part which finds 2050 * what needs doing, and the areas themselves, which do the 2051 * work. This now handles partial unmappings. 2052 * Jeremy Fitzhardinge <jeremy@goop.org> 2053 */ 2054 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2055 { 2056 unsigned long end; 2057 struct vm_area_struct *vma, *prev, *last; 2058 2059 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2060 return -EINVAL; 2061 2062 if ((len = PAGE_ALIGN(len)) == 0) 2063 return -EINVAL; 2064 2065 /* Find the first overlapping VMA */ 2066 vma = find_vma(mm, start); 2067 if (!vma) 2068 return 0; 2069 prev = vma->vm_prev; 2070 /* we have start < vma->vm_end */ 2071 2072 /* if it doesn't overlap, we have nothing.. */ 2073 end = start + len; 2074 if (vma->vm_start >= end) 2075 return 0; 2076 2077 /* 2078 * If we need to split any vma, do it now to save pain later. 2079 * 2080 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2081 * unmapped vm_area_struct will remain in use: so lower split_vma 2082 * places tmp vma above, and higher split_vma places tmp vma below. 2083 */ 2084 if (start > vma->vm_start) { 2085 int error; 2086 2087 /* 2088 * Make sure that map_count on return from munmap() will 2089 * not exceed its limit; but let map_count go just above 2090 * its limit temporarily, to help free resources as expected. 2091 */ 2092 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2093 return -ENOMEM; 2094 2095 error = __split_vma(mm, vma, start, 0); 2096 if (error) 2097 return error; 2098 prev = vma; 2099 } 2100 2101 /* Does it split the last one? */ 2102 last = find_vma(mm, end); 2103 if (last && end > last->vm_start) { 2104 int error = __split_vma(mm, last, end, 1); 2105 if (error) 2106 return error; 2107 } 2108 vma = prev? prev->vm_next: mm->mmap; 2109 2110 /* 2111 * unlock any mlock()ed ranges before detaching vmas 2112 */ 2113 if (mm->locked_vm) { 2114 struct vm_area_struct *tmp = vma; 2115 while (tmp && tmp->vm_start < end) { 2116 if (tmp->vm_flags & VM_LOCKED) { 2117 mm->locked_vm -= vma_pages(tmp); 2118 munlock_vma_pages_all(tmp); 2119 } 2120 tmp = tmp->vm_next; 2121 } 2122 } 2123 2124 /* 2125 * Remove the vma's, and unmap the actual pages 2126 */ 2127 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2128 unmap_region(mm, vma, prev, start, end); 2129 2130 /* Fix up all other VM information */ 2131 remove_vma_list(mm, vma); 2132 2133 return 0; 2134 } 2135 EXPORT_SYMBOL(do_munmap); 2136 2137 int vm_munmap(unsigned long start, size_t len) 2138 { 2139 int ret; 2140 struct mm_struct *mm = current->mm; 2141 2142 down_write(&mm->mmap_sem); 2143 ret = do_munmap(mm, start, len); 2144 up_write(&mm->mmap_sem); 2145 return ret; 2146 } 2147 EXPORT_SYMBOL(vm_munmap); 2148 2149 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2150 { 2151 profile_munmap(addr); 2152 return vm_munmap(addr, len); 2153 } 2154 2155 static inline void verify_mm_writelocked(struct mm_struct *mm) 2156 { 2157 #ifdef CONFIG_DEBUG_VM 2158 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2159 WARN_ON(1); 2160 up_read(&mm->mmap_sem); 2161 } 2162 #endif 2163 } 2164 2165 /* 2166 * this is really a simplified "do_mmap". it only handles 2167 * anonymous maps. eventually we may be able to do some 2168 * brk-specific accounting here. 2169 */ 2170 static unsigned long do_brk(unsigned long addr, unsigned long len) 2171 { 2172 struct mm_struct * mm = current->mm; 2173 struct vm_area_struct * vma, * prev; 2174 unsigned long flags; 2175 struct rb_node ** rb_link, * rb_parent; 2176 pgoff_t pgoff = addr >> PAGE_SHIFT; 2177 int error; 2178 2179 len = PAGE_ALIGN(len); 2180 if (!len) 2181 return addr; 2182 2183 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2184 if (error) 2185 return error; 2186 2187 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2188 2189 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2190 if (error & ~PAGE_MASK) 2191 return error; 2192 2193 /* 2194 * mlock MCL_FUTURE? 