1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/profile.h> 29 #include <linux/export.h> 30 #include <linux/mount.h> 31 #include <linux/mempolicy.h> 32 #include <linux/rmap.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/mmdebug.h> 35 #include <linux/perf_event.h> 36 #include <linux/audit.h> 37 #include <linux/khugepaged.h> 38 #include <linux/uprobes.h> 39 #include <linux/rbtree_augmented.h> 40 #include <linux/sched/sysctl.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 45 #include <asm/uaccess.h> 46 #include <asm/cacheflush.h> 47 #include <asm/tlb.h> 48 #include <asm/mmu_context.h> 49 50 #include "internal.h" 51 52 #ifndef arch_mmap_check 53 #define arch_mmap_check(addr, len, flags) (0) 54 #endif 55 56 #ifndef arch_rebalance_pgtables 57 #define arch_rebalance_pgtables(addr, len) (addr) 58 #endif 59 60 static void unmap_region(struct mm_struct *mm, 61 struct vm_area_struct *vma, struct vm_area_struct *prev, 62 unsigned long start, unsigned long end); 63 64 /* description of effects of mapping type and prot in current implementation. 65 * this is due to the limited x86 page protection hardware. The expected 66 * behavior is in parens: 67 * 68 * map_type prot 69 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 70 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 71 * w: (no) no w: (no) no w: (yes) yes w: (no) no 72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 73 * 74 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 75 * w: (no) no w: (no) no w: (copy) copy w: (no) no 76 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 77 * 78 */ 79 pgprot_t protection_map[16] = { 80 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 81 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 82 }; 83 84 pgprot_t vm_get_page_prot(unsigned long vm_flags) 85 { 86 return __pgprot(pgprot_val(protection_map[vm_flags & 87 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 88 pgprot_val(arch_vm_get_page_prot(vm_flags))); 89 } 90 EXPORT_SYMBOL(vm_get_page_prot); 91 92 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 93 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 94 unsigned long sysctl_overcommit_kbytes __read_mostly; 95 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 96 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 97 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 98 /* 99 * Make sure vm_committed_as in one cacheline and not cacheline shared with 100 * other variables. It can be updated by several CPUs frequently. 101 */ 102 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 103 104 /* 105 * The global memory commitment made in the system can be a metric 106 * that can be used to drive ballooning decisions when Linux is hosted 107 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 108 * balancing memory across competing virtual machines that are hosted. 109 * Several metrics drive this policy engine including the guest reported 110 * memory commitment. 111 */ 112 unsigned long vm_memory_committed(void) 113 { 114 return percpu_counter_read_positive(&vm_committed_as); 115 } 116 EXPORT_SYMBOL_GPL(vm_memory_committed); 117 118 /* 119 * Check that a process has enough memory to allocate a new virtual 120 * mapping. 0 means there is enough memory for the allocation to 121 * succeed and -ENOMEM implies there is not. 122 * 123 * We currently support three overcommit policies, which are set via the 124 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 125 * 126 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 127 * Additional code 2002 Jul 20 by Robert Love. 128 * 129 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 130 * 131 * Note this is a helper function intended to be used by LSMs which 132 * wish to use this logic. 133 */ 134 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 135 { 136 unsigned long free, allowed, reserve; 137 138 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 139 -(s64)vm_committed_as_batch * num_online_cpus(), 140 "memory commitment underflow"); 141 142 vm_acct_memory(pages); 143 144 /* 145 * Sometimes we want to use more memory than we have 146 */ 147 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 148 return 0; 149 150 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 151 free = global_page_state(NR_FREE_PAGES); 152 free += global_page_state(NR_FILE_PAGES); 153 154 /* 155 * shmem pages shouldn't be counted as free in this 156 * case, they can't be purged, only swapped out, and 157 * that won't affect the overall amount of available 158 * memory in the system. 159 */ 160 free -= global_page_state(NR_SHMEM); 161 162 free += get_nr_swap_pages(); 163 164 /* 165 * Any slabs which are created with the 166 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 167 * which are reclaimable, under pressure. The dentry 168 * cache and most inode caches should fall into this 169 */ 170 free += global_page_state(NR_SLAB_RECLAIMABLE); 171 172 /* 173 * Leave reserved pages. The pages are not for anonymous pages. 174 */ 175 if (free <= totalreserve_pages) 176 goto error; 177 else 178 free -= totalreserve_pages; 179 180 /* 181 * Reserve some for root 182 */ 183 if (!cap_sys_admin) 184 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 185 186 if (free > pages) 187 return 0; 188 189 goto error; 190 } 191 192 allowed = vm_commit_limit(); 193 /* 194 * Reserve some for root 195 */ 196 if (!cap_sys_admin) 197 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 198 199 /* 200 * Don't let a single process grow so big a user can't recover 201 */ 202 if (mm) { 203 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 204 allowed -= min(mm->total_vm / 32, reserve); 205 } 206 207 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 208 return 0; 209 error: 210 vm_unacct_memory(pages); 211 212 return -ENOMEM; 213 } 214 215 /* 216 * Requires inode->i_mapping->i_mmap_mutex 217 */ 218 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 219 struct file *file, struct address_space *mapping) 220 { 221 if (vma->vm_flags & VM_DENYWRITE) 222 atomic_inc(&file_inode(file)->i_writecount); 223 if (vma->vm_flags & VM_SHARED) 224 mapping->i_mmap_writable--; 225 226 flush_dcache_mmap_lock(mapping); 227 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 228 list_del_init(&vma->shared.nonlinear); 229 else 230 vma_interval_tree_remove(vma, &mapping->i_mmap); 231 flush_dcache_mmap_unlock(mapping); 232 } 233 234 /* 235 * Unlink a file-based vm structure from its interval tree, to hide 236 * vma from rmap and vmtruncate before freeing its page tables. 237 */ 238 void unlink_file_vma(struct vm_area_struct *vma) 239 { 240 struct file *file = vma->vm_file; 241 242 if (file) { 243 struct address_space *mapping = file->f_mapping; 244 mutex_lock(&mapping->i_mmap_mutex); 245 __remove_shared_vm_struct(vma, file, mapping); 246 mutex_unlock(&mapping->i_mmap_mutex); 247 } 248 } 249 250 /* 251 * Close a vm structure and free it, returning the next. 252 */ 253 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 254 { 255 struct vm_area_struct *next = vma->vm_next; 256 257 might_sleep(); 258 if (vma->vm_ops && vma->vm_ops->close) 259 vma->vm_ops->close(vma); 260 if (vma->vm_file) 261 fput(vma->vm_file); 262 mpol_put(vma_policy(vma)); 263 kmem_cache_free(vm_area_cachep, vma); 264 return next; 265 } 266 267 static unsigned long do_brk(unsigned long addr, unsigned long len); 268 269 SYSCALL_DEFINE1(brk, unsigned long, brk) 270 { 271 unsigned long rlim, retval; 272 unsigned long newbrk, oldbrk; 273 struct mm_struct *mm = current->mm; 274 unsigned long min_brk; 275 bool populate; 276 277 down_write(&mm->mmap_sem); 278 279 #ifdef CONFIG_COMPAT_BRK 280 /* 281 * CONFIG_COMPAT_BRK can still be overridden by setting 282 * randomize_va_space to 2, which will still cause mm->start_brk 283 * to be arbitrarily shifted 284 */ 285 if (current->brk_randomized) 286 min_brk = mm->start_brk; 287 else 288 min_brk = mm->end_data; 289 #else 290 min_brk = mm->start_brk; 291 #endif 292 if (brk < min_brk) 293 goto out; 294 295 /* 296 * Check against rlimit here. If this check is done later after the test 297 * of oldbrk with newbrk then it can escape the test and let the data 298 * segment grow beyond its set limit the in case where the limit is 299 * not page aligned -Ram Gupta 300 */ 301 rlim = rlimit(RLIMIT_DATA); 302 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 303 (mm->end_data - mm->start_data) > rlim) 304 goto out; 305 306 newbrk = PAGE_ALIGN(brk); 307 oldbrk = PAGE_ALIGN(mm->brk); 308 if (oldbrk == newbrk) 309 goto set_brk; 310 311 /* Always allow shrinking brk. */ 312 if (brk <= mm->brk) { 313 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 314 goto set_brk; 315 goto out; 316 } 317 318 /* Check against existing mmap mappings. */ 319 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 320 goto out; 321 322 /* Ok, looks good - let it rip. */ 323 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 324 goto out; 325 326 set_brk: 327 mm->brk = brk; 328 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 329 up_write(&mm->mmap_sem); 330 if (populate) 331 mm_populate(oldbrk, newbrk - oldbrk); 332 return brk; 333 334 out: 335 retval = mm->brk; 336 up_write(&mm->mmap_sem); 337 return retval; 338 } 339 340 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 341 { 342 unsigned long max, subtree_gap; 343 max = vma->vm_start; 344 if (vma->vm_prev) 345 max -= vma->vm_prev->vm_end; 346 if (vma->vm_rb.rb_left) { 347 subtree_gap = rb_entry(vma->vm_rb.rb_left, 348 struct vm_area_struct, vm_rb)->rb_subtree_gap; 349 if (subtree_gap > max) 350 max = subtree_gap; 351 } 352 if (vma->vm_rb.rb_right) { 353 subtree_gap = rb_entry(vma->vm_rb.rb_right, 354 struct vm_area_struct, vm_rb)->rb_subtree_gap; 355 if (subtree_gap > max) 356 max = subtree_gap; 357 } 358 return max; 359 } 360 361 #ifdef CONFIG_DEBUG_VM_RB 362 static int browse_rb(struct rb_root *root) 363 { 364 int i = 0, j, bug = 0; 365 struct rb_node *nd, *pn = NULL; 366 unsigned long prev = 0, pend = 0; 367 368 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 369 struct vm_area_struct *vma; 370 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 371 if (vma->vm_start < prev) { 372 pr_info("vm_start %lx prev %lx\n", vma->vm_start, prev); 373 bug = 1; 374 } 375 if (vma->vm_start < pend) { 376 pr_info("vm_start %lx pend %lx\n", vma->vm_start, pend); 377 bug = 1; 378 } 379 if (vma->vm_start > vma->vm_end) { 380 pr_info("vm_end %lx < vm_start %lx\n", 381 vma->vm_end, vma->vm_start); 382 bug = 1; 383 } 384 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 385 pr_info("free gap %lx, correct %lx\n", 386 vma->rb_subtree_gap, 387 vma_compute_subtree_gap(vma)); 388 bug = 1; 389 } 390 i++; 391 pn = nd; 392 prev = vma->vm_start; 393 pend = vma->vm_end; 394 } 395 j = 0; 396 for (nd = pn; nd; nd = rb_prev(nd)) 397 j++; 398 if (i != j) { 399 pr_info("backwards %d, forwards %d\n", j, i); 400 bug = 1; 401 } 402 return bug ? -1 : i; 403 } 404 405 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 406 { 407 struct rb_node *nd; 408 409 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 410 struct vm_area_struct *vma; 411 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 412 BUG_ON(vma != ignore && 413 vma->rb_subtree_gap != vma_compute_subtree_gap(vma)); 414 } 415 } 416 417 static void validate_mm(struct mm_struct *mm) 418 { 419 int bug = 0; 420 int i = 0; 421 unsigned long highest_address = 0; 422 struct vm_area_struct *vma = mm->mmap; 423 while (vma) { 424 struct anon_vma_chain *avc; 425 vma_lock_anon_vma(vma); 426 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 427 anon_vma_interval_tree_verify(avc); 428 vma_unlock_anon_vma(vma); 429 highest_address = vma->vm_end; 430 vma = vma->vm_next; 431 i++; 432 } 433 if (i != mm->map_count) { 434 pr_info("map_count %d vm_next %d\n", mm->map_count, i); 435 bug = 1; 436 } 437 if (highest_address != mm->highest_vm_end) { 438 pr_info("mm->highest_vm_end %lx, found %lx\n", 439 mm->highest_vm_end, highest_address); 440 bug = 1; 441 } 442 i = browse_rb(&mm->mm_rb); 443 if (i != mm->map_count) { 444 pr_info("map_count %d rb %d\n", mm->map_count, i); 445 bug = 1; 446 } 447 BUG_ON(bug); 448 } 449 #else 450 #define validate_mm_rb(root, ignore) do { } while (0) 451 #define validate_mm(mm) do { } while (0) 452 #endif 453 454 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 455 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 456 457 /* 458 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 459 * vma->vm_prev->vm_end values changed, without modifying the vma's position 460 * in the rbtree. 