1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/profile.h> 29 #include <linux/export.h> 30 #include <linux/mount.h> 31 #include <linux/mempolicy.h> 32 #include <linux/rmap.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/mmdebug.h> 35 #include <linux/perf_event.h> 36 #include <linux/audit.h> 37 #include <linux/khugepaged.h> 38 #include <linux/uprobes.h> 39 #include <linux/rbtree_augmented.h> 40 #include <linux/sched/sysctl.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 45 #include <asm/uaccess.h> 46 #include <asm/cacheflush.h> 47 #include <asm/tlb.h> 48 #include <asm/mmu_context.h> 49 50 #include "internal.h" 51 52 #ifndef arch_mmap_check 53 #define arch_mmap_check(addr, len, flags) (0) 54 #endif 55 56 #ifndef arch_rebalance_pgtables 57 #define arch_rebalance_pgtables(addr, len) (addr) 58 #endif 59 60 static void unmap_region(struct mm_struct *mm, 61 struct vm_area_struct *vma, struct vm_area_struct *prev, 62 unsigned long start, unsigned long end); 63 64 /* description of effects of mapping type and prot in current implementation. 65 * this is due to the limited x86 page protection hardware. The expected 66 * behavior is in parens: 67 * 68 * map_type prot 69 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 70 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 71 * w: (no) no w: (no) no w: (yes) yes w: (no) no 72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 73 * 74 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 75 * w: (no) no w: (no) no w: (copy) copy w: (no) no 76 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 77 * 78 */ 79 pgprot_t protection_map[16] = { 80 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 81 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 82 }; 83 84 pgprot_t vm_get_page_prot(unsigned long vm_flags) 85 { 86 return __pgprot(pgprot_val(protection_map[vm_flags & 87 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 88 pgprot_val(arch_vm_get_page_prot(vm_flags))); 89 } 90 EXPORT_SYMBOL(vm_get_page_prot); 91 92 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 93 { 94 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 95 } 96 97 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 98 void vma_set_page_prot(struct vm_area_struct *vma) 99 { 100 unsigned long vm_flags = vma->vm_flags; 101 102 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 103 if (vma_wants_writenotify(vma)) { 104 vm_flags &= ~VM_SHARED; 105 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, 106 vm_flags); 107 } 108 } 109 110 111 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 112 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 113 unsigned long sysctl_overcommit_kbytes __read_mostly; 114 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 115 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 116 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 117 /* 118 * Make sure vm_committed_as in one cacheline and not cacheline shared with 119 * other variables. It can be updated by several CPUs frequently. 120 */ 121 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 122 123 /* 124 * The global memory commitment made in the system can be a metric 125 * that can be used to drive ballooning decisions when Linux is hosted 126 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 127 * balancing memory across competing virtual machines that are hosted. 128 * Several metrics drive this policy engine including the guest reported 129 * memory commitment. 130 */ 131 unsigned long vm_memory_committed(void) 132 { 133 return percpu_counter_read_positive(&vm_committed_as); 134 } 135 EXPORT_SYMBOL_GPL(vm_memory_committed); 136 137 /* 138 * Check that a process has enough memory to allocate a new virtual 139 * mapping. 0 means there is enough memory for the allocation to 140 * succeed and -ENOMEM implies there is not. 141 * 142 * We currently support three overcommit policies, which are set via the 143 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 144 * 145 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 146 * Additional code 2002 Jul 20 by Robert Love. 147 * 148 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 149 * 150 * Note this is a helper function intended to be used by LSMs which 151 * wish to use this logic. 152 */ 153 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 154 { 155 unsigned long free, allowed, reserve; 156 157 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 158 -(s64)vm_committed_as_batch * num_online_cpus(), 159 "memory commitment underflow"); 160 161 vm_acct_memory(pages); 162 163 /* 164 * Sometimes we want to use more memory than we have 165 */ 166 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 167 return 0; 168 169 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 170 free = global_page_state(NR_FREE_PAGES); 171 free += global_page_state(NR_FILE_PAGES); 172 173 /* 174 * shmem pages shouldn't be counted as free in this 175 * case, they can't be purged, only swapped out, and 176 * that won't affect the overall amount of available 177 * memory in the system. 178 */ 179 free -= global_page_state(NR_SHMEM); 180 181 free += get_nr_swap_pages(); 182 183 /* 184 * Any slabs which are created with the 185 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 186 * which are reclaimable, under pressure. The dentry 187 * cache and most inode caches should fall into this 188 */ 189 free += global_page_state(NR_SLAB_RECLAIMABLE); 190 191 /* 192 * Leave reserved pages. The pages are not for anonymous pages. 193 */ 194 if (free <= totalreserve_pages) 195 goto error; 196 else 197 free -= totalreserve_pages; 198 199 /* 200 * Reserve some for root 201 */ 202 if (!cap_sys_admin) 203 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 204 205 if (free > pages) 206 return 0; 207 208 goto error; 209 } 210 211 allowed = vm_commit_limit(); 212 /* 213 * Reserve some for root 214 */ 215 if (!cap_sys_admin) 216 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 217 218 /* 219 * Don't let a single process grow so big a user can't recover 220 */ 221 if (mm) { 222 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 223 allowed -= min(mm->total_vm / 32, reserve); 224 } 225 226 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 227 return 0; 228 error: 229 vm_unacct_memory(pages); 230 231 return -ENOMEM; 232 } 233 234 /* 235 * Requires inode->i_mapping->i_mmap_mutex 236 */ 237 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 238 struct file *file, struct address_space *mapping) 239 { 240 if (vma->vm_flags & VM_DENYWRITE) 241 atomic_inc(&file_inode(file)->i_writecount); 242 if (vma->vm_flags & VM_SHARED) 243 mapping_unmap_writable(mapping); 244 245 flush_dcache_mmap_lock(mapping); 246 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 247 list_del_init(&vma->shared.nonlinear); 248 else 249 vma_interval_tree_remove(vma, &mapping->i_mmap); 250 flush_dcache_mmap_unlock(mapping); 251 } 252 253 /* 254 * Unlink a file-based vm structure from its interval tree, to hide 255 * vma from rmap and vmtruncate before freeing its page tables. 256 */ 257 void unlink_file_vma(struct vm_area_struct *vma) 258 { 259 struct file *file = vma->vm_file; 260 261 if (file) { 262 struct address_space *mapping = file->f_mapping; 263 mutex_lock(&mapping->i_mmap_mutex); 264 __remove_shared_vm_struct(vma, file, mapping); 265 mutex_unlock(&mapping->i_mmap_mutex); 266 } 267 } 268 269 /* 270 * Close a vm structure and free it, returning the next. 271 */ 272 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 273 { 274 struct vm_area_struct *next = vma->vm_next; 275 276 might_sleep(); 277 if (vma->vm_ops && vma->vm_ops->close) 278 vma->vm_ops->close(vma); 279 if (vma->vm_file) 280 fput(vma->vm_file); 281 mpol_put(vma_policy(vma)); 282 kmem_cache_free(vm_area_cachep, vma); 283 return next; 284 } 285 286 static unsigned long do_brk(unsigned long addr, unsigned long len); 287 288 SYSCALL_DEFINE1(brk, unsigned long, brk) 289 { 290 unsigned long retval; 291 unsigned long newbrk, oldbrk; 292 struct mm_struct *mm = current->mm; 293 unsigned long min_brk; 294 bool populate; 295 296 down_write(&mm->mmap_sem); 297 298 #ifdef CONFIG_COMPAT_BRK 299 /* 300 * CONFIG_COMPAT_BRK can still be overridden by setting 301 * randomize_va_space to 2, which will still cause mm->start_brk 302 * to be arbitrarily shifted 303 */ 304 if (current->brk_randomized) 305 min_brk = mm->start_brk; 306 else 307 min_brk = mm->end_data; 308 #else 309 min_brk = mm->start_brk; 310 #endif 311 if (brk < min_brk) 312 goto out; 313 314 /* 315 * Check against rlimit here. If this check is done later after the test 316 * of oldbrk with newbrk then it can escape the test and let the data 317 * segment grow beyond its set limit the in case where the limit is 318 * not page aligned -Ram Gupta 319 */ 320 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 321 mm->end_data, mm->start_data)) 322 goto out; 323 324 newbrk = PAGE_ALIGN(brk); 325 oldbrk = PAGE_ALIGN(mm->brk); 326 if (oldbrk == newbrk) 327 goto set_brk; 328 329 /* Always allow shrinking brk. */ 330 if (brk <= mm->brk) { 331 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 332 goto set_brk; 333 goto out; 334 } 335 336 /* Check against existing mmap mappings. */ 337 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 338 goto out; 339 340 /* Ok, looks good - let it rip. */ 341 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 342 goto out; 343 344 set_brk: 345 mm->brk = brk; 346 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 347 up_write(&mm->mmap_sem); 348 if (populate) 349 mm_populate(oldbrk, newbrk - oldbrk); 350 return brk; 351 352 out: 353 retval = mm->brk; 354 up_write(&mm->mmap_sem); 355 return retval; 356 } 357 358 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 359 { 360 unsigned long max, subtree_gap; 361 max = vma->vm_start; 362 if (vma->vm_prev) 363 max -= vma->vm_prev->vm_end; 364 if (vma->vm_rb.rb_left) { 365 subtree_gap = rb_entry(vma->vm_rb.rb_left, 366 struct vm_area_struct, vm_rb)->rb_subtree_gap; 367 if (subtree_gap > max) 368 max = subtree_gap; 369 } 370 if (vma->vm_rb.rb_right) { 371 subtree_gap = rb_entry(vma->vm_rb.rb_right, 372 struct vm_area_struct, vm_rb)->rb_subtree_gap; 373 if (subtree_gap > max) 374 max = subtree_gap; 375 } 376 return max; 377 } 378 379 #ifdef CONFIG_DEBUG_VM_RB 380 static int browse_rb(struct rb_root *root) 381 { 382 int i = 0, j, bug = 0; 383 struct rb_node *nd, *pn = NULL; 384 unsigned long prev = 0, pend = 0; 385 386 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 387 struct vm_area_struct *vma; 388 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 389 if (vma->vm_start < prev) { 390 pr_emerg("vm_start %lx < prev %lx\n", 391 vma->vm_start, prev); 392 bug = 1; 393 } 394 if (vma->vm_start < pend) { 395 pr_emerg("vm_start %lx < pend %lx\n", 396 vma->vm_start, pend); 397 bug = 1; 398 } 399 if (vma->vm_start > vma->vm_end) { 400 pr_emerg("vm_start %lx > vm_end %lx\n", 401 vma->vm_start, vma->vm_end); 402 bug = 1; 403 } 404 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 405 pr_emerg("free gap %lx, correct %lx\n", 406 vma->rb_subtree_gap, 407 vma_compute_subtree_gap(vma)); 408 bug = 1; 409 } 410 i++; 411 pn = nd; 412 prev = vma->vm_start; 413 pend = vma->vm_end; 414 } 415 j = 0; 416 for (nd = pn; nd; nd = rb_prev(nd)) 417 j++; 418 if (i != j) { 419 pr_emerg("backwards %d, forwards %d\n", j, i); 420 bug = 1; 421 } 422 return bug ? -1 : i; 423 } 424 425 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 426 { 427 struct rb_node *nd; 428 429 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 430 struct vm_area_struct *vma; 431 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 432 VM_BUG_ON_VMA(vma != ignore && 433 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 434 vma); 435 } 436 } 437 438 static void validate_mm(struct mm_struct *mm) 439 { 440 int bug = 0; 441 int i = 0; 442 unsigned long highest_address = 0; 443 struct vm_area_struct *vma = mm->mmap; 444 445 while (vma) { 446 struct anon_vma_chain *avc; 447 448 vma_lock_anon_vma(vma); 449 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 450 anon_vma_interval_tree_verify(avc); 451 vma_unlock_anon_vma(vma); 452 highest_address = vma->vm_end; 453 vma = vma->vm_next; 454 i++; 455 } 456 if (i != mm->map_count) { 457 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 458 bug = 1; 459 } 460 if (highest_address != mm->highest_vm_end) { 461 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 462 mm->highest_vm_end, highest_address); 463 bug = 1; 464 } 465 i = browse_rb(&mm->mm_rb); 466 if (i != mm->map_count) { 467 if (i != -1) 468 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 469 bug = 1; 470 } 471 VM_BUG_ON_MM(bug, mm); 472 } 473 #else 474 #define validate_mm_rb(root, ignore) do { } while (0) 475 #define validate_mm(mm) do { } while (0) 476 #endif 477 478 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 479 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 480 481 /* 482 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 483 * vma->vm_prev->vm_end values changed, without modifying the vma's position 484 * in the rbtree. 