2195 */ 2196 if (mm->def_flags & VM_LOCKED) { 2197 unsigned long locked, lock_limit; 2198 locked = len >> PAGE_SHIFT; 2199 locked += mm->locked_vm; 2200 lock_limit = rlimit(RLIMIT_MEMLOCK); 2201 lock_limit >>= PAGE_SHIFT; 2202 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2203 return -EAGAIN; 2204 } 2205 2206 /* 2207 * mm->mmap_sem is required to protect against another thread 2208 * changing the mappings in case we sleep. 2209 */ 2210 verify_mm_writelocked(mm); 2211 2212 /* 2213 * Clear old maps. this also does some error checking for us 2214 */ 2215 munmap_back: 2216 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2217 if (vma && vma->vm_start < addr + len) { 2218 if (do_munmap(mm, addr, len)) 2219 return -ENOMEM; 2220 goto munmap_back; 2221 } 2222 2223 /* Check against address space limits *after* clearing old maps... */ 2224 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2225 return -ENOMEM; 2226 2227 if (mm->map_count > sysctl_max_map_count) 2228 return -ENOMEM; 2229 2230 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2231 return -ENOMEM; 2232 2233 /* Can we just expand an old private anonymous mapping? */ 2234 vma = vma_merge(mm, prev, addr, addr + len, flags, 2235 NULL, NULL, pgoff, NULL); 2236 if (vma) 2237 goto out; 2238 2239 /* 2240 * create a vma struct for an anonymous mapping 2241 */ 2242 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2243 if (!vma) { 2244 vm_unacct_memory(len >> PAGE_SHIFT); 2245 return -ENOMEM; 2246 } 2247 2248 INIT_LIST_HEAD(&vma->anon_vma_chain); 2249 vma->vm_mm = mm; 2250 vma->vm_start = addr; 2251 vma->vm_end = addr + len; 2252 vma->vm_pgoff = pgoff; 2253 vma->vm_flags = flags; 2254 vma->vm_page_prot = vm_get_page_prot(flags); 2255 vma_link(mm, vma, prev, rb_link, rb_parent); 2256 out: 2257 perf_event_mmap(vma); 2258 mm->total_vm += len >> PAGE_SHIFT; 2259 if (flags & VM_LOCKED) { 2260 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2261 mm->locked_vm += (len >> PAGE_SHIFT); 2262 } 2263 return addr; 2264 } 2265 2266 unsigned long vm_brk(unsigned long addr, unsigned long len) 2267 { 2268 struct mm_struct *mm = current->mm; 2269 unsigned long ret; 2270 2271 down_write(&mm->mmap_sem); 2272 ret = do_brk(addr, len); 2273 up_write(&mm->mmap_sem); 2274 return ret; 2275 } 2276 EXPORT_SYMBOL(vm_brk); 2277 2278 /* Release all mmaps. */ 2279 void exit_mmap(struct mm_struct *mm) 2280 { 2281 struct mmu_gather tlb; 2282 struct vm_area_struct *vma; 2283 unsigned long nr_accounted = 0; 2284 2285 /* mm's last user has gone, and its about to be pulled down */ 2286 mmu_notifier_release(mm); 2287 2288 if (mm->locked_vm) { 2289 vma = mm->mmap; 2290 while (vma) { 2291 if (vma->vm_flags & VM_LOCKED) 2292 munlock_vma_pages_all(vma); 2293 vma = vma->vm_next; 2294 } 2295 } 2296 2297 arch_exit_mmap(mm); 2298 2299 vma = mm->mmap; 2300 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2301 return; 2302 2303 lru_add_drain(); 2304 flush_cache_mm(mm); 2305 tlb_gather_mmu(&tlb, mm, 1); 2306 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2307 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2308 unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2309 vm_unacct_memory(nr_accounted); 2310 2311 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 2312 tlb_finish_mmu(&tlb, 0, -1); 2313 2314 /* 2315 * Walk the list again, actually closing and freeing it, 2316 * with preemption enabled, without holding any MM locks. 2317 */ 2318 while (vma) 2319 vma = remove_vma(vma); 2320 2321 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2322 } 2323 2324 /* Insert vm structure into process list sorted by address 2325 * and into the inode's i_mmap tree. If vm_file is non-NULL 2326 * then i_mmap_mutex is taken here. 2327 */ 2328 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2329 { 2330 struct vm_area_struct * __vma, * prev; 2331 struct rb_node ** rb_link, * rb_parent; 2332 2333 /* 2334 * The vm_pgoff of a purely anonymous vma should be irrelevant 2335 * until its first write fault, when page's anon_vma and index 2336 * are set. But now set the vm_pgoff it will almost certainly 2337 * end up with (unless mremap moves it elsewhere before that 2338 * first wfault), so /proc/pid/maps tells a consistent story. 