461 */ 462 static void vma_gap_update(struct vm_area_struct *vma) 463 { 464 /* 465 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 466 * function that does exacltly what we want. 467 */ 468 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 469 } 470 471 static inline void vma_rb_insert(struct vm_area_struct *vma, 472 struct rb_root *root) 473 { 474 /* All rb_subtree_gap values must be consistent prior to insertion */ 475 validate_mm_rb(root, NULL); 476 477 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 478 } 479 480 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 481 { 482 /* 483 * All rb_subtree_gap values must be consistent prior to erase, 484 * with the possible exception of the vma being erased. 485 */ 486 validate_mm_rb(root, vma); 487 488 /* 489 * Note rb_erase_augmented is a fairly large inline function, 490 * so make sure we instantiate it only once with our desired 491 * augmented rbtree callbacks. 492 */ 493 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 494 } 495 496 /* 497 * vma has some anon_vma assigned, and is already inserted on that 498 * anon_vma's interval trees. 499 * 500 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 501 * vma must be removed from the anon_vma's interval trees using 502 * anon_vma_interval_tree_pre_update_vma(). 503 * 504 * After the update, the vma will be reinserted using 505 * anon_vma_interval_tree_post_update_vma(). 506 * 507 * The entire update must be protected by exclusive mmap_sem and by 508 * the root anon_vma's mutex. 509 */ 510 static inline void 511 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 512 { 513 struct anon_vma_chain *avc; 514 515 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 516 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 517 } 518 519 static inline void 520 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 521 { 522 struct anon_vma_chain *avc; 523 524 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 525 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 526 } 527 528 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 529 unsigned long end, struct vm_area_struct **pprev, 530 struct rb_node ***rb_link, struct rb_node **rb_parent) 531 { 532 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 533 534 __rb_link = &mm->mm_rb.rb_node; 535 rb_prev = __rb_parent = NULL; 536 537 while (*__rb_link) { 538 struct vm_area_struct *vma_tmp; 539 540 __rb_parent = *__rb_link; 541 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 542 543 if (vma_tmp->vm_end > addr) { 544 /* Fail if an existing vma overlaps the area */ 545 if (vma_tmp->vm_start < end) 546 return -ENOMEM; 547 __rb_link = &__rb_parent->rb_left; 548 } else { 549 rb_prev = __rb_parent; 550 __rb_link = &__rb_parent->rb_right; 551 } 552 } 553 554 *pprev = NULL; 555 if (rb_prev) 556 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 557 *rb_link = __rb_link; 558 *rb_parent = __rb_parent; 559 return 0; 560 } 561 562 static unsigned long count_vma_pages_range(struct mm_struct *mm, 563 unsigned long addr, unsigned long end) 564 { 565 unsigned long nr_pages = 0; 566 struct vm_area_struct *vma; 567 568 /* Find first overlaping mapping */ 569 vma = find_vma_intersection(mm, addr, end); 570 if (!vma) 571 return 0; 572 573 nr_pages = (min(end, vma->vm_end) - 574 max(addr, vma->vm_start)) >> PAGE_SHIFT; 575 576 /* Iterate over the rest of the overlaps */ 577 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 578 unsigned long overlap_len; 579 580 if (vma->vm_start > end) 581 break; 582 583 overlap_len = min(end, vma->vm_end) - vma->vm_start; 584 nr_pages += overlap_len >> PAGE_SHIFT; 585 } 586 587 return nr_pages; 588 } 589 590 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 591 struct rb_node **rb_link, struct rb_node *rb_parent) 592 { 593 /* Update tracking information for the gap following the new vma. */ 594 if (vma->vm_next) 595 vma_gap_update(vma->vm_next); 596 else 597 mm->highest_vm_end = vma->vm_end; 598 599 /* 600 * vma->vm_prev wasn't known when we followed the rbtree to find the 601 * correct insertion point for that vma. As a result, we could not 602 * update the vma vm_rb parents rb_subtree_gap values on the way down. 603 * So, we first insert the vma with a zero rb_subtree_gap value 604 * (to be consistent with what we did on the way down), and then 605 * immediately update the gap to the correct value. Finally we 606 * rebalance the rbtree after all augmented values have been set. 607 */ 608 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 609 vma->rb_subtree_gap = 0; 610 vma_gap_update(vma); 611 vma_rb_insert(vma, &mm->mm_rb); 612 } 613 614 static void __vma_link_file(struct vm_area_struct *vma) 615 { 616 struct file *file; 617 618 file = vma->vm_file; 619 if (file) { 620 struct address_space *mapping = file->f_mapping; 621 622 if (vma->vm_flags & VM_DENYWRITE) 623 atomic_dec(&file_inode(file)->i_writecount); 624 if (vma->vm_flags & VM_SHARED) 625 mapping->i_mmap_writable++; 626 627 flush_dcache_mmap_lock(mapping); 628 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 629 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 630 else 631 vma_interval_tree_insert(vma, &mapping->i_mmap); 632 flush_dcache_mmap_unlock(mapping); 633 } 634 } 635 636 static void 637 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 638 struct vm_area_struct *prev, struct rb_node **rb_link, 639 struct rb_node *rb_parent) 640 { 641 __vma_link_list(mm, vma, prev, rb_parent); 642 __vma_link_rb(mm, vma, rb_link, rb_parent); 643 } 644 645 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 646 struct vm_area_struct *prev, struct rb_node **rb_link, 647 struct rb_node *rb_parent) 648 { 649 struct address_space *mapping = NULL; 650 651 if (vma->vm_file) { 652 mapping = vma->vm_file->f_mapping; 653 mutex_lock(&mapping->i_mmap_mutex); 654 } 655 656 __vma_link(mm, vma, prev, rb_link, rb_parent); 657 __vma_link_file(vma); 658 659 if (mapping) 660 mutex_unlock(&mapping->i_mmap_mutex); 661 662 mm->map_count++; 663 validate_mm(mm); 664 } 665 666 /* 667 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 668 * mm's list and rbtree. It has already been inserted into the interval tree. 669 */ 670 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 671 { 672 struct vm_area_struct *prev; 673 struct rb_node **rb_link, *rb_parent; 674 675 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 676 &prev, &rb_link, &rb_parent)) 677 BUG(); 678 __vma_link(mm, vma, prev, rb_link, rb_parent); 679 mm->map_count++; 680 } 681 682 static inline void 683 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 684 struct vm_area_struct *prev) 685 { 686 struct vm_area_struct *next; 687 688 vma_rb_erase(vma, &mm->mm_rb); 689 prev->vm_next = next = vma->vm_next; 690 if (next) 691 next->vm_prev = prev; 692 693 /* Kill the cache */ 694 vmacache_invalidate(mm); 695 } 696 697 /* 698 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 699 * is already present in an i_mmap tree without adjusting the tree. 700 * The following helper function should be used when such adjustments 701 * are necessary. The "insert" vma (if any) is to be inserted 702 * before we drop the necessary locks. 703 */ 704 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 705 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 706 { 707 struct mm_struct *mm = vma->vm_mm; 708 struct vm_area_struct *next = vma->vm_next; 709 struct vm_area_struct *importer = NULL; 710 struct address_space *mapping = NULL; 711 struct rb_root *root = NULL; 712 struct anon_vma *anon_vma = NULL; 713 struct file *file = vma->vm_file; 714 bool start_changed = false, end_changed = false; 715 long adjust_next = 0; 716 int remove_next = 0; 717 718 if (next && !insert) { 719 struct vm_area_struct *exporter = NULL; 720 721 if (end >= next->vm_end) { 722 /* 723 * vma expands, overlapping all the next, and 724 * perhaps the one after too (mprotect case 6). 725 */ 726 again: remove_next = 1 + (end > next->vm_end); 727 end = next->vm_end; 728 exporter = next; 729 importer = vma; 730 } else if (end > next->vm_start) { 731 /* 732 * vma expands, overlapping part of the next: 733 * mprotect case 5 shifting the boundary up. 734 */ 735 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 736 exporter = next; 737 importer = vma; 738 } else if (end < vma->vm_end) { 739 /* 740 * vma shrinks, and !insert tells it's not 741 * split_vma inserting another: so it must be 742 * mprotect case 4 shifting the boundary down. 743 */ 744 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 745 exporter = vma; 746 importer = next; 747 } 748 749 /* 750 * Easily overlooked: when mprotect shifts the boundary, 751 * make sure the expanding vma has anon_vma set if the 752 * shrinking vma had, to cover any anon pages imported. 753 */ 754 if (exporter && exporter->anon_vma && !importer->anon_vma) { 755 if (anon_vma_clone(importer, exporter)) 756 return -ENOMEM; 757 importer->anon_vma = exporter->anon_vma; 758 } 759 } 760 761 if (file) { 762 mapping = file->f_mapping; 763 if (!(vma->vm_flags & VM_NONLINEAR)) { 764 root = &mapping->i_mmap; 765 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 766 767 if (adjust_next) 768 uprobe_munmap(next, next->vm_start, 769 next->vm_end); 770 } 771 772 mutex_lock(&mapping->i_mmap_mutex); 773 if (insert) { 774 /* 775 * Put into interval tree now, so instantiated pages 776 * are visible to arm/parisc __flush_dcache_page 777 * throughout; but we cannot insert into address 778 * space until vma start or end is updated. 779 */ 780 __vma_link_file(insert); 781 } 782 } 783 784 vma_adjust_trans_huge(vma, start, end, adjust_next); 785 786 anon_vma = vma->anon_vma; 787 if (!anon_vma && adjust_next) 788 anon_vma = next->anon_vma; 789 if (anon_vma) { 790 VM_BUG_ON(adjust_next && next->anon_vma && 791 anon_vma != next->anon_vma); 792 anon_vma_lock_write(anon_vma); 793 anon_vma_interval_tree_pre_update_vma(vma); 794 if (adjust_next) 795 anon_vma_interval_tree_pre_update_vma(next); 796 } 797 798 if (root) { 799 flush_dcache_mmap_lock(mapping); 800 vma_interval_tree_remove(vma, root); 801 if (adjust_next) 802 vma_interval_tree_remove(next, root); 803 } 804 805 if (start != vma->vm_start) { 806 vma->vm_start = start; 807 start_changed = true; 808 } 809 if (end != vma->vm_end) { 810 vma->vm_end = end; 811 end_changed = true; 812 } 813 vma->vm_pgoff = pgoff; 814 if (adjust_next) { 815 next->vm_start += adjust_next << PAGE_SHIFT; 816 next->vm_pgoff += adjust_next; 817 } 818 819 if (root) { 820 if (adjust_next) 821 vma_interval_tree_insert(next, root); 822 vma_interval_tree_insert(vma, root); 823 flush_dcache_mmap_unlock(mapping); 824 } 825 826 if (remove_next) { 827 /* 828 * vma_merge has merged next into vma, and needs 829 * us to remove next before dropping the locks. 830 */ 831 __vma_unlink(mm, next, vma); 832 if (file) 833 __remove_shared_vm_struct(next, file, mapping); 834 } else if (insert) { 835 /* 836 * split_vma has split insert from vma, and needs 837 * us to insert it before dropping the locks 838 * (it may either follow vma or precede it). 