485 */ 486 static void vma_gap_update(struct vm_area_struct *vma) 487 { 488 /* 489 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 490 * function that does exacltly what we want. 491 */ 492 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 493 } 494 495 static inline void vma_rb_insert(struct vm_area_struct *vma, 496 struct rb_root *root) 497 { 498 /* All rb_subtree_gap values must be consistent prior to insertion */ 499 validate_mm_rb(root, NULL); 500 501 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 502 } 503 504 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 505 { 506 /* 507 * All rb_subtree_gap values must be consistent prior to erase, 508 * with the possible exception of the vma being erased. 509 */ 510 validate_mm_rb(root, vma); 511 512 /* 513 * Note rb_erase_augmented is a fairly large inline function, 514 * so make sure we instantiate it only once with our desired 515 * augmented rbtree callbacks. 516 */ 517 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 518 } 519 520 /* 521 * vma has some anon_vma assigned, and is already inserted on that 522 * anon_vma's interval trees. 523 * 524 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 525 * vma must be removed from the anon_vma's interval trees using 526 * anon_vma_interval_tree_pre_update_vma(). 527 * 528 * After the update, the vma will be reinserted using 529 * anon_vma_interval_tree_post_update_vma(). 530 * 531 * The entire update must be protected by exclusive mmap_sem and by 532 * the root anon_vma's mutex. 533 */ 534 static inline void 535 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 536 { 537 struct anon_vma_chain *avc; 538 539 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 540 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 541 } 542 543 static inline void 544 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 545 { 546 struct anon_vma_chain *avc; 547 548 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 549 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 550 } 551 552 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 553 unsigned long end, struct vm_area_struct **pprev, 554 struct rb_node ***rb_link, struct rb_node **rb_parent) 555 { 556 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 557 558 __rb_link = &mm->mm_rb.rb_node; 559 rb_prev = __rb_parent = NULL; 560 561 while (*__rb_link) { 562 struct vm_area_struct *vma_tmp; 563 564 __rb_parent = *__rb_link; 565 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 566 567 if (vma_tmp->vm_end > addr) { 568 /* Fail if an existing vma overlaps the area */ 569 if (vma_tmp->vm_start < end) 570 return -ENOMEM; 571 __rb_link = &__rb_parent->rb_left; 572 } else { 573 rb_prev = __rb_parent; 574 __rb_link = &__rb_parent->rb_right; 575 } 576 } 577 578 *pprev = NULL; 579 if (rb_prev) 580 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 581 *rb_link = __rb_link; 582 *rb_parent = __rb_parent; 583 return 0; 584 } 585 586 static unsigned long count_vma_pages_range(struct mm_struct *mm, 587 unsigned long addr, unsigned long end) 588 { 589 unsigned long nr_pages = 0; 590 struct vm_area_struct *vma; 591 592 /* Find first overlaping mapping */ 593 vma = find_vma_intersection(mm, addr, end); 594 if (!vma) 595 return 0; 596 597 nr_pages = (min(end, vma->vm_end) - 598 max(addr, vma->vm_start)) >> PAGE_SHIFT; 599 600 /* Iterate over the rest of the overlaps */ 601 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 602 unsigned long overlap_len; 603 604 if (vma->vm_start > end) 605 break; 606 607 overlap_len = min(end, vma->vm_end) - vma->vm_start; 608 nr_pages += overlap_len >> PAGE_SHIFT; 609 } 610 611 return nr_pages; 612 } 613 614 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 615 struct rb_node **rb_link, struct rb_node *rb_parent) 616 { 617 /* Update tracking information for the gap following the new vma. */ 618 if (vma->vm_next) 619 vma_gap_update(vma->vm_next); 620 else 621 mm->highest_vm_end = vma->vm_end; 622 623 /* 624 * vma->vm_prev wasn't known when we followed the rbtree to find the 625 * correct insertion point for that vma. As a result, we could not 626 * update the vma vm_rb parents rb_subtree_gap values on the way down. 627 * So, we first insert the vma with a zero rb_subtree_gap value 628 * (to be consistent with what we did on the way down), and then 629 * immediately update the gap to the correct value. Finally we 630 * rebalance the rbtree after all augmented values have been set. 631 */ 632 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 633 vma->rb_subtree_gap = 0; 634 vma_gap_update(vma); 635 vma_rb_insert(vma, &mm->mm_rb); 636 } 637 638 static void __vma_link_file(struct vm_area_struct *vma) 639 { 640 struct file *file; 641 642 file = vma->vm_file; 643 if (file) { 644 struct address_space *mapping = file->f_mapping; 645 646 if (vma->vm_flags & VM_DENYWRITE) 647 atomic_dec(&file_inode(file)->i_writecount); 648 if (vma->vm_flags & VM_SHARED) 649 atomic_inc(&mapping->i_mmap_writable); 650 651 flush_dcache_mmap_lock(mapping); 652 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 653 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 654 else 655 vma_interval_tree_insert(vma, &mapping->i_mmap); 656 flush_dcache_mmap_unlock(mapping); 657 } 658 } 659 660 static void 661 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 662 struct vm_area_struct *prev, struct rb_node **rb_link, 663 struct rb_node *rb_parent) 664 { 665 __vma_link_list(mm, vma, prev, rb_parent); 666 __vma_link_rb(mm, vma, rb_link, rb_parent); 667 } 668 669 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 670 struct vm_area_struct *prev, struct rb_node **rb_link, 671 struct rb_node *rb_parent) 672 { 673 struct address_space *mapping = NULL; 674 675 if (vma->vm_file) { 676 mapping = vma->vm_file->f_mapping; 677 mutex_lock(&mapping->i_mmap_mutex); 678 } 679 680 __vma_link(mm, vma, prev, rb_link, rb_parent); 681 __vma_link_file(vma); 682 683 if (mapping) 684 mutex_unlock(&mapping->i_mmap_mutex); 685 686 mm->map_count++; 687 validate_mm(mm); 688 } 689 690 /* 691 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 692 * mm's list and rbtree. It has already been inserted into the interval tree. 693 */ 694 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 695 { 696 struct vm_area_struct *prev; 697 struct rb_node **rb_link, *rb_parent; 698 699 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 700 &prev, &rb_link, &rb_parent)) 701 BUG(); 702 __vma_link(mm, vma, prev, rb_link, rb_parent); 703 mm->map_count++; 704 } 705 706 static inline void 707 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 708 struct vm_area_struct *prev) 709 { 710 struct vm_area_struct *next; 711 712 vma_rb_erase(vma, &mm->mm_rb); 713 prev->vm_next = next = vma->vm_next; 714 if (next) 715 next->vm_prev = prev; 716 717 /* Kill the cache */ 718 vmacache_invalidate(mm); 719 } 720 721 /* 722 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 723 * is already present in an i_mmap tree without adjusting the tree. 724 * The following helper function should be used when such adjustments 725 * are necessary. The "insert" vma (if any) is to be inserted 726 * before we drop the necessary locks. 727 */ 728 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 729 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 730 { 731 struct mm_struct *mm = vma->vm_mm; 732 struct vm_area_struct *next = vma->vm_next; 733 struct vm_area_struct *importer = NULL; 734 struct address_space *mapping = NULL; 735 struct rb_root *root = NULL; 736 struct anon_vma *anon_vma = NULL; 737 struct file *file = vma->vm_file; 738 bool start_changed = false, end_changed = false; 739 long adjust_next = 0; 740 int remove_next = 0; 741 742 if (next && !insert) { 743 struct vm_area_struct *exporter = NULL; 744 745 if (end >= next->vm_end) { 746 /* 747 * vma expands, overlapping all the next, and 748 * perhaps the one after too (mprotect case 6). 749 */ 750 again: remove_next = 1 + (end > next->vm_end); 751 end = next->vm_end; 752 exporter = next; 753 importer = vma; 754 } else if (end > next->vm_start) { 755 /* 756 * vma expands, overlapping part of the next: 757 * mprotect case 5 shifting the boundary up. 758 */ 759 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 760 exporter = next; 761 importer = vma; 762 } else if (end < vma->vm_end) { 763 /* 764 * vma shrinks, and !insert tells it's not 765 * split_vma inserting another: so it must be 766 * mprotect case 4 shifting the boundary down. 767 */ 768 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 769 exporter = vma; 770 importer = next; 771 } 772 773 /* 774 * Easily overlooked: when mprotect shifts the boundary, 775 * make sure the expanding vma has anon_vma set if the 776 * shrinking vma had, to cover any anon pages imported. 777 */ 778 if (exporter && exporter->anon_vma && !importer->anon_vma) { 779 if (anon_vma_clone(importer, exporter)) 780 return -ENOMEM; 781 importer->anon_vma = exporter->anon_vma; 782 } 783 } 784 785 if (file) { 786 mapping = file->f_mapping; 787 if (!(vma->vm_flags & VM_NONLINEAR)) { 788 root = &mapping->i_mmap; 789 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 790 791 if (adjust_next) 792 uprobe_munmap(next, next->vm_start, 793 next->vm_end); 794 } 795 796 mutex_lock(&mapping->i_mmap_mutex); 797 if (insert) { 798 /* 799 * Put into interval tree now, so instantiated pages 800 * are visible to arm/parisc __flush_dcache_page 801 * throughout; but we cannot insert into address 802 * space until vma start or end is updated. 803 */ 804 __vma_link_file(insert); 805 } 806 } 807 808 vma_adjust_trans_huge(vma, start, end, adjust_next); 809 810 anon_vma = vma->anon_vma; 811 if (!anon_vma && adjust_next) 812 anon_vma = next->anon_vma; 813 if (anon_vma) { 814 VM_BUG_ON_VMA(adjust_next && next->anon_vma && 815 anon_vma != next->anon_vma, next); 816 anon_vma_lock_write(anon_vma); 817 anon_vma_interval_tree_pre_update_vma(vma); 818 if (adjust_next) 819 anon_vma_interval_tree_pre_update_vma(next); 820 } 821 822 if (root) { 823 flush_dcache_mmap_lock(mapping); 824 vma_interval_tree_remove(vma, root); 825 if (adjust_next) 826 vma_interval_tree_remove(next, root); 827 } 828 829 if (start != vma->vm_start) { 830 vma->vm_start = start; 831 start_changed = true; 832 } 833 if (end != vma->vm_end) { 834 vma->vm_end = end; 835 end_changed = true; 836 } 837 vma->vm_pgoff = pgoff; 838 if (adjust_next) { 839 next->vm_start += adjust_next << PAGE_SHIFT; 840 next->vm_pgoff += adjust_next; 841 } 842 843 if (root) { 844 if (adjust_next) 845 vma_interval_tree_insert(next, root); 846 vma_interval_tree_insert(vma, root); 847 flush_dcache_mmap_unlock(mapping); 848 } 849 850 if (remove_next) { 851 /* 852 * vma_merge has merged next into vma, and needs 853 * us to remove next before dropping the locks. 854 */ 855 __vma_unlink(mm, next, vma); 856 if (file) 857 __remove_shared_vm_struct(next, file, mapping); 858 } else if (insert) { 859 /* 860 * split_vma has split insert from vma, and needs 861 * us to insert it before dropping the locks 862 * (it may either follow vma or precede it). 