2339 * 2340 * By setting it to reflect the virtual start address of the 2341 * vma, merges and splits can happen in a seamless way, just 2342 * using the existing file pgoff checks and manipulations. 2343 * Similarly in do_mmap_pgoff and in do_brk. 2344 */ 2345 if (!vma->vm_file) { 2346 BUG_ON(vma->anon_vma); 2347 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2348 } 2349 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2350 if (__vma && __vma->vm_start < vma->vm_end) 2351 return -ENOMEM; 2352 if ((vma->vm_flags & VM_ACCOUNT) && 2353 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2354 return -ENOMEM; 2355 vma_link(mm, vma, prev, rb_link, rb_parent); 2356 return 0; 2357 } 2358 2359 /* 2360 * Copy the vma structure to a new location in the same mm, 2361 * prior to moving page table entries, to effect an mremap move. 2362 */ 2363 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2364 unsigned long addr, unsigned long len, pgoff_t pgoff) 2365 { 2366 struct vm_area_struct *vma = *vmap; 2367 unsigned long vma_start = vma->vm_start; 2368 struct mm_struct *mm = vma->vm_mm; 2369 struct vm_area_struct *new_vma, *prev; 2370 struct rb_node **rb_link, *rb_parent; 2371 struct mempolicy *pol; 2372 bool faulted_in_anon_vma = true; 2373 2374 /* 2375 * If anonymous vma has not yet been faulted, update new pgoff 2376 * to match new location, to increase its chance of merging. 2377 */ 2378 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2379 pgoff = addr >> PAGE_SHIFT; 2380 faulted_in_anon_vma = false; 2381 } 2382 2383 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2384 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2385 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2386 if (new_vma) { 2387 /* 2388 * Source vma may have been merged into new_vma 2389 */ 2390 if (unlikely(vma_start >= new_vma->vm_start && 2391 vma_start < new_vma->vm_end)) { 2392 /* 2393 * The only way we can get a vma_merge with 2394 * self during an mremap is if the vma hasn't 2395 * been faulted in yet and we were allowed to 2396 * reset the dst vma->vm_pgoff to the 2397 * destination address of the mremap to allow 2398 * the merge to happen. mremap must change the 2399 * vm_pgoff linearity between src and dst vmas 2400 * (in turn preventing a vma_merge) to be 2401 * safe. It is only safe to keep the vm_pgoff 2402 * linear if there are no pages mapped yet. 2403 */ 2404 VM_BUG_ON(faulted_in_anon_vma); 2405 *vmap = new_vma; 2406 } else 2407 anon_vma_moveto_tail(new_vma); 2408 } else { 2409 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2410 if (new_vma) { 2411 *new_vma = *vma; 2412 pol = mpol_dup(vma_policy(vma)); 2413 if (IS_ERR(pol)) 2414 goto out_free_vma; 2415 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2416 if (anon_vma_clone(new_vma, vma)) 2417 goto out_free_mempol; 2418 vma_set_policy(new_vma, pol); 2419 new_vma->vm_start = addr; 2420 new_vma->vm_end = addr + len; 2421 new_vma->vm_pgoff = pgoff; 2422 if (new_vma->vm_file) { 2423 get_file(new_vma->vm_file); 2424 if (vma->vm_flags & VM_EXECUTABLE) 2425 added_exe_file_vma(mm); 2426 } 2427 if (new_vma->vm_ops && new_vma->vm_ops->open) 2428 new_vma->vm_ops->open(new_vma); 2429 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2430 } 2431 } 2432 return new_vma; 2433 2434 out_free_mempol: 2435 mpol_put(pol); 2436 out_free_vma: 2437 kmem_cache_free(vm_area_cachep, new_vma); 2438 return NULL; 2439 } 2440 2441 /* 2442 * Return true if the calling process may expand its vm space by the passed 2443 * number of pages 2444 */ 2445 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2446 { 2447 unsigned long cur = mm->total_vm; /* pages */ 2448 unsigned long lim; 2449 2450 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2451 2452 if (cur + npages > lim) 2453 return 0; 2454 return 1; 2455 } 2456 2457 2458 static int special_mapping_fault(struct vm_area_struct *vma, 2459 struct vm_fault *vmf) 2460 { 2461 pgoff_t pgoff; 2462 struct page **pages; 2463 2464 /* 2465 * special mappings have no vm_file, and in that case, the mm 2466 * uses vm_pgoff internally. So we have to subtract it from here. 2467 * We are allowed to do this because we are the mm; do not copy 2468 * this code into drivers! 