xref: /openbmc/linux/mm/mmap.c (revision 63dc02bd)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38 
39 #include "internal.h"
40 
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)	(0)
43 #endif
44 
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)		(addr)
47 #endif
48 
49 static void unmap_region(struct mm_struct *mm,
50 		struct vm_area_struct *vma, struct vm_area_struct *prev,
51 		unsigned long start, unsigned long end);
52 
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58 
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type	prot
64  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
65  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
66  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
67  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
68  *
69  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
70  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
71  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78 
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 	return __pgprot(pgprot_val(protection_map[vm_flags &
82 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86 
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 /*
91  * Make sure vm_committed_as in one cacheline and not cacheline shared with
92  * other variables. It can be updated by several CPUs frequently.
93  */
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95 
96 /*
97  * Check that a process has enough memory to allocate a new virtual
98  * mapping. 0 means there is enough memory for the allocation to
99  * succeed and -ENOMEM implies there is not.
100  *
101  * We currently support three overcommit policies, which are set via the
102  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
103  *
104  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105  * Additional code 2002 Jul 20 by Robert Love.
106  *
107  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108  *
109  * Note this is a helper function intended to be used by LSMs which
110  * wish to use this logic.
111  */
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113 {
114 	unsigned long free, allowed;
115 
116 	vm_acct_memory(pages);
117 
118 	/*
119 	 * Sometimes we want to use more memory than we have
120 	 */
121 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122 		return 0;
123 
124 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125 		free = global_page_state(NR_FREE_PAGES);
126 		free += global_page_state(NR_FILE_PAGES);
127 
128 		/*
129 		 * shmem pages shouldn't be counted as free in this
130 		 * case, they can't be purged, only swapped out, and
131 		 * that won't affect the overall amount of available
132 		 * memory in the system.
133 		 */
134 		free -= global_page_state(NR_SHMEM);
135 
136 		free += nr_swap_pages;
137 
138 		/*
139 		 * Any slabs which are created with the
140 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141 		 * which are reclaimable, under pressure.  The dentry
142 		 * cache and most inode caches should fall into this
143 		 */
144 		free += global_page_state(NR_SLAB_RECLAIMABLE);
145 
146 		/*
147 		 * Leave reserved pages. The pages are not for anonymous pages.
148 		 */
149 		if (free <= totalreserve_pages)
150 			goto error;
151 		else
152 			free -= totalreserve_pages;
153 
154 		/*
155 		 * Leave the last 3% for root
156 		 */
157 		if (!cap_sys_admin)
158 			free -= free / 32;
159 
160 		if (free > pages)
161 			return 0;
162 
163 		goto error;
164 	}
165 
166 	allowed = (totalram_pages - hugetlb_total_pages())
167 	       	* sysctl_overcommit_ratio / 100;
168 	/*
169 	 * Leave the last 3% for root
170 	 */
171 	if (!cap_sys_admin)
172 		allowed -= allowed / 32;
173 	allowed += total_swap_pages;
174 
175 	/* Don't let a single process grow too big:
176 	   leave 3% of the size of this process for other processes */
177 	if (mm)
178 		allowed -= mm->total_vm / 32;
179 
180 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
181 		return 0;
182 error:
183 	vm_unacct_memory(pages);
184 
185 	return -ENOMEM;
186 }
187 
188 /*
189  * Requires inode->i_mapping->i_mmap_mutex
190  */
191 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
192 		struct file *file, struct address_space *mapping)
193 {
194 	if (vma->vm_flags & VM_DENYWRITE)
195 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
196 	if (vma->vm_flags & VM_SHARED)
197 		mapping->i_mmap_writable--;
198 
199 	flush_dcache_mmap_lock(mapping);
200 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
201 		list_del_init(&vma->shared.vm_set.list);
202 	else
203 		vma_prio_tree_remove(vma, &mapping->i_mmap);
204 	flush_dcache_mmap_unlock(mapping);
205 }
206 
207 /*
208  * Unlink a file-based vm structure from its prio_tree, to hide
209  * vma from rmap and vmtruncate before freeing its page tables.
210  */
211 void unlink_file_vma(struct vm_area_struct *vma)
212 {
213 	struct file *file = vma->vm_file;
214 
215 	if (file) {
216 		struct address_space *mapping = file->f_mapping;
217 		mutex_lock(&mapping->i_mmap_mutex);
218 		__remove_shared_vm_struct(vma, file, mapping);
219 		mutex_unlock(&mapping->i_mmap_mutex);
220 	}
221 }
222 
223 /*
224  * Close a vm structure and free it, returning the next.
225  */
226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
227 {
228 	struct vm_area_struct *next = vma->vm_next;
229 
230 	might_sleep();
231 	if (vma->vm_ops && vma->vm_ops->close)
232 		vma->vm_ops->close(vma);
233 	if (vma->vm_file) {
234 		fput(vma->vm_file);
235 		if (vma->vm_flags & VM_EXECUTABLE)
236 			removed_exe_file_vma(vma->vm_mm);
237 	}
238 	mpol_put(vma_policy(vma));
239 	kmem_cache_free(vm_area_cachep, vma);
240 	return next;
241 }
242 
243 static unsigned long do_brk(unsigned long addr, unsigned long len);
244 
245 SYSCALL_DEFINE1(brk, unsigned long, brk)
246 {
247 	unsigned long rlim, retval;
248 	unsigned long newbrk, oldbrk;
249 	struct mm_struct *mm = current->mm;
250 	unsigned long min_brk;
251 
252 	down_write(&mm->mmap_sem);
253 
254 #ifdef CONFIG_COMPAT_BRK
255 	/*
256 	 * CONFIG_COMPAT_BRK can still be overridden by setting
257 	 * randomize_va_space to 2, which will still cause mm->start_brk
258 	 * to be arbitrarily shifted
259 	 */
260 	if (current->brk_randomized)
261 		min_brk = mm->start_brk;
262 	else
263 		min_brk = mm->end_data;
264 #else
265 	min_brk = mm->start_brk;
266 #endif
267 	if (brk < min_brk)
268 		goto out;
269 
270 	/*
271 	 * Check against rlimit here. If this check is done later after the test
272 	 * of oldbrk with newbrk then it can escape the test and let the data
273 	 * segment grow beyond its set limit the in case where the limit is
274 	 * not page aligned -Ram Gupta
275 	 */
276 	rlim = rlimit(RLIMIT_DATA);
277 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
278 			(mm->end_data - mm->start_data) > rlim)
279 		goto out;
280 
281 	newbrk = PAGE_ALIGN(brk);
282 	oldbrk = PAGE_ALIGN(mm->brk);
283 	if (oldbrk == newbrk)
284 		goto set_brk;
285 
286 	/* Always allow shrinking brk. */
287 	if (brk <= mm->brk) {
288 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
289 			goto set_brk;
290 		goto out;
291 	}
292 
293 	/* Check against existing mmap mappings. */
294 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
295 		goto out;
296 
297 	/* Ok, looks good - let it rip. */
298 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
299 		goto out;
300 set_brk:
301 	mm->brk = brk;
302 out:
303 	retval = mm->brk;
304 	up_write(&mm->mmap_sem);
305 	return retval;
306 }
307 
308 #ifdef DEBUG_MM_RB
309 static int browse_rb(struct rb_root *root)
310 {
311 	int i = 0, j;
312 	struct rb_node *nd, *pn = NULL;
313 	unsigned long prev = 0, pend = 0;
314 
315 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
316 		struct vm_area_struct *vma;
317 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
318 		if (vma->vm_start < prev)
319 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
320 		if (vma->vm_start < pend)
321 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
322 		if (vma->vm_start > vma->vm_end)
323 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
324 		i++;
325 		pn = nd;
326 		prev = vma->vm_start;
327 		pend = vma->vm_end;
328 	}
329 	j = 0;
330 	for (nd = pn; nd; nd = rb_prev(nd)) {
331 		j++;
332 	}
333 	if (i != j)
334 		printk("backwards %d, forwards %d\n", j, i), i = 0;
335 	return i;
336 }
337 
338 void validate_mm(struct mm_struct *mm)
339 {
340 	int bug = 0;
341 	int i = 0;
342 	struct vm_area_struct *tmp = mm->mmap;
343 	while (tmp) {
344 		tmp = tmp->vm_next;
345 		i++;
346 	}
347 	if (i != mm->map_count)
348 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
349 	i = browse_rb(&mm->mm_rb);
350 	if (i != mm->map_count)
351 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
352 	BUG_ON(bug);
353 }
354 #else
355 #define validate_mm(mm) do { } while (0)
356 #endif
357 
358 static struct vm_area_struct *
359 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
360 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
361 		struct rb_node ** rb_parent)
362 {
363 	struct vm_area_struct * vma;
364 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
365 
366 	__rb_link = &mm->mm_rb.rb_node;
367 	rb_prev = __rb_parent = NULL;
368 	vma = NULL;
369 
370 	while (*__rb_link) {
371 		struct vm_area_struct *vma_tmp;
372 
373 		__rb_parent = *__rb_link;
374 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
375 
376 		if (vma_tmp->vm_end > addr) {
377 			vma = vma_tmp;
378 			if (vma_tmp->vm_start <= addr)
379 				break;
380 			__rb_link = &__rb_parent->rb_left;
381 		} else {
382 			rb_prev = __rb_parent;
383 			__rb_link = &__rb_parent->rb_right;
384 		}
385 	}
386 
387 	*pprev = NULL;
388 	if (rb_prev)
389 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
390 	*rb_link = __rb_link;
391 	*rb_parent = __rb_parent;
392 	return vma;
393 }
394 
395 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
396 		struct rb_node **rb_link, struct rb_node *rb_parent)
397 {
398 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
399 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
400 }
401 
402 static void __vma_link_file(struct vm_area_struct *vma)
403 {
404 	struct file *file;
405 
406 	file = vma->vm_file;
407 	if (file) {
408 		struct address_space *mapping = file->f_mapping;
409 
410 		if (vma->vm_flags & VM_DENYWRITE)
411 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
412 		if (vma->vm_flags & VM_SHARED)
413 			mapping->i_mmap_writable++;
414 
415 		flush_dcache_mmap_lock(mapping);
416 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
417 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
418 		else
419 			vma_prio_tree_insert(vma, &mapping->i_mmap);
420 		flush_dcache_mmap_unlock(mapping);
421 	}
422 }
423 
424 static void
425 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
426 	struct vm_area_struct *prev, struct rb_node **rb_link,
427 	struct rb_node *rb_parent)
428 {
429 	__vma_link_list(mm, vma, prev, rb_parent);
430 	__vma_link_rb(mm, vma, rb_link, rb_parent);
431 }
432 
433 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
434 			struct vm_area_struct *prev, struct rb_node **rb_link,
435 			struct rb_node *rb_parent)
436 {
437 	struct address_space *mapping = NULL;
438 
439 	if (vma->vm_file)
440 		mapping = vma->vm_file->f_mapping;
441 
442 	if (mapping)
443 		mutex_lock(&mapping->i_mmap_mutex);
444 
445 	__vma_link(mm, vma, prev, rb_link, rb_parent);
446 	__vma_link_file(vma);
447 
448 	if (mapping)
449 		mutex_unlock(&mapping->i_mmap_mutex);
450 
451 	mm->map_count++;
452 	validate_mm(mm);
453 }
454 
455 /*
456  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
457  * mm's list and rbtree.  It has already been inserted into the prio_tree.