839 */ 840 __insert_vm_struct(mm, insert); 841 } else { 842 if (start_changed) 843 vma_gap_update(vma); 844 if (end_changed) { 845 if (!next) 846 mm->highest_vm_end = end; 847 else if (!adjust_next) 848 vma_gap_update(next); 849 } 850 } 851 852 if (anon_vma) { 853 anon_vma_interval_tree_post_update_vma(vma); 854 if (adjust_next) 855 anon_vma_interval_tree_post_update_vma(next); 856 anon_vma_unlock_write(anon_vma); 857 } 858 if (mapping) 859 mutex_unlock(&mapping->i_mmap_mutex); 860 861 if (root) { 862 uprobe_mmap(vma); 863 864 if (adjust_next) 865 uprobe_mmap(next); 866 } 867 868 if (remove_next) { 869 if (file) { 870 uprobe_munmap(next, next->vm_start, next->vm_end); 871 fput(file); 872 } 873 if (next->anon_vma) 874 anon_vma_merge(vma, next); 875 mm->map_count--; 876 mpol_put(vma_policy(next)); 877 kmem_cache_free(vm_area_cachep, next); 878 /* 879 * In mprotect's case 6 (see comments on vma_merge), 880 * we must remove another next too. It would clutter 881 * up the code too much to do both in one go. 882 */ 883 next = vma->vm_next; 884 if (remove_next == 2) 885 goto again; 886 else if (next) 887 vma_gap_update(next); 888 else 889 mm->highest_vm_end = end; 890 } 891 if (insert && file) 892 uprobe_mmap(insert); 893 894 validate_mm(mm); 895 896 return 0; 897 } 898 899 /* 900 * If the vma has a ->close operation then the driver probably needs to release 901 * per-vma resources, so we don't attempt to merge those. 902 */ 903 static inline int is_mergeable_vma(struct vm_area_struct *vma, 904 struct file *file, unsigned long vm_flags) 905 { 906 /* 907 * VM_SOFTDIRTY should not prevent from VMA merging, if we 908 * match the flags but dirty bit -- the caller should mark 909 * merged VMA as dirty. If dirty bit won't be excluded from 910 * comparison, we increase pressue on the memory system forcing 911 * the kernel to generate new VMAs when old one could be 912 * extended instead. 913 */ 914 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 915 return 0; 916 if (vma->vm_file != file) 917 return 0; 918 if (vma->vm_ops && vma->vm_ops->close) 919 return 0; 920 return 1; 921 } 922 923 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 924 struct anon_vma *anon_vma2, 925 struct vm_area_struct *vma) 926 { 927 /* 928 * The list_is_singular() test is to avoid merging VMA cloned from 929 * parents. This can improve scalability caused by anon_vma lock. 930 */ 931 if ((!anon_vma1 || !anon_vma2) && (!vma || 932 list_is_singular(&vma->anon_vma_chain))) 933 return 1; 934 return anon_vma1 == anon_vma2; 935 } 936 937 /* 938 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 939 * in front of (at a lower virtual address and file offset than) the vma. 940 * 941 * We cannot merge two vmas if they have differently assigned (non-NULL) 942 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 943 * 944 * We don't check here for the merged mmap wrapping around the end of pagecache 945 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 946 * wrap, nor mmaps which cover the final page at index -1UL. 947 */ 948 static int 949 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 950 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 951 { 952 if (is_mergeable_vma(vma, file, vm_flags) && 953 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 954 if (vma->vm_pgoff == vm_pgoff) 955 return 1; 956 } 957 return 0; 958 } 959 960 /* 961 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 962 * beyond (at a higher virtual address and file offset than) the vma. 963 * 964 * We cannot merge two vmas if they have differently assigned (non-NULL) 965 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 966 */ 967 static int 968 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 969 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 970 { 971 if (is_mergeable_vma(vma, file, vm_flags) && 972 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 973 pgoff_t vm_pglen; 974 vm_pglen = vma_pages(vma); 975 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 976 return 1; 977 } 978 return 0; 979 } 980 981 /* 982 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 983 * whether that can be merged with its predecessor or its successor. 984 * Or both (it neatly fills a hole). 985 * 986 * In most cases - when called for mmap, brk or mremap - [addr,end) is 987 * certain not to be mapped by the time vma_merge is called; but when 988 * called for mprotect, it is certain to be already mapped (either at 989 * an offset within prev, or at the start of next), and the flags of 990 * this area are about to be changed to vm_flags - and the no-change 991 * case has already been eliminated. 992 * 993 * The following mprotect cases have to be considered, where AAAA is 994 * the area passed down from mprotect_fixup, never extending beyond one 995 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 996 * 997 * AAAA AAAA AAAA AAAA 998 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 999 * cannot merge might become might become might become 1000 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1001 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1002 * mremap move: PPPPNNNNNNNN 8 1003 * AAAA 1004 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1005 * might become case 1 below case 2 below case 3 below 1006 * 1007 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 1008 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 1009 */ 1010 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1011 struct vm_area_struct *prev, unsigned long addr, 1012 unsigned long end, unsigned long vm_flags, 1013 struct anon_vma *anon_vma, struct file *file, 1014 pgoff_t pgoff, struct mempolicy *policy) 1015 { 1016 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1017 struct vm_area_struct *area, *next; 1018 int err; 1019 1020 /* 1021 * We later require that vma->vm_flags == vm_flags, 1022 * so this tests vma->vm_flags & VM_SPECIAL, too. 1023 */ 1024 if (vm_flags & VM_SPECIAL) 1025 return NULL; 1026 1027 if (prev) 1028 next = prev->vm_next; 1029 else 1030 next = mm->mmap; 1031 area = next; 1032 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 1033 next = next->vm_next; 1034 1035 /* 1036 * Can it merge with the predecessor? 1037 */ 1038 if (prev && prev->vm_end == addr && 1039 mpol_equal(vma_policy(prev), policy) && 1040 can_vma_merge_after(prev, vm_flags, 1041 anon_vma, file, pgoff)) { 1042 /* 1043 * OK, it can. Can we now merge in the successor as well? 1044 */ 1045 if (next && end == next->vm_start && 1046 mpol_equal(policy, vma_policy(next)) && 1047 can_vma_merge_before(next, vm_flags, 1048 anon_vma, file, pgoff+pglen) && 1049 is_mergeable_anon_vma(prev->anon_vma, 1050 next->anon_vma, NULL)) { 1051 /* cases 1, 6 */ 1052 err = vma_adjust(prev, prev->vm_start, 1053 next->vm_end, prev->vm_pgoff, NULL); 1054 } else /* cases 2, 5, 7 */ 1055 err = vma_adjust(prev, prev->vm_start, 1056 end, prev->vm_pgoff, NULL); 1057 if (err) 1058 return NULL; 1059 khugepaged_enter_vma_merge(prev); 1060 return prev; 1061 } 1062 1063 /* 1064 * Can this new request be merged in front of next? 1065 */ 1066 if (next && end == next->vm_start && 1067 mpol_equal(policy, vma_policy(next)) && 1068 can_vma_merge_before(next, vm_flags, 1069 anon_vma, file, pgoff+pglen)) { 1070 if (prev && addr < prev->vm_end) /* case 4 */ 1071 err = vma_adjust(prev, prev->vm_start, 1072 addr, prev->vm_pgoff, NULL); 1073 else /* cases 3, 8 */ 1074 err = vma_adjust(area, addr, next->vm_end, 1075 next->vm_pgoff - pglen, NULL); 1076 if (err) 1077 return NULL; 1078 khugepaged_enter_vma_merge(area); 1079 return area; 1080 } 1081 1082 return NULL; 1083 } 1084 1085 /* 1086 * Rough compatbility check to quickly see if it's even worth looking 1087 * at sharing an anon_vma. 1088 * 1089 * They need to have the same vm_file, and the flags can only differ 1090 * in things that mprotect may change. 1091 * 1092 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1093 * we can merge the two vma's. For example, we refuse to merge a vma if 1094 * there is a vm_ops->close() function, because that indicates that the 1095 * driver is doing some kind of reference counting. But that doesn't 1096 * really matter for the anon_vma sharing case. 1097 */ 1098 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1099 { 1100 return a->vm_end == b->vm_start && 1101 mpol_equal(vma_policy(a), vma_policy(b)) && 1102 a->vm_file == b->vm_file && 1103 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1104 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1105 } 1106 1107 /* 1108 * Do some basic sanity checking to see if we can re-use the anon_vma 1109 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1110 * the same as 'old', the other will be the new one that is trying 1111 * to share the anon_vma. 1112 * 1113 * NOTE! This runs with mm_sem held for reading, so it is possible that 1114 * the anon_vma of 'old' is concurrently in the process of being set up 1115 * by another page fault trying to merge _that_. But that's ok: if it 1116 * is being set up, that automatically means that it will be a singleton 1117 * acceptable for merging, so we can do all of this optimistically. But 1118 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 1119 * 1120 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1121 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1122 * is to return an anon_vma that is "complex" due to having gone through 1123 * a fork). 1124 * 1125 * We also make sure that the two vma's are compatible (adjacent, 1126 * and with the same memory policies). That's all stable, even with just 1127 * a read lock on the mm_sem. 1128 */ 1129 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1130 { 1131 if (anon_vma_compatible(a, b)) { 1132 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 1133 1134 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1135 return anon_vma; 1136 } 1137 return NULL; 1138 } 1139 1140 /* 1141 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1142 * neighbouring vmas for a suitable anon_vma, before it goes off 1143 * to allocate a new anon_vma. It checks because a repetitive 1144 * sequence of mprotects and faults may otherwise lead to distinct 1145 * anon_vmas being allocated, preventing vma merge in subsequent 1146 * mprotect. 1147 */ 1148 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1149 { 1150 struct anon_vma *anon_vma; 1151 struct vm_area_struct *near; 1152 1153 near = vma->vm_next; 1154 if (!near) 1155 goto try_prev; 1156 1157 anon_vma = reusable_anon_vma(near, vma, near); 1158 if (anon_vma) 1159 return anon_vma; 1160 try_prev: 1161 near = vma->vm_prev; 1162 if (!near) 1163 goto none; 1164 1165 anon_vma = reusable_anon_vma(near, near, vma); 1166 if (anon_vma) 1167 return anon_vma; 1168 none: 1169 /* 1170 * There's no absolute need to look only at touching neighbours: 1171 * we could search further afield for "compatible" anon_vmas. 1172 * But it would probably just be a waste of time searching, 1173 * or lead to too many vmas hanging off the same anon_vma. 1174 * We're trying to allow mprotect remerging later on, 1175 * not trying to minimize memory used for anon_vmas. 1176 */ 1177 return NULL; 1178 } 1179 1180 #ifdef CONFIG_PROC_FS 1181 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 1182 struct file *file, long pages) 1183 { 1184 const unsigned long stack_flags 1185 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 1186 1187 mm->total_vm += pages; 1188 1189 if (file) { 1190 mm->shared_vm += pages; 1191 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 1192 mm->exec_vm += pages; 1193 } else if (flags & stack_flags) 1194 mm->stack_vm += pages; 1195 } 1196 #endif /* CONFIG_PROC_FS */ 1197 1198 /* 1199 * If a hint addr is less than mmap_min_addr change hint to be as 1200 * low as possible but still greater than mmap_min_addr 1201 */ 1202 static inline unsigned long round_hint_to_min(unsigned long hint) 1203 { 1204 hint &= PAGE_MASK; 1205 if (((void *)hint != NULL) && 1206 (hint < mmap_min_addr)) 1207 return PAGE_ALIGN(mmap_min_addr); 1208 return hint; 1209 } 1210 1211 static inline int mlock_future_check(struct mm_struct *mm, 1212 unsigned long flags, 1213 unsigned long len) 1214 { 1215 unsigned long locked, lock_limit; 1216 1217 /* mlock MCL_FUTURE? */ 1218 if (flags & VM_LOCKED) { 1219 locked = len >> PAGE_SHIFT; 1220 locked += mm->locked_vm; 1221 lock_limit = rlimit(RLIMIT_MEMLOCK); 1222 lock_limit >>= PAGE_SHIFT; 1223 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1224 return -EAGAIN; 1225 } 1226 return 0; 1227 } 1228 1229 /* 1230 * The caller must hold down_write(¤t->mm->mmap_sem). 