2469 */ 2470 pgoff = vmf->pgoff - vma->vm_pgoff; 2471 2472 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2473 pgoff--; 2474 2475 if (*pages) { 2476 struct page *page = *pages; 2477 get_page(page); 2478 vmf->page = page; 2479 return 0; 2480 } 2481 2482 return VM_FAULT_SIGBUS; 2483 } 2484 2485 /* 2486 * Having a close hook prevents vma merging regardless of flags. 2487 */ 2488 static void special_mapping_close(struct vm_area_struct *vma) 2489 { 2490 } 2491 2492 static const struct vm_operations_struct special_mapping_vmops = { 2493 .close = special_mapping_close, 2494 .fault = special_mapping_fault, 2495 }; 2496 2497 /* 2498 * Called with mm->mmap_sem held for writing. 2499 * Insert a new vma covering the given region, with the given flags. 2500 * Its pages are supplied by the given array of struct page *. 2501 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2502 * The region past the last page supplied will always produce SIGBUS. 2503 * The array pointer and the pages it points to are assumed to stay alive 2504 * for as long as this mapping might exist. 2505 */ 2506 int install_special_mapping(struct mm_struct *mm, 2507 unsigned long addr, unsigned long len, 2508 unsigned long vm_flags, struct page **pages) 2509 { 2510 int ret; 2511 struct vm_area_struct *vma; 2512 2513 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2514 if (unlikely(vma == NULL)) 2515 return -ENOMEM; 2516 2517 INIT_LIST_HEAD(&vma->anon_vma_chain); 2518 vma->vm_mm = mm; 2519 vma->vm_start = addr; 2520 vma->vm_end = addr + len; 2521 2522 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2523 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2524 2525 vma->vm_ops = &special_mapping_vmops; 2526 vma->vm_private_data = pages; 2527 2528 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 2529 if (ret) 2530 goto out; 2531 2532 ret = insert_vm_struct(mm, vma); 2533 if (ret) 2534 goto out; 2535 2536 mm->total_vm += len >> PAGE_SHIFT; 2537 2538 perf_event_mmap(vma); 2539 2540 return 0; 2541 2542 out: 2543 kmem_cache_free(vm_area_cachep, vma); 2544 return ret; 2545 } 2546 2547 static DEFINE_MUTEX(mm_all_locks_mutex); 2548 2549 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2550 { 2551 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2552 /* 2553 * The LSB of head.next can't change from under us 2554 * because we hold the mm_all_locks_mutex. 2555 */ 2556 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem); 2557 /* 2558 * We can safely modify head.next after taking the 2559 * anon_vma->root->mutex. If some other vma in this mm shares 2560 * the same anon_vma we won't take it again. 2561 * 2562 * No need of atomic instructions here, head.next 2563 * can't change from under us thanks to the 2564 * anon_vma->root->mutex. 2565 */ 2566 if (__test_and_set_bit(0, (unsigned long *) 2567 &anon_vma->root->head.next)) 2568 BUG(); 2569 } 2570 } 2571 2572 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2573 { 2574 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2575 /* 2576 * AS_MM_ALL_LOCKS can't change from under us because 2577 * we hold the mm_all_locks_mutex. 2578 * 2579 * Operations on ->flags have to be atomic because 2580 * even if AS_MM_ALL_LOCKS is stable thanks to the 2581 * mm_all_locks_mutex, there may be other cpus 2582 * changing other bitflags in parallel to us. 2583 */ 2584 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2585 BUG(); 2586 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 2587 } 2588 } 2589 2590 /* 2591 * This operation locks against the VM for all pte/vma/mm related 2592 * operations that could ever happen on a certain mm. This includes 2593 * vmtruncate, try_to_unmap, and all page faults. 