863 */ 864 __insert_vm_struct(mm, insert); 865 } else { 866 if (start_changed) 867 vma_gap_update(vma); 868 if (end_changed) { 869 if (!next) 870 mm->highest_vm_end = end; 871 else if (!adjust_next) 872 vma_gap_update(next); 873 } 874 } 875 876 if (anon_vma) { 877 anon_vma_interval_tree_post_update_vma(vma); 878 if (adjust_next) 879 anon_vma_interval_tree_post_update_vma(next); 880 anon_vma_unlock_write(anon_vma); 881 } 882 if (mapping) 883 mutex_unlock(&mapping->i_mmap_mutex); 884 885 if (root) { 886 uprobe_mmap(vma); 887 888 if (adjust_next) 889 uprobe_mmap(next); 890 } 891 892 if (remove_next) { 893 if (file) { 894 uprobe_munmap(next, next->vm_start, next->vm_end); 895 fput(file); 896 } 897 if (next->anon_vma) 898 anon_vma_merge(vma, next); 899 mm->map_count--; 900 mpol_put(vma_policy(next)); 901 kmem_cache_free(vm_area_cachep, next); 902 /* 903 * In mprotect's case 6 (see comments on vma_merge), 904 * we must remove another next too. It would clutter 905 * up the code too much to do both in one go. 906 */ 907 next = vma->vm_next; 908 if (remove_next == 2) 909 goto again; 910 else if (next) 911 vma_gap_update(next); 912 else 913 mm->highest_vm_end = end; 914 } 915 if (insert && file) 916 uprobe_mmap(insert); 917 918 validate_mm(mm); 919 920 return 0; 921 } 922 923 /* 924 * If the vma has a ->close operation then the driver probably needs to release 925 * per-vma resources, so we don't attempt to merge those. 926 */ 927 static inline int is_mergeable_vma(struct vm_area_struct *vma, 928 struct file *file, unsigned long vm_flags) 929 { 930 /* 931 * VM_SOFTDIRTY should not prevent from VMA merging, if we 932 * match the flags but dirty bit -- the caller should mark 933 * merged VMA as dirty. If dirty bit won't be excluded from 934 * comparison, we increase pressue on the memory system forcing 935 * the kernel to generate new VMAs when old one could be 936 * extended instead. 937 */ 938 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 939 return 0; 940 if (vma->vm_file != file) 941 return 0; 942 if (vma->vm_ops && vma->vm_ops->close) 943 return 0; 944 return 1; 945 } 946 947 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 948 struct anon_vma *anon_vma2, 949 struct vm_area_struct *vma) 950 { 951 /* 952 * The list_is_singular() test is to avoid merging VMA cloned from 953 * parents. This can improve scalability caused by anon_vma lock. 954 */ 955 if ((!anon_vma1 || !anon_vma2) && (!vma || 956 list_is_singular(&vma->anon_vma_chain))) 957 return 1; 958 return anon_vma1 == anon_vma2; 959 } 960 961 /* 962 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 963 * in front of (at a lower virtual address and file offset than) the vma. 964 * 965 * We cannot merge two vmas if they have differently assigned (non-NULL) 966 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 967 * 968 * We don't check here for the merged mmap wrapping around the end of pagecache 969 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 970 * wrap, nor mmaps which cover the final page at index -1UL. 971 */ 972 static int 973 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 974 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 975 { 976 if (is_mergeable_vma(vma, file, vm_flags) && 977 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 978 if (vma->vm_pgoff == vm_pgoff) 979 return 1; 980 } 981 return 0; 982 } 983 984 /* 985 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 986 * beyond (at a higher virtual address and file offset than) the vma. 987 * 988 * We cannot merge two vmas if they have differently assigned (non-NULL) 989 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 990 */ 991 static int 992 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 993 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 994 { 995 if (is_mergeable_vma(vma, file, vm_flags) && 996 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 997 pgoff_t vm_pglen; 998 vm_pglen = vma_pages(vma); 999 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1000 return 1; 1001 } 1002 return 0; 1003 } 1004 1005 /* 1006 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1007 * whether that can be merged with its predecessor or its successor. 1008 * Or both (it neatly fills a hole). 1009 * 1010 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1011 * certain not to be mapped by the time vma_merge is called; but when 1012 * called for mprotect, it is certain to be already mapped (either at 1013 * an offset within prev, or at the start of next), and the flags of 1014 * this area are about to be changed to vm_flags - and the no-change 1015 * case has already been eliminated. 1016 * 1017 * The following mprotect cases have to be considered, where AAAA is 1018 * the area passed down from mprotect_fixup, never extending beyond one 1019 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1020 * 1021 * AAAA AAAA AAAA AAAA 1022 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1023 * cannot merge might become might become might become 1024 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1025 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1026 * mremap move: PPPPNNNNNNNN 8 1027 * AAAA 1028 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1029 * might become case 1 below case 2 below case 3 below 1030 * 1031 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 1032 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 1033 */ 1034 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1035 struct vm_area_struct *prev, unsigned long addr, 1036 unsigned long end, unsigned long vm_flags, 1037 struct anon_vma *anon_vma, struct file *file, 1038 pgoff_t pgoff, struct mempolicy *policy) 1039 { 1040 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1041 struct vm_area_struct *area, *next; 1042 int err; 1043 1044 /* 1045 * We later require that vma->vm_flags == vm_flags, 1046 * so this tests vma->vm_flags & VM_SPECIAL, too. 1047 */ 1048 if (vm_flags & VM_SPECIAL) 1049 return NULL; 1050 1051 if (prev) 1052 next = prev->vm_next; 1053 else 1054 next = mm->mmap; 1055 area = next; 1056 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 1057 next = next->vm_next; 1058 1059 /* 1060 * Can it merge with the predecessor? 1061 */ 1062 if (prev && prev->vm_end == addr && 1063 mpol_equal(vma_policy(prev), policy) && 1064 can_vma_merge_after(prev, vm_flags, 1065 anon_vma, file, pgoff)) { 1066 /* 1067 * OK, it can. Can we now merge in the successor as well? 1068 */ 1069 if (next && end == next->vm_start && 1070 mpol_equal(policy, vma_policy(next)) && 1071 can_vma_merge_before(next, vm_flags, 1072 anon_vma, file, pgoff+pglen) && 1073 is_mergeable_anon_vma(prev->anon_vma, 1074 next->anon_vma, NULL)) { 1075 /* cases 1, 6 */ 1076 err = vma_adjust(prev, prev->vm_start, 1077 next->vm_end, prev->vm_pgoff, NULL); 1078 } else /* cases 2, 5, 7 */ 1079 err = vma_adjust(prev, prev->vm_start, 1080 end, prev->vm_pgoff, NULL); 1081 if (err) 1082 return NULL; 1083 khugepaged_enter_vma_merge(prev); 1084 return prev; 1085 } 1086 1087 /* 1088 * Can this new request be merged in front of next? 1089 */ 1090 if (next && end == next->vm_start && 1091 mpol_equal(policy, vma_policy(next)) && 1092 can_vma_merge_before(next, vm_flags, 1093 anon_vma, file, pgoff+pglen)) { 1094 if (prev && addr < prev->vm_end) /* case 4 */ 1095 err = vma_adjust(prev, prev->vm_start, 1096 addr, prev->vm_pgoff, NULL); 1097 else /* cases 3, 8 */ 1098 err = vma_adjust(area, addr, next->vm_end, 1099 next->vm_pgoff - pglen, NULL); 1100 if (err) 1101 return NULL; 1102 khugepaged_enter_vma_merge(area); 1103 return area; 1104 } 1105 1106 return NULL; 1107 } 1108 1109 /* 1110 * Rough compatbility check to quickly see if it's even worth looking 1111 * at sharing an anon_vma. 1112 * 1113 * They need to have the same vm_file, and the flags can only differ 1114 * in things that mprotect may change. 1115 * 1116 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1117 * we can merge the two vma's. For example, we refuse to merge a vma if 1118 * there is a vm_ops->close() function, because that indicates that the 1119 * driver is doing some kind of reference counting. But that doesn't 1120 * really matter for the anon_vma sharing case. 1121 */ 1122 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1123 { 1124 return a->vm_end == b->vm_start && 1125 mpol_equal(vma_policy(a), vma_policy(b)) && 1126 a->vm_file == b->vm_file && 1127 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1128 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1129 } 1130 1131 /* 1132 * Do some basic sanity checking to see if we can re-use the anon_vma 1133 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1134 * the same as 'old', the other will be the new one that is trying 1135 * to share the anon_vma. 1136 * 1137 * NOTE! This runs with mm_sem held for reading, so it is possible that 1138 * the anon_vma of 'old' is concurrently in the process of being set up 1139 * by another page fault trying to merge _that_. But that's ok: if it 1140 * is being set up, that automatically means that it will be a singleton 1141 * acceptable for merging, so we can do all of this optimistically. But 1142 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 1143 * 1144 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1145 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1146 * is to return an anon_vma that is "complex" due to having gone through 1147 * a fork). 1148 * 1149 * We also make sure that the two vma's are compatible (adjacent, 1150 * and with the same memory policies). That's all stable, even with just 1151 * a read lock on the mm_sem. 1152 */ 1153 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1154 { 1155 if (anon_vma_compatible(a, b)) { 1156 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 1157 1158 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1159 return anon_vma; 1160 } 1161 return NULL; 1162 } 1163 1164 /* 1165 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1166 * neighbouring vmas for a suitable anon_vma, before it goes off 1167 * to allocate a new anon_vma. It checks because a repetitive 1168 * sequence of mprotects and faults may otherwise lead to distinct 1169 * anon_vmas being allocated, preventing vma merge in subsequent 1170 * mprotect. 1171 */ 1172 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1173 { 1174 struct anon_vma *anon_vma; 1175 struct vm_area_struct *near; 1176 1177 near = vma->vm_next; 1178 if (!near) 1179 goto try_prev; 1180 1181 anon_vma = reusable_anon_vma(near, vma, near); 1182 if (anon_vma) 1183 return anon_vma; 1184 try_prev: 1185 near = vma->vm_prev; 1186 if (!near) 1187 goto none; 1188 1189 anon_vma = reusable_anon_vma(near, near, vma); 1190 if (anon_vma) 1191 return anon_vma; 1192 none: 1193 /* 1194 * There's no absolute need to look only at touching neighbours: 1195 * we could search further afield for "compatible" anon_vmas. 1196 * But it would probably just be a waste of time searching, 1197 * or lead to too many vmas hanging off the same anon_vma. 1198 * We're trying to allow mprotect remerging later on, 1199 * not trying to minimize memory used for anon_vmas. 1200 */ 1201 return NULL; 1202 } 1203 1204 #ifdef CONFIG_PROC_FS 1205 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 1206 struct file *file, long pages) 1207 { 1208 const unsigned long stack_flags 1209 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 1210 1211 mm->total_vm += pages; 1212 1213 if (file) { 1214 mm->shared_vm += pages; 1215 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 1216 mm->exec_vm += pages; 1217 } else if (flags & stack_flags) 1218 mm->stack_vm += pages; 1219 } 1220 #endif /* CONFIG_PROC_FS */ 1221 1222 /* 1223 * If a hint addr is less than mmap_min_addr change hint to be as 1224 * low as possible but still greater than mmap_min_addr 1225 */ 1226 static inline unsigned long round_hint_to_min(unsigned long hint) 1227 { 1228 hint &= PAGE_MASK; 1229 if (((void *)hint != NULL) && 1230 (hint < mmap_min_addr)) 1231 return PAGE_ALIGN(mmap_min_addr); 1232 return hint; 1233 } 1234 1235 static inline int mlock_future_check(struct mm_struct *mm, 1236 unsigned long flags, 1237 unsigned long len) 1238 { 1239 unsigned long locked, lock_limit; 1240 1241 /* mlock MCL_FUTURE? */ 1242 if (flags & VM_LOCKED) { 1243 locked = len >> PAGE_SHIFT; 1244 locked += mm->locked_vm; 1245 lock_limit = rlimit(RLIMIT_MEMLOCK); 1246 lock_limit >>= PAGE_SHIFT; 1247 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1248 return -EAGAIN; 1249 } 1250 return 0; 1251 } 1252 1253 /* 1254 * The caller must hold down_write(¤t->mm->mmap_sem). 