xref: /openbmc/linux/mm/mmap.c (revision 62e7ca52)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49 
50 #include "internal.h"
51 
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags)	(0)
54 #endif
55 
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len)		(addr)
58 #endif
59 
60 static void unmap_region(struct mm_struct *mm,
61 		struct vm_area_struct *vma, struct vm_area_struct *prev,
62 		unsigned long start, unsigned long end);
63 
64 /* description of effects of mapping type and prot in current implementation.
65  * this is due to the limited x86 page protection hardware.  The expected
66  * behavior is in parens:
67  *
68  * map_type	prot
69  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
70  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
71  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
72  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
73  *
74  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
75  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
76  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
77  *
78  */
79 pgprot_t protection_map[16] = {
80 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83 
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86 	return __pgprot(pgprot_val(protection_map[vm_flags &
87 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91 
92 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
93 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
94 unsigned long sysctl_overcommit_kbytes __read_mostly;
95 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
96 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
97 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
98 /*
99  * Make sure vm_committed_as in one cacheline and not cacheline shared with
100  * other variables. It can be updated by several CPUs frequently.
101  */
102 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
103 
104 /*
105  * The global memory commitment made in the system can be a metric
106  * that can be used to drive ballooning decisions when Linux is hosted
107  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
108  * balancing memory across competing virtual machines that are hosted.
109  * Several metrics drive this policy engine including the guest reported
110  * memory commitment.
111  */
112 unsigned long vm_memory_committed(void)
113 {
114 	return percpu_counter_read_positive(&vm_committed_as);
115 }
116 EXPORT_SYMBOL_GPL(vm_memory_committed);
117 
118 /*
119  * Check that a process has enough memory to allocate a new virtual
120  * mapping. 0 means there is enough memory for the allocation to
121  * succeed and -ENOMEM implies there is not.
122  *
123  * We currently support three overcommit policies, which are set via the
124  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
125  *
126  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
127  * Additional code 2002 Jul 20 by Robert Love.
128  *
129  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
130  *
131  * Note this is a helper function intended to be used by LSMs which
132  * wish to use this logic.
133  */
134 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
135 {
136 	unsigned long free, allowed, reserve;
137 
138 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
139 			-(s64)vm_committed_as_batch * num_online_cpus(),
140 			"memory commitment underflow");
141 
142 	vm_acct_memory(pages);
143 
144 	/*
145 	 * Sometimes we want to use more memory than we have
146 	 */
147 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
148 		return 0;
149 
150 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
151 		free = global_page_state(NR_FREE_PAGES);
152 		free += global_page_state(NR_FILE_PAGES);
153 
154 		/*
155 		 * shmem pages shouldn't be counted as free in this
156 		 * case, they can't be purged, only swapped out, and
157 		 * that won't affect the overall amount of available
158 		 * memory in the system.
159 		 */
160 		free -= global_page_state(NR_SHMEM);
161 
162 		free += get_nr_swap_pages();
163 
164 		/*
165 		 * Any slabs which are created with the
166 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
167 		 * which are reclaimable, under pressure.  The dentry
168 		 * cache and most inode caches should fall into this
169 		 */
170 		free += global_page_state(NR_SLAB_RECLAIMABLE);
171 
172 		/*
173 		 * Leave reserved pages. The pages are not for anonymous pages.
174 		 */
175 		if (free <= totalreserve_pages)
176 			goto error;
177 		else
178 			free -= totalreserve_pages;
179 
180 		/*
181 		 * Reserve some for root
182 		 */
183 		if (!cap_sys_admin)
184 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
185 
186 		if (free > pages)
187 			return 0;
188 
189 		goto error;
190 	}
191 
192 	allowed = vm_commit_limit();
193 	/*
194 	 * Reserve some for root
195 	 */
196 	if (!cap_sys_admin)
197 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
198 
199 	/*
200 	 * Don't let a single process grow so big a user can't recover
201 	 */
202 	if (mm) {
203 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
204 		allowed -= min(mm->total_vm / 32, reserve);
205 	}
206 
207 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
208 		return 0;
209 error:
210 	vm_unacct_memory(pages);
211 
212 	return -ENOMEM;
213 }
214 
215 /*
216  * Requires inode->i_mapping->i_mmap_mutex
217  */
218 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
219 		struct file *file, struct address_space *mapping)
220 {
221 	if (vma->vm_flags & VM_DENYWRITE)
222 		atomic_inc(&file_inode(file)->i_writecount);
223 	if (vma->vm_flags & VM_SHARED)
224 		mapping->i_mmap_writable--;
225 
226 	flush_dcache_mmap_lock(mapping);
227 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
228 		list_del_init(&vma->shared.nonlinear);
229 	else
230 		vma_interval_tree_remove(vma, &mapping->i_mmap);
231 	flush_dcache_mmap_unlock(mapping);
232 }
233 
234 /*
235  * Unlink a file-based vm structure from its interval tree, to hide
236  * vma from rmap and vmtruncate before freeing its page tables.
237  */
238 void unlink_file_vma(struct vm_area_struct *vma)
239 {
240 	struct file *file = vma->vm_file;
241 
242 	if (file) {
243 		struct address_space *mapping = file->f_mapping;
244 		mutex_lock(&mapping->i_mmap_mutex);
245 		__remove_shared_vm_struct(vma, file, mapping);
246 		mutex_unlock(&mapping->i_mmap_mutex);
247 	}
248 }
249 
250 /*
251  * Close a vm structure and free it, returning the next.
252  */
253 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
254 {
255 	struct vm_area_struct *next = vma->vm_next;
256 
257 	might_sleep();
258 	if (vma->vm_ops && vma->vm_ops->close)
259 		vma->vm_ops->close(vma);
260 	if (vma->vm_file)
261 		fput(vma->vm_file);
262 	mpol_put(vma_policy(vma));
263 	kmem_cache_free(vm_area_cachep, vma);
264 	return next;
265 }
266 
267 static unsigned long do_brk(unsigned long addr, unsigned long len);
268 
269 SYSCALL_DEFINE1(brk, unsigned long, brk)
270 {
271 	unsigned long rlim, retval;
272 	unsigned long newbrk, oldbrk;
273 	struct mm_struct *mm = current->mm;
274 	unsigned long min_brk;
275 	bool populate;
276 
277 	down_write(&mm->mmap_sem);
278 
279 #ifdef CONFIG_COMPAT_BRK
280 	/*
281 	 * CONFIG_COMPAT_BRK can still be overridden by setting
282 	 * randomize_va_space to 2, which will still cause mm->start_brk
283 	 * to be arbitrarily shifted
284 	 */
285 	if (current->brk_randomized)
286 		min_brk = mm->start_brk;
287 	else
288 		min_brk = mm->end_data;
289 #else
290 	min_brk = mm->start_brk;
291 #endif
292 	if (brk < min_brk)
293 		goto out;
294 
295 	/*
296 	 * Check against rlimit here. If this check is done later after the test
297 	 * of oldbrk with newbrk then it can escape the test and let the data
298 	 * segment grow beyond its set limit the in case where the limit is
299 	 * not page aligned -Ram Gupta
300 	 */
301 	rlim = rlimit(RLIMIT_DATA);
302 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
303 			(mm->end_data - mm->start_data) > rlim)
304 		goto out;
305 
306 	newbrk = PAGE_ALIGN(brk);
307 	oldbrk = PAGE_ALIGN(mm->brk);
308 	if (oldbrk == newbrk)
309 		goto set_brk;
310 
311 	/* Always allow shrinking brk. */
312 	if (brk <= mm->brk) {
313 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
314 			goto set_brk;
315 		goto out;
316 	}
317 
318 	/* Check against existing mmap mappings. */
319 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
320 		goto out;
321 
322 	/* Ok, looks good - let it rip. */
323 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
324 		goto out;
325 
326 set_brk:
327 	mm->brk = brk;
328 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
329 	up_write(&mm->mmap_sem);
330 	if (populate)
331 		mm_populate(oldbrk, newbrk - oldbrk);
332 	return brk;
333 
334 out:
335 	retval = mm->brk;
336 	up_write(&mm->mmap_sem);
337 	return retval;
338 }
339 
340 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
341 {
342 	unsigned long max, subtree_gap;
343 	max = vma->vm_start;
344 	if (vma->vm_prev)
345 		max -= vma->vm_prev->vm_end;
346 	if (vma->vm_rb.rb_left) {
347 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
348 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
349 		if (subtree_gap > max)
350 			max = subtree_gap;
351 	}
352 	if (vma->vm_rb.rb_right) {
353 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
354 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
355 		if (subtree_gap > max)
356 			max = subtree_gap;
357 	}
358 	return max;
359 }
360 
361 #ifdef CONFIG_DEBUG_VM_RB
362 static int browse_rb(struct rb_root *root)
363 {
364 	int i = 0, j, bug = 0;
365 	struct rb_node *nd, *pn = NULL;
366 	unsigned long prev = 0, pend = 0;
367 
368 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
369 		struct vm_area_struct *vma;
370 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
371 		if (vma->vm_start < prev) {
372 			pr_info("vm_start %lx prev %lx\n", vma->vm_start, prev);
373 			bug = 1;
374 		}
375 		if (vma->vm_start < pend) {
376 			pr_info("vm_start %lx pend %lx\n", vma->vm_start, pend);
377 			bug = 1;
378 		}
379 		if (vma->vm_start > vma->vm_end) {
380 			pr_info("vm_end %lx < vm_start %lx\n",
381 				vma->vm_end, vma->vm_start);
382 			bug = 1;
383 		}
384 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
385 			pr_info("free gap %lx, correct %lx\n",
386 			       vma->rb_subtree_gap,
387 			       vma_compute_subtree_gap(vma));
388 			bug = 1;
389 		}
390 		i++;
391 		pn = nd;
392 		prev = vma->vm_start;
393 		pend = vma->vm_end;
394 	}
395 	j = 0;
396 	for (nd = pn; nd; nd = rb_prev(nd))
397 		j++;
398 	if (i != j) {
399 		pr_info("backwards %d, forwards %d\n", j, i);
400 		bug = 1;
401 	}
402 	return bug ? -1 : i;
403 }
404 
405 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
406 {
407 	struct rb_node *nd;
408 
409 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
410 		struct vm_area_struct *vma;
411 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
412 		BUG_ON(vma != ignore &&
413 		       vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
414 	}
415 }
416 
417 static void validate_mm(struct mm_struct *mm)
418 {
419 	int bug = 0;
420 	int i = 0;
421 	unsigned long highest_address = 0;
422 	struct vm_area_struct *vma = mm->mmap;
423 	while (vma) {
424 		struct anon_vma_chain *avc;
425 		vma_lock_anon_vma(vma);
426 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
427 			anon_vma_interval_tree_verify(avc);
428 		vma_unlock_anon_vma(vma);
429 		highest_address = vma->vm_end;
430 		vma = vma->vm_next;
431 		i++;
432 	}
433 	if (i != mm->map_count) {
434 		pr_info("map_count %d vm_next %d\n", mm->map_count, i);
435 		bug = 1;
436 	}
437 	if (highest_address != mm->highest_vm_end) {
438 		pr_info("mm->highest_vm_end %lx, found %lx\n",
439 		       mm->highest_vm_end, highest_address);
440 		bug = 1;
441 	}
442 	i = browse_rb(&mm->mm_rb);
443 	if (i != mm->map_count) {
444 		pr_info("map_count %d rb %d\n", mm->map_count, i);
445 		bug = 1;
446 	}
447 	BUG_ON(bug);
448 }
449 #else
450 #define validate_mm_rb(root, ignore) do { } while (0)
451 #define validate_mm(mm) do { } while (0)
452 #endif
453 
454 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
455 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
456 
457 /*
458  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
459  * vma->vm_prev->vm_end values changed, without modifying the vma's position
460  * in the rbtree.
461  */
462 static void vma_gap_update(struct vm_area_struct *vma)
463 {
464 	/*
465 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
466 	 * function that does exacltly what we want.
467 	 */
468 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
469 }
470 
471 static inline void vma_rb_insert(struct vm_area_struct *vma,
472 				 struct rb_root *root)
473 {
474 	/* All rb_subtree_gap values must be consistent prior to insertion */
475 	validate_mm_rb(root, NULL);
476 
477 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
478 }
479 
480 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
481 {
482 	/*
483 	 * All rb_subtree_gap values must be consistent prior to erase,
484 	 * with the possible exception of the vma being erased.
485 	 */
486 	validate_mm_rb(root, vma);
487 
488 	/*
489 	 * Note rb_erase_augmented is a fairly large inline function,
490 	 * so make sure we instantiate it only once with our desired
491 	 * augmented rbtree callbacks.