1231 */ 1232 1233 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1234 unsigned long len, unsigned long prot, 1235 unsigned long flags, unsigned long pgoff, 1236 unsigned long *populate) 1237 { 1238 struct mm_struct * mm = current->mm; 1239 vm_flags_t vm_flags; 1240 1241 *populate = 0; 1242 1243 /* 1244 * Does the application expect PROT_READ to imply PROT_EXEC? 1245 * 1246 * (the exception is when the underlying filesystem is noexec 1247 * mounted, in which case we dont add PROT_EXEC.) 1248 */ 1249 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1250 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 1251 prot |= PROT_EXEC; 1252 1253 if (!len) 1254 return -EINVAL; 1255 1256 if (!(flags & MAP_FIXED)) 1257 addr = round_hint_to_min(addr); 1258 1259 /* Careful about overflows.. */ 1260 len = PAGE_ALIGN(len); 1261 if (!len) 1262 return -ENOMEM; 1263 1264 /* offset overflow? */ 1265 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1266 return -EOVERFLOW; 1267 1268 /* Too many mappings? */ 1269 if (mm->map_count > sysctl_max_map_count) 1270 return -ENOMEM; 1271 1272 /* Obtain the address to map to. we verify (or select) it and ensure 1273 * that it represents a valid section of the address space. 1274 */ 1275 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1276 if (addr & ~PAGE_MASK) 1277 return addr; 1278 1279 /* Do simple checking here so the lower-level routines won't have 1280 * to. we assume access permissions have been handled by the open 1281 * of the memory object, so we don't do any here. 1282 */ 1283 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1284 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1285 1286 if (flags & MAP_LOCKED) 1287 if (!can_do_mlock()) 1288 return -EPERM; 1289 1290 if (mlock_future_check(mm, vm_flags, len)) 1291 return -EAGAIN; 1292 1293 if (file) { 1294 struct inode *inode = file_inode(file); 1295 1296 switch (flags & MAP_TYPE) { 1297 case MAP_SHARED: 1298 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1299 return -EACCES; 1300 1301 /* 1302 * Make sure we don't allow writing to an append-only 1303 * file.. 1304 */ 1305 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1306 return -EACCES; 1307 1308 /* 1309 * Make sure there are no mandatory locks on the file. 1310 */ 1311 if (locks_verify_locked(file)) 1312 return -EAGAIN; 1313 1314 vm_flags |= VM_SHARED | VM_MAYSHARE; 1315 if (!(file->f_mode & FMODE_WRITE)) 1316 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1317 1318 /* fall through */ 1319 case MAP_PRIVATE: 1320 if (!(file->f_mode & FMODE_READ)) 1321 return -EACCES; 1322 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1323 if (vm_flags & VM_EXEC) 1324 return -EPERM; 1325 vm_flags &= ~VM_MAYEXEC; 1326 } 1327 1328 if (!file->f_op->mmap) 1329 return -ENODEV; 1330 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1331 return -EINVAL; 1332 break; 1333 1334 default: 1335 return -EINVAL; 1336 } 1337 } else { 1338 switch (flags & MAP_TYPE) { 1339 case MAP_SHARED: 1340 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1341 return -EINVAL; 1342 /* 1343 * Ignore pgoff. 1344 */ 1345 pgoff = 0; 1346 vm_flags |= VM_SHARED | VM_MAYSHARE; 1347 break; 1348 case MAP_PRIVATE: 1349 /* 1350 * Set pgoff according to addr for anon_vma. 1351 */ 1352 pgoff = addr >> PAGE_SHIFT; 1353 break; 1354 default: 1355 return -EINVAL; 1356 } 1357 } 1358 1359 /* 1360 * Set 'VM_NORESERVE' if we should not account for the 1361 * memory use of this mapping. 1362 */ 1363 if (flags & MAP_NORESERVE) { 1364 /* We honor MAP_NORESERVE if allowed to overcommit */ 1365 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1366 vm_flags |= VM_NORESERVE; 1367 1368 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1369 if (file && is_file_hugepages(file)) 1370 vm_flags |= VM_NORESERVE; 1371 } 1372 1373 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1374 if (!IS_ERR_VALUE(addr) && 1375 ((vm_flags & VM_LOCKED) || 1376 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1377 *populate = len; 1378 return addr; 1379 } 1380 1381 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1382 unsigned long, prot, unsigned long, flags, 1383 unsigned long, fd, unsigned long, pgoff) 1384 { 1385 struct file *file = NULL; 1386 unsigned long retval = -EBADF; 1387 1388 if (!(flags & MAP_ANONYMOUS)) { 1389 audit_mmap_fd(fd, flags); 1390 file = fget(fd); 1391 if (!file) 1392 goto out; 1393 if (is_file_hugepages(file)) 1394 len = ALIGN(len, huge_page_size(hstate_file(file))); 1395 retval = -EINVAL; 1396 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1397 goto out_fput; 1398 } else if (flags & MAP_HUGETLB) { 1399 struct user_struct *user = NULL; 1400 struct hstate *hs; 1401 1402 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1403 if (!hs) 1404 return -EINVAL; 1405 1406 len = ALIGN(len, huge_page_size(hs)); 1407 /* 1408 * VM_NORESERVE is used because the reservations will be 1409 * taken when vm_ops->mmap() is called 1410 * A dummy user value is used because we are not locking 1411 * memory so no accounting is necessary 1412 */ 1413 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1414 VM_NORESERVE, 1415 &user, HUGETLB_ANONHUGE_INODE, 1416 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1417 if (IS_ERR(file)) 1418 return PTR_ERR(file); 1419 } 1420 1421 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1422 1423 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1424 out_fput: 1425 if (file) 1426 fput(file); 1427 out: 1428 return retval; 1429 } 1430 1431 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1432 struct mmap_arg_struct { 1433 unsigned long addr; 1434 unsigned long len; 1435 unsigned long prot; 1436 unsigned long flags; 1437 unsigned long fd; 1438 unsigned long offset; 1439 }; 1440 1441 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1442 { 1443 struct mmap_arg_struct a; 1444 1445 if (copy_from_user(&a, arg, sizeof(a))) 1446 return -EFAULT; 1447 if (a.offset & ~PAGE_MASK) 1448 return -EINVAL; 1449 1450 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1451 a.offset >> PAGE_SHIFT); 1452 } 1453 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1454 1455 /* 1456 * Some shared mappigns will want the pages marked read-only 1457 * to track write events. If so, we'll downgrade vm_page_prot 1458 * to the private version (using protection_map[] without the 1459 * VM_SHARED bit). 1460 */ 1461 int vma_wants_writenotify(struct vm_area_struct *vma) 1462 { 1463 vm_flags_t vm_flags = vma->vm_flags; 1464 1465 /* If it was private or non-writable, the write bit is already clear */ 1466 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1467 return 0; 1468 1469 /* The backer wishes to know when pages are first written to? */ 1470 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1471 return 1; 1472 1473 /* The open routine did something to the protections already? */ 1474 if (pgprot_val(vma->vm_page_prot) != 1475 pgprot_val(vm_get_page_prot(vm_flags))) 1476 return 0; 1477 1478 /* Specialty mapping? */ 1479 if (vm_flags & VM_PFNMAP) 1480 return 0; 1481 1482 /* Can the mapping track the dirty pages? */ 1483 return vma->vm_file && vma->vm_file->f_mapping && 1484 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1485 } 1486 1487 /* 1488 * We account for memory if it's a private writeable mapping, 1489 * not hugepages and VM_NORESERVE wasn't set. 1490 */ 1491 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1492 { 1493 /* 1494 * hugetlb has its own accounting separate from the core VM 1495 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1496 */ 1497 if (file && is_file_hugepages(file)) 1498 return 0; 1499 1500 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1501 } 1502 1503 unsigned long mmap_region(struct file *file, unsigned long addr, 1504 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1505 { 1506 struct mm_struct *mm = current->mm; 1507 struct vm_area_struct *vma, *prev; 1508 int error; 1509 struct rb_node **rb_link, *rb_parent; 1510 unsigned long charged = 0; 1511 1512 /* Check against address space limit. */ 1513 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) { 1514 unsigned long nr_pages; 1515 1516 /* 1517 * MAP_FIXED may remove pages of mappings that intersects with 1518 * requested mapping. Account for the pages it would unmap. 1519 */ 1520 if (!(vm_flags & MAP_FIXED)) 1521 return -ENOMEM; 1522 1523 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1524 1525 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages)) 1526 return -ENOMEM; 1527 } 1528 1529 /* Clear old maps */ 1530 error = -ENOMEM; 1531 munmap_back: 1532 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 1533 if (do_munmap(mm, addr, len)) 1534 return -ENOMEM; 1535 goto munmap_back; 1536 } 1537 1538 /* 1539 * Private writable mapping: check memory availability 1540 */ 1541 if (accountable_mapping(file, vm_flags)) { 1542 charged = len >> PAGE_SHIFT; 1543 if (security_vm_enough_memory_mm(mm, charged)) 1544 return -ENOMEM; 1545 vm_flags |= VM_ACCOUNT; 1546 } 1547 1548 /* 1549 * Can we just expand an old mapping? 1550 */ 1551 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1552 if (vma) 1553 goto out; 1554 1555 /* 1556 * Determine the object being mapped and call the appropriate 1557 * specific mapper. the address has already been validated, but 1558 * not unmapped, but the maps are removed from the list. 1559 */ 1560 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1561 if (!vma) { 1562 error = -ENOMEM; 1563 goto unacct_error; 1564 } 1565 1566 vma->vm_mm = mm; 1567 vma->vm_start = addr; 1568 vma->vm_end = addr + len; 1569 vma->vm_flags = vm_flags; 1570 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1571 vma->vm_pgoff = pgoff; 1572 INIT_LIST_HEAD(&vma->anon_vma_chain); 1573 1574 if (file) { 1575 if (vm_flags & VM_DENYWRITE) { 1576 error = deny_write_access(file); 1577 if (error) 1578 goto free_vma; 1579 } 1580 vma->vm_file = get_file(file); 1581 error = file->f_op->mmap(file, vma); 1582 if (error) 1583 goto unmap_and_free_vma; 1584 1585 /* Can addr have changed?? 1586 * 1587 * Answer: Yes, several device drivers can do it in their 1588 * f_op->mmap method. -DaveM 1589 * Bug: If addr is changed, prev, rb_link, rb_parent should 1590 * be updated for vma_link() 1591 */ 1592 WARN_ON_ONCE(addr != vma->vm_start); 1593 1594 addr = vma->vm_start; 1595 vm_flags = vma->vm_flags; 1596 } else if (vm_flags & VM_SHARED) { 1597 error = shmem_zero_setup(vma); 1598 if (error) 1599 goto free_vma; 1600 } 1601 1602 if (vma_wants_writenotify(vma)) { 1603 pgprot_t pprot = vma->vm_page_prot; 1604 1605 /* Can vma->vm_page_prot have changed?? 1606 * 1607 * Answer: Yes, drivers may have changed it in their 1608 * f_op->mmap method. 1609 * 1610 * Ensures that vmas marked as uncached stay that way. 1611 */ 1612 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1613 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1614 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1615 } 1616 1617 vma_link(mm, vma, prev, rb_link, rb_parent); 1618 /* Once vma denies write, undo our temporary denial count */ 1619 if (vm_flags & VM_DENYWRITE) 1620 allow_write_access(file); 1621 file = vma->vm_file; 1622 out: 1623 perf_event_mmap(vma); 1624 1625 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1626 if (vm_flags & VM_LOCKED) { 1627 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1628 vma == get_gate_vma(current->mm))) 1629 mm->locked_vm += (len >> PAGE_SHIFT); 1630 else 1631 vma->vm_flags &= ~VM_LOCKED; 1632 } 1633 1634 if (file) 1635 uprobe_mmap(vma); 1636 1637 /* 1638 * New (or expanded) vma always get soft dirty status. 1639 * Otherwise user-space soft-dirty page tracker won't 1640 * be able to distinguish situation when vma area unmapped, 1641 * then new mapped in-place (which must be aimed as 1642 * a completely new data area). 