1255 */ 1256 1257 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1258 unsigned long len, unsigned long prot, 1259 unsigned long flags, unsigned long pgoff, 1260 unsigned long *populate) 1261 { 1262 struct mm_struct *mm = current->mm; 1263 vm_flags_t vm_flags; 1264 1265 *populate = 0; 1266 1267 /* 1268 * Does the application expect PROT_READ to imply PROT_EXEC? 1269 * 1270 * (the exception is when the underlying filesystem is noexec 1271 * mounted, in which case we dont add PROT_EXEC.) 1272 */ 1273 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1274 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 1275 prot |= PROT_EXEC; 1276 1277 if (!len) 1278 return -EINVAL; 1279 1280 if (!(flags & MAP_FIXED)) 1281 addr = round_hint_to_min(addr); 1282 1283 /* Careful about overflows.. */ 1284 len = PAGE_ALIGN(len); 1285 if (!len) 1286 return -ENOMEM; 1287 1288 /* offset overflow? */ 1289 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1290 return -EOVERFLOW; 1291 1292 /* Too many mappings? */ 1293 if (mm->map_count > sysctl_max_map_count) 1294 return -ENOMEM; 1295 1296 /* Obtain the address to map to. we verify (or select) it and ensure 1297 * that it represents a valid section of the address space. 1298 */ 1299 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1300 if (addr & ~PAGE_MASK) 1301 return addr; 1302 1303 /* Do simple checking here so the lower-level routines won't have 1304 * to. we assume access permissions have been handled by the open 1305 * of the memory object, so we don't do any here. 1306 */ 1307 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1308 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1309 1310 if (flags & MAP_LOCKED) 1311 if (!can_do_mlock()) 1312 return -EPERM; 1313 1314 if (mlock_future_check(mm, vm_flags, len)) 1315 return -EAGAIN; 1316 1317 if (file) { 1318 struct inode *inode = file_inode(file); 1319 1320 switch (flags & MAP_TYPE) { 1321 case MAP_SHARED: 1322 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1323 return -EACCES; 1324 1325 /* 1326 * Make sure we don't allow writing to an append-only 1327 * file.. 1328 */ 1329 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1330 return -EACCES; 1331 1332 /* 1333 * Make sure there are no mandatory locks on the file. 1334 */ 1335 if (locks_verify_locked(file)) 1336 return -EAGAIN; 1337 1338 vm_flags |= VM_SHARED | VM_MAYSHARE; 1339 if (!(file->f_mode & FMODE_WRITE)) 1340 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1341 1342 /* fall through */ 1343 case MAP_PRIVATE: 1344 if (!(file->f_mode & FMODE_READ)) 1345 return -EACCES; 1346 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1347 if (vm_flags & VM_EXEC) 1348 return -EPERM; 1349 vm_flags &= ~VM_MAYEXEC; 1350 } 1351 1352 if (!file->f_op->mmap) 1353 return -ENODEV; 1354 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1355 return -EINVAL; 1356 break; 1357 1358 default: 1359 return -EINVAL; 1360 } 1361 } else { 1362 switch (flags & MAP_TYPE) { 1363 case MAP_SHARED: 1364 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1365 return -EINVAL; 1366 /* 1367 * Ignore pgoff. 1368 */ 1369 pgoff = 0; 1370 vm_flags |= VM_SHARED | VM_MAYSHARE; 1371 break; 1372 case MAP_PRIVATE: 1373 /* 1374 * Set pgoff according to addr for anon_vma. 1375 */ 1376 pgoff = addr >> PAGE_SHIFT; 1377 break; 1378 default: 1379 return -EINVAL; 1380 } 1381 } 1382 1383 /* 1384 * Set 'VM_NORESERVE' if we should not account for the 1385 * memory use of this mapping. 1386 */ 1387 if (flags & MAP_NORESERVE) { 1388 /* We honor MAP_NORESERVE if allowed to overcommit */ 1389 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1390 vm_flags |= VM_NORESERVE; 1391 1392 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1393 if (file && is_file_hugepages(file)) 1394 vm_flags |= VM_NORESERVE; 1395 } 1396 1397 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1398 if (!IS_ERR_VALUE(addr) && 1399 ((vm_flags & VM_LOCKED) || 1400 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1401 *populate = len; 1402 return addr; 1403 } 1404 1405 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1406 unsigned long, prot, unsigned long, flags, 1407 unsigned long, fd, unsigned long, pgoff) 1408 { 1409 struct file *file = NULL; 1410 unsigned long retval = -EBADF; 1411 1412 if (!(flags & MAP_ANONYMOUS)) { 1413 audit_mmap_fd(fd, flags); 1414 file = fget(fd); 1415 if (!file) 1416 goto out; 1417 if (is_file_hugepages(file)) 1418 len = ALIGN(len, huge_page_size(hstate_file(file))); 1419 retval = -EINVAL; 1420 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1421 goto out_fput; 1422 } else if (flags & MAP_HUGETLB) { 1423 struct user_struct *user = NULL; 1424 struct hstate *hs; 1425 1426 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1427 if (!hs) 1428 return -EINVAL; 1429 1430 len = ALIGN(len, huge_page_size(hs)); 1431 /* 1432 * VM_NORESERVE is used because the reservations will be 1433 * taken when vm_ops->mmap() is called 1434 * A dummy user value is used because we are not locking 1435 * memory so no accounting is necessary 1436 */ 1437 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1438 VM_NORESERVE, 1439 &user, HUGETLB_ANONHUGE_INODE, 1440 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1441 if (IS_ERR(file)) 1442 return PTR_ERR(file); 1443 } 1444 1445 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1446 1447 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1448 out_fput: 1449 if (file) 1450 fput(file); 1451 out: 1452 return retval; 1453 } 1454 1455 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1456 struct mmap_arg_struct { 1457 unsigned long addr; 1458 unsigned long len; 1459 unsigned long prot; 1460 unsigned long flags; 1461 unsigned long fd; 1462 unsigned long offset; 1463 }; 1464 1465 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1466 { 1467 struct mmap_arg_struct a; 1468 1469 if (copy_from_user(&a, arg, sizeof(a))) 1470 return -EFAULT; 1471 if (a.offset & ~PAGE_MASK) 1472 return -EINVAL; 1473 1474 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1475 a.offset >> PAGE_SHIFT); 1476 } 1477 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1478 1479 /* 1480 * Some shared mappigns will want the pages marked read-only 1481 * to track write events. If so, we'll downgrade vm_page_prot 1482 * to the private version (using protection_map[] without the 1483 * VM_SHARED bit). 1484 */ 1485 int vma_wants_writenotify(struct vm_area_struct *vma) 1486 { 1487 vm_flags_t vm_flags = vma->vm_flags; 1488 1489 /* If it was private or non-writable, the write bit is already clear */ 1490 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1491 return 0; 1492 1493 /* The backer wishes to know when pages are first written to? */ 1494 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1495 return 1; 1496 1497 /* The open routine did something to the protections that pgprot_modify 1498 * won't preserve? */ 1499 if (pgprot_val(vma->vm_page_prot) != 1500 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags))) 1501 return 0; 1502 1503 /* Do we need to track softdirty? */ 1504 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1505 return 1; 1506 1507 /* Specialty mapping? */ 1508 if (vm_flags & VM_PFNMAP) 1509 return 0; 1510 1511 /* Can the mapping track the dirty pages? */ 1512 return vma->vm_file && vma->vm_file->f_mapping && 1513 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1514 } 1515 1516 /* 1517 * We account for memory if it's a private writeable mapping, 1518 * not hugepages and VM_NORESERVE wasn't set. 1519 */ 1520 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1521 { 1522 /* 1523 * hugetlb has its own accounting separate from the core VM 1524 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1525 */ 1526 if (file && is_file_hugepages(file)) 1527 return 0; 1528 1529 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1530 } 1531 1532 unsigned long mmap_region(struct file *file, unsigned long addr, 1533 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1534 { 1535 struct mm_struct *mm = current->mm; 1536 struct vm_area_struct *vma, *prev; 1537 int error; 1538 struct rb_node **rb_link, *rb_parent; 1539 unsigned long charged = 0; 1540 1541 /* Check against address space limit. */ 1542 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) { 1543 unsigned long nr_pages; 1544 1545 /* 1546 * MAP_FIXED may remove pages of mappings that intersects with 1547 * requested mapping. Account for the pages it would unmap. 1548 */ 1549 if (!(vm_flags & MAP_FIXED)) 1550 return -ENOMEM; 1551 1552 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1553 1554 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages)) 1555 return -ENOMEM; 1556 } 1557 1558 /* Clear old maps */ 1559 error = -ENOMEM; 1560 munmap_back: 1561 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 1562 if (do_munmap(mm, addr, len)) 1563 return -ENOMEM; 1564 goto munmap_back; 1565 } 1566 1567 /* 1568 * Private writable mapping: check memory availability 1569 */ 1570 if (accountable_mapping(file, vm_flags)) { 1571 charged = len >> PAGE_SHIFT; 1572 if (security_vm_enough_memory_mm(mm, charged)) 1573 return -ENOMEM; 1574 vm_flags |= VM_ACCOUNT; 1575 } 1576 1577 /* 1578 * Can we just expand an old mapping? 1579 */ 1580 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1581 if (vma) 1582 goto out; 1583 1584 /* 1585 * Determine the object being mapped and call the appropriate 1586 * specific mapper. the address has already been validated, but 1587 * not unmapped, but the maps are removed from the list. 1588 */ 1589 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1590 if (!vma) { 1591 error = -ENOMEM; 1592 goto unacct_error; 1593 } 1594 1595 vma->vm_mm = mm; 1596 vma->vm_start = addr; 1597 vma->vm_end = addr + len; 1598 vma->vm_flags = vm_flags; 1599 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1600 vma->vm_pgoff = pgoff; 1601 INIT_LIST_HEAD(&vma->anon_vma_chain); 1602 1603 if (file) { 1604 if (vm_flags & VM_DENYWRITE) { 1605 error = deny_write_access(file); 1606 if (error) 1607 goto free_vma; 1608 } 1609 if (vm_flags & VM_SHARED) { 1610 error = mapping_map_writable(file->f_mapping); 1611 if (error) 1612 goto allow_write_and_free_vma; 1613 } 1614 1615 /* ->mmap() can change vma->vm_file, but must guarantee that 1616 * vma_link() below can deny write-access if VM_DENYWRITE is set 1617 * and map writably if VM_SHARED is set. This usually means the 1618 * new file must not have been exposed to user-space, yet. 1619 */ 1620 vma->vm_file = get_file(file); 1621 error = file->f_op->mmap(file, vma); 1622 if (error) 1623 goto unmap_and_free_vma; 1624 1625 /* Can addr have changed?? 1626 * 1627 * Answer: Yes, several device drivers can do it in their 1628 * f_op->mmap method. -DaveM 1629 * Bug: If addr is changed, prev, rb_link, rb_parent should 1630 * be updated for vma_link() 1631 */ 1632 WARN_ON_ONCE(addr != vma->vm_start); 1633 1634 addr = vma->vm_start; 1635 vm_flags = vma->vm_flags; 1636 } else if (vm_flags & VM_SHARED) { 1637 error = shmem_zero_setup(vma); 1638 if (error) 1639 goto free_vma; 1640 } 1641 1642 vma_link(mm, vma, prev, rb_link, rb_parent); 1643 /* Once vma denies write, undo our temporary denial count */ 1644 if (file) { 1645 if (vm_flags & VM_SHARED) 1646 mapping_unmap_writable(file->f_mapping); 1647 if (vm_flags & VM_DENYWRITE) 1648 allow_write_access(file); 1649 } 1650 file = vma->vm_file; 1651 out: 1652 perf_event_mmap(vma); 1653 1654 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1655 if (vm_flags & VM_LOCKED) { 1656 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1657 vma == get_gate_vma(current->mm))) 1658 mm->locked_vm += (len >> PAGE_SHIFT); 1659 else 1660 vma->vm_flags &= ~VM_LOCKED; 1661 } 1662 1663 if (file) 1664 uprobe_mmap(vma); 1665 1666 /* 1667 * New (or expanded) vma always get soft dirty status. 1668 * Otherwise user-space soft-dirty page tracker won't 1669 * be able to distinguish situation when vma area unmapped, 1670 * then new mapped in-place (which must be aimed as 1671 * a completely new data area). 