492 	 */
493 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
494 }
495 
496 /*
497  * vma has some anon_vma assigned, and is already inserted on that
498  * anon_vma's interval trees.
499  *
500  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
501  * vma must be removed from the anon_vma's interval trees using
502  * anon_vma_interval_tree_pre_update_vma().
503  *
504  * After the update, the vma will be reinserted using
505  * anon_vma_interval_tree_post_update_vma().
506  *
507  * The entire update must be protected by exclusive mmap_sem and by
508  * the root anon_vma's mutex.
509  */
510 static inline void
511 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
512 {
513 	struct anon_vma_chain *avc;
514 
515 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
517 }
518 
519 static inline void
520 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
521 {
522 	struct anon_vma_chain *avc;
523 
524 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
525 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
526 }
527 
528 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
529 		unsigned long end, struct vm_area_struct **pprev,
530 		struct rb_node ***rb_link, struct rb_node **rb_parent)
531 {
532 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
533 
534 	__rb_link = &mm->mm_rb.rb_node;
535 	rb_prev = __rb_parent = NULL;
536 
537 	while (*__rb_link) {
538 		struct vm_area_struct *vma_tmp;
539 
540 		__rb_parent = *__rb_link;
541 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
542 
543 		if (vma_tmp->vm_end > addr) {
544 			/* Fail if an existing vma overlaps the area */
545 			if (vma_tmp->vm_start < end)
546 				return -ENOMEM;
547 			__rb_link = &__rb_parent->rb_left;
548 		} else {
549 			rb_prev = __rb_parent;
550 			__rb_link = &__rb_parent->rb_right;
551 		}
552 	}
553 
554 	*pprev = NULL;
555 	if (rb_prev)
556 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
557 	*rb_link = __rb_link;
558 	*rb_parent = __rb_parent;
559 	return 0;
560 }
561 
562 static unsigned long count_vma_pages_range(struct mm_struct *mm,
563 		unsigned long addr, unsigned long end)
564 {
565 	unsigned long nr_pages = 0;
566 	struct vm_area_struct *vma;
567 
568 	/* Find first overlaping mapping */
569 	vma = find_vma_intersection(mm, addr, end);
570 	if (!vma)
571 		return 0;
572 
573 	nr_pages = (min(end, vma->vm_end) -
574 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
575 
576 	/* Iterate over the rest of the overlaps */
577 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
578 		unsigned long overlap_len;
579 
580 		if (vma->vm_start > end)
581 			break;
582 
583 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
584 		nr_pages += overlap_len >> PAGE_SHIFT;
585 	}
586 
587 	return nr_pages;
588 }
589 
590 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
591 		struct rb_node **rb_link, struct rb_node *rb_parent)
592 {
593 	/* Update tracking information for the gap following the new vma. */
594 	if (vma->vm_next)
595 		vma_gap_update(vma->vm_next);
596 	else
597 		mm->highest_vm_end = vma->vm_end;
598 
599 	/*
600 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
601 	 * correct insertion point for that vma. As a result, we could not
602 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
603 	 * So, we first insert the vma with a zero rb_subtree_gap value
604 	 * (to be consistent with what we did on the way down), and then
605 	 * immediately update the gap to the correct value. Finally we
606 	 * rebalance the rbtree after all augmented values have been set.
607 	 */
608 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
609 	vma->rb_subtree_gap = 0;
610 	vma_gap_update(vma);
611 	vma_rb_insert(vma, &mm->mm_rb);
612 }
613 
614 static void __vma_link_file(struct vm_area_struct *vma)
615 {
616 	struct file *file;
617 
618 	file = vma->vm_file;
619 	if (file) {
620 		struct address_space *mapping = file->f_mapping;
621 
622 		if (vma->vm_flags & VM_DENYWRITE)
623 			atomic_dec(&file_inode(file)->i_writecount);
624 		if (vma->vm_flags & VM_SHARED)
625 			mapping->i_mmap_writable++;
626 
627 		flush_dcache_mmap_lock(mapping);
628 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
629 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
630 		else
631 			vma_interval_tree_insert(vma, &mapping->i_mmap);
632 		flush_dcache_mmap_unlock(mapping);
633 	}
634 }
635 
636 static void
637 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 	struct vm_area_struct *prev, struct rb_node **rb_link,
639 	struct rb_node *rb_parent)
640 {
641 	__vma_link_list(mm, vma, prev, rb_parent);
642 	__vma_link_rb(mm, vma, rb_link, rb_parent);
643 }
644 
645 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
646 			struct vm_area_struct *prev, struct rb_node **rb_link,
647 			struct rb_node *rb_parent)
648 {
649 	struct address_space *mapping = NULL;
650 
651 	if (vma->vm_file) {
652 		mapping = vma->vm_file->f_mapping;
653 		mutex_lock(&mapping->i_mmap_mutex);
654 	}
655 
656 	__vma_link(mm, vma, prev, rb_link, rb_parent);
657 	__vma_link_file(vma);
658 
659 	if (mapping)
660 		mutex_unlock(&mapping->i_mmap_mutex);
661 
662 	mm->map_count++;
663 	validate_mm(mm);
664 }
665 
666 /*
667  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
668  * mm's list and rbtree.  It has already been inserted into the interval tree.
669  */
670 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
671 {
672 	struct vm_area_struct *prev;
673 	struct rb_node **rb_link, *rb_parent;
674 
675 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
676 			   &prev, &rb_link, &rb_parent))
677 		BUG();
678 	__vma_link(mm, vma, prev, rb_link, rb_parent);
679 	mm->map_count++;
680 }
681 
682 static inline void
683 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
684 		struct vm_area_struct *prev)
685 {
686 	struct vm_area_struct *next;
687 
688 	vma_rb_erase(vma, &mm->mm_rb);
689 	prev->vm_next = next = vma->vm_next;
690 	if (next)
691 		next->vm_prev = prev;
692 
693 	/* Kill the cache */
694 	vmacache_invalidate(mm);
695 }
696 
697 /*
698  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
699  * is already present in an i_mmap tree without adjusting the tree.
700  * The following helper function should be used when such adjustments
701  * are necessary.  The "insert" vma (if any) is to be inserted
702  * before we drop the necessary locks.
703  */
704 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
705 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
706 {
707 	struct mm_struct *mm = vma->vm_mm;
708 	struct vm_area_struct *next = vma->vm_next;
709 	struct vm_area_struct *importer = NULL;
710 	struct address_space *mapping = NULL;
711 	struct rb_root *root = NULL;
712 	struct anon_vma *anon_vma = NULL;
713 	struct file *file = vma->vm_file;
714 	bool start_changed = false, end_changed = false;
715 	long adjust_next = 0;
716 	int remove_next = 0;
717 
718 	if (next && !insert) {
719 		struct vm_area_struct *exporter = NULL;
720 
721 		if (end >= next->vm_end) {
722 			/*
723 			 * vma expands, overlapping all the next, and
724 			 * perhaps the one after too (mprotect case 6).
725 			 */
726 again:			remove_next = 1 + (end > next->vm_end);
727 			end = next->vm_end;
728 			exporter = next;
729 			importer = vma;
730 		} else if (end > next->vm_start) {
731 			/*
732 			 * vma expands, overlapping part of the next:
733 			 * mprotect case 5 shifting the boundary up.
734 			 */
735 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
736 			exporter = next;
737 			importer = vma;
738 		} else if (end < vma->vm_end) {
739 			/*
740 			 * vma shrinks, and !insert tells it's not
741 			 * split_vma inserting another: so it must be
742 			 * mprotect case 4 shifting the boundary down.
743 			 */
744 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
745 			exporter = vma;
746 			importer = next;
747 		}
748 
749 		/*
750 		 * Easily overlooked: when mprotect shifts the boundary,
751 		 * make sure the expanding vma has anon_vma set if the
752 		 * shrinking vma had, to cover any anon pages imported.
753 		 */
754 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
755 			if (anon_vma_clone(importer, exporter))
756 				return -ENOMEM;
757 			importer->anon_vma = exporter->anon_vma;
758 		}
759 	}
760 
761 	if (file) {
762 		mapping = file->f_mapping;
763 		if (!(vma->vm_flags & VM_NONLINEAR)) {
764 			root = &mapping->i_mmap;
765 			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
766 
767 			if (adjust_next)
768 				uprobe_munmap(next, next->vm_start,
769 							next->vm_end);
770 		}
771 
772 		mutex_lock(&mapping->i_mmap_mutex);
773 		if (insert) {
774 			/*
775 			 * Put into interval tree now, so instantiated pages
776 			 * are visible to arm/parisc __flush_dcache_page
777 			 * throughout; but we cannot insert into address
778 			 * space until vma start or end is updated.
779 			 */
780 			__vma_link_file(insert);
781 		}
782 	}
783 
784 	vma_adjust_trans_huge(vma, start, end, adjust_next);
785 
786 	anon_vma = vma->anon_vma;
787 	if (!anon_vma && adjust_next)
788 		anon_vma = next->anon_vma;
789 	if (anon_vma) {
790 		VM_BUG_ON(adjust_next && next->anon_vma &&
791 			  anon_vma != next->anon_vma);
792 		anon_vma_lock_write(anon_vma);
793 		anon_vma_interval_tree_pre_update_vma(vma);
794 		if (adjust_next)
795 			anon_vma_interval_tree_pre_update_vma(next);
796 	}
797 
798 	if (root) {
799 		flush_dcache_mmap_lock(mapping);
800 		vma_interval_tree_remove(vma, root);
801 		if (adjust_next)
802 			vma_interval_tree_remove(next, root);
803 	}
804 
805 	if (start != vma->vm_start) {
806 		vma->vm_start = start;
807 		start_changed = true;
808 	}
809 	if (end != vma->vm_end) {
810 		vma->vm_end = end;
811 		end_changed = true;
812 	}
813 	vma->vm_pgoff = pgoff;
814 	if (adjust_next) {
815 		next->vm_start += adjust_next << PAGE_SHIFT;
816 		next->vm_pgoff += adjust_next;
817 	}
818 
819 	if (root) {
820 		if (adjust_next)
821 			vma_interval_tree_insert(next, root);
822 		vma_interval_tree_insert(vma, root);
823 		flush_dcache_mmap_unlock(mapping);
824 	}
825 
826 	if (remove_next) {
827 		/*
828 		 * vma_merge has merged next into vma, and needs
829 		 * us to remove next before dropping the locks.
830 		 */
831 		__vma_unlink(mm, next, vma);
832 		if (file)
833 			__remove_shared_vm_struct(next, file, mapping);
834 	} else if (insert) {
835 		/*
836 		 * split_vma has split insert from vma, and needs
837 		 * us to insert it before dropping the locks
838 		 * (it may either follow vma or precede it).
839 		 */
840 		__insert_vm_struct(mm, insert);
841 	} else {
842 		if (start_changed)
843 			vma_gap_update(vma);
844 		if (end_changed) {
845 			if (!next)
846 				mm->highest_vm_end = end;
847 			else if (!adjust_next)
848 				vma_gap_update(next);
849 		}
850 	}
851 
852 	if (anon_vma) {
853 		anon_vma_interval_tree_post_update_vma(vma);
854 		if (adjust_next)
855 			anon_vma_interval_tree_post_update_vma(next);
856 		anon_vma_unlock_write(anon_vma);
857 	}
858 	if (mapping)
859 		mutex_unlock(&mapping->i_mmap_mutex);
860 
861 	if (root) {
862 		uprobe_mmap(vma);
863 
864 		if (adjust_next)
865 			uprobe_mmap(next);
866 	}
867 
868 	if (remove_next) {
869 		if (file) {
870 			uprobe_munmap(next, next->vm_start, next->vm_end);
871 			fput(file);
872 		}
873 		if (next->anon_vma)
874 			anon_vma_merge(vma, next);
875 		mm->map_count--;
876 		mpol_put(vma_policy(next));
877 		kmem_cache_free(vm_area_cachep, next);
878 		/*
879 		 * In mprotect's case 6 (see comments on vma_merge),
880 		 * we must remove another next too. It would clutter
881 		 * up the code too much to do both in one go.
882 		 */
883 		next = vma->vm_next;
884 		if (remove_next == 2)
885 			goto again;
886 		else if (next)
887 			vma_gap_update(next);
888 		else
889 			mm->highest_vm_end = end;
890 	}
891 	if (insert && file)
892 		uprobe_mmap(insert);
893 
894 	validate_mm(mm);
895 
896 	return 0;
897 }
898 
899 /*
900  * If the vma has a ->close operation then the driver probably needs to release
901  * per-vma resources, so we don't attempt to merge those.