1643 */ 1644 vma->vm_flags |= VM_SOFTDIRTY; 1645 1646 return addr; 1647 1648 unmap_and_free_vma: 1649 if (vm_flags & VM_DENYWRITE) 1650 allow_write_access(file); 1651 vma->vm_file = NULL; 1652 fput(file); 1653 1654 /* Undo any partial mapping done by a device driver. */ 1655 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1656 charged = 0; 1657 free_vma: 1658 kmem_cache_free(vm_area_cachep, vma); 1659 unacct_error: 1660 if (charged) 1661 vm_unacct_memory(charged); 1662 return error; 1663 } 1664 1665 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1666 { 1667 /* 1668 * We implement the search by looking for an rbtree node that 1669 * immediately follows a suitable gap. That is, 1670 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1671 * - gap_end = vma->vm_start >= info->low_limit + length; 1672 * - gap_end - gap_start >= length 1673 */ 1674 1675 struct mm_struct *mm = current->mm; 1676 struct vm_area_struct *vma; 1677 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1678 1679 /* Adjust search length to account for worst case alignment overhead */ 1680 length = info->length + info->align_mask; 1681 if (length < info->length) 1682 return -ENOMEM; 1683 1684 /* Adjust search limits by the desired length */ 1685 if (info->high_limit < length) 1686 return -ENOMEM; 1687 high_limit = info->high_limit - length; 1688 1689 if (info->low_limit > high_limit) 1690 return -ENOMEM; 1691 low_limit = info->low_limit + length; 1692 1693 /* Check if rbtree root looks promising */ 1694 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1695 goto check_highest; 1696 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1697 if (vma->rb_subtree_gap < length) 1698 goto check_highest; 1699 1700 while (true) { 1701 /* Visit left subtree if it looks promising */ 1702 gap_end = vma->vm_start; 1703 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1704 struct vm_area_struct *left = 1705 rb_entry(vma->vm_rb.rb_left, 1706 struct vm_area_struct, vm_rb); 1707 if (left->rb_subtree_gap >= length) { 1708 vma = left; 1709 continue; 1710 } 1711 } 1712 1713 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1714 check_current: 1715 /* Check if current node has a suitable gap */ 1716 if (gap_start > high_limit) 1717 return -ENOMEM; 1718 if (gap_end >= low_limit && gap_end - gap_start >= length) 1719 goto found; 1720 1721 /* Visit right subtree if it looks promising */ 1722 if (vma->vm_rb.rb_right) { 1723 struct vm_area_struct *right = 1724 rb_entry(vma->vm_rb.rb_right, 1725 struct vm_area_struct, vm_rb); 1726 if (right->rb_subtree_gap >= length) { 1727 vma = right; 1728 continue; 1729 } 1730 } 1731 1732 /* Go back up the rbtree to find next candidate node */ 1733 while (true) { 1734 struct rb_node *prev = &vma->vm_rb; 1735 if (!rb_parent(prev)) 1736 goto check_highest; 1737 vma = rb_entry(rb_parent(prev), 1738 struct vm_area_struct, vm_rb); 1739 if (prev == vma->vm_rb.rb_left) { 1740 gap_start = vma->vm_prev->vm_end; 1741 gap_end = vma->vm_start; 1742 goto check_current; 1743 } 1744 } 1745 } 1746 1747 check_highest: 1748 /* Check highest gap, which does not precede any rbtree node */ 1749 gap_start = mm->highest_vm_end; 1750 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1751 if (gap_start > high_limit) 1752 return -ENOMEM; 1753 1754 found: 1755 /* We found a suitable gap. Clip it with the original low_limit. */ 1756 if (gap_start < info->low_limit) 1757 gap_start = info->low_limit; 1758 1759 /* Adjust gap address to the desired alignment */ 1760 gap_start += (info->align_offset - gap_start) & info->align_mask; 1761 1762 VM_BUG_ON(gap_start + info->length > info->high_limit); 1763 VM_BUG_ON(gap_start + info->length > gap_end); 1764 return gap_start; 1765 } 1766 1767 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1768 { 1769 struct mm_struct *mm = current->mm; 1770 struct vm_area_struct *vma; 1771 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1772 1773 /* Adjust search length to account for worst case alignment overhead */ 1774 length = info->length + info->align_mask; 1775 if (length < info->length) 1776 return -ENOMEM; 1777 1778 /* 1779 * Adjust search limits by the desired length. 1780 * See implementation comment at top of unmapped_area(). 1781 */ 1782 gap_end = info->high_limit; 1783 if (gap_end < length) 1784 return -ENOMEM; 1785 high_limit = gap_end - length; 1786 1787 if (info->low_limit > high_limit) 1788 return -ENOMEM; 1789 low_limit = info->low_limit + length; 1790 1791 /* Check highest gap, which does not precede any rbtree node */ 1792 gap_start = mm->highest_vm_end; 1793 if (gap_start <= high_limit) 1794 goto found_highest; 1795 1796 /* Check if rbtree root looks promising */ 1797 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1798 return -ENOMEM; 1799 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1800 if (vma->rb_subtree_gap < length) 1801 return -ENOMEM; 1802 1803 while (true) { 1804 /* Visit right subtree if it looks promising */ 1805 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1806 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1807 struct vm_area_struct *right = 1808 rb_entry(vma->vm_rb.rb_right, 1809 struct vm_area_struct, vm_rb); 1810 if (right->rb_subtree_gap >= length) { 1811 vma = right; 1812 continue; 1813 } 1814 } 1815 1816 check_current: 1817 /* Check if current node has a suitable gap */ 1818 gap_end = vma->vm_start; 1819 if (gap_end < low_limit) 1820 return -ENOMEM; 1821 if (gap_start <= high_limit && gap_end - gap_start >= length) 1822 goto found; 1823 1824 /* Visit left subtree if it looks promising */ 1825 if (vma->vm_rb.rb_left) { 1826 struct vm_area_struct *left = 1827 rb_entry(vma->vm_rb.rb_left, 1828 struct vm_area_struct, vm_rb); 1829 if (left->rb_subtree_gap >= length) { 1830 vma = left; 1831 continue; 1832 } 1833 } 1834 1835 /* Go back up the rbtree to find next candidate node */ 1836 while (true) { 1837 struct rb_node *prev = &vma->vm_rb; 1838 if (!rb_parent(prev)) 1839 return -ENOMEM; 1840 vma = rb_entry(rb_parent(prev), 1841 struct vm_area_struct, vm_rb); 1842 if (prev == vma->vm_rb.rb_right) { 1843 gap_start = vma->vm_prev ? 1844 vma->vm_prev->vm_end : 0; 1845 goto check_current; 1846 } 1847 } 1848 } 1849 1850 found: 1851 /* We found a suitable gap. Clip it with the original high_limit. */ 1852 if (gap_end > info->high_limit) 1853 gap_end = info->high_limit; 1854 1855 found_highest: 1856 /* Compute highest gap address at the desired alignment */ 1857 gap_end -= info->length; 1858 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1859 1860 VM_BUG_ON(gap_end < info->low_limit); 1861 VM_BUG_ON(gap_end < gap_start); 1862 return gap_end; 1863 } 1864 1865 /* Get an address range which is currently unmapped. 1866 * For shmat() with addr=0. 1867 * 1868 * Ugly calling convention alert: 1869 * Return value with the low bits set means error value, 1870 * ie 1871 * if (ret & ~PAGE_MASK) 1872 * error = ret; 1873 * 1874 * This function "knows" that -ENOMEM has the bits set. 1875 */ 1876 #ifndef HAVE_ARCH_UNMAPPED_AREA 1877 unsigned long 1878 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1879 unsigned long len, unsigned long pgoff, unsigned long flags) 1880 { 1881 struct mm_struct *mm = current->mm; 1882 struct vm_area_struct *vma; 1883 struct vm_unmapped_area_info info; 1884 1885 if (len > TASK_SIZE - mmap_min_addr) 1886 return -ENOMEM; 1887 1888 if (flags & MAP_FIXED) 1889 return addr; 1890 1891 if (addr) { 1892 addr = PAGE_ALIGN(addr); 1893 vma = find_vma(mm, addr); 1894 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1895 (!vma || addr + len <= vma->vm_start)) 1896 return addr; 1897 } 1898 1899 info.flags = 0; 1900 info.length = len; 1901 info.low_limit = mm->mmap_base; 1902 info.high_limit = TASK_SIZE; 1903 info.align_mask = 0; 1904 return vm_unmapped_area(&info); 1905 } 1906 #endif 1907 1908 /* 1909 * This mmap-allocator allocates new areas top-down from below the 1910 * stack's low limit (the base): 1911 */ 1912 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1913 unsigned long 1914 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1915 const unsigned long len, const unsigned long pgoff, 1916 const unsigned long flags) 1917 { 1918 struct vm_area_struct *vma; 1919 struct mm_struct *mm = current->mm; 1920 unsigned long addr = addr0; 1921 struct vm_unmapped_area_info info; 1922 1923 /* requested length too big for entire address space */ 1924 if (len > TASK_SIZE - mmap_min_addr) 1925 return -ENOMEM; 1926 1927 if (flags & MAP_FIXED) 1928 return addr; 1929 1930 /* requesting a specific address */ 1931 if (addr) { 1932 addr = PAGE_ALIGN(addr); 1933 vma = find_vma(mm, addr); 1934 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1935 (!vma || addr + len <= vma->vm_start)) 1936 return addr; 1937 } 1938 1939 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1940 info.length = len; 1941 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1942 info.high_limit = mm->mmap_base; 1943 info.align_mask = 0; 1944 addr = vm_unmapped_area(&info); 1945 1946 /* 1947 * A failed mmap() very likely causes application failure, 1948 * so fall back to the bottom-up function here. This scenario 1949 * can happen with large stack limits and large mmap() 1950 * allocations. 1951 */ 1952 if (addr & ~PAGE_MASK) { 1953 VM_BUG_ON(addr != -ENOMEM); 1954 info.flags = 0; 1955 info.low_limit = TASK_UNMAPPED_BASE; 1956 info.high_limit = TASK_SIZE; 1957 addr = vm_unmapped_area(&info); 1958 } 1959 1960 return addr; 1961 } 1962 #endif 1963 1964 unsigned long 1965 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1966 unsigned long pgoff, unsigned long flags) 1967 { 1968 unsigned long (*get_area)(struct file *, unsigned long, 1969 unsigned long, unsigned long, unsigned long); 1970 1971 unsigned long error = arch_mmap_check(addr, len, flags); 1972 if (error) 1973 return error; 1974 1975 /* Careful about overflows.. */ 1976 if (len > TASK_SIZE) 1977 return -ENOMEM; 1978 1979 get_area = current->mm->get_unmapped_area; 1980 if (file && file->f_op->get_unmapped_area) 1981 get_area = file->f_op->get_unmapped_area; 1982 addr = get_area(file, addr, len, pgoff, flags); 1983 if (IS_ERR_VALUE(addr)) 1984 return addr; 1985 1986 if (addr > TASK_SIZE - len) 1987 return -ENOMEM; 1988 if (addr & ~PAGE_MASK) 1989 return -EINVAL; 1990 1991 addr = arch_rebalance_pgtables(addr, len); 1992 error = security_mmap_addr(addr); 1993 return error ? error : addr; 1994 } 1995 1996 EXPORT_SYMBOL(get_unmapped_area); 1997 1998 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1999 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2000 { 2001 struct rb_node *rb_node; 2002 struct vm_area_struct *vma; 2003 2004 /* Check the cache first. */ 2005 vma = vmacache_find(mm, addr); 2006 if (likely(vma)) 2007 return vma; 2008 2009 rb_node = mm->mm_rb.rb_node; 2010 vma = NULL; 2011 2012 while (rb_node) { 2013 struct vm_area_struct *tmp; 2014 2015 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2016 2017 if (tmp->vm_end > addr) { 2018 vma = tmp; 2019 if (tmp->vm_start <= addr) 2020 break; 2021 rb_node = rb_node->rb_left; 2022 } else 2023 rb_node = rb_node->rb_right; 2024 } 2025 2026 if (vma) 2027 vmacache_update(addr, vma); 2028 return vma; 2029 } 2030 2031 EXPORT_SYMBOL(find_vma); 2032 2033 /* 2034 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2035 */ 2036 struct vm_area_struct * 2037 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2038 struct vm_area_struct **pprev) 2039 { 2040 struct vm_area_struct *vma; 2041 2042 vma = find_vma(mm, addr); 2043 if (vma) { 2044 *pprev = vma->vm_prev; 2045 } else { 2046 struct rb_node *rb_node = mm->mm_rb.rb_node; 2047 *pprev = NULL; 2048 while (rb_node) { 2049 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2050 rb_node = rb_node->rb_right; 2051 } 2052 } 2053 return vma; 2054 } 2055 2056 /* 2057 * Verify that the stack growth is acceptable and 2058 * update accounting. This is shared with both the 2059 * grow-up and grow-down cases. 2060 */ 2061 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2062 { 2063 struct mm_struct *mm = vma->vm_mm; 2064 struct rlimit *rlim = current->signal->rlim; 2065 unsigned long new_start; 2066 2067 /* address space limit tests */ 2068 if (!may_expand_vm(mm, grow)) 2069 return -ENOMEM; 2070 2071 /* Stack limit test */ 2072 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2073 return -ENOMEM; 2074 2075 /* mlock limit tests */ 2076 if (vma->vm_flags & VM_LOCKED) { 2077 unsigned long locked; 2078 unsigned long limit; 2079 locked = mm->locked_vm + grow; 2080 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2081 limit >>= PAGE_SHIFT; 2082 if (locked > limit && !capable(CAP_IPC_LOCK)) 2083 return -ENOMEM; 2084 } 2085 2086 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2087 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2088 vma->vm_end - size; 2089 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2090 return -EFAULT; 2091 2092 /* 2093 * Overcommit.. This must be the final test, as it will 2094 * update security statistics. 