1672 */ 1673 vma->vm_flags |= VM_SOFTDIRTY; 1674 1675 vma_set_page_prot(vma); 1676 1677 return addr; 1678 1679 unmap_and_free_vma: 1680 vma->vm_file = NULL; 1681 fput(file); 1682 1683 /* Undo any partial mapping done by a device driver. */ 1684 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1685 charged = 0; 1686 if (vm_flags & VM_SHARED) 1687 mapping_unmap_writable(file->f_mapping); 1688 allow_write_and_free_vma: 1689 if (vm_flags & VM_DENYWRITE) 1690 allow_write_access(file); 1691 free_vma: 1692 kmem_cache_free(vm_area_cachep, vma); 1693 unacct_error: 1694 if (charged) 1695 vm_unacct_memory(charged); 1696 return error; 1697 } 1698 1699 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1700 { 1701 /* 1702 * We implement the search by looking for an rbtree node that 1703 * immediately follows a suitable gap. That is, 1704 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1705 * - gap_end = vma->vm_start >= info->low_limit + length; 1706 * - gap_end - gap_start >= length 1707 */ 1708 1709 struct mm_struct *mm = current->mm; 1710 struct vm_area_struct *vma; 1711 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1712 1713 /* Adjust search length to account for worst case alignment overhead */ 1714 length = info->length + info->align_mask; 1715 if (length < info->length) 1716 return -ENOMEM; 1717 1718 /* Adjust search limits by the desired length */ 1719 if (info->high_limit < length) 1720 return -ENOMEM; 1721 high_limit = info->high_limit - length; 1722 1723 if (info->low_limit > high_limit) 1724 return -ENOMEM; 1725 low_limit = info->low_limit + length; 1726 1727 /* Check if rbtree root looks promising */ 1728 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1729 goto check_highest; 1730 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1731 if (vma->rb_subtree_gap < length) 1732 goto check_highest; 1733 1734 while (true) { 1735 /* Visit left subtree if it looks promising */ 1736 gap_end = vma->vm_start; 1737 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1738 struct vm_area_struct *left = 1739 rb_entry(vma->vm_rb.rb_left, 1740 struct vm_area_struct, vm_rb); 1741 if (left->rb_subtree_gap >= length) { 1742 vma = left; 1743 continue; 1744 } 1745 } 1746 1747 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1748 check_current: 1749 /* Check if current node has a suitable gap */ 1750 if (gap_start > high_limit) 1751 return -ENOMEM; 1752 if (gap_end >= low_limit && gap_end - gap_start >= length) 1753 goto found; 1754 1755 /* Visit right subtree if it looks promising */ 1756 if (vma->vm_rb.rb_right) { 1757 struct vm_area_struct *right = 1758 rb_entry(vma->vm_rb.rb_right, 1759 struct vm_area_struct, vm_rb); 1760 if (right->rb_subtree_gap >= length) { 1761 vma = right; 1762 continue; 1763 } 1764 } 1765 1766 /* Go back up the rbtree to find next candidate node */ 1767 while (true) { 1768 struct rb_node *prev = &vma->vm_rb; 1769 if (!rb_parent(prev)) 1770 goto check_highest; 1771 vma = rb_entry(rb_parent(prev), 1772 struct vm_area_struct, vm_rb); 1773 if (prev == vma->vm_rb.rb_left) { 1774 gap_start = vma->vm_prev->vm_end; 1775 gap_end = vma->vm_start; 1776 goto check_current; 1777 } 1778 } 1779 } 1780 1781 check_highest: 1782 /* Check highest gap, which does not precede any rbtree node */ 1783 gap_start = mm->highest_vm_end; 1784 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1785 if (gap_start > high_limit) 1786 return -ENOMEM; 1787 1788 found: 1789 /* We found a suitable gap. Clip it with the original low_limit. */ 1790 if (gap_start < info->low_limit) 1791 gap_start = info->low_limit; 1792 1793 /* Adjust gap address to the desired alignment */ 1794 gap_start += (info->align_offset - gap_start) & info->align_mask; 1795 1796 VM_BUG_ON(gap_start + info->length > info->high_limit); 1797 VM_BUG_ON(gap_start + info->length > gap_end); 1798 return gap_start; 1799 } 1800 1801 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1802 { 1803 struct mm_struct *mm = current->mm; 1804 struct vm_area_struct *vma; 1805 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1806 1807 /* Adjust search length to account for worst case alignment overhead */ 1808 length = info->length + info->align_mask; 1809 if (length < info->length) 1810 return -ENOMEM; 1811 1812 /* 1813 * Adjust search limits by the desired length. 1814 * See implementation comment at top of unmapped_area(). 1815 */ 1816 gap_end = info->high_limit; 1817 if (gap_end < length) 1818 return -ENOMEM; 1819 high_limit = gap_end - length; 1820 1821 if (info->low_limit > high_limit) 1822 return -ENOMEM; 1823 low_limit = info->low_limit + length; 1824 1825 /* Check highest gap, which does not precede any rbtree node */ 1826 gap_start = mm->highest_vm_end; 1827 if (gap_start <= high_limit) 1828 goto found_highest; 1829 1830 /* Check if rbtree root looks promising */ 1831 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1832 return -ENOMEM; 1833 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1834 if (vma->rb_subtree_gap < length) 1835 return -ENOMEM; 1836 1837 while (true) { 1838 /* Visit right subtree if it looks promising */ 1839 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1840 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1841 struct vm_area_struct *right = 1842 rb_entry(vma->vm_rb.rb_right, 1843 struct vm_area_struct, vm_rb); 1844 if (right->rb_subtree_gap >= length) { 1845 vma = right; 1846 continue; 1847 } 1848 } 1849 1850 check_current: 1851 /* Check if current node has a suitable gap */ 1852 gap_end = vma->vm_start; 1853 if (gap_end < low_limit) 1854 return -ENOMEM; 1855 if (gap_start <= high_limit && gap_end - gap_start >= length) 1856 goto found; 1857 1858 /* Visit left subtree if it looks promising */ 1859 if (vma->vm_rb.rb_left) { 1860 struct vm_area_struct *left = 1861 rb_entry(vma->vm_rb.rb_left, 1862 struct vm_area_struct, vm_rb); 1863 if (left->rb_subtree_gap >= length) { 1864 vma = left; 1865 continue; 1866 } 1867 } 1868 1869 /* Go back up the rbtree to find next candidate node */ 1870 while (true) { 1871 struct rb_node *prev = &vma->vm_rb; 1872 if (!rb_parent(prev)) 1873 return -ENOMEM; 1874 vma = rb_entry(rb_parent(prev), 1875 struct vm_area_struct, vm_rb); 1876 if (prev == vma->vm_rb.rb_right) { 1877 gap_start = vma->vm_prev ? 1878 vma->vm_prev->vm_end : 0; 1879 goto check_current; 1880 } 1881 } 1882 } 1883 1884 found: 1885 /* We found a suitable gap. Clip it with the original high_limit. */ 1886 if (gap_end > info->high_limit) 1887 gap_end = info->high_limit; 1888 1889 found_highest: 1890 /* Compute highest gap address at the desired alignment */ 1891 gap_end -= info->length; 1892 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1893 1894 VM_BUG_ON(gap_end < info->low_limit); 1895 VM_BUG_ON(gap_end < gap_start); 1896 return gap_end; 1897 } 1898 1899 /* Get an address range which is currently unmapped. 1900 * For shmat() with addr=0. 1901 * 1902 * Ugly calling convention alert: 1903 * Return value with the low bits set means error value, 1904 * ie 1905 * if (ret & ~PAGE_MASK) 1906 * error = ret; 1907 * 1908 * This function "knows" that -ENOMEM has the bits set. 1909 */ 1910 #ifndef HAVE_ARCH_UNMAPPED_AREA 1911 unsigned long 1912 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1913 unsigned long len, unsigned long pgoff, unsigned long flags) 1914 { 1915 struct mm_struct *mm = current->mm; 1916 struct vm_area_struct *vma; 1917 struct vm_unmapped_area_info info; 1918 1919 if (len > TASK_SIZE - mmap_min_addr) 1920 return -ENOMEM; 1921 1922 if (flags & MAP_FIXED) 1923 return addr; 1924 1925 if (addr) { 1926 addr = PAGE_ALIGN(addr); 1927 vma = find_vma(mm, addr); 1928 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1929 (!vma || addr + len <= vma->vm_start)) 1930 return addr; 1931 } 1932 1933 info.flags = 0; 1934 info.length = len; 1935 info.low_limit = mm->mmap_base; 1936 info.high_limit = TASK_SIZE; 1937 info.align_mask = 0; 1938 return vm_unmapped_area(&info); 1939 } 1940 #endif 1941 1942 /* 1943 * This mmap-allocator allocates new areas top-down from below the 1944 * stack's low limit (the base): 1945 */ 1946 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1947 unsigned long 1948 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1949 const unsigned long len, const unsigned long pgoff, 1950 const unsigned long flags) 1951 { 1952 struct vm_area_struct *vma; 1953 struct mm_struct *mm = current->mm; 1954 unsigned long addr = addr0; 1955 struct vm_unmapped_area_info info; 1956 1957 /* requested length too big for entire address space */ 1958 if (len > TASK_SIZE - mmap_min_addr) 1959 return -ENOMEM; 1960 1961 if (flags & MAP_FIXED) 1962 return addr; 1963 1964 /* requesting a specific address */ 1965 if (addr) { 1966 addr = PAGE_ALIGN(addr); 1967 vma = find_vma(mm, addr); 1968 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1969 (!vma || addr + len <= vma->vm_start)) 1970 return addr; 1971 } 1972 1973 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1974 info.length = len; 1975 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1976 info.high_limit = mm->mmap_base; 1977 info.align_mask = 0; 1978 addr = vm_unmapped_area(&info); 1979 1980 /* 1981 * A failed mmap() very likely causes application failure, 1982 * so fall back to the bottom-up function here. This scenario 1983 * can happen with large stack limits and large mmap() 1984 * allocations. 1985 */ 1986 if (addr & ~PAGE_MASK) { 1987 VM_BUG_ON(addr != -ENOMEM); 1988 info.flags = 0; 1989 info.low_limit = TASK_UNMAPPED_BASE; 1990 info.high_limit = TASK_SIZE; 1991 addr = vm_unmapped_area(&info); 1992 } 1993 1994 return addr; 1995 } 1996 #endif 1997 1998 unsigned long 1999 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2000 unsigned long pgoff, unsigned long flags) 2001 { 2002 unsigned long (*get_area)(struct file *, unsigned long, 2003 unsigned long, unsigned long, unsigned long); 2004 2005 unsigned long error = arch_mmap_check(addr, len, flags); 2006 if (error) 2007 return error; 2008 2009 /* Careful about overflows.. */ 2010 if (len > TASK_SIZE) 2011 return -ENOMEM; 2012 2013 get_area = current->mm->get_unmapped_area; 2014 if (file && file->f_op->get_unmapped_area) 2015 get_area = file->f_op->get_unmapped_area; 2016 addr = get_area(file, addr, len, pgoff, flags); 2017 if (IS_ERR_VALUE(addr)) 2018 return addr; 2019 2020 if (addr > TASK_SIZE - len) 2021 return -ENOMEM; 2022 if (addr & ~PAGE_MASK) 2023 return -EINVAL; 2024 2025 addr = arch_rebalance_pgtables(addr, len); 2026 error = security_mmap_addr(addr); 2027 return error ? error : addr; 2028 } 2029 2030 EXPORT_SYMBOL(get_unmapped_area); 2031 2032 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2033 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2034 { 2035 struct rb_node *rb_node; 2036 struct vm_area_struct *vma; 2037 2038 /* Check the cache first. */ 2039 vma = vmacache_find(mm, addr); 2040 if (likely(vma)) 2041 return vma; 2042 2043 rb_node = mm->mm_rb.rb_node; 2044 vma = NULL; 2045 2046 while (rb_node) { 2047 struct vm_area_struct *tmp; 2048 2049 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2050 2051 if (tmp->vm_end > addr) { 2052 vma = tmp; 2053 if (tmp->vm_start <= addr) 2054 break; 2055 rb_node = rb_node->rb_left; 2056 } else 2057 rb_node = rb_node->rb_right; 2058 } 2059 2060 if (vma) 2061 vmacache_update(addr, vma); 2062 return vma; 2063 } 2064 2065 EXPORT_SYMBOL(find_vma); 2066 2067 /* 2068 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2069 */ 2070 struct vm_area_struct * 2071 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2072 struct vm_area_struct **pprev) 2073 { 2074 struct vm_area_struct *vma; 2075 2076 vma = find_vma(mm, addr); 2077 if (vma) { 2078 *pprev = vma->vm_prev; 2079 } else { 2080 struct rb_node *rb_node = mm->mm_rb.rb_node; 2081 *pprev = NULL; 2082 while (rb_node) { 2083 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2084 rb_node = rb_node->rb_right; 2085 } 2086 } 2087 return vma; 2088 } 2089 2090 /* 2091 * Verify that the stack growth is acceptable and 2092 * update accounting. This is shared with both the 2093 * grow-up and grow-down cases. 