902  */
903 static inline int is_mergeable_vma(struct vm_area_struct *vma,
904 			struct file *file, unsigned long vm_flags)
905 {
906 	/*
907 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
908 	 * match the flags but dirty bit -- the caller should mark
909 	 * merged VMA as dirty. If dirty bit won't be excluded from
910 	 * comparison, we increase pressue on the memory system forcing
911 	 * the kernel to generate new VMAs when old one could be
912 	 * extended instead.
913 	 */
914 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
915 		return 0;
916 	if (vma->vm_file != file)
917 		return 0;
918 	if (vma->vm_ops && vma->vm_ops->close)
919 		return 0;
920 	return 1;
921 }
922 
923 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
924 					struct anon_vma *anon_vma2,
925 					struct vm_area_struct *vma)
926 {
927 	/*
928 	 * The list_is_singular() test is to avoid merging VMA cloned from
929 	 * parents. This can improve scalability caused by anon_vma lock.
930 	 */
931 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
932 		list_is_singular(&vma->anon_vma_chain)))
933 		return 1;
934 	return anon_vma1 == anon_vma2;
935 }
936 
937 /*
938  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
939  * in front of (at a lower virtual address and file offset than) the vma.
940  *
941  * We cannot merge two vmas if they have differently assigned (non-NULL)
942  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
943  *
944  * We don't check here for the merged mmap wrapping around the end of pagecache
945  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
946  * wrap, nor mmaps which cover the final page at index -1UL.
947  */
948 static int
949 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
950 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
951 {
952 	if (is_mergeable_vma(vma, file, vm_flags) &&
953 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
954 		if (vma->vm_pgoff == vm_pgoff)
955 			return 1;
956 	}
957 	return 0;
958 }
959 
960 /*
961  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
962  * beyond (at a higher virtual address and file offset than) the vma.
963  *
964  * We cannot merge two vmas if they have differently assigned (non-NULL)
965  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
966  */
967 static int
968 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
969 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
970 {
971 	if (is_mergeable_vma(vma, file, vm_flags) &&
972 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
973 		pgoff_t vm_pglen;
974 		vm_pglen = vma_pages(vma);
975 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
976 			return 1;
977 	}
978 	return 0;
979 }
980 
981 /*
982  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
983  * whether that can be merged with its predecessor or its successor.
984  * Or both (it neatly fills a hole).
985  *
986  * In most cases - when called for mmap, brk or mremap - [addr,end) is
987  * certain not to be mapped by the time vma_merge is called; but when
988  * called for mprotect, it is certain to be already mapped (either at
989  * an offset within prev, or at the start of next), and the flags of
990  * this area are about to be changed to vm_flags - and the no-change
991  * case has already been eliminated.
992  *
993  * The following mprotect cases have to be considered, where AAAA is
994  * the area passed down from mprotect_fixup, never extending beyond one
995  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
996  *
997  *     AAAA             AAAA                AAAA          AAAA
998  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
999  *    cannot merge    might become    might become    might become
1000  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1001  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1002  *    mremap move:                                    PPPPNNNNNNNN 8
1003  *        AAAA
1004  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1005  *    might become    case 1 below    case 2 below    case 3 below
1006  *
1007  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1008  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1009  */
1010 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1011 			struct vm_area_struct *prev, unsigned long addr,
1012 			unsigned long end, unsigned long vm_flags,
1013 		     	struct anon_vma *anon_vma, struct file *file,
1014 			pgoff_t pgoff, struct mempolicy *policy)
1015 {
1016 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1017 	struct vm_area_struct *area, *next;
1018 	int err;
1019 
1020 	/*
1021 	 * We later require that vma->vm_flags == vm_flags,
1022 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1023 	 */
1024 	if (vm_flags & VM_SPECIAL)
1025 		return NULL;
1026 
1027 	if (prev)
1028 		next = prev->vm_next;
1029 	else
1030 		next = mm->mmap;
1031 	area = next;
1032 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1033 		next = next->vm_next;
1034 
1035 	/*
1036 	 * Can it merge with the predecessor?
1037 	 */
1038 	if (prev && prev->vm_end == addr &&
1039   			mpol_equal(vma_policy(prev), policy) &&
1040 			can_vma_merge_after(prev, vm_flags,
1041 						anon_vma, file, pgoff)) {
1042 		/*
1043 		 * OK, it can.  Can we now merge in the successor as well?
1044 		 */
1045 		if (next && end == next->vm_start &&
1046 				mpol_equal(policy, vma_policy(next)) &&
1047 				can_vma_merge_before(next, vm_flags,
1048 					anon_vma, file, pgoff+pglen) &&
1049 				is_mergeable_anon_vma(prev->anon_vma,
1050 						      next->anon_vma, NULL)) {
1051 							/* cases 1, 6 */
1052 			err = vma_adjust(prev, prev->vm_start,
1053 				next->vm_end, prev->vm_pgoff, NULL);
1054 		} else					/* cases 2, 5, 7 */
1055 			err = vma_adjust(prev, prev->vm_start,
1056 				end, prev->vm_pgoff, NULL);
1057 		if (err)
1058 			return NULL;
1059 		khugepaged_enter_vma_merge(prev);
1060 		return prev;
1061 	}
1062 
1063 	/*
1064 	 * Can this new request be merged in front of next?
1065 	 */
1066 	if (next && end == next->vm_start &&
1067  			mpol_equal(policy, vma_policy(next)) &&
1068 			can_vma_merge_before(next, vm_flags,
1069 					anon_vma, file, pgoff+pglen)) {
1070 		if (prev && addr < prev->vm_end)	/* case 4 */
1071 			err = vma_adjust(prev, prev->vm_start,
1072 				addr, prev->vm_pgoff, NULL);
1073 		else					/* cases 3, 8 */
1074 			err = vma_adjust(area, addr, next->vm_end,
1075 				next->vm_pgoff - pglen, NULL);
1076 		if (err)
1077 			return NULL;
1078 		khugepaged_enter_vma_merge(area);
1079 		return area;
1080 	}
1081 
1082 	return NULL;
1083 }
1084 
1085 /*
1086  * Rough compatbility check to quickly see if it's even worth looking
1087  * at sharing an anon_vma.
1088  *
1089  * They need to have the same vm_file, and the flags can only differ
1090  * in things that mprotect may change.
1091  *
1092  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1093  * we can merge the two vma's. For example, we refuse to merge a vma if
1094  * there is a vm_ops->close() function, because that indicates that the
1095  * driver is doing some kind of reference counting. But that doesn't
1096  * really matter for the anon_vma sharing case.
1097  */
1098 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1099 {
1100 	return a->vm_end == b->vm_start &&
1101 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1102 		a->vm_file == b->vm_file &&
1103 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1104 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1105 }
1106 
1107 /*
1108  * Do some basic sanity checking to see if we can re-use the anon_vma
1109  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1110  * the same as 'old', the other will be the new one that is trying
1111  * to share the anon_vma.
1112  *
1113  * NOTE! This runs with mm_sem held for reading, so it is possible that
1114  * the anon_vma of 'old' is concurrently in the process of being set up
1115  * by another page fault trying to merge _that_. But that's ok: if it
1116  * is being set up, that automatically means that it will be a singleton
1117  * acceptable for merging, so we can do all of this optimistically. But
1118  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1119  *
1120  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1121  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1122  * is to return an anon_vma that is "complex" due to having gone through
1123  * a fork).
1124  *
1125  * We also make sure that the two vma's are compatible (adjacent,
1126  * and with the same memory policies). That's all stable, even with just
1127  * a read lock on the mm_sem.
1128  */
1129 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1130 {
1131 	if (anon_vma_compatible(a, b)) {
1132 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1133 
1134 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1135 			return anon_vma;
1136 	}
1137 	return NULL;
1138 }
1139 
1140 /*
1141  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1142  * neighbouring vmas for a suitable anon_vma, before it goes off
1143  * to allocate a new anon_vma.  It checks because a repetitive
1144  * sequence of mprotects and faults may otherwise lead to distinct
1145  * anon_vmas being allocated, preventing vma merge in subsequent
1146  * mprotect.
1147  */
1148 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1149 {
1150 	struct anon_vma *anon_vma;
1151 	struct vm_area_struct *near;
1152 
1153 	near = vma->vm_next;
1154 	if (!near)
1155 		goto try_prev;
1156 
1157 	anon_vma = reusable_anon_vma(near, vma, near);
1158 	if (anon_vma)
1159 		return anon_vma;
1160 try_prev:
1161 	near = vma->vm_prev;
1162 	if (!near)
1163 		goto none;
1164 
1165 	anon_vma = reusable_anon_vma(near, near, vma);
1166 	if (anon_vma)
1167 		return anon_vma;
1168 none:
1169 	/*
1170 	 * There's no absolute need to look only at touching neighbours:
1171 	 * we could search further afield for "compatible" anon_vmas.
1172 	 * But it would probably just be a waste of time searching,
1173 	 * or lead to too many vmas hanging off the same anon_vma.
1174 	 * We're trying to allow mprotect remerging later on,
1175 	 * not trying to minimize memory used for anon_vmas.
1176 	 */
1177 	return NULL;
1178 }
1179 
1180 #ifdef CONFIG_PROC_FS
1181 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1182 						struct file *file, long pages)
1183 {
1184 	const unsigned long stack_flags
1185 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1186 
1187 	mm->total_vm += pages;
1188 
1189 	if (file) {
1190 		mm->shared_vm += pages;
1191 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1192 			mm->exec_vm += pages;
1193 	} else if (flags & stack_flags)
1194 		mm->stack_vm += pages;
1195 }
1196 #endif /* CONFIG_PROC_FS */
1197 
1198 /*
1199  * If a hint addr is less than mmap_min_addr change hint to be as
1200  * low as possible but still greater than mmap_min_addr
1201  */
1202 static inline unsigned long round_hint_to_min(unsigned long hint)
1203 {
1204 	hint &= PAGE_MASK;
1205 	if (((void *)hint != NULL) &&
1206 	    (hint < mmap_min_addr))
1207 		return PAGE_ALIGN(mmap_min_addr);
1208 	return hint;
1209 }
1210 
1211 static inline int mlock_future_check(struct mm_struct *mm,
1212 				     unsigned long flags,
1213 				     unsigned long len)
1214 {
1215 	unsigned long locked, lock_limit;
1216 
1217 	/*  mlock MCL_FUTURE? */
1218 	if (flags & VM_LOCKED) {
1219 		locked = len >> PAGE_SHIFT;
1220 		locked += mm->locked_vm;
1221 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1222 		lock_limit >>= PAGE_SHIFT;
1223 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1224 			return -EAGAIN;
1225 	}
1226 	return 0;
1227 }
1228 
1229 /*
1230  * The caller must hold down_write(&current->mm->mmap_sem).
1231  */
1232 
1233 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1234 			unsigned long len, unsigned long prot,
1235 			unsigned long flags, unsigned long pgoff,
1236 			unsigned long *populate)
1237 {
1238 	struct mm_struct * mm = current->mm;
1239 	vm_flags_t vm_flags;
1240 
1241 	*populate = 0;
1242 
1243 	/*
1244 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1245 	 *
1246 	 * (the exception is when the underlying filesystem is noexec
1247 	 *  mounted, in which case we dont add PROT_EXEC.)
1248 	 */
1249 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1250 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1251 			prot |= PROT_EXEC;
1252 
1253 	if (!len)
1254 		return -EINVAL;
1255 
1256 	if (!(flags & MAP_FIXED))
1257 		addr = round_hint_to_min(addr);
1258 
1259 	/* Careful about overflows.. */
1260 	len = PAGE_ALIGN(len);
1261 	if (!len)
1262 		return -ENOMEM;
1263 
1264 	/* offset overflow? */
1265 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1266                return -EOVERFLOW;
1267 
1268 	/* Too many mappings? */
1269 	if (mm->map_count > sysctl_max_map_count)
1270 		return -ENOMEM;
1271 
1272 	/* Obtain the address to map to. we verify (or select) it and ensure
1273 	 * that it represents a valid section of the address space.
1274 	 */
1275 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1276 	if (addr & ~PAGE_MASK)
1277 		return addr;
1278 
1279 	/* Do simple checking here so the lower-level routines won't have
1280 	 * to. we assume access permissions have been handled by the open
1281 	 * of the memory object, so we don't do any here.
1282 	 */
1283 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1284 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1285 
1286 	if (flags & MAP_LOCKED)
1287 		if (!can_do_mlock())
1288 			return -EPERM;
1289 
1290 	if (mlock_future_check(mm, vm_flags, len))
1291 		return -EAGAIN;
1292 
1293 	if (file) {
1294 		struct inode *inode = file_inode(file);
1295 
1296 		switch (flags & MAP_TYPE) {
1297 		case MAP_SHARED:
1298 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1299 				return -EACCES;
1300 
1301 			/*
1302 			 * Make sure we don't allow writing to an append-only
1303 			 * file..