2095 */ 2096 if (security_vm_enough_memory_mm(mm, grow)) 2097 return -ENOMEM; 2098 2099 /* Ok, everything looks good - let it rip */ 2100 if (vma->vm_flags & VM_LOCKED) 2101 mm->locked_vm += grow; 2102 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 2103 return 0; 2104 } 2105 2106 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2107 /* 2108 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2109 * vma is the last one with address > vma->vm_end. Have to extend vma. 2110 */ 2111 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2112 { 2113 int error; 2114 2115 if (!(vma->vm_flags & VM_GROWSUP)) 2116 return -EFAULT; 2117 2118 /* 2119 * We must make sure the anon_vma is allocated 2120 * so that the anon_vma locking is not a noop. 2121 */ 2122 if (unlikely(anon_vma_prepare(vma))) 2123 return -ENOMEM; 2124 vma_lock_anon_vma(vma); 2125 2126 /* 2127 * vma->vm_start/vm_end cannot change under us because the caller 2128 * is required to hold the mmap_sem in read mode. We need the 2129 * anon_vma lock to serialize against concurrent expand_stacks. 2130 * Also guard against wrapping around to address 0. 2131 */ 2132 if (address < PAGE_ALIGN(address+4)) 2133 address = PAGE_ALIGN(address+4); 2134 else { 2135 vma_unlock_anon_vma(vma); 2136 return -ENOMEM; 2137 } 2138 error = 0; 2139 2140 /* Somebody else might have raced and expanded it already */ 2141 if (address > vma->vm_end) { 2142 unsigned long size, grow; 2143 2144 size = address - vma->vm_start; 2145 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2146 2147 error = -ENOMEM; 2148 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2149 error = acct_stack_growth(vma, size, grow); 2150 if (!error) { 2151 /* 2152 * vma_gap_update() doesn't support concurrent 2153 * updates, but we only hold a shared mmap_sem 2154 * lock here, so we need to protect against 2155 * concurrent vma expansions. 2156 * vma_lock_anon_vma() doesn't help here, as 2157 * we don't guarantee that all growable vmas 2158 * in a mm share the same root anon vma. 2159 * So, we reuse mm->page_table_lock to guard 2160 * against concurrent vma expansions. 2161 */ 2162 spin_lock(&vma->vm_mm->page_table_lock); 2163 anon_vma_interval_tree_pre_update_vma(vma); 2164 vma->vm_end = address; 2165 anon_vma_interval_tree_post_update_vma(vma); 2166 if (vma->vm_next) 2167 vma_gap_update(vma->vm_next); 2168 else 2169 vma->vm_mm->highest_vm_end = address; 2170 spin_unlock(&vma->vm_mm->page_table_lock); 2171 2172 perf_event_mmap(vma); 2173 } 2174 } 2175 } 2176 vma_unlock_anon_vma(vma); 2177 khugepaged_enter_vma_merge(vma); 2178 validate_mm(vma->vm_mm); 2179 return error; 2180 } 2181 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2182 2183 /* 2184 * vma is the first one with address < vma->vm_start. Have to extend vma. 2185 */ 2186 int expand_downwards(struct vm_area_struct *vma, 2187 unsigned long address) 2188 { 2189 int error; 2190 2191 /* 2192 * We must make sure the anon_vma is allocated 2193 * so that the anon_vma locking is not a noop. 2194 */ 2195 if (unlikely(anon_vma_prepare(vma))) 2196 return -ENOMEM; 2197 2198 address &= PAGE_MASK; 2199 error = security_mmap_addr(address); 2200 if (error) 2201 return error; 2202 2203 vma_lock_anon_vma(vma); 2204 2205 /* 2206 * vma->vm_start/vm_end cannot change under us because the caller 2207 * is required to hold the mmap_sem in read mode. We need the 2208 * anon_vma lock to serialize against concurrent expand_stacks. 2209 */ 2210 2211 /* Somebody else might have raced and expanded it already */ 2212 if (address < vma->vm_start) { 2213 unsigned long size, grow; 2214 2215 size = vma->vm_end - address; 2216 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2217 2218 error = -ENOMEM; 2219 if (grow <= vma->vm_pgoff) { 2220 error = acct_stack_growth(vma, size, grow); 2221 if (!error) { 2222 /* 2223 * vma_gap_update() doesn't support concurrent 2224 * updates, but we only hold a shared mmap_sem 2225 * lock here, so we need to protect against 2226 * concurrent vma expansions. 2227 * vma_lock_anon_vma() doesn't help here, as 2228 * we don't guarantee that all growable vmas 2229 * in a mm share the same root anon vma. 2230 * So, we reuse mm->page_table_lock to guard 2231 * against concurrent vma expansions. 2232 */ 2233 spin_lock(&vma->vm_mm->page_table_lock); 2234 anon_vma_interval_tree_pre_update_vma(vma); 2235 vma->vm_start = address; 2236 vma->vm_pgoff -= grow; 2237 anon_vma_interval_tree_post_update_vma(vma); 2238 vma_gap_update(vma); 2239 spin_unlock(&vma->vm_mm->page_table_lock); 2240 2241 perf_event_mmap(vma); 2242 } 2243 } 2244 } 2245 vma_unlock_anon_vma(vma); 2246 khugepaged_enter_vma_merge(vma); 2247 validate_mm(vma->vm_mm); 2248 return error; 2249 } 2250 2251 /* 2252 * Note how expand_stack() refuses to expand the stack all the way to 2253 * abut the next virtual mapping, *unless* that mapping itself is also 2254 * a stack mapping. We want to leave room for a guard page, after all 2255 * (the guard page itself is not added here, that is done by the 2256 * actual page faulting logic) 2257 * 2258 * This matches the behavior of the guard page logic (see mm/memory.c: 2259 * check_stack_guard_page()), which only allows the guard page to be 2260 * removed under these circumstances. 2261 */ 2262 #ifdef CONFIG_STACK_GROWSUP 2263 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2264 { 2265 struct vm_area_struct *next; 2266 2267 address &= PAGE_MASK; 2268 next = vma->vm_next; 2269 if (next && next->vm_start == address + PAGE_SIZE) { 2270 if (!(next->vm_flags & VM_GROWSUP)) 2271 return -ENOMEM; 2272 } 2273 return expand_upwards(vma, address); 2274 } 2275 2276 struct vm_area_struct * 2277 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2278 { 2279 struct vm_area_struct *vma, *prev; 2280 2281 addr &= PAGE_MASK; 2282 vma = find_vma_prev(mm, addr, &prev); 2283 if (vma && (vma->vm_start <= addr)) 2284 return vma; 2285 if (!prev || expand_stack(prev, addr)) 2286 return NULL; 2287 if (prev->vm_flags & VM_LOCKED) 2288 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL); 2289 return prev; 2290 } 2291 #else 2292 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2293 { 2294 struct vm_area_struct *prev; 2295 2296 address &= PAGE_MASK; 2297 prev = vma->vm_prev; 2298 if (prev && prev->vm_end == address) { 2299 if (!(prev->vm_flags & VM_GROWSDOWN)) 2300 return -ENOMEM; 2301 } 2302 return expand_downwards(vma, address); 2303 } 2304 2305 struct vm_area_struct * 2306 find_extend_vma(struct mm_struct * mm, unsigned long addr) 2307 { 2308 struct vm_area_struct * vma; 2309 unsigned long start; 2310 2311 addr &= PAGE_MASK; 2312 vma = find_vma(mm,addr); 2313 if (!vma) 2314 return NULL; 2315 if (vma->vm_start <= addr) 2316 return vma; 2317 if (!(vma->vm_flags & VM_GROWSDOWN)) 2318 return NULL; 2319 start = vma->vm_start; 2320 if (expand_stack(vma, addr)) 2321 return NULL; 2322 if (vma->vm_flags & VM_LOCKED) 2323 __mlock_vma_pages_range(vma, addr, start, NULL); 2324 return vma; 2325 } 2326 #endif 2327 2328 /* 2329 * Ok - we have the memory areas we should free on the vma list, 2330 * so release them, and do the vma updates. 2331 * 2332 * Called with the mm semaphore held. 2333 */ 2334 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2335 { 2336 unsigned long nr_accounted = 0; 2337 2338 /* Update high watermark before we lower total_vm */ 2339 update_hiwater_vm(mm); 2340 do { 2341 long nrpages = vma_pages(vma); 2342 2343 if (vma->vm_flags & VM_ACCOUNT) 2344 nr_accounted += nrpages; 2345 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 2346 vma = remove_vma(vma); 2347 } while (vma); 2348 vm_unacct_memory(nr_accounted); 2349 validate_mm(mm); 2350 } 2351 2352 /* 2353 * Get rid of page table information in the indicated region. 2354 * 2355 * Called with the mm semaphore held. 2356 */ 2357 static void unmap_region(struct mm_struct *mm, 2358 struct vm_area_struct *vma, struct vm_area_struct *prev, 2359 unsigned long start, unsigned long end) 2360 { 2361 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 2362 struct mmu_gather tlb; 2363 2364 lru_add_drain(); 2365 tlb_gather_mmu(&tlb, mm, start, end); 2366 update_hiwater_rss(mm); 2367 unmap_vmas(&tlb, vma, start, end); 2368 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2369 next ? next->vm_start : USER_PGTABLES_CEILING); 2370 tlb_finish_mmu(&tlb, start, end); 2371 } 2372 2373 /* 2374 * Create a list of vma's touched by the unmap, removing them from the mm's 2375 * vma list as we go.. 2376 */ 2377 static void 2378 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2379 struct vm_area_struct *prev, unsigned long end) 2380 { 2381 struct vm_area_struct **insertion_point; 2382 struct vm_area_struct *tail_vma = NULL; 2383 2384 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2385 vma->vm_prev = NULL; 2386 do { 2387 vma_rb_erase(vma, &mm->mm_rb); 2388 mm->map_count--; 2389 tail_vma = vma; 2390 vma = vma->vm_next; 2391 } while (vma && vma->vm_start < end); 2392 *insertion_point = vma; 2393 if (vma) { 2394 vma->vm_prev = prev; 2395 vma_gap_update(vma); 2396 } else 2397 mm->highest_vm_end = prev ? prev->vm_end : 0; 2398 tail_vma->vm_next = NULL; 2399 2400 /* Kill the cache */ 2401 vmacache_invalidate(mm); 2402 } 2403 2404 /* 2405 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2406 * munmap path where it doesn't make sense to fail. 2407 */ 2408 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 2409 unsigned long addr, int new_below) 2410 { 2411 struct vm_area_struct *new; 2412 int err = -ENOMEM; 2413 2414 if (is_vm_hugetlb_page(vma) && (addr & 2415 ~(huge_page_mask(hstate_vma(vma))))) 2416 return -EINVAL; 2417 2418 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2419 if (!new) 2420 goto out_err; 2421 2422 /* most fields are the same, copy all, and then fixup */ 2423 *new = *vma; 2424 2425 INIT_LIST_HEAD(&new->anon_vma_chain); 2426 2427 if (new_below) 2428 new->vm_end = addr; 2429 else { 2430 new->vm_start = addr; 2431 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2432 } 2433 2434 err = vma_dup_policy(vma, new); 2435 if (err) 2436 goto out_free_vma; 2437 2438 if (anon_vma_clone(new, vma)) 2439 goto out_free_mpol; 2440 2441 if (new->vm_file) 2442 get_file(new->vm_file); 2443 2444 if (new->vm_ops && new->vm_ops->open) 2445 new->vm_ops->open(new); 2446 2447 if (new_below) 2448 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2449 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2450 else 2451 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2452 2453 /* Success. */ 2454 if (!err) 2455 return 0; 2456 2457 /* Clean everything up if vma_adjust failed. */ 2458 if (new->vm_ops && new->vm_ops->close) 2459 new->vm_ops->close(new); 2460 if (new->vm_file) 2461 fput(new->vm_file); 2462 unlink_anon_vmas(new); 2463 out_free_mpol: 2464 mpol_put(vma_policy(new)); 2465 out_free_vma: 2466 kmem_cache_free(vm_area_cachep, new); 2467 out_err: 2468 return err; 2469 } 2470 2471 /* 2472 * Split a vma into two pieces at address 'addr', a new vma is allocated 2473 * either for the first part or the tail. 2474 */ 2475 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2476 unsigned long addr, int new_below) 2477 { 2478 if (mm->map_count >= sysctl_max_map_count) 2479 return -ENOMEM; 2480 2481 return __split_vma(mm, vma, addr, new_below); 2482 } 2483 2484 /* Munmap is split into 2 main parts -- this part which finds 2485 * what needs doing, and the areas themselves, which do the 2486 * work. This now handles partial unmappings. 