458  */
459 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
460 {
461 	struct vm_area_struct *__vma, *prev;
462 	struct rb_node **rb_link, *rb_parent;
463 
464 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
465 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
466 	__vma_link(mm, vma, prev, rb_link, rb_parent);
467 	mm->map_count++;
468 }
469 
470 static inline void
471 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
472 		struct vm_area_struct *prev)
473 {
474 	struct vm_area_struct *next = vma->vm_next;
475 
476 	prev->vm_next = next;
477 	if (next)
478 		next->vm_prev = prev;
479 	rb_erase(&vma->vm_rb, &mm->mm_rb);
480 	if (mm->mmap_cache == vma)
481 		mm->mmap_cache = prev;
482 }
483 
484 /*
485  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
486  * is already present in an i_mmap tree without adjusting the tree.
487  * The following helper function should be used when such adjustments
488  * are necessary.  The "insert" vma (if any) is to be inserted
489  * before we drop the necessary locks.
490  */
491 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
492 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
493 {
494 	struct mm_struct *mm = vma->vm_mm;
495 	struct vm_area_struct *next = vma->vm_next;
496 	struct vm_area_struct *importer = NULL;
497 	struct address_space *mapping = NULL;
498 	struct prio_tree_root *root = NULL;
499 	struct anon_vma *anon_vma = NULL;
500 	struct file *file = vma->vm_file;
501 	long adjust_next = 0;
502 	int remove_next = 0;
503 
504 	if (next && !insert) {
505 		struct vm_area_struct *exporter = NULL;
506 
507 		if (end >= next->vm_end) {
508 			/*
509 			 * vma expands, overlapping all the next, and
510 			 * perhaps the one after too (mprotect case 6).
511 			 */
512 again:			remove_next = 1 + (end > next->vm_end);
513 			end = next->vm_end;
514 			exporter = next;
515 			importer = vma;
516 		} else if (end > next->vm_start) {
517 			/*
518 			 * vma expands, overlapping part of the next:
519 			 * mprotect case 5 shifting the boundary up.
520 			 */
521 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
522 			exporter = next;
523 			importer = vma;
524 		} else if (end < vma->vm_end) {
525 			/*
526 			 * vma shrinks, and !insert tells it's not
527 			 * split_vma inserting another: so it must be
528 			 * mprotect case 4 shifting the boundary down.
529 			 */
530 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
531 			exporter = vma;
532 			importer = next;
533 		}
534 
535 		/*
536 		 * Easily overlooked: when mprotect shifts the boundary,
537 		 * make sure the expanding vma has anon_vma set if the
538 		 * shrinking vma had, to cover any anon pages imported.
539 		 */
540 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
541 			if (anon_vma_clone(importer, exporter))
542 				return -ENOMEM;
543 			importer->anon_vma = exporter->anon_vma;
544 		}
545 	}
546 
547 	if (file) {
548 		mapping = file->f_mapping;
549 		if (!(vma->vm_flags & VM_NONLINEAR))
550 			root = &mapping->i_mmap;
551 		mutex_lock(&mapping->i_mmap_mutex);
552 		if (insert) {
553 			/*
554 			 * Put into prio_tree now, so instantiated pages
555 			 * are visible to arm/parisc __flush_dcache_page
556 			 * throughout; but we cannot insert into address
557 			 * space until vma start or end is updated.
558 			 */
559 			__vma_link_file(insert);
560 		}
561 	}
562 
563 	vma_adjust_trans_huge(vma, start, end, adjust_next);
564 
565 	/*
566 	 * When changing only vma->vm_end, we don't really need anon_vma
567 	 * lock. This is a fairly rare case by itself, but the anon_vma
568 	 * lock may be shared between many sibling processes.  Skipping
569 	 * the lock for brk adjustments makes a difference sometimes.
570 	 */
571 	if (vma->anon_vma && (importer || start != vma->vm_start)) {
572 		anon_vma = vma->anon_vma;
573 		anon_vma_lock(anon_vma);
574 	}
575 
576 	if (root) {
577 		flush_dcache_mmap_lock(mapping);
578 		vma_prio_tree_remove(vma, root);
579 		if (adjust_next)
580 			vma_prio_tree_remove(next, root);
581 	}
582 
583 	vma->vm_start = start;
584 	vma->vm_end = end;
585 	vma->vm_pgoff = pgoff;
586 	if (adjust_next) {
587 		next->vm_start += adjust_next << PAGE_SHIFT;
588 		next->vm_pgoff += adjust_next;
589 	}
590 
591 	if (root) {
592 		if (adjust_next)
593 			vma_prio_tree_insert(next, root);
594 		vma_prio_tree_insert(vma, root);
595 		flush_dcache_mmap_unlock(mapping);
596 	}
597 
598 	if (remove_next) {
599 		/*
600 		 * vma_merge has merged next into vma, and needs
601 		 * us to remove next before dropping the locks.
602 		 */
603 		__vma_unlink(mm, next, vma);
604 		if (file)
605 			__remove_shared_vm_struct(next, file, mapping);
606 	} else if (insert) {
607 		/*
608 		 * split_vma has split insert from vma, and needs
609 		 * us to insert it before dropping the locks
610 		 * (it may either follow vma or precede it).
611 		 */
612 		__insert_vm_struct(mm, insert);
613 	}
614 
615 	if (anon_vma)
616 		anon_vma_unlock(anon_vma);
617 	if (mapping)
618 		mutex_unlock(&mapping->i_mmap_mutex);
619 
620 	if (remove_next) {
621 		if (file) {
622 			fput(file);
623 			if (next->vm_flags & VM_EXECUTABLE)
624 				removed_exe_file_vma(mm);
625 		}
626 		if (next->anon_vma)
627 			anon_vma_merge(vma, next);
628 		mm->map_count--;
629 		mpol_put(vma_policy(next));
630 		kmem_cache_free(vm_area_cachep, next);
631 		/*
632 		 * In mprotect's case 6 (see comments on vma_merge),
633 		 * we must remove another next too. It would clutter
634 		 * up the code too much to do both in one go.
635 		 */
636 		if (remove_next == 2) {
637 			next = vma->vm_next;
638 			goto again;
639 		}
640 	}
641 
642 	validate_mm(mm);
643 
644 	return 0;
645 }
646 
647 /*
648  * If the vma has a ->close operation then the driver probably needs to release
649  * per-vma resources, so we don't attempt to merge those.
650  */
651 static inline int is_mergeable_vma(struct vm_area_struct *vma,
652 			struct file *file, unsigned long vm_flags)
653 {
654 	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
655 	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
656 		return 0;
657 	if (vma->vm_file != file)
658 		return 0;
659 	if (vma->vm_ops && vma->vm_ops->close)
660 		return 0;
661 	return 1;
662 }
663 
664 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
665 					struct anon_vma *anon_vma2,
666 					struct vm_area_struct *vma)
667 {
668 	/*
669 	 * The list_is_singular() test is to avoid merging VMA cloned from
670 	 * parents. This can improve scalability caused by anon_vma lock.
671 	 */
672 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
673 		list_is_singular(&vma->anon_vma_chain)))
674 		return 1;
675 	return anon_vma1 == anon_vma2;
676 }
677 
678 /*
679  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
680  * in front of (at a lower virtual address and file offset than) the vma.
681  *
682  * We cannot merge two vmas if they have differently assigned (non-NULL)
683  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
684  *
685  * We don't check here for the merged mmap wrapping around the end of pagecache
686  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
687  * wrap, nor mmaps which cover the final page at index -1UL.
688  */
689 static int
690 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
691 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
692 {
693 	if (is_mergeable_vma(vma, file, vm_flags) &&
694 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
695 		if (vma->vm_pgoff == vm_pgoff)
696 			return 1;
697 	}
698 	return 0;
699 }
700 
701 /*
702  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
703  * beyond (at a higher virtual address and file offset than) the vma.
704  *
705  * We cannot merge two vmas if they have differently assigned (non-NULL)
706  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
707  */
708 static int
709 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
710 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
711 {
712 	if (is_mergeable_vma(vma, file, vm_flags) &&
713 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
714 		pgoff_t vm_pglen;
715 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
716 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
717 			return 1;
718 	}
719 	return 0;
720 }
721 
722 /*
723  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
724  * whether that can be merged with its predecessor or its successor.
725  * Or both (it neatly fills a hole).
726  *
727  * In most cases - when called for mmap, brk or mremap - [addr,end) is
728  * certain not to be mapped by the time vma_merge is called; but when
729  * called for mprotect, it is certain to be already mapped (either at
730  * an offset within prev, or at the start of next), and the flags of
731  * this area are about to be changed to vm_flags - and the no-change
732  * case has already been eliminated.
733  *
734  * The following mprotect cases have to be considered, where AAAA is
735  * the area passed down from mprotect_fixup, never extending beyond one
736  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
737  *
738  *     AAAA             AAAA                AAAA          AAAA
739  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
740  *    cannot merge    might become    might become    might become
741  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
742  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
743  *    mremap move:                                    PPPPNNNNNNNN 8
744  *        AAAA
745  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
746  *    might become    case 1 below    case 2 below    case 3 below
747  *
748  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
749  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
750  */
751 struct vm_area_struct *vma_merge(struct mm_struct *mm,
752 			struct vm_area_struct *prev, unsigned long addr,
753 			unsigned long end, unsigned long vm_flags,
754 		     	struct anon_vma *anon_vma, struct file *file,
755 			pgoff_t pgoff, struct mempolicy *policy)
756 {
757 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
758 	struct vm_area_struct *area, *next;
759 	int err;
760 
761 	/*
762 	 * We later require that vma->vm_flags == vm_flags,
763 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
764 	 */
765 	if (vm_flags & VM_SPECIAL)
766 		return NULL;
767 
768 	if (prev)
769 		next = prev->vm_next;
770 	else
771 		next = mm->mmap;
772 	area = next;
773 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
774 		next = next->vm_next;
775 
776 	/*
777 	 * Can it merge with the predecessor?