1304 			 */
1305 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1306 				return -EACCES;
1307 
1308 			/*
1309 			 * Make sure there are no mandatory locks on the file.
1310 			 */
1311 			if (locks_verify_locked(file))
1312 				return -EAGAIN;
1313 
1314 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1315 			if (!(file->f_mode & FMODE_WRITE))
1316 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1317 
1318 			/* fall through */
1319 		case MAP_PRIVATE:
1320 			if (!(file->f_mode & FMODE_READ))
1321 				return -EACCES;
1322 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1323 				if (vm_flags & VM_EXEC)
1324 					return -EPERM;
1325 				vm_flags &= ~VM_MAYEXEC;
1326 			}
1327 
1328 			if (!file->f_op->mmap)
1329 				return -ENODEV;
1330 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1331 				return -EINVAL;
1332 			break;
1333 
1334 		default:
1335 			return -EINVAL;
1336 		}
1337 	} else {
1338 		switch (flags & MAP_TYPE) {
1339 		case MAP_SHARED:
1340 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1341 				return -EINVAL;
1342 			/*
1343 			 * Ignore pgoff.
1344 			 */
1345 			pgoff = 0;
1346 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1347 			break;
1348 		case MAP_PRIVATE:
1349 			/*
1350 			 * Set pgoff according to addr for anon_vma.
1351 			 */
1352 			pgoff = addr >> PAGE_SHIFT;
1353 			break;
1354 		default:
1355 			return -EINVAL;
1356 		}
1357 	}
1358 
1359 	/*
1360 	 * Set 'VM_NORESERVE' if we should not account for the
1361 	 * memory use of this mapping.
1362 	 */
1363 	if (flags & MAP_NORESERVE) {
1364 		/* We honor MAP_NORESERVE if allowed to overcommit */
1365 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1366 			vm_flags |= VM_NORESERVE;
1367 
1368 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1369 		if (file && is_file_hugepages(file))
1370 			vm_flags |= VM_NORESERVE;
1371 	}
1372 
1373 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1374 	if (!IS_ERR_VALUE(addr) &&
1375 	    ((vm_flags & VM_LOCKED) ||
1376 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1377 		*populate = len;
1378 	return addr;
1379 }
1380 
1381 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1382 		unsigned long, prot, unsigned long, flags,
1383 		unsigned long, fd, unsigned long, pgoff)
1384 {
1385 	struct file *file = NULL;
1386 	unsigned long retval = -EBADF;
1387 
1388 	if (!(flags & MAP_ANONYMOUS)) {
1389 		audit_mmap_fd(fd, flags);
1390 		file = fget(fd);
1391 		if (!file)
1392 			goto out;
1393 		if (is_file_hugepages(file))
1394 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1395 		retval = -EINVAL;
1396 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1397 			goto out_fput;
1398 	} else if (flags & MAP_HUGETLB) {
1399 		struct user_struct *user = NULL;
1400 		struct hstate *hs;
1401 
1402 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1403 		if (!hs)
1404 			return -EINVAL;
1405 
1406 		len = ALIGN(len, huge_page_size(hs));
1407 		/*
1408 		 * VM_NORESERVE is used because the reservations will be
1409 		 * taken when vm_ops->mmap() is called
1410 		 * A dummy user value is used because we are not locking
1411 		 * memory so no accounting is necessary
1412 		 */
1413 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1414 				VM_NORESERVE,
1415 				&user, HUGETLB_ANONHUGE_INODE,
1416 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1417 		if (IS_ERR(file))
1418 			return PTR_ERR(file);
1419 	}
1420 
1421 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1422 
1423 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1424 out_fput:
1425 	if (file)
1426 		fput(file);
1427 out:
1428 	return retval;
1429 }
1430 
1431 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1432 struct mmap_arg_struct {
1433 	unsigned long addr;
1434 	unsigned long len;
1435 	unsigned long prot;
1436 	unsigned long flags;
1437 	unsigned long fd;
1438 	unsigned long offset;
1439 };
1440 
1441 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1442 {
1443 	struct mmap_arg_struct a;
1444 
1445 	if (copy_from_user(&a, arg, sizeof(a)))
1446 		return -EFAULT;
1447 	if (a.offset & ~PAGE_MASK)
1448 		return -EINVAL;
1449 
1450 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1451 			      a.offset >> PAGE_SHIFT);
1452 }
1453 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1454 
1455 /*
1456  * Some shared mappigns will want the pages marked read-only
1457  * to track write events. If so, we'll downgrade vm_page_prot
1458  * to the private version (using protection_map[] without the
1459  * VM_SHARED bit).
1460  */
1461 int vma_wants_writenotify(struct vm_area_struct *vma)
1462 {
1463 	vm_flags_t vm_flags = vma->vm_flags;
1464 
1465 	/* If it was private or non-writable, the write bit is already clear */
1466 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1467 		return 0;
1468 
1469 	/* The backer wishes to know when pages are first written to? */
1470 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1471 		return 1;
1472 
1473 	/* The open routine did something to the protections already? */
1474 	if (pgprot_val(vma->vm_page_prot) !=
1475 	    pgprot_val(vm_get_page_prot(vm_flags)))
1476 		return 0;
1477 
1478 	/* Specialty mapping? */
1479 	if (vm_flags & VM_PFNMAP)
1480 		return 0;
1481 
1482 	/* Can the mapping track the dirty pages? */
1483 	return vma->vm_file && vma->vm_file->f_mapping &&
1484 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1485 }
1486 
1487 /*
1488  * We account for memory if it's a private writeable mapping,
1489  * not hugepages and VM_NORESERVE wasn't set.
1490  */
1491 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1492 {
1493 	/*
1494 	 * hugetlb has its own accounting separate from the core VM
1495 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1496 	 */
1497 	if (file && is_file_hugepages(file))
1498 		return 0;
1499 
1500 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1501 }
1502 
1503 unsigned long mmap_region(struct file *file, unsigned long addr,
1504 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1505 {
1506 	struct mm_struct *mm = current->mm;
1507 	struct vm_area_struct *vma, *prev;
1508 	int error;
1509 	struct rb_node **rb_link, *rb_parent;
1510 	unsigned long charged = 0;
1511 
1512 	/* Check against address space limit. */
1513 	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1514 		unsigned long nr_pages;
1515 
1516 		/*
1517 		 * MAP_FIXED may remove pages of mappings that intersects with
1518 		 * requested mapping. Account for the pages it would unmap.
1519 		 */
1520 		if (!(vm_flags & MAP_FIXED))
1521 			return -ENOMEM;
1522 
1523 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1524 
1525 		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1526 			return -ENOMEM;
1527 	}
1528 
1529 	/* Clear old maps */
1530 	error = -ENOMEM;
1531 munmap_back:
1532 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1533 		if (do_munmap(mm, addr, len))
1534 			return -ENOMEM;
1535 		goto munmap_back;
1536 	}
1537 
1538 	/*
1539 	 * Private writable mapping: check memory availability
1540 	 */
1541 	if (accountable_mapping(file, vm_flags)) {
1542 		charged = len >> PAGE_SHIFT;
1543 		if (security_vm_enough_memory_mm(mm, charged))
1544 			return -ENOMEM;
1545 		vm_flags |= VM_ACCOUNT;
1546 	}
1547 
1548 	/*
1549 	 * Can we just expand an old mapping?
1550 	 */
1551 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1552 	if (vma)
1553 		goto out;
1554 
1555 	/*
1556 	 * Determine the object being mapped and call the appropriate
1557 	 * specific mapper. the address has already been validated, but
1558 	 * not unmapped, but the maps are removed from the list.
1559 	 */
1560 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1561 	if (!vma) {
1562 		error = -ENOMEM;
1563 		goto unacct_error;
1564 	}
1565 
1566 	vma->vm_mm = mm;
1567 	vma->vm_start = addr;
1568 	vma->vm_end = addr + len;
1569 	vma->vm_flags = vm_flags;
1570 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1571 	vma->vm_pgoff = pgoff;
1572 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1573 
1574 	if (file) {
1575 		if (vm_flags & VM_DENYWRITE) {
1576 			error = deny_write_access(file);
1577 			if (error)
1578 				goto free_vma;
1579 		}
1580 		vma->vm_file = get_file(file);
1581 		error = file->f_op->mmap(file, vma);
1582 		if (error)
1583 			goto unmap_and_free_vma;
1584 
1585 		/* Can addr have changed??
1586 		 *
1587 		 * Answer: Yes, several device drivers can do it in their
1588 		 *         f_op->mmap method. -DaveM
1589 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1590 		 *      be updated for vma_link()
1591 		 */
1592 		WARN_ON_ONCE(addr != vma->vm_start);
1593 
1594 		addr = vma->vm_start;
1595 		vm_flags = vma->vm_flags;
1596 	} else if (vm_flags & VM_SHARED) {
1597 		error = shmem_zero_setup(vma);
1598 		if (error)
1599 			goto free_vma;
1600 	}
1601 
1602 	if (vma_wants_writenotify(vma)) {
1603 		pgprot_t pprot = vma->vm_page_prot;
1604 
1605 		/* Can vma->vm_page_prot have changed??
1606 		 *
1607 		 * Answer: Yes, drivers may have changed it in their
1608 		 *         f_op->mmap method.
1609 		 *
1610 		 * Ensures that vmas marked as uncached stay that way.
1611 		 */
1612 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1613 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1614 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1615 	}
1616 
1617 	vma_link(mm, vma, prev, rb_link, rb_parent);
1618 	/* Once vma denies write, undo our temporary denial count */
1619 	if (vm_flags & VM_DENYWRITE)
1620 		allow_write_access(file);
1621 	file = vma->vm_file;
1622 out:
1623 	perf_event_mmap(vma);
1624 
1625 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1626 	if (vm_flags & VM_LOCKED) {
1627 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1628 					vma == get_gate_vma(current->mm)))
1629 			mm->locked_vm += (len >> PAGE_SHIFT);
1630 		else
1631 			vma->vm_flags &= ~VM_LOCKED;
1632 	}
1633 
1634 	if (file)
1635 		uprobe_mmap(vma);
1636 
1637 	/*
1638 	 * New (or expanded) vma always get soft dirty status.
1639 	 * Otherwise user-space soft-dirty page tracker won't
1640 	 * be able to distinguish situation when vma area unmapped,
1641 	 * then new mapped in-place (which must be aimed as
1642 	 * a completely new data area).
1643 	 */
1644 	vma->vm_flags |= VM_SOFTDIRTY;
1645 
1646 	return addr;
1647 
1648 unmap_and_free_vma:
1649 	if (vm_flags & VM_DENYWRITE)
1650 		allow_write_access(file);
1651 	vma->vm_file = NULL;
1652 	fput(file);
1653 
1654 	/* Undo any partial mapping done by a device driver. */
1655 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1656 	charged = 0;
1657 free_vma:
1658 	kmem_cache_free(vm_area_cachep, vma);
1659 unacct_error:
1660 	if (charged)
1661 		vm_unacct_memory(charged);
1662 	return error;
1663 }
1664 
1665 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1666 {
1667 	/*
1668 	 * We implement the search by looking for an rbtree node that
1669 	 * immediately follows a suitable gap. That is,
1670 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1671 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1672 	 * - gap_end - gap_start >= length
1673 	 */
1674 
1675 	struct mm_struct *mm = current->mm;
1676 	struct vm_area_struct *vma;
1677 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1678 
1679 	/* Adjust search length to account for worst case alignment overhead */
1680 	length = info->length + info->align_mask;
1681 	if (length < info->length)
1682 		return -ENOMEM;
1683 
1684 	/* Adjust search limits by the desired length */
1685 	if (info->high_limit < length)
1686 		return -ENOMEM;
1687 	high_limit = info->high_limit - length;
1688 
1689 	if (info->low_limit > high_limit)
1690 		return -ENOMEM;
1691 	low_limit = info->low_limit + length;
1692 
1693 	/* Check if rbtree root looks promising */
1694 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1695 		goto check_highest;
1696 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1697 	if (vma->rb_subtree_gap < length)
1698 		goto check_highest;
1699 
1700 	while (true) {
1701 		/* Visit left subtree if it looks promising */
1702 		gap_end = vma->vm_start;
1703 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1704 			struct vm_area_struct *left =
1705 				rb_entry(vma->vm_rb.rb_left,
1706 					 struct vm_area_struct, vm_rb);
1707 			if (left->rb_subtree_gap >= length) {
1708 				vma = left;
1709 				continue;
1710 			}
1711 		}
1712 
1713 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1714 check_current:
1715 		/* Check if current node has a suitable gap */
1716 		if (gap_start > high_limit)
1717 			return -ENOMEM;
1718 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1719 			goto found;
1720 
1721 		/* Visit right subtree if it looks promising */
1722 		if (vma->vm_rb.rb_right) {
1723 			struct vm_area_struct *right =
1724 				rb_entry(vma->vm_rb.rb_right,
1725 					 struct vm_area_struct, vm_rb);
1726 			if (right->rb_subtree_gap >= length) {
1727 				vma = right;
1728 				continue;
1729 			}
1730 		}
1731 
1732 		/* Go back up the rbtree to find next candidate node */
1733 		while (true) {
1734 			struct rb_node *prev = &vma->vm_rb;
1735 			if (!rb_parent(prev))
1736 				goto check_highest;
1737 			vma = rb_entry(rb_parent(prev),
1738 				       struct vm_area_struct, vm_rb);
1739 			if (prev == vma->vm_rb.rb_left) {
1740 				gap_start = vma->vm_prev->vm_end;
1741 				gap_end = vma->vm_start;
1742 				goto check_current;
1743 			}
1744 		}
1745 	}
1746 
1747 check_highest:
1748 	/* Check highest gap, which does not precede any rbtree node */
1749 	gap_start = mm->highest_vm_end;
1750 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1751 	if (gap_start > high_limit)
1752 		return -ENOMEM;
1753 
1754 found:
1755 	/* We found a suitable gap. Clip it with the original low_limit. */
1756 	if (gap_start < info->low_limit)
1757 		gap_start = info->low_limit;
1758 
1759 	/* Adjust gap address to the desired alignment */
1760 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1761 
1762 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1763 	VM_BUG_ON(gap_start + info->length > gap_end);
1764 	return gap_start;
1765 }
1766 
1767 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1768 {
1769 	struct mm_struct *mm = current->mm;
1770 	struct vm_area_struct *vma;
1771 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1772 
1773 	/* Adjust search length to account for worst case alignment overhead */
1774 	length = info->length + info->align_mask;
1775 	if (length < info->length)
1776 		return -ENOMEM;
1777 
1778 	/*
1779 	 * Adjust search limits by the desired length.