2094 */ 2095 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2096 { 2097 struct mm_struct *mm = vma->vm_mm; 2098 struct rlimit *rlim = current->signal->rlim; 2099 unsigned long new_start; 2100 2101 /* address space limit tests */ 2102 if (!may_expand_vm(mm, grow)) 2103 return -ENOMEM; 2104 2105 /* Stack limit test */ 2106 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2107 return -ENOMEM; 2108 2109 /* mlock limit tests */ 2110 if (vma->vm_flags & VM_LOCKED) { 2111 unsigned long locked; 2112 unsigned long limit; 2113 locked = mm->locked_vm + grow; 2114 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2115 limit >>= PAGE_SHIFT; 2116 if (locked > limit && !capable(CAP_IPC_LOCK)) 2117 return -ENOMEM; 2118 } 2119 2120 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2121 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2122 vma->vm_end - size; 2123 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2124 return -EFAULT; 2125 2126 /* 2127 * Overcommit.. This must be the final test, as it will 2128 * update security statistics. 2129 */ 2130 if (security_vm_enough_memory_mm(mm, grow)) 2131 return -ENOMEM; 2132 2133 /* Ok, everything looks good - let it rip */ 2134 if (vma->vm_flags & VM_LOCKED) 2135 mm->locked_vm += grow; 2136 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 2137 return 0; 2138 } 2139 2140 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2141 /* 2142 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2143 * vma is the last one with address > vma->vm_end. Have to extend vma. 2144 */ 2145 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2146 { 2147 int error; 2148 2149 if (!(vma->vm_flags & VM_GROWSUP)) 2150 return -EFAULT; 2151 2152 /* 2153 * We must make sure the anon_vma is allocated 2154 * so that the anon_vma locking is not a noop. 2155 */ 2156 if (unlikely(anon_vma_prepare(vma))) 2157 return -ENOMEM; 2158 vma_lock_anon_vma(vma); 2159 2160 /* 2161 * vma->vm_start/vm_end cannot change under us because the caller 2162 * is required to hold the mmap_sem in read mode. We need the 2163 * anon_vma lock to serialize against concurrent expand_stacks. 2164 * Also guard against wrapping around to address 0. 2165 */ 2166 if (address < PAGE_ALIGN(address+4)) 2167 address = PAGE_ALIGN(address+4); 2168 else { 2169 vma_unlock_anon_vma(vma); 2170 return -ENOMEM; 2171 } 2172 error = 0; 2173 2174 /* Somebody else might have raced and expanded it already */ 2175 if (address > vma->vm_end) { 2176 unsigned long size, grow; 2177 2178 size = address - vma->vm_start; 2179 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2180 2181 error = -ENOMEM; 2182 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2183 error = acct_stack_growth(vma, size, grow); 2184 if (!error) { 2185 /* 2186 * vma_gap_update() doesn't support concurrent 2187 * updates, but we only hold a shared mmap_sem 2188 * lock here, so we need to protect against 2189 * concurrent vma expansions. 2190 * vma_lock_anon_vma() doesn't help here, as 2191 * we don't guarantee that all growable vmas 2192 * in a mm share the same root anon vma. 2193 * So, we reuse mm->page_table_lock to guard 2194 * against concurrent vma expansions. 2195 */ 2196 spin_lock(&vma->vm_mm->page_table_lock); 2197 anon_vma_interval_tree_pre_update_vma(vma); 2198 vma->vm_end = address; 2199 anon_vma_interval_tree_post_update_vma(vma); 2200 if (vma->vm_next) 2201 vma_gap_update(vma->vm_next); 2202 else 2203 vma->vm_mm->highest_vm_end = address; 2204 spin_unlock(&vma->vm_mm->page_table_lock); 2205 2206 perf_event_mmap(vma); 2207 } 2208 } 2209 } 2210 vma_unlock_anon_vma(vma); 2211 khugepaged_enter_vma_merge(vma); 2212 validate_mm(vma->vm_mm); 2213 return error; 2214 } 2215 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2216 2217 /* 2218 * vma is the first one with address < vma->vm_start. Have to extend vma. 2219 */ 2220 int expand_downwards(struct vm_area_struct *vma, 2221 unsigned long address) 2222 { 2223 int error; 2224 2225 /* 2226 * We must make sure the anon_vma is allocated 2227 * so that the anon_vma locking is not a noop. 2228 */ 2229 if (unlikely(anon_vma_prepare(vma))) 2230 return -ENOMEM; 2231 2232 address &= PAGE_MASK; 2233 error = security_mmap_addr(address); 2234 if (error) 2235 return error; 2236 2237 vma_lock_anon_vma(vma); 2238 2239 /* 2240 * vma->vm_start/vm_end cannot change under us because the caller 2241 * is required to hold the mmap_sem in read mode. We need the 2242 * anon_vma lock to serialize against concurrent expand_stacks. 2243 */ 2244 2245 /* Somebody else might have raced and expanded it already */ 2246 if (address < vma->vm_start) { 2247 unsigned long size, grow; 2248 2249 size = vma->vm_end - address; 2250 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2251 2252 error = -ENOMEM; 2253 if (grow <= vma->vm_pgoff) { 2254 error = acct_stack_growth(vma, size, grow); 2255 if (!error) { 2256 /* 2257 * vma_gap_update() doesn't support concurrent 2258 * updates, but we only hold a shared mmap_sem 2259 * lock here, so we need to protect against 2260 * concurrent vma expansions. 2261 * vma_lock_anon_vma() doesn't help here, as 2262 * we don't guarantee that all growable vmas 2263 * in a mm share the same root anon vma. 2264 * So, we reuse mm->page_table_lock to guard 2265 * against concurrent vma expansions. 2266 */ 2267 spin_lock(&vma->vm_mm->page_table_lock); 2268 anon_vma_interval_tree_pre_update_vma(vma); 2269 vma->vm_start = address; 2270 vma->vm_pgoff -= grow; 2271 anon_vma_interval_tree_post_update_vma(vma); 2272 vma_gap_update(vma); 2273 spin_unlock(&vma->vm_mm->page_table_lock); 2274 2275 perf_event_mmap(vma); 2276 } 2277 } 2278 } 2279 vma_unlock_anon_vma(vma); 2280 khugepaged_enter_vma_merge(vma); 2281 validate_mm(vma->vm_mm); 2282 return error; 2283 } 2284 2285 /* 2286 * Note how expand_stack() refuses to expand the stack all the way to 2287 * abut the next virtual mapping, *unless* that mapping itself is also 2288 * a stack mapping. We want to leave room for a guard page, after all 2289 * (the guard page itself is not added here, that is done by the 2290 * actual page faulting logic) 2291 * 2292 * This matches the behavior of the guard page logic (see mm/memory.c: 2293 * check_stack_guard_page()), which only allows the guard page to be 2294 * removed under these circumstances. 2295 */ 2296 #ifdef CONFIG_STACK_GROWSUP 2297 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2298 { 2299 struct vm_area_struct *next; 2300 2301 address &= PAGE_MASK; 2302 next = vma->vm_next; 2303 if (next && next->vm_start == address + PAGE_SIZE) { 2304 if (!(next->vm_flags & VM_GROWSUP)) 2305 return -ENOMEM; 2306 } 2307 return expand_upwards(vma, address); 2308 } 2309 2310 struct vm_area_struct * 2311 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2312 { 2313 struct vm_area_struct *vma, *prev; 2314 2315 addr &= PAGE_MASK; 2316 vma = find_vma_prev(mm, addr, &prev); 2317 if (vma && (vma->vm_start <= addr)) 2318 return vma; 2319 if (!prev || expand_stack(prev, addr)) 2320 return NULL; 2321 if (prev->vm_flags & VM_LOCKED) 2322 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL); 2323 return prev; 2324 } 2325 #else 2326 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2327 { 2328 struct vm_area_struct *prev; 2329 2330 address &= PAGE_MASK; 2331 prev = vma->vm_prev; 2332 if (prev && prev->vm_end == address) { 2333 if (!(prev->vm_flags & VM_GROWSDOWN)) 2334 return -ENOMEM; 2335 } 2336 return expand_downwards(vma, address); 2337 } 2338 2339 struct vm_area_struct * 2340 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2341 { 2342 struct vm_area_struct *vma; 2343 unsigned long start; 2344 2345 addr &= PAGE_MASK; 2346 vma = find_vma(mm, addr); 2347 if (!vma) 2348 return NULL; 2349 if (vma->vm_start <= addr) 2350 return vma; 2351 if (!(vma->vm_flags & VM_GROWSDOWN)) 2352 return NULL; 2353 start = vma->vm_start; 2354 if (expand_stack(vma, addr)) 2355 return NULL; 2356 if (vma->vm_flags & VM_LOCKED) 2357 __mlock_vma_pages_range(vma, addr, start, NULL); 2358 return vma; 2359 } 2360 #endif 2361 2362 /* 2363 * Ok - we have the memory areas we should free on the vma list, 2364 * so release them, and do the vma updates. 2365 * 2366 * Called with the mm semaphore held. 2367 */ 2368 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2369 { 2370 unsigned long nr_accounted = 0; 2371 2372 /* Update high watermark before we lower total_vm */ 2373 update_hiwater_vm(mm); 2374 do { 2375 long nrpages = vma_pages(vma); 2376 2377 if (vma->vm_flags & VM_ACCOUNT) 2378 nr_accounted += nrpages; 2379 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 2380 vma = remove_vma(vma); 2381 } while (vma); 2382 vm_unacct_memory(nr_accounted); 2383 validate_mm(mm); 2384 } 2385 2386 /* 2387 * Get rid of page table information in the indicated region. 2388 * 2389 * Called with the mm semaphore held. 2390 */ 2391 static void unmap_region(struct mm_struct *mm, 2392 struct vm_area_struct *vma, struct vm_area_struct *prev, 2393 unsigned long start, unsigned long end) 2394 { 2395 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2396 struct mmu_gather tlb; 2397 2398 lru_add_drain(); 2399 tlb_gather_mmu(&tlb, mm, start, end); 2400 update_hiwater_rss(mm); 2401 unmap_vmas(&tlb, vma, start, end); 2402 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2403 next ? next->vm_start : USER_PGTABLES_CEILING); 2404 tlb_finish_mmu(&tlb, start, end); 2405 } 2406 2407 /* 2408 * Create a list of vma's touched by the unmap, removing them from the mm's 2409 * vma list as we go.. 2410 */ 2411 static void 2412 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2413 struct vm_area_struct *prev, unsigned long end) 2414 { 2415 struct vm_area_struct **insertion_point; 2416 struct vm_area_struct *tail_vma = NULL; 2417 2418 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2419 vma->vm_prev = NULL; 2420 do { 2421 vma_rb_erase(vma, &mm->mm_rb); 2422 mm->map_count--; 2423 tail_vma = vma; 2424 vma = vma->vm_next; 2425 } while (vma && vma->vm_start < end); 2426 *insertion_point = vma; 2427 if (vma) { 2428 vma->vm_prev = prev; 2429 vma_gap_update(vma); 2430 } else 2431 mm->highest_vm_end = prev ? prev->vm_end : 0; 2432 tail_vma->vm_next = NULL; 2433 2434 /* Kill the cache */ 2435 vmacache_invalidate(mm); 2436 } 2437 2438 /* 2439 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2440 * munmap path where it doesn't make sense to fail. 2441 */ 2442 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2443 unsigned long addr, int new_below) 2444 { 2445 struct vm_area_struct *new; 2446 int err = -ENOMEM; 2447 2448 if (is_vm_hugetlb_page(vma) && (addr & 2449 ~(huge_page_mask(hstate_vma(vma))))) 2450 return -EINVAL; 2451 2452 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2453 if (!new) 2454 goto out_err; 2455 2456 /* most fields are the same, copy all, and then fixup */ 2457 *new = *vma; 2458 2459 INIT_LIST_HEAD(&new->anon_vma_chain); 2460 2461 if (new_below) 2462 new->vm_end = addr; 2463 else { 2464 new->vm_start = addr; 2465 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2466 } 2467 2468 err = vma_dup_policy(vma, new); 2469 if (err) 2470 goto out_free_vma; 2471 2472 if (anon_vma_clone(new, vma)) 2473 goto out_free_mpol; 2474 2475 if (new->vm_file) 2476 get_file(new->vm_file); 2477 2478 if (new->vm_ops && new->vm_ops->open) 2479 new->vm_ops->open(new); 2480 2481 if (new_below) 2482 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2483 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2484 else 2485 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2486 2487 /* Success. */ 2488 if (!err) 2489 return 0; 2490 2491 /* Clean everything up if vma_adjust failed. */ 2492 if (new->vm_ops && new->vm_ops->close) 2493 new->vm_ops->close(new); 2494 if (new->vm_file) 2495 fput(new->vm_file); 2496 unlink_anon_vmas(new); 2497 out_free_mpol: 2498 mpol_put(vma_policy(new)); 2499 out_free_vma: 2500 kmem_cache_free(vm_area_cachep, new); 2501 out_err: 2502 return err; 2503 } 2504 2505 /* 2506 * Split a vma into two pieces at address 'addr', a new vma is allocated 2507 * either for the first part or the tail. 2508 */ 2509 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2510 unsigned long addr, int new_below) 2511 { 2512 if (mm->map_count >= sysctl_max_map_count) 2513 return -ENOMEM; 2514 2515 return __split_vma(mm, vma, addr, new_below); 2516 } 2517 2518 /* Munmap is split into 2 main parts -- this part which finds 2519 * what needs doing, and the areas themselves, which do the 2520 * work. This now handles partial unmappings. 