778 	 */
779 	if (prev && prev->vm_end == addr &&
780   			mpol_equal(vma_policy(prev), policy) &&
781 			can_vma_merge_after(prev, vm_flags,
782 						anon_vma, file, pgoff)) {
783 		/*
784 		 * OK, it can.  Can we now merge in the successor as well?
785 		 */
786 		if (next && end == next->vm_start &&
787 				mpol_equal(policy, vma_policy(next)) &&
788 				can_vma_merge_before(next, vm_flags,
789 					anon_vma, file, pgoff+pglen) &&
790 				is_mergeable_anon_vma(prev->anon_vma,
791 						      next->anon_vma, NULL)) {
792 							/* cases 1, 6 */
793 			err = vma_adjust(prev, prev->vm_start,
794 				next->vm_end, prev->vm_pgoff, NULL);
795 		} else					/* cases 2, 5, 7 */
796 			err = vma_adjust(prev, prev->vm_start,
797 				end, prev->vm_pgoff, NULL);
798 		if (err)
799 			return NULL;
800 		khugepaged_enter_vma_merge(prev);
801 		return prev;
802 	}
803 
804 	/*
805 	 * Can this new request be merged in front of next?
806 	 */
807 	if (next && end == next->vm_start &&
808  			mpol_equal(policy, vma_policy(next)) &&
809 			can_vma_merge_before(next, vm_flags,
810 					anon_vma, file, pgoff+pglen)) {
811 		if (prev && addr < prev->vm_end)	/* case 4 */
812 			err = vma_adjust(prev, prev->vm_start,
813 				addr, prev->vm_pgoff, NULL);
814 		else					/* cases 3, 8 */
815 			err = vma_adjust(area, addr, next->vm_end,
816 				next->vm_pgoff - pglen, NULL);
817 		if (err)
818 			return NULL;
819 		khugepaged_enter_vma_merge(area);
820 		return area;
821 	}
822 
823 	return NULL;
824 }
825 
826 /*
827  * Rough compatbility check to quickly see if it's even worth looking
828  * at sharing an anon_vma.
829  *
830  * They need to have the same vm_file, and the flags can only differ
831  * in things that mprotect may change.
832  *
833  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
834  * we can merge the two vma's. For example, we refuse to merge a vma if
835  * there is a vm_ops->close() function, because that indicates that the
836  * driver is doing some kind of reference counting. But that doesn't
837  * really matter for the anon_vma sharing case.
838  */
839 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
840 {
841 	return a->vm_end == b->vm_start &&
842 		mpol_equal(vma_policy(a), vma_policy(b)) &&
843 		a->vm_file == b->vm_file &&
844 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
845 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
846 }
847 
848 /*
849  * Do some basic sanity checking to see if we can re-use the anon_vma
850  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
851  * the same as 'old', the other will be the new one that is trying
852  * to share the anon_vma.
853  *
854  * NOTE! This runs with mm_sem held for reading, so it is possible that
855  * the anon_vma of 'old' is concurrently in the process of being set up
856  * by another page fault trying to merge _that_. But that's ok: if it
857  * is being set up, that automatically means that it will be a singleton
858  * acceptable for merging, so we can do all of this optimistically. But
859  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
860  *
861  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
862  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
863  * is to return an anon_vma that is "complex" due to having gone through
864  * a fork).
865  *
866  * We also make sure that the two vma's are compatible (adjacent,
867  * and with the same memory policies). That's all stable, even with just
868  * a read lock on the mm_sem.
869  */
870 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
871 {
872 	if (anon_vma_compatible(a, b)) {
873 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
874 
875 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
876 			return anon_vma;
877 	}
878 	return NULL;
879 }
880 
881 /*
882  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
883  * neighbouring vmas for a suitable anon_vma, before it goes off
884  * to allocate a new anon_vma.  It checks because a repetitive
885  * sequence of mprotects and faults may otherwise lead to distinct
886  * anon_vmas being allocated, preventing vma merge in subsequent
887  * mprotect.
888  */
889 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
890 {
891 	struct anon_vma *anon_vma;
892 	struct vm_area_struct *near;
893 
894 	near = vma->vm_next;
895 	if (!near)
896 		goto try_prev;
897 
898 	anon_vma = reusable_anon_vma(near, vma, near);
899 	if (anon_vma)
900 		return anon_vma;
901 try_prev:
902 	near = vma->vm_prev;
903 	if (!near)
904 		goto none;
905 
906 	anon_vma = reusable_anon_vma(near, near, vma);
907 	if (anon_vma)
908 		return anon_vma;
909 none:
910 	/*
911 	 * There's no absolute need to look only at touching neighbours:
912 	 * we could search further afield for "compatible" anon_vmas.
913 	 * But it would probably just be a waste of time searching,
914 	 * or lead to too many vmas hanging off the same anon_vma.
915 	 * We're trying to allow mprotect remerging later on,
916 	 * not trying to minimize memory used for anon_vmas.
917 	 */
918 	return NULL;
919 }
920 
921 #ifdef CONFIG_PROC_FS
922 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
923 						struct file *file, long pages)
924 {
925 	const unsigned long stack_flags
926 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
927 
928 	if (file) {
929 		mm->shared_vm += pages;
930 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
931 			mm->exec_vm += pages;
932 	} else if (flags & stack_flags)
933 		mm->stack_vm += pages;
934 	if (flags & (VM_RESERVED|VM_IO))
935 		mm->reserved_vm += pages;
936 }
937 #endif /* CONFIG_PROC_FS */
938 
939 /*
940  * If a hint addr is less than mmap_min_addr change hint to be as
941  * low as possible but still greater than mmap_min_addr
942  */
943 static inline unsigned long round_hint_to_min(unsigned long hint)
944 {
945 	hint &= PAGE_MASK;
946 	if (((void *)hint != NULL) &&
947 	    (hint < mmap_min_addr))
948 		return PAGE_ALIGN(mmap_min_addr);
949 	return hint;
950 }
951 
952 /*
953  * The caller must hold down_write(&current->mm->mmap_sem).
954  */
955 
956 static unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
957 			unsigned long len, unsigned long prot,
958 			unsigned long flags, unsigned long pgoff)
959 {
960 	struct mm_struct * mm = current->mm;
961 	struct inode *inode;
962 	vm_flags_t vm_flags;
963 	int error;
964 	unsigned long reqprot = prot;
965 
966 	/*
967 	 * Does the application expect PROT_READ to imply PROT_EXEC?
968 	 *
969 	 * (the exception is when the underlying filesystem is noexec
970 	 *  mounted, in which case we dont add PROT_EXEC.)
971 	 */
972 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
973 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
974 			prot |= PROT_EXEC;
975 
976 	if (!len)
977 		return -EINVAL;
978 
979 	if (!(flags & MAP_FIXED))
980 		addr = round_hint_to_min(addr);
981 
982 	/* Careful about overflows.. */
983 	len = PAGE_ALIGN(len);
984 	if (!len)
985 		return -ENOMEM;
986 
987 	/* offset overflow? */
988 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
989                return -EOVERFLOW;
990 
991 	/* Too many mappings? */
992 	if (mm->map_count > sysctl_max_map_count)
993 		return -ENOMEM;
994 
995 	/* Obtain the address to map to. we verify (or select) it and ensure
996 	 * that it represents a valid section of the address space.
997 	 */
998 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
999 	if (addr & ~PAGE_MASK)
1000 		return addr;
1001 
1002 	/* Do simple checking here so the lower-level routines won't have
1003 	 * to. we assume access permissions have been handled by the open
1004 	 * of the memory object, so we don't do any here.
1005 	 */
1006 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1007 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1008 
1009 	if (flags & MAP_LOCKED)
1010 		if (!can_do_mlock())
1011 			return -EPERM;
1012 
1013 	/* mlock MCL_FUTURE? */
1014 	if (vm_flags & VM_LOCKED) {
1015 		unsigned long locked, lock_limit;
1016 		locked = len >> PAGE_SHIFT;
1017 		locked += mm->locked_vm;
1018 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1019 		lock_limit >>= PAGE_SHIFT;
1020 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1021 			return -EAGAIN;
1022 	}
1023 
1024 	inode = file ? file->f_path.dentry->d_inode : NULL;
1025 
1026 	if (file) {
1027 		switch (flags & MAP_TYPE) {
1028 		case MAP_SHARED:
1029 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1030 				return -EACCES;
1031 
1032 			/*
1033 			 * Make sure we don't allow writing to an append-only
1034 			 * file..
1035 			 */
1036 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1037 				return -EACCES;
1038 
1039 			/*
1040 			 * Make sure there are no mandatory locks on the file.
1041 			 */
1042 			if (locks_verify_locked(inode))
1043 				return -EAGAIN;
1044 
1045 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1046 			if (!(file->f_mode & FMODE_WRITE))
1047 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1048 
1049 			/* fall through */
1050 		case MAP_PRIVATE:
1051 			if (!(file->f_mode & FMODE_READ))
1052 				return -EACCES;
1053 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1054 				if (vm_flags & VM_EXEC)
1055 					return -EPERM;
1056 				vm_flags &= ~VM_MAYEXEC;
1057 			}
1058 
1059 			if (!file->f_op || !file->f_op->mmap)
1060 				return -ENODEV;
1061 			break;
1062 
1063 		default:
1064 			return -EINVAL;
1065 		}
1066 	} else {
1067 		switch (flags & MAP_TYPE) {
1068 		case MAP_SHARED:
1069 			/*
1070 			 * Ignore pgoff.
1071 			 */
1072 			pgoff = 0;
1073 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1074 			break;
1075 		case MAP_PRIVATE:
1076 			/*
1077 			 * Set pgoff according to addr for anon_vma.