1780 	 * See implementation comment at top of unmapped_area().
1781 	 */
1782 	gap_end = info->high_limit;
1783 	if (gap_end < length)
1784 		return -ENOMEM;
1785 	high_limit = gap_end - length;
1786 
1787 	if (info->low_limit > high_limit)
1788 		return -ENOMEM;
1789 	low_limit = info->low_limit + length;
1790 
1791 	/* Check highest gap, which does not precede any rbtree node */
1792 	gap_start = mm->highest_vm_end;
1793 	if (gap_start <= high_limit)
1794 		goto found_highest;
1795 
1796 	/* Check if rbtree root looks promising */
1797 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1798 		return -ENOMEM;
1799 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1800 	if (vma->rb_subtree_gap < length)
1801 		return -ENOMEM;
1802 
1803 	while (true) {
1804 		/* Visit right subtree if it looks promising */
1805 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1806 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1807 			struct vm_area_struct *right =
1808 				rb_entry(vma->vm_rb.rb_right,
1809 					 struct vm_area_struct, vm_rb);
1810 			if (right->rb_subtree_gap >= length) {
1811 				vma = right;
1812 				continue;
1813 			}
1814 		}
1815 
1816 check_current:
1817 		/* Check if current node has a suitable gap */
1818 		gap_end = vma->vm_start;
1819 		if (gap_end < low_limit)
1820 			return -ENOMEM;
1821 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1822 			goto found;
1823 
1824 		/* Visit left subtree if it looks promising */
1825 		if (vma->vm_rb.rb_left) {
1826 			struct vm_area_struct *left =
1827 				rb_entry(vma->vm_rb.rb_left,
1828 					 struct vm_area_struct, vm_rb);
1829 			if (left->rb_subtree_gap >= length) {
1830 				vma = left;
1831 				continue;
1832 			}
1833 		}
1834 
1835 		/* Go back up the rbtree to find next candidate node */
1836 		while (true) {
1837 			struct rb_node *prev = &vma->vm_rb;
1838 			if (!rb_parent(prev))
1839 				return -ENOMEM;
1840 			vma = rb_entry(rb_parent(prev),
1841 				       struct vm_area_struct, vm_rb);
1842 			if (prev == vma->vm_rb.rb_right) {
1843 				gap_start = vma->vm_prev ?
1844 					vma->vm_prev->vm_end : 0;
1845 				goto check_current;
1846 			}
1847 		}
1848 	}
1849 
1850 found:
1851 	/* We found a suitable gap. Clip it with the original high_limit. */
1852 	if (gap_end > info->high_limit)
1853 		gap_end = info->high_limit;
1854 
1855 found_highest:
1856 	/* Compute highest gap address at the desired alignment */
1857 	gap_end -= info->length;
1858 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1859 
1860 	VM_BUG_ON(gap_end < info->low_limit);
1861 	VM_BUG_ON(gap_end < gap_start);
1862 	return gap_end;
1863 }
1864 
1865 /* Get an address range which is currently unmapped.
1866  * For shmat() with addr=0.
1867  *
1868  * Ugly calling convention alert:
1869  * Return value with the low bits set means error value,
1870  * ie
1871  *	if (ret & ~PAGE_MASK)
1872  *		error = ret;
1873  *
1874  * This function "knows" that -ENOMEM has the bits set.
1875  */
1876 #ifndef HAVE_ARCH_UNMAPPED_AREA
1877 unsigned long
1878 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1879 		unsigned long len, unsigned long pgoff, unsigned long flags)
1880 {
1881 	struct mm_struct *mm = current->mm;
1882 	struct vm_area_struct *vma;
1883 	struct vm_unmapped_area_info info;
1884 
1885 	if (len > TASK_SIZE - mmap_min_addr)
1886 		return -ENOMEM;
1887 
1888 	if (flags & MAP_FIXED)
1889 		return addr;
1890 
1891 	if (addr) {
1892 		addr = PAGE_ALIGN(addr);
1893 		vma = find_vma(mm, addr);
1894 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1895 		    (!vma || addr + len <= vma->vm_start))
1896 			return addr;
1897 	}
1898 
1899 	info.flags = 0;
1900 	info.length = len;
1901 	info.low_limit = mm->mmap_base;
1902 	info.high_limit = TASK_SIZE;
1903 	info.align_mask = 0;
1904 	return vm_unmapped_area(&info);
1905 }
1906 #endif
1907 
1908 /*
1909  * This mmap-allocator allocates new areas top-down from below the
1910  * stack's low limit (the base):
1911  */
1912 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1913 unsigned long
1914 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1915 			  const unsigned long len, const unsigned long pgoff,
1916 			  const unsigned long flags)
1917 {
1918 	struct vm_area_struct *vma;
1919 	struct mm_struct *mm = current->mm;
1920 	unsigned long addr = addr0;
1921 	struct vm_unmapped_area_info info;
1922 
1923 	/* requested length too big for entire address space */
1924 	if (len > TASK_SIZE - mmap_min_addr)
1925 		return -ENOMEM;
1926 
1927 	if (flags & MAP_FIXED)
1928 		return addr;
1929 
1930 	/* requesting a specific address */
1931 	if (addr) {
1932 		addr = PAGE_ALIGN(addr);
1933 		vma = find_vma(mm, addr);
1934 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1935 				(!vma || addr + len <= vma->vm_start))
1936 			return addr;
1937 	}
1938 
1939 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1940 	info.length = len;
1941 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1942 	info.high_limit = mm->mmap_base;
1943 	info.align_mask = 0;
1944 	addr = vm_unmapped_area(&info);
1945 
1946 	/*
1947 	 * A failed mmap() very likely causes application failure,
1948 	 * so fall back to the bottom-up function here. This scenario
1949 	 * can happen with large stack limits and large mmap()
1950 	 * allocations.
1951 	 */
1952 	if (addr & ~PAGE_MASK) {
1953 		VM_BUG_ON(addr != -ENOMEM);
1954 		info.flags = 0;
1955 		info.low_limit = TASK_UNMAPPED_BASE;
1956 		info.high_limit = TASK_SIZE;
1957 		addr = vm_unmapped_area(&info);
1958 	}
1959 
1960 	return addr;
1961 }
1962 #endif
1963 
1964 unsigned long
1965 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1966 		unsigned long pgoff, unsigned long flags)
1967 {
1968 	unsigned long (*get_area)(struct file *, unsigned long,
1969 				  unsigned long, unsigned long, unsigned long);
1970 
1971 	unsigned long error = arch_mmap_check(addr, len, flags);
1972 	if (error)
1973 		return error;
1974 
1975 	/* Careful about overflows.. */
1976 	if (len > TASK_SIZE)
1977 		return -ENOMEM;
1978 
1979 	get_area = current->mm->get_unmapped_area;
1980 	if (file && file->f_op->get_unmapped_area)
1981 		get_area = file->f_op->get_unmapped_area;
1982 	addr = get_area(file, addr, len, pgoff, flags);
1983 	if (IS_ERR_VALUE(addr))
1984 		return addr;
1985 
1986 	if (addr > TASK_SIZE - len)
1987 		return -ENOMEM;
1988 	if (addr & ~PAGE_MASK)
1989 		return -EINVAL;
1990 
1991 	addr = arch_rebalance_pgtables(addr, len);
1992 	error = security_mmap_addr(addr);
1993 	return error ? error : addr;
1994 }
1995 
1996 EXPORT_SYMBOL(get_unmapped_area);
1997 
1998 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1999 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2000 {
2001 	struct rb_node *rb_node;
2002 	struct vm_area_struct *vma;
2003 
2004 	/* Check the cache first. */
2005 	vma = vmacache_find(mm, addr);
2006 	if (likely(vma))
2007 		return vma;
2008 
2009 	rb_node = mm->mm_rb.rb_node;
2010 	vma = NULL;
2011 
2012 	while (rb_node) {
2013 		struct vm_area_struct *tmp;
2014 
2015 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2016 
2017 		if (tmp->vm_end > addr) {
2018 			vma = tmp;
2019 			if (tmp->vm_start <= addr)
2020 				break;
2021 			rb_node = rb_node->rb_left;
2022 		} else
2023 			rb_node = rb_node->rb_right;
2024 	}
2025 
2026 	if (vma)
2027 		vmacache_update(addr, vma);
2028 	return vma;
2029 }
2030 
2031 EXPORT_SYMBOL(find_vma);
2032 
2033 /*
2034  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2035  */
2036 struct vm_area_struct *
2037 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2038 			struct vm_area_struct **pprev)
2039 {
2040 	struct vm_area_struct *vma;
2041 
2042 	vma = find_vma(mm, addr);
2043 	if (vma) {
2044 		*pprev = vma->vm_prev;
2045 	} else {
2046 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2047 		*pprev = NULL;
2048 		while (rb_node) {
2049 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2050 			rb_node = rb_node->rb_right;
2051 		}
2052 	}
2053 	return vma;
2054 }
2055 
2056 /*
2057  * Verify that the stack growth is acceptable and
2058  * update accounting. This is shared with both the
2059  * grow-up and grow-down cases.
2060  */
2061 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2062 {
2063 	struct mm_struct *mm = vma->vm_mm;
2064 	struct rlimit *rlim = current->signal->rlim;
2065 	unsigned long new_start;
2066 
2067 	/* address space limit tests */
2068 	if (!may_expand_vm(mm, grow))
2069 		return -ENOMEM;
2070 
2071 	/* Stack limit test */
2072 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2073 		return -ENOMEM;
2074 
2075 	/* mlock limit tests */
2076 	if (vma->vm_flags & VM_LOCKED) {
2077 		unsigned long locked;
2078 		unsigned long limit;
2079 		locked = mm->locked_vm + grow;
2080 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2081 		limit >>= PAGE_SHIFT;
2082 		if (locked > limit && !capable(CAP_IPC_LOCK))
2083 			return -ENOMEM;
2084 	}
2085 
2086 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2087 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2088 			vma->vm_end - size;
2089 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2090 		return -EFAULT;
2091 
2092 	/*
2093 	 * Overcommit..  This must be the final test, as it will
2094 	 * update security statistics.
2095 	 */
2096 	if (security_vm_enough_memory_mm(mm, grow))
2097 		return -ENOMEM;
2098 
2099 	/* Ok, everything looks good - let it rip */
2100 	if (vma->vm_flags & VM_LOCKED)
2101 		mm->locked_vm += grow;
2102 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2103 	return 0;
2104 }
2105 
2106 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2107 /*
2108  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2109  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2110  */
2111 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2112 {
2113 	int error;
2114 
2115 	if (!(vma->vm_flags & VM_GROWSUP))
2116 		return -EFAULT;
2117 
2118 	/*
2119 	 * We must make sure the anon_vma is allocated
2120 	 * so that the anon_vma locking is not a noop.