2487 * Jeremy Fitzhardinge <jeremy@goop.org> 2488 */ 2489 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2490 { 2491 unsigned long end; 2492 struct vm_area_struct *vma, *prev, *last; 2493 2494 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2495 return -EINVAL; 2496 2497 if ((len = PAGE_ALIGN(len)) == 0) 2498 return -EINVAL; 2499 2500 /* Find the first overlapping VMA */ 2501 vma = find_vma(mm, start); 2502 if (!vma) 2503 return 0; 2504 prev = vma->vm_prev; 2505 /* we have start < vma->vm_end */ 2506 2507 /* if it doesn't overlap, we have nothing.. */ 2508 end = start + len; 2509 if (vma->vm_start >= end) 2510 return 0; 2511 2512 /* 2513 * If we need to split any vma, do it now to save pain later. 2514 * 2515 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2516 * unmapped vm_area_struct will remain in use: so lower split_vma 2517 * places tmp vma above, and higher split_vma places tmp vma below. 2518 */ 2519 if (start > vma->vm_start) { 2520 int error; 2521 2522 /* 2523 * Make sure that map_count on return from munmap() will 2524 * not exceed its limit; but let map_count go just above 2525 * its limit temporarily, to help free resources as expected. 2526 */ 2527 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2528 return -ENOMEM; 2529 2530 error = __split_vma(mm, vma, start, 0); 2531 if (error) 2532 return error; 2533 prev = vma; 2534 } 2535 2536 /* Does it split the last one? */ 2537 last = find_vma(mm, end); 2538 if (last && end > last->vm_start) { 2539 int error = __split_vma(mm, last, end, 1); 2540 if (error) 2541 return error; 2542 } 2543 vma = prev? prev->vm_next: mm->mmap; 2544 2545 /* 2546 * unlock any mlock()ed ranges before detaching vmas 2547 */ 2548 if (mm->locked_vm) { 2549 struct vm_area_struct *tmp = vma; 2550 while (tmp && tmp->vm_start < end) { 2551 if (tmp->vm_flags & VM_LOCKED) { 2552 mm->locked_vm -= vma_pages(tmp); 2553 munlock_vma_pages_all(tmp); 2554 } 2555 tmp = tmp->vm_next; 2556 } 2557 } 2558 2559 /* 2560 * Remove the vma's, and unmap the actual pages 2561 */ 2562 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2563 unmap_region(mm, vma, prev, start, end); 2564 2565 /* Fix up all other VM information */ 2566 remove_vma_list(mm, vma); 2567 2568 return 0; 2569 } 2570 2571 int vm_munmap(unsigned long start, size_t len) 2572 { 2573 int ret; 2574 struct mm_struct *mm = current->mm; 2575 2576 down_write(&mm->mmap_sem); 2577 ret = do_munmap(mm, start, len); 2578 up_write(&mm->mmap_sem); 2579 return ret; 2580 } 2581 EXPORT_SYMBOL(vm_munmap); 2582 2583 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2584 { 2585 profile_munmap(addr); 2586 return vm_munmap(addr, len); 2587 } 2588 2589 static inline void verify_mm_writelocked(struct mm_struct *mm) 2590 { 2591 #ifdef CONFIG_DEBUG_VM 2592 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2593 WARN_ON(1); 2594 up_read(&mm->mmap_sem); 2595 } 2596 #endif 2597 } 2598 2599 /* 2600 * this is really a simplified "do_mmap". it only handles 2601 * anonymous maps. eventually we may be able to do some 2602 * brk-specific accounting here. 2603 */ 2604 static unsigned long do_brk(unsigned long addr, unsigned long len) 2605 { 2606 struct mm_struct * mm = current->mm; 2607 struct vm_area_struct * vma, * prev; 2608 unsigned long flags; 2609 struct rb_node ** rb_link, * rb_parent; 2610 pgoff_t pgoff = addr >> PAGE_SHIFT; 2611 int error; 2612 2613 len = PAGE_ALIGN(len); 2614 if (!len) 2615 return addr; 2616 2617 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2618 2619 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2620 if (error & ~PAGE_MASK) 2621 return error; 2622 2623 error = mlock_future_check(mm, mm->def_flags, len); 2624 if (error) 2625 return error; 2626 2627 /* 2628 * mm->mmap_sem is required to protect against another thread 2629 * changing the mappings in case we sleep. 2630 */ 2631 verify_mm_writelocked(mm); 2632 2633 /* 2634 * Clear old maps. this also does some error checking for us 2635 */ 2636 munmap_back: 2637 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 2638 if (do_munmap(mm, addr, len)) 2639 return -ENOMEM; 2640 goto munmap_back; 2641 } 2642 2643 /* Check against address space limits *after* clearing old maps... */ 2644 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2645 return -ENOMEM; 2646 2647 if (mm->map_count > sysctl_max_map_count) 2648 return -ENOMEM; 2649 2650 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2651 return -ENOMEM; 2652 2653 /* Can we just expand an old private anonymous mapping? */ 2654 vma = vma_merge(mm, prev, addr, addr + len, flags, 2655 NULL, NULL, pgoff, NULL); 2656 if (vma) 2657 goto out; 2658 2659 /* 2660 * create a vma struct for an anonymous mapping 2661 */ 2662 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2663 if (!vma) { 2664 vm_unacct_memory(len >> PAGE_SHIFT); 2665 return -ENOMEM; 2666 } 2667 2668 INIT_LIST_HEAD(&vma->anon_vma_chain); 2669 vma->vm_mm = mm; 2670 vma->vm_start = addr; 2671 vma->vm_end = addr + len; 2672 vma->vm_pgoff = pgoff; 2673 vma->vm_flags = flags; 2674 vma->vm_page_prot = vm_get_page_prot(flags); 2675 vma_link(mm, vma, prev, rb_link, rb_parent); 2676 out: 2677 perf_event_mmap(vma); 2678 mm->total_vm += len >> PAGE_SHIFT; 2679 if (flags & VM_LOCKED) 2680 mm->locked_vm += (len >> PAGE_SHIFT); 2681 vma->vm_flags |= VM_SOFTDIRTY; 2682 return addr; 2683 } 2684 2685 unsigned long vm_brk(unsigned long addr, unsigned long len) 2686 { 2687 struct mm_struct *mm = current->mm; 2688 unsigned long ret; 2689 bool populate; 2690 2691 down_write(&mm->mmap_sem); 2692 ret = do_brk(addr, len); 2693 populate = ((mm->def_flags & VM_LOCKED) != 0); 2694 up_write(&mm->mmap_sem); 2695 if (populate) 2696 mm_populate(addr, len); 2697 return ret; 2698 } 2699 EXPORT_SYMBOL(vm_brk); 2700 2701 /* Release all mmaps. */ 2702 void exit_mmap(struct mm_struct *mm) 2703 { 2704 struct mmu_gather tlb; 2705 struct vm_area_struct *vma; 2706 unsigned long nr_accounted = 0; 2707 2708 /* mm's last user has gone, and its about to be pulled down */ 2709 mmu_notifier_release(mm); 2710 2711 if (mm->locked_vm) { 2712 vma = mm->mmap; 2713 while (vma) { 2714 if (vma->vm_flags & VM_LOCKED) 2715 munlock_vma_pages_all(vma); 2716 vma = vma->vm_next; 2717 } 2718 } 2719 2720 arch_exit_mmap(mm); 2721 2722 vma = mm->mmap; 2723 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2724 return; 2725 2726 lru_add_drain(); 2727 flush_cache_mm(mm); 2728 tlb_gather_mmu(&tlb, mm, 0, -1); 2729 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2730 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2731 unmap_vmas(&tlb, vma, 0, -1); 2732 2733 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2734 tlb_finish_mmu(&tlb, 0, -1); 2735 2736 /* 2737 * Walk the list again, actually closing and freeing it, 2738 * with preemption enabled, without holding any MM locks. 2739 */ 2740 while (vma) { 2741 if (vma->vm_flags & VM_ACCOUNT) 2742 nr_accounted += vma_pages(vma); 2743 vma = remove_vma(vma); 2744 } 2745 vm_unacct_memory(nr_accounted); 2746 2747 WARN_ON(atomic_long_read(&mm->nr_ptes) > 2748 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2749 } 2750 2751 /* Insert vm structure into process list sorted by address 2752 * and into the inode's i_mmap tree. If vm_file is non-NULL 2753 * then i_mmap_mutex is taken here. 2754 */ 2755 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2756 { 2757 struct vm_area_struct *prev; 2758 struct rb_node **rb_link, *rb_parent; 2759 2760 /* 2761 * The vm_pgoff of a purely anonymous vma should be irrelevant 2762 * until its first write fault, when page's anon_vma and index 2763 * are set. But now set the vm_pgoff it will almost certainly 2764 * end up with (unless mremap moves it elsewhere before that 2765 * first wfault), so /proc/pid/maps tells a consistent story. 2766 * 2767 * By setting it to reflect the virtual start address of the 2768 * vma, merges and splits can happen in a seamless way, just 2769 * using the existing file pgoff checks and manipulations. 2770 * Similarly in do_mmap_pgoff and in do_brk. 2771 */ 2772 if (!vma->vm_file) { 2773 BUG_ON(vma->anon_vma); 2774 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2775 } 2776 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2777 &prev, &rb_link, &rb_parent)) 2778 return -ENOMEM; 2779 if ((vma->vm_flags & VM_ACCOUNT) && 2780 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2781 return -ENOMEM; 2782 2783 vma_link(mm, vma, prev, rb_link, rb_parent); 2784 return 0; 2785 } 2786 2787 /* 2788 * Copy the vma structure to a new location in the same mm, 2789 * prior to moving page table entries, to effect an mremap move. 2790 */ 2791 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2792 unsigned long addr, unsigned long len, pgoff_t pgoff, 2793 bool *need_rmap_locks) 2794 { 2795 struct vm_area_struct *vma = *vmap; 2796 unsigned long vma_start = vma->vm_start; 2797 struct mm_struct *mm = vma->vm_mm; 2798 struct vm_area_struct *new_vma, *prev; 2799 struct rb_node **rb_link, *rb_parent; 2800 bool faulted_in_anon_vma = true; 2801 2802 /* 2803 * If anonymous vma has not yet been faulted, update new pgoff 2804 * to match new location, to increase its chance of merging. 2805 */ 2806 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2807 pgoff = addr >> PAGE_SHIFT; 2808 faulted_in_anon_vma = false; 2809 } 2810 2811 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2812 return NULL; /* should never get here */ 2813 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2814 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2815 if (new_vma) { 2816 /* 2817 * Source vma may have been merged into new_vma 2818 */ 2819 if (unlikely(vma_start >= new_vma->vm_start && 2820 vma_start < new_vma->vm_end)) { 2821 /* 2822 * The only way we can get a vma_merge with 2823 * self during an mremap is if the vma hasn't 2824 * been faulted in yet and we were allowed to 2825 * reset the dst vma->vm_pgoff to the 2826 * destination address of the mremap to allow 2827 * the merge to happen. mremap must change the 2828 * vm_pgoff linearity between src and dst vmas 2829 * (in turn preventing a vma_merge) to be 2830 * safe. It is only safe to keep the vm_pgoff 2831 * linear if there are no pages mapped yet. 2832 */ 2833 VM_BUG_ON(faulted_in_anon_vma); 2834 *vmap = vma = new_vma; 2835 } 2836 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2837 } else { 2838 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2839 if (new_vma) { 2840 *new_vma = *vma; 2841 new_vma->vm_start = addr; 2842 new_vma->vm_end = addr + len; 2843 new_vma->vm_pgoff = pgoff; 2844 if (vma_dup_policy(vma, new_vma)) 2845 goto out_free_vma; 2846 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2847 if (anon_vma_clone(new_vma, vma)) 2848 goto out_free_mempol; 2849 if (new_vma->vm_file) 2850 get_file(new_vma->vm_file); 2851 if (new_vma->vm_ops && new_vma->vm_ops->open) 2852 new_vma->vm_ops->open(new_vma); 2853 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2854 *need_rmap_locks = false; 2855 } 2856 } 2857 return new_vma; 2858 2859 out_free_mempol: 2860 mpol_put(vma_policy(new_vma)); 2861 out_free_vma: 2862 kmem_cache_free(vm_area_cachep, new_vma); 2863 return NULL; 2864 } 2865 2866 /* 2867 * Return true if the calling process may expand its vm space by the passed 2868 * number of pages 2869 */ 2870 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2871 { 2872 unsigned long cur = mm->total_vm; /* pages */ 2873 unsigned long lim; 2874 2875 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2876 2877 if (cur + npages > lim) 2878 return 0; 2879 return 1; 2880 } 2881 2882 static int special_mapping_fault(struct vm_area_struct *vma, 2883 struct vm_fault *vmf); 2884 2885 /* 2886 * Having a close hook prevents vma merging regardless of flags. 2887 */ 2888 static void special_mapping_close(struct vm_area_struct *vma) 2889 { 2890 } 2891 2892 static const char *special_mapping_name(struct vm_area_struct *vma) 2893 { 2894 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 2895 } 2896 2897 static const struct vm_operations_struct special_mapping_vmops = { 2898 .close = special_mapping_close, 2899 .fault = special_mapping_fault, 2900 .name = special_mapping_name, 2901 }; 2902 2903 static const struct vm_operations_struct legacy_special_mapping_vmops = { 2904 .close = special_mapping_close, 2905 .fault = special_mapping_fault, 2906 }; 2907 2908 static int special_mapping_fault(struct vm_area_struct *vma, 2909 struct vm_fault *vmf) 2910 { 2911 pgoff_t pgoff; 2912 struct page **pages; 2913 2914 /* 2915 * special mappings have no vm_file, and in that case, the mm 2916 * uses vm_pgoff internally. So we have to subtract it from here. 2917 * We are allowed to do this because we are the mm; do not copy 2918 * this code into drivers! 