1078 			 */
1079 			pgoff = addr >> PAGE_SHIFT;
1080 			break;
1081 		default:
1082 			return -EINVAL;
1083 		}
1084 	}
1085 
1086 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1087 	if (error)
1088 		return error;
1089 
1090 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1091 }
1092 
1093 unsigned long do_mmap(struct file *file, unsigned long addr,
1094 	unsigned long len, unsigned long prot,
1095 	unsigned long flag, unsigned long offset)
1096 {
1097 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
1098 		return -EINVAL;
1099 	if (unlikely(offset & ~PAGE_MASK))
1100 		return -EINVAL;
1101 	return do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1102 }
1103 EXPORT_SYMBOL(do_mmap);
1104 
1105 unsigned long vm_mmap(struct file *file, unsigned long addr,
1106 	unsigned long len, unsigned long prot,
1107 	unsigned long flag, unsigned long offset)
1108 {
1109 	unsigned long ret;
1110 	struct mm_struct *mm = current->mm;
1111 
1112 	down_write(&mm->mmap_sem);
1113 	ret = do_mmap(file, addr, len, prot, flag, offset);
1114 	up_write(&mm->mmap_sem);
1115 	return ret;
1116 }
1117 EXPORT_SYMBOL(vm_mmap);
1118 
1119 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1120 		unsigned long, prot, unsigned long, flags,
1121 		unsigned long, fd, unsigned long, pgoff)
1122 {
1123 	struct file *file = NULL;
1124 	unsigned long retval = -EBADF;
1125 
1126 	if (!(flags & MAP_ANONYMOUS)) {
1127 		audit_mmap_fd(fd, flags);
1128 		if (unlikely(flags & MAP_HUGETLB))
1129 			return -EINVAL;
1130 		file = fget(fd);
1131 		if (!file)
1132 			goto out;
1133 	} else if (flags & MAP_HUGETLB) {
1134 		struct user_struct *user = NULL;
1135 		/*
1136 		 * VM_NORESERVE is used because the reservations will be
1137 		 * taken when vm_ops->mmap() is called
1138 		 * A dummy user value is used because we are not locking
1139 		 * memory so no accounting is necessary
1140 		 */
1141 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1142 						VM_NORESERVE, &user,
1143 						HUGETLB_ANONHUGE_INODE);
1144 		if (IS_ERR(file))
1145 			return PTR_ERR(file);
1146 	}
1147 
1148 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1149 
1150 	down_write(&current->mm->mmap_sem);
1151 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1152 	up_write(&current->mm->mmap_sem);
1153 
1154 	if (file)
1155 		fput(file);
1156 out:
1157 	return retval;
1158 }
1159 
1160 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1161 struct mmap_arg_struct {
1162 	unsigned long addr;
1163 	unsigned long len;
1164 	unsigned long prot;
1165 	unsigned long flags;
1166 	unsigned long fd;
1167 	unsigned long offset;
1168 };
1169 
1170 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1171 {
1172 	struct mmap_arg_struct a;
1173 
1174 	if (copy_from_user(&a, arg, sizeof(a)))
1175 		return -EFAULT;
1176 	if (a.offset & ~PAGE_MASK)
1177 		return -EINVAL;
1178 
1179 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1180 			      a.offset >> PAGE_SHIFT);
1181 }
1182 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1183 
1184 /*
1185  * Some shared mappigns will want the pages marked read-only
1186  * to track write events. If so, we'll downgrade vm_page_prot
1187  * to the private version (using protection_map[] without the
1188  * VM_SHARED bit).
1189  */
1190 int vma_wants_writenotify(struct vm_area_struct *vma)
1191 {
1192 	vm_flags_t vm_flags = vma->vm_flags;
1193 
1194 	/* If it was private or non-writable, the write bit is already clear */
1195 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1196 		return 0;
1197 
1198 	/* The backer wishes to know when pages are first written to? */
1199 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1200 		return 1;
1201 
1202 	/* The open routine did something to the protections already? */
1203 	if (pgprot_val(vma->vm_page_prot) !=
1204 	    pgprot_val(vm_get_page_prot(vm_flags)))
1205 		return 0;
1206 
1207 	/* Specialty mapping? */
1208 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1209 		return 0;
1210 
1211 	/* Can the mapping track the dirty pages? */
1212 	return vma->vm_file && vma->vm_file->f_mapping &&
1213 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1214 }
1215 
1216 /*
1217  * We account for memory if it's a private writeable mapping,
1218  * not hugepages and VM_NORESERVE wasn't set.
1219  */
1220 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1221 {
1222 	/*
1223 	 * hugetlb has its own accounting separate from the core VM
1224 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1225 	 */
1226 	if (file && is_file_hugepages(file))
1227 		return 0;
1228 
1229 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1230 }
1231 
1232 unsigned long mmap_region(struct file *file, unsigned long addr,
1233 			  unsigned long len, unsigned long flags,
1234 			  vm_flags_t vm_flags, unsigned long pgoff)
1235 {
1236 	struct mm_struct *mm = current->mm;
1237 	struct vm_area_struct *vma, *prev;
1238 	int correct_wcount = 0;
1239 	int error;
1240 	struct rb_node **rb_link, *rb_parent;
1241 	unsigned long charged = 0;
1242 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1243 
1244 	/* Clear old maps */
1245 	error = -ENOMEM;
1246 munmap_back:
1247 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1248 	if (vma && vma->vm_start < addr + len) {
1249 		if (do_munmap(mm, addr, len))
1250 			return -ENOMEM;
1251 		goto munmap_back;
1252 	}
1253 
1254 	/* Check against address space limit. */
1255 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1256 		return -ENOMEM;
1257 
1258 	/*
1259 	 * Set 'VM_NORESERVE' if we should not account for the
1260 	 * memory use of this mapping.
1261 	 */
1262 	if ((flags & MAP_NORESERVE)) {
1263 		/* We honor MAP_NORESERVE if allowed to overcommit */
1264 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1265 			vm_flags |= VM_NORESERVE;
1266 
1267 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1268 		if (file && is_file_hugepages(file))
1269 			vm_flags |= VM_NORESERVE;
1270 	}
1271 
1272 	/*
1273 	 * Private writable mapping: check memory availability
1274 	 */
1275 	if (accountable_mapping(file, vm_flags)) {
1276 		charged = len >> PAGE_SHIFT;
1277 		if (security_vm_enough_memory_mm(mm, charged))
1278 			return -ENOMEM;
1279 		vm_flags |= VM_ACCOUNT;
1280 	}
1281 
1282 	/*
1283 	 * Can we just expand an old mapping?
1284 	 */
1285 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1286 	if (vma)
1287 		goto out;
1288 
1289 	/*
1290 	 * Determine the object being mapped and call the appropriate
1291 	 * specific mapper. the address has already been validated, but
1292 	 * not unmapped, but the maps are removed from the list.
1293 	 */
1294 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1295 	if (!vma) {
1296 		error = -ENOMEM;
1297 		goto unacct_error;
1298 	}
1299 
1300 	vma->vm_mm = mm;
1301 	vma->vm_start = addr;
1302 	vma->vm_end = addr + len;
1303 	vma->vm_flags = vm_flags;
1304 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1305 	vma->vm_pgoff = pgoff;
1306 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1307 
1308 	error = -EINVAL;	/* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1309 
1310 	if (file) {
1311 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1312 			goto free_vma;
1313 		if (vm_flags & VM_DENYWRITE) {
1314 			error = deny_write_access(file);
1315 			if (error)
1316 				goto free_vma;
1317 			correct_wcount = 1;
1318 		}
1319 		vma->vm_file = file;
1320 		get_file(file);
1321 		error = file->f_op->mmap(file, vma);
1322 		if (error)
1323 			goto unmap_and_free_vma;
1324 		if (vm_flags & VM_EXECUTABLE)
1325 			added_exe_file_vma(mm);
1326 
1327 		/* Can addr have changed??
1328 		 *
1329 		 * Answer: Yes, several device drivers can do it in their
1330 		 *         f_op->mmap method. -DaveM
1331 		 */
1332 		addr = vma->vm_start;
1333 		pgoff = vma->vm_pgoff;
1334 		vm_flags = vma->vm_flags;
1335 	} else if (vm_flags & VM_SHARED) {
1336 		if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1337 			goto free_vma;
1338 		error = shmem_zero_setup(vma);
1339 		if (error)
1340 			goto free_vma;
1341 	}
1342 
1343 	if (vma_wants_writenotify(vma)) {
1344 		pgprot_t pprot = vma->vm_page_prot;
1345 
1346 		/* Can vma->vm_page_prot have changed??
1347 		 *
1348 		 * Answer: Yes, drivers may have changed it in their
1349 		 *         f_op->mmap method.
1350 		 *
1351 		 * Ensures that vmas marked as uncached stay that way.
1352 		 */
1353 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1354 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1355 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1356 	}
1357 
1358 	vma_link(mm, vma, prev, rb_link, rb_parent);
1359 	file = vma->vm_file;
1360 
1361 	/* Once vma denies write, undo our temporary denial count */
1362 	if (correct_wcount)
1363 		atomic_inc(&inode->i_writecount);
1364 out:
1365 	perf_event_mmap(vma);
1366 
1367 	mm->total_vm += len >> PAGE_SHIFT;
1368 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1369 	if (vm_flags & VM_LOCKED) {
1370 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1371 			mm->locked_vm += (len >> PAGE_SHIFT);
1372 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1373 		make_pages_present(addr, addr + len);
1374 	return addr;
1375 
1376 unmap_and_free_vma:
1377 	if (correct_wcount)
1378 		atomic_inc(&inode->i_writecount);
1379 	vma->vm_file = NULL;
1380 	fput(file);
1381 
1382 	/* Undo any partial mapping done by a device driver. */
1383 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1384 	charged = 0;
1385 free_vma:
1386 	kmem_cache_free(vm_area_cachep, vma);
1387 unacct_error:
1388 	if (charged)
1389 		vm_unacct_memory(charged);
1390 	return error;
1391 }
1392 
1393 /* Get an address range which is currently unmapped.
1394  * For shmat() with addr=0.
1395  *
1396  * Ugly calling convention alert:
1397  * Return value with the low bits set means error value,
1398  * ie
1399  *	if (ret & ~PAGE_MASK)
1400  *		error = ret;
1401  *
1402  * This function "knows" that -ENOMEM has the bits set.