2121 	 */
2122 	if (unlikely(anon_vma_prepare(vma)))
2123 		return -ENOMEM;
2124 	vma_lock_anon_vma(vma);
2125 
2126 	/*
2127 	 * vma->vm_start/vm_end cannot change under us because the caller
2128 	 * is required to hold the mmap_sem in read mode.  We need the
2129 	 * anon_vma lock to serialize against concurrent expand_stacks.
2130 	 * Also guard against wrapping around to address 0.
2131 	 */
2132 	if (address < PAGE_ALIGN(address+4))
2133 		address = PAGE_ALIGN(address+4);
2134 	else {
2135 		vma_unlock_anon_vma(vma);
2136 		return -ENOMEM;
2137 	}
2138 	error = 0;
2139 
2140 	/* Somebody else might have raced and expanded it already */
2141 	if (address > vma->vm_end) {
2142 		unsigned long size, grow;
2143 
2144 		size = address - vma->vm_start;
2145 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2146 
2147 		error = -ENOMEM;
2148 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2149 			error = acct_stack_growth(vma, size, grow);
2150 			if (!error) {
2151 				/*
2152 				 * vma_gap_update() doesn't support concurrent
2153 				 * updates, but we only hold a shared mmap_sem
2154 				 * lock here, so we need to protect against
2155 				 * concurrent vma expansions.
2156 				 * vma_lock_anon_vma() doesn't help here, as
2157 				 * we don't guarantee that all growable vmas
2158 				 * in a mm share the same root anon vma.
2159 				 * So, we reuse mm->page_table_lock to guard
2160 				 * against concurrent vma expansions.
2161 				 */
2162 				spin_lock(&vma->vm_mm->page_table_lock);
2163 				anon_vma_interval_tree_pre_update_vma(vma);
2164 				vma->vm_end = address;
2165 				anon_vma_interval_tree_post_update_vma(vma);
2166 				if (vma->vm_next)
2167 					vma_gap_update(vma->vm_next);
2168 				else
2169 					vma->vm_mm->highest_vm_end = address;
2170 				spin_unlock(&vma->vm_mm->page_table_lock);
2171 
2172 				perf_event_mmap(vma);
2173 			}
2174 		}
2175 	}
2176 	vma_unlock_anon_vma(vma);
2177 	khugepaged_enter_vma_merge(vma);
2178 	validate_mm(vma->vm_mm);
2179 	return error;
2180 }
2181 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2182 
2183 /*
2184  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2185  */
2186 int expand_downwards(struct vm_area_struct *vma,
2187 				   unsigned long address)
2188 {
2189 	int error;
2190 
2191 	/*
2192 	 * We must make sure the anon_vma is allocated
2193 	 * so that the anon_vma locking is not a noop.
2194 	 */
2195 	if (unlikely(anon_vma_prepare(vma)))
2196 		return -ENOMEM;
2197 
2198 	address &= PAGE_MASK;
2199 	error = security_mmap_addr(address);
2200 	if (error)
2201 		return error;
2202 
2203 	vma_lock_anon_vma(vma);
2204 
2205 	/*
2206 	 * vma->vm_start/vm_end cannot change under us because the caller
2207 	 * is required to hold the mmap_sem in read mode.  We need the
2208 	 * anon_vma lock to serialize against concurrent expand_stacks.
2209 	 */
2210 
2211 	/* Somebody else might have raced and expanded it already */
2212 	if (address < vma->vm_start) {
2213 		unsigned long size, grow;
2214 
2215 		size = vma->vm_end - address;
2216 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2217 
2218 		error = -ENOMEM;
2219 		if (grow <= vma->vm_pgoff) {
2220 			error = acct_stack_growth(vma, size, grow);
2221 			if (!error) {
2222 				/*
2223 				 * vma_gap_update() doesn't support concurrent
2224 				 * updates, but we only hold a shared mmap_sem
2225 				 * lock here, so we need to protect against
2226 				 * concurrent vma expansions.
2227 				 * vma_lock_anon_vma() doesn't help here, as
2228 				 * we don't guarantee that all growable vmas
2229 				 * in a mm share the same root anon vma.
2230 				 * So, we reuse mm->page_table_lock to guard
2231 				 * against concurrent vma expansions.
2232 				 */
2233 				spin_lock(&vma->vm_mm->page_table_lock);
2234 				anon_vma_interval_tree_pre_update_vma(vma);
2235 				vma->vm_start = address;
2236 				vma->vm_pgoff -= grow;
2237 				anon_vma_interval_tree_post_update_vma(vma);
2238 				vma_gap_update(vma);
2239 				spin_unlock(&vma->vm_mm->page_table_lock);
2240 
2241 				perf_event_mmap(vma);
2242 			}
2243 		}
2244 	}
2245 	vma_unlock_anon_vma(vma);
2246 	khugepaged_enter_vma_merge(vma);
2247 	validate_mm(vma->vm_mm);
2248 	return error;
2249 }
2250 
2251 /*
2252  * Note how expand_stack() refuses to expand the stack all the way to
2253  * abut the next virtual mapping, *unless* that mapping itself is also
2254  * a stack mapping. We want to leave room for a guard page, after all
2255  * (the guard page itself is not added here, that is done by the
2256  * actual page faulting logic)
2257  *
2258  * This matches the behavior of the guard page logic (see mm/memory.c:
2259  * check_stack_guard_page()), which only allows the guard page to be
2260  * removed under these circumstances.
2261  */
2262 #ifdef CONFIG_STACK_GROWSUP
2263 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2264 {
2265 	struct vm_area_struct *next;
2266 
2267 	address &= PAGE_MASK;
2268 	next = vma->vm_next;
2269 	if (next && next->vm_start == address + PAGE_SIZE) {
2270 		if (!(next->vm_flags & VM_GROWSUP))
2271 			return -ENOMEM;
2272 	}
2273 	return expand_upwards(vma, address);
2274 }
2275 
2276 struct vm_area_struct *
2277 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2278 {
2279 	struct vm_area_struct *vma, *prev;
2280 
2281 	addr &= PAGE_MASK;
2282 	vma = find_vma_prev(mm, addr, &prev);
2283 	if (vma && (vma->vm_start <= addr))
2284 		return vma;
2285 	if (!prev || expand_stack(prev, addr))
2286 		return NULL;
2287 	if (prev->vm_flags & VM_LOCKED)
2288 		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2289 	return prev;
2290 }
2291 #else
2292 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2293 {
2294 	struct vm_area_struct *prev;
2295 
2296 	address &= PAGE_MASK;
2297 	prev = vma->vm_prev;
2298 	if (prev && prev->vm_end == address) {
2299 		if (!(prev->vm_flags & VM_GROWSDOWN))
2300 			return -ENOMEM;
2301 	}
2302 	return expand_downwards(vma, address);
2303 }
2304 
2305 struct vm_area_struct *
2306 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2307 {
2308 	struct vm_area_struct * vma;
2309 	unsigned long start;
2310 
2311 	addr &= PAGE_MASK;
2312 	vma = find_vma(mm,addr);
2313 	if (!vma)
2314 		return NULL;
2315 	if (vma->vm_start <= addr)
2316 		return vma;
2317 	if (!(vma->vm_flags & VM_GROWSDOWN))
2318 		return NULL;
2319 	start = vma->vm_start;
2320 	if (expand_stack(vma, addr))
2321 		return NULL;
2322 	if (vma->vm_flags & VM_LOCKED)
2323 		__mlock_vma_pages_range(vma, addr, start, NULL);
2324 	return vma;
2325 }
2326 #endif
2327 
2328 /*
2329  * Ok - we have the memory areas we should free on the vma list,
2330  * so release them, and do the vma updates.
2331  *
2332  * Called with the mm semaphore held.
2333  */
2334 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2335 {
2336 	unsigned long nr_accounted = 0;
2337 
2338 	/* Update high watermark before we lower total_vm */
2339 	update_hiwater_vm(mm);
2340 	do {
2341 		long nrpages = vma_pages(vma);
2342 
2343 		if (vma->vm_flags & VM_ACCOUNT)
2344 			nr_accounted += nrpages;
2345 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2346 		vma = remove_vma(vma);
2347 	} while (vma);
2348 	vm_unacct_memory(nr_accounted);
2349 	validate_mm(mm);
2350 }
2351 
2352 /*
2353  * Get rid of page table information in the indicated region.
2354  *
2355  * Called with the mm semaphore held.
2356  */
2357 static void unmap_region(struct mm_struct *mm,
2358 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2359 		unsigned long start, unsigned long end)
2360 {
2361 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2362 	struct mmu_gather tlb;
2363 
2364 	lru_add_drain();
2365 	tlb_gather_mmu(&tlb, mm, start, end);
2366 	update_hiwater_rss(mm);
2367 	unmap_vmas(&tlb, vma, start, end);
2368 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2369 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2370 	tlb_finish_mmu(&tlb, start, end);
2371 }
2372 
2373 /*
2374  * Create a list of vma's touched by the unmap, removing them from the mm's
2375  * vma list as we go..
2376  */
2377 static void
2378 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2379 	struct vm_area_struct *prev, unsigned long end)
2380 {
2381 	struct vm_area_struct **insertion_point;
2382 	struct vm_area_struct *tail_vma = NULL;
2383 
2384 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2385 	vma->vm_prev = NULL;
2386 	do {
2387 		vma_rb_erase(vma, &mm->mm_rb);
2388 		mm->map_count--;
2389 		tail_vma = vma;
2390 		vma = vma->vm_next;
2391 	} while (vma && vma->vm_start < end);
2392 	*insertion_point = vma;
2393 	if (vma) {
2394 		vma->vm_prev = prev;
2395 		vma_gap_update(vma);
2396 	} else
2397 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2398 	tail_vma->vm_next = NULL;
2399 
2400 	/* Kill the cache */
2401 	vmacache_invalidate(mm);
2402 }
2403 
2404 /*
2405  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2406  * munmap path where it doesn't make sense to fail.
2407  */
2408 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2409 	      unsigned long addr, int new_below)
2410 {
2411 	struct vm_area_struct *new;
2412 	int err = -ENOMEM;
2413 
2414 	if (is_vm_hugetlb_page(vma) && (addr &
2415 					~(huge_page_mask(hstate_vma(vma)))))
2416 		return -EINVAL;
2417 
2418 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2419 	if (!new)
2420 		goto out_err;
2421 
2422 	/* most fields are the same, copy all, and then fixup */
2423 	*new = *vma;
2424 
2425 	INIT_LIST_HEAD(&new->anon_vma_chain);
2426 
2427 	if (new_below)
2428 		new->vm_end = addr;
2429 	else {
2430 		new->vm_start = addr;
2431 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2432 	}
2433 
2434 	err = vma_dup_policy(vma, new);
2435 	if (err)
2436 		goto out_free_vma;
2437 
2438 	if (anon_vma_clone(new, vma))
2439 		goto out_free_mpol;
2440 
2441 	if (new->vm_file)
2442 		get_file(new->vm_file);
2443 
2444 	if (new->vm_ops && new->vm_ops->open)
2445 		new->vm_ops->open(new);
2446 
2447 	if (new_below)
2448 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2449 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2450 	else
2451 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2452 
2453 	/* Success. */
2454 	if (!err)
2455 		return 0;
2456 
2457 	/* Clean everything up if vma_adjust failed. */
2458 	if (new->vm_ops && new->vm_ops->close)
2459 		new->vm_ops->close(new);
2460 	if (new->vm_file)
2461 		fput(new->vm_file);
2462 	unlink_anon_vmas(new);
2463  out_free_mpol:
2464 	mpol_put(vma_policy(new));
2465  out_free_vma:
2466 	kmem_cache_free(vm_area_cachep, new);
2467  out_err:
2468 	return err;
2469 }
2470 
2471 /*
2472  * Split a vma into two pieces at address 'addr', a new vma is allocated
2473  * either for the first part or the tail.
2474  */
2475 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2476 	      unsigned long addr, int new_below)
2477 {
2478 	if (mm->map_count >= sysctl_max_map_count)
2479 		return -ENOMEM;
2480 
2481 	return __split_vma(mm, vma, addr, new_below);
2482 }
2483 
2484 /* Munmap is split into 2 main parts -- this part which finds
2485  * what needs doing, and the areas themselves, which do the
2486  * work.  This now handles partial unmappings.