2594 * 2595 * The caller must take the mmap_sem in write mode before calling 2596 * mm_take_all_locks(). The caller isn't allowed to release the 2597 * mmap_sem until mm_drop_all_locks() returns. 2598 * 2599 * mmap_sem in write mode is required in order to block all operations 2600 * that could modify pagetables and free pages without need of 2601 * altering the vma layout (for example populate_range() with 2602 * nonlinear vmas). It's also needed in write mode to avoid new 2603 * anon_vmas to be associated with existing vmas. 2604 * 2605 * A single task can't take more than one mm_take_all_locks() in a row 2606 * or it would deadlock. 2607 * 2608 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2609 * mapping->flags avoid to take the same lock twice, if more than one 2610 * vma in this mm is backed by the same anon_vma or address_space. 2611 * 2612 * We can take all the locks in random order because the VM code 2613 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never 2614 * takes more than one of them in a row. Secondly we're protected 2615 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2616 * 2617 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2618 * that may have to take thousand of locks. 2619 * 2620 * mm_take_all_locks() can fail if it's interrupted by signals. 2621 */ 2622 int mm_take_all_locks(struct mm_struct *mm) 2623 { 2624 struct vm_area_struct *vma; 2625 struct anon_vma_chain *avc; 2626 2627 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2628 2629 mutex_lock(&mm_all_locks_mutex); 2630 2631 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2632 if (signal_pending(current)) 2633 goto out_unlock; 2634 if (vma->vm_file && vma->vm_file->f_mapping) 2635 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2636 } 2637 2638 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2639 if (signal_pending(current)) 2640 goto out_unlock; 2641 if (vma->anon_vma) 2642 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2643 vm_lock_anon_vma(mm, avc->anon_vma); 2644 } 2645 2646 return 0; 2647 2648 out_unlock: 2649 mm_drop_all_locks(mm); 2650 return -EINTR; 2651 } 2652 2653 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2654 { 2655 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2656 /* 2657 * The LSB of head.next can't change to 0 from under 2658 * us because we hold the mm_all_locks_mutex. 2659 * 2660 * We must however clear the bitflag before unlocking 2661 * the vma so the users using the anon_vma->head will 2662 * never see our bitflag. 2663 * 2664 * No need of atomic instructions here, head.next 2665 * can't change from under us until we release the 2666 * anon_vma->root->mutex. 2667 */ 2668 if (!__test_and_clear_bit(0, (unsigned long *) 2669 &anon_vma->root->head.next)) 2670 BUG(); 2671 anon_vma_unlock(anon_vma); 2672 } 2673 } 2674 2675 static void vm_unlock_mapping(struct address_space *mapping) 2676 { 2677 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2678 /* 2679 * AS_MM_ALL_LOCKS can't change to 0 from under us 2680 * because we hold the mm_all_locks_mutex. 2681 */ 2682 mutex_unlock(&mapping->i_mmap_mutex); 2683 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2684 &mapping->flags)) 2685 BUG(); 2686 } 2687 } 2688 2689 /* 2690 * The mmap_sem cannot be released by the caller until 2691 * mm_drop_all_locks() returns. 2692 */ 2693 void mm_drop_all_locks(struct mm_struct *mm) 2694 { 2695 struct vm_area_struct *vma; 2696 struct anon_vma_chain *avc; 2697 2698 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2699 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2700 2701 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2702 if (vma->anon_vma) 2703 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2704 vm_unlock_anon_vma(avc->anon_vma); 2705 if (vma->vm_file && vma->vm_file->f_mapping) 2706 vm_unlock_mapping(vma->vm_file->f_mapping); 2707 } 2708 2709 mutex_unlock(&mm_all_locks_mutex); 2710 } 2711 2712 /* 2713 * initialise the VMA slab 2714 */ 2715 void __init mmap_init(void) 2716 { 2717 int ret; 2718 2719 ret = percpu_counter_init(&vm_committed_as, 0); 2720 VM_BUG_ON(ret); 2721 } 2722