1403  */
1404 #ifndef HAVE_ARCH_UNMAPPED_AREA
1405 unsigned long
1406 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1407 		unsigned long len, unsigned long pgoff, unsigned long flags)
1408 {
1409 	struct mm_struct *mm = current->mm;
1410 	struct vm_area_struct *vma;
1411 	unsigned long start_addr;
1412 
1413 	if (len > TASK_SIZE)
1414 		return -ENOMEM;
1415 
1416 	if (flags & MAP_FIXED)
1417 		return addr;
1418 
1419 	if (addr) {
1420 		addr = PAGE_ALIGN(addr);
1421 		vma = find_vma(mm, addr);
1422 		if (TASK_SIZE - len >= addr &&
1423 		    (!vma || addr + len <= vma->vm_start))
1424 			return addr;
1425 	}
1426 	if (len > mm->cached_hole_size) {
1427 	        start_addr = addr = mm->free_area_cache;
1428 	} else {
1429 	        start_addr = addr = TASK_UNMAPPED_BASE;
1430 	        mm->cached_hole_size = 0;
1431 	}
1432 
1433 full_search:
1434 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1435 		/* At this point:  (!vma || addr < vma->vm_end). */
1436 		if (TASK_SIZE - len < addr) {
1437 			/*
1438 			 * Start a new search - just in case we missed
1439 			 * some holes.
1440 			 */
1441 			if (start_addr != TASK_UNMAPPED_BASE) {
1442 				addr = TASK_UNMAPPED_BASE;
1443 			        start_addr = addr;
1444 				mm->cached_hole_size = 0;
1445 				goto full_search;
1446 			}
1447 			return -ENOMEM;
1448 		}
1449 		if (!vma || addr + len <= vma->vm_start) {
1450 			/*
1451 			 * Remember the place where we stopped the search:
1452 			 */
1453 			mm->free_area_cache = addr + len;
1454 			return addr;
1455 		}
1456 		if (addr + mm->cached_hole_size < vma->vm_start)
1457 		        mm->cached_hole_size = vma->vm_start - addr;
1458 		addr = vma->vm_end;
1459 	}
1460 }
1461 #endif
1462 
1463 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1464 {
1465 	/*
1466 	 * Is this a new hole at the lowest possible address?
1467 	 */
1468 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1469 		mm->free_area_cache = addr;
1470 }
1471 
1472 /*
1473  * This mmap-allocator allocates new areas top-down from below the
1474  * stack's low limit (the base):
1475  */
1476 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1477 unsigned long
1478 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1479 			  const unsigned long len, const unsigned long pgoff,
1480 			  const unsigned long flags)
1481 {
1482 	struct vm_area_struct *vma;
1483 	struct mm_struct *mm = current->mm;
1484 	unsigned long addr = addr0, start_addr;
1485 
1486 	/* requested length too big for entire address space */
1487 	if (len > TASK_SIZE)
1488 		return -ENOMEM;
1489 
1490 	if (flags & MAP_FIXED)
1491 		return addr;
1492 
1493 	/* requesting a specific address */
1494 	if (addr) {
1495 		addr = PAGE_ALIGN(addr);
1496 		vma = find_vma(mm, addr);
1497 		if (TASK_SIZE - len >= addr &&
1498 				(!vma || addr + len <= vma->vm_start))
1499 			return addr;
1500 	}
1501 
1502 	/* check if free_area_cache is useful for us */
1503 	if (len <= mm->cached_hole_size) {
1504  	        mm->cached_hole_size = 0;
1505  		mm->free_area_cache = mm->mmap_base;
1506  	}
1507 
1508 try_again:
1509 	/* either no address requested or can't fit in requested address hole */
1510 	start_addr = addr = mm->free_area_cache;
1511 
1512 	if (addr < len)
1513 		goto fail;
1514 
1515 	addr -= len;
1516 	do {
1517 		/*
1518 		 * Lookup failure means no vma is above this address,
1519 		 * else if new region fits below vma->vm_start,
1520 		 * return with success:
1521 		 */
1522 		vma = find_vma(mm, addr);
1523 		if (!vma || addr+len <= vma->vm_start)
1524 			/* remember the address as a hint for next time */
1525 			return (mm->free_area_cache = addr);
1526 
1527  		/* remember the largest hole we saw so far */
1528  		if (addr + mm->cached_hole_size < vma->vm_start)
1529  		        mm->cached_hole_size = vma->vm_start - addr;
1530 
1531 		/* try just below the current vma->vm_start */
1532 		addr = vma->vm_start-len;
1533 	} while (len < vma->vm_start);
1534 
1535 fail:
1536 	/*
1537 	 * if hint left us with no space for the requested
1538 	 * mapping then try again:
1539 	 *
1540 	 * Note: this is different with the case of bottomup
1541 	 * which does the fully line-search, but we use find_vma
1542 	 * here that causes some holes skipped.
1543 	 */
1544 	if (start_addr != mm->mmap_base) {
1545 		mm->free_area_cache = mm->mmap_base;
1546 		mm->cached_hole_size = 0;
1547 		goto try_again;
1548 	}
1549 
1550 	/*
1551 	 * A failed mmap() very likely causes application failure,
1552 	 * so fall back to the bottom-up function here. This scenario
1553 	 * can happen with large stack limits and large mmap()
1554 	 * allocations.
1555 	 */
1556 	mm->cached_hole_size = ~0UL;
1557   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1558 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1559 	/*
1560 	 * Restore the topdown base:
1561 	 */
1562 	mm->free_area_cache = mm->mmap_base;
1563 	mm->cached_hole_size = ~0UL;
1564 
1565 	return addr;
1566 }
1567 #endif
1568 
1569 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1570 {
1571 	/*
1572 	 * Is this a new hole at the highest possible address?
1573 	 */
1574 	if (addr > mm->free_area_cache)
1575 		mm->free_area_cache = addr;
1576 
1577 	/* dont allow allocations above current base */
1578 	if (mm->free_area_cache > mm->mmap_base)
1579 		mm->free_area_cache = mm->mmap_base;
1580 }
1581 
1582 unsigned long
1583 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1584 		unsigned long pgoff, unsigned long flags)
1585 {
1586 	unsigned long (*get_area)(struct file *, unsigned long,
1587 				  unsigned long, unsigned long, unsigned long);
1588 
1589 	unsigned long error = arch_mmap_check(addr, len, flags);
1590 	if (error)
1591 		return error;
1592 
1593 	/* Careful about overflows.. */
1594 	if (len > TASK_SIZE)
1595 		return -ENOMEM;
1596 
1597 	get_area = current->mm->get_unmapped_area;
1598 	if (file && file->f_op && file->f_op->get_unmapped_area)
1599 		get_area = file->f_op->get_unmapped_area;
1600 	addr = get_area(file, addr, len, pgoff, flags);
1601 	if (IS_ERR_VALUE(addr))
1602 		return addr;
1603 
1604 	if (addr > TASK_SIZE - len)
1605 		return -ENOMEM;
1606 	if (addr & ~PAGE_MASK)
1607 		return -EINVAL;
1608 
1609 	return arch_rebalance_pgtables(addr, len);
1610 }
1611 
1612 EXPORT_SYMBOL(get_unmapped_area);
1613 
1614 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1615 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1616 {
1617 	struct vm_area_struct *vma = NULL;
1618 
1619 	if (mm) {
1620 		/* Check the cache first. */
1621 		/* (Cache hit rate is typically around 35%.) */
1622 		vma = mm->mmap_cache;
1623 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1624 			struct rb_node * rb_node;
1625 
1626 			rb_node = mm->mm_rb.rb_node;
1627 			vma = NULL;
1628 
1629 			while (rb_node) {
1630 				struct vm_area_struct * vma_tmp;
1631 
1632 				vma_tmp = rb_entry(rb_node,
1633 						struct vm_area_struct, vm_rb);
1634 
1635 				if (vma_tmp->vm_end > addr) {
1636 					vma = vma_tmp;
1637 					if (vma_tmp->vm_start <= addr)
1638 						break;
1639 					rb_node = rb_node->rb_left;
1640 				} else
1641 					rb_node = rb_node->rb_right;
1642 			}
1643 			if (vma)
1644 				mm->mmap_cache = vma;
1645 		}
1646 	}
1647 	return vma;
1648 }
1649 
1650 EXPORT_SYMBOL(find_vma);
1651 
1652 /*
1653  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1654  */
1655 struct vm_area_struct *
1656 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1657 			struct vm_area_struct **pprev)
1658 {
1659 	struct vm_area_struct *vma;
1660 
1661 	vma = find_vma(mm, addr);
1662 	if (vma) {
1663 		*pprev = vma->vm_prev;
1664 	} else {
1665 		struct rb_node *rb_node = mm->mm_rb.rb_node;
1666 		*pprev = NULL;
1667 		while (rb_node) {
1668 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1669 			rb_node = rb_node->rb_right;
1670 		}
1671 	}
1672 	return vma;
1673 }
1674 
1675 /*
1676  * Verify that the stack growth is acceptable and
1677  * update accounting. This is shared with both the
1678  * grow-up and grow-down cases.
1679  */
1680 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1681 {
1682 	struct mm_struct *mm = vma->vm_mm;
1683 	struct rlimit *rlim = current->signal->rlim;
1684 	unsigned long new_start;
1685 
1686 	/* address space limit tests */
1687 	if (!may_expand_vm(mm, grow))
1688 		return -ENOMEM;
1689 
1690 	/* Stack limit test */
1691 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1692 		return -ENOMEM;
1693 
1694 	/* mlock limit tests */
1695 	if (vma->vm_flags & VM_LOCKED) {
1696 		unsigned long locked;
1697 		unsigned long limit;
1698 		locked = mm->locked_vm + grow;
1699 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1700 		limit >>= PAGE_SHIFT;
1701 		if (locked > limit && !capable(CAP_IPC_LOCK))
1702 			return -ENOMEM;
1703 	}
1704 
1705 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1706 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1707 			vma->vm_end - size;
1708 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1709 		return -EFAULT;
1710 
1711 	/*
1712 	 * Overcommit..  This must be the final test, as it will
1713 	 * update security statistics.
1714 	 */
1715 	if (security_vm_enough_memory_mm(mm, grow))
1716 		return -ENOMEM;
1717 
1718 	/* Ok, everything looks good - let it rip */
1719 	mm->total_vm += grow;
1720 	if (vma->vm_flags & VM_LOCKED)
1721 		mm->locked_vm += grow;
1722 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1723 	return 0;
1724 }
1725 
1726 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1727 /*
1728  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1729  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1730  */
1731 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1732 {
1733 	int error;
1734 
1735 	if (!(vma->vm_flags & VM_GROWSUP))
1736 		return -EFAULT;
1737 
1738 	/*
1739 	 * We must make sure the anon_vma is allocated
1740 	 * so that the anon_vma locking is not a noop.