2487  * Jeremy Fitzhardinge <jeremy@goop.org>
2488  */
2489 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2490 {
2491 	unsigned long end;
2492 	struct vm_area_struct *vma, *prev, *last;
2493 
2494 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2495 		return -EINVAL;
2496 
2497 	if ((len = PAGE_ALIGN(len)) == 0)
2498 		return -EINVAL;
2499 
2500 	/* Find the first overlapping VMA */
2501 	vma = find_vma(mm, start);
2502 	if (!vma)
2503 		return 0;
2504 	prev = vma->vm_prev;
2505 	/* we have  start < vma->vm_end  */
2506 
2507 	/* if it doesn't overlap, we have nothing.. */
2508 	end = start + len;
2509 	if (vma->vm_start >= end)
2510 		return 0;
2511 
2512 	/*
2513 	 * If we need to split any vma, do it now to save pain later.
2514 	 *
2515 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2516 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2517 	 * places tmp vma above, and higher split_vma places tmp vma below.
2518 	 */
2519 	if (start > vma->vm_start) {
2520 		int error;
2521 
2522 		/*
2523 		 * Make sure that map_count on return from munmap() will
2524 		 * not exceed its limit; but let map_count go just above
2525 		 * its limit temporarily, to help free resources as expected.
2526 		 */
2527 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2528 			return -ENOMEM;
2529 
2530 		error = __split_vma(mm, vma, start, 0);
2531 		if (error)
2532 			return error;
2533 		prev = vma;
2534 	}
2535 
2536 	/* Does it split the last one? */
2537 	last = find_vma(mm, end);
2538 	if (last && end > last->vm_start) {
2539 		int error = __split_vma(mm, last, end, 1);
2540 		if (error)
2541 			return error;
2542 	}
2543 	vma = prev? prev->vm_next: mm->mmap;
2544 
2545 	/*
2546 	 * unlock any mlock()ed ranges before detaching vmas
2547 	 */
2548 	if (mm->locked_vm) {
2549 		struct vm_area_struct *tmp = vma;
2550 		while (tmp && tmp->vm_start < end) {
2551 			if (tmp->vm_flags & VM_LOCKED) {
2552 				mm->locked_vm -= vma_pages(tmp);
2553 				munlock_vma_pages_all(tmp);
2554 			}
2555 			tmp = tmp->vm_next;
2556 		}
2557 	}
2558 
2559 	/*
2560 	 * Remove the vma's, and unmap the actual pages
2561 	 */
2562 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2563 	unmap_region(mm, vma, prev, start, end);
2564 
2565 	/* Fix up all other VM information */
2566 	remove_vma_list(mm, vma);
2567 
2568 	return 0;
2569 }
2570 
2571 int vm_munmap(unsigned long start, size_t len)
2572 {
2573 	int ret;
2574 	struct mm_struct *mm = current->mm;
2575 
2576 	down_write(&mm->mmap_sem);
2577 	ret = do_munmap(mm, start, len);
2578 	up_write(&mm->mmap_sem);
2579 	return ret;
2580 }
2581 EXPORT_SYMBOL(vm_munmap);
2582 
2583 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2584 {
2585 	profile_munmap(addr);
2586 	return vm_munmap(addr, len);
2587 }
2588 
2589 static inline void verify_mm_writelocked(struct mm_struct *mm)
2590 {
2591 #ifdef CONFIG_DEBUG_VM
2592 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2593 		WARN_ON(1);
2594 		up_read(&mm->mmap_sem);
2595 	}
2596 #endif
2597 }
2598 
2599 /*
2600  *  this is really a simplified "do_mmap".  it only handles
2601  *  anonymous maps.  eventually we may be able to do some
2602  *  brk-specific accounting here.
2603  */
2604 static unsigned long do_brk(unsigned long addr, unsigned long len)
2605 {
2606 	struct mm_struct * mm = current->mm;
2607 	struct vm_area_struct * vma, * prev;
2608 	unsigned long flags;
2609 	struct rb_node ** rb_link, * rb_parent;
2610 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2611 	int error;
2612 
2613 	len = PAGE_ALIGN(len);
2614 	if (!len)
2615 		return addr;
2616 
2617 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2618 
2619 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2620 	if (error & ~PAGE_MASK)
2621 		return error;
2622 
2623 	error = mlock_future_check(mm, mm->def_flags, len);
2624 	if (error)
2625 		return error;
2626 
2627 	/*
2628 	 * mm->mmap_sem is required to protect against another thread
2629 	 * changing the mappings in case we sleep.
2630 	 */
2631 	verify_mm_writelocked(mm);
2632 
2633 	/*
2634 	 * Clear old maps.  this also does some error checking for us
2635 	 */
2636  munmap_back:
2637 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2638 		if (do_munmap(mm, addr, len))
2639 			return -ENOMEM;
2640 		goto munmap_back;
2641 	}
2642 
2643 	/* Check against address space limits *after* clearing old maps... */
2644 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2645 		return -ENOMEM;
2646 
2647 	if (mm->map_count > sysctl_max_map_count)
2648 		return -ENOMEM;
2649 
2650 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2651 		return -ENOMEM;
2652 
2653 	/* Can we just expand an old private anonymous mapping? */
2654 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2655 					NULL, NULL, pgoff, NULL);
2656 	if (vma)
2657 		goto out;
2658 
2659 	/*
2660 	 * create a vma struct for an anonymous mapping
2661 	 */
2662 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2663 	if (!vma) {
2664 		vm_unacct_memory(len >> PAGE_SHIFT);
2665 		return -ENOMEM;
2666 	}
2667 
2668 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2669 	vma->vm_mm = mm;
2670 	vma->vm_start = addr;
2671 	vma->vm_end = addr + len;
2672 	vma->vm_pgoff = pgoff;
2673 	vma->vm_flags = flags;
2674 	vma->vm_page_prot = vm_get_page_prot(flags);
2675 	vma_link(mm, vma, prev, rb_link, rb_parent);
2676 out:
2677 	perf_event_mmap(vma);
2678 	mm->total_vm += len >> PAGE_SHIFT;
2679 	if (flags & VM_LOCKED)
2680 		mm->locked_vm += (len >> PAGE_SHIFT);
2681 	vma->vm_flags |= VM_SOFTDIRTY;
2682 	return addr;
2683 }
2684 
2685 unsigned long vm_brk(unsigned long addr, unsigned long len)
2686 {
2687 	struct mm_struct *mm = current->mm;
2688 	unsigned long ret;
2689 	bool populate;
2690 
2691 	down_write(&mm->mmap_sem);
2692 	ret = do_brk(addr, len);
2693 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2694 	up_write(&mm->mmap_sem);
2695 	if (populate)
2696 		mm_populate(addr, len);
2697 	return ret;
2698 }
2699 EXPORT_SYMBOL(vm_brk);
2700 
2701 /* Release all mmaps. */
2702 void exit_mmap(struct mm_struct *mm)
2703 {
2704 	struct mmu_gather tlb;
2705 	struct vm_area_struct *vma;
2706 	unsigned long nr_accounted = 0;
2707 
2708 	/* mm's last user has gone, and its about to be pulled down */
2709 	mmu_notifier_release(mm);
2710 
2711 	if (mm->locked_vm) {
2712 		vma = mm->mmap;
2713 		while (vma) {
2714 			if (vma->vm_flags & VM_LOCKED)
2715 				munlock_vma_pages_all(vma);
2716 			vma = vma->vm_next;
2717 		}
2718 	}
2719 
2720 	arch_exit_mmap(mm);
2721 
2722 	vma = mm->mmap;
2723 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2724 		return;
2725 
2726 	lru_add_drain();
2727 	flush_cache_mm(mm);
2728 	tlb_gather_mmu(&tlb, mm, 0, -1);
2729 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2730 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2731 	unmap_vmas(&tlb, vma, 0, -1);
2732 
2733 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2734 	tlb_finish_mmu(&tlb, 0, -1);
2735 
2736 	/*
2737 	 * Walk the list again, actually closing and freeing it,
2738 	 * with preemption enabled, without holding any MM locks.
2739 	 */
2740 	while (vma) {
2741 		if (vma->vm_flags & VM_ACCOUNT)
2742 			nr_accounted += vma_pages(vma);
2743 		vma = remove_vma(vma);
2744 	}
2745 	vm_unacct_memory(nr_accounted);
2746 
2747 	WARN_ON(atomic_long_read(&mm->nr_ptes) >
2748 			(FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2749 }
2750 
2751 /* Insert vm structure into process list sorted by address
2752  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2753  * then i_mmap_mutex is taken here.
2754  */
2755 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2756 {
2757 	struct vm_area_struct *prev;
2758 	struct rb_node **rb_link, *rb_parent;
2759 
2760 	/*
2761 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2762 	 * until its first write fault, when page's anon_vma and index
2763 	 * are set.  But now set the vm_pgoff it will almost certainly
2764 	 * end up with (unless mremap moves it elsewhere before that
2765 	 * first wfault), so /proc/pid/maps tells a consistent story.
2766 	 *
2767 	 * By setting it to reflect the virtual start address of the
2768 	 * vma, merges and splits can happen in a seamless way, just
2769 	 * using the existing file pgoff checks and manipulations.
2770 	 * Similarly in do_mmap_pgoff and in do_brk.
2771 	 */
2772 	if (!vma->vm_file) {
2773 		BUG_ON(vma->anon_vma);
2774 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2775 	}
2776 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2777 			   &prev, &rb_link, &rb_parent))
2778 		return -ENOMEM;
2779 	if ((vma->vm_flags & VM_ACCOUNT) &&
2780 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2781 		return -ENOMEM;
2782 
2783 	vma_link(mm, vma, prev, rb_link, rb_parent);
2784 	return 0;
2785 }
2786 
2787 /*
2788  * Copy the vma structure to a new location in the same mm,
2789  * prior to moving page table entries, to effect an mremap move.
2790  */
2791 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2792 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2793 	bool *need_rmap_locks)
2794 {
2795 	struct vm_area_struct *vma = *vmap;
2796 	unsigned long vma_start = vma->vm_start;
2797 	struct mm_struct *mm = vma->vm_mm;
2798 	struct vm_area_struct *new_vma, *prev;
2799 	struct rb_node **rb_link, *rb_parent;
2800 	bool faulted_in_anon_vma = true;
2801 
2802 	/*
2803 	 * If anonymous vma has not yet been faulted, update new pgoff
2804 	 * to match new location, to increase its chance of merging.
2805 	 */
2806 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2807 		pgoff = addr >> PAGE_SHIFT;
2808 		faulted_in_anon_vma = false;
2809 	}
2810 
2811 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2812 		return NULL;	/* should never get here */
2813 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2814 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2815 	if (new_vma) {
2816 		/*
2817 		 * Source vma may have been merged into new_vma
2818 		 */
2819 		if (unlikely(vma_start >= new_vma->vm_start &&
2820 			     vma_start < new_vma->vm_end)) {
2821 			/*
2822 			 * The only way we can get a vma_merge with
2823 			 * self during an mremap is if the vma hasn't
2824 			 * been faulted in yet and we were allowed to
2825 			 * reset the dst vma->vm_pgoff to the
2826 			 * destination address of the mremap to allow
2827 			 * the merge to happen. mremap must change the
2828 			 * vm_pgoff linearity between src and dst vmas
2829 			 * (in turn preventing a vma_merge) to be
2830 			 * safe. It is only safe to keep the vm_pgoff
2831 			 * linear if there are no pages mapped yet.
2832 			 */
2833 			VM_BUG_ON(faulted_in_anon_vma);
2834 			*vmap = vma = new_vma;
2835 		}
2836 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2837 	} else {
2838 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2839 		if (new_vma) {
2840 			*new_vma = *vma;
2841 			new_vma->vm_start = addr;
2842 			new_vma->vm_end = addr + len;
2843 			new_vma->vm_pgoff = pgoff;
2844 			if (vma_dup_policy(vma, new_vma))
2845 				goto out_free_vma;
2846 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2847 			if (anon_vma_clone(new_vma, vma))
2848 				goto out_free_mempol;
2849 			if (new_vma->vm_file)
2850 				get_file(new_vma->vm_file);
2851 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2852 				new_vma->vm_ops->open(new_vma);
2853 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2854 			*need_rmap_locks = false;
2855 		}
2856 	}
2857 	return new_vma;
2858 
2859  out_free_mempol:
2860 	mpol_put(vma_policy(new_vma));
2861  out_free_vma:
2862 	kmem_cache_free(vm_area_cachep, new_vma);
2863 	return NULL;
2864 }
2865 
2866 /*
2867  * Return true if the calling process may expand its vm space by the passed
2868  * number of pages
2869  */
2870 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2871 {
2872 	unsigned long cur = mm->total_vm;	/* pages */
2873 	unsigned long lim;
2874 
2875 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2876 
2877 	if (cur + npages > lim)
2878 		return 0;
2879 	return 1;
2880 }
2881 
2882 static int special_mapping_fault(struct vm_area_struct *vma,
2883 				 struct vm_fault *vmf);
2884 
2885 /*
2886  * Having a close hook prevents vma merging regardless of flags.