2521 * Jeremy Fitzhardinge <jeremy@goop.org> 2522 */ 2523 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2524 { 2525 unsigned long end; 2526 struct vm_area_struct *vma, *prev, *last; 2527 2528 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2529 return -EINVAL; 2530 2531 len = PAGE_ALIGN(len); 2532 if (len == 0) 2533 return -EINVAL; 2534 2535 /* Find the first overlapping VMA */ 2536 vma = find_vma(mm, start); 2537 if (!vma) 2538 return 0; 2539 prev = vma->vm_prev; 2540 /* we have start < vma->vm_end */ 2541 2542 /* if it doesn't overlap, we have nothing.. */ 2543 end = start + len; 2544 if (vma->vm_start >= end) 2545 return 0; 2546 2547 /* 2548 * If we need to split any vma, do it now to save pain later. 2549 * 2550 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2551 * unmapped vm_area_struct will remain in use: so lower split_vma 2552 * places tmp vma above, and higher split_vma places tmp vma below. 2553 */ 2554 if (start > vma->vm_start) { 2555 int error; 2556 2557 /* 2558 * Make sure that map_count on return from munmap() will 2559 * not exceed its limit; but let map_count go just above 2560 * its limit temporarily, to help free resources as expected. 2561 */ 2562 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2563 return -ENOMEM; 2564 2565 error = __split_vma(mm, vma, start, 0); 2566 if (error) 2567 return error; 2568 prev = vma; 2569 } 2570 2571 /* Does it split the last one? */ 2572 last = find_vma(mm, end); 2573 if (last && end > last->vm_start) { 2574 int error = __split_vma(mm, last, end, 1); 2575 if (error) 2576 return error; 2577 } 2578 vma = prev ? prev->vm_next : mm->mmap; 2579 2580 /* 2581 * unlock any mlock()ed ranges before detaching vmas 2582 */ 2583 if (mm->locked_vm) { 2584 struct vm_area_struct *tmp = vma; 2585 while (tmp && tmp->vm_start < end) { 2586 if (tmp->vm_flags & VM_LOCKED) { 2587 mm->locked_vm -= vma_pages(tmp); 2588 munlock_vma_pages_all(tmp); 2589 } 2590 tmp = tmp->vm_next; 2591 } 2592 } 2593 2594 /* 2595 * Remove the vma's, and unmap the actual pages 2596 */ 2597 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2598 unmap_region(mm, vma, prev, start, end); 2599 2600 /* Fix up all other VM information */ 2601 remove_vma_list(mm, vma); 2602 2603 return 0; 2604 } 2605 2606 int vm_munmap(unsigned long start, size_t len) 2607 { 2608 int ret; 2609 struct mm_struct *mm = current->mm; 2610 2611 down_write(&mm->mmap_sem); 2612 ret = do_munmap(mm, start, len); 2613 up_write(&mm->mmap_sem); 2614 return ret; 2615 } 2616 EXPORT_SYMBOL(vm_munmap); 2617 2618 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2619 { 2620 profile_munmap(addr); 2621 return vm_munmap(addr, len); 2622 } 2623 2624 static inline void verify_mm_writelocked(struct mm_struct *mm) 2625 { 2626 #ifdef CONFIG_DEBUG_VM 2627 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2628 WARN_ON(1); 2629 up_read(&mm->mmap_sem); 2630 } 2631 #endif 2632 } 2633 2634 /* 2635 * this is really a simplified "do_mmap". it only handles 2636 * anonymous maps. eventually we may be able to do some 2637 * brk-specific accounting here. 2638 */ 2639 static unsigned long do_brk(unsigned long addr, unsigned long len) 2640 { 2641 struct mm_struct *mm = current->mm; 2642 struct vm_area_struct *vma, *prev; 2643 unsigned long flags; 2644 struct rb_node **rb_link, *rb_parent; 2645 pgoff_t pgoff = addr >> PAGE_SHIFT; 2646 int error; 2647 2648 len = PAGE_ALIGN(len); 2649 if (!len) 2650 return addr; 2651 2652 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2653 2654 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2655 if (error & ~PAGE_MASK) 2656 return error; 2657 2658 error = mlock_future_check(mm, mm->def_flags, len); 2659 if (error) 2660 return error; 2661 2662 /* 2663 * mm->mmap_sem is required to protect against another thread 2664 * changing the mappings in case we sleep. 2665 */ 2666 verify_mm_writelocked(mm); 2667 2668 /* 2669 * Clear old maps. this also does some error checking for us 2670 */ 2671 munmap_back: 2672 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 2673 if (do_munmap(mm, addr, len)) 2674 return -ENOMEM; 2675 goto munmap_back; 2676 } 2677 2678 /* Check against address space limits *after* clearing old maps... */ 2679 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2680 return -ENOMEM; 2681 2682 if (mm->map_count > sysctl_max_map_count) 2683 return -ENOMEM; 2684 2685 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2686 return -ENOMEM; 2687 2688 /* Can we just expand an old private anonymous mapping? */ 2689 vma = vma_merge(mm, prev, addr, addr + len, flags, 2690 NULL, NULL, pgoff, NULL); 2691 if (vma) 2692 goto out; 2693 2694 /* 2695 * create a vma struct for an anonymous mapping 2696 */ 2697 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2698 if (!vma) { 2699 vm_unacct_memory(len >> PAGE_SHIFT); 2700 return -ENOMEM; 2701 } 2702 2703 INIT_LIST_HEAD(&vma->anon_vma_chain); 2704 vma->vm_mm = mm; 2705 vma->vm_start = addr; 2706 vma->vm_end = addr + len; 2707 vma->vm_pgoff = pgoff; 2708 vma->vm_flags = flags; 2709 vma->vm_page_prot = vm_get_page_prot(flags); 2710 vma_link(mm, vma, prev, rb_link, rb_parent); 2711 out: 2712 perf_event_mmap(vma); 2713 mm->total_vm += len >> PAGE_SHIFT; 2714 if (flags & VM_LOCKED) 2715 mm->locked_vm += (len >> PAGE_SHIFT); 2716 vma->vm_flags |= VM_SOFTDIRTY; 2717 return addr; 2718 } 2719 2720 unsigned long vm_brk(unsigned long addr, unsigned long len) 2721 { 2722 struct mm_struct *mm = current->mm; 2723 unsigned long ret; 2724 bool populate; 2725 2726 down_write(&mm->mmap_sem); 2727 ret = do_brk(addr, len); 2728 populate = ((mm->def_flags & VM_LOCKED) != 0); 2729 up_write(&mm->mmap_sem); 2730 if (populate) 2731 mm_populate(addr, len); 2732 return ret; 2733 } 2734 EXPORT_SYMBOL(vm_brk); 2735 2736 /* Release all mmaps. */ 2737 void exit_mmap(struct mm_struct *mm) 2738 { 2739 struct mmu_gather tlb; 2740 struct vm_area_struct *vma; 2741 unsigned long nr_accounted = 0; 2742 2743 /* mm's last user has gone, and its about to be pulled down */ 2744 mmu_notifier_release(mm); 2745 2746 if (mm->locked_vm) { 2747 vma = mm->mmap; 2748 while (vma) { 2749 if (vma->vm_flags & VM_LOCKED) 2750 munlock_vma_pages_all(vma); 2751 vma = vma->vm_next; 2752 } 2753 } 2754 2755 arch_exit_mmap(mm); 2756 2757 vma = mm->mmap; 2758 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2759 return; 2760 2761 lru_add_drain(); 2762 flush_cache_mm(mm); 2763 tlb_gather_mmu(&tlb, mm, 0, -1); 2764 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2765 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2766 unmap_vmas(&tlb, vma, 0, -1); 2767 2768 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2769 tlb_finish_mmu(&tlb, 0, -1); 2770 2771 /* 2772 * Walk the list again, actually closing and freeing it, 2773 * with preemption enabled, without holding any MM locks. 2774 */ 2775 while (vma) { 2776 if (vma->vm_flags & VM_ACCOUNT) 2777 nr_accounted += vma_pages(vma); 2778 vma = remove_vma(vma); 2779 } 2780 vm_unacct_memory(nr_accounted); 2781 2782 WARN_ON(atomic_long_read(&mm->nr_ptes) > 2783 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2784 } 2785 2786 /* Insert vm structure into process list sorted by address 2787 * and into the inode's i_mmap tree. If vm_file is non-NULL 2788 * then i_mmap_mutex is taken here. 2789 */ 2790 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2791 { 2792 struct vm_area_struct *prev; 2793 struct rb_node **rb_link, *rb_parent; 2794 2795 /* 2796 * The vm_pgoff of a purely anonymous vma should be irrelevant 2797 * until its first write fault, when page's anon_vma and index 2798 * are set. But now set the vm_pgoff it will almost certainly 2799 * end up with (unless mremap moves it elsewhere before that 2800 * first wfault), so /proc/pid/maps tells a consistent story. 2801 * 2802 * By setting it to reflect the virtual start address of the 2803 * vma, merges and splits can happen in a seamless way, just 2804 * using the existing file pgoff checks and manipulations. 2805 * Similarly in do_mmap_pgoff and in do_brk. 2806 */ 2807 if (!vma->vm_file) { 2808 BUG_ON(vma->anon_vma); 2809 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2810 } 2811 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2812 &prev, &rb_link, &rb_parent)) 2813 return -ENOMEM; 2814 if ((vma->vm_flags & VM_ACCOUNT) && 2815 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2816 return -ENOMEM; 2817 2818 vma_link(mm, vma, prev, rb_link, rb_parent); 2819 return 0; 2820 } 2821 2822 /* 2823 * Copy the vma structure to a new location in the same mm, 2824 * prior to moving page table entries, to effect an mremap move. 2825 */ 2826 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2827 unsigned long addr, unsigned long len, pgoff_t pgoff, 2828 bool *need_rmap_locks) 2829 { 2830 struct vm_area_struct *vma = *vmap; 2831 unsigned long vma_start = vma->vm_start; 2832 struct mm_struct *mm = vma->vm_mm; 2833 struct vm_area_struct *new_vma, *prev; 2834 struct rb_node **rb_link, *rb_parent; 2835 bool faulted_in_anon_vma = true; 2836 2837 /* 2838 * If anonymous vma has not yet been faulted, update new pgoff 2839 * to match new location, to increase its chance of merging. 2840 */ 2841 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2842 pgoff = addr >> PAGE_SHIFT; 2843 faulted_in_anon_vma = false; 2844 } 2845 2846 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2847 return NULL; /* should never get here */ 2848 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2849 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2850 if (new_vma) { 2851 /* 2852 * Source vma may have been merged into new_vma 2853 */ 2854 if (unlikely(vma_start >= new_vma->vm_start && 2855 vma_start < new_vma->vm_end)) { 2856 /* 2857 * The only way we can get a vma_merge with 2858 * self during an mremap is if the vma hasn't 2859 * been faulted in yet and we were allowed to 2860 * reset the dst vma->vm_pgoff to the 2861 * destination address of the mremap to allow 2862 * the merge to happen. mremap must change the 2863 * vm_pgoff linearity between src and dst vmas 2864 * (in turn preventing a vma_merge) to be 2865 * safe. It is only safe to keep the vm_pgoff 2866 * linear if there are no pages mapped yet. 2867 */ 2868 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 2869 *vmap = vma = new_vma; 2870 } 2871 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2872 } else { 2873 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2874 if (new_vma) { 2875 *new_vma = *vma; 2876 new_vma->vm_start = addr; 2877 new_vma->vm_end = addr + len; 2878 new_vma->vm_pgoff = pgoff; 2879 if (vma_dup_policy(vma, new_vma)) 2880 goto out_free_vma; 2881 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2882 if (anon_vma_clone(new_vma, vma)) 2883 goto out_free_mempol; 2884 if (new_vma->vm_file) 2885 get_file(new_vma->vm_file); 2886 if (new_vma->vm_ops && new_vma->vm_ops->open) 2887 new_vma->vm_ops->open(new_vma); 2888 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2889 *need_rmap_locks = false; 2890 } 2891 } 2892 return new_vma; 2893 2894 out_free_mempol: 2895 mpol_put(vma_policy(new_vma)); 2896 out_free_vma: 2897 kmem_cache_free(vm_area_cachep, new_vma); 2898 return NULL; 2899 } 2900 2901 /* 2902 * Return true if the calling process may expand its vm space by the passed 2903 * number of pages 2904 */ 2905 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2906 { 2907 unsigned long cur = mm->total_vm; /* pages */ 2908 unsigned long lim; 2909 2910 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2911 2912 if (cur + npages > lim) 2913 return 0; 2914 return 1; 2915 } 2916 2917 static int special_mapping_fault(struct vm_area_struct *vma, 2918 struct vm_fault *vmf); 2919 2920 /* 2921 * Having a close hook prevents vma merging regardless of flags. 2922 */ 2923 static void special_mapping_close(struct vm_area_struct *vma) 2924 { 2925 } 2926 2927 static const char *special_mapping_name(struct vm_area_struct *vma) 2928 { 2929 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 2930 } 2931 2932 static const struct vm_operations_struct special_mapping_vmops = { 2933 .close = special_mapping_close, 2934 .fault = special_mapping_fault, 2935 .name = special_mapping_name, 2936 }; 2937 2938 static const struct vm_operations_struct legacy_special_mapping_vmops = { 2939 .close = special_mapping_close, 2940 .fault = special_mapping_fault, 2941 }; 2942 2943 static int special_mapping_fault(struct vm_area_struct *vma, 2944 struct vm_fault *vmf) 2945 { 2946 pgoff_t pgoff; 2947 struct page **pages; 2948 2949 /* 2950 * special mappings have no vm_file, and in that case, the mm 2951 * uses vm_pgoff internally. So we have to subtract it from here. 2952 * We are allowed to do this because we are the mm; do not copy 2953 * this code into drivers! 