1741 	 */
1742 	if (unlikely(anon_vma_prepare(vma)))
1743 		return -ENOMEM;
1744 	vma_lock_anon_vma(vma);
1745 
1746 	/*
1747 	 * vma->vm_start/vm_end cannot change under us because the caller
1748 	 * is required to hold the mmap_sem in read mode.  We need the
1749 	 * anon_vma lock to serialize against concurrent expand_stacks.
1750 	 * Also guard against wrapping around to address 0.
1751 	 */
1752 	if (address < PAGE_ALIGN(address+4))
1753 		address = PAGE_ALIGN(address+4);
1754 	else {
1755 		vma_unlock_anon_vma(vma);
1756 		return -ENOMEM;
1757 	}
1758 	error = 0;
1759 
1760 	/* Somebody else might have raced and expanded it already */
1761 	if (address > vma->vm_end) {
1762 		unsigned long size, grow;
1763 
1764 		size = address - vma->vm_start;
1765 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1766 
1767 		error = -ENOMEM;
1768 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1769 			error = acct_stack_growth(vma, size, grow);
1770 			if (!error) {
1771 				vma->vm_end = address;
1772 				perf_event_mmap(vma);
1773 			}
1774 		}
1775 	}
1776 	vma_unlock_anon_vma(vma);
1777 	khugepaged_enter_vma_merge(vma);
1778 	return error;
1779 }
1780 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1781 
1782 /*
1783  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1784  */
1785 int expand_downwards(struct vm_area_struct *vma,
1786 				   unsigned long address)
1787 {
1788 	int error;
1789 
1790 	/*
1791 	 * We must make sure the anon_vma is allocated
1792 	 * so that the anon_vma locking is not a noop.
1793 	 */
1794 	if (unlikely(anon_vma_prepare(vma)))
1795 		return -ENOMEM;
1796 
1797 	address &= PAGE_MASK;
1798 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1799 	if (error)
1800 		return error;
1801 
1802 	vma_lock_anon_vma(vma);
1803 
1804 	/*
1805 	 * vma->vm_start/vm_end cannot change under us because the caller
1806 	 * is required to hold the mmap_sem in read mode.  We need the
1807 	 * anon_vma lock to serialize against concurrent expand_stacks.
1808 	 */
1809 
1810 	/* Somebody else might have raced and expanded it already */
1811 	if (address < vma->vm_start) {
1812 		unsigned long size, grow;
1813 
1814 		size = vma->vm_end - address;
1815 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1816 
1817 		error = -ENOMEM;
1818 		if (grow <= vma->vm_pgoff) {
1819 			error = acct_stack_growth(vma, size, grow);
1820 			if (!error) {
1821 				vma->vm_start = address;
1822 				vma->vm_pgoff -= grow;
1823 				perf_event_mmap(vma);
1824 			}
1825 		}
1826 	}
1827 	vma_unlock_anon_vma(vma);
1828 	khugepaged_enter_vma_merge(vma);
1829 	return error;
1830 }
1831 
1832 #ifdef CONFIG_STACK_GROWSUP
1833 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1834 {
1835 	return expand_upwards(vma, address);
1836 }
1837 
1838 struct vm_area_struct *
1839 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1840 {
1841 	struct vm_area_struct *vma, *prev;
1842 
1843 	addr &= PAGE_MASK;
1844 	vma = find_vma_prev(mm, addr, &prev);
1845 	if (vma && (vma->vm_start <= addr))
1846 		return vma;
1847 	if (!prev || expand_stack(prev, addr))
1848 		return NULL;
1849 	if (prev->vm_flags & VM_LOCKED) {
1850 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1851 	}
1852 	return prev;
1853 }
1854 #else
1855 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1856 {
1857 	return expand_downwards(vma, address);
1858 }
1859 
1860 struct vm_area_struct *
1861 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1862 {
1863 	struct vm_area_struct * vma;
1864 	unsigned long start;
1865 
1866 	addr &= PAGE_MASK;
1867 	vma = find_vma(mm,addr);
1868 	if (!vma)
1869 		return NULL;
1870 	if (vma->vm_start <= addr)
1871 		return vma;
1872 	if (!(vma->vm_flags & VM_GROWSDOWN))
1873 		return NULL;
1874 	start = vma->vm_start;
1875 	if (expand_stack(vma, addr))
1876 		return NULL;
1877 	if (vma->vm_flags & VM_LOCKED) {
1878 		mlock_vma_pages_range(vma, addr, start);
1879 	}
1880 	return vma;
1881 }
1882 #endif
1883 
1884 /*
1885  * Ok - we have the memory areas we should free on the vma list,
1886  * so release them, and do the vma updates.
1887  *
1888  * Called with the mm semaphore held.
1889  */
1890 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1891 {
1892 	/* Update high watermark before we lower total_vm */
1893 	update_hiwater_vm(mm);
1894 	do {
1895 		long nrpages = vma_pages(vma);
1896 
1897 		mm->total_vm -= nrpages;
1898 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1899 		vma = remove_vma(vma);
1900 	} while (vma);
1901 	validate_mm(mm);
1902 }
1903 
1904 /*
1905  * Get rid of page table information in the indicated region.
1906  *
1907  * Called with the mm semaphore held.
1908  */
1909 static void unmap_region(struct mm_struct *mm,
1910 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1911 		unsigned long start, unsigned long end)
1912 {
1913 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1914 	struct mmu_gather tlb;
1915 	unsigned long nr_accounted = 0;
1916 
1917 	lru_add_drain();
1918 	tlb_gather_mmu(&tlb, mm, 0);
1919 	update_hiwater_rss(mm);
1920 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1921 	vm_unacct_memory(nr_accounted);
1922 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1923 				 next ? next->vm_start : 0);
1924 	tlb_finish_mmu(&tlb, start, end);
1925 }
1926 
1927 /*
1928  * Create a list of vma's touched by the unmap, removing them from the mm's
1929  * vma list as we go..
1930  */
1931 static void
1932 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1933 	struct vm_area_struct *prev, unsigned long end)
1934 {
1935 	struct vm_area_struct **insertion_point;
1936 	struct vm_area_struct *tail_vma = NULL;
1937 	unsigned long addr;
1938 
1939 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1940 	vma->vm_prev = NULL;
1941 	do {
1942 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1943 		mm->map_count--;
1944 		tail_vma = vma;
1945 		vma = vma->vm_next;
1946 	} while (vma && vma->vm_start < end);
1947 	*insertion_point = vma;
1948 	if (vma)
1949 		vma->vm_prev = prev;
1950 	tail_vma->vm_next = NULL;
1951 	if (mm->unmap_area == arch_unmap_area)
1952 		addr = prev ? prev->vm_end : mm->mmap_base;
1953 	else
1954 		addr = vma ?  vma->vm_start : mm->mmap_base;
1955 	mm->unmap_area(mm, addr);
1956 	mm->mmap_cache = NULL;		/* Kill the cache. */
1957 }
1958 
1959 /*
1960  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1961  * munmap path where it doesn't make sense to fail.
1962  */
1963 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1964 	      unsigned long addr, int new_below)
1965 {
1966 	struct mempolicy *pol;
1967 	struct vm_area_struct *new;
1968 	int err = -ENOMEM;
1969 
1970 	if (is_vm_hugetlb_page(vma) && (addr &
1971 					~(huge_page_mask(hstate_vma(vma)))))
1972 		return -EINVAL;
1973 
1974 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1975 	if (!new)
1976 		goto out_err;
1977 
1978 	/* most fields are the same, copy all, and then fixup */
1979 	*new = *vma;
1980 
1981 	INIT_LIST_HEAD(&new->anon_vma_chain);
1982 
1983 	if (new_below)
1984 		new->vm_end = addr;
1985 	else {
1986 		new->vm_start = addr;
1987 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1988 	}
1989 
1990 	pol = mpol_dup(vma_policy(vma));
1991 	if (IS_ERR(pol)) {
1992 		err = PTR_ERR(pol);
1993 		goto out_free_vma;
1994 	}
1995 	vma_set_policy(new, pol);
1996 
1997 	if (anon_vma_clone(new, vma))
1998 		goto out_free_mpol;
1999 
2000 	if (new->vm_file) {
2001 		get_file(new->vm_file);
2002 		if (vma->vm_flags & VM_EXECUTABLE)
2003 			added_exe_file_vma(mm);
2004 	}
2005 
2006 	if (new->vm_ops && new->vm_ops->open)
2007 		new->vm_ops->open(new);
2008 
2009 	if (new_below)
2010 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2011 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2012 	else
2013 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2014 
2015 	/* Success. */
2016 	if (!err)
2017 		return 0;
2018 
2019 	/* Clean everything up if vma_adjust failed. */
2020 	if (new->vm_ops && new->vm_ops->close)
2021 		new->vm_ops->close(new);
2022 	if (new->vm_file) {
2023 		if (vma->vm_flags & VM_EXECUTABLE)
2024 			removed_exe_file_vma(mm);
2025 		fput(new->vm_file);
2026 	}
2027 	unlink_anon_vmas(new);
2028  out_free_mpol:
2029 	mpol_put(pol);
2030  out_free_vma:
2031 	kmem_cache_free(vm_area_cachep, new);
2032  out_err:
2033 	return err;
2034 }
2035 
2036 /*
2037  * Split a vma into two pieces at address 'addr', a new vma is allocated
2038  * either for the first part or the tail.
2039  */
2040 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2041 	      unsigned long addr, int new_below)
2042 {
2043 	if (mm->map_count >= sysctl_max_map_count)
2044 		return -ENOMEM;
2045 
2046 	return __split_vma(mm, vma, addr, new_below);
2047 }
2048 
2049 /* Munmap is split into 2 main parts -- this part which finds
2050  * what needs doing, and the areas themselves, which do the
2051  * work.  This now handles partial unmappings.
2052  * Jeremy Fitzhardinge <jeremy@goop.org>
2053  */
2054 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2055 {
2056 	unsigned long end;
2057 	struct vm_area_struct *vma, *prev, *last;
2058 
2059 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2060 		return -EINVAL;
2061 
2062 	if ((len = PAGE_ALIGN(len)) == 0)
2063 		return -EINVAL;
2064 
2065 	/* Find the first overlapping VMA */
2066 	vma = find_vma(mm, start);
2067 	if (!vma)
2068 		return 0;
2069 	prev = vma->vm_prev;
2070 	/* we have  start < vma->vm_end  */
2071 
2072 	/* if it doesn't overlap, we have nothing.. */
2073 	end = start + len;
2074 	if (vma->vm_start >= end)
2075 		return 0;
2076 
2077 	/*
2078 	 * If we need to split any vma, do it now to save pain later.