2887  */
2888 static void special_mapping_close(struct vm_area_struct *vma)
2889 {
2890 }
2891 
2892 static const char *special_mapping_name(struct vm_area_struct *vma)
2893 {
2894 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2895 }
2896 
2897 static const struct vm_operations_struct special_mapping_vmops = {
2898 	.close = special_mapping_close,
2899 	.fault = special_mapping_fault,
2900 	.name = special_mapping_name,
2901 };
2902 
2903 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2904 	.close = special_mapping_close,
2905 	.fault = special_mapping_fault,
2906 };
2907 
2908 static int special_mapping_fault(struct vm_area_struct *vma,
2909 				struct vm_fault *vmf)
2910 {
2911 	pgoff_t pgoff;
2912 	struct page **pages;
2913 
2914 	/*
2915 	 * special mappings have no vm_file, and in that case, the mm
2916 	 * uses vm_pgoff internally. So we have to subtract it from here.
2917 	 * We are allowed to do this because we are the mm; do not copy
2918 	 * this code into drivers!
2919 	 */
2920 	pgoff = vmf->pgoff - vma->vm_pgoff;
2921 
2922 	if (vma->vm_ops == &legacy_special_mapping_vmops)
2923 		pages = vma->vm_private_data;
2924 	else
2925 		pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2926 			pages;
2927 
2928 	for (; pgoff && *pages; ++pages)
2929 		pgoff--;
2930 
2931 	if (*pages) {
2932 		struct page *page = *pages;
2933 		get_page(page);
2934 		vmf->page = page;
2935 		return 0;
2936 	}
2937 
2938 	return VM_FAULT_SIGBUS;
2939 }
2940 
2941 static struct vm_area_struct *__install_special_mapping(
2942 	struct mm_struct *mm,
2943 	unsigned long addr, unsigned long len,
2944 	unsigned long vm_flags, const struct vm_operations_struct *ops,
2945 	void *priv)
2946 {
2947 	int ret;
2948 	struct vm_area_struct *vma;
2949 
2950 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2951 	if (unlikely(vma == NULL))
2952 		return ERR_PTR(-ENOMEM);
2953 
2954 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2955 	vma->vm_mm = mm;
2956 	vma->vm_start = addr;
2957 	vma->vm_end = addr + len;
2958 
2959 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2960 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2961 
2962 	vma->vm_ops = ops;
2963 	vma->vm_private_data = priv;
2964 
2965 	ret = insert_vm_struct(mm, vma);
2966 	if (ret)
2967 		goto out;
2968 
2969 	mm->total_vm += len >> PAGE_SHIFT;
2970 
2971 	perf_event_mmap(vma);
2972 
2973 	return vma;
2974 
2975 out:
2976 	kmem_cache_free(vm_area_cachep, vma);
2977 	return ERR_PTR(ret);
2978 }
2979 
2980 /*
2981  * Called with mm->mmap_sem held for writing.
2982  * Insert a new vma covering the given region, with the given flags.
2983  * Its pages are supplied by the given array of struct page *.
2984  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2985  * The region past the last page supplied will always produce SIGBUS.
2986  * The array pointer and the pages it points to are assumed to stay alive
2987  * for as long as this mapping might exist.
2988  */
2989 struct vm_area_struct *_install_special_mapping(
2990 	struct mm_struct *mm,
2991 	unsigned long addr, unsigned long len,
2992 	unsigned long vm_flags, const struct vm_special_mapping *spec)
2993 {
2994 	return __install_special_mapping(mm, addr, len, vm_flags,
2995 					 &special_mapping_vmops, (void *)spec);
2996 }
2997 
2998 int install_special_mapping(struct mm_struct *mm,
2999 			    unsigned long addr, unsigned long len,
3000 			    unsigned long vm_flags, struct page **pages)
3001 {
3002 	struct vm_area_struct *vma = __install_special_mapping(
3003 		mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3004 		(void *)pages);
3005 
3006 	return PTR_ERR_OR_ZERO(vma);
3007 }
3008 
3009 static DEFINE_MUTEX(mm_all_locks_mutex);
3010 
3011 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3012 {
3013 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3014 		/*
3015 		 * The LSB of head.next can't change from under us
3016 		 * because we hold the mm_all_locks_mutex.
3017 		 */
3018 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3019 		/*
3020 		 * We can safely modify head.next after taking the
3021 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3022 		 * the same anon_vma we won't take it again.
3023 		 *
3024 		 * No need of atomic instructions here, head.next
3025 		 * can't change from under us thanks to the
3026 		 * anon_vma->root->rwsem.
3027 		 */
3028 		if (__test_and_set_bit(0, (unsigned long *)
3029 				       &anon_vma->root->rb_root.rb_node))
3030 			BUG();
3031 	}
3032 }
3033 
3034 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3035 {
3036 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3037 		/*
3038 		 * AS_MM_ALL_LOCKS can't change from under us because
3039 		 * we hold the mm_all_locks_mutex.
3040 		 *
3041 		 * Operations on ->flags have to be atomic because
3042 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3043 		 * mm_all_locks_mutex, there may be other cpus
3044 		 * changing other bitflags in parallel to us.
3045 		 */
3046 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3047 			BUG();
3048 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3049 	}
3050 }
3051 
3052 /*
3053  * This operation locks against the VM for all pte/vma/mm related
3054  * operations that could ever happen on a certain mm. This includes
3055  * vmtruncate, try_to_unmap, and all page faults.
3056  *
3057  * The caller must take the mmap_sem in write mode before calling
3058  * mm_take_all_locks(). The caller isn't allowed to release the
3059  * mmap_sem until mm_drop_all_locks() returns.
3060  *
3061  * mmap_sem in write mode is required in order to block all operations
3062  * that could modify pagetables and free pages without need of
3063  * altering the vma layout (for example populate_range() with
3064  * nonlinear vmas). It's also needed in write mode to avoid new
3065  * anon_vmas to be associated with existing vmas.
3066  *
3067  * A single task can't take more than one mm_take_all_locks() in a row
3068  * or it would deadlock.
3069  *
3070  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3071  * mapping->flags avoid to take the same lock twice, if more than one
3072  * vma in this mm is backed by the same anon_vma or address_space.
3073  *
3074  * We can take all the locks in random order because the VM code
3075  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3076  * takes more than one of them in a row. Secondly we're protected
3077  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3078  *
3079  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3080  * that may have to take thousand of locks.
3081  *
3082  * mm_take_all_locks() can fail if it's interrupted by signals.
3083  */
3084 int mm_take_all_locks(struct mm_struct *mm)
3085 {
3086 	struct vm_area_struct *vma;
3087 	struct anon_vma_chain *avc;
3088 
3089 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3090 
3091 	mutex_lock(&mm_all_locks_mutex);
3092 
3093 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3094 		if (signal_pending(current))
3095 			goto out_unlock;
3096 		if (vma->vm_file && vma->vm_file->f_mapping)
3097 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3098 	}
3099 
3100 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3101 		if (signal_pending(current))
3102 			goto out_unlock;
3103 		if (vma->anon_vma)
3104 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3105 				vm_lock_anon_vma(mm, avc->anon_vma);
3106 	}
3107 
3108 	return 0;
3109 
3110 out_unlock:
3111 	mm_drop_all_locks(mm);
3112 	return -EINTR;
3113 }
3114 
3115 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3116 {
3117 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3118 		/*
3119 		 * The LSB of head.next can't change to 0 from under
3120 		 * us because we hold the mm_all_locks_mutex.
3121 		 *
3122 		 * We must however clear the bitflag before unlocking
3123 		 * the vma so the users using the anon_vma->rb_root will
3124 		 * never see our bitflag.
3125 		 *
3126 		 * No need of atomic instructions here, head.next
3127 		 * can't change from under us until we release the
3128 		 * anon_vma->root->rwsem.
3129 		 */
3130 		if (!__test_and_clear_bit(0, (unsigned long *)
3131 					  &anon_vma->root->rb_root.rb_node))
3132 			BUG();
3133 		anon_vma_unlock_write(anon_vma);
3134 	}
3135 }
3136 
3137 static void vm_unlock_mapping(struct address_space *mapping)
3138 {
3139 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3140 		/*
3141 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3142 		 * because we hold the mm_all_locks_mutex.
3143 		 */
3144 		mutex_unlock(&mapping->i_mmap_mutex);
3145 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3146 					&mapping->flags))
3147 			BUG();
3148 	}
3149 }
3150 
3151 /*
3152  * The mmap_sem cannot be released by the caller until
3153  * mm_drop_all_locks() returns.
3154  */
3155 void mm_drop_all_locks(struct mm_struct *mm)
3156 {
3157 	struct vm_area_struct *vma;
3158 	struct anon_vma_chain *avc;
3159 
3160 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3161 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3162 
3163 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3164 		if (vma->anon_vma)
3165 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3166 				vm_unlock_anon_vma(avc->anon_vma);
3167 		if (vma->vm_file && vma->vm_file->f_mapping)
3168 			vm_unlock_mapping(vma->vm_file->f_mapping);
3169 	}
3170 
3171 	mutex_unlock(&mm_all_locks_mutex);
3172 }
3173 
3174 /*
3175  * initialise the VMA slab
3176  */
3177 void __init mmap_init(void)
3178 {
3179 	int ret;
3180 
3181 	ret = percpu_counter_init(&vm_committed_as, 0);
3182 	VM_BUG_ON(ret);
3183 }
3184 
3185 /*
3186  * Initialise sysctl_user_reserve_kbytes.
3187  *
3188  * This is intended to prevent a user from starting a single memory hogging
3189  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3190  * mode.
3191  *
3192  * The default value is min(3% of free memory, 128MB)
3193  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3194  */
3195 static int init_user_reserve(void)
3196 {
3197 	unsigned long free_kbytes;
3198 
3199 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3200 
3201 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3202 	return 0;
3203 }
3204 subsys_initcall(init_user_reserve);
3205 
3206 /*
3207  * Initialise sysctl_admin_reserve_kbytes.
3208  *
3209  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3210  * to log in and kill a memory hogging process.
3211  *
3212  * Systems with more than 256MB will reserve 8MB, enough to recover
3213  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3214  * only reserve 3% of free pages by default.
3215  */
3216 static int init_admin_reserve(void)
3217 {
3218 	unsigned long free_kbytes;
3219 
3220 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3221 
3222 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3223 	return 0;
3224 }
3225 subsys_initcall(init_admin_reserve);
3226 
3227 /*
3228  * Reinititalise user and admin reserves if memory is added or removed.
3229  *
3230  * The default user reserve max is 128MB, and the default max for the
3231  * admin reserve is 8MB. These are usually, but not always, enough to
3232  * enable recovery from a memory hogging process using login/sshd, a shell,
3233  * and tools like top. It may make sense to increase or even disable the
3234  * reserve depending on the existence of swap or variations in the recovery
3235  * tools. So, the admin may have changed them.
3236  *
3237  * If memory is added and the reserves have been eliminated or increased above
3238  * the default max, then we'll trust the admin.
3239  *
3240  * If memory is removed and there isn't enough free memory, then we
3241  * need to reset the reserves.
3242  *
3243  * Otherwise keep the reserve set by the admin.
3244  */
3245 static int reserve_mem_notifier(struct notifier_block *nb,
3246 			     unsigned long action, void *data)
3247 {
3248 	unsigned long tmp, free_kbytes;
3249 
3250 	switch (action) {
3251 	case MEM_ONLINE:
3252 		/* Default max is 128MB. Leave alone if modified by operator. */
3253 		tmp = sysctl_user_reserve_kbytes;
3254 		if (0 < tmp && tmp < (1UL << 17))
3255 			init_user_reserve();
3256 
3257 		/* Default max is 8MB.  Leave alone if modified by operator. */
3258 		tmp = sysctl_admin_reserve_kbytes;
3259 		if (0 < tmp && tmp < (1UL << 13))
3260 			init_admin_reserve();
3261 
3262 		break;
3263 	case MEM_OFFLINE:
3264 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3265 
3266 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3267 			init_user_reserve();
3268 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3269 				sysctl_user_reserve_kbytes);
3270 		}
3271 
3272 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3273 			init_admin_reserve();
3274 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3275 				sysctl_admin_reserve_kbytes);
3276 		}
3277 		break;
3278 	default:
3279 		break;
3280 	}
3281 	return NOTIFY_OK;
3282 }
3283 
3284 static struct notifier_block reserve_mem_nb = {
3285 	.notifier_call = reserve_mem_notifier,
3286 };
3287 
3288 static int __meminit init_reserve_notifier(void)
3289 {
3290 	if (register_hotmemory_notifier(&reserve_mem_nb))
3291 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3292 
3293 	return 0;
3294 }
3295 subsys_initcall(init_reserve_notifier);
3296