2954 */ 2955 pgoff = vmf->pgoff - vma->vm_pgoff; 2956 2957 if (vma->vm_ops == &legacy_special_mapping_vmops) 2958 pages = vma->vm_private_data; 2959 else 2960 pages = ((struct vm_special_mapping *)vma->vm_private_data)-> 2961 pages; 2962 2963 for (; pgoff && *pages; ++pages) 2964 pgoff--; 2965 2966 if (*pages) { 2967 struct page *page = *pages; 2968 get_page(page); 2969 vmf->page = page; 2970 return 0; 2971 } 2972 2973 return VM_FAULT_SIGBUS; 2974 } 2975 2976 static struct vm_area_struct *__install_special_mapping( 2977 struct mm_struct *mm, 2978 unsigned long addr, unsigned long len, 2979 unsigned long vm_flags, const struct vm_operations_struct *ops, 2980 void *priv) 2981 { 2982 int ret; 2983 struct vm_area_struct *vma; 2984 2985 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2986 if (unlikely(vma == NULL)) 2987 return ERR_PTR(-ENOMEM); 2988 2989 INIT_LIST_HEAD(&vma->anon_vma_chain); 2990 vma->vm_mm = mm; 2991 vma->vm_start = addr; 2992 vma->vm_end = addr + len; 2993 2994 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 2995 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2996 2997 vma->vm_ops = ops; 2998 vma->vm_private_data = priv; 2999 3000 ret = insert_vm_struct(mm, vma); 3001 if (ret) 3002 goto out; 3003 3004 mm->total_vm += len >> PAGE_SHIFT; 3005 3006 perf_event_mmap(vma); 3007 3008 return vma; 3009 3010 out: 3011 kmem_cache_free(vm_area_cachep, vma); 3012 return ERR_PTR(ret); 3013 } 3014 3015 /* 3016 * Called with mm->mmap_sem held for writing. 3017 * Insert a new vma covering the given region, with the given flags. 3018 * Its pages are supplied by the given array of struct page *. 3019 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3020 * The region past the last page supplied will always produce SIGBUS. 3021 * The array pointer and the pages it points to are assumed to stay alive 3022 * for as long as this mapping might exist. 3023 */ 3024 struct vm_area_struct *_install_special_mapping( 3025 struct mm_struct *mm, 3026 unsigned long addr, unsigned long len, 3027 unsigned long vm_flags, const struct vm_special_mapping *spec) 3028 { 3029 return __install_special_mapping(mm, addr, len, vm_flags, 3030 &special_mapping_vmops, (void *)spec); 3031 } 3032 3033 int install_special_mapping(struct mm_struct *mm, 3034 unsigned long addr, unsigned long len, 3035 unsigned long vm_flags, struct page **pages) 3036 { 3037 struct vm_area_struct *vma = __install_special_mapping( 3038 mm, addr, len, vm_flags, &legacy_special_mapping_vmops, 3039 (void *)pages); 3040 3041 return PTR_ERR_OR_ZERO(vma); 3042 } 3043 3044 static DEFINE_MUTEX(mm_all_locks_mutex); 3045 3046 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3047 { 3048 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3049 /* 3050 * The LSB of head.next can't change from under us 3051 * because we hold the mm_all_locks_mutex. 3052 */ 3053 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3054 /* 3055 * We can safely modify head.next after taking the 3056 * anon_vma->root->rwsem. If some other vma in this mm shares 3057 * the same anon_vma we won't take it again. 3058 * 3059 * No need of atomic instructions here, head.next 3060 * can't change from under us thanks to the 3061 * anon_vma->root->rwsem. 3062 */ 3063 if (__test_and_set_bit(0, (unsigned long *) 3064 &anon_vma->root->rb_root.rb_node)) 3065 BUG(); 3066 } 3067 } 3068 3069 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3070 { 3071 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3072 /* 3073 * AS_MM_ALL_LOCKS can't change from under us because 3074 * we hold the mm_all_locks_mutex. 3075 * 3076 * Operations on ->flags have to be atomic because 3077 * even if AS_MM_ALL_LOCKS is stable thanks to the 3078 * mm_all_locks_mutex, there may be other cpus 3079 * changing other bitflags in parallel to us. 3080 */ 3081 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3082 BUG(); 3083 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 3084 } 3085 } 3086 3087 /* 3088 * This operation locks against the VM for all pte/vma/mm related 3089 * operations that could ever happen on a certain mm. This includes 3090 * vmtruncate, try_to_unmap, and all page faults. 3091 * 3092 * The caller must take the mmap_sem in write mode before calling 3093 * mm_take_all_locks(). The caller isn't allowed to release the 3094 * mmap_sem until mm_drop_all_locks() returns. 3095 * 3096 * mmap_sem in write mode is required in order to block all operations 3097 * that could modify pagetables and free pages without need of 3098 * altering the vma layout (for example populate_range() with 3099 * nonlinear vmas). It's also needed in write mode to avoid new 3100 * anon_vmas to be associated with existing vmas. 3101 * 3102 * A single task can't take more than one mm_take_all_locks() in a row 3103 * or it would deadlock. 3104 * 3105 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3106 * mapping->flags avoid to take the same lock twice, if more than one 3107 * vma in this mm is backed by the same anon_vma or address_space. 3108 * 3109 * We can take all the locks in random order because the VM code 3110 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never 3111 * takes more than one of them in a row. Secondly we're protected 3112 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 3113 * 3114 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3115 * that may have to take thousand of locks. 3116 * 3117 * mm_take_all_locks() can fail if it's interrupted by signals. 3118 */ 3119 int mm_take_all_locks(struct mm_struct *mm) 3120 { 3121 struct vm_area_struct *vma; 3122 struct anon_vma_chain *avc; 3123 3124 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3125 3126 mutex_lock(&mm_all_locks_mutex); 3127 3128 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3129 if (signal_pending(current)) 3130 goto out_unlock; 3131 if (vma->vm_file && vma->vm_file->f_mapping) 3132 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3133 } 3134 3135 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3136 if (signal_pending(current)) 3137 goto out_unlock; 3138 if (vma->anon_vma) 3139 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3140 vm_lock_anon_vma(mm, avc->anon_vma); 3141 } 3142 3143 return 0; 3144 3145 out_unlock: 3146 mm_drop_all_locks(mm); 3147 return -EINTR; 3148 } 3149 3150 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3151 { 3152 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3153 /* 3154 * The LSB of head.next can't change to 0 from under 3155 * us because we hold the mm_all_locks_mutex. 3156 * 3157 * We must however clear the bitflag before unlocking 3158 * the vma so the users using the anon_vma->rb_root will 3159 * never see our bitflag. 3160 * 3161 * No need of atomic instructions here, head.next 3162 * can't change from under us until we release the 3163 * anon_vma->root->rwsem. 3164 */ 3165 if (!__test_and_clear_bit(0, (unsigned long *) 3166 &anon_vma->root->rb_root.rb_node)) 3167 BUG(); 3168 anon_vma_unlock_write(anon_vma); 3169 } 3170 } 3171 3172 static void vm_unlock_mapping(struct address_space *mapping) 3173 { 3174 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3175 /* 3176 * AS_MM_ALL_LOCKS can't change to 0 from under us 3177 * because we hold the mm_all_locks_mutex. 3178 */ 3179 mutex_unlock(&mapping->i_mmap_mutex); 3180 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3181 &mapping->flags)) 3182 BUG(); 3183 } 3184 } 3185 3186 /* 3187 * The mmap_sem cannot be released by the caller until 3188 * mm_drop_all_locks() returns. 3189 */ 3190 void mm_drop_all_locks(struct mm_struct *mm) 3191 { 3192 struct vm_area_struct *vma; 3193 struct anon_vma_chain *avc; 3194 3195 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3196 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3197 3198 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3199 if (vma->anon_vma) 3200 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3201 vm_unlock_anon_vma(avc->anon_vma); 3202 if (vma->vm_file && vma->vm_file->f_mapping) 3203 vm_unlock_mapping(vma->vm_file->f_mapping); 3204 } 3205 3206 mutex_unlock(&mm_all_locks_mutex); 3207 } 3208 3209 /* 3210 * initialise the VMA slab 3211 */ 3212 void __init mmap_init(void) 3213 { 3214 int ret; 3215 3216 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3217 VM_BUG_ON(ret); 3218 } 3219 3220 /* 3221 * Initialise sysctl_user_reserve_kbytes. 3222 * 3223 * This is intended to prevent a user from starting a single memory hogging 3224 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3225 * mode. 3226 * 3227 * The default value is min(3% of free memory, 128MB) 3228 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3229 */ 3230 static int init_user_reserve(void) 3231 { 3232 unsigned long free_kbytes; 3233 3234 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3235 3236 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3237 return 0; 3238 } 3239 subsys_initcall(init_user_reserve); 3240 3241 /* 3242 * Initialise sysctl_admin_reserve_kbytes. 3243 * 3244 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3245 * to log in and kill a memory hogging process. 3246 * 3247 * Systems with more than 256MB will reserve 8MB, enough to recover 3248 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3249 * only reserve 3% of free pages by default. 3250 */ 3251 static int init_admin_reserve(void) 3252 { 3253 unsigned long free_kbytes; 3254 3255 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3256 3257 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3258 return 0; 3259 } 3260 subsys_initcall(init_admin_reserve); 3261 3262 /* 3263 * Reinititalise user and admin reserves if memory is added or removed. 3264 * 3265 * The default user reserve max is 128MB, and the default max for the 3266 * admin reserve is 8MB. These are usually, but not always, enough to 3267 * enable recovery from a memory hogging process using login/sshd, a shell, 3268 * and tools like top. It may make sense to increase or even disable the 3269 * reserve depending on the existence of swap or variations in the recovery 3270 * tools. So, the admin may have changed them. 3271 * 3272 * If memory is added and the reserves have been eliminated or increased above 3273 * the default max, then we'll trust the admin. 3274 * 3275 * If memory is removed and there isn't enough free memory, then we 3276 * need to reset the reserves. 3277 * 3278 * Otherwise keep the reserve set by the admin. 3279 */ 3280 static int reserve_mem_notifier(struct notifier_block *nb, 3281 unsigned long action, void *data) 3282 { 3283 unsigned long tmp, free_kbytes; 3284 3285 switch (action) { 3286 case MEM_ONLINE: 3287 /* Default max is 128MB. Leave alone if modified by operator. */ 3288 tmp = sysctl_user_reserve_kbytes; 3289 if (0 < tmp && tmp < (1UL << 17)) 3290 init_user_reserve(); 3291 3292 /* Default max is 8MB. Leave alone if modified by operator. */ 3293 tmp = sysctl_admin_reserve_kbytes; 3294 if (0 < tmp && tmp < (1UL << 13)) 3295 init_admin_reserve(); 3296 3297 break; 3298 case MEM_OFFLINE: 3299 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3300 3301 if (sysctl_user_reserve_kbytes > free_kbytes) { 3302 init_user_reserve(); 3303 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3304 sysctl_user_reserve_kbytes); 3305 } 3306 3307 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3308 init_admin_reserve(); 3309 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3310 sysctl_admin_reserve_kbytes); 3311 } 3312 break; 3313 default: 3314 break; 3315 } 3316 return NOTIFY_OK; 3317 } 3318 3319 static struct notifier_block reserve_mem_nb = { 3320 .notifier_call = reserve_mem_notifier, 3321 }; 3322 3323 static int __meminit init_reserve_notifier(void) 3324 { 3325 if (register_hotmemory_notifier(&reserve_mem_nb)) 3326 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3327 3328 return 0; 3329 } 3330 subsys_initcall(init_reserve_notifier); 3331