2079 	 *
2080 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2081 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2082 	 * places tmp vma above, and higher split_vma places tmp vma below.
2083 	 */
2084 	if (start > vma->vm_start) {
2085 		int error;
2086 
2087 		/*
2088 		 * Make sure that map_count on return from munmap() will
2089 		 * not exceed its limit; but let map_count go just above
2090 		 * its limit temporarily, to help free resources as expected.
2091 		 */
2092 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2093 			return -ENOMEM;
2094 
2095 		error = __split_vma(mm, vma, start, 0);
2096 		if (error)
2097 			return error;
2098 		prev = vma;
2099 	}
2100 
2101 	/* Does it split the last one? */
2102 	last = find_vma(mm, end);
2103 	if (last && end > last->vm_start) {
2104 		int error = __split_vma(mm, last, end, 1);
2105 		if (error)
2106 			return error;
2107 	}
2108 	vma = prev? prev->vm_next: mm->mmap;
2109 
2110 	/*
2111 	 * unlock any mlock()ed ranges before detaching vmas
2112 	 */
2113 	if (mm->locked_vm) {
2114 		struct vm_area_struct *tmp = vma;
2115 		while (tmp && tmp->vm_start < end) {
2116 			if (tmp->vm_flags & VM_LOCKED) {
2117 				mm->locked_vm -= vma_pages(tmp);
2118 				munlock_vma_pages_all(tmp);
2119 			}
2120 			tmp = tmp->vm_next;
2121 		}
2122 	}
2123 
2124 	/*
2125 	 * Remove the vma's, and unmap the actual pages
2126 	 */
2127 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2128 	unmap_region(mm, vma, prev, start, end);
2129 
2130 	/* Fix up all other VM information */
2131 	remove_vma_list(mm, vma);
2132 
2133 	return 0;
2134 }
2135 EXPORT_SYMBOL(do_munmap);
2136 
2137 int vm_munmap(unsigned long start, size_t len)
2138 {
2139 	int ret;
2140 	struct mm_struct *mm = current->mm;
2141 
2142 	down_write(&mm->mmap_sem);
2143 	ret = do_munmap(mm, start, len);
2144 	up_write(&mm->mmap_sem);
2145 	return ret;
2146 }
2147 EXPORT_SYMBOL(vm_munmap);
2148 
2149 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2150 {
2151 	profile_munmap(addr);
2152 	return vm_munmap(addr, len);
2153 }
2154 
2155 static inline void verify_mm_writelocked(struct mm_struct *mm)
2156 {
2157 #ifdef CONFIG_DEBUG_VM
2158 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2159 		WARN_ON(1);
2160 		up_read(&mm->mmap_sem);
2161 	}
2162 #endif
2163 }
2164 
2165 /*
2166  *  this is really a simplified "do_mmap".  it only handles
2167  *  anonymous maps.  eventually we may be able to do some
2168  *  brk-specific accounting here.
2169  */
2170 static unsigned long do_brk(unsigned long addr, unsigned long len)
2171 {
2172 	struct mm_struct * mm = current->mm;
2173 	struct vm_area_struct * vma, * prev;
2174 	unsigned long flags;
2175 	struct rb_node ** rb_link, * rb_parent;
2176 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2177 	int error;
2178 
2179 	len = PAGE_ALIGN(len);
2180 	if (!len)
2181 		return addr;
2182 
2183 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2184 	if (error)
2185 		return error;
2186 
2187 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2188 
2189 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2190 	if (error & ~PAGE_MASK)
2191 		return error;
2192 
2193 	/*
2194 	 * mlock MCL_FUTURE?
2195 	 */
2196 	if (mm->def_flags & VM_LOCKED) {
2197 		unsigned long locked, lock_limit;
2198 		locked = len >> PAGE_SHIFT;
2199 		locked += mm->locked_vm;
2200 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2201 		lock_limit >>= PAGE_SHIFT;
2202 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2203 			return -EAGAIN;
2204 	}
2205 
2206 	/*
2207 	 * mm->mmap_sem is required to protect against another thread
2208 	 * changing the mappings in case we sleep.
2209 	 */
2210 	verify_mm_writelocked(mm);
2211 
2212 	/*
2213 	 * Clear old maps.  this also does some error checking for us
2214 	 */
2215  munmap_back:
2216 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2217 	if (vma && vma->vm_start < addr + len) {
2218 		if (do_munmap(mm, addr, len))
2219 			return -ENOMEM;
2220 		goto munmap_back;
2221 	}
2222 
2223 	/* Check against address space limits *after* clearing old maps... */
2224 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2225 		return -ENOMEM;
2226 
2227 	if (mm->map_count > sysctl_max_map_count)
2228 		return -ENOMEM;
2229 
2230 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2231 		return -ENOMEM;
2232 
2233 	/* Can we just expand an old private anonymous mapping? */
2234 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2235 					NULL, NULL, pgoff, NULL);
2236 	if (vma)
2237 		goto out;
2238 
2239 	/*
2240 	 * create a vma struct for an anonymous mapping
2241 	 */
2242 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2243 	if (!vma) {
2244 		vm_unacct_memory(len >> PAGE_SHIFT);
2245 		return -ENOMEM;
2246 	}
2247 
2248 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2249 	vma->vm_mm = mm;
2250 	vma->vm_start = addr;
2251 	vma->vm_end = addr + len;
2252 	vma->vm_pgoff = pgoff;
2253 	vma->vm_flags = flags;
2254 	vma->vm_page_prot = vm_get_page_prot(flags);
2255 	vma_link(mm, vma, prev, rb_link, rb_parent);
2256 out:
2257 	perf_event_mmap(vma);
2258 	mm->total_vm += len >> PAGE_SHIFT;
2259 	if (flags & VM_LOCKED) {
2260 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2261 			mm->locked_vm += (len >> PAGE_SHIFT);
2262 	}
2263 	return addr;
2264 }
2265 
2266 unsigned long vm_brk(unsigned long addr, unsigned long len)
2267 {
2268 	struct mm_struct *mm = current->mm;
2269 	unsigned long ret;
2270 
2271 	down_write(&mm->mmap_sem);
2272 	ret = do_brk(addr, len);
2273 	up_write(&mm->mmap_sem);
2274 	return ret;
2275 }
2276 EXPORT_SYMBOL(vm_brk);
2277 
2278 /* Release all mmaps. */
2279 void exit_mmap(struct mm_struct *mm)
2280 {
2281 	struct mmu_gather tlb;
2282 	struct vm_area_struct *vma;
2283 	unsigned long nr_accounted = 0;
2284 
2285 	/* mm's last user has gone, and its about to be pulled down */
2286 	mmu_notifier_release(mm);
2287 
2288 	if (mm->locked_vm) {
2289 		vma = mm->mmap;
2290 		while (vma) {
2291 			if (vma->vm_flags & VM_LOCKED)
2292 				munlock_vma_pages_all(vma);
2293 			vma = vma->vm_next;
2294 		}
2295 	}
2296 
2297 	arch_exit_mmap(mm);
2298 
2299 	vma = mm->mmap;
2300 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2301 		return;
2302 
2303 	lru_add_drain();
2304 	flush_cache_mm(mm);
2305 	tlb_gather_mmu(&tlb, mm, 1);
2306 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2307 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2308 	unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2309 	vm_unacct_memory(nr_accounted);
2310 
2311 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2312 	tlb_finish_mmu(&tlb, 0, -1);
2313 
2314 	/*
2315 	 * Walk the list again, actually closing and freeing it,
2316 	 * with preemption enabled, without holding any MM locks.
2317 	 */
2318 	while (vma)
2319 		vma = remove_vma(vma);
2320 
2321 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2322 }
2323 
2324 /* Insert vm structure into process list sorted by address
2325  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2326  * then i_mmap_mutex is taken here.
2327  */
2328 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2329 {
2330 	struct vm_area_struct * __vma, * prev;
2331 	struct rb_node ** rb_link, * rb_parent;
2332 
2333 	/*
2334 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2335 	 * until its first write fault, when page's anon_vma and index
2336 	 * are set.  But now set the vm_pgoff it will almost certainly
2337 	 * end up with (unless mremap moves it elsewhere before that
2338 	 * first wfault), so /proc/pid/maps tells a consistent story.
2339 	 *
2340 	 * By setting it to reflect the virtual start address of the
2341 	 * vma, merges and splits can happen in a seamless way, just
2342 	 * using the existing file pgoff checks and manipulations.
2343 	 * Similarly in do_mmap_pgoff and in do_brk.
2344 	 */
2345 	if (!vma->vm_file) {
2346 		BUG_ON(vma->anon_vma);
2347 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2348 	}
2349 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2350 	if (__vma && __vma->vm_start < vma->vm_end)
2351 		return -ENOMEM;
2352 	if ((vma->vm_flags & VM_ACCOUNT) &&
2353 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2354 		return -ENOMEM;
2355 	vma_link(mm, vma, prev, rb_link, rb_parent);
2356 	return 0;
2357 }
2358 
2359 /*
2360  * Copy the vma structure to a new location in the same mm,
2361  * prior to moving page table entries, to effect an mremap move.
2362  */
2363 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2364 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2365 {
2366 	struct vm_area_struct *vma = *vmap;
2367 	unsigned long vma_start = vma->vm_start;
2368 	struct mm_struct *mm = vma->vm_mm;
2369 	struct vm_area_struct *new_vma, *prev;
2370 	struct rb_node **rb_link, *rb_parent;
2371 	struct mempolicy *pol;
2372 	bool faulted_in_anon_vma = true;
2373 
2374 	/*
2375 	 * If anonymous vma has not yet been faulted, update new pgoff
2376 	 * to match new location, to increase its chance of merging.