2919 */ 2920 pgoff = vmf->pgoff - vma->vm_pgoff; 2921 2922 if (vma->vm_ops == &legacy_special_mapping_vmops) 2923 pages = vma->vm_private_data; 2924 else 2925 pages = ((struct vm_special_mapping *)vma->vm_private_data)-> 2926 pages; 2927 2928 for (; pgoff && *pages; ++pages) 2929 pgoff--; 2930 2931 if (*pages) { 2932 struct page *page = *pages; 2933 get_page(page); 2934 vmf->page = page; 2935 return 0; 2936 } 2937 2938 return VM_FAULT_SIGBUS; 2939 } 2940 2941 static struct vm_area_struct *__install_special_mapping( 2942 struct mm_struct *mm, 2943 unsigned long addr, unsigned long len, 2944 unsigned long vm_flags, const struct vm_operations_struct *ops, 2945 void *priv) 2946 { 2947 int ret; 2948 struct vm_area_struct *vma; 2949 2950 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2951 if (unlikely(vma == NULL)) 2952 return ERR_PTR(-ENOMEM); 2953 2954 INIT_LIST_HEAD(&vma->anon_vma_chain); 2955 vma->vm_mm = mm; 2956 vma->vm_start = addr; 2957 vma->vm_end = addr + len; 2958 2959 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 2960 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2961 2962 vma->vm_ops = ops; 2963 vma->vm_private_data = priv; 2964 2965 ret = insert_vm_struct(mm, vma); 2966 if (ret) 2967 goto out; 2968 2969 mm->total_vm += len >> PAGE_SHIFT; 2970 2971 perf_event_mmap(vma); 2972 2973 return vma; 2974 2975 out: 2976 kmem_cache_free(vm_area_cachep, vma); 2977 return ERR_PTR(ret); 2978 } 2979 2980 /* 2981 * Called with mm->mmap_sem held for writing. 2982 * Insert a new vma covering the given region, with the given flags. 2983 * Its pages are supplied by the given array of struct page *. 2984 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2985 * The region past the last page supplied will always produce SIGBUS. 2986 * The array pointer and the pages it points to are assumed to stay alive 2987 * for as long as this mapping might exist. 2988 */ 2989 struct vm_area_struct *_install_special_mapping( 2990 struct mm_struct *mm, 2991 unsigned long addr, unsigned long len, 2992 unsigned long vm_flags, const struct vm_special_mapping *spec) 2993 { 2994 return __install_special_mapping(mm, addr, len, vm_flags, 2995 &special_mapping_vmops, (void *)spec); 2996 } 2997 2998 int install_special_mapping(struct mm_struct *mm, 2999 unsigned long addr, unsigned long len, 3000 unsigned long vm_flags, struct page **pages) 3001 { 3002 struct vm_area_struct *vma = __install_special_mapping( 3003 mm, addr, len, vm_flags, &legacy_special_mapping_vmops, 3004 (void *)pages); 3005 3006 return PTR_ERR_OR_ZERO(vma); 3007 } 3008 3009 static DEFINE_MUTEX(mm_all_locks_mutex); 3010 3011 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3012 { 3013 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3014 /* 3015 * The LSB of head.next can't change from under us 3016 * because we hold the mm_all_locks_mutex. 3017 */ 3018 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3019 /* 3020 * We can safely modify head.next after taking the 3021 * anon_vma->root->rwsem. If some other vma in this mm shares 3022 * the same anon_vma we won't take it again. 3023 * 3024 * No need of atomic instructions here, head.next 3025 * can't change from under us thanks to the 3026 * anon_vma->root->rwsem. 3027 */ 3028 if (__test_and_set_bit(0, (unsigned long *) 3029 &anon_vma->root->rb_root.rb_node)) 3030 BUG(); 3031 } 3032 } 3033 3034 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3035 { 3036 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3037 /* 3038 * AS_MM_ALL_LOCKS can't change from under us because 3039 * we hold the mm_all_locks_mutex. 3040 * 3041 * Operations on ->flags have to be atomic because 3042 * even if AS_MM_ALL_LOCKS is stable thanks to the 3043 * mm_all_locks_mutex, there may be other cpus 3044 * changing other bitflags in parallel to us. 3045 */ 3046 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3047 BUG(); 3048 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 3049 } 3050 } 3051 3052 /* 3053 * This operation locks against the VM for all pte/vma/mm related 3054 * operations that could ever happen on a certain mm. This includes 3055 * vmtruncate, try_to_unmap, and all page faults. 3056 * 3057 * The caller must take the mmap_sem in write mode before calling 3058 * mm_take_all_locks(). The caller isn't allowed to release the 3059 * mmap_sem until mm_drop_all_locks() returns. 3060 * 3061 * mmap_sem in write mode is required in order to block all operations 3062 * that could modify pagetables and free pages without need of 3063 * altering the vma layout (for example populate_range() with 3064 * nonlinear vmas). It's also needed in write mode to avoid new 3065 * anon_vmas to be associated with existing vmas. 3066 * 3067 * A single task can't take more than one mm_take_all_locks() in a row 3068 * or it would deadlock. 3069 * 3070 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3071 * mapping->flags avoid to take the same lock twice, if more than one 3072 * vma in this mm is backed by the same anon_vma or address_space. 3073 * 3074 * We can take all the locks in random order because the VM code 3075 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never 3076 * takes more than one of them in a row. Secondly we're protected 3077 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 3078 * 3079 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3080 * that may have to take thousand of locks. 3081 * 3082 * mm_take_all_locks() can fail if it's interrupted by signals. 3083 */ 3084 int mm_take_all_locks(struct mm_struct *mm) 3085 { 3086 struct vm_area_struct *vma; 3087 struct anon_vma_chain *avc; 3088 3089 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3090 3091 mutex_lock(&mm_all_locks_mutex); 3092 3093 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3094 if (signal_pending(current)) 3095 goto out_unlock; 3096 if (vma->vm_file && vma->vm_file->f_mapping) 3097 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3098 } 3099 3100 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3101 if (signal_pending(current)) 3102 goto out_unlock; 3103 if (vma->anon_vma) 3104 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3105 vm_lock_anon_vma(mm, avc->anon_vma); 3106 } 3107 3108 return 0; 3109 3110 out_unlock: 3111 mm_drop_all_locks(mm); 3112 return -EINTR; 3113 } 3114 3115 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3116 { 3117 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3118 /* 3119 * The LSB of head.next can't change to 0 from under 3120 * us because we hold the mm_all_locks_mutex. 3121 * 3122 * We must however clear the bitflag before unlocking 3123 * the vma so the users using the anon_vma->rb_root will 3124 * never see our bitflag. 3125 * 3126 * No need of atomic instructions here, head.next 3127 * can't change from under us until we release the 3128 * anon_vma->root->rwsem. 3129 */ 3130 if (!__test_and_clear_bit(0, (unsigned long *) 3131 &anon_vma->root->rb_root.rb_node)) 3132 BUG(); 3133 anon_vma_unlock_write(anon_vma); 3134 } 3135 } 3136 3137 static void vm_unlock_mapping(struct address_space *mapping) 3138 { 3139 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3140 /* 3141 * AS_MM_ALL_LOCKS can't change to 0 from under us 3142 * because we hold the mm_all_locks_mutex. 3143 */ 3144 mutex_unlock(&mapping->i_mmap_mutex); 3145 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3146 &mapping->flags)) 3147 BUG(); 3148 } 3149 } 3150 3151 /* 3152 * The mmap_sem cannot be released by the caller until 3153 * mm_drop_all_locks() returns. 3154 */ 3155 void mm_drop_all_locks(struct mm_struct *mm) 3156 { 3157 struct vm_area_struct *vma; 3158 struct anon_vma_chain *avc; 3159 3160 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3161 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3162 3163 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3164 if (vma->anon_vma) 3165 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3166 vm_unlock_anon_vma(avc->anon_vma); 3167 if (vma->vm_file && vma->vm_file->f_mapping) 3168 vm_unlock_mapping(vma->vm_file->f_mapping); 3169 } 3170 3171 mutex_unlock(&mm_all_locks_mutex); 3172 } 3173 3174 /* 3175 * initialise the VMA slab 3176 */ 3177 void __init mmap_init(void) 3178 { 3179 int ret; 3180 3181 ret = percpu_counter_init(&vm_committed_as, 0); 3182 VM_BUG_ON(ret); 3183 } 3184 3185 /* 3186 * Initialise sysctl_user_reserve_kbytes. 3187 * 3188 * This is intended to prevent a user from starting a single memory hogging 3189 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3190 * mode. 3191 * 3192 * The default value is min(3% of free memory, 128MB) 3193 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3194 */ 3195 static int init_user_reserve(void) 3196 { 3197 unsigned long free_kbytes; 3198 3199 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3200 3201 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3202 return 0; 3203 } 3204 subsys_initcall(init_user_reserve); 3205 3206 /* 3207 * Initialise sysctl_admin_reserve_kbytes. 3208 * 3209 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3210 * to log in and kill a memory hogging process. 3211 * 3212 * Systems with more than 256MB will reserve 8MB, enough to recover 3213 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3214 * only reserve 3% of free pages by default. 3215 */ 3216 static int init_admin_reserve(void) 3217 { 3218 unsigned long free_kbytes; 3219 3220 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3221 3222 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3223 return 0; 3224 } 3225 subsys_initcall(init_admin_reserve); 3226 3227 /* 3228 * Reinititalise user and admin reserves if memory is added or removed. 3229 * 3230 * The default user reserve max is 128MB, and the default max for the 3231 * admin reserve is 8MB. These are usually, but not always, enough to 3232 * enable recovery from a memory hogging process using login/sshd, a shell, 3233 * and tools like top. It may make sense to increase or even disable the 3234 * reserve depending on the existence of swap or variations in the recovery 3235 * tools. So, the admin may have changed them. 3236 * 3237 * If memory is added and the reserves have been eliminated or increased above 3238 * the default max, then we'll trust the admin. 3239 * 3240 * If memory is removed and there isn't enough free memory, then we 3241 * need to reset the reserves. 3242 * 3243 * Otherwise keep the reserve set by the admin. 3244 */ 3245 static int reserve_mem_notifier(struct notifier_block *nb, 3246 unsigned long action, void *data) 3247 { 3248 unsigned long tmp, free_kbytes; 3249 3250 switch (action) { 3251 case MEM_ONLINE: 3252 /* Default max is 128MB. Leave alone if modified by operator. */ 3253 tmp = sysctl_user_reserve_kbytes; 3254 if (0 < tmp && tmp < (1UL << 17)) 3255 init_user_reserve(); 3256 3257 /* Default max is 8MB. Leave alone if modified by operator. */ 3258 tmp = sysctl_admin_reserve_kbytes; 3259 if (0 < tmp && tmp < (1UL << 13)) 3260 init_admin_reserve(); 3261 3262 break; 3263 case MEM_OFFLINE: 3264 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3265 3266 if (sysctl_user_reserve_kbytes > free_kbytes) { 3267 init_user_reserve(); 3268 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3269 sysctl_user_reserve_kbytes); 3270 } 3271 3272 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3273 init_admin_reserve(); 3274 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3275 sysctl_admin_reserve_kbytes); 3276 } 3277 break; 3278 default: 3279 break; 3280 } 3281 return NOTIFY_OK; 3282 } 3283 3284 static struct notifier_block reserve_mem_nb = { 3285 .notifier_call = reserve_mem_notifier, 3286 }; 3287 3288 static int __meminit init_reserve_notifier(void) 3289 { 3290 if (register_hotmemory_notifier(&reserve_mem_nb)) 3291 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3292 3293 return 0; 3294 } 3295 subsys_initcall(init_reserve_notifier); 3296