2377 	 */
2378 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2379 		pgoff = addr >> PAGE_SHIFT;
2380 		faulted_in_anon_vma = false;
2381 	}
2382 
2383 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2384 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2385 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2386 	if (new_vma) {
2387 		/*
2388 		 * Source vma may have been merged into new_vma
2389 		 */
2390 		if (unlikely(vma_start >= new_vma->vm_start &&
2391 			     vma_start < new_vma->vm_end)) {
2392 			/*
2393 			 * The only way we can get a vma_merge with
2394 			 * self during an mremap is if the vma hasn't
2395 			 * been faulted in yet and we were allowed to
2396 			 * reset the dst vma->vm_pgoff to the
2397 			 * destination address of the mremap to allow
2398 			 * the merge to happen. mremap must change the
2399 			 * vm_pgoff linearity between src and dst vmas
2400 			 * (in turn preventing a vma_merge) to be
2401 			 * safe. It is only safe to keep the vm_pgoff
2402 			 * linear if there are no pages mapped yet.
2403 			 */
2404 			VM_BUG_ON(faulted_in_anon_vma);
2405 			*vmap = new_vma;
2406 		} else
2407 			anon_vma_moveto_tail(new_vma);
2408 	} else {
2409 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2410 		if (new_vma) {
2411 			*new_vma = *vma;
2412 			pol = mpol_dup(vma_policy(vma));
2413 			if (IS_ERR(pol))
2414 				goto out_free_vma;
2415 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2416 			if (anon_vma_clone(new_vma, vma))
2417 				goto out_free_mempol;
2418 			vma_set_policy(new_vma, pol);
2419 			new_vma->vm_start = addr;
2420 			new_vma->vm_end = addr + len;
2421 			new_vma->vm_pgoff = pgoff;
2422 			if (new_vma->vm_file) {
2423 				get_file(new_vma->vm_file);
2424 				if (vma->vm_flags & VM_EXECUTABLE)
2425 					added_exe_file_vma(mm);
2426 			}
2427 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2428 				new_vma->vm_ops->open(new_vma);
2429 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2430 		}
2431 	}
2432 	return new_vma;
2433 
2434  out_free_mempol:
2435 	mpol_put(pol);
2436  out_free_vma:
2437 	kmem_cache_free(vm_area_cachep, new_vma);
2438 	return NULL;
2439 }
2440 
2441 /*
2442  * Return true if the calling process may expand its vm space by the passed
2443  * number of pages
2444  */
2445 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2446 {
2447 	unsigned long cur = mm->total_vm;	/* pages */
2448 	unsigned long lim;
2449 
2450 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2451 
2452 	if (cur + npages > lim)
2453 		return 0;
2454 	return 1;
2455 }
2456 
2457 
2458 static int special_mapping_fault(struct vm_area_struct *vma,
2459 				struct vm_fault *vmf)
2460 {
2461 	pgoff_t pgoff;
2462 	struct page **pages;
2463 
2464 	/*
2465 	 * special mappings have no vm_file, and in that case, the mm
2466 	 * uses vm_pgoff internally. So we have to subtract it from here.
2467 	 * We are allowed to do this because we are the mm; do not copy
2468 	 * this code into drivers!
2469 	 */
2470 	pgoff = vmf->pgoff - vma->vm_pgoff;
2471 
2472 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2473 		pgoff--;
2474 
2475 	if (*pages) {
2476 		struct page *page = *pages;
2477 		get_page(page);
2478 		vmf->page = page;
2479 		return 0;
2480 	}
2481 
2482 	return VM_FAULT_SIGBUS;
2483 }
2484 
2485 /*
2486  * Having a close hook prevents vma merging regardless of flags.
2487  */
2488 static void special_mapping_close(struct vm_area_struct *vma)
2489 {
2490 }
2491 
2492 static const struct vm_operations_struct special_mapping_vmops = {
2493 	.close = special_mapping_close,
2494 	.fault = special_mapping_fault,
2495 };
2496 
2497 /*
2498  * Called with mm->mmap_sem held for writing.
2499  * Insert a new vma covering the given region, with the given flags.
2500  * Its pages are supplied by the given array of struct page *.
2501  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2502  * The region past the last page supplied will always produce SIGBUS.
2503  * The array pointer and the pages it points to are assumed to stay alive
2504  * for as long as this mapping might exist.
2505  */
2506 int install_special_mapping(struct mm_struct *mm,
2507 			    unsigned long addr, unsigned long len,
2508 			    unsigned long vm_flags, struct page **pages)
2509 {
2510 	int ret;
2511 	struct vm_area_struct *vma;
2512 
2513 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2514 	if (unlikely(vma == NULL))
2515 		return -ENOMEM;
2516 
2517 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2518 	vma->vm_mm = mm;
2519 	vma->vm_start = addr;
2520 	vma->vm_end = addr + len;
2521 
2522 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2523 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2524 
2525 	vma->vm_ops = &special_mapping_vmops;
2526 	vma->vm_private_data = pages;
2527 
2528 	ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2529 	if (ret)
2530 		goto out;
2531 
2532 	ret = insert_vm_struct(mm, vma);
2533 	if (ret)
2534 		goto out;
2535 
2536 	mm->total_vm += len >> PAGE_SHIFT;
2537 
2538 	perf_event_mmap(vma);
2539 
2540 	return 0;
2541 
2542 out:
2543 	kmem_cache_free(vm_area_cachep, vma);
2544 	return ret;
2545 }
2546 
2547 static DEFINE_MUTEX(mm_all_locks_mutex);
2548 
2549 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2550 {
2551 	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2552 		/*
2553 		 * The LSB of head.next can't change from under us
2554 		 * because we hold the mm_all_locks_mutex.
2555 		 */
2556 		mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2557 		/*
2558 		 * We can safely modify head.next after taking the
2559 		 * anon_vma->root->mutex. If some other vma in this mm shares
2560 		 * the same anon_vma we won't take it again.
2561 		 *
2562 		 * No need of atomic instructions here, head.next
2563 		 * can't change from under us thanks to the
2564 		 * anon_vma->root->mutex.
2565 		 */
2566 		if (__test_and_set_bit(0, (unsigned long *)
2567 				       &anon_vma->root->head.next))
2568 			BUG();
2569 	}
2570 }
2571 
2572 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2573 {
2574 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2575 		/*
2576 		 * AS_MM_ALL_LOCKS can't change from under us because
2577 		 * we hold the mm_all_locks_mutex.
2578 		 *
2579 		 * Operations on ->flags have to be atomic because
2580 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2581 		 * mm_all_locks_mutex, there may be other cpus
2582 		 * changing other bitflags in parallel to us.
2583 		 */
2584 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2585 			BUG();
2586 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2587 	}
2588 }
2589 
2590 /*
2591  * This operation locks against the VM for all pte/vma/mm related
2592  * operations that could ever happen on a certain mm. This includes
2593  * vmtruncate, try_to_unmap, and all page faults.
2594  *
2595  * The caller must take the mmap_sem in write mode before calling
2596  * mm_take_all_locks(). The caller isn't allowed to release the
2597  * mmap_sem until mm_drop_all_locks() returns.
2598  *
2599  * mmap_sem in write mode is required in order to block all operations
2600  * that could modify pagetables and free pages without need of
2601  * altering the vma layout (for example populate_range() with
2602  * nonlinear vmas). It's also needed in write mode to avoid new
2603  * anon_vmas to be associated with existing vmas.
2604  *
2605  * A single task can't take more than one mm_take_all_locks() in a row
2606  * or it would deadlock.
2607  *
2608  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2609  * mapping->flags avoid to take the same lock twice, if more than one
2610  * vma in this mm is backed by the same anon_vma or address_space.
2611  *
2612  * We can take all the locks in random order because the VM code
2613  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2614  * takes more than one of them in a row. Secondly we're protected
2615  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2616  *
2617  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2618  * that may have to take thousand of locks.
2619  *
2620  * mm_take_all_locks() can fail if it's interrupted by signals.
2621  */
2622 int mm_take_all_locks(struct mm_struct *mm)
2623 {
2624 	struct vm_area_struct *vma;
2625 	struct anon_vma_chain *avc;
2626 
2627 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2628 
2629 	mutex_lock(&mm_all_locks_mutex);
2630 
2631 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2632 		if (signal_pending(current))
2633 			goto out_unlock;
2634 		if (vma->vm_file && vma->vm_file->f_mapping)
2635 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2636 	}
2637 
2638 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2639 		if (signal_pending(current))
2640 			goto out_unlock;
2641 		if (vma->anon_vma)
2642 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2643 				vm_lock_anon_vma(mm, avc->anon_vma);
2644 	}
2645 
2646 	return 0;
2647 
2648 out_unlock:
2649 	mm_drop_all_locks(mm);
2650 	return -EINTR;
2651 }
2652 
2653 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2654 {
2655 	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2656 		/*
2657 		 * The LSB of head.next can't change to 0 from under
2658 		 * us because we hold the mm_all_locks_mutex.
2659 		 *
2660 		 * We must however clear the bitflag before unlocking
2661 		 * the vma so the users using the anon_vma->head will
2662 		 * never see our bitflag.
2663 		 *
2664 		 * No need of atomic instructions here, head.next
2665 		 * can't change from under us until we release the
2666 		 * anon_vma->root->mutex.
2667 		 */
2668 		if (!__test_and_clear_bit(0, (unsigned long *)
2669 					  &anon_vma->root->head.next))
2670 			BUG();
2671 		anon_vma_unlock(anon_vma);
2672 	}
2673 }
2674 
2675 static void vm_unlock_mapping(struct address_space *mapping)
2676 {
2677 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2678 		/*
2679 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2680 		 * because we hold the mm_all_locks_mutex.
2681 		 */
2682 		mutex_unlock(&mapping->i_mmap_mutex);
2683 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2684 					&mapping->flags))
2685 			BUG();
2686 	}
2687 }
2688 
2689 /*
2690  * The mmap_sem cannot be released by the caller until
2691  * mm_drop_all_locks() returns.
2692  */
2693 void mm_drop_all_locks(struct mm_struct *mm)
2694 {
2695 	struct vm_area_struct *vma;
2696 	struct anon_vma_chain *avc;
2697 
2698 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2699 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2700 
2701 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2702 		if (vma->anon_vma)
2703 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2704 				vm_unlock_anon_vma(avc->anon_vma);
2705 		if (vma->vm_file && vma->vm_file->f_mapping)
2706 			vm_unlock_mapping(vma->vm_file->f_mapping);
2707 	}
2708 
2709 	mutex_unlock(&mm_all_locks_mutex);
2710 }
2711 
2712 /*
2713  * initialise the VMA slab
2714  */
2715 void __init mmap_init(void)
2716 {
2717 	int ret;
2718 
2719 	ret = percpu_counter_init(&vm_committed_as, 0);
2720 	VM_BUG_ON(ret);
2721 }
2722